1/*
2 * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 *	      monitoring
4 *
5 * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6 *
7 * (derived from w83781d.c)
8 *
9 * Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10 *			      Philip Edelbrock <phil@netroedge.com>, and
11 *			      Mark Studebaker <mdsxyz123@yahoo.com>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27
28/*
29 * This driver supports the hardware sensor chips: Asus ASB100 and
30 * ASB100-A "BACH".
31 *
32 * ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33 * way for the driver to tell which one is there.
34 *
35 * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36 * asb100	7	3	1	4	0x31	0x0694	yes	no
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/slab.h>
43#include <linux/i2c.h>
44#include <linux/hwmon.h>
45#include <linux/hwmon-sysfs.h>
46#include <linux/hwmon-vid.h>
47#include <linux/err.h>
48#include <linux/init.h>
49#include <linux/jiffies.h>
50#include <linux/mutex.h>
51#include "lm75.h"
52
53/* I2C addresses to scan */
54static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
55
56static unsigned short force_subclients[4];
57module_param_array(force_subclients, short, NULL, 0);
58MODULE_PARM_DESC(force_subclients,
59	"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
60
61/* Voltage IN registers 0-6 */
62#define ASB100_REG_IN(nr)	(0x20 + (nr))
63#define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
64#define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
65
66/* FAN IN registers 1-3 */
67#define ASB100_REG_FAN(nr)	(0x28 + (nr))
68#define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
69
70/* TEMPERATURE registers 1-4 */
71static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
72static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
73static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
74
75#define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
76#define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
77#define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
78
79#define ASB100_REG_TEMP2_CONFIG	0x0152
80#define ASB100_REG_TEMP3_CONFIG	0x0252
81
82
83#define ASB100_REG_CONFIG	0x40
84#define ASB100_REG_ALARM1	0x41
85#define ASB100_REG_ALARM2	0x42
86#define ASB100_REG_SMIM1	0x43
87#define ASB100_REG_SMIM2	0x44
88#define ASB100_REG_VID_FANDIV	0x47
89#define ASB100_REG_I2C_ADDR	0x48
90#define ASB100_REG_CHIPID	0x49
91#define ASB100_REG_I2C_SUBADDR	0x4a
92#define ASB100_REG_PIN		0x4b
93#define ASB100_REG_IRQ		0x4c
94#define ASB100_REG_BANK		0x4e
95#define ASB100_REG_CHIPMAN	0x4f
96
97#define ASB100_REG_WCHIPID	0x58
98
99/* bit 7 -> enable, bits 0-3 -> duty cycle */
100#define ASB100_REG_PWM1		0x59
101
102/*
103 * CONVERSIONS
104 * Rounding and limit checking is only done on the TO_REG variants.
105 */
106
107/* These constants are a guess, consistent w/ w83781d */
108#define ASB100_IN_MIN		0
109#define ASB100_IN_MAX		4080
110
111/*
112 * IN: 1/1000 V (0V to 4.08V)
113 * REG: 16mV/bit
114 */
115static u8 IN_TO_REG(unsigned val)
116{
117	unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
118	return (nval + 8) / 16;
119}
120
121static unsigned IN_FROM_REG(u8 reg)
122{
123	return reg * 16;
124}
125
126static u8 FAN_TO_REG(long rpm, int div)
127{
128	if (rpm == -1)
129		return 0;
130	if (rpm == 0)
131		return 255;
132	rpm = clamp_val(rpm, 1, 1000000);
133	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
134}
135
136static int FAN_FROM_REG(u8 val, int div)
137{
138	return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
139}
140
141/* These constants are a guess, consistent w/ w83781d */
142#define ASB100_TEMP_MIN		-128000
143#define ASB100_TEMP_MAX		127000
144
145/*
146 * TEMP: 0.001C/bit (-128C to +127C)
147 * REG: 1C/bit, two's complement
148 */
149static u8 TEMP_TO_REG(long temp)
150{
151	int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
152	ntemp += (ntemp < 0 ? -500 : 500);
153	return (u8)(ntemp / 1000);
154}
155
156static int TEMP_FROM_REG(u8 reg)
157{
158	return (s8)reg * 1000;
159}
160
161/*
162 * PWM: 0 - 255 per sensors documentation
163 * REG: (6.25% duty cycle per bit)
164 */
165static u8 ASB100_PWM_TO_REG(int pwm)
166{
167	pwm = clamp_val(pwm, 0, 255);
168	return (u8)(pwm / 16);
169}
170
171static int ASB100_PWM_FROM_REG(u8 reg)
172{
173	return reg * 16;
174}
175
176#define DIV_FROM_REG(val) (1 << (val))
177
178/*
179 * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
180 * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
181 */
182static u8 DIV_TO_REG(long val)
183{
184	return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
185}
186
187/*
188 * For each registered client, we need to keep some data in memory. That
189 * data is pointed to by client->data. The structure itself is
190 * dynamically allocated, at the same time the client itself is allocated.
191 */
192struct asb100_data {
193	struct device *hwmon_dev;
194	struct mutex lock;
195
196	struct mutex update_lock;
197	unsigned long last_updated;	/* In jiffies */
198
199	/* array of 2 pointers to subclients */
200	struct i2c_client *lm75[2];
201
202	char valid;		/* !=0 if following fields are valid */
203	u8 in[7];		/* Register value */
204	u8 in_max[7];		/* Register value */
205	u8 in_min[7];		/* Register value */
206	u8 fan[3];		/* Register value */
207	u8 fan_min[3];		/* Register value */
208	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
209	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
210	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
211	u8 fan_div[3];		/* Register encoding, right justified */
212	u8 pwm;			/* Register encoding */
213	u8 vid;			/* Register encoding, combined */
214	u32 alarms;		/* Register encoding, combined */
215	u8 vrm;
216};
217
218static int asb100_read_value(struct i2c_client *client, u16 reg);
219static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
220
221static int asb100_probe(struct i2c_client *client,
222			const struct i2c_device_id *id);
223static int asb100_detect(struct i2c_client *client,
224			 struct i2c_board_info *info);
225static int asb100_remove(struct i2c_client *client);
226static struct asb100_data *asb100_update_device(struct device *dev);
227static void asb100_init_client(struct i2c_client *client);
228
229static const struct i2c_device_id asb100_id[] = {
230	{ "asb100", 0 },
231	{ }
232};
233MODULE_DEVICE_TABLE(i2c, asb100_id);
234
235static struct i2c_driver asb100_driver = {
236	.class		= I2C_CLASS_HWMON,
237	.driver = {
238		.name	= "asb100",
239	},
240	.probe		= asb100_probe,
241	.remove		= asb100_remove,
242	.id_table	= asb100_id,
243	.detect		= asb100_detect,
244	.address_list	= normal_i2c,
245};
246
247/* 7 Voltages */
248#define show_in_reg(reg) \
249static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
250		char *buf) \
251{ \
252	int nr = to_sensor_dev_attr(attr)->index; \
253	struct asb100_data *data = asb100_update_device(dev); \
254	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
255}
256
257show_in_reg(in)
258show_in_reg(in_min)
259show_in_reg(in_max)
260
261#define set_in_reg(REG, reg) \
262static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
263		const char *buf, size_t count) \
264{ \
265	int nr = to_sensor_dev_attr(attr)->index; \
266	struct i2c_client *client = to_i2c_client(dev); \
267	struct asb100_data *data = i2c_get_clientdata(client); \
268	unsigned long val; \
269	int err = kstrtoul(buf, 10, &val); \
270	if (err) \
271		return err; \
272	mutex_lock(&data->update_lock); \
273	data->in_##reg[nr] = IN_TO_REG(val); \
274	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
275		data->in_##reg[nr]); \
276	mutex_unlock(&data->update_lock); \
277	return count; \
278}
279
280set_in_reg(MIN, min)
281set_in_reg(MAX, max)
282
283#define sysfs_in(offset) \
284static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
285		show_in, NULL, offset); \
286static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
287		show_in_min, set_in_min, offset); \
288static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
289		show_in_max, set_in_max, offset)
290
291sysfs_in(0);
292sysfs_in(1);
293sysfs_in(2);
294sysfs_in(3);
295sysfs_in(4);
296sysfs_in(5);
297sysfs_in(6);
298
299/* 3 Fans */
300static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
301		char *buf)
302{
303	int nr = to_sensor_dev_attr(attr)->index;
304	struct asb100_data *data = asb100_update_device(dev);
305	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
306		DIV_FROM_REG(data->fan_div[nr])));
307}
308
309static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
310		char *buf)
311{
312	int nr = to_sensor_dev_attr(attr)->index;
313	struct asb100_data *data = asb100_update_device(dev);
314	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
315		DIV_FROM_REG(data->fan_div[nr])));
316}
317
318static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
319		char *buf)
320{
321	int nr = to_sensor_dev_attr(attr)->index;
322	struct asb100_data *data = asb100_update_device(dev);
323	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
324}
325
326static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
327		const char *buf, size_t count)
328{
329	int nr = to_sensor_dev_attr(attr)->index;
330	struct i2c_client *client = to_i2c_client(dev);
331	struct asb100_data *data = i2c_get_clientdata(client);
332	unsigned long val;
333	int err;
334
335	err = kstrtoul(buf, 10, &val);
336	if (err)
337		return err;
338
339	mutex_lock(&data->update_lock);
340	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
341	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
342	mutex_unlock(&data->update_lock);
343	return count;
344}
345
346/*
347 * Note: we save and restore the fan minimum here, because its value is
348 * determined in part by the fan divisor.  This follows the principle of
349 * least surprise; the user doesn't expect the fan minimum to change just
350 * because the divisor changed.
351 */
352static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
353		const char *buf, size_t count)
354{
355	int nr = to_sensor_dev_attr(attr)->index;
356	struct i2c_client *client = to_i2c_client(dev);
357	struct asb100_data *data = i2c_get_clientdata(client);
358	unsigned long min;
359	int reg;
360	unsigned long val;
361	int err;
362
363	err = kstrtoul(buf, 10, &val);
364	if (err)
365		return err;
366
367	mutex_lock(&data->update_lock);
368
369	min = FAN_FROM_REG(data->fan_min[nr],
370			DIV_FROM_REG(data->fan_div[nr]));
371	data->fan_div[nr] = DIV_TO_REG(val);
372
373	switch (nr) {
374	case 0:	/* fan 1 */
375		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
376		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
377		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
378		break;
379
380	case 1:	/* fan 2 */
381		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
382		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
383		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
384		break;
385
386	case 2:	/* fan 3 */
387		reg = asb100_read_value(client, ASB100_REG_PIN);
388		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
389		asb100_write_value(client, ASB100_REG_PIN, reg);
390		break;
391	}
392
393	data->fan_min[nr] =
394		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
395	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
396
397	mutex_unlock(&data->update_lock);
398
399	return count;
400}
401
402#define sysfs_fan(offset) \
403static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
404		show_fan, NULL, offset - 1); \
405static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
406		show_fan_min, set_fan_min, offset - 1); \
407static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
408		show_fan_div, set_fan_div, offset - 1)
409
410sysfs_fan(1);
411sysfs_fan(2);
412sysfs_fan(3);
413
414/* 4 Temp. Sensors */
415static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
416{
417	int ret = 0;
418
419	switch (nr) {
420	case 1: case 2:
421		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
422		break;
423	case 0: case 3: default:
424		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
425		break;
426	}
427	return ret;
428}
429
430#define show_temp_reg(reg) \
431static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
432		char *buf) \
433{ \
434	int nr = to_sensor_dev_attr(attr)->index; \
435	struct asb100_data *data = asb100_update_device(dev); \
436	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
437}
438
439show_temp_reg(temp);
440show_temp_reg(temp_max);
441show_temp_reg(temp_hyst);
442
443#define set_temp_reg(REG, reg) \
444static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
445		const char *buf, size_t count) \
446{ \
447	int nr = to_sensor_dev_attr(attr)->index; \
448	struct i2c_client *client = to_i2c_client(dev); \
449	struct asb100_data *data = i2c_get_clientdata(client); \
450	long val; \
451	int err = kstrtol(buf, 10, &val); \
452	if (err) \
453		return err; \
454	mutex_lock(&data->update_lock); \
455	switch (nr) { \
456	case 1: case 2: \
457		data->reg[nr] = LM75_TEMP_TO_REG(val); \
458		break; \
459	case 0: case 3: default: \
460		data->reg[nr] = TEMP_TO_REG(val); \
461		break; \
462	} \
463	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
464			data->reg[nr]); \
465	mutex_unlock(&data->update_lock); \
466	return count; \
467}
468
469set_temp_reg(MAX, temp_max);
470set_temp_reg(HYST, temp_hyst);
471
472#define sysfs_temp(num) \
473static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
474		show_temp, NULL, num - 1); \
475static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
476		show_temp_max, set_temp_max, num - 1); \
477static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
478		show_temp_hyst, set_temp_hyst, num - 1)
479
480sysfs_temp(1);
481sysfs_temp(2);
482sysfs_temp(3);
483sysfs_temp(4);
484
485/* VID */
486static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
487		char *buf)
488{
489	struct asb100_data *data = asb100_update_device(dev);
490	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
491}
492
493static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
494
495/* VRM */
496static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
497		char *buf)
498{
499	struct asb100_data *data = dev_get_drvdata(dev);
500	return sprintf(buf, "%d\n", data->vrm);
501}
502
503static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
504		const char *buf, size_t count)
505{
506	struct asb100_data *data = dev_get_drvdata(dev);
507	unsigned long val;
508	int err;
509
510	err = kstrtoul(buf, 10, &val);
511	if (err)
512		return err;
513
514	if (val > 255)
515		return -EINVAL;
516
517	data->vrm = val;
518	return count;
519}
520
521/* Alarms */
522static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
523
524static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
525		char *buf)
526{
527	struct asb100_data *data = asb100_update_device(dev);
528	return sprintf(buf, "%u\n", data->alarms);
529}
530
531static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
532
533static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
534		char *buf)
535{
536	int bitnr = to_sensor_dev_attr(attr)->index;
537	struct asb100_data *data = asb100_update_device(dev);
538	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
539}
540static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
541static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
542static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
543static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
544static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
545static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
546static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
547static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
548static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
549static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
550static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
551
552/* 1 PWM */
553static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
554		char *buf)
555{
556	struct asb100_data *data = asb100_update_device(dev);
557	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
558}
559
560static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
561		const char *buf, size_t count)
562{
563	struct i2c_client *client = to_i2c_client(dev);
564	struct asb100_data *data = i2c_get_clientdata(client);
565	unsigned long val;
566	int err;
567
568	err = kstrtoul(buf, 10, &val);
569	if (err)
570		return err;
571
572	mutex_lock(&data->update_lock);
573	data->pwm &= 0x80; /* keep the enable bit */
574	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
575	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
576	mutex_unlock(&data->update_lock);
577	return count;
578}
579
580static ssize_t show_pwm_enable1(struct device *dev,
581		struct device_attribute *attr, char *buf)
582{
583	struct asb100_data *data = asb100_update_device(dev);
584	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
585}
586
587static ssize_t set_pwm_enable1(struct device *dev,
588		struct device_attribute *attr, const char *buf, size_t count)
589{
590	struct i2c_client *client = to_i2c_client(dev);
591	struct asb100_data *data = i2c_get_clientdata(client);
592	unsigned long val;
593	int err;
594
595	err = kstrtoul(buf, 10, &val);
596	if (err)
597		return err;
598
599	mutex_lock(&data->update_lock);
600	data->pwm &= 0x0f; /* keep the duty cycle bits */
601	data->pwm |= (val ? 0x80 : 0x00);
602	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
603	mutex_unlock(&data->update_lock);
604	return count;
605}
606
607static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
608static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
609		show_pwm_enable1, set_pwm_enable1);
610
611static struct attribute *asb100_attributes[] = {
612	&sensor_dev_attr_in0_input.dev_attr.attr,
613	&sensor_dev_attr_in0_min.dev_attr.attr,
614	&sensor_dev_attr_in0_max.dev_attr.attr,
615	&sensor_dev_attr_in1_input.dev_attr.attr,
616	&sensor_dev_attr_in1_min.dev_attr.attr,
617	&sensor_dev_attr_in1_max.dev_attr.attr,
618	&sensor_dev_attr_in2_input.dev_attr.attr,
619	&sensor_dev_attr_in2_min.dev_attr.attr,
620	&sensor_dev_attr_in2_max.dev_attr.attr,
621	&sensor_dev_attr_in3_input.dev_attr.attr,
622	&sensor_dev_attr_in3_min.dev_attr.attr,
623	&sensor_dev_attr_in3_max.dev_attr.attr,
624	&sensor_dev_attr_in4_input.dev_attr.attr,
625	&sensor_dev_attr_in4_min.dev_attr.attr,
626	&sensor_dev_attr_in4_max.dev_attr.attr,
627	&sensor_dev_attr_in5_input.dev_attr.attr,
628	&sensor_dev_attr_in5_min.dev_attr.attr,
629	&sensor_dev_attr_in5_max.dev_attr.attr,
630	&sensor_dev_attr_in6_input.dev_attr.attr,
631	&sensor_dev_attr_in6_min.dev_attr.attr,
632	&sensor_dev_attr_in6_max.dev_attr.attr,
633
634	&sensor_dev_attr_fan1_input.dev_attr.attr,
635	&sensor_dev_attr_fan1_min.dev_attr.attr,
636	&sensor_dev_attr_fan1_div.dev_attr.attr,
637	&sensor_dev_attr_fan2_input.dev_attr.attr,
638	&sensor_dev_attr_fan2_min.dev_attr.attr,
639	&sensor_dev_attr_fan2_div.dev_attr.attr,
640	&sensor_dev_attr_fan3_input.dev_attr.attr,
641	&sensor_dev_attr_fan3_min.dev_attr.attr,
642	&sensor_dev_attr_fan3_div.dev_attr.attr,
643
644	&sensor_dev_attr_temp1_input.dev_attr.attr,
645	&sensor_dev_attr_temp1_max.dev_attr.attr,
646	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
647	&sensor_dev_attr_temp2_input.dev_attr.attr,
648	&sensor_dev_attr_temp2_max.dev_attr.attr,
649	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
650	&sensor_dev_attr_temp3_input.dev_attr.attr,
651	&sensor_dev_attr_temp3_max.dev_attr.attr,
652	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
653	&sensor_dev_attr_temp4_input.dev_attr.attr,
654	&sensor_dev_attr_temp4_max.dev_attr.attr,
655	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
656
657	&sensor_dev_attr_in0_alarm.dev_attr.attr,
658	&sensor_dev_attr_in1_alarm.dev_attr.attr,
659	&sensor_dev_attr_in2_alarm.dev_attr.attr,
660	&sensor_dev_attr_in3_alarm.dev_attr.attr,
661	&sensor_dev_attr_in4_alarm.dev_attr.attr,
662	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
663	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
664	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
665	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
666	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
667	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
668
669	&dev_attr_cpu0_vid.attr,
670	&dev_attr_vrm.attr,
671	&dev_attr_alarms.attr,
672	&dev_attr_pwm1.attr,
673	&dev_attr_pwm1_enable.attr,
674
675	NULL
676};
677
678static const struct attribute_group asb100_group = {
679	.attrs = asb100_attributes,
680};
681
682static int asb100_detect_subclients(struct i2c_client *client)
683{
684	int i, id, err;
685	int address = client->addr;
686	unsigned short sc_addr[2];
687	struct asb100_data *data = i2c_get_clientdata(client);
688	struct i2c_adapter *adapter = client->adapter;
689
690	id = i2c_adapter_id(adapter);
691
692	if (force_subclients[0] == id && force_subclients[1] == address) {
693		for (i = 2; i <= 3; i++) {
694			if (force_subclients[i] < 0x48 ||
695			    force_subclients[i] > 0x4f) {
696				dev_err(&client->dev,
697					"invalid subclient address %d; must be 0x48-0x4f\n",
698					force_subclients[i]);
699				err = -ENODEV;
700				goto ERROR_SC_2;
701			}
702		}
703		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
704					(force_subclients[2] & 0x07) |
705					((force_subclients[3] & 0x07) << 4));
706		sc_addr[0] = force_subclients[2];
707		sc_addr[1] = force_subclients[3];
708	} else {
709		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
710		sc_addr[0] = 0x48 + (val & 0x07);
711		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
712	}
713
714	if (sc_addr[0] == sc_addr[1]) {
715		dev_err(&client->dev,
716			"duplicate addresses 0x%x for subclients\n",
717			sc_addr[0]);
718		err = -ENODEV;
719		goto ERROR_SC_2;
720	}
721
722	data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
723	if (!data->lm75[0]) {
724		dev_err(&client->dev,
725			"subclient %d registration at address 0x%x failed.\n",
726			1, sc_addr[0]);
727		err = -ENOMEM;
728		goto ERROR_SC_2;
729	}
730
731	data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
732	if (!data->lm75[1]) {
733		dev_err(&client->dev,
734			"subclient %d registration at address 0x%x failed.\n",
735			2, sc_addr[1]);
736		err = -ENOMEM;
737		goto ERROR_SC_3;
738	}
739
740	return 0;
741
742/* Undo inits in case of errors */
743ERROR_SC_3:
744	i2c_unregister_device(data->lm75[0]);
745ERROR_SC_2:
746	return err;
747}
748
749/* Return 0 if detection is successful, -ENODEV otherwise */
750static int asb100_detect(struct i2c_client *client,
751			 struct i2c_board_info *info)
752{
753	struct i2c_adapter *adapter = client->adapter;
754	int val1, val2;
755
756	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
757		pr_debug("detect failed, smbus byte data not supported!\n");
758		return -ENODEV;
759	}
760
761	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
762	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
763
764	/* If we're in bank 0 */
765	if ((!(val1 & 0x07)) &&
766			/* Check for ASB100 ID (low byte) */
767			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
768			/* Check for ASB100 ID (high byte ) */
769			((val1 & 0x80) && (val2 != 0x06)))) {
770		pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
771		return -ENODEV;
772	}
773
774	/* Put it now into bank 0 and Vendor ID High Byte */
775	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
776		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
777		| 0x80);
778
779	/* Determine the chip type. */
780	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
781	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
782
783	if (val1 != 0x31 || val2 != 0x06)
784		return -ENODEV;
785
786	strlcpy(info->type, "asb100", I2C_NAME_SIZE);
787
788	return 0;
789}
790
791static int asb100_probe(struct i2c_client *client,
792			const struct i2c_device_id *id)
793{
794	int err;
795	struct asb100_data *data;
796
797	data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
798			    GFP_KERNEL);
799	if (!data)
800		return -ENOMEM;
801
802	i2c_set_clientdata(client, data);
803	mutex_init(&data->lock);
804	mutex_init(&data->update_lock);
805
806	/* Attach secondary lm75 clients */
807	err = asb100_detect_subclients(client);
808	if (err)
809		return err;
810
811	/* Initialize the chip */
812	asb100_init_client(client);
813
814	/* A few vars need to be filled upon startup */
815	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
816	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
817	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
818
819	/* Register sysfs hooks */
820	err = sysfs_create_group(&client->dev.kobj, &asb100_group);
821	if (err)
822		goto ERROR3;
823
824	data->hwmon_dev = hwmon_device_register(&client->dev);
825	if (IS_ERR(data->hwmon_dev)) {
826		err = PTR_ERR(data->hwmon_dev);
827		goto ERROR4;
828	}
829
830	return 0;
831
832ERROR4:
833	sysfs_remove_group(&client->dev.kobj, &asb100_group);
834ERROR3:
835	i2c_unregister_device(data->lm75[1]);
836	i2c_unregister_device(data->lm75[0]);
837	return err;
838}
839
840static int asb100_remove(struct i2c_client *client)
841{
842	struct asb100_data *data = i2c_get_clientdata(client);
843
844	hwmon_device_unregister(data->hwmon_dev);
845	sysfs_remove_group(&client->dev.kobj, &asb100_group);
846
847	i2c_unregister_device(data->lm75[1]);
848	i2c_unregister_device(data->lm75[0]);
849
850	return 0;
851}
852
853/*
854 * The SMBus locks itself, usually, but nothing may access the chip between
855 * bank switches.
856 */
857static int asb100_read_value(struct i2c_client *client, u16 reg)
858{
859	struct asb100_data *data = i2c_get_clientdata(client);
860	struct i2c_client *cl;
861	int res, bank;
862
863	mutex_lock(&data->lock);
864
865	bank = (reg >> 8) & 0x0f;
866	if (bank > 2)
867		/* switch banks */
868		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
869
870	if (bank == 0 || bank > 2) {
871		res = i2c_smbus_read_byte_data(client, reg & 0xff);
872	} else {
873		/* switch to subclient */
874		cl = data->lm75[bank - 1];
875
876		/* convert from ISA to LM75 I2C addresses */
877		switch (reg & 0xff) {
878		case 0x50: /* TEMP */
879			res = i2c_smbus_read_word_swapped(cl, 0);
880			break;
881		case 0x52: /* CONFIG */
882			res = i2c_smbus_read_byte_data(cl, 1);
883			break;
884		case 0x53: /* HYST */
885			res = i2c_smbus_read_word_swapped(cl, 2);
886			break;
887		case 0x55: /* MAX */
888		default:
889			res = i2c_smbus_read_word_swapped(cl, 3);
890			break;
891		}
892	}
893
894	if (bank > 2)
895		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
896
897	mutex_unlock(&data->lock);
898
899	return res;
900}
901
902static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
903{
904	struct asb100_data *data = i2c_get_clientdata(client);
905	struct i2c_client *cl;
906	int bank;
907
908	mutex_lock(&data->lock);
909
910	bank = (reg >> 8) & 0x0f;
911	if (bank > 2)
912		/* switch banks */
913		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
914
915	if (bank == 0 || bank > 2) {
916		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
917	} else {
918		/* switch to subclient */
919		cl = data->lm75[bank - 1];
920
921		/* convert from ISA to LM75 I2C addresses */
922		switch (reg & 0xff) {
923		case 0x52: /* CONFIG */
924			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
925			break;
926		case 0x53: /* HYST */
927			i2c_smbus_write_word_swapped(cl, 2, value);
928			break;
929		case 0x55: /* MAX */
930			i2c_smbus_write_word_swapped(cl, 3, value);
931			break;
932		}
933	}
934
935	if (bank > 2)
936		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
937
938	mutex_unlock(&data->lock);
939}
940
941static void asb100_init_client(struct i2c_client *client)
942{
943	struct asb100_data *data = i2c_get_clientdata(client);
944
945	data->vrm = vid_which_vrm();
946
947	/* Start monitoring */
948	asb100_write_value(client, ASB100_REG_CONFIG,
949		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
950}
951
952static struct asb100_data *asb100_update_device(struct device *dev)
953{
954	struct i2c_client *client = to_i2c_client(dev);
955	struct asb100_data *data = i2c_get_clientdata(client);
956	int i;
957
958	mutex_lock(&data->update_lock);
959
960	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
961		|| !data->valid) {
962
963		dev_dbg(&client->dev, "starting device update...\n");
964
965		/* 7 voltage inputs */
966		for (i = 0; i < 7; i++) {
967			data->in[i] = asb100_read_value(client,
968				ASB100_REG_IN(i));
969			data->in_min[i] = asb100_read_value(client,
970				ASB100_REG_IN_MIN(i));
971			data->in_max[i] = asb100_read_value(client,
972				ASB100_REG_IN_MAX(i));
973		}
974
975		/* 3 fan inputs */
976		for (i = 0; i < 3; i++) {
977			data->fan[i] = asb100_read_value(client,
978					ASB100_REG_FAN(i));
979			data->fan_min[i] = asb100_read_value(client,
980					ASB100_REG_FAN_MIN(i));
981		}
982
983		/* 4 temperature inputs */
984		for (i = 1; i <= 4; i++) {
985			data->temp[i-1] = asb100_read_value(client,
986					ASB100_REG_TEMP(i));
987			data->temp_max[i-1] = asb100_read_value(client,
988					ASB100_REG_TEMP_MAX(i));
989			data->temp_hyst[i-1] = asb100_read_value(client,
990					ASB100_REG_TEMP_HYST(i));
991		}
992
993		/* VID and fan divisors */
994		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
995		data->vid = i & 0x0f;
996		data->vid |= (asb100_read_value(client,
997				ASB100_REG_CHIPID) & 0x01) << 4;
998		data->fan_div[0] = (i >> 4) & 0x03;
999		data->fan_div[1] = (i >> 6) & 0x03;
1000		data->fan_div[2] = (asb100_read_value(client,
1001				ASB100_REG_PIN) >> 6) & 0x03;
1002
1003		/* PWM */
1004		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1005
1006		/* alarms */
1007		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1008			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1009
1010		data->last_updated = jiffies;
1011		data->valid = 1;
1012
1013		dev_dbg(&client->dev, "... device update complete\n");
1014	}
1015
1016	mutex_unlock(&data->update_lock);
1017
1018	return data;
1019}
1020
1021module_i2c_driver(asb100_driver);
1022
1023MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1024MODULE_DESCRIPTION("ASB100 Bach driver");
1025MODULE_LICENSE("GPL");
1026