1/*
2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 *	    monitoring
4 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
6 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
7 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
8 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
9 *
10 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/slab.h>
30#include <linux/jiffies.h>
31#include <linux/i2c.h>
32#include <linux/hwmon.h>
33#include <linux/hwmon-vid.h>
34#include <linux/hwmon-sysfs.h>
35#include <linux/err.h>
36#include <linux/mutex.h>
37
38/* Addresses to scan */
39static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
40
41enum chips {
42	lm85,
43	adm1027, adt7463, adt7468,
44	emc6d100, emc6d102, emc6d103, emc6d103s
45};
46
47/* The LM85 registers */
48
49#define LM85_REG_IN(nr)			(0x20 + (nr))
50#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
51#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
52
53#define LM85_REG_TEMP(nr)		(0x25 + (nr))
54#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
55#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
56
57/* Fan speeds are LSB, MSB (2 bytes) */
58#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
59#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
60
61#define LM85_REG_PWM(nr)		(0x30 + (nr))
62
63#define LM85_REG_COMPANY		0x3e
64#define LM85_REG_VERSTEP		0x3f
65
66#define ADT7468_REG_CFG5		0x7c
67#define ADT7468_OFF64			(1 << 0)
68#define ADT7468_HFPWM			(1 << 1)
69#define IS_ADT7468_OFF64(data)		\
70	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
71#define IS_ADT7468_HFPWM(data)		\
72	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
73
74/* These are the recognized values for the above regs */
75#define LM85_COMPANY_NATIONAL		0x01
76#define LM85_COMPANY_ANALOG_DEV		0x41
77#define LM85_COMPANY_SMSC		0x5c
78#define LM85_VERSTEP_LM85C		0x60
79#define LM85_VERSTEP_LM85B		0x62
80#define LM85_VERSTEP_LM96000_1		0x68
81#define LM85_VERSTEP_LM96000_2		0x69
82#define LM85_VERSTEP_ADM1027		0x60
83#define LM85_VERSTEP_ADT7463		0x62
84#define LM85_VERSTEP_ADT7463C		0x6A
85#define LM85_VERSTEP_ADT7468_1		0x71
86#define LM85_VERSTEP_ADT7468_2		0x72
87#define LM85_VERSTEP_EMC6D100_A0        0x60
88#define LM85_VERSTEP_EMC6D100_A1        0x61
89#define LM85_VERSTEP_EMC6D102		0x65
90#define LM85_VERSTEP_EMC6D103_A0	0x68
91#define LM85_VERSTEP_EMC6D103_A1	0x69
92#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
93
94#define LM85_REG_CONFIG			0x40
95
96#define LM85_REG_ALARM1			0x41
97#define LM85_REG_ALARM2			0x42
98
99#define LM85_REG_VID			0x43
100
101/* Automated FAN control */
102#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
103#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
104#define LM85_REG_AFAN_SPIKE1		0x62
105#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
106#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
107#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
108#define LM85_REG_AFAN_HYST1		0x6d
109#define LM85_REG_AFAN_HYST2		0x6e
110
111#define ADM1027_REG_EXTEND_ADC1		0x76
112#define ADM1027_REG_EXTEND_ADC2		0x77
113
114#define EMC6D100_REG_ALARM3             0x7d
115/* IN5, IN6 and IN7 */
116#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
117#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
118#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
119#define EMC6D102_REG_EXTEND_ADC1	0x85
120#define EMC6D102_REG_EXTEND_ADC2	0x86
121#define EMC6D102_REG_EXTEND_ADC3	0x87
122#define EMC6D102_REG_EXTEND_ADC4	0x88
123
124/*
125 * Conversions. Rounding and limit checking is only done on the TO_REG
126 * variants. Note that you should be a bit careful with which arguments
127 * these macros are called: arguments may be evaluated more than once.
128 */
129
130/* IN are scaled according to built-in resistors */
131static const int lm85_scaling[] = {  /* .001 Volts */
132	2500, 2250, 3300, 5000, 12000,
133	3300, 1500, 1800 /*EMC6D100*/
134};
135#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
136
137#define INS_TO_REG(n, val)	\
138		clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
139
140#define INSEXT_FROM_REG(n, val, ext)	\
141		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
142
143#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
144
145/* FAN speed is measured using 90kHz clock */
146static inline u16 FAN_TO_REG(unsigned long val)
147{
148	if (!val)
149		return 0xffff;
150	return clamp_val(5400000 / val, 1, 0xfffe);
151}
152#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
153				 5400000 / (val))
154
155/* Temperature is reported in .001 degC increments */
156#define TEMP_TO_REG(val)	\
157		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
158#define TEMPEXT_FROM_REG(val, ext)	\
159		SCALE(((val) << 4) + (ext), 16, 1000)
160#define TEMP_FROM_REG(val)	((val) * 1000)
161
162#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
163#define PWM_FROM_REG(val)		(val)
164
165
166/*
167 * ZONEs have the following parameters:
168 *    Limit (low) temp,           1. degC
169 *    Hysteresis (below limit),   1. degC (0-15)
170 *    Range of speed control,     .1 degC (2-80)
171 *    Critical (high) temp,       1. degC
172 *
173 * FAN PWMs have the following parameters:
174 *    Reference Zone,                 1, 2, 3, etc.
175 *    Spinup time,                    .05 sec
176 *    PWM value at limit/low temp,    1 count
177 *    PWM Frequency,                  1. Hz
178 *    PWM is Min or OFF below limit,  flag
179 *    Invert PWM output,              flag
180 *
181 * Some chips filter the temp, others the fan.
182 *    Filter constant (or disabled)   .1 seconds
183 */
184
185/* These are the zone temperature range encodings in .001 degree C */
186static const int lm85_range_map[] = {
187	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
188	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
189};
190
191static int RANGE_TO_REG(long range)
192{
193	int i;
194
195	/* Find the closest match */
196	for (i = 0; i < 15; ++i) {
197		if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
198			break;
199	}
200
201	return i;
202}
203#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
204
205/* These are the PWM frequency encodings */
206static const int lm85_freq_map[8] = { /* 1 Hz */
207	10, 15, 23, 30, 38, 47, 61, 94
208};
209static const int adm1027_freq_map[8] = { /* 1 Hz */
210	11, 15, 22, 29, 35, 44, 59, 88
211};
212
213static int FREQ_TO_REG(const int *map, unsigned long freq)
214{
215	int i;
216
217	/* Find the closest match */
218	for (i = 0; i < 7; ++i)
219		if (freq <= (map[i] + map[i + 1]) / 2)
220			break;
221	return i;
222}
223
224static int FREQ_FROM_REG(const int *map, u8 reg)
225{
226	return map[reg & 0x07];
227}
228
229/*
230 * Since we can't use strings, I'm abusing these numbers
231 *   to stand in for the following meanings:
232 *      1 -- PWM responds to Zone 1
233 *      2 -- PWM responds to Zone 2
234 *      3 -- PWM responds to Zone 3
235 *     23 -- PWM responds to the higher temp of Zone 2 or 3
236 *    123 -- PWM responds to highest of Zone 1, 2, or 3
237 *      0 -- PWM is always at 0% (ie, off)
238 *     -1 -- PWM is always at 100%
239 *     -2 -- PWM responds to manual control
240 */
241
242static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
243#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
244
245static int ZONE_TO_REG(int zone)
246{
247	int i;
248
249	for (i = 0; i <= 7; ++i)
250		if (zone == lm85_zone_map[i])
251			break;
252	if (i > 7)   /* Not found. */
253		i = 3;  /* Always 100% */
254	return i << 5;
255}
256
257#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
258#define HYST_FROM_REG(val)	((val) * 1000)
259
260/*
261 * Chip sampling rates
262 *
263 * Some sensors are not updated more frequently than once per second
264 *    so it doesn't make sense to read them more often than that.
265 *    We cache the results and return the saved data if the driver
266 *    is called again before a second has elapsed.
267 *
268 * Also, there is significant configuration data for this chip
269 *    given the automatic PWM fan control that is possible.  There
270 *    are about 47 bytes of config data to only 22 bytes of actual
271 *    readings.  So, we keep the config data up to date in the cache
272 *    when it is written and only sample it once every 1 *minute*
273 */
274#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
275#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
276
277/*
278 * LM85 can automatically adjust fan speeds based on temperature
279 * This structure encapsulates an entire Zone config.  There are
280 * three zones (one for each temperature input) on the lm85
281 */
282struct lm85_zone {
283	s8 limit;	/* Low temp limit */
284	u8 hyst;	/* Low limit hysteresis. (0-15) */
285	u8 range;	/* Temp range, encoded */
286	s8 critical;	/* "All fans ON" temp limit */
287	u8 max_desired; /*
288			 * Actual "max" temperature specified.  Preserved
289			 * to prevent "drift" as other autofan control
290			 * values change.
291			 */
292};
293
294struct lm85_autofan {
295	u8 config;	/* Register value */
296	u8 min_pwm;	/* Minimum PWM value, encoded */
297	u8 min_off;	/* Min PWM or OFF below "limit", flag */
298};
299
300/*
301 * For each registered chip, we need to keep some data in memory.
302 * The structure is dynamically allocated.
303 */
304struct lm85_data {
305	struct i2c_client *client;
306	const struct attribute_group *groups[6];
307	const int *freq_map;
308	enum chips type;
309
310	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
311
312	struct mutex update_lock;
313	int valid;		/* !=0 if following fields are valid */
314	unsigned long last_reading;	/* In jiffies */
315	unsigned long last_config;	/* In jiffies */
316
317	u8 in[8];		/* Register value */
318	u8 in_max[8];		/* Register value */
319	u8 in_min[8];		/* Register value */
320	s8 temp[3];		/* Register value */
321	s8 temp_min[3];		/* Register value */
322	s8 temp_max[3];		/* Register value */
323	u16 fan[4];		/* Register value */
324	u16 fan_min[4];		/* Register value */
325	u8 pwm[3];		/* Register value */
326	u8 pwm_freq[3];		/* Register encoding */
327	u8 temp_ext[3];		/* Decoded values */
328	u8 in_ext[8];		/* Decoded values */
329	u8 vid;			/* Register value */
330	u8 vrm;			/* VRM version */
331	u32 alarms;		/* Register encoding, combined */
332	u8 cfg5;		/* Config Register 5 on ADT7468 */
333	struct lm85_autofan autofan[3];
334	struct lm85_zone zone[3];
335};
336
337static int lm85_read_value(struct i2c_client *client, u8 reg)
338{
339	int res;
340
341	/* What size location is it? */
342	switch (reg) {
343	case LM85_REG_FAN(0):  /* Read WORD data */
344	case LM85_REG_FAN(1):
345	case LM85_REG_FAN(2):
346	case LM85_REG_FAN(3):
347	case LM85_REG_FAN_MIN(0):
348	case LM85_REG_FAN_MIN(1):
349	case LM85_REG_FAN_MIN(2):
350	case LM85_REG_FAN_MIN(3):
351	case LM85_REG_ALARM1:	/* Read both bytes at once */
352		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
353		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
354		break;
355	default:	/* Read BYTE data */
356		res = i2c_smbus_read_byte_data(client, reg);
357		break;
358	}
359
360	return res;
361}
362
363static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
364{
365	switch (reg) {
366	case LM85_REG_FAN(0):  /* Write WORD data */
367	case LM85_REG_FAN(1):
368	case LM85_REG_FAN(2):
369	case LM85_REG_FAN(3):
370	case LM85_REG_FAN_MIN(0):
371	case LM85_REG_FAN_MIN(1):
372	case LM85_REG_FAN_MIN(2):
373	case LM85_REG_FAN_MIN(3):
374	/* NOTE: ALARM is read only, so not included here */
375		i2c_smbus_write_byte_data(client, reg, value & 0xff);
376		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
377		break;
378	default:	/* Write BYTE data */
379		i2c_smbus_write_byte_data(client, reg, value);
380		break;
381	}
382}
383
384static struct lm85_data *lm85_update_device(struct device *dev)
385{
386	struct lm85_data *data = dev_get_drvdata(dev);
387	struct i2c_client *client = data->client;
388	int i;
389
390	mutex_lock(&data->update_lock);
391
392	if (!data->valid ||
393	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
394		/* Things that change quickly */
395		dev_dbg(&client->dev, "Reading sensor values\n");
396
397		/*
398		 * Have to read extended bits first to "freeze" the
399		 * more significant bits that are read later.
400		 * There are 2 additional resolution bits per channel and we
401		 * have room for 4, so we shift them to the left.
402		 */
403		if (data->type == adm1027 || data->type == adt7463 ||
404		    data->type == adt7468) {
405			int ext1 = lm85_read_value(client,
406						   ADM1027_REG_EXTEND_ADC1);
407			int ext2 =  lm85_read_value(client,
408						    ADM1027_REG_EXTEND_ADC2);
409			int val = (ext1 << 8) + ext2;
410
411			for (i = 0; i <= 4; i++)
412				data->in_ext[i] =
413					((val >> (i * 2)) & 0x03) << 2;
414
415			for (i = 0; i <= 2; i++)
416				data->temp_ext[i] =
417					(val >> ((i + 4) * 2)) & 0x0c;
418		}
419
420		data->vid = lm85_read_value(client, LM85_REG_VID);
421
422		for (i = 0; i <= 3; ++i) {
423			data->in[i] =
424			    lm85_read_value(client, LM85_REG_IN(i));
425			data->fan[i] =
426			    lm85_read_value(client, LM85_REG_FAN(i));
427		}
428
429		if (!data->has_vid5)
430			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
431
432		if (data->type == adt7468)
433			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
434
435		for (i = 0; i <= 2; ++i) {
436			data->temp[i] =
437			    lm85_read_value(client, LM85_REG_TEMP(i));
438			data->pwm[i] =
439			    lm85_read_value(client, LM85_REG_PWM(i));
440
441			if (IS_ADT7468_OFF64(data))
442				data->temp[i] -= 64;
443		}
444
445		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
446
447		if (data->type == emc6d100) {
448			/* Three more voltage sensors */
449			for (i = 5; i <= 7; ++i) {
450				data->in[i] = lm85_read_value(client,
451							EMC6D100_REG_IN(i));
452			}
453			/* More alarm bits */
454			data->alarms |= lm85_read_value(client,
455						EMC6D100_REG_ALARM3) << 16;
456		} else if (data->type == emc6d102 || data->type == emc6d103 ||
457			   data->type == emc6d103s) {
458			/*
459			 * Have to read LSB bits after the MSB ones because
460			 * the reading of the MSB bits has frozen the
461			 * LSBs (backward from the ADM1027).
462			 */
463			int ext1 = lm85_read_value(client,
464						   EMC6D102_REG_EXTEND_ADC1);
465			int ext2 = lm85_read_value(client,
466						   EMC6D102_REG_EXTEND_ADC2);
467			int ext3 = lm85_read_value(client,
468						   EMC6D102_REG_EXTEND_ADC3);
469			int ext4 = lm85_read_value(client,
470						   EMC6D102_REG_EXTEND_ADC4);
471			data->in_ext[0] = ext3 & 0x0f;
472			data->in_ext[1] = ext4 & 0x0f;
473			data->in_ext[2] = ext4 >> 4;
474			data->in_ext[3] = ext3 >> 4;
475			data->in_ext[4] = ext2 >> 4;
476
477			data->temp_ext[0] = ext1 & 0x0f;
478			data->temp_ext[1] = ext2 & 0x0f;
479			data->temp_ext[2] = ext1 >> 4;
480		}
481
482		data->last_reading = jiffies;
483	}  /* last_reading */
484
485	if (!data->valid ||
486	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
487		/* Things that don't change often */
488		dev_dbg(&client->dev, "Reading config values\n");
489
490		for (i = 0; i <= 3; ++i) {
491			data->in_min[i] =
492			    lm85_read_value(client, LM85_REG_IN_MIN(i));
493			data->in_max[i] =
494			    lm85_read_value(client, LM85_REG_IN_MAX(i));
495			data->fan_min[i] =
496			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
497		}
498
499		if (!data->has_vid5)  {
500			data->in_min[4] = lm85_read_value(client,
501					  LM85_REG_IN_MIN(4));
502			data->in_max[4] = lm85_read_value(client,
503					  LM85_REG_IN_MAX(4));
504		}
505
506		if (data->type == emc6d100) {
507			for (i = 5; i <= 7; ++i) {
508				data->in_min[i] = lm85_read_value(client,
509						EMC6D100_REG_IN_MIN(i));
510				data->in_max[i] = lm85_read_value(client,
511						EMC6D100_REG_IN_MAX(i));
512			}
513		}
514
515		for (i = 0; i <= 2; ++i) {
516			int val;
517
518			data->temp_min[i] =
519			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
520			data->temp_max[i] =
521			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
522
523			data->autofan[i].config =
524			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
525			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
526			data->pwm_freq[i] = val & 0x07;
527			data->zone[i].range = val >> 4;
528			data->autofan[i].min_pwm =
529			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
530			data->zone[i].limit =
531			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
532			data->zone[i].critical =
533			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
534
535			if (IS_ADT7468_OFF64(data)) {
536				data->temp_min[i] -= 64;
537				data->temp_max[i] -= 64;
538				data->zone[i].limit -= 64;
539				data->zone[i].critical -= 64;
540			}
541		}
542
543		if (data->type != emc6d103s) {
544			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
545			data->autofan[0].min_off = (i & 0x20) != 0;
546			data->autofan[1].min_off = (i & 0x40) != 0;
547			data->autofan[2].min_off = (i & 0x80) != 0;
548
549			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
550			data->zone[0].hyst = i >> 4;
551			data->zone[1].hyst = i & 0x0f;
552
553			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
554			data->zone[2].hyst = i >> 4;
555		}
556
557		data->last_config = jiffies;
558	}  /* last_config */
559
560	data->valid = 1;
561
562	mutex_unlock(&data->update_lock);
563
564	return data;
565}
566
567/* 4 Fans */
568static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
569		char *buf)
570{
571	int nr = to_sensor_dev_attr(attr)->index;
572	struct lm85_data *data = lm85_update_device(dev);
573	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
574}
575
576static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
577		char *buf)
578{
579	int nr = to_sensor_dev_attr(attr)->index;
580	struct lm85_data *data = lm85_update_device(dev);
581	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
582}
583
584static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
585		const char *buf, size_t count)
586{
587	int nr = to_sensor_dev_attr(attr)->index;
588	struct lm85_data *data = dev_get_drvdata(dev);
589	struct i2c_client *client = data->client;
590	unsigned long val;
591	int err;
592
593	err = kstrtoul(buf, 10, &val);
594	if (err)
595		return err;
596
597	mutex_lock(&data->update_lock);
598	data->fan_min[nr] = FAN_TO_REG(val);
599	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
600	mutex_unlock(&data->update_lock);
601	return count;
602}
603
604#define show_fan_offset(offset)						\
605static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
606		show_fan, NULL, offset - 1);				\
607static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
608		show_fan_min, set_fan_min, offset - 1)
609
610show_fan_offset(1);
611show_fan_offset(2);
612show_fan_offset(3);
613show_fan_offset(4);
614
615/* vid, vrm, alarms */
616
617static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
618		char *buf)
619{
620	struct lm85_data *data = lm85_update_device(dev);
621	int vid;
622
623	if (data->has_vid5) {
624		/* 6-pin VID (VRM 10) */
625		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
626	} else {
627		/* 5-pin VID (VRM 9) */
628		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
629	}
630
631	return sprintf(buf, "%d\n", vid);
632}
633
634static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
635
636static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
637		char *buf)
638{
639	struct lm85_data *data = dev_get_drvdata(dev);
640	return sprintf(buf, "%ld\n", (long) data->vrm);
641}
642
643static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
644		const char *buf, size_t count)
645{
646	struct lm85_data *data = dev_get_drvdata(dev);
647	unsigned long val;
648	int err;
649
650	err = kstrtoul(buf, 10, &val);
651	if (err)
652		return err;
653
654	if (val > 255)
655		return -EINVAL;
656
657	data->vrm = val;
658	return count;
659}
660
661static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
662
663static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
664		*attr, char *buf)
665{
666	struct lm85_data *data = lm85_update_device(dev);
667	return sprintf(buf, "%u\n", data->alarms);
668}
669
670static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
671
672static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
673		char *buf)
674{
675	int nr = to_sensor_dev_attr(attr)->index;
676	struct lm85_data *data = lm85_update_device(dev);
677	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
678}
679
680static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
681static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
682static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
683static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
684static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
685static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
686static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
687static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
688static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
689static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
690static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
691static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
692static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
693static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
694static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
695static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
696static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
697
698/* pwm */
699
700static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
701		char *buf)
702{
703	int nr = to_sensor_dev_attr(attr)->index;
704	struct lm85_data *data = lm85_update_device(dev);
705	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
706}
707
708static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
709		const char *buf, size_t count)
710{
711	int nr = to_sensor_dev_attr(attr)->index;
712	struct lm85_data *data = dev_get_drvdata(dev);
713	struct i2c_client *client = data->client;
714	unsigned long val;
715	int err;
716
717	err = kstrtoul(buf, 10, &val);
718	if (err)
719		return err;
720
721	mutex_lock(&data->update_lock);
722	data->pwm[nr] = PWM_TO_REG(val);
723	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
724	mutex_unlock(&data->update_lock);
725	return count;
726}
727
728static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
729		*attr, char *buf)
730{
731	int nr = to_sensor_dev_attr(attr)->index;
732	struct lm85_data *data = lm85_update_device(dev);
733	int pwm_zone, enable;
734
735	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
736	switch (pwm_zone) {
737	case -1:	/* PWM is always at 100% */
738		enable = 0;
739		break;
740	case 0:		/* PWM is always at 0% */
741	case -2:	/* PWM responds to manual control */
742		enable = 1;
743		break;
744	default:	/* PWM in automatic mode */
745		enable = 2;
746	}
747	return sprintf(buf, "%d\n", enable);
748}
749
750static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
751		*attr, const char *buf, size_t count)
752{
753	int nr = to_sensor_dev_attr(attr)->index;
754	struct lm85_data *data = dev_get_drvdata(dev);
755	struct i2c_client *client = data->client;
756	u8 config;
757	unsigned long val;
758	int err;
759
760	err = kstrtoul(buf, 10, &val);
761	if (err)
762		return err;
763
764	switch (val) {
765	case 0:
766		config = 3;
767		break;
768	case 1:
769		config = 7;
770		break;
771	case 2:
772		/*
773		 * Here we have to choose arbitrarily one of the 5 possible
774		 * configurations; I go for the safest
775		 */
776		config = 6;
777		break;
778	default:
779		return -EINVAL;
780	}
781
782	mutex_lock(&data->update_lock);
783	data->autofan[nr].config = lm85_read_value(client,
784		LM85_REG_AFAN_CONFIG(nr));
785	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
786		| (config << 5);
787	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
788		data->autofan[nr].config);
789	mutex_unlock(&data->update_lock);
790	return count;
791}
792
793static ssize_t show_pwm_freq(struct device *dev,
794		struct device_attribute *attr, char *buf)
795{
796	int nr = to_sensor_dev_attr(attr)->index;
797	struct lm85_data *data = lm85_update_device(dev);
798	int freq;
799
800	if (IS_ADT7468_HFPWM(data))
801		freq = 22500;
802	else
803		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
804
805	return sprintf(buf, "%d\n", freq);
806}
807
808static ssize_t set_pwm_freq(struct device *dev,
809		struct device_attribute *attr, const char *buf, size_t count)
810{
811	int nr = to_sensor_dev_attr(attr)->index;
812	struct lm85_data *data = dev_get_drvdata(dev);
813	struct i2c_client *client = data->client;
814	unsigned long val;
815	int err;
816
817	err = kstrtoul(buf, 10, &val);
818	if (err)
819		return err;
820
821	mutex_lock(&data->update_lock);
822	/*
823	 * The ADT7468 has a special high-frequency PWM output mode,
824	 * where all PWM outputs are driven by a 22.5 kHz clock.
825	 * This might confuse the user, but there's not much we can do.
826	 */
827	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
828		data->cfg5 &= ~ADT7468_HFPWM;
829		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
830	} else {					/* Low freq. mode */
831		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
832		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
833				 (data->zone[nr].range << 4)
834				 | data->pwm_freq[nr]);
835		if (data->type == adt7468) {
836			data->cfg5 |= ADT7468_HFPWM;
837			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
838		}
839	}
840	mutex_unlock(&data->update_lock);
841	return count;
842}
843
844#define show_pwm_reg(offset)						\
845static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
846		show_pwm, set_pwm, offset - 1);				\
847static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
848		show_pwm_enable, set_pwm_enable, offset - 1);		\
849static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
850		show_pwm_freq, set_pwm_freq, offset - 1)
851
852show_pwm_reg(1);
853show_pwm_reg(2);
854show_pwm_reg(3);
855
856/* Voltages */
857
858static ssize_t show_in(struct device *dev, struct device_attribute *attr,
859		char *buf)
860{
861	int nr = to_sensor_dev_attr(attr)->index;
862	struct lm85_data *data = lm85_update_device(dev);
863	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
864						    data->in_ext[nr]));
865}
866
867static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
868		char *buf)
869{
870	int nr = to_sensor_dev_attr(attr)->index;
871	struct lm85_data *data = lm85_update_device(dev);
872	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
873}
874
875static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
876		const char *buf, size_t count)
877{
878	int nr = to_sensor_dev_attr(attr)->index;
879	struct lm85_data *data = dev_get_drvdata(dev);
880	struct i2c_client *client = data->client;
881	long val;
882	int err;
883
884	err = kstrtol(buf, 10, &val);
885	if (err)
886		return err;
887
888	mutex_lock(&data->update_lock);
889	data->in_min[nr] = INS_TO_REG(nr, val);
890	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
891	mutex_unlock(&data->update_lock);
892	return count;
893}
894
895static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
896		char *buf)
897{
898	int nr = to_sensor_dev_attr(attr)->index;
899	struct lm85_data *data = lm85_update_device(dev);
900	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
901}
902
903static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
904		const char *buf, size_t count)
905{
906	int nr = to_sensor_dev_attr(attr)->index;
907	struct lm85_data *data = dev_get_drvdata(dev);
908	struct i2c_client *client = data->client;
909	long val;
910	int err;
911
912	err = kstrtol(buf, 10, &val);
913	if (err)
914		return err;
915
916	mutex_lock(&data->update_lock);
917	data->in_max[nr] = INS_TO_REG(nr, val);
918	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
919	mutex_unlock(&data->update_lock);
920	return count;
921}
922
923#define show_in_reg(offset)						\
924static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
925		show_in, NULL, offset);					\
926static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
927		show_in_min, set_in_min, offset);			\
928static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
929		show_in_max, set_in_max, offset)
930
931show_in_reg(0);
932show_in_reg(1);
933show_in_reg(2);
934show_in_reg(3);
935show_in_reg(4);
936show_in_reg(5);
937show_in_reg(6);
938show_in_reg(7);
939
940/* Temps */
941
942static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
943		char *buf)
944{
945	int nr = to_sensor_dev_attr(attr)->index;
946	struct lm85_data *data = lm85_update_device(dev);
947	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
948						     data->temp_ext[nr]));
949}
950
951static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
952		char *buf)
953{
954	int nr = to_sensor_dev_attr(attr)->index;
955	struct lm85_data *data = lm85_update_device(dev);
956	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
957}
958
959static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
960		const char *buf, size_t count)
961{
962	int nr = to_sensor_dev_attr(attr)->index;
963	struct lm85_data *data = dev_get_drvdata(dev);
964	struct i2c_client *client = data->client;
965	long val;
966	int err;
967
968	err = kstrtol(buf, 10, &val);
969	if (err)
970		return err;
971
972	if (IS_ADT7468_OFF64(data))
973		val += 64;
974
975	mutex_lock(&data->update_lock);
976	data->temp_min[nr] = TEMP_TO_REG(val);
977	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
978	mutex_unlock(&data->update_lock);
979	return count;
980}
981
982static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
983		char *buf)
984{
985	int nr = to_sensor_dev_attr(attr)->index;
986	struct lm85_data *data = lm85_update_device(dev);
987	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
988}
989
990static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
991		const char *buf, size_t count)
992{
993	int nr = to_sensor_dev_attr(attr)->index;
994	struct lm85_data *data = dev_get_drvdata(dev);
995	struct i2c_client *client = data->client;
996	long val;
997	int err;
998
999	err = kstrtol(buf, 10, &val);
1000	if (err)
1001		return err;
1002
1003	if (IS_ADT7468_OFF64(data))
1004		val += 64;
1005
1006	mutex_lock(&data->update_lock);
1007	data->temp_max[nr] = TEMP_TO_REG(val);
1008	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1009	mutex_unlock(&data->update_lock);
1010	return count;
1011}
1012
1013#define show_temp_reg(offset)						\
1014static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1015		show_temp, NULL, offset - 1);				\
1016static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1017		show_temp_min, set_temp_min, offset - 1);		\
1018static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1019		show_temp_max, set_temp_max, offset - 1);
1020
1021show_temp_reg(1);
1022show_temp_reg(2);
1023show_temp_reg(3);
1024
1025
1026/* Automatic PWM control */
1027
1028static ssize_t show_pwm_auto_channels(struct device *dev,
1029		struct device_attribute *attr, char *buf)
1030{
1031	int nr = to_sensor_dev_attr(attr)->index;
1032	struct lm85_data *data = lm85_update_device(dev);
1033	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1034}
1035
1036static ssize_t set_pwm_auto_channels(struct device *dev,
1037		struct device_attribute *attr, const char *buf, size_t count)
1038{
1039	int nr = to_sensor_dev_attr(attr)->index;
1040	struct lm85_data *data = dev_get_drvdata(dev);
1041	struct i2c_client *client = data->client;
1042	long val;
1043	int err;
1044
1045	err = kstrtol(buf, 10, &val);
1046	if (err)
1047		return err;
1048
1049	mutex_lock(&data->update_lock);
1050	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1051		| ZONE_TO_REG(val);
1052	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1053		data->autofan[nr].config);
1054	mutex_unlock(&data->update_lock);
1055	return count;
1056}
1057
1058static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1059		struct device_attribute *attr, char *buf)
1060{
1061	int nr = to_sensor_dev_attr(attr)->index;
1062	struct lm85_data *data = lm85_update_device(dev);
1063	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1064}
1065
1066static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1067		struct device_attribute *attr, const char *buf, size_t count)
1068{
1069	int nr = to_sensor_dev_attr(attr)->index;
1070	struct lm85_data *data = dev_get_drvdata(dev);
1071	struct i2c_client *client = data->client;
1072	unsigned long val;
1073	int err;
1074
1075	err = kstrtoul(buf, 10, &val);
1076	if (err)
1077		return err;
1078
1079	mutex_lock(&data->update_lock);
1080	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1081	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1082		data->autofan[nr].min_pwm);
1083	mutex_unlock(&data->update_lock);
1084	return count;
1085}
1086
1087static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1088		struct device_attribute *attr, char *buf)
1089{
1090	int nr = to_sensor_dev_attr(attr)->index;
1091	struct lm85_data *data = lm85_update_device(dev);
1092	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1093}
1094
1095static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1096		struct device_attribute *attr, const char *buf, size_t count)
1097{
1098	int nr = to_sensor_dev_attr(attr)->index;
1099	struct lm85_data *data = dev_get_drvdata(dev);
1100	struct i2c_client *client = data->client;
1101	u8 tmp;
1102	long val;
1103	int err;
1104
1105	err = kstrtol(buf, 10, &val);
1106	if (err)
1107		return err;
1108
1109	mutex_lock(&data->update_lock);
1110	data->autofan[nr].min_off = val;
1111	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1112	tmp &= ~(0x20 << nr);
1113	if (data->autofan[nr].min_off)
1114		tmp |= 0x20 << nr;
1115	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1116	mutex_unlock(&data->update_lock);
1117	return count;
1118}
1119
1120#define pwm_auto(offset)						\
1121static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1122		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1123		set_pwm_auto_channels, offset - 1);			\
1124static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1125		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1126		set_pwm_auto_pwm_min, offset - 1);			\
1127static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1128		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1129		set_pwm_auto_pwm_minctl, offset - 1)
1130
1131pwm_auto(1);
1132pwm_auto(2);
1133pwm_auto(3);
1134
1135/* Temperature settings for automatic PWM control */
1136
1137static ssize_t show_temp_auto_temp_off(struct device *dev,
1138		struct device_attribute *attr, char *buf)
1139{
1140	int nr = to_sensor_dev_attr(attr)->index;
1141	struct lm85_data *data = lm85_update_device(dev);
1142	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1143		HYST_FROM_REG(data->zone[nr].hyst));
1144}
1145
1146static ssize_t set_temp_auto_temp_off(struct device *dev,
1147		struct device_attribute *attr, const char *buf, size_t count)
1148{
1149	int nr = to_sensor_dev_attr(attr)->index;
1150	struct lm85_data *data = dev_get_drvdata(dev);
1151	struct i2c_client *client = data->client;
1152	int min;
1153	long val;
1154	int err;
1155
1156	err = kstrtol(buf, 10, &val);
1157	if (err)
1158		return err;
1159
1160	mutex_lock(&data->update_lock);
1161	min = TEMP_FROM_REG(data->zone[nr].limit);
1162	data->zone[nr].hyst = HYST_TO_REG(min - val);
1163	if (nr == 0 || nr == 1) {
1164		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1165			(data->zone[0].hyst << 4)
1166			| data->zone[1].hyst);
1167	} else {
1168		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1169			(data->zone[2].hyst << 4));
1170	}
1171	mutex_unlock(&data->update_lock);
1172	return count;
1173}
1174
1175static ssize_t show_temp_auto_temp_min(struct device *dev,
1176		struct device_attribute *attr, char *buf)
1177{
1178	int nr = to_sensor_dev_attr(attr)->index;
1179	struct lm85_data *data = lm85_update_device(dev);
1180	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1181}
1182
1183static ssize_t set_temp_auto_temp_min(struct device *dev,
1184		struct device_attribute *attr, const char *buf, size_t count)
1185{
1186	int nr = to_sensor_dev_attr(attr)->index;
1187	struct lm85_data *data = dev_get_drvdata(dev);
1188	struct i2c_client *client = data->client;
1189	long val;
1190	int err;
1191
1192	err = kstrtol(buf, 10, &val);
1193	if (err)
1194		return err;
1195
1196	mutex_lock(&data->update_lock);
1197	data->zone[nr].limit = TEMP_TO_REG(val);
1198	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1199		data->zone[nr].limit);
1200
1201/* Update temp_auto_max and temp_auto_range */
1202	data->zone[nr].range = RANGE_TO_REG(
1203		TEMP_FROM_REG(data->zone[nr].max_desired) -
1204		TEMP_FROM_REG(data->zone[nr].limit));
1205	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1206		((data->zone[nr].range & 0x0f) << 4)
1207		| (data->pwm_freq[nr] & 0x07));
1208
1209	mutex_unlock(&data->update_lock);
1210	return count;
1211}
1212
1213static ssize_t show_temp_auto_temp_max(struct device *dev,
1214		struct device_attribute *attr, char *buf)
1215{
1216	int nr = to_sensor_dev_attr(attr)->index;
1217	struct lm85_data *data = lm85_update_device(dev);
1218	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1219		RANGE_FROM_REG(data->zone[nr].range));
1220}
1221
1222static ssize_t set_temp_auto_temp_max(struct device *dev,
1223		struct device_attribute *attr, const char *buf, size_t count)
1224{
1225	int nr = to_sensor_dev_attr(attr)->index;
1226	struct lm85_data *data = dev_get_drvdata(dev);
1227	struct i2c_client *client = data->client;
1228	int min;
1229	long val;
1230	int err;
1231
1232	err = kstrtol(buf, 10, &val);
1233	if (err)
1234		return err;
1235
1236	mutex_lock(&data->update_lock);
1237	min = TEMP_FROM_REG(data->zone[nr].limit);
1238	data->zone[nr].max_desired = TEMP_TO_REG(val);
1239	data->zone[nr].range = RANGE_TO_REG(
1240		val - min);
1241	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1242		((data->zone[nr].range & 0x0f) << 4)
1243		| (data->pwm_freq[nr] & 0x07));
1244	mutex_unlock(&data->update_lock);
1245	return count;
1246}
1247
1248static ssize_t show_temp_auto_temp_crit(struct device *dev,
1249		struct device_attribute *attr, char *buf)
1250{
1251	int nr = to_sensor_dev_attr(attr)->index;
1252	struct lm85_data *data = lm85_update_device(dev);
1253	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1254}
1255
1256static ssize_t set_temp_auto_temp_crit(struct device *dev,
1257		struct device_attribute *attr, const char *buf, size_t count)
1258{
1259	int nr = to_sensor_dev_attr(attr)->index;
1260	struct lm85_data *data = dev_get_drvdata(dev);
1261	struct i2c_client *client = data->client;
1262	long val;
1263	int err;
1264
1265	err = kstrtol(buf, 10, &val);
1266	if (err)
1267		return err;
1268
1269	mutex_lock(&data->update_lock);
1270	data->zone[nr].critical = TEMP_TO_REG(val);
1271	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272		data->zone[nr].critical);
1273	mutex_unlock(&data->update_lock);
1274	return count;
1275}
1276
1277#define temp_auto(offset)						\
1278static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1279		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1280		set_temp_auto_temp_off, offset - 1);			\
1281static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1282		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1283		set_temp_auto_temp_min, offset - 1);			\
1284static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1285		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1286		set_temp_auto_temp_max, offset - 1);			\
1287static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1288		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1289		set_temp_auto_temp_crit, offset - 1);
1290
1291temp_auto(1);
1292temp_auto(2);
1293temp_auto(3);
1294
1295static struct attribute *lm85_attributes[] = {
1296	&sensor_dev_attr_fan1_input.dev_attr.attr,
1297	&sensor_dev_attr_fan2_input.dev_attr.attr,
1298	&sensor_dev_attr_fan3_input.dev_attr.attr,
1299	&sensor_dev_attr_fan4_input.dev_attr.attr,
1300	&sensor_dev_attr_fan1_min.dev_attr.attr,
1301	&sensor_dev_attr_fan2_min.dev_attr.attr,
1302	&sensor_dev_attr_fan3_min.dev_attr.attr,
1303	&sensor_dev_attr_fan4_min.dev_attr.attr,
1304	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1305	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1306	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1307	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1308
1309	&sensor_dev_attr_pwm1.dev_attr.attr,
1310	&sensor_dev_attr_pwm2.dev_attr.attr,
1311	&sensor_dev_attr_pwm3.dev_attr.attr,
1312	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1313	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1314	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1315	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1316	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1317	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1318
1319	&sensor_dev_attr_in0_input.dev_attr.attr,
1320	&sensor_dev_attr_in1_input.dev_attr.attr,
1321	&sensor_dev_attr_in2_input.dev_attr.attr,
1322	&sensor_dev_attr_in3_input.dev_attr.attr,
1323	&sensor_dev_attr_in0_min.dev_attr.attr,
1324	&sensor_dev_attr_in1_min.dev_attr.attr,
1325	&sensor_dev_attr_in2_min.dev_attr.attr,
1326	&sensor_dev_attr_in3_min.dev_attr.attr,
1327	&sensor_dev_attr_in0_max.dev_attr.attr,
1328	&sensor_dev_attr_in1_max.dev_attr.attr,
1329	&sensor_dev_attr_in2_max.dev_attr.attr,
1330	&sensor_dev_attr_in3_max.dev_attr.attr,
1331	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1332	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1333	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1334	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1335
1336	&sensor_dev_attr_temp1_input.dev_attr.attr,
1337	&sensor_dev_attr_temp2_input.dev_attr.attr,
1338	&sensor_dev_attr_temp3_input.dev_attr.attr,
1339	&sensor_dev_attr_temp1_min.dev_attr.attr,
1340	&sensor_dev_attr_temp2_min.dev_attr.attr,
1341	&sensor_dev_attr_temp3_min.dev_attr.attr,
1342	&sensor_dev_attr_temp1_max.dev_attr.attr,
1343	&sensor_dev_attr_temp2_max.dev_attr.attr,
1344	&sensor_dev_attr_temp3_max.dev_attr.attr,
1345	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1346	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1347	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1348	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1349	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1350
1351	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1352	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1353	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1354	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1355	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1356	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1357
1358	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1359	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1360	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1361	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1362	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1363	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1364	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1365	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1366	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1367
1368	&dev_attr_vrm.attr,
1369	&dev_attr_cpu0_vid.attr,
1370	&dev_attr_alarms.attr,
1371	NULL
1372};
1373
1374static const struct attribute_group lm85_group = {
1375	.attrs = lm85_attributes,
1376};
1377
1378static struct attribute *lm85_attributes_minctl[] = {
1379	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1380	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1381	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1382	NULL
1383};
1384
1385static const struct attribute_group lm85_group_minctl = {
1386	.attrs = lm85_attributes_minctl,
1387};
1388
1389static struct attribute *lm85_attributes_temp_off[] = {
1390	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1391	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1392	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1393	NULL
1394};
1395
1396static const struct attribute_group lm85_group_temp_off = {
1397	.attrs = lm85_attributes_temp_off,
1398};
1399
1400static struct attribute *lm85_attributes_in4[] = {
1401	&sensor_dev_attr_in4_input.dev_attr.attr,
1402	&sensor_dev_attr_in4_min.dev_attr.attr,
1403	&sensor_dev_attr_in4_max.dev_attr.attr,
1404	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1405	NULL
1406};
1407
1408static const struct attribute_group lm85_group_in4 = {
1409	.attrs = lm85_attributes_in4,
1410};
1411
1412static struct attribute *lm85_attributes_in567[] = {
1413	&sensor_dev_attr_in5_input.dev_attr.attr,
1414	&sensor_dev_attr_in6_input.dev_attr.attr,
1415	&sensor_dev_attr_in7_input.dev_attr.attr,
1416	&sensor_dev_attr_in5_min.dev_attr.attr,
1417	&sensor_dev_attr_in6_min.dev_attr.attr,
1418	&sensor_dev_attr_in7_min.dev_attr.attr,
1419	&sensor_dev_attr_in5_max.dev_attr.attr,
1420	&sensor_dev_attr_in6_max.dev_attr.attr,
1421	&sensor_dev_attr_in7_max.dev_attr.attr,
1422	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1423	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1424	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1425	NULL
1426};
1427
1428static const struct attribute_group lm85_group_in567 = {
1429	.attrs = lm85_attributes_in567,
1430};
1431
1432static void lm85_init_client(struct i2c_client *client)
1433{
1434	int value;
1435
1436	/* Start monitoring if needed */
1437	value = lm85_read_value(client, LM85_REG_CONFIG);
1438	if (!(value & 0x01)) {
1439		dev_info(&client->dev, "Starting monitoring\n");
1440		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1441	}
1442
1443	/* Warn about unusual configuration bits */
1444	if (value & 0x02)
1445		dev_warn(&client->dev, "Device configuration is locked\n");
1446	if (!(value & 0x04))
1447		dev_warn(&client->dev, "Device is not ready\n");
1448}
1449
1450static int lm85_is_fake(struct i2c_client *client)
1451{
1452	/*
1453	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1454	 * emulate the former except that it has no hardware monitoring function
1455	 * so the readings are always 0.
1456	 */
1457	int i;
1458	u8 in_temp, fan;
1459
1460	for (i = 0; i < 8; i++) {
1461		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1462		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1463		if (in_temp != 0x00 || fan != 0xff)
1464			return 0;
1465	}
1466
1467	return 1;
1468}
1469
1470/* Return 0 if detection is successful, -ENODEV otherwise */
1471static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1472{
1473	struct i2c_adapter *adapter = client->adapter;
1474	int address = client->addr;
1475	const char *type_name = NULL;
1476	int company, verstep;
1477
1478	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1479		/* We need to be able to do byte I/O */
1480		return -ENODEV;
1481	}
1482
1483	/* Determine the chip type */
1484	company = lm85_read_value(client, LM85_REG_COMPANY);
1485	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1486
1487	dev_dbg(&adapter->dev,
1488		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1489		address, company, verstep);
1490
1491	if (company == LM85_COMPANY_NATIONAL) {
1492		switch (verstep) {
1493		case LM85_VERSTEP_LM85C:
1494			type_name = "lm85c";
1495			break;
1496		case LM85_VERSTEP_LM85B:
1497			type_name = "lm85b";
1498			break;
1499		case LM85_VERSTEP_LM96000_1:
1500		case LM85_VERSTEP_LM96000_2:
1501			/* Check for Winbond WPCD377I */
1502			if (lm85_is_fake(client)) {
1503				dev_dbg(&adapter->dev,
1504					"Found Winbond WPCD377I, ignoring\n");
1505				return -ENODEV;
1506			}
1507			type_name = "lm85";
1508			break;
1509		}
1510	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1511		switch (verstep) {
1512		case LM85_VERSTEP_ADM1027:
1513			type_name = "adm1027";
1514			break;
1515		case LM85_VERSTEP_ADT7463:
1516		case LM85_VERSTEP_ADT7463C:
1517			type_name = "adt7463";
1518			break;
1519		case LM85_VERSTEP_ADT7468_1:
1520		case LM85_VERSTEP_ADT7468_2:
1521			type_name = "adt7468";
1522			break;
1523		}
1524	} else if (company == LM85_COMPANY_SMSC) {
1525		switch (verstep) {
1526		case LM85_VERSTEP_EMC6D100_A0:
1527		case LM85_VERSTEP_EMC6D100_A1:
1528			/* Note: we can't tell a '100 from a '101 */
1529			type_name = "emc6d100";
1530			break;
1531		case LM85_VERSTEP_EMC6D102:
1532			type_name = "emc6d102";
1533			break;
1534		case LM85_VERSTEP_EMC6D103_A0:
1535		case LM85_VERSTEP_EMC6D103_A1:
1536			type_name = "emc6d103";
1537			break;
1538		case LM85_VERSTEP_EMC6D103S:
1539			type_name = "emc6d103s";
1540			break;
1541		}
1542	}
1543
1544	if (!type_name)
1545		return -ENODEV;
1546
1547	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1548
1549	return 0;
1550}
1551
1552static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1553{
1554	struct device *dev = &client->dev;
1555	struct device *hwmon_dev;
1556	struct lm85_data *data;
1557	int idx = 0;
1558
1559	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1560	if (!data)
1561		return -ENOMEM;
1562
1563	data->client = client;
1564	data->type = id->driver_data;
1565	mutex_init(&data->update_lock);
1566
1567	/* Fill in the chip specific driver values */
1568	switch (data->type) {
1569	case adm1027:
1570	case adt7463:
1571	case adt7468:
1572	case emc6d100:
1573	case emc6d102:
1574	case emc6d103:
1575	case emc6d103s:
1576		data->freq_map = adm1027_freq_map;
1577		break;
1578	default:
1579		data->freq_map = lm85_freq_map;
1580	}
1581
1582	/* Set the VRM version */
1583	data->vrm = vid_which_vrm();
1584
1585	/* Initialize the LM85 chip */
1586	lm85_init_client(client);
1587
1588	/* sysfs hooks */
1589	data->groups[idx++] = &lm85_group;
1590
1591	/* minctl and temp_off exist on all chips except emc6d103s */
1592	if (data->type != emc6d103s) {
1593		data->groups[idx++] = &lm85_group_minctl;
1594		data->groups[idx++] = &lm85_group_temp_off;
1595	}
1596
1597	/*
1598	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1599	 * as a sixth digital VID input rather than an analog input.
1600	 */
1601	if (data->type == adt7463 || data->type == adt7468) {
1602		u8 vid = lm85_read_value(client, LM85_REG_VID);
1603		if (vid & 0x80)
1604			data->has_vid5 = true;
1605	}
1606
1607	if (!data->has_vid5)
1608		data->groups[idx++] = &lm85_group_in4;
1609
1610	/* The EMC6D100 has 3 additional voltage inputs */
1611	if (data->type == emc6d100)
1612		data->groups[idx++] = &lm85_group_in567;
1613
1614	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1615							   data, data->groups);
1616	return PTR_ERR_OR_ZERO(hwmon_dev);
1617}
1618
1619static const struct i2c_device_id lm85_id[] = {
1620	{ "adm1027", adm1027 },
1621	{ "adt7463", adt7463 },
1622	{ "adt7468", adt7468 },
1623	{ "lm85", lm85 },
1624	{ "lm85b", lm85 },
1625	{ "lm85c", lm85 },
1626	{ "emc6d100", emc6d100 },
1627	{ "emc6d101", emc6d100 },
1628	{ "emc6d102", emc6d102 },
1629	{ "emc6d103", emc6d103 },
1630	{ "emc6d103s", emc6d103s },
1631	{ }
1632};
1633MODULE_DEVICE_TABLE(i2c, lm85_id);
1634
1635static struct i2c_driver lm85_driver = {
1636	.class		= I2C_CLASS_HWMON,
1637	.driver = {
1638		.name   = "lm85",
1639	},
1640	.probe		= lm85_probe,
1641	.id_table	= lm85_id,
1642	.detect		= lm85_detect,
1643	.address_list	= normal_i2c,
1644};
1645
1646module_i2c_driver(lm85_driver);
1647
1648MODULE_LICENSE("GPL");
1649MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1650	"Margit Schubert-While <margitsw@t-online.de>, "
1651	"Justin Thiessen <jthiessen@penguincomputing.com>");
1652MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1653