1/*
2 * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3 *
4 * Author	Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 *		Peter Sprenger (sprengermoving-bytes.de)
7 *
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008  by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 *
28 * Thanks to Cologne Chip AG for this great controller!
29 */
30
31/*
32 * module parameters:
33 * type:
34 *	By default (0), the card is automatically detected.
35 *	Or use the following combinations:
36 *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
37 * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
38 * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
39 *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
40 *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 *	Bit 10    = spare
42 *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 *	Bit 13	  = spare
45 *	Bit 14    = 0x04000 = Use external ram (128K)
46 *	Bit 15    = 0x08000 = Use external ram (512K)
47 *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
48 * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
49 *	Bit 18    = spare
50 *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 *		 bus (PCM master)
54 *
55 * port: (optional or required for all ports on all installed cards)
56 *	HFC-4S/HFC-8S only bits:
57 *	Bit 0	  = 0x001 = Use master clock for this S/T interface
58 *			    (ony once per chip).
59 *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
60 *			    Don't use this unless you know what you are doing!
61 *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
62 *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 *		 received from port 1
64 *
65 *	HFC-E1 only bits:
66 *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
67 *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 *	Bit 2     = 0x0004 = Report LOS
69 *	Bit 3     = 0x0008 = Report AIS
70 *	Bit 4     = 0x0010 = Report SLIP
71 *	Bit 5     = 0x0020 = Report RDI
72 *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 *			     mode instead.
74 *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
75 * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
76 *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 *			     (E1 only)
78 *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 *			     for default.
80 * (all other bits are reserved and shall be 0)
81 *
82 * debug:
83 *	NOTE: only one debug value must be given for all cards
84 *	enable debugging (see hfc_multi.h for debug options)
85 *
86 * poll:
87 *	NOTE: only one poll value must be given for all cards
88 *	Give the number of samples for each fifo process.
89 *	By default 128 is used. Decrease to reduce delay, increase to
90 *	reduce cpu load. If unsure, don't mess with it!
91 *	Valid is 8, 16, 32, 64, 128, 256.
92 *
93 * pcm:
94 *	NOTE: only one pcm value must be given for every card.
95 *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 *	By default (0), the PCM bus id is 100 for the card that is PCM master.
97 *	If multiple cards are PCM master (because they are not interconnected),
98 *	each card with PCM master will have increasing PCM id.
99 *	All PCM busses with the same ID are expected to be connected and have
100 *	common time slots slots.
101 *	Only one chip of the PCM bus must be master, the others slave.
102 *	-1 means no support of PCM bus not even.
103 *	Omit this value, if all cards are interconnected or none is connected.
104 *	If unsure, don't give this parameter.
105 *
106 * dmask and bmask:
107 *	NOTE: One dmask value must be given for every HFC-E1 card.
108 *	If omitted, the E1 card has D-channel on time slot 16, which is default.
109 *	dmask is a 32 bit mask. The bit must be set for an alternate time slot.
110 *	If multiple bits are set, multiple virtual card fragments are created.
111 *	For each bit set, a bmask value must be given. Each bit on the bmask
112 *	value stands for a B-channel. The bmask may not overlap with dmask or
113 *	with other bmask values for that card.
114 *	Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
115 *		This will create one fragment with D-channel on slot 1 with
116 *		B-channels on slots 2..15, and a second fragment with D-channel
117 *		on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
118 *	If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
119 *	not function.
120 *	Example: dmask=0x00000001 bmask=0xfffffffe
121 *		This will create a port with all 31 usable timeslots as
122 *		B-channels.
123 *	If no bits are set on bmask, no B-channel is created for that fragment.
124 *	Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
125 *		This will create 31 ports with one D-channel only.
126 *	If you don't know how to use it, you don't need it!
127 *
128 * iomode:
129 *	NOTE: only one mode value must be given for every card.
130 *	-> See hfc_multi.h for HFC_IO_MODE_* values
131 *	By default, the IO mode is pci memory IO (MEMIO).
132 *	Some cards require specific IO mode, so it cannot be changed.
133 *	It may be useful to set IO mode to register io (REGIO) to solve
134 *	PCI bridge problems.
135 *	If unsure, don't give this parameter.
136 *
137 * clockdelay_nt:
138 *	NOTE: only one clockdelay_nt value must be given once for all cards.
139 *	Give the value of the clock control register (A_ST_CLK_DLY)
140 *	of the S/T interfaces in NT mode.
141 *	This register is needed for the TBR3 certification, so don't change it.
142 *
143 * clockdelay_te:
144 *	NOTE: only one clockdelay_te value must be given once
145 *	Give the value of the clock control register (A_ST_CLK_DLY)
146 *	of the S/T interfaces in TE mode.
147 *	This register is needed for the TBR3 certification, so don't change it.
148 *
149 * clock:
150 *	NOTE: only one clock value must be given once
151 *	Selects interface with clock source for mISDN and applications.
152 *	Set to card number starting with 1. Set to -1 to disable.
153 *	By default, the first card is used as clock source.
154 *
155 * hwid:
156 *	NOTE: only one hwid value must be given once
157 *	Enable special embedded devices with XHFC controllers.
158 */
159
160/*
161 * debug register access (never use this, it will flood your system log)
162 * #define HFC_REGISTER_DEBUG
163 */
164
165#define HFC_MULTI_VERSION	"2.03"
166
167#include <linux/interrupt.h>
168#include <linux/module.h>
169#include <linux/slab.h>
170#include <linux/pci.h>
171#include <linux/delay.h>
172#include <linux/mISDNhw.h>
173#include <linux/mISDNdsp.h>
174
175/*
176  #define IRQCOUNT_DEBUG
177  #define IRQ_DEBUG
178*/
179
180#include "hfc_multi.h"
181#ifdef ECHOPREP
182#include "gaintab.h"
183#endif
184
185#define	MAX_CARDS	8
186#define	MAX_PORTS	(8 * MAX_CARDS)
187#define	MAX_FRAGS	(32 * MAX_CARDS)
188
189static LIST_HEAD(HFClist);
190static spinlock_t HFClock; /* global hfc list lock */
191
192static void ph_state_change(struct dchannel *);
193
194static struct hfc_multi *syncmaster;
195static int plxsd_master; /* if we have a master card (yet) */
196static spinlock_t plx_lock; /* may not acquire other lock inside */
197
198#define	TYP_E1		1
199#define	TYP_4S		4
200#define TYP_8S		8
201
202static int poll_timer = 6;	/* default = 128 samples = 16ms */
203/* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
204static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
205#define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
206#define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
207				   (0x60 MUST be included!) */
208
209#define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
210#define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
211#define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
212
213/*
214 * module stuff
215 */
216
217static uint	type[MAX_CARDS];
218static int	pcm[MAX_CARDS];
219static uint	dmask[MAX_CARDS];
220static uint	bmask[MAX_FRAGS];
221static uint	iomode[MAX_CARDS];
222static uint	port[MAX_PORTS];
223static uint	debug;
224static uint	poll;
225static int	clock;
226static uint	timer;
227static uint	clockdelay_te = CLKDEL_TE;
228static uint	clockdelay_nt = CLKDEL_NT;
229#define HWID_NONE	0
230#define HWID_MINIP4	1
231#define HWID_MINIP8	2
232#define HWID_MINIP16	3
233static uint	hwid = HWID_NONE;
234
235static int	HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
236
237MODULE_AUTHOR("Andreas Eversberg");
238MODULE_LICENSE("GPL");
239MODULE_VERSION(HFC_MULTI_VERSION);
240module_param(debug, uint, S_IRUGO | S_IWUSR);
241module_param(poll, uint, S_IRUGO | S_IWUSR);
242module_param(clock, int, S_IRUGO | S_IWUSR);
243module_param(timer, uint, S_IRUGO | S_IWUSR);
244module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
245module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
246module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
247module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
248module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
249module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
250module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
251module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
252module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
253
254#ifdef HFC_REGISTER_DEBUG
255#define HFC_outb(hc, reg, val)					\
256	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
257#define HFC_outb_nodebug(hc, reg, val)					\
258	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
259#define HFC_inb(hc, reg)				\
260	(hc->HFC_inb(hc, reg, __func__, __LINE__))
261#define HFC_inb_nodebug(hc, reg)				\
262	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
263#define HFC_inw(hc, reg)				\
264	(hc->HFC_inw(hc, reg, __func__, __LINE__))
265#define HFC_inw_nodebug(hc, reg)				\
266	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
267#define HFC_wait(hc)				\
268	(hc->HFC_wait(hc, __func__, __LINE__))
269#define HFC_wait_nodebug(hc)				\
270	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
271#else
272#define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
273#define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
274#define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
275#define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
276#define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
277#define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
278#define HFC_wait(hc)			(hc->HFC_wait(hc))
279#define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
280#endif
281
282#ifdef CONFIG_MISDN_HFCMULTI_8xx
283#include "hfc_multi_8xx.h"
284#endif
285
286/* HFC_IO_MODE_PCIMEM */
287static void
288#ifdef HFC_REGISTER_DEBUG
289HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
290		const char *function, int line)
291#else
292	HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
293#endif
294{
295	writeb(val, hc->pci_membase + reg);
296}
297static u_char
298#ifdef HFC_REGISTER_DEBUG
299HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
300#else
301	HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
302#endif
303{
304	return readb(hc->pci_membase + reg);
305}
306static u_short
307#ifdef HFC_REGISTER_DEBUG
308HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
309#else
310	HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
311#endif
312{
313	return readw(hc->pci_membase + reg);
314}
315static void
316#ifdef HFC_REGISTER_DEBUG
317HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
318#else
319	HFC_wait_pcimem(struct hfc_multi *hc)
320#endif
321{
322	while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
323		cpu_relax();
324}
325
326/* HFC_IO_MODE_REGIO */
327static void
328#ifdef HFC_REGISTER_DEBUG
329HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
330	       const char *function, int line)
331#else
332	HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
333#endif
334{
335	outb(reg, hc->pci_iobase + 4);
336	outb(val, hc->pci_iobase);
337}
338static u_char
339#ifdef HFC_REGISTER_DEBUG
340HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
341#else
342	HFC_inb_regio(struct hfc_multi *hc, u_char reg)
343#endif
344{
345	outb(reg, hc->pci_iobase + 4);
346	return inb(hc->pci_iobase);
347}
348static u_short
349#ifdef HFC_REGISTER_DEBUG
350HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
351#else
352	HFC_inw_regio(struct hfc_multi *hc, u_char reg)
353#endif
354{
355	outb(reg, hc->pci_iobase + 4);
356	return inw(hc->pci_iobase);
357}
358static void
359#ifdef HFC_REGISTER_DEBUG
360HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
361#else
362	HFC_wait_regio(struct hfc_multi *hc)
363#endif
364{
365	outb(R_STATUS, hc->pci_iobase + 4);
366	while (inb(hc->pci_iobase) & V_BUSY)
367		cpu_relax();
368}
369
370#ifdef HFC_REGISTER_DEBUG
371static void
372HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
373	       const char *function, int line)
374{
375	char regname[256] = "", bits[9] = "xxxxxxxx";
376	int i;
377
378	i = -1;
379	while (hfc_register_names[++i].name) {
380		if (hfc_register_names[i].reg == reg)
381			strcat(regname, hfc_register_names[i].name);
382	}
383	if (regname[0] == '\0')
384		strcpy(regname, "register");
385
386	bits[7] = '0' + (!!(val & 1));
387	bits[6] = '0' + (!!(val & 2));
388	bits[5] = '0' + (!!(val & 4));
389	bits[4] = '0' + (!!(val & 8));
390	bits[3] = '0' + (!!(val & 16));
391	bits[2] = '0' + (!!(val & 32));
392	bits[1] = '0' + (!!(val & 64));
393	bits[0] = '0' + (!!(val & 128));
394	printk(KERN_DEBUG
395	       "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
396	       hc->id, reg, regname, val, bits, function, line);
397	HFC_outb_nodebug(hc, reg, val);
398}
399static u_char
400HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
401{
402	char regname[256] = "", bits[9] = "xxxxxxxx";
403	u_char val = HFC_inb_nodebug(hc, reg);
404	int i;
405
406	i = 0;
407	while (hfc_register_names[i++].name)
408		;
409	while (hfc_register_names[++i].name) {
410		if (hfc_register_names[i].reg == reg)
411			strcat(regname, hfc_register_names[i].name);
412	}
413	if (regname[0] == '\0')
414		strcpy(regname, "register");
415
416	bits[7] = '0' + (!!(val & 1));
417	bits[6] = '0' + (!!(val & 2));
418	bits[5] = '0' + (!!(val & 4));
419	bits[4] = '0' + (!!(val & 8));
420	bits[3] = '0' + (!!(val & 16));
421	bits[2] = '0' + (!!(val & 32));
422	bits[1] = '0' + (!!(val & 64));
423	bits[0] = '0' + (!!(val & 128));
424	printk(KERN_DEBUG
425	       "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
426	       hc->id, reg, regname, val, bits, function, line);
427	return val;
428}
429static u_short
430HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
431{
432	char regname[256] = "";
433	u_short val = HFC_inw_nodebug(hc, reg);
434	int i;
435
436	i = 0;
437	while (hfc_register_names[i++].name)
438		;
439	while (hfc_register_names[++i].name) {
440		if (hfc_register_names[i].reg == reg)
441			strcat(regname, hfc_register_names[i].name);
442	}
443	if (regname[0] == '\0')
444		strcpy(regname, "register");
445
446	printk(KERN_DEBUG
447	       "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
448	       hc->id, reg, regname, val, function, line);
449	return val;
450}
451static void
452HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
453{
454	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
455	       hc->id, function, line);
456	HFC_wait_nodebug(hc);
457}
458#endif
459
460/* write fifo data (REGIO) */
461static void
462write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
463{
464	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
465	while (len >> 2) {
466		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
467		data += 4;
468		len -= 4;
469	}
470	while (len >> 1) {
471		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
472		data += 2;
473		len -= 2;
474	}
475	while (len) {
476		outb(*data, hc->pci_iobase);
477		data++;
478		len--;
479	}
480}
481/* write fifo data (PCIMEM) */
482static void
483write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
484{
485	while (len >> 2) {
486		writel(cpu_to_le32(*(u32 *)data),
487		       hc->pci_membase + A_FIFO_DATA0);
488		data += 4;
489		len -= 4;
490	}
491	while (len >> 1) {
492		writew(cpu_to_le16(*(u16 *)data),
493		       hc->pci_membase + A_FIFO_DATA0);
494		data += 2;
495		len -= 2;
496	}
497	while (len) {
498		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
499		data++;
500		len--;
501	}
502}
503
504/* read fifo data (REGIO) */
505static void
506read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
507{
508	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
509	while (len >> 2) {
510		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
511		data += 4;
512		len -= 4;
513	}
514	while (len >> 1) {
515		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
516		data += 2;
517		len -= 2;
518	}
519	while (len) {
520		*data = inb(hc->pci_iobase);
521		data++;
522		len--;
523	}
524}
525
526/* read fifo data (PCIMEM) */
527static void
528read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
529{
530	while (len >> 2) {
531		*(u32 *)data =
532			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
533		data += 4;
534		len -= 4;
535	}
536	while (len >> 1) {
537		*(u16 *)data =
538			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
539		data += 2;
540		len -= 2;
541	}
542	while (len) {
543		*data = readb(hc->pci_membase + A_FIFO_DATA0);
544		data++;
545		len--;
546	}
547}
548
549static void
550enable_hwirq(struct hfc_multi *hc)
551{
552	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
553	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
554}
555
556static void
557disable_hwirq(struct hfc_multi *hc)
558{
559	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
560	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
561}
562
563#define	NUM_EC 2
564#define	MAX_TDM_CHAN 32
565
566
567inline void
568enablepcibridge(struct hfc_multi *c)
569{
570	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
571}
572
573inline void
574disablepcibridge(struct hfc_multi *c)
575{
576	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
577}
578
579inline unsigned char
580readpcibridge(struct hfc_multi *hc, unsigned char address)
581{
582	unsigned short cipv;
583	unsigned char data;
584
585	if (!hc->pci_iobase)
586		return 0;
587
588	/* slow down a PCI read access by 1 PCI clock cycle */
589	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
590
591	if (address == 0)
592		cipv = 0x4000;
593	else
594		cipv = 0x5800;
595
596	/* select local bridge port address by writing to CIP port */
597	/* data = HFC_inb(c, cipv); * was _io before */
598	outw(cipv, hc->pci_iobase + 4);
599	data = inb(hc->pci_iobase);
600
601	/* restore R_CTRL for normal PCI read cycle speed */
602	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
603
604	return data;
605}
606
607inline void
608writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
609{
610	unsigned short cipv;
611	unsigned int datav;
612
613	if (!hc->pci_iobase)
614		return;
615
616	if (address == 0)
617		cipv = 0x4000;
618	else
619		cipv = 0x5800;
620
621	/* select local bridge port address by writing to CIP port */
622	outw(cipv, hc->pci_iobase + 4);
623	/* define a 32 bit dword with 4 identical bytes for write sequence */
624	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
625		((__u32) data << 24);
626
627	/*
628	 * write this 32 bit dword to the bridge data port
629	 * this will initiate a write sequence of up to 4 writes to the same
630	 * address on the local bus interface the number of write accesses
631	 * is undefined but >=1 and depends on the next PCI transaction
632	 * during write sequence on the local bus
633	 */
634	outl(datav, hc->pci_iobase);
635}
636
637inline void
638cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
639{
640	/* Do data pin read low byte */
641	HFC_outb(hc, R_GPIO_OUT1, reg);
642}
643
644inline void
645cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
646{
647	cpld_set_reg(hc, reg);
648
649	enablepcibridge(hc);
650	writepcibridge(hc, 1, val);
651	disablepcibridge(hc);
652
653	return;
654}
655
656inline unsigned char
657cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
658{
659	unsigned char bytein;
660
661	cpld_set_reg(hc, reg);
662
663	/* Do data pin read low byte */
664	HFC_outb(hc, R_GPIO_OUT1, reg);
665
666	enablepcibridge(hc);
667	bytein = readpcibridge(hc, 1);
668	disablepcibridge(hc);
669
670	return bytein;
671}
672
673inline void
674vpm_write_address(struct hfc_multi *hc, unsigned short addr)
675{
676	cpld_write_reg(hc, 0, 0xff & addr);
677	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
678}
679
680inline unsigned short
681vpm_read_address(struct hfc_multi *c)
682{
683	unsigned short addr;
684	unsigned short highbit;
685
686	addr = cpld_read_reg(c, 0);
687	highbit = cpld_read_reg(c, 1);
688
689	addr = addr | (highbit << 8);
690
691	return addr & 0x1ff;
692}
693
694inline unsigned char
695vpm_in(struct hfc_multi *c, int which, unsigned short addr)
696{
697	unsigned char res;
698
699	vpm_write_address(c, addr);
700
701	if (!which)
702		cpld_set_reg(c, 2);
703	else
704		cpld_set_reg(c, 3);
705
706	enablepcibridge(c);
707	res = readpcibridge(c, 1);
708	disablepcibridge(c);
709
710	cpld_set_reg(c, 0);
711
712	return res;
713}
714
715inline void
716vpm_out(struct hfc_multi *c, int which, unsigned short addr,
717	unsigned char data)
718{
719	vpm_write_address(c, addr);
720
721	enablepcibridge(c);
722
723	if (!which)
724		cpld_set_reg(c, 2);
725	else
726		cpld_set_reg(c, 3);
727
728	writepcibridge(c, 1, data);
729
730	cpld_set_reg(c, 0);
731
732	disablepcibridge(c);
733
734	{
735		unsigned char regin;
736		regin = vpm_in(c, which, addr);
737		if (regin != data)
738			printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
739			       "0x%x\n", data, addr, regin);
740	}
741
742}
743
744
745static void
746vpm_init(struct hfc_multi *wc)
747{
748	unsigned char reg;
749	unsigned int mask;
750	unsigned int i, x, y;
751	unsigned int ver;
752
753	for (x = 0; x < NUM_EC; x++) {
754		/* Setup GPIO's */
755		if (!x) {
756			ver = vpm_in(wc, x, 0x1a0);
757			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
758		}
759
760		for (y = 0; y < 4; y++) {
761			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
762			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
763			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
764		}
765
766		/* Setup TDM path - sets fsync and tdm_clk as inputs */
767		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
768		vpm_out(wc, x, 0x1a3, reg & ~2);
769
770		/* Setup Echo length (256 taps) */
771		vpm_out(wc, x, 0x022, 1);
772		vpm_out(wc, x, 0x023, 0xff);
773
774		/* Setup timeslots */
775		vpm_out(wc, x, 0x02f, 0x00);
776		mask = 0x02020202 << (x * 4);
777
778		/* Setup the tdm channel masks for all chips */
779		for (i = 0; i < 4; i++)
780			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
781
782		/* Setup convergence rate */
783		printk(KERN_DEBUG "VPM: A-law mode\n");
784		reg = 0x00 | 0x10 | 0x01;
785		vpm_out(wc, x, 0x20, reg);
786		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
787		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
788
789		vpm_out(wc, x, 0x24, 0x02);
790		reg = vpm_in(wc, x, 0x24);
791		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
792
793		/* Initialize echo cans */
794		for (i = 0; i < MAX_TDM_CHAN; i++) {
795			if (mask & (0x00000001 << i))
796				vpm_out(wc, x, i, 0x00);
797		}
798
799		/*
800		 * ARM arch at least disallows a udelay of
801		 * more than 2ms... it gives a fake "__bad_udelay"
802		 * reference at link-time.
803		 * long delays in kernel code are pretty sucky anyway
804		 * for now work around it using 5 x 2ms instead of 1 x 10ms
805		 */
806
807		udelay(2000);
808		udelay(2000);
809		udelay(2000);
810		udelay(2000);
811		udelay(2000);
812
813		/* Put in bypass mode */
814		for (i = 0; i < MAX_TDM_CHAN; i++) {
815			if (mask & (0x00000001 << i))
816				vpm_out(wc, x, i, 0x01);
817		}
818
819		/* Enable bypass */
820		for (i = 0; i < MAX_TDM_CHAN; i++) {
821			if (mask & (0x00000001 << i))
822				vpm_out(wc, x, 0x78 + i, 0x01);
823		}
824
825	}
826}
827
828#ifdef UNUSED
829static void
830vpm_check(struct hfc_multi *hctmp)
831{
832	unsigned char gpi2;
833
834	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
835
836	if ((gpi2 & 0x3) != 0x3)
837		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
838}
839#endif /* UNUSED */
840
841
842/*
843 * Interface to enable/disable the HW Echocan
844 *
845 * these functions are called within a spin_lock_irqsave on
846 * the channel instance lock, so we are not disturbed by irqs
847 *
848 * we can later easily change the interface to make  other
849 * things configurable, for now we configure the taps
850 *
851 */
852
853static void
854vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
855{
856	unsigned int timeslot;
857	unsigned int unit;
858	struct bchannel *bch = hc->chan[ch].bch;
859#ifdef TXADJ
860	int txadj = -4;
861	struct sk_buff *skb;
862#endif
863	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
864		return;
865
866	if (!bch)
867		return;
868
869#ifdef TXADJ
870	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
871			       sizeof(int), &txadj, GFP_ATOMIC);
872	if (skb)
873		recv_Bchannel_skb(bch, skb);
874#endif
875
876	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
877	unit = ch % 4;
878
879	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
880	       taps, timeslot);
881
882	vpm_out(hc, unit, timeslot, 0x7e);
883}
884
885static void
886vpm_echocan_off(struct hfc_multi *hc, int ch)
887{
888	unsigned int timeslot;
889	unsigned int unit;
890	struct bchannel *bch = hc->chan[ch].bch;
891#ifdef TXADJ
892	int txadj = 0;
893	struct sk_buff *skb;
894#endif
895
896	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
897		return;
898
899	if (!bch)
900		return;
901
902#ifdef TXADJ
903	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
904			       sizeof(int), &txadj, GFP_ATOMIC);
905	if (skb)
906		recv_Bchannel_skb(bch, skb);
907#endif
908
909	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
910	unit = ch % 4;
911
912	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
913	       timeslot);
914	/* FILLME */
915	vpm_out(hc, unit, timeslot, 0x01);
916}
917
918
919/*
920 * Speech Design resync feature
921 * NOTE: This is called sometimes outside interrupt handler.
922 * We must lock irqsave, so no other interrupt (other card) will occur!
923 * Also multiple interrupts may nest, so must lock each access (lists, card)!
924 */
925static inline void
926hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
927{
928	struct hfc_multi *hc, *next, *pcmmaster = NULL;
929	void __iomem *plx_acc_32;
930	u_int pv;
931	u_long flags;
932
933	spin_lock_irqsave(&HFClock, flags);
934	spin_lock(&plx_lock); /* must be locked inside other locks */
935
936	if (debug & DEBUG_HFCMULTI_PLXSD)
937		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
938		       __func__, syncmaster);
939
940	/* select new master */
941	if (newmaster) {
942		if (debug & DEBUG_HFCMULTI_PLXSD)
943			printk(KERN_DEBUG "using provided controller\n");
944	} else {
945		list_for_each_entry_safe(hc, next, &HFClist, list) {
946			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
947				if (hc->syncronized) {
948					newmaster = hc;
949					break;
950				}
951			}
952		}
953	}
954
955	/* Disable sync of all cards */
956	list_for_each_entry_safe(hc, next, &HFClist, list) {
957		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
958			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
959			pv = readl(plx_acc_32);
960			pv &= ~PLX_SYNC_O_EN;
961			writel(pv, plx_acc_32);
962			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
963				pcmmaster = hc;
964				if (hc->ctype == HFC_TYPE_E1) {
965					if (debug & DEBUG_HFCMULTI_PLXSD)
966						printk(KERN_DEBUG
967						       "Schedule SYNC_I\n");
968					hc->e1_resync |= 1; /* get SYNC_I */
969				}
970			}
971		}
972	}
973
974	if (newmaster) {
975		hc = newmaster;
976		if (debug & DEBUG_HFCMULTI_PLXSD)
977			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
978			       "interface.\n", hc->id, hc);
979		/* Enable new sync master */
980		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
981		pv = readl(plx_acc_32);
982		pv |= PLX_SYNC_O_EN;
983		writel(pv, plx_acc_32);
984		/* switch to jatt PLL, if not disabled by RX_SYNC */
985		if (hc->ctype == HFC_TYPE_E1
986		    && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
987			if (debug & DEBUG_HFCMULTI_PLXSD)
988				printk(KERN_DEBUG "Schedule jatt PLL\n");
989			hc->e1_resync |= 2; /* switch to jatt */
990		}
991	} else {
992		if (pcmmaster) {
993			hc = pcmmaster;
994			if (debug & DEBUG_HFCMULTI_PLXSD)
995				printk(KERN_DEBUG
996				       "id=%d (0x%p) = PCM master syncronized "
997				       "with QUARTZ\n", hc->id, hc);
998			if (hc->ctype == HFC_TYPE_E1) {
999				/* Use the crystal clock for the PCM
1000				   master card */
1001				if (debug & DEBUG_HFCMULTI_PLXSD)
1002					printk(KERN_DEBUG
1003					       "Schedule QUARTZ for HFC-E1\n");
1004				hc->e1_resync |= 4; /* switch quartz */
1005			} else {
1006				if (debug & DEBUG_HFCMULTI_PLXSD)
1007					printk(KERN_DEBUG
1008					       "QUARTZ is automatically "
1009					       "enabled by HFC-%dS\n", hc->ctype);
1010			}
1011			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1012			pv = readl(plx_acc_32);
1013			pv |= PLX_SYNC_O_EN;
1014			writel(pv, plx_acc_32);
1015		} else
1016			if (!rm)
1017				printk(KERN_ERR "%s no pcm master, this MUST "
1018				       "not happen!\n", __func__);
1019	}
1020	syncmaster = newmaster;
1021
1022	spin_unlock(&plx_lock);
1023	spin_unlock_irqrestore(&HFClock, flags);
1024}
1025
1026/* This must be called AND hc must be locked irqsave!!! */
1027inline void
1028plxsd_checksync(struct hfc_multi *hc, int rm)
1029{
1030	if (hc->syncronized) {
1031		if (syncmaster == NULL) {
1032			if (debug & DEBUG_HFCMULTI_PLXSD)
1033				printk(KERN_DEBUG "%s: GOT sync on card %d"
1034				       " (id=%d)\n", __func__, hc->id + 1,
1035				       hc->id);
1036			hfcmulti_resync(hc, hc, rm);
1037		}
1038	} else {
1039		if (syncmaster == hc) {
1040			if (debug & DEBUG_HFCMULTI_PLXSD)
1041				printk(KERN_DEBUG "%s: LOST sync on card %d"
1042				       " (id=%d)\n", __func__, hc->id + 1,
1043				       hc->id);
1044			hfcmulti_resync(hc, NULL, rm);
1045		}
1046	}
1047}
1048
1049
1050/*
1051 * free hardware resources used by driver
1052 */
1053static void
1054release_io_hfcmulti(struct hfc_multi *hc)
1055{
1056	void __iomem *plx_acc_32;
1057	u_int	pv;
1058	u_long	plx_flags;
1059
1060	if (debug & DEBUG_HFCMULTI_INIT)
1061		printk(KERN_DEBUG "%s: entered\n", __func__);
1062
1063	/* soft reset also masks all interrupts */
1064	hc->hw.r_cirm |= V_SRES;
1065	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1066	udelay(1000);
1067	hc->hw.r_cirm &= ~V_SRES;
1068	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1069	udelay(1000); /* instead of 'wait' that may cause locking */
1070
1071	/* release Speech Design card, if PLX was initialized */
1072	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1073		if (debug & DEBUG_HFCMULTI_PLXSD)
1074			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1075			       __func__, hc->id + 1);
1076		spin_lock_irqsave(&plx_lock, plx_flags);
1077		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1078		writel(PLX_GPIOC_INIT, plx_acc_32);
1079		pv = readl(plx_acc_32);
1080		/* Termination off */
1081		pv &= ~PLX_TERM_ON;
1082		/* Disconnect the PCM */
1083		pv |= PLX_SLAVE_EN_N;
1084		pv &= ~PLX_MASTER_EN;
1085		pv &= ~PLX_SYNC_O_EN;
1086		/* Put the DSP in Reset */
1087		pv &= ~PLX_DSP_RES_N;
1088		writel(pv, plx_acc_32);
1089		if (debug & DEBUG_HFCMULTI_INIT)
1090			printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1091			       __func__, pv);
1092		spin_unlock_irqrestore(&plx_lock, plx_flags);
1093	}
1094
1095	/* disable memory mapped ports / io ports */
1096	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1097	if (hc->pci_dev)
1098		pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1099	if (hc->pci_membase)
1100		iounmap(hc->pci_membase);
1101	if (hc->plx_membase)
1102		iounmap(hc->plx_membase);
1103	if (hc->pci_iobase)
1104		release_region(hc->pci_iobase, 8);
1105	if (hc->xhfc_membase)
1106		iounmap((void *)hc->xhfc_membase);
1107
1108	if (hc->pci_dev) {
1109		pci_disable_device(hc->pci_dev);
1110		pci_set_drvdata(hc->pci_dev, NULL);
1111	}
1112	if (debug & DEBUG_HFCMULTI_INIT)
1113		printk(KERN_DEBUG "%s: done\n", __func__);
1114}
1115
1116/*
1117 * function called to reset the HFC chip. A complete software reset of chip
1118 * and fifos is done. All configuration of the chip is done.
1119 */
1120
1121static int
1122init_chip(struct hfc_multi *hc)
1123{
1124	u_long			flags, val, val2 = 0, rev;
1125	int			i, err = 0;
1126	u_char			r_conf_en, rval;
1127	void __iomem		*plx_acc_32;
1128	u_int			pv;
1129	u_long			plx_flags, hfc_flags;
1130	int			plx_count;
1131	struct hfc_multi	*pos, *next, *plx_last_hc;
1132
1133	spin_lock_irqsave(&hc->lock, flags);
1134	/* reset all registers */
1135	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1136
1137	/* revision check */
1138	if (debug & DEBUG_HFCMULTI_INIT)
1139		printk(KERN_DEBUG "%s: entered\n", __func__);
1140	val = HFC_inb(hc, R_CHIP_ID);
1141	if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1142	    (val >> 1) != 0x31) {
1143		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1144		err = -EIO;
1145		goto out;
1146	}
1147	rev = HFC_inb(hc, R_CHIP_RV);
1148	printk(KERN_INFO
1149	       "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1150	       val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1151	       " (old FIFO handling)" : "");
1152	if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1153		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1154		printk(KERN_WARNING
1155		       "HFC_multi: NOTE: Your chip is revision 0, "
1156		       "ask Cologne Chip for update. Newer chips "
1157		       "have a better FIFO handling. Old chips "
1158		       "still work but may have slightly lower "
1159		       "HDLC transmit performance.\n");
1160	}
1161	if (rev > 1) {
1162		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1163		       "consider chip revision = %ld. The chip / "
1164		       "bridge may not work.\n", rev);
1165	}
1166
1167	/* set s-ram size */
1168	hc->Flen = 0x10;
1169	hc->Zmin = 0x80;
1170	hc->Zlen = 384;
1171	hc->DTMFbase = 0x1000;
1172	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1173		if (debug & DEBUG_HFCMULTI_INIT)
1174			printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1175			       __func__);
1176		hc->hw.r_ctrl |= V_EXT_RAM;
1177		hc->hw.r_ram_sz = 1;
1178		hc->Flen = 0x20;
1179		hc->Zmin = 0xc0;
1180		hc->Zlen = 1856;
1181		hc->DTMFbase = 0x2000;
1182	}
1183	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1184		if (debug & DEBUG_HFCMULTI_INIT)
1185			printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1186			       __func__);
1187		hc->hw.r_ctrl |= V_EXT_RAM;
1188		hc->hw.r_ram_sz = 2;
1189		hc->Flen = 0x20;
1190		hc->Zmin = 0xc0;
1191		hc->Zlen = 8000;
1192		hc->DTMFbase = 0x2000;
1193	}
1194	if (hc->ctype == HFC_TYPE_XHFC) {
1195		hc->Flen = 0x8;
1196		hc->Zmin = 0x0;
1197		hc->Zlen = 64;
1198		hc->DTMFbase = 0x0;
1199	}
1200	hc->max_trans = poll << 1;
1201	if (hc->max_trans > hc->Zlen)
1202		hc->max_trans = hc->Zlen;
1203
1204	/* Speech Design PLX bridge */
1205	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1206		if (debug & DEBUG_HFCMULTI_PLXSD)
1207			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1208			       __func__, hc->id + 1);
1209		spin_lock_irqsave(&plx_lock, plx_flags);
1210		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1211		writel(PLX_GPIOC_INIT, plx_acc_32);
1212		pv = readl(plx_acc_32);
1213		/* The first and the last cards are terminating the PCM bus */
1214		pv |= PLX_TERM_ON; /* hc is currently the last */
1215		/* Disconnect the PCM */
1216		pv |= PLX_SLAVE_EN_N;
1217		pv &= ~PLX_MASTER_EN;
1218		pv &= ~PLX_SYNC_O_EN;
1219		/* Put the DSP in Reset */
1220		pv &= ~PLX_DSP_RES_N;
1221		writel(pv, plx_acc_32);
1222		spin_unlock_irqrestore(&plx_lock, plx_flags);
1223		if (debug & DEBUG_HFCMULTI_INIT)
1224			printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1225			       __func__, pv);
1226		/*
1227		 * If we are the 3rd PLXSD card or higher, we must turn
1228		 * termination of last PLXSD card off.
1229		 */
1230		spin_lock_irqsave(&HFClock, hfc_flags);
1231		plx_count = 0;
1232		plx_last_hc = NULL;
1233		list_for_each_entry_safe(pos, next, &HFClist, list) {
1234			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1235				plx_count++;
1236				if (pos != hc)
1237					plx_last_hc = pos;
1238			}
1239		}
1240		if (plx_count >= 3) {
1241			if (debug & DEBUG_HFCMULTI_PLXSD)
1242				printk(KERN_DEBUG "%s: card %d is between, so "
1243				       "we disable termination\n",
1244				       __func__, plx_last_hc->id + 1);
1245			spin_lock_irqsave(&plx_lock, plx_flags);
1246			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1247			pv = readl(plx_acc_32);
1248			pv &= ~PLX_TERM_ON;
1249			writel(pv, plx_acc_32);
1250			spin_unlock_irqrestore(&plx_lock, plx_flags);
1251			if (debug & DEBUG_HFCMULTI_INIT)
1252				printk(KERN_DEBUG
1253				       "%s: term off: PLX_GPIO=%x\n",
1254				       __func__, pv);
1255		}
1256		spin_unlock_irqrestore(&HFClock, hfc_flags);
1257		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1258	}
1259
1260	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1261		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1262
1263	/* we only want the real Z2 read-pointer for revision > 0 */
1264	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1265		hc->hw.r_ram_sz |= V_FZ_MD;
1266
1267	/* select pcm mode */
1268	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1269		if (debug & DEBUG_HFCMULTI_INIT)
1270			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1271			       __func__);
1272	} else
1273		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1274			if (debug & DEBUG_HFCMULTI_INIT)
1275				printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1276				       __func__);
1277			hc->hw.r_pcm_md0 |= V_PCM_MD;
1278		} else {
1279			if (debug & DEBUG_HFCMULTI_INIT)
1280				printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1281				       __func__);
1282		}
1283
1284	/* soft reset */
1285	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1286	if (hc->ctype == HFC_TYPE_XHFC)
1287		HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1288			 0x11 /* 16 Bytes TX/RX */);
1289	else
1290		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1291	HFC_outb(hc, R_FIFO_MD, 0);
1292	if (hc->ctype == HFC_TYPE_XHFC)
1293		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1294	else
1295		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1296			| V_RLD_EPR;
1297	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1298	udelay(100);
1299	hc->hw.r_cirm = 0;
1300	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1301	udelay(100);
1302	if (hc->ctype != HFC_TYPE_XHFC)
1303		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1304
1305	/* Speech Design PLX bridge pcm and sync mode */
1306	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1307		spin_lock_irqsave(&plx_lock, plx_flags);
1308		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1309		pv = readl(plx_acc_32);
1310		/* Connect PCM */
1311		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1312			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1313			pv |= PLX_SYNC_O_EN;
1314			if (debug & DEBUG_HFCMULTI_INIT)
1315				printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1316				       __func__, pv);
1317		} else {
1318			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1319			pv &= ~PLX_SYNC_O_EN;
1320			if (debug & DEBUG_HFCMULTI_INIT)
1321				printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1322				       __func__, pv);
1323		}
1324		writel(pv, plx_acc_32);
1325		spin_unlock_irqrestore(&plx_lock, plx_flags);
1326	}
1327
1328	/* PCM setup */
1329	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1330	if (hc->slots == 32)
1331		HFC_outb(hc, R_PCM_MD1, 0x00);
1332	if (hc->slots == 64)
1333		HFC_outb(hc, R_PCM_MD1, 0x10);
1334	if (hc->slots == 128)
1335		HFC_outb(hc, R_PCM_MD1, 0x20);
1336	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1337	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1338		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1339	else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1340		HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1341	else
1342		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1343	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1344	for (i = 0; i < 256; i++) {
1345		HFC_outb_nodebug(hc, R_SLOT, i);
1346		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1347		if (hc->ctype != HFC_TYPE_XHFC)
1348			HFC_outb_nodebug(hc, A_CONF, 0);
1349		hc->slot_owner[i] = -1;
1350	}
1351
1352	/* set clock speed */
1353	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1354		if (debug & DEBUG_HFCMULTI_INIT)
1355			printk(KERN_DEBUG
1356			       "%s: setting double clock\n", __func__);
1357		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1358	}
1359
1360	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1361		HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1362
1363	/* B410P GPIO */
1364	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1365		printk(KERN_NOTICE "Setting GPIOs\n");
1366		HFC_outb(hc, R_GPIO_SEL, 0x30);
1367		HFC_outb(hc, R_GPIO_EN1, 0x3);
1368		udelay(1000);
1369		printk(KERN_NOTICE "calling vpm_init\n");
1370		vpm_init(hc);
1371	}
1372
1373	/* check if R_F0_CNT counts (8 kHz frame count) */
1374	val = HFC_inb(hc, R_F0_CNTL);
1375	val += HFC_inb(hc, R_F0_CNTH) << 8;
1376	if (debug & DEBUG_HFCMULTI_INIT)
1377		printk(KERN_DEBUG
1378		       "HFC_multi F0_CNT %ld after reset\n", val);
1379	spin_unlock_irqrestore(&hc->lock, flags);
1380	set_current_state(TASK_UNINTERRUPTIBLE);
1381	schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1382	spin_lock_irqsave(&hc->lock, flags);
1383	val2 = HFC_inb(hc, R_F0_CNTL);
1384	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1385	if (debug & DEBUG_HFCMULTI_INIT)
1386		printk(KERN_DEBUG
1387		       "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1388		       val2);
1389	if (val2 >= val + 8) { /* 1 ms */
1390		/* it counts, so we keep the pcm mode */
1391		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1392			printk(KERN_INFO "controller is PCM bus MASTER\n");
1393		else
1394			if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1395				printk(KERN_INFO "controller is PCM bus SLAVE\n");
1396			else {
1397				test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1398				printk(KERN_INFO "controller is PCM bus SLAVE "
1399				       "(auto detected)\n");
1400			}
1401	} else {
1402		/* does not count */
1403		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1404		controller_fail:
1405			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1406			       "pulse. Seems that controller fails.\n");
1407			err = -EIO;
1408			goto out;
1409		}
1410		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1411			printk(KERN_INFO "controller is PCM bus SLAVE "
1412			       "(ignoring missing PCM clock)\n");
1413		} else {
1414			/* only one pcm master */
1415			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1416			    && plxsd_master) {
1417				printk(KERN_ERR "HFC_multi ERROR, no clock "
1418				       "on another Speech Design card found. "
1419				       "Please be sure to connect PCM cable.\n");
1420				err = -EIO;
1421				goto out;
1422			}
1423			/* retry with master clock */
1424			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1425				spin_lock_irqsave(&plx_lock, plx_flags);
1426				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1427				pv = readl(plx_acc_32);
1428				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1429				pv |= PLX_SYNC_O_EN;
1430				writel(pv, plx_acc_32);
1431				spin_unlock_irqrestore(&plx_lock, plx_flags);
1432				if (debug & DEBUG_HFCMULTI_INIT)
1433					printk(KERN_DEBUG "%s: master: "
1434					       "PLX_GPIO=%x\n", __func__, pv);
1435			}
1436			hc->hw.r_pcm_md0 |= V_PCM_MD;
1437			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1438			spin_unlock_irqrestore(&hc->lock, flags);
1439			set_current_state(TASK_UNINTERRUPTIBLE);
1440			schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1441			spin_lock_irqsave(&hc->lock, flags);
1442			val2 = HFC_inb(hc, R_F0_CNTL);
1443			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1444			if (debug & DEBUG_HFCMULTI_INIT)
1445				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1446				       "10 ms (2nd try)\n", val2);
1447			if (val2 >= val + 8) { /* 1 ms */
1448				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1449						 &hc->chip);
1450				printk(KERN_INFO "controller is PCM bus MASTER "
1451				       "(auto detected)\n");
1452			} else
1453				goto controller_fail;
1454		}
1455	}
1456
1457	/* Release the DSP Reset */
1458	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1459		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1460			plxsd_master = 1;
1461		spin_lock_irqsave(&plx_lock, plx_flags);
1462		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1463		pv = readl(plx_acc_32);
1464		pv |=  PLX_DSP_RES_N;
1465		writel(pv, plx_acc_32);
1466		spin_unlock_irqrestore(&plx_lock, plx_flags);
1467		if (debug & DEBUG_HFCMULTI_INIT)
1468			printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1469			       __func__, pv);
1470	}
1471
1472	/* pcm id */
1473	if (hc->pcm)
1474		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1475		       hc->pcm);
1476	else {
1477		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1478		    || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1479			PCM_cnt++; /* SD has proprietary bridging */
1480		}
1481		hc->pcm = PCM_cnt;
1482		printk(KERN_INFO "controller has PCM BUS ID %d "
1483		       "(auto selected)\n", hc->pcm);
1484	}
1485
1486	/* set up timer */
1487	HFC_outb(hc, R_TI_WD, poll_timer);
1488	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1489
1490	/* set E1 state machine IRQ */
1491	if (hc->ctype == HFC_TYPE_E1)
1492		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1493
1494	/* set DTMF detection */
1495	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1496		if (debug & DEBUG_HFCMULTI_INIT)
1497			printk(KERN_DEBUG "%s: enabling DTMF detection "
1498			       "for all B-channel\n", __func__);
1499		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1500		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1501			hc->hw.r_dtmf |= V_ULAW_SEL;
1502		HFC_outb(hc, R_DTMF_N, 102 - 1);
1503		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1504	}
1505
1506	/* conference engine */
1507	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1508		r_conf_en = V_CONF_EN | V_ULAW;
1509	else
1510		r_conf_en = V_CONF_EN;
1511	if (hc->ctype != HFC_TYPE_XHFC)
1512		HFC_outb(hc, R_CONF_EN, r_conf_en);
1513
1514	/* setting leds */
1515	switch (hc->leds) {
1516	case 1: /* HFC-E1 OEM */
1517		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1518			HFC_outb(hc, R_GPIO_SEL, 0x32);
1519		else
1520			HFC_outb(hc, R_GPIO_SEL, 0x30);
1521
1522		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1523		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1524
1525		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1526		break;
1527
1528	case 2: /* HFC-4S OEM */
1529	case 3:
1530		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1531		HFC_outb(hc, R_GPIO_EN1, 0xff);
1532		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1533		break;
1534	}
1535
1536	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1537		hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1538		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1539	}
1540
1541	/* set master clock */
1542	if (hc->masterclk >= 0) {
1543		if (debug & DEBUG_HFCMULTI_INIT)
1544			printk(KERN_DEBUG "%s: setting ST master clock "
1545			       "to port %d (0..%d)\n",
1546			       __func__, hc->masterclk, hc->ports - 1);
1547		hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1548		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1549	}
1550
1551
1552
1553	/* setting misc irq */
1554	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1555	if (debug & DEBUG_HFCMULTI_INIT)
1556		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1557		       hc->hw.r_irqmsk_misc);
1558
1559	/* RAM access test */
1560	HFC_outb(hc, R_RAM_ADDR0, 0);
1561	HFC_outb(hc, R_RAM_ADDR1, 0);
1562	HFC_outb(hc, R_RAM_ADDR2, 0);
1563	for (i = 0; i < 256; i++) {
1564		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1565		HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1566	}
1567	for (i = 0; i < 256; i++) {
1568		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1569		HFC_inb_nodebug(hc, R_RAM_DATA);
1570		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1571		if (rval != ((i * 3) & 0xff)) {
1572			printk(KERN_DEBUG
1573			       "addr:%x val:%x should:%x\n", i, rval,
1574			       (i * 3) & 0xff);
1575			err++;
1576		}
1577	}
1578	if (err) {
1579		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1580		err = -EIO;
1581		goto out;
1582	}
1583
1584	if (debug & DEBUG_HFCMULTI_INIT)
1585		printk(KERN_DEBUG "%s: done\n", __func__);
1586out:
1587	spin_unlock_irqrestore(&hc->lock, flags);
1588	return err;
1589}
1590
1591
1592/*
1593 * control the watchdog
1594 */
1595static void
1596hfcmulti_watchdog(struct hfc_multi *hc)
1597{
1598	hc->wdcount++;
1599
1600	if (hc->wdcount > 10) {
1601		hc->wdcount = 0;
1602		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1603			V_GPIO_OUT3 : V_GPIO_OUT2;
1604
1605		/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1606		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1607		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1608	}
1609}
1610
1611
1612
1613/*
1614 * output leds
1615 */
1616static void
1617hfcmulti_leds(struct hfc_multi *hc)
1618{
1619	unsigned long lled;
1620	unsigned long leddw;
1621	int i, state, active, leds;
1622	struct dchannel *dch;
1623	int led[4];
1624
1625	switch (hc->leds) {
1626	case 1: /* HFC-E1 OEM */
1627		/* 2 red steady:       LOS
1628		 * 1 red steady:       L1 not active
1629		 * 2 green steady:     L1 active
1630		 * 1st green flashing: activity on TX
1631		 * 2nd green flashing: activity on RX
1632		 */
1633		led[0] = 0;
1634		led[1] = 0;
1635		led[2] = 0;
1636		led[3] = 0;
1637		dch = hc->chan[hc->dnum[0]].dch;
1638		if (dch) {
1639			if (hc->chan[hc->dnum[0]].los)
1640				led[1] = 1;
1641			if (hc->e1_state != 1) {
1642				led[0] = 1;
1643				hc->flash[2] = 0;
1644				hc->flash[3] = 0;
1645			} else {
1646				led[2] = 1;
1647				led[3] = 1;
1648				if (!hc->flash[2] && hc->activity_tx)
1649					hc->flash[2] = poll;
1650				if (!hc->flash[3] && hc->activity_rx)
1651					hc->flash[3] = poll;
1652				if (hc->flash[2] && hc->flash[2] < 1024)
1653					led[2] = 0;
1654				if (hc->flash[3] && hc->flash[3] < 1024)
1655					led[3] = 0;
1656				if (hc->flash[2] >= 2048)
1657					hc->flash[2] = 0;
1658				if (hc->flash[3] >= 2048)
1659					hc->flash[3] = 0;
1660				if (hc->flash[2])
1661					hc->flash[2] += poll;
1662				if (hc->flash[3])
1663					hc->flash[3] += poll;
1664			}
1665		}
1666		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1667		/* leds are inverted */
1668		if (leds != (int)hc->ledstate) {
1669			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1670			hc->ledstate = leds;
1671		}
1672		break;
1673
1674	case 2: /* HFC-4S OEM */
1675		/* red steady:     PH_DEACTIVATE
1676		 * green steady:   PH_ACTIVATE
1677		 * green flashing: activity on TX
1678		 */
1679		for (i = 0; i < 4; i++) {
1680			state = 0;
1681			active = -1;
1682			dch = hc->chan[(i << 2) | 2].dch;
1683			if (dch) {
1684				state = dch->state;
1685				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1686					active = 3;
1687				else
1688					active = 7;
1689			}
1690			if (state) {
1691				if (state == active) {
1692					led[i] = 1; /* led green */
1693					hc->activity_tx |= hc->activity_rx;
1694					if (!hc->flash[i] &&
1695						(hc->activity_tx & (1 << i)))
1696							hc->flash[i] = poll;
1697					if (hc->flash[i] && hc->flash[i] < 1024)
1698						led[i] = 0; /* led off */
1699					if (hc->flash[i] >= 2048)
1700						hc->flash[i] = 0;
1701					if (hc->flash[i])
1702						hc->flash[i] += poll;
1703				} else {
1704					led[i] = 2; /* led red */
1705					hc->flash[i] = 0;
1706				}
1707			} else
1708				led[i] = 0; /* led off */
1709		}
1710		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1711			leds = 0;
1712			for (i = 0; i < 4; i++) {
1713				if (led[i] == 1) {
1714					/*green*/
1715					leds |= (0x2 << (i * 2));
1716				} else if (led[i] == 2) {
1717					/*red*/
1718					leds |= (0x1 << (i * 2));
1719				}
1720			}
1721			if (leds != (int)hc->ledstate) {
1722				vpm_out(hc, 0, 0x1a8 + 3, leds);
1723				hc->ledstate = leds;
1724			}
1725		} else {
1726			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1727				((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1728				((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1729				((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1730			if (leds != (int)hc->ledstate) {
1731				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1732				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1733				hc->ledstate = leds;
1734			}
1735		}
1736		break;
1737
1738	case 3: /* HFC 1S/2S Beronet */
1739		/* red steady:     PH_DEACTIVATE
1740		 * green steady:   PH_ACTIVATE
1741		 * green flashing: activity on TX
1742		 */
1743		for (i = 0; i < 2; i++) {
1744			state = 0;
1745			active = -1;
1746			dch = hc->chan[(i << 2) | 2].dch;
1747			if (dch) {
1748				state = dch->state;
1749				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1750					active = 3;
1751				else
1752					active = 7;
1753			}
1754			if (state) {
1755				if (state == active) {
1756					led[i] = 1; /* led green */
1757					hc->activity_tx |= hc->activity_rx;
1758					if (!hc->flash[i] &&
1759						(hc->activity_tx & (1 << i)))
1760							hc->flash[i] = poll;
1761					if (hc->flash[i] < 1024)
1762						led[i] = 0; /* led off */
1763					if (hc->flash[i] >= 2048)
1764						hc->flash[i] = 0;
1765					if (hc->flash[i])
1766						hc->flash[i] += poll;
1767				} else {
1768					led[i] = 2; /* led red */
1769					hc->flash[i] = 0;
1770				}
1771			} else
1772				led[i] = 0; /* led off */
1773		}
1774		leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1775			| ((led[1]&1) << 3);
1776		if (leds != (int)hc->ledstate) {
1777			HFC_outb_nodebug(hc, R_GPIO_EN1,
1778					 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1779			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1780					 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1781			hc->ledstate = leds;
1782		}
1783		break;
1784	case 8: /* HFC 8S+ Beronet */
1785		/* off:      PH_DEACTIVATE
1786		 * steady:   PH_ACTIVATE
1787		 * flashing: activity on TX
1788		 */
1789		lled = 0xff; /* leds off */
1790		for (i = 0; i < 8; i++) {
1791			state = 0;
1792			active = -1;
1793			dch = hc->chan[(i << 2) | 2].dch;
1794			if (dch) {
1795				state = dch->state;
1796				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1797					active = 3;
1798				else
1799					active = 7;
1800			}
1801			if (state) {
1802				if (state == active) {
1803					lled &= ~(1 << i); /* led on */
1804					hc->activity_tx |= hc->activity_rx;
1805					if (!hc->flash[i] &&
1806						(hc->activity_tx & (1 << i)))
1807							hc->flash[i] = poll;
1808					if (hc->flash[i] < 1024)
1809						lled |= 1 << i; /* led off */
1810					if (hc->flash[i] >= 2048)
1811						hc->flash[i] = 0;
1812					if (hc->flash[i])
1813						hc->flash[i] += poll;
1814				} else
1815					hc->flash[i] = 0;
1816			}
1817		}
1818		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1819		if (leddw != hc->ledstate) {
1820			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1821			   HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1822			/* was _io before */
1823			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1824			outw(0x4000, hc->pci_iobase + 4);
1825			outl(leddw, hc->pci_iobase);
1826			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1827			hc->ledstate = leddw;
1828		}
1829		break;
1830	}
1831	hc->activity_tx = 0;
1832	hc->activity_rx = 0;
1833}
1834/*
1835 * read dtmf coefficients
1836 */
1837
1838static void
1839hfcmulti_dtmf(struct hfc_multi *hc)
1840{
1841	s32		*coeff;
1842	u_int		mantissa;
1843	int		co, ch;
1844	struct bchannel	*bch = NULL;
1845	u8		exponent;
1846	int		dtmf = 0;
1847	int		addr;
1848	u16		w_float;
1849	struct sk_buff	*skb;
1850	struct mISDNhead *hh;
1851
1852	if (debug & DEBUG_HFCMULTI_DTMF)
1853		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1854	for (ch = 0; ch <= 31; ch++) {
1855		/* only process enabled B-channels */
1856		bch = hc->chan[ch].bch;
1857		if (!bch)
1858			continue;
1859		if (!hc->created[hc->chan[ch].port])
1860			continue;
1861		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1862			continue;
1863		if (debug & DEBUG_HFCMULTI_DTMF)
1864			printk(KERN_DEBUG "%s: dtmf channel %d:",
1865			       __func__, ch);
1866		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1867		dtmf = 1;
1868		for (co = 0; co < 8; co++) {
1869			/* read W(n-1) coefficient */
1870			addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1871			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1872			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1873			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1874					 | V_ADDR_INC);
1875			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1876			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1877			if (debug & DEBUG_HFCMULTI_DTMF)
1878				printk(" %04x", w_float);
1879
1880			/* decode float (see chip doc) */
1881			mantissa = w_float & 0x0fff;
1882			if (w_float & 0x8000)
1883				mantissa |= 0xfffff000;
1884			exponent = (w_float >> 12) & 0x7;
1885			if (exponent) {
1886				mantissa ^= 0x1000;
1887				mantissa <<= (exponent - 1);
1888			}
1889
1890			/* store coefficient */
1891			coeff[co << 1] = mantissa;
1892
1893			/* read W(n) coefficient */
1894			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1895			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1896			if (debug & DEBUG_HFCMULTI_DTMF)
1897				printk(" %04x", w_float);
1898
1899			/* decode float (see chip doc) */
1900			mantissa = w_float & 0x0fff;
1901			if (w_float & 0x8000)
1902				mantissa |= 0xfffff000;
1903			exponent = (w_float >> 12) & 0x7;
1904			if (exponent) {
1905				mantissa ^= 0x1000;
1906				mantissa <<= (exponent - 1);
1907			}
1908
1909			/* store coefficient */
1910			coeff[(co << 1) | 1] = mantissa;
1911		}
1912		if (debug & DEBUG_HFCMULTI_DTMF)
1913			printk(" DTMF ready %08x %08x %08x %08x "
1914			       "%08x %08x %08x %08x\n",
1915			       coeff[0], coeff[1], coeff[2], coeff[3],
1916			       coeff[4], coeff[5], coeff[6], coeff[7]);
1917		hc->chan[ch].coeff_count++;
1918		if (hc->chan[ch].coeff_count == 8) {
1919			hc->chan[ch].coeff_count = 0;
1920			skb = mI_alloc_skb(512, GFP_ATOMIC);
1921			if (!skb) {
1922				printk(KERN_DEBUG "%s: No memory for skb\n",
1923				       __func__);
1924				continue;
1925			}
1926			hh = mISDN_HEAD_P(skb);
1927			hh->prim = PH_CONTROL_IND;
1928			hh->id = DTMF_HFC_COEF;
1929			memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1930			recv_Bchannel_skb(bch, skb);
1931		}
1932	}
1933
1934	/* restart DTMF processing */
1935	hc->dtmf = dtmf;
1936	if (dtmf)
1937		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1938}
1939
1940
1941/*
1942 * fill fifo as much as possible
1943 */
1944
1945static void
1946hfcmulti_tx(struct hfc_multi *hc, int ch)
1947{
1948	int i, ii, temp, len = 0;
1949	int Zspace, z1, z2; /* must be int for calculation */
1950	int Fspace, f1, f2;
1951	u_char *d;
1952	int *txpending, slot_tx;
1953	struct	bchannel *bch;
1954	struct  dchannel *dch;
1955	struct  sk_buff **sp = NULL;
1956	int *idxp;
1957
1958	bch = hc->chan[ch].bch;
1959	dch = hc->chan[ch].dch;
1960	if ((!dch) && (!bch))
1961		return;
1962
1963	txpending = &hc->chan[ch].txpending;
1964	slot_tx = hc->chan[ch].slot_tx;
1965	if (dch) {
1966		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1967			return;
1968		sp = &dch->tx_skb;
1969		idxp = &dch->tx_idx;
1970	} else {
1971		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1972			return;
1973		sp = &bch->tx_skb;
1974		idxp = &bch->tx_idx;
1975	}
1976	if (*sp)
1977		len = (*sp)->len;
1978
1979	if ((!len) && *txpending != 1)
1980		return; /* no data */
1981
1982	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1983	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1984	    (hc->chan[ch].slot_rx < 0) &&
1985	    (hc->chan[ch].slot_tx < 0))
1986		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1987	else
1988		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1989	HFC_wait_nodebug(hc);
1990
1991	if (*txpending == 2) {
1992		/* reset fifo */
1993		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1994		HFC_wait_nodebug(hc);
1995		HFC_outb(hc, A_SUBCH_CFG, 0);
1996		*txpending = 1;
1997	}
1998next_frame:
1999	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2000		f1 = HFC_inb_nodebug(hc, A_F1);
2001		f2 = HFC_inb_nodebug(hc, A_F2);
2002		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
2003			if (debug & DEBUG_HFCMULTI_FIFO)
2004				printk(KERN_DEBUG
2005				       "%s(card %d): reread f2 because %d!=%d\n",
2006				       __func__, hc->id + 1, temp, f2);
2007			f2 = temp; /* repeat until F2 is equal */
2008		}
2009		Fspace = f2 - f1 - 1;
2010		if (Fspace < 0)
2011			Fspace += hc->Flen;
2012		/*
2013		 * Old FIFO handling doesn't give us the current Z2 read
2014		 * pointer, so we cannot send the next frame before the fifo
2015		 * is empty. It makes no difference except for a slightly
2016		 * lower performance.
2017		 */
2018		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
2019			if (f1 != f2)
2020				Fspace = 0;
2021			else
2022				Fspace = 1;
2023		}
2024		/* one frame only for ST D-channels, to allow resending */
2025		if (hc->ctype != HFC_TYPE_E1 && dch) {
2026			if (f1 != f2)
2027				Fspace = 0;
2028		}
2029		/* F-counter full condition */
2030		if (Fspace == 0)
2031			return;
2032	}
2033	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2034	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2035	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2036		if (debug & DEBUG_HFCMULTI_FIFO)
2037			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2038			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2039		z2 = temp; /* repeat unti Z2 is equal */
2040	}
2041	hc->chan[ch].Zfill = z1 - z2;
2042	if (hc->chan[ch].Zfill < 0)
2043		hc->chan[ch].Zfill += hc->Zlen;
2044	Zspace = z2 - z1;
2045	if (Zspace <= 0)
2046		Zspace += hc->Zlen;
2047	Zspace -= 4; /* keep not too full, so pointers will not overrun */
2048	/* fill transparent data only to maxinum transparent load (minus 4) */
2049	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2050		Zspace = Zspace - hc->Zlen + hc->max_trans;
2051	if (Zspace <= 0) /* no space of 4 bytes */
2052		return;
2053
2054	/* if no data */
2055	if (!len) {
2056		if (z1 == z2) { /* empty */
2057			/* if done with FIFO audio data during PCM connection */
2058			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2059			    *txpending && slot_tx >= 0) {
2060				if (debug & DEBUG_HFCMULTI_MODE)
2061					printk(KERN_DEBUG
2062					       "%s: reconnecting PCM due to no "
2063					       "more FIFO data: channel %d "
2064					       "slot_tx %d\n",
2065					       __func__, ch, slot_tx);
2066				/* connect slot */
2067				if (hc->ctype == HFC_TYPE_XHFC)
2068					HFC_outb(hc, A_CON_HDLC, 0xc0
2069						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2070				/* Enable FIFO, no interrupt */
2071				else
2072					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2073						 V_HDLC_TRP | V_IFF);
2074				HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2075				HFC_wait_nodebug(hc);
2076				if (hc->ctype == HFC_TYPE_XHFC)
2077					HFC_outb(hc, A_CON_HDLC, 0xc0
2078						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2079				/* Enable FIFO, no interrupt */
2080				else
2081					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2082						 V_HDLC_TRP | V_IFF);
2083				HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2084				HFC_wait_nodebug(hc);
2085			}
2086			*txpending = 0;
2087		}
2088		return; /* no data */
2089	}
2090
2091	/* "fill fifo if empty" feature */
2092	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2093	    && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2094		if (debug & DEBUG_HFCMULTI_FILL)
2095			printk(KERN_DEBUG "%s: buffer empty, so we have "
2096			       "underrun\n", __func__);
2097		/* fill buffer, to prevent future underrun */
2098		hc->write_fifo(hc, hc->silence_data, poll >> 1);
2099		Zspace -= (poll >> 1);
2100	}
2101
2102	/* if audio data and connected slot */
2103	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2104	    && slot_tx >= 0) {
2105		if (debug & DEBUG_HFCMULTI_MODE)
2106			printk(KERN_DEBUG "%s: disconnecting PCM due to "
2107			       "FIFO data: channel %d slot_tx %d\n",
2108			       __func__, ch, slot_tx);
2109		/* disconnect slot */
2110		if (hc->ctype == HFC_TYPE_XHFC)
2111			HFC_outb(hc, A_CON_HDLC, 0x80
2112				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2113		/* Enable FIFO, no interrupt */
2114		else
2115			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2116				 V_HDLC_TRP | V_IFF);
2117		HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2118		HFC_wait_nodebug(hc);
2119		if (hc->ctype == HFC_TYPE_XHFC)
2120			HFC_outb(hc, A_CON_HDLC, 0x80
2121				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2122		/* Enable FIFO, no interrupt */
2123		else
2124			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2125				 V_HDLC_TRP | V_IFF);
2126		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2127		HFC_wait_nodebug(hc);
2128	}
2129	*txpending = 1;
2130
2131	/* show activity */
2132	if (dch)
2133		hc->activity_tx |= 1 << hc->chan[ch].port;
2134
2135	/* fill fifo to what we have left */
2136	ii = len;
2137	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2138		temp = 1;
2139	else
2140		temp = 0;
2141	i = *idxp;
2142	d = (*sp)->data + i;
2143	if (ii - i > Zspace)
2144		ii = Zspace + i;
2145	if (debug & DEBUG_HFCMULTI_FIFO)
2146		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2147		       "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2148		       __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2149		       temp ? "HDLC" : "TRANS");
2150
2151	/* Have to prep the audio data */
2152	hc->write_fifo(hc, d, ii - i);
2153	hc->chan[ch].Zfill += ii - i;
2154	*idxp = ii;
2155
2156	/* if not all data has been written */
2157	if (ii != len) {
2158		/* NOTE: fifo is started by the calling function */
2159		return;
2160	}
2161
2162	/* if all data has been written, terminate frame */
2163	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2164		/* increment f-counter */
2165		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2166		HFC_wait_nodebug(hc);
2167	}
2168
2169	dev_kfree_skb(*sp);
2170	/* check for next frame */
2171	if (bch && get_next_bframe(bch)) {
2172		len = (*sp)->len;
2173		goto next_frame;
2174	}
2175	if (dch && get_next_dframe(dch)) {
2176		len = (*sp)->len;
2177		goto next_frame;
2178	}
2179
2180	/*
2181	 * now we have no more data, so in case of transparent,
2182	 * we set the last byte in fifo to 'silence' in case we will get
2183	 * no more data at all. this prevents sending an undefined value.
2184	 */
2185	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2186		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2187}
2188
2189
2190/* NOTE: only called if E1 card is in active state */
2191static void
2192hfcmulti_rx(struct hfc_multi *hc, int ch)
2193{
2194	int temp;
2195	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2196	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2197	int again = 0;
2198	struct	bchannel *bch;
2199	struct  dchannel *dch = NULL;
2200	struct sk_buff	*skb, **sp = NULL;
2201	int	maxlen;
2202
2203	bch = hc->chan[ch].bch;
2204	if (bch) {
2205		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2206			return;
2207	} else if (hc->chan[ch].dch) {
2208		dch = hc->chan[ch].dch;
2209		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2210			return;
2211	} else {
2212		return;
2213	}
2214next_frame:
2215	/* on first AND before getting next valid frame, R_FIFO must be written
2216	   to. */
2217	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2218	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2219	    (hc->chan[ch].slot_rx < 0) &&
2220	    (hc->chan[ch].slot_tx < 0))
2221		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2222	else
2223		HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2224	HFC_wait_nodebug(hc);
2225
2226	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2227	if (hc->chan[ch].rx_off) {
2228		if (bch)
2229			bch->dropcnt += poll; /* not exact but fair enough */
2230		return;
2231	}
2232
2233	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2234		f1 = HFC_inb_nodebug(hc, A_F1);
2235		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2236			if (debug & DEBUG_HFCMULTI_FIFO)
2237				printk(KERN_DEBUG
2238				       "%s(card %d): reread f1 because %d!=%d\n",
2239				       __func__, hc->id + 1, temp, f1);
2240			f1 = temp; /* repeat until F1 is equal */
2241		}
2242		f2 = HFC_inb_nodebug(hc, A_F2);
2243	}
2244	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2245	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2246		if (debug & DEBUG_HFCMULTI_FIFO)
2247			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2248			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2249		z1 = temp; /* repeat until Z1 is equal */
2250	}
2251	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2252	Zsize = z1 - z2;
2253	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2254		/* complete hdlc frame */
2255		Zsize++;
2256	if (Zsize < 0)
2257		Zsize += hc->Zlen;
2258	/* if buffer is empty */
2259	if (Zsize <= 0)
2260		return;
2261
2262	if (bch) {
2263		maxlen = bchannel_get_rxbuf(bch, Zsize);
2264		if (maxlen < 0) {
2265			pr_warning("card%d.B%d: No bufferspace for %d bytes\n",
2266				   hc->id + 1, bch->nr, Zsize);
2267			return;
2268		}
2269		sp = &bch->rx_skb;
2270		maxlen = bch->maxlen;
2271	} else { /* Dchannel */
2272		sp = &dch->rx_skb;
2273		maxlen = dch->maxlen + 3;
2274		if (*sp == NULL) {
2275			*sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2276			if (*sp == NULL) {
2277				pr_warning("card%d: No mem for dch rx_skb\n",
2278					   hc->id + 1);
2279				return;
2280			}
2281		}
2282	}
2283	/* show activity */
2284	if (dch)
2285		hc->activity_rx |= 1 << hc->chan[ch].port;
2286
2287	/* empty fifo with what we have */
2288	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2289		if (debug & DEBUG_HFCMULTI_FIFO)
2290			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2291			       "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2292			       "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2293			       Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2294			       f1, f2, Zsize + (*sp)->len, again);
2295		/* HDLC */
2296		if ((Zsize + (*sp)->len) > maxlen) {
2297			if (debug & DEBUG_HFCMULTI_FIFO)
2298				printk(KERN_DEBUG
2299				       "%s(card %d): hdlc-frame too large.\n",
2300				       __func__, hc->id + 1);
2301			skb_trim(*sp, 0);
2302			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2303			HFC_wait_nodebug(hc);
2304			return;
2305		}
2306
2307		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2308
2309		if (f1 != f2) {
2310			/* increment Z2,F2-counter */
2311			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2312			HFC_wait_nodebug(hc);
2313			/* check size */
2314			if ((*sp)->len < 4) {
2315				if (debug & DEBUG_HFCMULTI_FIFO)
2316					printk(KERN_DEBUG
2317					       "%s(card %d): Frame below minimum "
2318					       "size\n", __func__, hc->id + 1);
2319				skb_trim(*sp, 0);
2320				goto next_frame;
2321			}
2322			/* there is at least one complete frame, check crc */
2323			if ((*sp)->data[(*sp)->len - 1]) {
2324				if (debug & DEBUG_HFCMULTI_CRC)
2325					printk(KERN_DEBUG
2326					       "%s: CRC-error\n", __func__);
2327				skb_trim(*sp, 0);
2328				goto next_frame;
2329			}
2330			skb_trim(*sp, (*sp)->len - 3);
2331			if ((*sp)->len < MISDN_COPY_SIZE) {
2332				skb = *sp;
2333				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2334				if (*sp) {
2335					memcpy(skb_put(*sp, skb->len),
2336					       skb->data, skb->len);
2337					skb_trim(skb, 0);
2338				} else {
2339					printk(KERN_DEBUG "%s: No mem\n",
2340					       __func__);
2341					*sp = skb;
2342					skb = NULL;
2343				}
2344			} else {
2345				skb = NULL;
2346			}
2347			if (debug & DEBUG_HFCMULTI_FIFO) {
2348				printk(KERN_DEBUG "%s(card %d):",
2349				       __func__, hc->id + 1);
2350				temp = 0;
2351				while (temp < (*sp)->len)
2352					printk(" %02x", (*sp)->data[temp++]);
2353				printk("\n");
2354			}
2355			if (dch)
2356				recv_Dchannel(dch);
2357			else
2358				recv_Bchannel(bch, MISDN_ID_ANY, false);
2359			*sp = skb;
2360			again++;
2361			goto next_frame;
2362		}
2363		/* there is an incomplete frame */
2364	} else {
2365		/* transparent */
2366		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2367		if (debug & DEBUG_HFCMULTI_FIFO)
2368			printk(KERN_DEBUG
2369			       "%s(card %d): fifo(%d) reading %d bytes "
2370			       "(z1=%04x, z2=%04x) TRANS\n",
2371			       __func__, hc->id + 1, ch, Zsize, z1, z2);
2372		/* only bch is transparent */
2373		recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2374	}
2375}
2376
2377
2378/*
2379 * Interrupt handler
2380 */
2381static void
2382signal_state_up(struct dchannel *dch, int info, char *msg)
2383{
2384	struct sk_buff	*skb;
2385	int		id, data = info;
2386
2387	if (debug & DEBUG_HFCMULTI_STATE)
2388		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2389
2390	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2391
2392	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2393			       GFP_ATOMIC);
2394	if (!skb)
2395		return;
2396	recv_Dchannel_skb(dch, skb);
2397}
2398
2399static inline void
2400handle_timer_irq(struct hfc_multi *hc)
2401{
2402	int		ch, temp;
2403	struct dchannel	*dch;
2404	u_long		flags;
2405
2406	/* process queued resync jobs */
2407	if (hc->e1_resync) {
2408		/* lock, so e1_resync gets not changed */
2409		spin_lock_irqsave(&HFClock, flags);
2410		if (hc->e1_resync & 1) {
2411			if (debug & DEBUG_HFCMULTI_PLXSD)
2412				printk(KERN_DEBUG "Enable SYNC_I\n");
2413			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2414			/* disable JATT, if RX_SYNC is set */
2415			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2416				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2417		}
2418		if (hc->e1_resync & 2) {
2419			if (debug & DEBUG_HFCMULTI_PLXSD)
2420				printk(KERN_DEBUG "Enable jatt PLL\n");
2421			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2422		}
2423		if (hc->e1_resync & 4) {
2424			if (debug & DEBUG_HFCMULTI_PLXSD)
2425				printk(KERN_DEBUG
2426				       "Enable QUARTZ for HFC-E1\n");
2427			/* set jatt to quartz */
2428			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2429				 | V_JATT_OFF);
2430			/* switch to JATT, in case it is not already */
2431			HFC_outb(hc, R_SYNC_OUT, 0);
2432		}
2433		hc->e1_resync = 0;
2434		spin_unlock_irqrestore(&HFClock, flags);
2435	}
2436
2437	if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2438		for (ch = 0; ch <= 31; ch++) {
2439			if (hc->created[hc->chan[ch].port]) {
2440				hfcmulti_tx(hc, ch);
2441				/* fifo is started when switching to rx-fifo */
2442				hfcmulti_rx(hc, ch);
2443				if (hc->chan[ch].dch &&
2444				    hc->chan[ch].nt_timer > -1) {
2445					dch = hc->chan[ch].dch;
2446					if (!(--hc->chan[ch].nt_timer)) {
2447						schedule_event(dch,
2448							       FLG_PHCHANGE);
2449						if (debug &
2450						    DEBUG_HFCMULTI_STATE)
2451							printk(KERN_DEBUG
2452							       "%s: nt_timer at "
2453							       "state %x\n",
2454							       __func__,
2455							       dch->state);
2456					}
2457				}
2458			}
2459		}
2460	if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2461		dch = hc->chan[hc->dnum[0]].dch;
2462		/* LOS */
2463		temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2464		hc->chan[hc->dnum[0]].los = temp;
2465		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2466			if (!temp && hc->chan[hc->dnum[0]].los)
2467				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2468						"LOS detected");
2469			if (temp && !hc->chan[hc->dnum[0]].los)
2470				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2471						"LOS gone");
2472		}
2473		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2474			/* AIS */
2475			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2476			if (!temp && hc->chan[hc->dnum[0]].ais)
2477				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2478						"AIS detected");
2479			if (temp && !hc->chan[hc->dnum[0]].ais)
2480				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2481						"AIS gone");
2482			hc->chan[hc->dnum[0]].ais = temp;
2483		}
2484		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2485			/* SLIP */
2486			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2487			if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2488				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2489						" bit SLIP detected RX");
2490			hc->chan[hc->dnum[0]].slip_rx = temp;
2491			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2492			if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2493				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2494						" bit SLIP detected TX");
2495			hc->chan[hc->dnum[0]].slip_tx = temp;
2496		}
2497		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2498			/* RDI */
2499			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2500			if (!temp && hc->chan[hc->dnum[0]].rdi)
2501				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2502						"RDI detected");
2503			if (temp && !hc->chan[hc->dnum[0]].rdi)
2504				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2505						"RDI gone");
2506			hc->chan[hc->dnum[0]].rdi = temp;
2507		}
2508		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2509		switch (hc->chan[hc->dnum[0]].sync) {
2510		case 0:
2511			if ((temp & 0x60) == 0x60) {
2512				if (debug & DEBUG_HFCMULTI_SYNC)
2513					printk(KERN_DEBUG
2514					       "%s: (id=%d) E1 now "
2515					       "in clock sync\n",
2516					       __func__, hc->id);
2517				HFC_outb(hc, R_RX_OFF,
2518				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2519				HFC_outb(hc, R_TX_OFF,
2520				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2521				hc->chan[hc->dnum[0]].sync = 1;
2522				goto check_framesync;
2523			}
2524			break;
2525		case 1:
2526			if ((temp & 0x60) != 0x60) {
2527				if (debug & DEBUG_HFCMULTI_SYNC)
2528					printk(KERN_DEBUG
2529					       "%s: (id=%d) E1 "
2530					       "lost clock sync\n",
2531					       __func__, hc->id);
2532				hc->chan[hc->dnum[0]].sync = 0;
2533				break;
2534			}
2535		check_framesync:
2536			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2537			if (temp == 0x27) {
2538				if (debug & DEBUG_HFCMULTI_SYNC)
2539					printk(KERN_DEBUG
2540					       "%s: (id=%d) E1 "
2541					       "now in frame sync\n",
2542					       __func__, hc->id);
2543				hc->chan[hc->dnum[0]].sync = 2;
2544			}
2545			break;
2546		case 2:
2547			if ((temp & 0x60) != 0x60) {
2548				if (debug & DEBUG_HFCMULTI_SYNC)
2549					printk(KERN_DEBUG
2550					       "%s: (id=%d) E1 lost "
2551					       "clock & frame sync\n",
2552					       __func__, hc->id);
2553				hc->chan[hc->dnum[0]].sync = 0;
2554				break;
2555			}
2556			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2557			if (temp != 0x27) {
2558				if (debug & DEBUG_HFCMULTI_SYNC)
2559					printk(KERN_DEBUG
2560					       "%s: (id=%d) E1 "
2561					       "lost frame sync\n",
2562					       __func__, hc->id);
2563				hc->chan[hc->dnum[0]].sync = 1;
2564			}
2565			break;
2566		}
2567	}
2568
2569	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2570		hfcmulti_watchdog(hc);
2571
2572	if (hc->leds)
2573		hfcmulti_leds(hc);
2574}
2575
2576static void
2577ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2578{
2579	struct dchannel	*dch;
2580	int		ch;
2581	int		active;
2582	u_char		st_status, temp;
2583
2584	/* state machine */
2585	for (ch = 0; ch <= 31; ch++) {
2586		if (hc->chan[ch].dch) {
2587			dch = hc->chan[ch].dch;
2588			if (r_irq_statech & 1) {
2589				HFC_outb_nodebug(hc, R_ST_SEL,
2590						 hc->chan[ch].port);
2591				/* undocumented: delay after R_ST_SEL */
2592				udelay(1);
2593				/* undocumented: status changes during read */
2594				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2595				while (st_status != (temp =
2596						     HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2597					if (debug & DEBUG_HFCMULTI_STATE)
2598						printk(KERN_DEBUG "%s: reread "
2599						       "STATE because %d!=%d\n",
2600						       __func__, temp,
2601						       st_status);
2602					st_status = temp; /* repeat */
2603				}
2604
2605				/* Speech Design TE-sync indication */
2606				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2607				    dch->dev.D.protocol == ISDN_P_TE_S0) {
2608					if (st_status & V_FR_SYNC_ST)
2609						hc->syncronized |=
2610							(1 << hc->chan[ch].port);
2611					else
2612						hc->syncronized &=
2613							~(1 << hc->chan[ch].port);
2614				}
2615				dch->state = st_status & 0x0f;
2616				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2617					active = 3;
2618				else
2619					active = 7;
2620				if (dch->state == active) {
2621					HFC_outb_nodebug(hc, R_FIFO,
2622							 (ch << 1) | 1);
2623					HFC_wait_nodebug(hc);
2624					HFC_outb_nodebug(hc,
2625							 R_INC_RES_FIFO, V_RES_F);
2626					HFC_wait_nodebug(hc);
2627					dch->tx_idx = 0;
2628				}
2629				schedule_event(dch, FLG_PHCHANGE);
2630				if (debug & DEBUG_HFCMULTI_STATE)
2631					printk(KERN_DEBUG
2632					       "%s: S/T newstate %x port %d\n",
2633					       __func__, dch->state,
2634					       hc->chan[ch].port);
2635			}
2636			r_irq_statech >>= 1;
2637		}
2638	}
2639	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2640		plxsd_checksync(hc, 0);
2641}
2642
2643static void
2644fifo_irq(struct hfc_multi *hc, int block)
2645{
2646	int	ch, j;
2647	struct dchannel	*dch;
2648	struct bchannel	*bch;
2649	u_char r_irq_fifo_bl;
2650
2651	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2652	j = 0;
2653	while (j < 8) {
2654		ch = (block << 2) + (j >> 1);
2655		dch = hc->chan[ch].dch;
2656		bch = hc->chan[ch].bch;
2657		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2658			j += 2;
2659			continue;
2660		}
2661		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2662		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2663			hfcmulti_tx(hc, ch);
2664			/* start fifo */
2665			HFC_outb_nodebug(hc, R_FIFO, 0);
2666			HFC_wait_nodebug(hc);
2667		}
2668		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2669		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2670			hfcmulti_tx(hc, ch);
2671			/* start fifo */
2672			HFC_outb_nodebug(hc, R_FIFO, 0);
2673			HFC_wait_nodebug(hc);
2674		}
2675		j++;
2676		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2677		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2678			hfcmulti_rx(hc, ch);
2679		}
2680		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2681		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2682			hfcmulti_rx(hc, ch);
2683		}
2684		j++;
2685	}
2686}
2687
2688#ifdef IRQ_DEBUG
2689int irqsem;
2690#endif
2691static irqreturn_t
2692hfcmulti_interrupt(int intno, void *dev_id)
2693{
2694#ifdef IRQCOUNT_DEBUG
2695	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2696		iq5 = 0, iq6 = 0, iqcnt = 0;
2697#endif
2698	struct hfc_multi	*hc = dev_id;
2699	struct dchannel		*dch;
2700	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2701	int			i;
2702	void __iomem		*plx_acc;
2703	u_short			wval;
2704	u_char			e1_syncsta, temp, temp2;
2705	u_long			flags;
2706
2707	if (!hc) {
2708		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2709		return IRQ_NONE;
2710	}
2711
2712	spin_lock(&hc->lock);
2713
2714#ifdef IRQ_DEBUG
2715	if (irqsem)
2716		printk(KERN_ERR "irq for card %d during irq from "
2717		       "card %d, this is no bug.\n", hc->id + 1, irqsem);
2718	irqsem = hc->id + 1;
2719#endif
2720#ifdef CONFIG_MISDN_HFCMULTI_8xx
2721	if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2722		goto irq_notforus;
2723#endif
2724	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2725		spin_lock_irqsave(&plx_lock, flags);
2726		plx_acc = hc->plx_membase + PLX_INTCSR;
2727		wval = readw(plx_acc);
2728		spin_unlock_irqrestore(&plx_lock, flags);
2729		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2730			goto irq_notforus;
2731	}
2732
2733	status = HFC_inb_nodebug(hc, R_STATUS);
2734	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2735#ifdef IRQCOUNT_DEBUG
2736	if (r_irq_statech)
2737		iq1++;
2738	if (status & V_DTMF_STA)
2739		iq2++;
2740	if (status & V_LOST_STA)
2741		iq3++;
2742	if (status & V_EXT_IRQSTA)
2743		iq4++;
2744	if (status & V_MISC_IRQSTA)
2745		iq5++;
2746	if (status & V_FR_IRQSTA)
2747		iq6++;
2748	if (iqcnt++ > 5000) {
2749		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2750		       iq1, iq2, iq3, iq4, iq5, iq6);
2751		iqcnt = 0;
2752	}
2753#endif
2754
2755	if (!r_irq_statech &&
2756	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2757			V_MISC_IRQSTA | V_FR_IRQSTA))) {
2758		/* irq is not for us */
2759		goto irq_notforus;
2760	}
2761	hc->irqcnt++;
2762	if (r_irq_statech) {
2763		if (hc->ctype != HFC_TYPE_E1)
2764			ph_state_irq(hc, r_irq_statech);
2765	}
2766	if (status & V_EXT_IRQSTA)
2767		; /* external IRQ */
2768	if (status & V_LOST_STA) {
2769		/* LOST IRQ */
2770		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2771	}
2772	if (status & V_MISC_IRQSTA) {
2773		/* misc IRQ */
2774		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2775		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2776		if (r_irq_misc & V_STA_IRQ) {
2777			if (hc->ctype == HFC_TYPE_E1) {
2778				/* state machine */
2779				dch = hc->chan[hc->dnum[0]].dch;
2780				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2781				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2782				    && hc->e1_getclock) {
2783					if (e1_syncsta & V_FR_SYNC_E1)
2784						hc->syncronized = 1;
2785					else
2786						hc->syncronized = 0;
2787				}
2788				/* undocumented: status changes during read */
2789				temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2790				while (temp != (temp2 =
2791						      HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2792					if (debug & DEBUG_HFCMULTI_STATE)
2793						printk(KERN_DEBUG "%s: reread "
2794						       "STATE because %d!=%d\n",
2795						    __func__, temp, temp2);
2796					temp = temp2; /* repeat */
2797				}
2798				/* broadcast state change to all fragments */
2799				if (debug & DEBUG_HFCMULTI_STATE)
2800					printk(KERN_DEBUG
2801					       "%s: E1 (id=%d) newstate %x\n",
2802					    __func__, hc->id, temp & 0x7);
2803				for (i = 0; i < hc->ports; i++) {
2804					dch = hc->chan[hc->dnum[i]].dch;
2805					dch->state = temp & 0x7;
2806					schedule_event(dch, FLG_PHCHANGE);
2807				}
2808
2809				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2810					plxsd_checksync(hc, 0);
2811			}
2812		}
2813		if (r_irq_misc & V_TI_IRQ) {
2814			if (hc->iclock_on)
2815				mISDN_clock_update(hc->iclock, poll, NULL);
2816			handle_timer_irq(hc);
2817		}
2818
2819		if (r_irq_misc & V_DTMF_IRQ)
2820			hfcmulti_dtmf(hc);
2821
2822		if (r_irq_misc & V_IRQ_PROC) {
2823			static int irq_proc_cnt;
2824			if (!irq_proc_cnt++)
2825				printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2826				       " this should not happen\n", __func__);
2827		}
2828
2829	}
2830	if (status & V_FR_IRQSTA) {
2831		/* FIFO IRQ */
2832		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2833		for (i = 0; i < 8; i++) {
2834			if (r_irq_oview & (1 << i))
2835				fifo_irq(hc, i);
2836		}
2837	}
2838
2839#ifdef IRQ_DEBUG
2840	irqsem = 0;
2841#endif
2842	spin_unlock(&hc->lock);
2843	return IRQ_HANDLED;
2844
2845irq_notforus:
2846#ifdef IRQ_DEBUG
2847	irqsem = 0;
2848#endif
2849	spin_unlock(&hc->lock);
2850	return IRQ_NONE;
2851}
2852
2853
2854/*
2855 * timer callback for D-chan busy resolution. Currently no function
2856 */
2857
2858static void
2859hfcmulti_dbusy_timer(struct hfc_multi *hc)
2860{
2861}
2862
2863
2864/*
2865 * activate/deactivate hardware for selected channels and mode
2866 *
2867 * configure B-channel with the given protocol
2868 * ch eqals to the HFC-channel (0-31)
2869 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2870 * for S/T, 1-31 for E1)
2871 * the hdlc interrupts will be set/unset
2872 */
2873static int
2874mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2875	      int bank_tx, int slot_rx, int bank_rx)
2876{
2877	int flow_tx = 0, flow_rx = 0, routing = 0;
2878	int oslot_tx, oslot_rx;
2879	int conf;
2880
2881	if (ch < 0 || ch > 31)
2882		return -EINVAL;
2883	oslot_tx = hc->chan[ch].slot_tx;
2884	oslot_rx = hc->chan[ch].slot_rx;
2885	conf = hc->chan[ch].conf;
2886
2887	if (debug & DEBUG_HFCMULTI_MODE)
2888		printk(KERN_DEBUG
2889		       "%s: card %d channel %d protocol %x slot old=%d new=%d "
2890		       "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2891		       __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2892		       bank_tx, oslot_rx, slot_rx, bank_rx);
2893
2894	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2895		/* remove from slot */
2896		if (debug & DEBUG_HFCMULTI_MODE)
2897			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2898			       __func__, oslot_tx);
2899		if (hc->slot_owner[oslot_tx << 1] == ch) {
2900			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2901			HFC_outb(hc, A_SL_CFG, 0);
2902			if (hc->ctype != HFC_TYPE_XHFC)
2903				HFC_outb(hc, A_CONF, 0);
2904			hc->slot_owner[oslot_tx << 1] = -1;
2905		} else {
2906			if (debug & DEBUG_HFCMULTI_MODE)
2907				printk(KERN_DEBUG
2908				       "%s: we are not owner of this tx slot "
2909				       "anymore, channel %d is.\n",
2910				       __func__, hc->slot_owner[oslot_tx << 1]);
2911		}
2912	}
2913
2914	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2915		/* remove from slot */
2916		if (debug & DEBUG_HFCMULTI_MODE)
2917			printk(KERN_DEBUG
2918			       "%s: remove from slot %d (RX)\n",
2919			       __func__, oslot_rx);
2920		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2921			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2922			HFC_outb(hc, A_SL_CFG, 0);
2923			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2924		} else {
2925			if (debug & DEBUG_HFCMULTI_MODE)
2926				printk(KERN_DEBUG
2927				       "%s: we are not owner of this rx slot "
2928				       "anymore, channel %d is.\n",
2929				       __func__,
2930				       hc->slot_owner[(oslot_rx << 1) | 1]);
2931		}
2932	}
2933
2934	if (slot_tx < 0) {
2935		flow_tx = 0x80; /* FIFO->ST */
2936		/* disable pcm slot */
2937		hc->chan[ch].slot_tx = -1;
2938		hc->chan[ch].bank_tx = 0;
2939	} else {
2940		/* set pcm slot */
2941		if (hc->chan[ch].txpending)
2942			flow_tx = 0x80; /* FIFO->ST */
2943		else
2944			flow_tx = 0xc0; /* PCM->ST */
2945		/* put on slot */
2946		routing = bank_tx ? 0xc0 : 0x80;
2947		if (conf >= 0 || bank_tx > 1)
2948			routing = 0x40; /* loop */
2949		if (debug & DEBUG_HFCMULTI_MODE)
2950			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2951			       " %d flow %02x routing %02x conf %d (TX)\n",
2952			       __func__, ch, slot_tx, bank_tx,
2953			       flow_tx, routing, conf);
2954		HFC_outb(hc, R_SLOT, slot_tx << 1);
2955		HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2956		if (hc->ctype != HFC_TYPE_XHFC)
2957			HFC_outb(hc, A_CONF,
2958				 (conf < 0) ? 0 : (conf | V_CONF_SL));
2959		hc->slot_owner[slot_tx << 1] = ch;
2960		hc->chan[ch].slot_tx = slot_tx;
2961		hc->chan[ch].bank_tx = bank_tx;
2962	}
2963	if (slot_rx < 0) {
2964		/* disable pcm slot */
2965		flow_rx = 0x80; /* ST->FIFO */
2966		hc->chan[ch].slot_rx = -1;
2967		hc->chan[ch].bank_rx = 0;
2968	} else {
2969		/* set pcm slot */
2970		if (hc->chan[ch].txpending)
2971			flow_rx = 0x80; /* ST->FIFO */
2972		else
2973			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2974		/* put on slot */
2975		routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2976		if (conf >= 0 || bank_rx > 1)
2977			routing = 0x40; /* loop */
2978		if (debug & DEBUG_HFCMULTI_MODE)
2979			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2980			       " %d flow %02x routing %02x conf %d (RX)\n",
2981			       __func__, ch, slot_rx, bank_rx,
2982			       flow_rx, routing, conf);
2983		HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2984		HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2985		hc->slot_owner[(slot_rx << 1) | 1] = ch;
2986		hc->chan[ch].slot_rx = slot_rx;
2987		hc->chan[ch].bank_rx = bank_rx;
2988	}
2989
2990	switch (protocol) {
2991	case (ISDN_P_NONE):
2992		/* disable TX fifo */
2993		HFC_outb(hc, R_FIFO, ch << 1);
2994		HFC_wait(hc);
2995		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2996		HFC_outb(hc, A_SUBCH_CFG, 0);
2997		HFC_outb(hc, A_IRQ_MSK, 0);
2998		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2999		HFC_wait(hc);
3000		/* disable RX fifo */
3001		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3002		HFC_wait(hc);
3003		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
3004		HFC_outb(hc, A_SUBCH_CFG, 0);
3005		HFC_outb(hc, A_IRQ_MSK, 0);
3006		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3007		HFC_wait(hc);
3008		if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
3009			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
3010				((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
3011			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3012			/* undocumented: delay after R_ST_SEL */
3013			udelay(1);
3014			HFC_outb(hc, A_ST_CTRL0,
3015				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3016		}
3017		if (hc->chan[ch].bch) {
3018			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3019			test_and_clear_bit(FLG_TRANSPARENT,
3020					   &hc->chan[ch].bch->Flags);
3021		}
3022		break;
3023	case (ISDN_P_B_RAW): /* B-channel */
3024
3025		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
3026		    (hc->chan[ch].slot_rx < 0) &&
3027		    (hc->chan[ch].slot_tx < 0)) {
3028
3029			printk(KERN_DEBUG
3030			       "Setting B-channel %d to echo cancelable "
3031			       "state on PCM slot %d\n", ch,
3032			       ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3033			printk(KERN_DEBUG
3034			       "Enabling pass through for channel\n");
3035			vpm_out(hc, ch, ((ch / 4) * 8) +
3036				((ch % 4) * 4) + 1, 0x01);
3037			/* rx path */
3038			/* S/T -> PCM */
3039			HFC_outb(hc, R_FIFO, (ch << 1));
3040			HFC_wait(hc);
3041			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3042			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3043					      ((ch % 4) * 4) + 1) << 1);
3044			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3045
3046			/* PCM -> FIFO */
3047			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3048			HFC_wait(hc);
3049			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3050			HFC_outb(hc, A_SUBCH_CFG, 0);
3051			HFC_outb(hc, A_IRQ_MSK, 0);
3052			if (hc->chan[ch].protocol != protocol) {
3053				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3054				HFC_wait(hc);
3055			}
3056			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3057					       ((ch % 4) * 4) + 1) << 1) | 1);
3058			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3059
3060			/* tx path */
3061			/* PCM -> S/T */
3062			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3063			HFC_wait(hc);
3064			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3065			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3066					       ((ch % 4) * 4)) << 1) | 1);
3067			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3068
3069			/* FIFO -> PCM */
3070			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3071			HFC_wait(hc);
3072			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3073			HFC_outb(hc, A_SUBCH_CFG, 0);
3074			HFC_outb(hc, A_IRQ_MSK, 0);
3075			if (hc->chan[ch].protocol != protocol) {
3076				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3077				HFC_wait(hc);
3078			}
3079			/* tx silence */
3080			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3081			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3082					      ((ch % 4) * 4)) << 1);
3083			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3084		} else {
3085			/* enable TX fifo */
3086			HFC_outb(hc, R_FIFO, ch << 1);
3087			HFC_wait(hc);
3088			if (hc->ctype == HFC_TYPE_XHFC)
3089				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3090					 V_HDLC_TRP | V_IFF);
3091			/* Enable FIFO, no interrupt */
3092			else
3093				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3094					 V_HDLC_TRP | V_IFF);
3095			HFC_outb(hc, A_SUBCH_CFG, 0);
3096			HFC_outb(hc, A_IRQ_MSK, 0);
3097			if (hc->chan[ch].protocol != protocol) {
3098				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3099				HFC_wait(hc);
3100			}
3101			/* tx silence */
3102			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3103			/* enable RX fifo */
3104			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3105			HFC_wait(hc);
3106			if (hc->ctype == HFC_TYPE_XHFC)
3107				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3108					 V_HDLC_TRP);
3109			/* Enable FIFO, no interrupt*/
3110			else
3111				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3112					 V_HDLC_TRP);
3113			HFC_outb(hc, A_SUBCH_CFG, 0);
3114			HFC_outb(hc, A_IRQ_MSK, 0);
3115			if (hc->chan[ch].protocol != protocol) {
3116				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3117				HFC_wait(hc);
3118			}
3119		}
3120		if (hc->ctype != HFC_TYPE_E1) {
3121			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3122				((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3123			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3124			/* undocumented: delay after R_ST_SEL */
3125			udelay(1);
3126			HFC_outb(hc, A_ST_CTRL0,
3127				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3128		}
3129		if (hc->chan[ch].bch)
3130			test_and_set_bit(FLG_TRANSPARENT,
3131					 &hc->chan[ch].bch->Flags);
3132		break;
3133	case (ISDN_P_B_HDLC): /* B-channel */
3134	case (ISDN_P_TE_S0): /* D-channel */
3135	case (ISDN_P_NT_S0):
3136	case (ISDN_P_TE_E1):
3137	case (ISDN_P_NT_E1):
3138		/* enable TX fifo */
3139		HFC_outb(hc, R_FIFO, ch << 1);
3140		HFC_wait(hc);
3141		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3142			/* E1 or B-channel */
3143			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3144			HFC_outb(hc, A_SUBCH_CFG, 0);
3145		} else {
3146			/* D-Channel without HDLC fill flags */
3147			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3148			HFC_outb(hc, A_SUBCH_CFG, 2);
3149		}
3150		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3151		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3152		HFC_wait(hc);
3153		/* enable RX fifo */
3154		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3155		HFC_wait(hc);
3156		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3157		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3158			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3159		else
3160			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3161		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3162		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3163		HFC_wait(hc);
3164		if (hc->chan[ch].bch) {
3165			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3166			if (hc->ctype != HFC_TYPE_E1) {
3167				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3168					((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3169				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3170				/* undocumented: delay after R_ST_SEL */
3171				udelay(1);
3172				HFC_outb(hc, A_ST_CTRL0,
3173					 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3174			}
3175		}
3176		break;
3177	default:
3178		printk(KERN_DEBUG "%s: protocol not known %x\n",
3179		       __func__, protocol);
3180		hc->chan[ch].protocol = ISDN_P_NONE;
3181		return -ENOPROTOOPT;
3182	}
3183	hc->chan[ch].protocol = protocol;
3184	return 0;
3185}
3186
3187
3188/*
3189 * connect/disconnect PCM
3190 */
3191
3192static void
3193hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3194	     int slot_rx, int bank_rx)
3195{
3196	if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3197		/* disable PCM */
3198		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3199		return;
3200	}
3201
3202	/* enable pcm */
3203	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3204		      slot_rx, bank_rx);
3205}
3206
3207/*
3208 * set/disable conference
3209 */
3210
3211static void
3212hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3213{
3214	if (num >= 0 && num <= 7)
3215		hc->chan[ch].conf = num;
3216	else
3217		hc->chan[ch].conf = -1;
3218	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3219		      hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3220		      hc->chan[ch].bank_rx);
3221}
3222
3223
3224/*
3225 * set/disable sample loop
3226 */
3227
3228/* NOTE: this function is experimental and therefore disabled */
3229
3230/*
3231 * Layer 1 callback function
3232 */
3233static int
3234hfcm_l1callback(struct dchannel *dch, u_int cmd)
3235{
3236	struct hfc_multi	*hc = dch->hw;
3237	u_long	flags;
3238
3239	switch (cmd) {
3240	case INFO3_P8:
3241	case INFO3_P10:
3242		break;
3243	case HW_RESET_REQ:
3244		/* start activation */
3245		spin_lock_irqsave(&hc->lock, flags);
3246		if (hc->ctype == HFC_TYPE_E1) {
3247			if (debug & DEBUG_HFCMULTI_MSG)
3248				printk(KERN_DEBUG
3249				       "%s: HW_RESET_REQ no BRI\n",
3250				       __func__);
3251		} else {
3252			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3253			/* undocumented: delay after R_ST_SEL */
3254			udelay(1);
3255			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3256			udelay(6); /* wait at least 5,21us */
3257			HFC_outb(hc, A_ST_WR_STATE, 3);
3258			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3259			/* activate */
3260		}
3261		spin_unlock_irqrestore(&hc->lock, flags);
3262		l1_event(dch->l1, HW_POWERUP_IND);
3263		break;
3264	case HW_DEACT_REQ:
3265		/* start deactivation */
3266		spin_lock_irqsave(&hc->lock, flags);
3267		if (hc->ctype == HFC_TYPE_E1) {
3268			if (debug & DEBUG_HFCMULTI_MSG)
3269				printk(KERN_DEBUG
3270				       "%s: HW_DEACT_REQ no BRI\n",
3271				       __func__);
3272		} else {
3273			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3274			/* undocumented: delay after R_ST_SEL */
3275			udelay(1);
3276			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3277			/* deactivate */
3278			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3279				hc->syncronized &=
3280					~(1 << hc->chan[dch->slot].port);
3281				plxsd_checksync(hc, 0);
3282			}
3283		}
3284		skb_queue_purge(&dch->squeue);
3285		if (dch->tx_skb) {
3286			dev_kfree_skb(dch->tx_skb);
3287			dch->tx_skb = NULL;
3288		}
3289		dch->tx_idx = 0;
3290		if (dch->rx_skb) {
3291			dev_kfree_skb(dch->rx_skb);
3292			dch->rx_skb = NULL;
3293		}
3294		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3295		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3296			del_timer(&dch->timer);
3297		spin_unlock_irqrestore(&hc->lock, flags);
3298		break;
3299	case HW_POWERUP_REQ:
3300		spin_lock_irqsave(&hc->lock, flags);
3301		if (hc->ctype == HFC_TYPE_E1) {
3302			if (debug & DEBUG_HFCMULTI_MSG)
3303				printk(KERN_DEBUG
3304				       "%s: HW_POWERUP_REQ no BRI\n",
3305				       __func__);
3306		} else {
3307			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3308			/* undocumented: delay after R_ST_SEL */
3309			udelay(1);
3310			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3311			udelay(6); /* wait at least 5,21us */
3312			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3313		}
3314		spin_unlock_irqrestore(&hc->lock, flags);
3315		break;
3316	case PH_ACTIVATE_IND:
3317		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3318		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3319			    GFP_ATOMIC);
3320		break;
3321	case PH_DEACTIVATE_IND:
3322		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3323		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3324			    GFP_ATOMIC);
3325		break;
3326	default:
3327		if (dch->debug & DEBUG_HW)
3328			printk(KERN_DEBUG "%s: unknown command %x\n",
3329			       __func__, cmd);
3330		return -1;
3331	}
3332	return 0;
3333}
3334
3335/*
3336 * Layer2 -> Layer 1 Transfer
3337 */
3338
3339static int
3340handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3341{
3342	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3343	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3344	struct hfc_multi	*hc = dch->hw;
3345	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3346	int			ret = -EINVAL;
3347	unsigned int		id;
3348	u_long			flags;
3349
3350	switch (hh->prim) {
3351	case PH_DATA_REQ:
3352		if (skb->len < 1)
3353			break;
3354		spin_lock_irqsave(&hc->lock, flags);
3355		ret = dchannel_senddata(dch, skb);
3356		if (ret > 0) { /* direct TX */
3357			id = hh->id; /* skb can be freed */
3358			hfcmulti_tx(hc, dch->slot);
3359			ret = 0;
3360			/* start fifo */
3361			HFC_outb(hc, R_FIFO, 0);
3362			HFC_wait(hc);
3363			spin_unlock_irqrestore(&hc->lock, flags);
3364			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3365		} else
3366			spin_unlock_irqrestore(&hc->lock, flags);
3367		return ret;
3368	case PH_ACTIVATE_REQ:
3369		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3370			spin_lock_irqsave(&hc->lock, flags);
3371			ret = 0;
3372			if (debug & DEBUG_HFCMULTI_MSG)
3373				printk(KERN_DEBUG
3374				       "%s: PH_ACTIVATE port %d (0..%d)\n",
3375				       __func__, hc->chan[dch->slot].port,
3376				       hc->ports - 1);
3377			/* start activation */
3378			if (hc->ctype == HFC_TYPE_E1) {
3379				ph_state_change(dch);
3380				if (debug & DEBUG_HFCMULTI_STATE)
3381					printk(KERN_DEBUG
3382					       "%s: E1 report state %x \n",
3383					       __func__, dch->state);
3384			} else {
3385				HFC_outb(hc, R_ST_SEL,
3386					 hc->chan[dch->slot].port);
3387				/* undocumented: delay after R_ST_SEL */
3388				udelay(1);
3389				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3390				/* G1 */
3391				udelay(6); /* wait at least 5,21us */
3392				HFC_outb(hc, A_ST_WR_STATE, 1);
3393				HFC_outb(hc, A_ST_WR_STATE, 1 |
3394					 (V_ST_ACT * 3)); /* activate */
3395				dch->state = 1;
3396			}
3397			spin_unlock_irqrestore(&hc->lock, flags);
3398		} else
3399			ret = l1_event(dch->l1, hh->prim);
3400		break;
3401	case PH_DEACTIVATE_REQ:
3402		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3403		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3404			spin_lock_irqsave(&hc->lock, flags);
3405			if (debug & DEBUG_HFCMULTI_MSG)
3406				printk(KERN_DEBUG
3407				       "%s: PH_DEACTIVATE port %d (0..%d)\n",
3408				       __func__, hc->chan[dch->slot].port,
3409				       hc->ports - 1);
3410			/* start deactivation */
3411			if (hc->ctype == HFC_TYPE_E1) {
3412				if (debug & DEBUG_HFCMULTI_MSG)
3413					printk(KERN_DEBUG
3414					       "%s: PH_DEACTIVATE no BRI\n",
3415					       __func__);
3416			} else {
3417				HFC_outb(hc, R_ST_SEL,
3418					 hc->chan[dch->slot].port);
3419				/* undocumented: delay after R_ST_SEL */
3420				udelay(1);
3421				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3422				/* deactivate */
3423				dch->state = 1;
3424			}
3425			skb_queue_purge(&dch->squeue);
3426			if (dch->tx_skb) {
3427				dev_kfree_skb(dch->tx_skb);
3428				dch->tx_skb = NULL;
3429			}
3430			dch->tx_idx = 0;
3431			if (dch->rx_skb) {
3432				dev_kfree_skb(dch->rx_skb);
3433				dch->rx_skb = NULL;
3434			}
3435			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3436			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3437				del_timer(&dch->timer);
3438#ifdef FIXME
3439			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3440				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3441#endif
3442			ret = 0;
3443			spin_unlock_irqrestore(&hc->lock, flags);
3444		} else
3445			ret = l1_event(dch->l1, hh->prim);
3446		break;
3447	}
3448	if (!ret)
3449		dev_kfree_skb(skb);
3450	return ret;
3451}
3452
3453static void
3454deactivate_bchannel(struct bchannel *bch)
3455{
3456	struct hfc_multi	*hc = bch->hw;
3457	u_long			flags;
3458
3459	spin_lock_irqsave(&hc->lock, flags);
3460	mISDN_clear_bchannel(bch);
3461	hc->chan[bch->slot].coeff_count = 0;
3462	hc->chan[bch->slot].rx_off = 0;
3463	hc->chan[bch->slot].conf = -1;
3464	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3465	spin_unlock_irqrestore(&hc->lock, flags);
3466}
3467
3468static int
3469handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3470{
3471	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3472	struct hfc_multi	*hc = bch->hw;
3473	int			ret = -EINVAL;
3474	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3475	unsigned long		flags;
3476
3477	switch (hh->prim) {
3478	case PH_DATA_REQ:
3479		if (!skb->len)
3480			break;
3481		spin_lock_irqsave(&hc->lock, flags);
3482		ret = bchannel_senddata(bch, skb);
3483		if (ret > 0) { /* direct TX */
3484			hfcmulti_tx(hc, bch->slot);
3485			ret = 0;
3486			/* start fifo */
3487			HFC_outb_nodebug(hc, R_FIFO, 0);
3488			HFC_wait_nodebug(hc);
3489		}
3490		spin_unlock_irqrestore(&hc->lock, flags);
3491		return ret;
3492	case PH_ACTIVATE_REQ:
3493		if (debug & DEBUG_HFCMULTI_MSG)
3494			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3495			       __func__, bch->slot);
3496		spin_lock_irqsave(&hc->lock, flags);
3497		/* activate B-channel if not already activated */
3498		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3499			hc->chan[bch->slot].txpending = 0;
3500			ret = mode_hfcmulti(hc, bch->slot,
3501					    ch->protocol,
3502					    hc->chan[bch->slot].slot_tx,
3503					    hc->chan[bch->slot].bank_tx,
3504					    hc->chan[bch->slot].slot_rx,
3505					    hc->chan[bch->slot].bank_rx);
3506			if (!ret) {
3507				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3508				    && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3509					/* start decoder */
3510					hc->dtmf = 1;
3511					if (debug & DEBUG_HFCMULTI_DTMF)
3512						printk(KERN_DEBUG
3513						       "%s: start dtmf decoder\n",
3514						       __func__);
3515					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3516						 V_RST_DTMF);
3517				}
3518			}
3519		} else
3520			ret = 0;
3521		spin_unlock_irqrestore(&hc->lock, flags);
3522		if (!ret)
3523			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3524				    GFP_KERNEL);
3525		break;
3526	case PH_CONTROL_REQ:
3527		spin_lock_irqsave(&hc->lock, flags);
3528		switch (hh->id) {
3529		case HFC_SPL_LOOP_ON: /* set sample loop */
3530			if (debug & DEBUG_HFCMULTI_MSG)
3531				printk(KERN_DEBUG
3532				       "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3533				       __func__, skb->len);
3534			ret = 0;
3535			break;
3536		case HFC_SPL_LOOP_OFF: /* set silence */
3537			if (debug & DEBUG_HFCMULTI_MSG)
3538				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3539				       __func__);
3540			ret = 0;
3541			break;
3542		default:
3543			printk(KERN_ERR
3544			       "%s: unknown PH_CONTROL_REQ info %x\n",
3545			       __func__, hh->id);
3546			ret = -EINVAL;
3547		}
3548		spin_unlock_irqrestore(&hc->lock, flags);
3549		break;
3550	case PH_DEACTIVATE_REQ:
3551		deactivate_bchannel(bch); /* locked there */
3552		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3553			    GFP_KERNEL);
3554		ret = 0;
3555		break;
3556	}
3557	if (!ret)
3558		dev_kfree_skb(skb);
3559	return ret;
3560}
3561
3562/*
3563 * bchannel control function
3564 */
3565static int
3566channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3567{
3568	int			ret = 0;
3569	struct dsp_features	*features =
3570		(struct dsp_features *)(*((u_long *)&cq->p1));
3571	struct hfc_multi	*hc = bch->hw;
3572	int			slot_tx;
3573	int			bank_tx;
3574	int			slot_rx;
3575	int			bank_rx;
3576	int			num;
3577
3578	switch (cq->op) {
3579	case MISDN_CTRL_GETOP:
3580		ret = mISDN_ctrl_bchannel(bch, cq);
3581		cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3582		break;
3583	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3584		ret = mISDN_ctrl_bchannel(bch, cq);
3585		hc->chan[bch->slot].rx_off = !!cq->p1;
3586		if (!hc->chan[bch->slot].rx_off) {
3587			/* reset fifo on rx on */
3588			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3589			HFC_wait_nodebug(hc);
3590			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3591			HFC_wait_nodebug(hc);
3592		}
3593		if (debug & DEBUG_HFCMULTI_MSG)
3594			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3595			       __func__, bch->nr, hc->chan[bch->slot].rx_off);
3596		break;
3597	case MISDN_CTRL_FILL_EMPTY:
3598		ret = mISDN_ctrl_bchannel(bch, cq);
3599		hc->silence = bch->fill[0];
3600		memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3601		break;
3602	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3603		if (debug & DEBUG_HFCMULTI_MSG)
3604			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3605			       __func__);
3606		/* create confirm */
3607		features->hfc_id = hc->id;
3608		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3609			features->hfc_dtmf = 1;
3610		if (test_bit(HFC_CHIP_CONF, &hc->chip))
3611			features->hfc_conf = 1;
3612		features->hfc_loops = 0;
3613		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3614			features->hfc_echocanhw = 1;
3615		} else {
3616			features->pcm_id = hc->pcm;
3617			features->pcm_slots = hc->slots;
3618			features->pcm_banks = 2;
3619		}
3620		break;
3621	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3622		slot_tx = cq->p1 & 0xff;
3623		bank_tx = cq->p1 >> 8;
3624		slot_rx = cq->p2 & 0xff;
3625		bank_rx = cq->p2 >> 8;
3626		if (debug & DEBUG_HFCMULTI_MSG)
3627			printk(KERN_DEBUG
3628			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3629			       "slot %d bank %d (RX)\n",
3630			       __func__, slot_tx, bank_tx,
3631			       slot_rx, bank_rx);
3632		if (slot_tx < hc->slots && bank_tx <= 2 &&
3633		    slot_rx < hc->slots && bank_rx <= 2)
3634			hfcmulti_pcm(hc, bch->slot,
3635				     slot_tx, bank_tx, slot_rx, bank_rx);
3636		else {
3637			printk(KERN_WARNING
3638			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3639			       "slot %d bank %d (RX) out of range\n",
3640			       __func__, slot_tx, bank_tx,
3641			       slot_rx, bank_rx);
3642			ret = -EINVAL;
3643		}
3644		break;
3645	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3646		if (debug & DEBUG_HFCMULTI_MSG)
3647			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3648			       __func__);
3649		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3650		break;
3651	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3652		num = cq->p1 & 0xff;
3653		if (debug & DEBUG_HFCMULTI_MSG)
3654			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3655			       __func__, num);
3656		if (num <= 7)
3657			hfcmulti_conf(hc, bch->slot, num);
3658		else {
3659			printk(KERN_WARNING
3660			       "%s: HW_CONF_JOIN conf %d out of range\n",
3661			       __func__, num);
3662			ret = -EINVAL;
3663		}
3664		break;
3665	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3666		if (debug & DEBUG_HFCMULTI_MSG)
3667			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3668		hfcmulti_conf(hc, bch->slot, -1);
3669		break;
3670	case MISDN_CTRL_HFC_ECHOCAN_ON:
3671		if (debug & DEBUG_HFCMULTI_MSG)
3672			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3673		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3674			vpm_echocan_on(hc, bch->slot, cq->p1);
3675		else
3676			ret = -EINVAL;
3677		break;
3678
3679	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3680		if (debug & DEBUG_HFCMULTI_MSG)
3681			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3682			       __func__);
3683		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3684			vpm_echocan_off(hc, bch->slot);
3685		else
3686			ret = -EINVAL;
3687		break;
3688	default:
3689		ret = mISDN_ctrl_bchannel(bch, cq);
3690		break;
3691	}
3692	return ret;
3693}
3694
3695static int
3696hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3697{
3698	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3699	struct hfc_multi	*hc = bch->hw;
3700	int			err = -EINVAL;
3701	u_long	flags;
3702
3703	if (bch->debug & DEBUG_HW)
3704		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3705		       __func__, cmd, arg);
3706	switch (cmd) {
3707	case CLOSE_CHANNEL:
3708		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3709		deactivate_bchannel(bch); /* locked there */
3710		ch->protocol = ISDN_P_NONE;
3711		ch->peer = NULL;
3712		module_put(THIS_MODULE);
3713		err = 0;
3714		break;
3715	case CONTROL_CHANNEL:
3716		spin_lock_irqsave(&hc->lock, flags);
3717		err = channel_bctrl(bch, arg);
3718		spin_unlock_irqrestore(&hc->lock, flags);
3719		break;
3720	default:
3721		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3722		       __func__, cmd);
3723	}
3724	return err;
3725}
3726
3727/*
3728 * handle D-channel events
3729 *
3730 * handle state change event
3731 */
3732static void
3733ph_state_change(struct dchannel *dch)
3734{
3735	struct hfc_multi *hc;
3736	int ch, i;
3737
3738	if (!dch) {
3739		printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3740		return;
3741	}
3742	hc = dch->hw;
3743	ch = dch->slot;
3744
3745	if (hc->ctype == HFC_TYPE_E1) {
3746		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3747			if (debug & DEBUG_HFCMULTI_STATE)
3748				printk(KERN_DEBUG
3749				       "%s: E1 TE (id=%d) newstate %x\n",
3750				       __func__, hc->id, dch->state);
3751		} else {
3752			if (debug & DEBUG_HFCMULTI_STATE)
3753				printk(KERN_DEBUG
3754				       "%s: E1 NT (id=%d) newstate %x\n",
3755				       __func__, hc->id, dch->state);
3756		}
3757		switch (dch->state) {
3758		case (1):
3759			if (hc->e1_state != 1) {
3760				for (i = 1; i <= 31; i++) {
3761					/* reset fifos on e1 activation */
3762					HFC_outb_nodebug(hc, R_FIFO,
3763							 (i << 1) | 1);
3764					HFC_wait_nodebug(hc);
3765					HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3766							 V_RES_F);
3767					HFC_wait_nodebug(hc);
3768				}
3769			}
3770			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3771			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3772				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3773			break;
3774
3775		default:
3776			if (hc->e1_state != 1)
3777				return;
3778			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3779			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3780				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3781		}
3782		hc->e1_state = dch->state;
3783	} else {
3784		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3785			if (debug & DEBUG_HFCMULTI_STATE)
3786				printk(KERN_DEBUG
3787				       "%s: S/T TE newstate %x\n",
3788				       __func__, dch->state);
3789			switch (dch->state) {
3790			case (0):
3791				l1_event(dch->l1, HW_RESET_IND);
3792				break;
3793			case (3):
3794				l1_event(dch->l1, HW_DEACT_IND);
3795				break;
3796			case (5):
3797			case (8):
3798				l1_event(dch->l1, ANYSIGNAL);
3799				break;
3800			case (6):
3801				l1_event(dch->l1, INFO2);
3802				break;
3803			case (7):
3804				l1_event(dch->l1, INFO4_P8);
3805				break;
3806			}
3807		} else {
3808			if (debug & DEBUG_HFCMULTI_STATE)
3809				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3810				       __func__, dch->state);
3811			switch (dch->state) {
3812			case (2):
3813				if (hc->chan[ch].nt_timer == 0) {
3814					hc->chan[ch].nt_timer = -1;
3815					HFC_outb(hc, R_ST_SEL,
3816						 hc->chan[ch].port);
3817					/* undocumented: delay after R_ST_SEL */
3818					udelay(1);
3819					HFC_outb(hc, A_ST_WR_STATE, 4 |
3820						 V_ST_LD_STA); /* G4 */
3821					udelay(6); /* wait at least 5,21us */
3822					HFC_outb(hc, A_ST_WR_STATE, 4);
3823					dch->state = 4;
3824				} else {
3825					/* one extra count for the next event */
3826					hc->chan[ch].nt_timer =
3827						nt_t1_count[poll_timer] + 1;
3828					HFC_outb(hc, R_ST_SEL,
3829						 hc->chan[ch].port);
3830					/* undocumented: delay after R_ST_SEL */
3831					udelay(1);
3832					/* allow G2 -> G3 transition */
3833					HFC_outb(hc, A_ST_WR_STATE, 2 |
3834						 V_SET_G2_G3);
3835				}
3836				break;
3837			case (1):
3838				hc->chan[ch].nt_timer = -1;
3839				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3840				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3841					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3842				break;
3843			case (4):
3844				hc->chan[ch].nt_timer = -1;
3845				break;
3846			case (3):
3847				hc->chan[ch].nt_timer = -1;
3848				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3849				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3850					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3851				break;
3852			}
3853		}
3854	}
3855}
3856
3857/*
3858 * called for card mode init message
3859 */
3860
3861static void
3862hfcmulti_initmode(struct dchannel *dch)
3863{
3864	struct hfc_multi *hc = dch->hw;
3865	u_char		a_st_wr_state, r_e1_wr_sta;
3866	int		i, pt;
3867
3868	if (debug & DEBUG_HFCMULTI_INIT)
3869		printk(KERN_DEBUG "%s: entered\n", __func__);
3870
3871	i = dch->slot;
3872	pt = hc->chan[i].port;
3873	if (hc->ctype == HFC_TYPE_E1) {
3874		/* E1 */
3875		hc->chan[hc->dnum[pt]].slot_tx = -1;
3876		hc->chan[hc->dnum[pt]].slot_rx = -1;
3877		hc->chan[hc->dnum[pt]].conf = -1;
3878		if (hc->dnum[pt]) {
3879			mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3880				      -1, 0, -1, 0);
3881			dch->timer.function = (void *) hfcmulti_dbusy_timer;
3882			dch->timer.data = (long) dch;
3883			init_timer(&dch->timer);
3884		}
3885		for (i = 1; i <= 31; i++) {
3886			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3887				continue;
3888			hc->chan[i].slot_tx = -1;
3889			hc->chan[i].slot_rx = -1;
3890			hc->chan[i].conf = -1;
3891			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3892		}
3893	}
3894	if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3895		/* E1, port 0 */
3896		dch = hc->chan[hc->dnum[0]].dch;
3897		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3898			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3899			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3900		}
3901		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3902			HFC_outb(hc, R_RX0, 0);
3903			hc->hw.r_tx0 = 0 | V_OUT_EN;
3904		} else {
3905			HFC_outb(hc, R_RX0, 1);
3906			hc->hw.r_tx0 = 1 | V_OUT_EN;
3907		}
3908		hc->hw.r_tx1 = V_ATX | V_NTRI;
3909		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3910		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3911		HFC_outb(hc, R_TX_FR0, 0x00);
3912		HFC_outb(hc, R_TX_FR1, 0xf8);
3913
3914		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3915			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3916
3917		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3918
3919		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3920			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3921
3922		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3923			if (debug & DEBUG_HFCMULTI_INIT)
3924				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3925				       __func__);
3926			r_e1_wr_sta = 0; /* G0 */
3927			hc->e1_getclock = 0;
3928		} else {
3929			if (debug & DEBUG_HFCMULTI_INIT)
3930				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3931				       __func__);
3932			r_e1_wr_sta = 0; /* F0 */
3933			hc->e1_getclock = 1;
3934		}
3935		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3936			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3937		else
3938			HFC_outb(hc, R_SYNC_OUT, 0);
3939		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3940			hc->e1_getclock = 1;
3941		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3942			hc->e1_getclock = 0;
3943		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3944			/* SLAVE (clock master) */
3945			if (debug & DEBUG_HFCMULTI_INIT)
3946				printk(KERN_DEBUG
3947				       "%s: E1 port is clock master "
3948				       "(clock from PCM)\n", __func__);
3949			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3950		} else {
3951			if (hc->e1_getclock) {
3952				/* MASTER (clock slave) */
3953				if (debug & DEBUG_HFCMULTI_INIT)
3954					printk(KERN_DEBUG
3955					       "%s: E1 port is clock slave "
3956					       "(clock to PCM)\n", __func__);
3957				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3958			} else {
3959				/* MASTER (clock master) */
3960				if (debug & DEBUG_HFCMULTI_INIT)
3961					printk(KERN_DEBUG "%s: E1 port is "
3962					       "clock master "
3963					       "(clock from QUARTZ)\n",
3964					       __func__);
3965				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3966					 V_PCM_SYNC | V_JATT_OFF);
3967				HFC_outb(hc, R_SYNC_OUT, 0);
3968			}
3969		}
3970		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3971		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3972		HFC_outb(hc, R_PWM0, 0x50);
3973		HFC_outb(hc, R_PWM1, 0xff);
3974		/* state machine setup */
3975		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3976		udelay(6); /* wait at least 5,21us */
3977		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3978		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3979			hc->syncronized = 0;
3980			plxsd_checksync(hc, 0);
3981		}
3982	}
3983	if (hc->ctype != HFC_TYPE_E1) {
3984		/* ST */
3985		hc->chan[i].slot_tx = -1;
3986		hc->chan[i].slot_rx = -1;
3987		hc->chan[i].conf = -1;
3988		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3989		dch->timer.function = (void *) hfcmulti_dbusy_timer;
3990		dch->timer.data = (long) dch;
3991		init_timer(&dch->timer);
3992		hc->chan[i - 2].slot_tx = -1;
3993		hc->chan[i - 2].slot_rx = -1;
3994		hc->chan[i - 2].conf = -1;
3995		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3996		hc->chan[i - 1].slot_tx = -1;
3997		hc->chan[i - 1].slot_rx = -1;
3998		hc->chan[i - 1].conf = -1;
3999		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
4000		/* select interface */
4001		HFC_outb(hc, R_ST_SEL, pt);
4002		/* undocumented: delay after R_ST_SEL */
4003		udelay(1);
4004		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
4005			if (debug & DEBUG_HFCMULTI_INIT)
4006				printk(KERN_DEBUG
4007				       "%s: ST port %d is NT-mode\n",
4008				       __func__, pt);
4009			/* clock delay */
4010			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
4011			a_st_wr_state = 1; /* G1 */
4012			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
4013		} else {
4014			if (debug & DEBUG_HFCMULTI_INIT)
4015				printk(KERN_DEBUG
4016				       "%s: ST port %d is TE-mode\n",
4017				       __func__, pt);
4018			/* clock delay */
4019			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
4020			a_st_wr_state = 2; /* F2 */
4021			hc->hw.a_st_ctrl0[pt] = 0;
4022		}
4023		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
4024			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
4025		if (hc->ctype == HFC_TYPE_XHFC) {
4026			hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
4027			HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
4028				 0x7c << 1 /* V_ST_PULSE */);
4029		}
4030		/* line setup */
4031		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
4032		/* disable E-channel */
4033		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4034		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4035			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4036		else
4037			HFC_outb(hc, A_ST_CTRL1, 0);
4038		/* enable B-channel receive */
4039		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
4040		/* state machine setup */
4041		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4042		udelay(6); /* wait at least 5,21us */
4043		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4044		hc->hw.r_sci_msk |= 1 << pt;
4045		/* state machine interrupts */
4046		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4047		/* unset sync on port */
4048		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4049			hc->syncronized &=
4050				~(1 << hc->chan[dch->slot].port);
4051			plxsd_checksync(hc, 0);
4052		}
4053	}
4054	if (debug & DEBUG_HFCMULTI_INIT)
4055		printk("%s: done\n", __func__);
4056}
4057
4058
4059static int
4060open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4061	      struct channel_req *rq)
4062{
4063	int	err = 0;
4064	u_long	flags;
4065
4066	if (debug & DEBUG_HW_OPEN)
4067		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4068		       dch->dev.id, __builtin_return_address(0));
4069	if (rq->protocol == ISDN_P_NONE)
4070		return -EINVAL;
4071	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4072	    (dch->dev.D.protocol != rq->protocol)) {
4073		if (debug & DEBUG_HFCMULTI_MODE)
4074			printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4075			       __func__, dch->dev.D.protocol, rq->protocol);
4076	}
4077	if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4078	    (rq->protocol != ISDN_P_TE_S0))
4079		l1_event(dch->l1, CLOSE_CHANNEL);
4080	if (dch->dev.D.protocol != rq->protocol) {
4081		if (rq->protocol == ISDN_P_TE_S0) {
4082			err = create_l1(dch, hfcm_l1callback);
4083			if (err)
4084				return err;
4085		}
4086		dch->dev.D.protocol = rq->protocol;
4087		spin_lock_irqsave(&hc->lock, flags);
4088		hfcmulti_initmode(dch);
4089		spin_unlock_irqrestore(&hc->lock, flags);
4090	}
4091	if (test_bit(FLG_ACTIVE, &dch->Flags))
4092		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4093			    0, NULL, GFP_KERNEL);
4094	rq->ch = &dch->dev.D;
4095	if (!try_module_get(THIS_MODULE))
4096		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4097	return 0;
4098}
4099
4100static int
4101open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4102	      struct channel_req *rq)
4103{
4104	struct bchannel	*bch;
4105	int		ch;
4106
4107	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4108		return -EINVAL;
4109	if (rq->protocol == ISDN_P_NONE)
4110		return -EINVAL;
4111	if (hc->ctype == HFC_TYPE_E1)
4112		ch = rq->adr.channel;
4113	else
4114		ch = (rq->adr.channel - 1) + (dch->slot - 2);
4115	bch = hc->chan[ch].bch;
4116	if (!bch) {
4117		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4118		       __func__, ch);
4119		return -EINVAL;
4120	}
4121	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4122		return -EBUSY; /* b-channel can be only open once */
4123	bch->ch.protocol = rq->protocol;
4124	hc->chan[ch].rx_off = 0;
4125	rq->ch = &bch->ch;
4126	if (!try_module_get(THIS_MODULE))
4127		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4128	return 0;
4129}
4130
4131/*
4132 * device control function
4133 */
4134static int
4135channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4136{
4137	struct hfc_multi	*hc = dch->hw;
4138	int	ret = 0;
4139	int	wd_mode, wd_cnt;
4140
4141	switch (cq->op) {
4142	case MISDN_CTRL_GETOP:
4143		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4144		break;
4145	case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4146		wd_cnt = cq->p1 & 0xf;
4147		wd_mode = !!(cq->p1 >> 4);
4148		if (debug & DEBUG_HFCMULTI_MSG)
4149			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4150			       ", counter 0x%x\n", __func__,
4151			       wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4152		/* set the watchdog timer */
4153		HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4154		hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4155		if (hc->ctype == HFC_TYPE_XHFC)
4156			hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4157		/* init the watchdog register and reset the counter */
4158		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4159		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4160			/* enable the watchdog output for Speech-Design */
4161			HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4162			HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4163			HFC_outb(hc, R_GPIO_OUT1, 0);
4164			HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4165		}
4166		break;
4167	case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4168		if (debug & DEBUG_HFCMULTI_MSG)
4169			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4170			       __func__);
4171		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4172		break;
4173	case MISDN_CTRL_L1_TIMER3:
4174		ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4175		break;
4176	default:
4177		printk(KERN_WARNING "%s: unknown Op %x\n",
4178		       __func__, cq->op);
4179		ret = -EINVAL;
4180		break;
4181	}
4182	return ret;
4183}
4184
4185static int
4186hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4187{
4188	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4189	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4190	struct hfc_multi	*hc = dch->hw;
4191	struct channel_req	*rq;
4192	int			err = 0;
4193	u_long			flags;
4194
4195	if (dch->debug & DEBUG_HW)
4196		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4197		       __func__, cmd, arg);
4198	switch (cmd) {
4199	case OPEN_CHANNEL:
4200		rq = arg;
4201		switch (rq->protocol) {
4202		case ISDN_P_TE_S0:
4203		case ISDN_P_NT_S0:
4204			if (hc->ctype == HFC_TYPE_E1) {
4205				err = -EINVAL;
4206				break;
4207			}
4208			err = open_dchannel(hc, dch, rq); /* locked there */
4209			break;
4210		case ISDN_P_TE_E1:
4211		case ISDN_P_NT_E1:
4212			if (hc->ctype != HFC_TYPE_E1) {
4213				err = -EINVAL;
4214				break;
4215			}
4216			err = open_dchannel(hc, dch, rq); /* locked there */
4217			break;
4218		default:
4219			spin_lock_irqsave(&hc->lock, flags);
4220			err = open_bchannel(hc, dch, rq);
4221			spin_unlock_irqrestore(&hc->lock, flags);
4222		}
4223		break;
4224	case CLOSE_CHANNEL:
4225		if (debug & DEBUG_HW_OPEN)
4226			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4227			       __func__, dch->dev.id,
4228			       __builtin_return_address(0));
4229		module_put(THIS_MODULE);
4230		break;
4231	case CONTROL_CHANNEL:
4232		spin_lock_irqsave(&hc->lock, flags);
4233		err = channel_dctrl(dch, arg);
4234		spin_unlock_irqrestore(&hc->lock, flags);
4235		break;
4236	default:
4237		if (dch->debug & DEBUG_HW)
4238			printk(KERN_DEBUG "%s: unknown command %x\n",
4239			       __func__, cmd);
4240		err = -EINVAL;
4241	}
4242	return err;
4243}
4244
4245static int
4246clockctl(void *priv, int enable)
4247{
4248	struct hfc_multi *hc = priv;
4249
4250	hc->iclock_on = enable;
4251	return 0;
4252}
4253
4254/*
4255 * initialize the card
4256 */
4257
4258/*
4259 * start timer irq, wait some time and check if we have interrupts.
4260 * if not, reset chip and try again.
4261 */
4262static int
4263init_card(struct hfc_multi *hc)
4264{
4265	int	err = -EIO;
4266	u_long	flags;
4267	void	__iomem *plx_acc;
4268	u_long	plx_flags;
4269
4270	if (debug & DEBUG_HFCMULTI_INIT)
4271		printk(KERN_DEBUG "%s: entered\n", __func__);
4272
4273	spin_lock_irqsave(&hc->lock, flags);
4274	/* set interrupts but leave global interrupt disabled */
4275	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4276	disable_hwirq(hc);
4277	spin_unlock_irqrestore(&hc->lock, flags);
4278
4279	if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4280			"HFC-multi", hc)) {
4281		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4282		       hc->irq);
4283		hc->irq = 0;
4284		return -EIO;
4285	}
4286
4287	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4288		spin_lock_irqsave(&plx_lock, plx_flags);
4289		plx_acc = hc->plx_membase + PLX_INTCSR;
4290		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4291		       plx_acc); /* enable PCI & LINT1 irq */
4292		spin_unlock_irqrestore(&plx_lock, plx_flags);
4293	}
4294
4295	if (debug & DEBUG_HFCMULTI_INIT)
4296		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4297		       __func__, hc->irq, hc->irqcnt);
4298	err = init_chip(hc);
4299	if (err)
4300		goto error;
4301	/*
4302	 * Finally enable IRQ output
4303	 * this is only allowed, if an IRQ routine is already
4304	 * established for this HFC, so don't do that earlier
4305	 */
4306	spin_lock_irqsave(&hc->lock, flags);
4307	enable_hwirq(hc);
4308	spin_unlock_irqrestore(&hc->lock, flags);
4309	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4310	set_current_state(TASK_UNINTERRUPTIBLE);
4311	schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4312	/* turn IRQ off until chip is completely initialized */
4313	spin_lock_irqsave(&hc->lock, flags);
4314	disable_hwirq(hc);
4315	spin_unlock_irqrestore(&hc->lock, flags);
4316	if (debug & DEBUG_HFCMULTI_INIT)
4317		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4318		       __func__, hc->irq, hc->irqcnt);
4319	if (hc->irqcnt) {
4320		if (debug & DEBUG_HFCMULTI_INIT)
4321			printk(KERN_DEBUG "%s: done\n", __func__);
4322
4323		return 0;
4324	}
4325	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4326		printk(KERN_INFO "ignoring missing interrupts\n");
4327		return 0;
4328	}
4329
4330	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4331	       hc->irq);
4332
4333	err = -EIO;
4334
4335error:
4336	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4337		spin_lock_irqsave(&plx_lock, plx_flags);
4338		plx_acc = hc->plx_membase + PLX_INTCSR;
4339		writew(0x00, plx_acc); /*disable IRQs*/
4340		spin_unlock_irqrestore(&plx_lock, plx_flags);
4341	}
4342
4343	if (debug & DEBUG_HFCMULTI_INIT)
4344		printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4345	if (hc->irq) {
4346		free_irq(hc->irq, hc);
4347		hc->irq = 0;
4348	}
4349
4350	if (debug & DEBUG_HFCMULTI_INIT)
4351		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4352	return err;
4353}
4354
4355/*
4356 * find pci device and set it up
4357 */
4358
4359static int
4360setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4361	  const struct pci_device_id *ent)
4362{
4363	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4364
4365	printk(KERN_INFO
4366	       "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4367	       m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4368
4369	hc->pci_dev = pdev;
4370	if (m->clock2)
4371		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4372
4373	if (ent->device == 0xB410) {
4374		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4375		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4376		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4377		hc->slots = 32;
4378	}
4379
4380	if (hc->pci_dev->irq <= 0) {
4381		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4382		return -EIO;
4383	}
4384	if (pci_enable_device(hc->pci_dev)) {
4385		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4386		return -EIO;
4387	}
4388	hc->leds = m->leds;
4389	hc->ledstate = 0xAFFEAFFE;
4390	hc->opticalsupport = m->opticalsupport;
4391
4392	hc->pci_iobase = 0;
4393	hc->pci_membase = NULL;
4394	hc->plx_membase = NULL;
4395
4396	/* set memory access methods */
4397	if (m->io_mode) /* use mode from card config */
4398		hc->io_mode = m->io_mode;
4399	switch (hc->io_mode) {
4400	case HFC_IO_MODE_PLXSD:
4401		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4402		hc->slots = 128; /* required */
4403		hc->HFC_outb = HFC_outb_pcimem;
4404		hc->HFC_inb = HFC_inb_pcimem;
4405		hc->HFC_inw = HFC_inw_pcimem;
4406		hc->HFC_wait = HFC_wait_pcimem;
4407		hc->read_fifo = read_fifo_pcimem;
4408		hc->write_fifo = write_fifo_pcimem;
4409		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4410		/* MEMBASE 1 is PLX PCI Bridge */
4411
4412		if (!hc->plx_origmembase) {
4413			printk(KERN_WARNING
4414			       "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4415			pci_disable_device(hc->pci_dev);
4416			return -EIO;
4417		}
4418
4419		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4420		if (!hc->plx_membase) {
4421			printk(KERN_WARNING
4422			       "HFC-multi: failed to remap plx address space. "
4423			       "(internal error)\n");
4424			pci_disable_device(hc->pci_dev);
4425			return -EIO;
4426		}
4427		printk(KERN_INFO
4428		       "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4429		       (u_long)hc->plx_membase, hc->plx_origmembase);
4430
4431		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4432		/* MEMBASE 1 is PLX PCI Bridge */
4433		if (!hc->pci_origmembase) {
4434			printk(KERN_WARNING
4435			       "HFC-multi: No IO-Memory for PCI card found\n");
4436			pci_disable_device(hc->pci_dev);
4437			return -EIO;
4438		}
4439
4440		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4441		if (!hc->pci_membase) {
4442			printk(KERN_WARNING "HFC-multi: failed to remap io "
4443			       "address space. (internal error)\n");
4444			pci_disable_device(hc->pci_dev);
4445			return -EIO;
4446		}
4447
4448		printk(KERN_INFO
4449		       "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4450		       "leds-type %d\n",
4451		       hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4452		       hc->pci_dev->irq, HZ, hc->leds);
4453		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4454		break;
4455	case HFC_IO_MODE_PCIMEM:
4456		hc->HFC_outb = HFC_outb_pcimem;
4457		hc->HFC_inb = HFC_inb_pcimem;
4458		hc->HFC_inw = HFC_inw_pcimem;
4459		hc->HFC_wait = HFC_wait_pcimem;
4460		hc->read_fifo = read_fifo_pcimem;
4461		hc->write_fifo = write_fifo_pcimem;
4462		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4463		if (!hc->pci_origmembase) {
4464			printk(KERN_WARNING
4465			       "HFC-multi: No IO-Memory for PCI card found\n");
4466			pci_disable_device(hc->pci_dev);
4467			return -EIO;
4468		}
4469
4470		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4471		if (!hc->pci_membase) {
4472			printk(KERN_WARNING
4473			       "HFC-multi: failed to remap io address space. "
4474			       "(internal error)\n");
4475			pci_disable_device(hc->pci_dev);
4476			return -EIO;
4477		}
4478		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4479		       "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4480		       hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4481		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4482		break;
4483	case HFC_IO_MODE_REGIO:
4484		hc->HFC_outb = HFC_outb_regio;
4485		hc->HFC_inb = HFC_inb_regio;
4486		hc->HFC_inw = HFC_inw_regio;
4487		hc->HFC_wait = HFC_wait_regio;
4488		hc->read_fifo = read_fifo_regio;
4489		hc->write_fifo = write_fifo_regio;
4490		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4491		if (!hc->pci_iobase) {
4492			printk(KERN_WARNING
4493			       "HFC-multi: No IO for PCI card found\n");
4494			pci_disable_device(hc->pci_dev);
4495			return -EIO;
4496		}
4497
4498		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4499			printk(KERN_WARNING "HFC-multi: failed to request "
4500			       "address space at 0x%08lx (internal error)\n",
4501			       hc->pci_iobase);
4502			pci_disable_device(hc->pci_dev);
4503			return -EIO;
4504		}
4505
4506		printk(KERN_INFO
4507		       "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4508		       m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4509		       hc->pci_dev->irq, HZ, hc->leds);
4510		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4511		break;
4512	default:
4513		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4514		pci_disable_device(hc->pci_dev);
4515		return -EIO;
4516	}
4517
4518	pci_set_drvdata(hc->pci_dev, hc);
4519
4520	/* At this point the needed PCI config is done */
4521	/* fifos are still not enabled */
4522	return 0;
4523}
4524
4525
4526/*
4527 * remove port
4528 */
4529
4530static void
4531release_port(struct hfc_multi *hc, struct dchannel *dch)
4532{
4533	int	pt, ci, i = 0;
4534	u_long	flags;
4535	struct bchannel *pb;
4536
4537	ci = dch->slot;
4538	pt = hc->chan[ci].port;
4539
4540	if (debug & DEBUG_HFCMULTI_INIT)
4541		printk(KERN_DEBUG "%s: entered for port %d\n",
4542		       __func__, pt + 1);
4543
4544	if (pt >= hc->ports) {
4545		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4546		       __func__, pt + 1);
4547		return;
4548	}
4549
4550	if (debug & DEBUG_HFCMULTI_INIT)
4551		printk(KERN_DEBUG "%s: releasing port=%d\n",
4552		       __func__, pt + 1);
4553
4554	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4555		l1_event(dch->l1, CLOSE_CHANNEL);
4556
4557	hc->chan[ci].dch = NULL;
4558
4559	if (hc->created[pt]) {
4560		hc->created[pt] = 0;
4561		mISDN_unregister_device(&dch->dev);
4562	}
4563
4564	spin_lock_irqsave(&hc->lock, flags);
4565
4566	if (dch->timer.function) {
4567		del_timer(&dch->timer);
4568		dch->timer.function = NULL;
4569	}
4570
4571	if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4572		/* remove sync */
4573		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4574			hc->syncronized = 0;
4575			plxsd_checksync(hc, 1);
4576		}
4577		/* free channels */
4578		for (i = 0; i <= 31; i++) {
4579			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4580				continue;
4581			if (hc->chan[i].bch) {
4582				if (debug & DEBUG_HFCMULTI_INIT)
4583					printk(KERN_DEBUG
4584					       "%s: free port %d channel %d\n",
4585					       __func__, hc->chan[i].port + 1, i);
4586				pb = hc->chan[i].bch;
4587				hc->chan[i].bch = NULL;
4588				spin_unlock_irqrestore(&hc->lock, flags);
4589				mISDN_freebchannel(pb);
4590				kfree(pb);
4591				kfree(hc->chan[i].coeff);
4592				spin_lock_irqsave(&hc->lock, flags);
4593			}
4594		}
4595	} else {
4596		/* remove sync */
4597		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4598			hc->syncronized &=
4599				~(1 << hc->chan[ci].port);
4600			plxsd_checksync(hc, 1);
4601		}
4602		/* free channels */
4603		if (hc->chan[ci - 2].bch) {
4604			if (debug & DEBUG_HFCMULTI_INIT)
4605				printk(KERN_DEBUG
4606				       "%s: free port %d channel %d\n",
4607				       __func__, hc->chan[ci - 2].port + 1,
4608				       ci - 2);
4609			pb = hc->chan[ci - 2].bch;
4610			hc->chan[ci - 2].bch = NULL;
4611			spin_unlock_irqrestore(&hc->lock, flags);
4612			mISDN_freebchannel(pb);
4613			kfree(pb);
4614			kfree(hc->chan[ci - 2].coeff);
4615			spin_lock_irqsave(&hc->lock, flags);
4616		}
4617		if (hc->chan[ci - 1].bch) {
4618			if (debug & DEBUG_HFCMULTI_INIT)
4619				printk(KERN_DEBUG
4620				       "%s: free port %d channel %d\n",
4621				       __func__, hc->chan[ci - 1].port + 1,
4622				       ci - 1);
4623			pb = hc->chan[ci - 1].bch;
4624			hc->chan[ci - 1].bch = NULL;
4625			spin_unlock_irqrestore(&hc->lock, flags);
4626			mISDN_freebchannel(pb);
4627			kfree(pb);
4628			kfree(hc->chan[ci - 1].coeff);
4629			spin_lock_irqsave(&hc->lock, flags);
4630		}
4631	}
4632
4633	spin_unlock_irqrestore(&hc->lock, flags);
4634
4635	if (debug & DEBUG_HFCMULTI_INIT)
4636		printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4637			pt+1, ci);
4638	mISDN_freedchannel(dch);
4639	kfree(dch);
4640
4641	if (debug & DEBUG_HFCMULTI_INIT)
4642		printk(KERN_DEBUG "%s: done!\n", __func__);
4643}
4644
4645static void
4646release_card(struct hfc_multi *hc)
4647{
4648	u_long	flags;
4649	int	ch;
4650
4651	if (debug & DEBUG_HFCMULTI_INIT)
4652		printk(KERN_DEBUG "%s: release card (%d) entered\n",
4653		       __func__, hc->id);
4654
4655	/* unregister clock source */
4656	if (hc->iclock)
4657		mISDN_unregister_clock(hc->iclock);
4658
4659	/* disable and free irq */
4660	spin_lock_irqsave(&hc->lock, flags);
4661	disable_hwirq(hc);
4662	spin_unlock_irqrestore(&hc->lock, flags);
4663	udelay(1000);
4664	if (hc->irq) {
4665		if (debug & DEBUG_HFCMULTI_INIT)
4666			printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4667			    __func__, hc->irq, hc);
4668		free_irq(hc->irq, hc);
4669		hc->irq = 0;
4670
4671	}
4672
4673	/* disable D-channels & B-channels */
4674	if (debug & DEBUG_HFCMULTI_INIT)
4675		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4676		       __func__);
4677	for (ch = 0; ch <= 31; ch++) {
4678		if (hc->chan[ch].dch)
4679			release_port(hc, hc->chan[ch].dch);
4680	}
4681
4682	/* dimm leds */
4683	if (hc->leds)
4684		hfcmulti_leds(hc);
4685
4686	/* release hardware */
4687	release_io_hfcmulti(hc);
4688
4689	if (debug & DEBUG_HFCMULTI_INIT)
4690		printk(KERN_DEBUG "%s: remove instance from list\n",
4691		       __func__);
4692	list_del(&hc->list);
4693
4694	if (debug & DEBUG_HFCMULTI_INIT)
4695		printk(KERN_DEBUG "%s: delete instance\n", __func__);
4696	if (hc == syncmaster)
4697		syncmaster = NULL;
4698	kfree(hc);
4699	if (debug & DEBUG_HFCMULTI_INIT)
4700		printk(KERN_DEBUG "%s: card successfully removed\n",
4701		       __func__);
4702}
4703
4704static void
4705init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4706{
4707	/* set optical line type */
4708	if (port[Port_cnt] & 0x001) {
4709		if (!m->opticalsupport)  {
4710			printk(KERN_INFO
4711			       "This board has no optical "
4712			       "support\n");
4713		} else {
4714			if (debug & DEBUG_HFCMULTI_INIT)
4715				printk(KERN_DEBUG
4716				       "%s: PORT set optical "
4717				       "interfacs: card(%d) "
4718				       "port(%d)\n",
4719				       __func__,
4720				       HFC_cnt + 1, 1);
4721			test_and_set_bit(HFC_CFG_OPTICAL,
4722			    &hc->chan[hc->dnum[0]].cfg);
4723		}
4724	}
4725	/* set LOS report */
4726	if (port[Port_cnt] & 0x004) {
4727		if (debug & DEBUG_HFCMULTI_INIT)
4728			printk(KERN_DEBUG "%s: PORT set "
4729			       "LOS report: card(%d) port(%d)\n",
4730			       __func__, HFC_cnt + 1, 1);
4731		test_and_set_bit(HFC_CFG_REPORT_LOS,
4732		    &hc->chan[hc->dnum[0]].cfg);
4733	}
4734	/* set AIS report */
4735	if (port[Port_cnt] & 0x008) {
4736		if (debug & DEBUG_HFCMULTI_INIT)
4737			printk(KERN_DEBUG "%s: PORT set "
4738			       "AIS report: card(%d) port(%d)\n",
4739			       __func__, HFC_cnt + 1, 1);
4740		test_and_set_bit(HFC_CFG_REPORT_AIS,
4741		    &hc->chan[hc->dnum[0]].cfg);
4742	}
4743	/* set SLIP report */
4744	if (port[Port_cnt] & 0x010) {
4745		if (debug & DEBUG_HFCMULTI_INIT)
4746			printk(KERN_DEBUG
4747			       "%s: PORT set SLIP report: "
4748			       "card(%d) port(%d)\n",
4749			       __func__, HFC_cnt + 1, 1);
4750		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4751		    &hc->chan[hc->dnum[0]].cfg);
4752	}
4753	/* set RDI report */
4754	if (port[Port_cnt] & 0x020) {
4755		if (debug & DEBUG_HFCMULTI_INIT)
4756			printk(KERN_DEBUG
4757			       "%s: PORT set RDI report: "
4758			       "card(%d) port(%d)\n",
4759			       __func__, HFC_cnt + 1, 1);
4760		test_and_set_bit(HFC_CFG_REPORT_RDI,
4761		    &hc->chan[hc->dnum[0]].cfg);
4762	}
4763	/* set CRC-4 Mode */
4764	if (!(port[Port_cnt] & 0x100)) {
4765		if (debug & DEBUG_HFCMULTI_INIT)
4766			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4767			       " card(%d) port(%d)\n",
4768			       __func__, HFC_cnt + 1, 1);
4769		test_and_set_bit(HFC_CFG_CRC4,
4770		    &hc->chan[hc->dnum[0]].cfg);
4771	} else {
4772		if (debug & DEBUG_HFCMULTI_INIT)
4773			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4774			       " report: card(%d) port(%d)\n",
4775			       __func__, HFC_cnt + 1, 1);
4776	}
4777	/* set forced clock */
4778	if (port[Port_cnt] & 0x0200) {
4779		if (debug & DEBUG_HFCMULTI_INIT)
4780			printk(KERN_DEBUG "%s: PORT force getting clock from "
4781			       "E1: card(%d) port(%d)\n",
4782			       __func__, HFC_cnt + 1, 1);
4783		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4784	} else
4785		if (port[Port_cnt] & 0x0400) {
4786			if (debug & DEBUG_HFCMULTI_INIT)
4787				printk(KERN_DEBUG "%s: PORT force putting clock to "
4788				       "E1: card(%d) port(%d)\n",
4789				       __func__, HFC_cnt + 1, 1);
4790			test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4791		}
4792	/* set JATT PLL */
4793	if (port[Port_cnt] & 0x0800) {
4794		if (debug & DEBUG_HFCMULTI_INIT)
4795			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4796			       "E1: card(%d) port(%d)\n",
4797			       __func__, HFC_cnt + 1, 1);
4798		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4799	}
4800	/* set elastic jitter buffer */
4801	if (port[Port_cnt] & 0x3000) {
4802		hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4803		if (debug & DEBUG_HFCMULTI_INIT)
4804			printk(KERN_DEBUG
4805			       "%s: PORT set elastic "
4806			       "buffer to %d: card(%d) port(%d)\n",
4807			    __func__, hc->chan[hc->dnum[0]].jitter,
4808			       HFC_cnt + 1, 1);
4809	} else
4810		hc->chan[hc->dnum[0]].jitter = 2; /* default */
4811}
4812
4813static int
4814init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4815{
4816	struct dchannel	*dch;
4817	struct bchannel	*bch;
4818	int		ch, ret = 0;
4819	char		name[MISDN_MAX_IDLEN];
4820	int		bcount = 0;
4821
4822	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4823	if (!dch)
4824		return -ENOMEM;
4825	dch->debug = debug;
4826	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4827	dch->hw = hc;
4828	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4829	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4830	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4831	dch->dev.D.send = handle_dmsg;
4832	dch->dev.D.ctrl = hfcm_dctrl;
4833	dch->slot = hc->dnum[pt];
4834	hc->chan[hc->dnum[pt]].dch = dch;
4835	hc->chan[hc->dnum[pt]].port = pt;
4836	hc->chan[hc->dnum[pt]].nt_timer = -1;
4837	for (ch = 1; ch <= 31; ch++) {
4838		if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4839			continue;
4840		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4841		if (!bch) {
4842			printk(KERN_ERR "%s: no memory for bchannel\n",
4843			    __func__);
4844			ret = -ENOMEM;
4845			goto free_chan;
4846		}
4847		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4848		if (!hc->chan[ch].coeff) {
4849			printk(KERN_ERR "%s: no memory for coeffs\n",
4850			    __func__);
4851			ret = -ENOMEM;
4852			kfree(bch);
4853			goto free_chan;
4854		}
4855		bch->nr = ch;
4856		bch->slot = ch;
4857		bch->debug = debug;
4858		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4859		bch->hw = hc;
4860		bch->ch.send = handle_bmsg;
4861		bch->ch.ctrl = hfcm_bctrl;
4862		bch->ch.nr = ch;
4863		list_add(&bch->ch.list, &dch->dev.bchannels);
4864		hc->chan[ch].bch = bch;
4865		hc->chan[ch].port = pt;
4866		set_channelmap(bch->nr, dch->dev.channelmap);
4867		bcount++;
4868	}
4869	dch->dev.nrbchan = bcount;
4870	if (pt == 0)
4871		init_e1_port_hw(hc, m);
4872	if (hc->ports > 1)
4873		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4874				HFC_cnt + 1, pt+1);
4875	else
4876		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4877	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4878	if (ret)
4879		goto free_chan;
4880	hc->created[pt] = 1;
4881	return ret;
4882free_chan:
4883	release_port(hc, dch);
4884	return ret;
4885}
4886
4887static int
4888init_multi_port(struct hfc_multi *hc, int pt)
4889{
4890	struct dchannel	*dch;
4891	struct bchannel	*bch;
4892	int		ch, i, ret = 0;
4893	char		name[MISDN_MAX_IDLEN];
4894
4895	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4896	if (!dch)
4897		return -ENOMEM;
4898	dch->debug = debug;
4899	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4900	dch->hw = hc;
4901	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4902	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4903		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4904	dch->dev.D.send = handle_dmsg;
4905	dch->dev.D.ctrl = hfcm_dctrl;
4906	dch->dev.nrbchan = 2;
4907	i = pt << 2;
4908	dch->slot = i + 2;
4909	hc->chan[i + 2].dch = dch;
4910	hc->chan[i + 2].port = pt;
4911	hc->chan[i + 2].nt_timer = -1;
4912	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4913		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4914		if (!bch) {
4915			printk(KERN_ERR "%s: no memory for bchannel\n",
4916			       __func__);
4917			ret = -ENOMEM;
4918			goto free_chan;
4919		}
4920		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4921		if (!hc->chan[i + ch].coeff) {
4922			printk(KERN_ERR "%s: no memory for coeffs\n",
4923			       __func__);
4924			ret = -ENOMEM;
4925			kfree(bch);
4926			goto free_chan;
4927		}
4928		bch->nr = ch + 1;
4929		bch->slot = i + ch;
4930		bch->debug = debug;
4931		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4932		bch->hw = hc;
4933		bch->ch.send = handle_bmsg;
4934		bch->ch.ctrl = hfcm_bctrl;
4935		bch->ch.nr = ch + 1;
4936		list_add(&bch->ch.list, &dch->dev.bchannels);
4937		hc->chan[i + ch].bch = bch;
4938		hc->chan[i + ch].port = pt;
4939		set_channelmap(bch->nr, dch->dev.channelmap);
4940	}
4941	/* set master clock */
4942	if (port[Port_cnt] & 0x001) {
4943		if (debug & DEBUG_HFCMULTI_INIT)
4944			printk(KERN_DEBUG
4945			       "%s: PROTOCOL set master clock: "
4946			       "card(%d) port(%d)\n",
4947			       __func__, HFC_cnt + 1, pt + 1);
4948		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4949			printk(KERN_ERR "Error: Master clock "
4950			       "for port(%d) of card(%d) is only"
4951			       " possible with TE-mode\n",
4952			       pt + 1, HFC_cnt + 1);
4953			ret = -EINVAL;
4954			goto free_chan;
4955		}
4956		if (hc->masterclk >= 0) {
4957			printk(KERN_ERR "Error: Master clock "
4958			       "for port(%d) of card(%d) already "
4959			       "defined for port(%d)\n",
4960			       pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4961			ret = -EINVAL;
4962			goto free_chan;
4963		}
4964		hc->masterclk = pt;
4965	}
4966	/* set transmitter line to non capacitive */
4967	if (port[Port_cnt] & 0x002) {
4968		if (debug & DEBUG_HFCMULTI_INIT)
4969			printk(KERN_DEBUG
4970			       "%s: PROTOCOL set non capacitive "
4971			       "transmitter: card(%d) port(%d)\n",
4972			       __func__, HFC_cnt + 1, pt + 1);
4973		test_and_set_bit(HFC_CFG_NONCAP_TX,
4974				 &hc->chan[i + 2].cfg);
4975	}
4976	/* disable E-channel */
4977	if (port[Port_cnt] & 0x004) {
4978		if (debug & DEBUG_HFCMULTI_INIT)
4979			printk(KERN_DEBUG
4980			       "%s: PROTOCOL disable E-channel: "
4981			       "card(%d) port(%d)\n",
4982			       __func__, HFC_cnt + 1, pt + 1);
4983		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4984				 &hc->chan[i + 2].cfg);
4985	}
4986	if (hc->ctype == HFC_TYPE_XHFC) {
4987		snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4988			 HFC_cnt + 1, pt + 1);
4989		ret = mISDN_register_device(&dch->dev, NULL, name);
4990	} else {
4991		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4992			 hc->ctype, HFC_cnt + 1, pt + 1);
4993		ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4994	}
4995	if (ret)
4996		goto free_chan;
4997	hc->created[pt] = 1;
4998	return ret;
4999free_chan:
5000	release_port(hc, dch);
5001	return ret;
5002}
5003
5004static int
5005hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
5006	      const struct pci_device_id *ent)
5007{
5008	int		ret_err = 0;
5009	int		pt;
5010	struct hfc_multi	*hc;
5011	u_long		flags;
5012	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
5013	int		i, ch;
5014	u_int		maskcheck;
5015
5016	if (HFC_cnt >= MAX_CARDS) {
5017		printk(KERN_ERR "too many cards (max=%d).\n",
5018		       MAX_CARDS);
5019		return -EINVAL;
5020	}
5021	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
5022		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
5023		       "type[%d] %d was supplied as module parameter\n",
5024		       m->vendor_name, m->card_name, m->type, HFC_cnt,
5025		       type[HFC_cnt] & 0xff);
5026		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
5027		       "first, to see cards and their types.");
5028		return -EINVAL;
5029	}
5030	if (debug & DEBUG_HFCMULTI_INIT)
5031		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
5032		       __func__, m->vendor_name, m->card_name, m->type,
5033		       type[HFC_cnt]);
5034
5035	/* allocate card+fifo structure */
5036	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
5037	if (!hc) {
5038		printk(KERN_ERR "No kmem for HFC-Multi card\n");
5039		return -ENOMEM;
5040	}
5041	spin_lock_init(&hc->lock);
5042	hc->mtyp = m;
5043	hc->ctype =  m->type;
5044	hc->ports = m->ports;
5045	hc->id = HFC_cnt;
5046	hc->pcm = pcm[HFC_cnt];
5047	hc->io_mode = iomode[HFC_cnt];
5048	if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5049		/* fragment card */
5050		pt = 0;
5051		maskcheck = 0;
5052		for (ch = 0; ch <= 31; ch++) {
5053			if (!((1 << ch) & dmask[E1_cnt]))
5054				continue;
5055			hc->dnum[pt] = ch;
5056			hc->bmask[pt] = bmask[bmask_cnt++];
5057			if ((maskcheck & hc->bmask[pt])
5058			 || (dmask[E1_cnt] & hc->bmask[pt])) {
5059				printk(KERN_INFO
5060				       "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5061				       E1_cnt + 1, pt);
5062				kfree(hc);
5063				return -EINVAL;
5064			}
5065			maskcheck |= hc->bmask[pt];
5066			printk(KERN_INFO
5067			       "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5068				E1_cnt + 1, ch, hc->bmask[pt]);
5069			pt++;
5070		}
5071		hc->ports = pt;
5072	}
5073	if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5074		/* default card layout */
5075		hc->dnum[0] = 16;
5076		hc->bmask[0] = 0xfffefffe;
5077		hc->ports = 1;
5078	}
5079
5080	/* set chip specific features */
5081	hc->masterclk = -1;
5082	if (type[HFC_cnt] & 0x100) {
5083		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5084		hc->silence = 0xff; /* ulaw silence */
5085	} else
5086		hc->silence = 0x2a; /* alaw silence */
5087	if ((poll >> 1) > sizeof(hc->silence_data)) {
5088		printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5089		       "please fix\n");
5090		kfree(hc);
5091		return -EINVAL;
5092	}
5093	for (i = 0; i < (poll >> 1); i++)
5094		hc->silence_data[i] = hc->silence;
5095
5096	if (hc->ctype != HFC_TYPE_XHFC) {
5097		if (!(type[HFC_cnt] & 0x200))
5098			test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5099		test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5100	}
5101
5102	if (type[HFC_cnt] & 0x800)
5103		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5104	if (type[HFC_cnt] & 0x1000) {
5105		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5106		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5107	}
5108	if (type[HFC_cnt] & 0x4000)
5109		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5110	if (type[HFC_cnt] & 0x8000)
5111		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5112	hc->slots = 32;
5113	if (type[HFC_cnt] & 0x10000)
5114		hc->slots = 64;
5115	if (type[HFC_cnt] & 0x20000)
5116		hc->slots = 128;
5117	if (type[HFC_cnt] & 0x80000) {
5118		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5119		hc->wdcount = 0;
5120		hc->wdbyte = V_GPIO_OUT2;
5121		printk(KERN_NOTICE "Watchdog enabled\n");
5122	}
5123
5124	if (pdev && ent)
5125		/* setup pci, hc->slots may change due to PLXSD */
5126		ret_err = setup_pci(hc, pdev, ent);
5127	else
5128#ifdef CONFIG_MISDN_HFCMULTI_8xx
5129		ret_err = setup_embedded(hc, m);
5130#else
5131	{
5132		printk(KERN_WARNING "Embedded IO Mode not selected\n");
5133		ret_err = -EIO;
5134	}
5135#endif
5136	if (ret_err) {
5137		if (hc == syncmaster)
5138			syncmaster = NULL;
5139		kfree(hc);
5140		return ret_err;
5141	}
5142
5143	hc->HFC_outb_nodebug = hc->HFC_outb;
5144	hc->HFC_inb_nodebug = hc->HFC_inb;
5145	hc->HFC_inw_nodebug = hc->HFC_inw;
5146	hc->HFC_wait_nodebug = hc->HFC_wait;
5147#ifdef HFC_REGISTER_DEBUG
5148	hc->HFC_outb = HFC_outb_debug;
5149	hc->HFC_inb = HFC_inb_debug;
5150	hc->HFC_inw = HFC_inw_debug;
5151	hc->HFC_wait = HFC_wait_debug;
5152#endif
5153	/* create channels */
5154	for (pt = 0; pt < hc->ports; pt++) {
5155		if (Port_cnt >= MAX_PORTS) {
5156			printk(KERN_ERR "too many ports (max=%d).\n",
5157			       MAX_PORTS);
5158			ret_err = -EINVAL;
5159			goto free_card;
5160		}
5161		if (hc->ctype == HFC_TYPE_E1)
5162			ret_err = init_e1_port(hc, m, pt);
5163		else
5164			ret_err = init_multi_port(hc, pt);
5165		if (debug & DEBUG_HFCMULTI_INIT)
5166			printk(KERN_DEBUG
5167			    "%s: Registering D-channel, card(%d) port(%d) "
5168			       "result %d\n",
5169			    __func__, HFC_cnt + 1, pt + 1, ret_err);
5170
5171		if (ret_err) {
5172			while (pt) { /* release already registered ports */
5173				pt--;
5174				if (hc->ctype == HFC_TYPE_E1)
5175					release_port(hc,
5176						hc->chan[hc->dnum[pt]].dch);
5177				else
5178					release_port(hc,
5179						hc->chan[(pt << 2) + 2].dch);
5180			}
5181			goto free_card;
5182		}
5183		if (hc->ctype != HFC_TYPE_E1)
5184			Port_cnt++; /* for each S0 port */
5185	}
5186	if (hc->ctype == HFC_TYPE_E1) {
5187		Port_cnt++; /* for each E1 port */
5188		E1_cnt++;
5189	}
5190
5191	/* disp switches */
5192	switch (m->dip_type) {
5193	case DIP_4S:
5194		/*
5195		 * Get DIP setting for beroNet 1S/2S/4S cards
5196		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5197		 * GPI 19/23 (R_GPI_IN2))
5198		 */
5199		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5200			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5201			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
5202
5203		/* Port mode (TE/NT) jumpers */
5204		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5205
5206		if (test_bit(HFC_CHIP_B410P, &hc->chip))
5207			pmj = ~pmj & 0xf;
5208
5209		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5210		       m->vendor_name, m->card_name, dips, pmj);
5211		break;
5212	case DIP_8S:
5213		/*
5214		 * Get DIP Setting for beroNet 8S0+ cards
5215		 * Enable PCI auxbridge function
5216		 */
5217		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5218		/* prepare access to auxport */
5219		outw(0x4000, hc->pci_iobase + 4);
5220		/*
5221		 * some dummy reads are required to
5222		 * read valid DIP switch data
5223		 */
5224		dips = inb(hc->pci_iobase);
5225		dips = inb(hc->pci_iobase);
5226		dips = inb(hc->pci_iobase);
5227		dips = ~inb(hc->pci_iobase) & 0x3F;
5228		outw(0x0, hc->pci_iobase + 4);
5229		/* disable PCI auxbridge function */
5230		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5231		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5232		       m->vendor_name, m->card_name, dips);
5233		break;
5234	case DIP_E1:
5235		/*
5236		 * get DIP Setting for beroNet E1 cards
5237		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5238		 */
5239		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5240		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5241		       m->vendor_name, m->card_name, dips);
5242		break;
5243	}
5244
5245	/* add to list */
5246	spin_lock_irqsave(&HFClock, flags);
5247	list_add_tail(&hc->list, &HFClist);
5248	spin_unlock_irqrestore(&HFClock, flags);
5249
5250	/* use as clock source */
5251	if (clock == HFC_cnt + 1)
5252		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5253
5254	/* initialize hardware */
5255	hc->irq = (m->irq) ? : hc->pci_dev->irq;
5256	ret_err = init_card(hc);
5257	if (ret_err) {
5258		printk(KERN_ERR "init card returns %d\n", ret_err);
5259		release_card(hc);
5260		return ret_err;
5261	}
5262
5263	/* start IRQ and return */
5264	spin_lock_irqsave(&hc->lock, flags);
5265	enable_hwirq(hc);
5266	spin_unlock_irqrestore(&hc->lock, flags);
5267	return 0;
5268
5269free_card:
5270	release_io_hfcmulti(hc);
5271	if (hc == syncmaster)
5272		syncmaster = NULL;
5273	kfree(hc);
5274	return ret_err;
5275}
5276
5277static void hfc_remove_pci(struct pci_dev *pdev)
5278{
5279	struct hfc_multi	*card = pci_get_drvdata(pdev);
5280	u_long			flags;
5281
5282	if (debug)
5283		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5284		       "device:%x subvendor:%x subdevice:%x\n",
5285		       pdev->vendor, pdev->device,
5286		       pdev->subsystem_vendor, pdev->subsystem_device);
5287
5288	if (card) {
5289		spin_lock_irqsave(&HFClock, flags);
5290		release_card(card);
5291		spin_unlock_irqrestore(&HFClock, flags);
5292	}  else {
5293		if (debug)
5294			printk(KERN_DEBUG "%s: drvdata already removed\n",
5295			       __func__);
5296	}
5297}
5298
5299#define	VENDOR_CCD	"Cologne Chip AG"
5300#define	VENDOR_BN	"beroNet GmbH"
5301#define	VENDOR_DIG	"Digium Inc."
5302#define VENDOR_JH	"Junghanns.NET GmbH"
5303#define VENDOR_PRIM	"PrimuX"
5304
5305static const struct hm_map hfcm_map[] = {
5306	/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5307	/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5308	/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5309	/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5310	/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5311	/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5312	/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5313	/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5314	/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5315	/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5316	/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5317	/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5318
5319	/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5320	/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5321		 HFC_IO_MODE_REGIO, 0},
5322	/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5323	/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5324
5325	/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5326	/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5327	/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5328
5329	/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5330	/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5331	/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5332	/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5333
5334	/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5335	/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5336	/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5337
5338	/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5339		 HFC_IO_MODE_PLXSD, 0},
5340	/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5341		 HFC_IO_MODE_PLXSD, 0},
5342	/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5343	/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5344	/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5345	/*31*/	{VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5346		 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5347	/*32*/	{VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5348	/*33*/	{VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5349	/*34*/	{VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5350};
5351
5352#undef H
5353#define H(x)	((unsigned long)&hfcm_map[x])
5354static struct pci_device_id hfmultipci_ids[] = {
5355
5356	/* Cards with HFC-4S Chip */
5357	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5358	  PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5359	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5360	  PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5361	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5362	  PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5363	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5364	  PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5365	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5366	  PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5367	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5368	  PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5369	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5370	  PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5371	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5372	  PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5373	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5374	  PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5375	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5376	  PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5377	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5378	  PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5379	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5380	  PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5381	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5382	  PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5383	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5384	  PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5385	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5386	  0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5387	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5388	  0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5389
5390	/* Cards with HFC-8S Chip */
5391	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5392	  PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5393	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5394	  PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5395	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5396	  PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5397	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5398	  PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5399	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5400	  PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5401	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5402	  PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5403	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5404	  PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5405	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5406	  PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5407	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5408	  PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5409
5410
5411	/* Cards with HFC-E1 Chip */
5412	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5413	  PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5414	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5415	  PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5416	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5417	  PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5418	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5419	  PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5420
5421	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5422	  PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5423	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5424	  PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5425	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5426	  PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5427
5428	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5429	  PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5430	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5431	  PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5432
5433	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5434	  PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5435
5436	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5437	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5438	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5439	{0, }
5440};
5441#undef H
5442
5443MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5444
5445static int
5446hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5447{
5448	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5449	int		ret;
5450
5451	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5452		    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5453		    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5454		    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5455		printk(KERN_ERR
5456		       "Unknown HFC multiport controller (vendor:%04x device:%04x "
5457		       "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5458		       pdev->device, pdev->subsystem_vendor,
5459		       pdev->subsystem_device);
5460		printk(KERN_ERR
5461		       "Please contact the driver maintainer for support.\n");
5462		return -ENODEV;
5463	}
5464	ret = hfcmulti_init(m, pdev, ent);
5465	if (ret)
5466		return ret;
5467	HFC_cnt++;
5468	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5469	return 0;
5470}
5471
5472static struct pci_driver hfcmultipci_driver = {
5473	.name		= "hfc_multi",
5474	.probe		= hfcmulti_probe,
5475	.remove		= hfc_remove_pci,
5476	.id_table	= hfmultipci_ids,
5477};
5478
5479static void __exit
5480HFCmulti_cleanup(void)
5481{
5482	struct hfc_multi *card, *next;
5483
5484	/* get rid of all devices of this driver */
5485	list_for_each_entry_safe(card, next, &HFClist, list)
5486		release_card(card);
5487	pci_unregister_driver(&hfcmultipci_driver);
5488}
5489
5490static int __init
5491HFCmulti_init(void)
5492{
5493	int err;
5494	int i, xhfc = 0;
5495	struct hm_map m;
5496
5497	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5498
5499#ifdef IRQ_DEBUG
5500	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5501#endif
5502
5503	spin_lock_init(&HFClock);
5504	spin_lock_init(&plx_lock);
5505
5506	if (debug & DEBUG_HFCMULTI_INIT)
5507		printk(KERN_DEBUG "%s: init entered\n", __func__);
5508
5509	switch (poll) {
5510	case 0:
5511		poll_timer = 6;
5512		poll = 128;
5513		break;
5514	case 8:
5515		poll_timer = 2;
5516		break;
5517	case 16:
5518		poll_timer = 3;
5519		break;
5520	case 32:
5521		poll_timer = 4;
5522		break;
5523	case 64:
5524		poll_timer = 5;
5525		break;
5526	case 128:
5527		poll_timer = 6;
5528		break;
5529	case 256:
5530		poll_timer = 7;
5531		break;
5532	default:
5533		printk(KERN_ERR
5534		       "%s: Wrong poll value (%d).\n", __func__, poll);
5535		err = -EINVAL;
5536		return err;
5537
5538	}
5539
5540	if (!clock)
5541		clock = 1;
5542
5543	/* Register the embedded devices.
5544	 * This should be done before the PCI cards registration */
5545	switch (hwid) {
5546	case HWID_MINIP4:
5547		xhfc = 1;
5548		m = hfcm_map[31];
5549		break;
5550	case HWID_MINIP8:
5551		xhfc = 2;
5552		m = hfcm_map[31];
5553		break;
5554	case HWID_MINIP16:
5555		xhfc = 4;
5556		m = hfcm_map[31];
5557		break;
5558	default:
5559		xhfc = 0;
5560	}
5561
5562	for (i = 0; i < xhfc; ++i) {
5563		err = hfcmulti_init(&m, NULL, NULL);
5564		if (err) {
5565			printk(KERN_ERR "error registering embedded driver: "
5566			       "%x\n", err);
5567			return err;
5568		}
5569		HFC_cnt++;
5570		printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5571	}
5572
5573	/* Register the PCI cards */
5574	err = pci_register_driver(&hfcmultipci_driver);
5575	if (err < 0) {
5576		printk(KERN_ERR "error registering pci driver: %x\n", err);
5577		return err;
5578	}
5579
5580	return 0;
5581}
5582
5583
5584module_init(HFCmulti_init);
5585module_exit(HFCmulti_cleanup);
5586