1/**
2 * OV519 driver
3 *
4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6 *
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
9 *
10 * Original copyright for the ov511 driver is:
11 *
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
18 *
19 * ov51x-jpeg original copyright is:
20 *
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
28 *
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
33 *
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
37 *
38 */
39
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42#define MODULE_NAME "ov519"
43
44#include <linux/input.h>
45#include "gspca.h"
46
47/* The jpeg_hdr is used by w996Xcf only */
48/* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
49#define CONEX_CAM
50#include "jpeg.h"
51
52MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
53MODULE_DESCRIPTION("OV519 USB Camera Driver");
54MODULE_LICENSE("GPL");
55
56/* global parameters */
57static int frame_rate;
58
59/* Number of times to retry a failed I2C transaction. Increase this if you
60 * are getting "Failed to read sensor ID..." */
61static int i2c_detect_tries = 10;
62
63/* ov519 device descriptor */
64struct sd {
65	struct gspca_dev gspca_dev;		/* !! must be the first item */
66
67	struct v4l2_ctrl *jpegqual;
68	struct v4l2_ctrl *freq;
69	struct { /* h/vflip control cluster */
70		struct v4l2_ctrl *hflip;
71		struct v4l2_ctrl *vflip;
72	};
73	struct { /* autobrightness/brightness control cluster */
74		struct v4l2_ctrl *autobright;
75		struct v4l2_ctrl *brightness;
76	};
77
78	u8 revision;
79
80	u8 packet_nr;
81
82	char bridge;
83#define BRIDGE_OV511		0
84#define BRIDGE_OV511PLUS	1
85#define BRIDGE_OV518		2
86#define BRIDGE_OV518PLUS	3
87#define BRIDGE_OV519		4		/* = ov530 */
88#define BRIDGE_OVFX2		5
89#define BRIDGE_W9968CF		6
90#define BRIDGE_MASK		7
91
92	char invert_led;
93#define BRIDGE_INVERT_LED	8
94
95	char snapshot_pressed;
96	char snapshot_needs_reset;
97
98	/* Determined by sensor type */
99	u8 sif;
100
101#define QUALITY_MIN 50
102#define QUALITY_MAX 70
103#define QUALITY_DEF 50
104
105	u8 stopped;		/* Streaming is temporarily paused */
106	u8 first_frame;
107
108	u8 frame_rate;		/* current Framerate */
109	u8 clockdiv;		/* clockdiv override */
110
111	s8 sensor;		/* Type of image sensor chip (SEN_*) */
112
113	u8 sensor_addr;
114	u16 sensor_width;
115	u16 sensor_height;
116	s16 sensor_reg_cache[256];
117
118	u8 jpeg_hdr[JPEG_HDR_SZ];
119};
120enum sensors {
121	SEN_OV2610,
122	SEN_OV2610AE,
123	SEN_OV3610,
124	SEN_OV6620,
125	SEN_OV6630,
126	SEN_OV66308AF,
127	SEN_OV7610,
128	SEN_OV7620,
129	SEN_OV7620AE,
130	SEN_OV7640,
131	SEN_OV7648,
132	SEN_OV7660,
133	SEN_OV7670,
134	SEN_OV76BE,
135	SEN_OV8610,
136	SEN_OV9600,
137};
138
139/* Note this is a bit of a hack, but the w9968cf driver needs the code for all
140   the ov sensors which is already present here. When we have the time we
141   really should move the sensor drivers to v4l2 sub drivers. */
142#include "w996Xcf.c"
143
144/* table of the disabled controls */
145struct ctrl_valid {
146	unsigned int has_brightness:1;
147	unsigned int has_contrast:1;
148	unsigned int has_exposure:1;
149	unsigned int has_autogain:1;
150	unsigned int has_sat:1;
151	unsigned int has_hvflip:1;
152	unsigned int has_autobright:1;
153	unsigned int has_freq:1;
154};
155
156static const struct ctrl_valid valid_controls[] = {
157	[SEN_OV2610] = {
158		.has_exposure = 1,
159		.has_autogain = 1,
160	},
161	[SEN_OV2610AE] = {
162		.has_exposure = 1,
163		.has_autogain = 1,
164	},
165	[SEN_OV3610] = {
166		/* No controls */
167	},
168	[SEN_OV6620] = {
169		.has_brightness = 1,
170		.has_contrast = 1,
171		.has_sat = 1,
172		.has_autobright = 1,
173		.has_freq = 1,
174	},
175	[SEN_OV6630] = {
176		.has_brightness = 1,
177		.has_contrast = 1,
178		.has_sat = 1,
179		.has_autobright = 1,
180		.has_freq = 1,
181	},
182	[SEN_OV66308AF] = {
183		.has_brightness = 1,
184		.has_contrast = 1,
185		.has_sat = 1,
186		.has_autobright = 1,
187		.has_freq = 1,
188	},
189	[SEN_OV7610] = {
190		.has_brightness = 1,
191		.has_contrast = 1,
192		.has_sat = 1,
193		.has_autobright = 1,
194		.has_freq = 1,
195	},
196	[SEN_OV7620] = {
197		.has_brightness = 1,
198		.has_contrast = 1,
199		.has_sat = 1,
200		.has_autobright = 1,
201		.has_freq = 1,
202	},
203	[SEN_OV7620AE] = {
204		.has_brightness = 1,
205		.has_contrast = 1,
206		.has_sat = 1,
207		.has_autobright = 1,
208		.has_freq = 1,
209	},
210	[SEN_OV7640] = {
211		.has_brightness = 1,
212		.has_sat = 1,
213		.has_freq = 1,
214	},
215	[SEN_OV7648] = {
216		.has_brightness = 1,
217		.has_sat = 1,
218		.has_freq = 1,
219	},
220	[SEN_OV7660] = {
221		.has_brightness = 1,
222		.has_contrast = 1,
223		.has_sat = 1,
224		.has_hvflip = 1,
225		.has_freq = 1,
226	},
227	[SEN_OV7670] = {
228		.has_brightness = 1,
229		.has_contrast = 1,
230		.has_hvflip = 1,
231		.has_freq = 1,
232	},
233	[SEN_OV76BE] = {
234		.has_brightness = 1,
235		.has_contrast = 1,
236		.has_sat = 1,
237		.has_autobright = 1,
238		.has_freq = 1,
239	},
240	[SEN_OV8610] = {
241		.has_brightness = 1,
242		.has_contrast = 1,
243		.has_sat = 1,
244		.has_autobright = 1,
245	},
246	[SEN_OV9600] = {
247		.has_exposure = 1,
248		.has_autogain = 1,
249	},
250};
251
252static const struct v4l2_pix_format ov519_vga_mode[] = {
253	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
254		.bytesperline = 320,
255		.sizeimage = 320 * 240 * 3 / 8 + 590,
256		.colorspace = V4L2_COLORSPACE_JPEG,
257		.priv = 1},
258	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
259		.bytesperline = 640,
260		.sizeimage = 640 * 480 * 3 / 8 + 590,
261		.colorspace = V4L2_COLORSPACE_JPEG,
262		.priv = 0},
263};
264static const struct v4l2_pix_format ov519_sif_mode[] = {
265	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
266		.bytesperline = 160,
267		.sizeimage = 160 * 120 * 3 / 8 + 590,
268		.colorspace = V4L2_COLORSPACE_JPEG,
269		.priv = 3},
270	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
271		.bytesperline = 176,
272		.sizeimage = 176 * 144 * 3 / 8 + 590,
273		.colorspace = V4L2_COLORSPACE_JPEG,
274		.priv = 1},
275	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
276		.bytesperline = 320,
277		.sizeimage = 320 * 240 * 3 / 8 + 590,
278		.colorspace = V4L2_COLORSPACE_JPEG,
279		.priv = 2},
280	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
281		.bytesperline = 352,
282		.sizeimage = 352 * 288 * 3 / 8 + 590,
283		.colorspace = V4L2_COLORSPACE_JPEG,
284		.priv = 0},
285};
286
287/* Note some of the sizeimage values for the ov511 / ov518 may seem
288   larger then necessary, however they need to be this big as the ov511 /
289   ov518 always fills the entire isoc frame, using 0 padding bytes when
290   it doesn't have any data. So with low framerates the amount of data
291   transferred can become quite large (libv4l will remove all the 0 padding
292   in userspace). */
293static const struct v4l2_pix_format ov518_vga_mode[] = {
294	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
295		.bytesperline = 320,
296		.sizeimage = 320 * 240 * 3,
297		.colorspace = V4L2_COLORSPACE_JPEG,
298		.priv = 1},
299	{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
300		.bytesperline = 640,
301		.sizeimage = 640 * 480 * 2,
302		.colorspace = V4L2_COLORSPACE_JPEG,
303		.priv = 0},
304};
305static const struct v4l2_pix_format ov518_sif_mode[] = {
306	{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
307		.bytesperline = 160,
308		.sizeimage = 70000,
309		.colorspace = V4L2_COLORSPACE_JPEG,
310		.priv = 3},
311	{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
312		.bytesperline = 176,
313		.sizeimage = 70000,
314		.colorspace = V4L2_COLORSPACE_JPEG,
315		.priv = 1},
316	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
317		.bytesperline = 320,
318		.sizeimage = 320 * 240 * 3,
319		.colorspace = V4L2_COLORSPACE_JPEG,
320		.priv = 2},
321	{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
322		.bytesperline = 352,
323		.sizeimage = 352 * 288 * 3,
324		.colorspace = V4L2_COLORSPACE_JPEG,
325		.priv = 0},
326};
327
328static const struct v4l2_pix_format ov511_vga_mode[] = {
329	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
330		.bytesperline = 320,
331		.sizeimage = 320 * 240 * 3,
332		.colorspace = V4L2_COLORSPACE_JPEG,
333		.priv = 1},
334	{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
335		.bytesperline = 640,
336		.sizeimage = 640 * 480 * 2,
337		.colorspace = V4L2_COLORSPACE_JPEG,
338		.priv = 0},
339};
340static const struct v4l2_pix_format ov511_sif_mode[] = {
341	{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
342		.bytesperline = 160,
343		.sizeimage = 70000,
344		.colorspace = V4L2_COLORSPACE_JPEG,
345		.priv = 3},
346	{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
347		.bytesperline = 176,
348		.sizeimage = 70000,
349		.colorspace = V4L2_COLORSPACE_JPEG,
350		.priv = 1},
351	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
352		.bytesperline = 320,
353		.sizeimage = 320 * 240 * 3,
354		.colorspace = V4L2_COLORSPACE_JPEG,
355		.priv = 2},
356	{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
357		.bytesperline = 352,
358		.sizeimage = 352 * 288 * 3,
359		.colorspace = V4L2_COLORSPACE_JPEG,
360		.priv = 0},
361};
362
363static const struct v4l2_pix_format ovfx2_vga_mode[] = {
364	{320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
365		.bytesperline = 320,
366		.sizeimage = 320 * 240,
367		.colorspace = V4L2_COLORSPACE_SRGB,
368		.priv = 1},
369	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
370		.bytesperline = 640,
371		.sizeimage = 640 * 480,
372		.colorspace = V4L2_COLORSPACE_SRGB,
373		.priv = 0},
374};
375static const struct v4l2_pix_format ovfx2_cif_mode[] = {
376	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
377		.bytesperline = 160,
378		.sizeimage = 160 * 120,
379		.colorspace = V4L2_COLORSPACE_SRGB,
380		.priv = 3},
381	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
382		.bytesperline = 176,
383		.sizeimage = 176 * 144,
384		.colorspace = V4L2_COLORSPACE_SRGB,
385		.priv = 1},
386	{320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
387		.bytesperline = 320,
388		.sizeimage = 320 * 240,
389		.colorspace = V4L2_COLORSPACE_SRGB,
390		.priv = 2},
391	{352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
392		.bytesperline = 352,
393		.sizeimage = 352 * 288,
394		.colorspace = V4L2_COLORSPACE_SRGB,
395		.priv = 0},
396};
397static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
398	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
399		.bytesperline = 800,
400		.sizeimage = 800 * 600,
401		.colorspace = V4L2_COLORSPACE_SRGB,
402		.priv = 1},
403	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
404		.bytesperline = 1600,
405		.sizeimage = 1600 * 1200,
406		.colorspace = V4L2_COLORSPACE_SRGB},
407};
408static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
409	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
410		.bytesperline = 640,
411		.sizeimage = 640 * 480,
412		.colorspace = V4L2_COLORSPACE_SRGB,
413		.priv = 1},
414	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
415		.bytesperline = 800,
416		.sizeimage = 800 * 600,
417		.colorspace = V4L2_COLORSPACE_SRGB,
418		.priv = 1},
419	{1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
420		.bytesperline = 1024,
421		.sizeimage = 1024 * 768,
422		.colorspace = V4L2_COLORSPACE_SRGB,
423		.priv = 1},
424	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
425		.bytesperline = 1600,
426		.sizeimage = 1600 * 1200,
427		.colorspace = V4L2_COLORSPACE_SRGB,
428		.priv = 0},
429	{2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
430		.bytesperline = 2048,
431		.sizeimage = 2048 * 1536,
432		.colorspace = V4L2_COLORSPACE_SRGB,
433		.priv = 0},
434};
435static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
436	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
437		.bytesperline = 640,
438		.sizeimage = 640 * 480,
439		.colorspace = V4L2_COLORSPACE_SRGB,
440		.priv = 1},
441	{1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
442		.bytesperline = 1280,
443		.sizeimage = 1280 * 1024,
444		.colorspace = V4L2_COLORSPACE_SRGB},
445};
446
447/* Registers common to OV511 / OV518 */
448#define R51x_FIFO_PSIZE			0x30	/* 2 bytes wide w/ OV518(+) */
449#define R51x_SYS_RESET			0x50
450	/* Reset type flags */
451	#define	OV511_RESET_OMNICE	0x08
452#define R51x_SYS_INIT			0x53
453#define R51x_SYS_SNAP			0x52
454#define R51x_SYS_CUST_ID		0x5f
455#define R51x_COMP_LUT_BEGIN		0x80
456
457/* OV511 Camera interface register numbers */
458#define R511_CAM_DELAY			0x10
459#define R511_CAM_EDGE			0x11
460#define R511_CAM_PXCNT			0x12
461#define R511_CAM_LNCNT			0x13
462#define R511_CAM_PXDIV			0x14
463#define R511_CAM_LNDIV			0x15
464#define R511_CAM_UV_EN			0x16
465#define R511_CAM_LINE_MODE		0x17
466#define R511_CAM_OPTS			0x18
467
468#define R511_SNAP_FRAME			0x19
469#define R511_SNAP_PXCNT			0x1a
470#define R511_SNAP_LNCNT			0x1b
471#define R511_SNAP_PXDIV			0x1c
472#define R511_SNAP_LNDIV			0x1d
473#define R511_SNAP_UV_EN			0x1e
474#define R511_SNAP_OPTS			0x1f
475
476#define R511_DRAM_FLOW_CTL		0x20
477#define R511_FIFO_OPTS			0x31
478#define R511_I2C_CTL			0x40
479#define R511_SYS_LED_CTL		0x55	/* OV511+ only */
480#define R511_COMP_EN			0x78
481#define R511_COMP_LUT_EN		0x79
482
483/* OV518 Camera interface register numbers */
484#define R518_GPIO_OUT			0x56	/* OV518(+) only */
485#define R518_GPIO_CTL			0x57	/* OV518(+) only */
486
487/* OV519 Camera interface register numbers */
488#define OV519_R10_H_SIZE		0x10
489#define OV519_R11_V_SIZE		0x11
490#define OV519_R12_X_OFFSETL		0x12
491#define OV519_R13_X_OFFSETH		0x13
492#define OV519_R14_Y_OFFSETL		0x14
493#define OV519_R15_Y_OFFSETH		0x15
494#define OV519_R16_DIVIDER		0x16
495#define OV519_R20_DFR			0x20
496#define OV519_R25_FORMAT		0x25
497
498/* OV519 System Controller register numbers */
499#define OV519_R51_RESET1		0x51
500#define OV519_R54_EN_CLK1		0x54
501#define OV519_R57_SNAPSHOT		0x57
502
503#define OV519_GPIO_DATA_OUT0		0x71
504#define OV519_GPIO_IO_CTRL0		0x72
505
506/*#define OV511_ENDPOINT_ADDRESS 1	 * Isoc endpoint number */
507
508/*
509 * The FX2 chip does not give us a zero length read at end of frame.
510 * It does, however, give a short read at the end of a frame, if
511 * necessary, rather than run two frames together.
512 *
513 * By choosing the right bulk transfer size, we are guaranteed to always
514 * get a short read for the last read of each frame.  Frame sizes are
515 * always a composite number (width * height, or a multiple) so if we
516 * choose a prime number, we are guaranteed that the last read of a
517 * frame will be short.
518 *
519 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
520 * otherwise EOVERFLOW "babbling" errors occur.  I have not been able
521 * to figure out why.  [PMiller]
522 *
523 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
524 *
525 * It isn't enough to know the number of bytes per frame, in case we
526 * have data dropouts or buffer overruns (even though the FX2 double
527 * buffers, there are some pretty strict real time constraints for
528 * isochronous transfer for larger frame sizes).
529 */
530/*jfm: this value does not work for 800x600 - see isoc_init */
531#define OVFX2_BULK_SIZE (13 * 4096)
532
533/* I2C registers */
534#define R51x_I2C_W_SID		0x41
535#define R51x_I2C_SADDR_3	0x42
536#define R51x_I2C_SADDR_2	0x43
537#define R51x_I2C_R_SID		0x44
538#define R51x_I2C_DATA		0x45
539#define R518_I2C_CTL		0x47	/* OV518(+) only */
540#define OVFX2_I2C_ADDR		0x00
541
542/* I2C ADDRESSES */
543#define OV7xx0_SID   0x42
544#define OV_HIRES_SID 0x60		/* OV9xxx / OV2xxx / OV3xxx */
545#define OV8xx0_SID   0xa0
546#define OV6xx0_SID   0xc0
547
548/* OV7610 registers */
549#define OV7610_REG_GAIN		0x00	/* gain setting (5:0) */
550#define OV7610_REG_BLUE		0x01	/* blue channel balance */
551#define OV7610_REG_RED		0x02	/* red channel balance */
552#define OV7610_REG_SAT		0x03	/* saturation */
553#define OV8610_REG_HUE		0x04	/* 04 reserved */
554#define OV7610_REG_CNT		0x05	/* Y contrast */
555#define OV7610_REG_BRT		0x06	/* Y brightness */
556#define OV7610_REG_COM_C	0x14	/* misc common regs */
557#define OV7610_REG_ID_HIGH	0x1c	/* manufacturer ID MSB */
558#define OV7610_REG_ID_LOW	0x1d	/* manufacturer ID LSB */
559#define OV7610_REG_COM_I	0x29	/* misc settings */
560
561/* OV7660 and OV7670 registers */
562#define OV7670_R00_GAIN		0x00	/* Gain lower 8 bits (rest in vref) */
563#define OV7670_R01_BLUE		0x01	/* blue gain */
564#define OV7670_R02_RED		0x02	/* red gain */
565#define OV7670_R03_VREF		0x03	/* Pieces of GAIN, VSTART, VSTOP */
566#define OV7670_R04_COM1		0x04	/* Control 1 */
567/*#define OV7670_R07_AECHH	0x07	 * AEC MS 5 bits */
568#define OV7670_R0C_COM3		0x0c	/* Control 3 */
569#define OV7670_R0D_COM4		0x0d	/* Control 4 */
570#define OV7670_R0E_COM5		0x0e	/* All "reserved" */
571#define OV7670_R0F_COM6		0x0f	/* Control 6 */
572#define OV7670_R10_AECH		0x10	/* More bits of AEC value */
573#define OV7670_R11_CLKRC	0x11	/* Clock control */
574#define OV7670_R12_COM7		0x12	/* Control 7 */
575#define   OV7670_COM7_FMT_VGA	 0x00
576/*#define   OV7670_COM7_YUV	 0x00	 * YUV */
577#define   OV7670_COM7_FMT_QVGA	 0x10	/* QVGA format */
578#define   OV7670_COM7_FMT_MASK	 0x38
579#define   OV7670_COM7_RESET	 0x80	/* Register reset */
580#define OV7670_R13_COM8		0x13	/* Control 8 */
581#define   OV7670_COM8_AEC	 0x01	/* Auto exposure enable */
582#define   OV7670_COM8_AWB	 0x02	/* White balance enable */
583#define   OV7670_COM8_AGC	 0x04	/* Auto gain enable */
584#define   OV7670_COM8_BFILT	 0x20	/* Band filter enable */
585#define   OV7670_COM8_AECSTEP	 0x40	/* Unlimited AEC step size */
586#define   OV7670_COM8_FASTAEC	 0x80	/* Enable fast AGC/AEC */
587#define OV7670_R14_COM9		0x14	/* Control 9 - gain ceiling */
588#define OV7670_R15_COM10	0x15	/* Control 10 */
589#define OV7670_R17_HSTART	0x17	/* Horiz start high bits */
590#define OV7670_R18_HSTOP	0x18	/* Horiz stop high bits */
591#define OV7670_R19_VSTART	0x19	/* Vert start high bits */
592#define OV7670_R1A_VSTOP	0x1a	/* Vert stop high bits */
593#define OV7670_R1E_MVFP		0x1e	/* Mirror / vflip */
594#define   OV7670_MVFP_VFLIP	 0x10	/* vertical flip */
595#define   OV7670_MVFP_MIRROR	 0x20	/* Mirror image */
596#define OV7670_R24_AEW		0x24	/* AGC upper limit */
597#define OV7670_R25_AEB		0x25	/* AGC lower limit */
598#define OV7670_R26_VPT		0x26	/* AGC/AEC fast mode op region */
599#define OV7670_R32_HREF		0x32	/* HREF pieces */
600#define OV7670_R3A_TSLB		0x3a	/* lots of stuff */
601#define OV7670_R3B_COM11	0x3b	/* Control 11 */
602#define   OV7670_COM11_EXP	 0x02
603#define   OV7670_COM11_HZAUTO	 0x10	/* Auto detect 50/60 Hz */
604#define OV7670_R3C_COM12	0x3c	/* Control 12 */
605#define OV7670_R3D_COM13	0x3d	/* Control 13 */
606#define   OV7670_COM13_GAMMA	 0x80	/* Gamma enable */
607#define   OV7670_COM13_UVSAT	 0x40	/* UV saturation auto adjustment */
608#define OV7670_R3E_COM14	0x3e	/* Control 14 */
609#define OV7670_R3F_EDGE		0x3f	/* Edge enhancement factor */
610#define OV7670_R40_COM15	0x40	/* Control 15 */
611/*#define   OV7670_COM15_R00FF	 0xc0	 *	00 to FF */
612#define OV7670_R41_COM16	0x41	/* Control 16 */
613#define   OV7670_COM16_AWBGAIN	 0x08	/* AWB gain enable */
614/* end of ov7660 common registers */
615#define OV7670_R55_BRIGHT	0x55	/* Brightness */
616#define OV7670_R56_CONTRAS	0x56	/* Contrast control */
617#define OV7670_R69_GFIX		0x69	/* Fix gain control */
618/*#define OV7670_R8C_RGB444	0x8c	 * RGB 444 control */
619#define OV7670_R9F_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
620#define OV7670_RA0_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
621#define OV7670_RA5_BD50MAX	0xa5	/* 50hz banding step limit */
622#define OV7670_RA6_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
623#define OV7670_RA7_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
624#define OV7670_RA8_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
625#define OV7670_RA9_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
626#define OV7670_RAA_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
627#define OV7670_RAB_BD60MAX	0xab	/* 60hz banding step limit */
628
629struct ov_regvals {
630	u8 reg;
631	u8 val;
632};
633struct ov_i2c_regvals {
634	u8 reg;
635	u8 val;
636};
637
638/* Settings for OV2610 camera chip */
639static const struct ov_i2c_regvals norm_2610[] = {
640	{ 0x12, 0x80 },	/* reset */
641};
642
643static const struct ov_i2c_regvals norm_2610ae[] = {
644	{0x12, 0x80},	/* reset */
645	{0x13, 0xcd},
646	{0x09, 0x01},
647	{0x0d, 0x00},
648	{0x11, 0x80},
649	{0x12, 0x20},	/* 1600x1200 */
650	{0x33, 0x0c},
651	{0x35, 0x90},
652	{0x36, 0x37},
653/* ms-win traces */
654	{0x11, 0x83},	/* clock / 3 ? */
655	{0x2d, 0x00},	/* 60 Hz filter */
656	{0x24, 0xb0},	/* normal colors */
657	{0x25, 0x90},
658	{0x10, 0x43},
659};
660
661static const struct ov_i2c_regvals norm_3620b[] = {
662	/*
663	 * From the datasheet: "Note that after writing to register COMH
664	 * (0x12) to change the sensor mode, registers related to the
665	 * sensor’s cropping window will be reset back to their default
666	 * values."
667	 *
668	 * "wait 4096 external clock ... to make sure the sensor is
669	 * stable and ready to access registers" i.e. 160us at 24MHz
670	 */
671	{ 0x12, 0x80 }, /* COMH reset */
672	{ 0x12, 0x00 }, /* QXGA, master */
673
674	/*
675	 * 11 CLKRC "Clock Rate Control"
676	 * [7] internal frequency doublers: on
677	 * [6] video port mode: master
678	 * [5:0] clock divider: 1
679	 */
680	{ 0x11, 0x80 },
681
682	/*
683	 * 13 COMI "Common Control I"
684	 *                  = 192 (0xC0) 11000000
685	 *    COMI[7] "AEC speed selection"
686	 *                  =   1 (0x01) 1....... "Faster AEC correction"
687	 *    COMI[6] "AEC speed step selection"
688	 *                  =   1 (0x01) .1...... "Big steps, fast"
689	 *    COMI[5] "Banding filter on off"
690	 *                  =   0 (0x00) ..0..... "Off"
691	 *    COMI[4] "Banding filter option"
692	 *                  =   0 (0x00) ...0.... "Main clock is 48 MHz and
693	 *                                         the PLL is ON"
694	 *    COMI[3] "Reserved"
695	 *                  =   0 (0x00) ....0...
696	 *    COMI[2] "AGC auto manual control selection"
697	 *                  =   0 (0x00) .....0.. "Manual"
698	 *    COMI[1] "AWB auto manual control selection"
699	 *                  =   0 (0x00) ......0. "Manual"
700	 *    COMI[0] "Exposure control"
701	 *                  =   0 (0x00) .......0 "Manual"
702	 */
703	{ 0x13, 0xc0 },
704
705	/*
706	 * 09 COMC "Common Control C"
707	 *                  =   8 (0x08) 00001000
708	 *    COMC[7:5] "Reserved"
709	 *                  =   0 (0x00) 000.....
710	 *    COMC[4] "Sleep Mode Enable"
711	 *                  =   0 (0x00) ...0.... "Normal mode"
712	 *    COMC[3:2] "Sensor sampling reset timing selection"
713	 *                  =   2 (0x02) ....10.. "Longer reset time"
714	 *    COMC[1:0] "Output drive current select"
715	 *                  =   0 (0x00) ......00 "Weakest"
716	 */
717	{ 0x09, 0x08 },
718
719	/*
720	 * 0C COMD "Common Control D"
721	 *                  =   8 (0x08) 00001000
722	 *    COMD[7] "Reserved"
723	 *                  =   0 (0x00) 0.......
724	 *    COMD[6] "Swap MSB and LSB at the output port"
725	 *                  =   0 (0x00) .0...... "False"
726	 *    COMD[5:3] "Reserved"
727	 *                  =   1 (0x01) ..001...
728	 *    COMD[2] "Output Average On Off"
729	 *                  =   0 (0x00) .....0.. "Output Normal"
730	 *    COMD[1] "Sensor precharge voltage selection"
731	 *                  =   0 (0x00) ......0. "Selects internal
732	 *                                         reference precharge
733	 *                                         voltage"
734	 *    COMD[0] "Snapshot option"
735	 *                  =   0 (0x00) .......0 "Enable live video output
736	 *                                         after snapshot sequence"
737	 */
738	{ 0x0c, 0x08 },
739
740	/*
741	 * 0D COME "Common Control E"
742	 *                  = 161 (0xA1) 10100001
743	 *    COME[7] "Output average option"
744	 *                  =   1 (0x01) 1....... "Output average of 4 pixels"
745	 *    COME[6] "Anti-blooming control"
746	 *                  =   0 (0x00) .0...... "Off"
747	 *    COME[5:3] "Reserved"
748	 *                  =   4 (0x04) ..100...
749	 *    COME[2] "Clock output power down pin status"
750	 *                  =   0 (0x00) .....0.. "Tri-state data output pin
751	 *                                         on power down"
752	 *    COME[1] "Data output pin status selection at power down"
753	 *                  =   0 (0x00) ......0. "Tri-state VSYNC, PCLK,
754	 *                                         HREF, and CHSYNC pins on
755	 *                                         power down"
756	 *    COME[0] "Auto zero circuit select"
757	 *                  =   1 (0x01) .......1 "On"
758	 */
759	{ 0x0d, 0xa1 },
760
761	/*
762	 * 0E COMF "Common Control F"
763	 *                  = 112 (0x70) 01110000
764	 *    COMF[7] "System clock selection"
765	 *                  =   0 (0x00) 0....... "Use 24 MHz system clock"
766	 *    COMF[6:4] "Reserved"
767	 *                  =   7 (0x07) .111....
768	 *    COMF[3] "Manual auto negative offset canceling selection"
769	 *                  =   0 (0x00) ....0... "Auto detect negative
770	 *                                         offset and cancel it"
771	 *    COMF[2:0] "Reserved"
772	 *                  =   0 (0x00) .....000
773	 */
774	{ 0x0e, 0x70 },
775
776	/*
777	 * 0F COMG "Common Control G"
778	 *                  =  66 (0x42) 01000010
779	 *    COMG[7] "Optical black output selection"
780	 *                  =   0 (0x00) 0....... "Disable"
781	 *    COMG[6] "Black level calibrate selection"
782	 *                  =   1 (0x01) .1...... "Use optical black pixels
783	 *                                         to calibrate"
784	 *    COMG[5:4] "Reserved"
785	 *                  =   0 (0x00) ..00....
786	 *    COMG[3] "Channel offset adjustment"
787	 *                  =   0 (0x00) ....0... "Disable offset adjustment"
788	 *    COMG[2] "ADC black level calibration option"
789	 *                  =   0 (0x00) .....0.. "Use B/G line and G/R
790	 *                                         line to calibrate each
791	 *                                         channel's black level"
792	 *    COMG[1] "Reserved"
793	 *                  =   1 (0x01) ......1.
794	 *    COMG[0] "ADC black level calibration enable"
795	 *                  =   0 (0x00) .......0 "Disable"
796	 */
797	{ 0x0f, 0x42 },
798
799	/*
800	 * 14 COMJ "Common Control J"
801	 *                  = 198 (0xC6) 11000110
802	 *    COMJ[7:6] "AGC gain ceiling"
803	 *                  =   3 (0x03) 11...... "8x"
804	 *    COMJ[5:4] "Reserved"
805	 *                  =   0 (0x00) ..00....
806	 *    COMJ[3] "Auto banding filter"
807	 *                  =   0 (0x00) ....0... "Banding filter is always
808	 *                                         on off depending on
809	 *                                         COMI[5] setting"
810	 *    COMJ[2] "VSYNC drop option"
811	 *                  =   1 (0x01) .....1.. "SYNC is dropped if frame
812	 *                                         data is dropped"
813	 *    COMJ[1] "Frame data drop"
814	 *                  =   1 (0x01) ......1. "Drop frame data if
815	 *                                         exposure is not within
816	 *                                         tolerance.  In AEC mode,
817	 *                                         data is normally dropped
818	 *                                         when data is out of
819	 *                                         range."
820	 *    COMJ[0] "Reserved"
821	 *                  =   0 (0x00) .......0
822	 */
823	{ 0x14, 0xc6 },
824
825	/*
826	 * 15 COMK "Common Control K"
827	 *                  =   2 (0x02) 00000010
828	 *    COMK[7] "CHSYNC pin output swap"
829	 *                  =   0 (0x00) 0....... "CHSYNC"
830	 *    COMK[6] "HREF pin output swap"
831	 *                  =   0 (0x00) .0...... "HREF"
832	 *    COMK[5] "PCLK output selection"
833	 *                  =   0 (0x00) ..0..... "PCLK always output"
834	 *    COMK[4] "PCLK edge selection"
835	 *                  =   0 (0x00) ...0.... "Data valid on falling edge"
836	 *    COMK[3] "HREF output polarity"
837	 *                  =   0 (0x00) ....0... "positive"
838	 *    COMK[2] "Reserved"
839	 *                  =   0 (0x00) .....0..
840	 *    COMK[1] "VSYNC polarity"
841	 *                  =   1 (0x01) ......1. "negative"
842	 *    COMK[0] "HSYNC polarity"
843	 *                  =   0 (0x00) .......0 "positive"
844	 */
845	{ 0x15, 0x02 },
846
847	/*
848	 * 33 CHLF "Current Control"
849	 *                  =   9 (0x09) 00001001
850	 *    CHLF[7:6] "Sensor current control"
851	 *                  =   0 (0x00) 00......
852	 *    CHLF[5] "Sensor current range control"
853	 *                  =   0 (0x00) ..0..... "normal range"
854	 *    CHLF[4] "Sensor current"
855	 *                  =   0 (0x00) ...0.... "normal current"
856	 *    CHLF[3] "Sensor buffer current control"
857	 *                  =   1 (0x01) ....1... "half current"
858	 *    CHLF[2] "Column buffer current control"
859	 *                  =   0 (0x00) .....0.. "normal current"
860	 *    CHLF[1] "Analog DSP current control"
861	 *                  =   0 (0x00) ......0. "normal current"
862	 *    CHLF[1] "ADC current control"
863	 *                  =   0 (0x00) ......0. "normal current"
864	 */
865	{ 0x33, 0x09 },
866
867	/*
868	 * 34 VBLM "Blooming Control"
869	 *                  =  80 (0x50) 01010000
870	 *    VBLM[7] "Hard soft reset switch"
871	 *                  =   0 (0x00) 0....... "Hard reset"
872	 *    VBLM[6:4] "Blooming voltage selection"
873	 *                  =   5 (0x05) .101....
874	 *    VBLM[3:0] "Sensor current control"
875	 *                  =   0 (0x00) ....0000
876	 */
877	{ 0x34, 0x50 },
878
879	/*
880	 * 36 VCHG "Sensor Precharge Voltage Control"
881	 *                  =   0 (0x00) 00000000
882	 *    VCHG[7] "Reserved"
883	 *                  =   0 (0x00) 0.......
884	 *    VCHG[6:4] "Sensor precharge voltage control"
885	 *                  =   0 (0x00) .000....
886	 *    VCHG[3:0] "Sensor array common reference"
887	 *                  =   0 (0x00) ....0000
888	 */
889	{ 0x36, 0x00 },
890
891	/*
892	 * 37 ADC "ADC Reference Control"
893	 *                  =   4 (0x04) 00000100
894	 *    ADC[7:4] "Reserved"
895	 *                  =   0 (0x00) 0000....
896	 *    ADC[3] "ADC input signal range"
897	 *                  =   0 (0x00) ....0... "Input signal 1.0x"
898	 *    ADC[2:0] "ADC range control"
899	 *                  =   4 (0x04) .....100
900	 */
901	{ 0x37, 0x04 },
902
903	/*
904	 * 38 ACOM "Analog Common Ground"
905	 *                  =  82 (0x52) 01010010
906	 *    ACOM[7] "Analog gain control"
907	 *                  =   0 (0x00) 0....... "Gain 1x"
908	 *    ACOM[6] "Analog black level calibration"
909	 *                  =   1 (0x01) .1...... "On"
910	 *    ACOM[5:0] "Reserved"
911	 *                  =  18 (0x12) ..010010
912	 */
913	{ 0x38, 0x52 },
914
915	/*
916	 * 3A FREFA "Internal Reference Adjustment"
917	 *                  =   0 (0x00) 00000000
918	 *    FREFA[7:0] "Range"
919	 *                  =   0 (0x00) 00000000
920	 */
921	{ 0x3a, 0x00 },
922
923	/*
924	 * 3C FVOPT "Internal Reference Adjustment"
925	 *                  =  31 (0x1F) 00011111
926	 *    FVOPT[7:0] "Range"
927	 *                  =  31 (0x1F) 00011111
928	 */
929	{ 0x3c, 0x1f },
930
931	/*
932	 * 44 Undocumented  =   0 (0x00) 00000000
933	 *    44[7:0] "It's a secret"
934	 *                  =   0 (0x00) 00000000
935	 */
936	{ 0x44, 0x00 },
937
938	/*
939	 * 40 Undocumented  =   0 (0x00) 00000000
940	 *    40[7:0] "It's a secret"
941	 *                  =   0 (0x00) 00000000
942	 */
943	{ 0x40, 0x00 },
944
945	/*
946	 * 41 Undocumented  =   0 (0x00) 00000000
947	 *    41[7:0] "It's a secret"
948	 *                  =   0 (0x00) 00000000
949	 */
950	{ 0x41, 0x00 },
951
952	/*
953	 * 42 Undocumented  =   0 (0x00) 00000000
954	 *    42[7:0] "It's a secret"
955	 *                  =   0 (0x00) 00000000
956	 */
957	{ 0x42, 0x00 },
958
959	/*
960	 * 43 Undocumented  =   0 (0x00) 00000000
961	 *    43[7:0] "It's a secret"
962	 *                  =   0 (0x00) 00000000
963	 */
964	{ 0x43, 0x00 },
965
966	/*
967	 * 45 Undocumented  = 128 (0x80) 10000000
968	 *    45[7:0] "It's a secret"
969	 *                  = 128 (0x80) 10000000
970	 */
971	{ 0x45, 0x80 },
972
973	/*
974	 * 48 Undocumented  = 192 (0xC0) 11000000
975	 *    48[7:0] "It's a secret"
976	 *                  = 192 (0xC0) 11000000
977	 */
978	{ 0x48, 0xc0 },
979
980	/*
981	 * 49 Undocumented  =  25 (0x19) 00011001
982	 *    49[7:0] "It's a secret"
983	 *                  =  25 (0x19) 00011001
984	 */
985	{ 0x49, 0x19 },
986
987	/*
988	 * 4B Undocumented  = 128 (0x80) 10000000
989	 *    4B[7:0] "It's a secret"
990	 *                  = 128 (0x80) 10000000
991	 */
992	{ 0x4b, 0x80 },
993
994	/*
995	 * 4D Undocumented  = 196 (0xC4) 11000100
996	 *    4D[7:0] "It's a secret"
997	 *                  = 196 (0xC4) 11000100
998	 */
999	{ 0x4d, 0xc4 },
1000
1001	/*
1002	 * 35 VREF "Reference Voltage Control"
1003	 *                  =  76 (0x4c) 01001100
1004	 *    VREF[7:5] "Column high reference control"
1005	 *                  =   2 (0x02) 010..... "higher voltage"
1006	 *    VREF[4:2] "Column low reference control"
1007	 *                  =   3 (0x03) ...011.. "Highest voltage"
1008	 *    VREF[1:0] "Reserved"
1009	 *                  =   0 (0x00) ......00
1010	 */
1011	{ 0x35, 0x4c },
1012
1013	/*
1014	 * 3D Undocumented  =   0 (0x00) 00000000
1015	 *    3D[7:0] "It's a secret"
1016	 *                  =   0 (0x00) 00000000
1017	 */
1018	{ 0x3d, 0x00 },
1019
1020	/*
1021	 * 3E Undocumented  =   0 (0x00) 00000000
1022	 *    3E[7:0] "It's a secret"
1023	 *                  =   0 (0x00) 00000000
1024	 */
1025	{ 0x3e, 0x00 },
1026
1027	/*
1028	 * 3B FREFB "Internal Reference Adjustment"
1029	 *                  =  24 (0x18) 00011000
1030	 *    FREFB[7:0] "Range"
1031	 *                  =  24 (0x18) 00011000
1032	 */
1033	{ 0x3b, 0x18 },
1034
1035	/*
1036	 * 33 CHLF "Current Control"
1037	 *                  =  25 (0x19) 00011001
1038	 *    CHLF[7:6] "Sensor current control"
1039	 *                  =   0 (0x00) 00......
1040	 *    CHLF[5] "Sensor current range control"
1041	 *                  =   0 (0x00) ..0..... "normal range"
1042	 *    CHLF[4] "Sensor current"
1043	 *                  =   1 (0x01) ...1.... "double current"
1044	 *    CHLF[3] "Sensor buffer current control"
1045	 *                  =   1 (0x01) ....1... "half current"
1046	 *    CHLF[2] "Column buffer current control"
1047	 *                  =   0 (0x00) .....0.. "normal current"
1048	 *    CHLF[1] "Analog DSP current control"
1049	 *                  =   0 (0x00) ......0. "normal current"
1050	 *    CHLF[1] "ADC current control"
1051	 *                  =   0 (0x00) ......0. "normal current"
1052	 */
1053	{ 0x33, 0x19 },
1054
1055	/*
1056	 * 34 VBLM "Blooming Control"
1057	 *                  =  90 (0x5A) 01011010
1058	 *    VBLM[7] "Hard soft reset switch"
1059	 *                  =   0 (0x00) 0....... "Hard reset"
1060	 *    VBLM[6:4] "Blooming voltage selection"
1061	 *                  =   5 (0x05) .101....
1062	 *    VBLM[3:0] "Sensor current control"
1063	 *                  =  10 (0x0A) ....1010
1064	 */
1065	{ 0x34, 0x5a },
1066
1067	/*
1068	 * 3B FREFB "Internal Reference Adjustment"
1069	 *                  =   0 (0x00) 00000000
1070	 *    FREFB[7:0] "Range"
1071	 *                  =   0 (0x00) 00000000
1072	 */
1073	{ 0x3b, 0x00 },
1074
1075	/*
1076	 * 33 CHLF "Current Control"
1077	 *                  =   9 (0x09) 00001001
1078	 *    CHLF[7:6] "Sensor current control"
1079	 *                  =   0 (0x00) 00......
1080	 *    CHLF[5] "Sensor current range control"
1081	 *                  =   0 (0x00) ..0..... "normal range"
1082	 *    CHLF[4] "Sensor current"
1083	 *                  =   0 (0x00) ...0.... "normal current"
1084	 *    CHLF[3] "Sensor buffer current control"
1085	 *                  =   1 (0x01) ....1... "half current"
1086	 *    CHLF[2] "Column buffer current control"
1087	 *                  =   0 (0x00) .....0.. "normal current"
1088	 *    CHLF[1] "Analog DSP current control"
1089	 *                  =   0 (0x00) ......0. "normal current"
1090	 *    CHLF[1] "ADC current control"
1091	 *                  =   0 (0x00) ......0. "normal current"
1092	 */
1093	{ 0x33, 0x09 },
1094
1095	/*
1096	 * 34 VBLM "Blooming Control"
1097	 *                  =  80 (0x50) 01010000
1098	 *    VBLM[7] "Hard soft reset switch"
1099	 *                  =   0 (0x00) 0....... "Hard reset"
1100	 *    VBLM[6:4] "Blooming voltage selection"
1101	 *                  =   5 (0x05) .101....
1102	 *    VBLM[3:0] "Sensor current control"
1103	 *                  =   0 (0x00) ....0000
1104	 */
1105	{ 0x34, 0x50 },
1106
1107	/*
1108	 * 12 COMH "Common Control H"
1109	 *                  =  64 (0x40) 01000000
1110	 *    COMH[7] "SRST"
1111	 *                  =   0 (0x00) 0....... "No-op"
1112	 *    COMH[6:4] "Resolution selection"
1113	 *                  =   4 (0x04) .100.... "XGA"
1114	 *    COMH[3] "Master slave selection"
1115	 *                  =   0 (0x00) ....0... "Master mode"
1116	 *    COMH[2] "Internal B/R channel option"
1117	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1118	 *    COMH[1] "Color bar test pattern"
1119	 *                  =   0 (0x00) ......0. "Off"
1120	 *    COMH[0] "Reserved"
1121	 *                  =   0 (0x00) .......0
1122	 */
1123	{ 0x12, 0x40 },
1124
1125	/*
1126	 * 17 HREFST "Horizontal window start"
1127	 *                  =  31 (0x1F) 00011111
1128	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1129	 *                  =  31 (0x1F) 00011111
1130	 */
1131	{ 0x17, 0x1f },
1132
1133	/*
1134	 * 18 HREFEND "Horizontal window end"
1135	 *                  =  95 (0x5F) 01011111
1136	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1137	 *                  =  95 (0x5F) 01011111
1138	 */
1139	{ 0x18, 0x5f },
1140
1141	/*
1142	 * 19 VSTRT "Vertical window start"
1143	 *                  =   0 (0x00) 00000000
1144	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1145	 *                  =   0 (0x00) 00000000
1146	 */
1147	{ 0x19, 0x00 },
1148
1149	/*
1150	 * 1A VEND "Vertical window end"
1151	 *                  =  96 (0x60) 01100000
1152	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1153	 *                  =  96 (0x60) 01100000
1154	 */
1155	{ 0x1a, 0x60 },
1156
1157	/*
1158	 * 32 COMM "Common Control M"
1159	 *                  =  18 (0x12) 00010010
1160	 *    COMM[7:6] "Pixel clock divide option"
1161	 *                  =   0 (0x00) 00...... "/1"
1162	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1163	 *                  =   2 (0x02) ..010...
1164	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1165	 *                  =   2 (0x02) .....010
1166	 */
1167	{ 0x32, 0x12 },
1168
1169	/*
1170	 * 03 COMA "Common Control A"
1171	 *                  =  74 (0x4A) 01001010
1172	 *    COMA[7:4] "AWB Update Threshold"
1173	 *                  =   4 (0x04) 0100....
1174	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1175	 *                  =   2 (0x02) ....10..
1176	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1177	 *                  =   2 (0x02) ......10
1178	 */
1179	{ 0x03, 0x4a },
1180
1181	/*
1182	 * 11 CLKRC "Clock Rate Control"
1183	 *                  = 128 (0x80) 10000000
1184	 *    CLKRC[7] "Internal frequency doublers on off seclection"
1185	 *                  =   1 (0x01) 1....... "On"
1186	 *    CLKRC[6] "Digital video master slave selection"
1187	 *                  =   0 (0x00) .0...... "Master mode, sensor
1188	 *                                         provides PCLK"
1189	 *    CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1190	 *                  =   0 (0x00) ..000000
1191	 */
1192	{ 0x11, 0x80 },
1193
1194	/*
1195	 * 12 COMH "Common Control H"
1196	 *                  =   0 (0x00) 00000000
1197	 *    COMH[7] "SRST"
1198	 *                  =   0 (0x00) 0....... "No-op"
1199	 *    COMH[6:4] "Resolution selection"
1200	 *                  =   0 (0x00) .000.... "QXGA"
1201	 *    COMH[3] "Master slave selection"
1202	 *                  =   0 (0x00) ....0... "Master mode"
1203	 *    COMH[2] "Internal B/R channel option"
1204	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1205	 *    COMH[1] "Color bar test pattern"
1206	 *                  =   0 (0x00) ......0. "Off"
1207	 *    COMH[0] "Reserved"
1208	 *                  =   0 (0x00) .......0
1209	 */
1210	{ 0x12, 0x00 },
1211
1212	/*
1213	 * 12 COMH "Common Control H"
1214	 *                  =  64 (0x40) 01000000
1215	 *    COMH[7] "SRST"
1216	 *                  =   0 (0x00) 0....... "No-op"
1217	 *    COMH[6:4] "Resolution selection"
1218	 *                  =   4 (0x04) .100.... "XGA"
1219	 *    COMH[3] "Master slave selection"
1220	 *                  =   0 (0x00) ....0... "Master mode"
1221	 *    COMH[2] "Internal B/R channel option"
1222	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1223	 *    COMH[1] "Color bar test pattern"
1224	 *                  =   0 (0x00) ......0. "Off"
1225	 *    COMH[0] "Reserved"
1226	 *                  =   0 (0x00) .......0
1227	 */
1228	{ 0x12, 0x40 },
1229
1230	/*
1231	 * 17 HREFST "Horizontal window start"
1232	 *                  =  31 (0x1F) 00011111
1233	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1234	 *                  =  31 (0x1F) 00011111
1235	 */
1236	{ 0x17, 0x1f },
1237
1238	/*
1239	 * 18 HREFEND "Horizontal window end"
1240	 *                  =  95 (0x5F) 01011111
1241	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1242	 *                  =  95 (0x5F) 01011111
1243	 */
1244	{ 0x18, 0x5f },
1245
1246	/*
1247	 * 19 VSTRT "Vertical window start"
1248	 *                  =   0 (0x00) 00000000
1249	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1250	 *                  =   0 (0x00) 00000000
1251	 */
1252	{ 0x19, 0x00 },
1253
1254	/*
1255	 * 1A VEND "Vertical window end"
1256	 *                  =  96 (0x60) 01100000
1257	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1258	 *                  =  96 (0x60) 01100000
1259	 */
1260	{ 0x1a, 0x60 },
1261
1262	/*
1263	 * 32 COMM "Common Control M"
1264	 *                  =  18 (0x12) 00010010
1265	 *    COMM[7:6] "Pixel clock divide option"
1266	 *                  =   0 (0x00) 00...... "/1"
1267	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1268	 *                  =   2 (0x02) ..010...
1269	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1270	 *                  =   2 (0x02) .....010
1271	 */
1272	{ 0x32, 0x12 },
1273
1274	/*
1275	 * 03 COMA "Common Control A"
1276	 *                  =  74 (0x4A) 01001010
1277	 *    COMA[7:4] "AWB Update Threshold"
1278	 *                  =   4 (0x04) 0100....
1279	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1280	 *                  =   2 (0x02) ....10..
1281	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1282	 *                  =   2 (0x02) ......10
1283	 */
1284	{ 0x03, 0x4a },
1285
1286	/*
1287	 * 02 RED "Red Gain Control"
1288	 *                  = 175 (0xAF) 10101111
1289	 *    RED[7] "Action"
1290	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1291	 *    RED[6:0] "Value"
1292	 *                  =  47 (0x2F) .0101111
1293	 */
1294	{ 0x02, 0xaf },
1295
1296	/*
1297	 * 2D ADDVSL "VSYNC Pulse Width"
1298	 *                  = 210 (0xD2) 11010010
1299	 *    ADDVSL[7:0] "VSYNC pulse width, LSB"
1300	 *                  = 210 (0xD2) 11010010
1301	 */
1302	{ 0x2d, 0xd2 },
1303
1304	/*
1305	 * 00 GAIN          =  24 (0x18) 00011000
1306	 *    GAIN[7:6] "Reserved"
1307	 *                  =   0 (0x00) 00......
1308	 *    GAIN[5] "Double"
1309	 *                  =   0 (0x00) ..0..... "False"
1310	 *    GAIN[4] "Double"
1311	 *                  =   1 (0x01) ...1.... "True"
1312	 *    GAIN[3:0] "Range"
1313	 *                  =   8 (0x08) ....1000
1314	 */
1315	{ 0x00, 0x18 },
1316
1317	/*
1318	 * 01 BLUE "Blue Gain Control"
1319	 *                  = 240 (0xF0) 11110000
1320	 *    BLUE[7] "Action"
1321	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1322	 *    BLUE[6:0] "Value"
1323	 *                  = 112 (0x70) .1110000
1324	 */
1325	{ 0x01, 0xf0 },
1326
1327	/*
1328	 * 10 AEC "Automatic Exposure Control"
1329	 *                  =  10 (0x0A) 00001010
1330	 *    AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1331	 *                  =  10 (0x0A) 00001010
1332	 */
1333	{ 0x10, 0x0a },
1334
1335	{ 0xe1, 0x67 },
1336	{ 0xe3, 0x03 },
1337	{ 0xe4, 0x26 },
1338	{ 0xe5, 0x3e },
1339	{ 0xf8, 0x01 },
1340	{ 0xff, 0x01 },
1341};
1342
1343static const struct ov_i2c_regvals norm_6x20[] = {
1344	{ 0x12, 0x80 }, /* reset */
1345	{ 0x11, 0x01 },
1346	{ 0x03, 0x60 },
1347	{ 0x05, 0x7f }, /* For when autoadjust is off */
1348	{ 0x07, 0xa8 },
1349	/* The ratio of 0x0c and 0x0d controls the white point */
1350	{ 0x0c, 0x24 },
1351	{ 0x0d, 0x24 },
1352	{ 0x0f, 0x15 }, /* COMS */
1353	{ 0x10, 0x75 }, /* AEC Exposure time */
1354	{ 0x12, 0x24 }, /* Enable AGC */
1355	{ 0x14, 0x04 },
1356	/* 0x16: 0x06 helps frame stability with moving objects */
1357	{ 0x16, 0x06 },
1358/*	{ 0x20, 0x30 },  * Aperture correction enable */
1359	{ 0x26, 0xb2 }, /* BLC enable */
1360	/* 0x28: 0x05 Selects RGB format if RGB on */
1361	{ 0x28, 0x05 },
1362	{ 0x2a, 0x04 }, /* Disable framerate adjust */
1363/*	{ 0x2b, 0xac },  * Framerate; Set 2a[7] first */
1364	{ 0x2d, 0x85 },
1365	{ 0x33, 0xa0 }, /* Color Processing Parameter */
1366	{ 0x34, 0xd2 }, /* Max A/D range */
1367	{ 0x38, 0x8b },
1368	{ 0x39, 0x40 },
1369
1370	{ 0x3c, 0x39 }, /* Enable AEC mode changing */
1371	{ 0x3c, 0x3c }, /* Change AEC mode */
1372	{ 0x3c, 0x24 }, /* Disable AEC mode changing */
1373
1374	{ 0x3d, 0x80 },
1375	/* These next two registers (0x4a, 0x4b) are undocumented.
1376	 * They control the color balance */
1377	{ 0x4a, 0x80 },
1378	{ 0x4b, 0x80 },
1379	{ 0x4d, 0xd2 }, /* This reduces noise a bit */
1380	{ 0x4e, 0xc1 },
1381	{ 0x4f, 0x04 },
1382/* Do 50-53 have any effect? */
1383/* Toggle 0x12[2] off and on here? */
1384};
1385
1386static const struct ov_i2c_regvals norm_6x30[] = {
1387	{ 0x12, 0x80 }, /* Reset */
1388	{ 0x00, 0x1f }, /* Gain */
1389	{ 0x01, 0x99 }, /* Blue gain */
1390	{ 0x02, 0x7c }, /* Red gain */
1391	{ 0x03, 0xc0 }, /* Saturation */
1392	{ 0x05, 0x0a }, /* Contrast */
1393	{ 0x06, 0x95 }, /* Brightness */
1394	{ 0x07, 0x2d }, /* Sharpness */
1395	{ 0x0c, 0x20 },
1396	{ 0x0d, 0x20 },
1397	{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1398	{ 0x0f, 0x05 },
1399	{ 0x10, 0x9a },
1400	{ 0x11, 0x00 }, /* Pixel clock = fastest */
1401	{ 0x12, 0x24 }, /* Enable AGC and AWB */
1402	{ 0x13, 0x21 },
1403	{ 0x14, 0x80 },
1404	{ 0x15, 0x01 },
1405	{ 0x16, 0x03 },
1406	{ 0x17, 0x38 },
1407	{ 0x18, 0xea },
1408	{ 0x19, 0x04 },
1409	{ 0x1a, 0x93 },
1410	{ 0x1b, 0x00 },
1411	{ 0x1e, 0xc4 },
1412	{ 0x1f, 0x04 },
1413	{ 0x20, 0x20 },
1414	{ 0x21, 0x10 },
1415	{ 0x22, 0x88 },
1416	{ 0x23, 0xc0 }, /* Crystal circuit power level */
1417	{ 0x25, 0x9a }, /* Increase AEC black ratio */
1418	{ 0x26, 0xb2 }, /* BLC enable */
1419	{ 0x27, 0xa2 },
1420	{ 0x28, 0x00 },
1421	{ 0x29, 0x00 },
1422	{ 0x2a, 0x84 }, /* 60 Hz power */
1423	{ 0x2b, 0xa8 }, /* 60 Hz power */
1424	{ 0x2c, 0xa0 },
1425	{ 0x2d, 0x95 }, /* Enable auto-brightness */
1426	{ 0x2e, 0x88 },
1427	{ 0x33, 0x26 },
1428	{ 0x34, 0x03 },
1429	{ 0x36, 0x8f },
1430	{ 0x37, 0x80 },
1431	{ 0x38, 0x83 },
1432	{ 0x39, 0x80 },
1433	{ 0x3a, 0x0f },
1434	{ 0x3b, 0x3c },
1435	{ 0x3c, 0x1a },
1436	{ 0x3d, 0x80 },
1437	{ 0x3e, 0x80 },
1438	{ 0x3f, 0x0e },
1439	{ 0x40, 0x00 }, /* White bal */
1440	{ 0x41, 0x00 }, /* White bal */
1441	{ 0x42, 0x80 },
1442	{ 0x43, 0x3f }, /* White bal */
1443	{ 0x44, 0x80 },
1444	{ 0x45, 0x20 },
1445	{ 0x46, 0x20 },
1446	{ 0x47, 0x80 },
1447	{ 0x48, 0x7f },
1448	{ 0x49, 0x00 },
1449	{ 0x4a, 0x00 },
1450	{ 0x4b, 0x80 },
1451	{ 0x4c, 0xd0 },
1452	{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1453	{ 0x4e, 0x40 },
1454	{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
1455	{ 0x50, 0xff },
1456	{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
1457	{ 0x55, 0xff },
1458	{ 0x56, 0x12 },
1459	{ 0x57, 0x81 },
1460	{ 0x58, 0x75 },
1461	{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1462	{ 0x5a, 0x2c },
1463	{ 0x5b, 0x0f }, /* AWB chrominance levels */
1464	{ 0x5c, 0x10 },
1465	{ 0x3d, 0x80 },
1466	{ 0x27, 0xa6 },
1467	{ 0x12, 0x20 }, /* Toggle AWB */
1468	{ 0x12, 0x24 },
1469};
1470
1471/* Lawrence Glaister <lg@jfm.bc.ca> reports:
1472 *
1473 * Register 0x0f in the 7610 has the following effects:
1474 *
1475 * 0x85 (AEC method 1): Best overall, good contrast range
1476 * 0x45 (AEC method 2): Very overexposed
1477 * 0xa5 (spec sheet default): Ok, but the black level is
1478 *	shifted resulting in loss of contrast
1479 * 0x05 (old driver setting): very overexposed, too much
1480 *	contrast
1481 */
1482static const struct ov_i2c_regvals norm_7610[] = {
1483	{ 0x10, 0xff },
1484	{ 0x16, 0x06 },
1485	{ 0x28, 0x24 },
1486	{ 0x2b, 0xac },
1487	{ 0x12, 0x00 },
1488	{ 0x38, 0x81 },
1489	{ 0x28, 0x24 },	/* 0c */
1490	{ 0x0f, 0x85 },	/* lg's setting */
1491	{ 0x15, 0x01 },
1492	{ 0x20, 0x1c },
1493	{ 0x23, 0x2a },
1494	{ 0x24, 0x10 },
1495	{ 0x25, 0x8a },
1496	{ 0x26, 0xa2 },
1497	{ 0x27, 0xc2 },
1498	{ 0x2a, 0x04 },
1499	{ 0x2c, 0xfe },
1500	{ 0x2d, 0x93 },
1501	{ 0x30, 0x71 },
1502	{ 0x31, 0x60 },
1503	{ 0x32, 0x26 },
1504	{ 0x33, 0x20 },
1505	{ 0x34, 0x48 },
1506	{ 0x12, 0x24 },
1507	{ 0x11, 0x01 },
1508	{ 0x0c, 0x24 },
1509	{ 0x0d, 0x24 },
1510};
1511
1512static const struct ov_i2c_regvals norm_7620[] = {
1513	{ 0x12, 0x80 },		/* reset */
1514	{ 0x00, 0x00 },		/* gain */
1515	{ 0x01, 0x80 },		/* blue gain */
1516	{ 0x02, 0x80 },		/* red gain */
1517	{ 0x03, 0xc0 },		/* OV7670_R03_VREF */
1518	{ 0x06, 0x60 },
1519	{ 0x07, 0x00 },
1520	{ 0x0c, 0x24 },
1521	{ 0x0c, 0x24 },
1522	{ 0x0d, 0x24 },
1523	{ 0x11, 0x01 },
1524	{ 0x12, 0x24 },
1525	{ 0x13, 0x01 },
1526	{ 0x14, 0x84 },
1527	{ 0x15, 0x01 },
1528	{ 0x16, 0x03 },
1529	{ 0x17, 0x2f },
1530	{ 0x18, 0xcf },
1531	{ 0x19, 0x06 },
1532	{ 0x1a, 0xf5 },
1533	{ 0x1b, 0x00 },
1534	{ 0x20, 0x18 },
1535	{ 0x21, 0x80 },
1536	{ 0x22, 0x80 },
1537	{ 0x23, 0x00 },
1538	{ 0x26, 0xa2 },
1539	{ 0x27, 0xea },
1540	{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1541	{ 0x29, 0x00 },
1542	{ 0x2a, 0x10 },
1543	{ 0x2b, 0x00 },
1544	{ 0x2c, 0x88 },
1545	{ 0x2d, 0x91 },
1546	{ 0x2e, 0x80 },
1547	{ 0x2f, 0x44 },
1548	{ 0x60, 0x27 },
1549	{ 0x61, 0x02 },
1550	{ 0x62, 0x5f },
1551	{ 0x63, 0xd5 },
1552	{ 0x64, 0x57 },
1553	{ 0x65, 0x83 },
1554	{ 0x66, 0x55 },
1555	{ 0x67, 0x92 },
1556	{ 0x68, 0xcf },
1557	{ 0x69, 0x76 },
1558	{ 0x6a, 0x22 },
1559	{ 0x6b, 0x00 },
1560	{ 0x6c, 0x02 },
1561	{ 0x6d, 0x44 },
1562	{ 0x6e, 0x80 },
1563	{ 0x6f, 0x1d },
1564	{ 0x70, 0x8b },
1565	{ 0x71, 0x00 },
1566	{ 0x72, 0x14 },
1567	{ 0x73, 0x54 },
1568	{ 0x74, 0x00 },
1569	{ 0x75, 0x8e },
1570	{ 0x76, 0x00 },
1571	{ 0x77, 0xff },
1572	{ 0x78, 0x80 },
1573	{ 0x79, 0x80 },
1574	{ 0x7a, 0x80 },
1575	{ 0x7b, 0xe2 },
1576	{ 0x7c, 0x00 },
1577};
1578
1579/* 7640 and 7648. The defaults should be OK for most registers. */
1580static const struct ov_i2c_regvals norm_7640[] = {
1581	{ 0x12, 0x80 },
1582	{ 0x12, 0x14 },
1583};
1584
1585static const struct ov_regvals init_519_ov7660[] = {
1586	{ 0x5d,	0x03 }, /* Turn off suspend mode */
1587	{ 0x53,	0x9b }, /* 0x9f enables the (unused) microcontroller */
1588	{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
1589	{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
1590	{ 0xa3,	0x18 },
1591	{ 0xa4,	0x04 },
1592	{ 0xa5,	0x28 },
1593	{ 0x37,	0x00 },	/* SetUsbInit */
1594	{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
1595	/* Enable both fields, YUV Input, disable defect comp (why?) */
1596	{ 0x20,	0x0c },	/* 0x0d does U <-> V swap */
1597	{ 0x21,	0x38 },
1598	{ 0x22,	0x1d },
1599	{ 0x17,	0x50 }, /* undocumented */
1600	{ 0x37,	0x00 }, /* undocumented */
1601	{ 0x40,	0xff }, /* I2C timeout counter */
1602	{ 0x46,	0x00 }, /* I2C clock prescaler */
1603};
1604static const struct ov_i2c_regvals norm_7660[] = {
1605	{OV7670_R12_COM7, OV7670_COM7_RESET},
1606	{OV7670_R11_CLKRC, 0x81},
1607	{0x92, 0x00},			/* DM_LNL */
1608	{0x93, 0x00},			/* DM_LNH */
1609	{0x9d, 0x4c},			/* BD50ST */
1610	{0x9e, 0x3f},			/* BD60ST */
1611	{OV7670_R3B_COM11, 0x02},
1612	{OV7670_R13_COM8, 0xf5},
1613	{OV7670_R10_AECH, 0x00},
1614	{OV7670_R00_GAIN, 0x00},
1615	{OV7670_R01_BLUE, 0x7c},
1616	{OV7670_R02_RED, 0x9d},
1617	{OV7670_R12_COM7, 0x00},
1618	{OV7670_R04_COM1, 00},
1619	{OV7670_R18_HSTOP, 0x01},
1620	{OV7670_R17_HSTART, 0x13},
1621	{OV7670_R32_HREF, 0x92},
1622	{OV7670_R19_VSTART, 0x02},
1623	{OV7670_R1A_VSTOP, 0x7a},
1624	{OV7670_R03_VREF, 0x00},
1625	{OV7670_R0E_COM5, 0x04},
1626	{OV7670_R0F_COM6, 0x62},
1627	{OV7670_R15_COM10, 0x00},
1628	{0x16, 0x02},			/* RSVD */
1629	{0x1b, 0x00},			/* PSHFT */
1630	{OV7670_R1E_MVFP, 0x01},
1631	{0x29, 0x3c},			/* RSVD */
1632	{0x33, 0x00},			/* CHLF */
1633	{0x34, 0x07},			/* ARBLM */
1634	{0x35, 0x84},			/* RSVD */
1635	{0x36, 0x00},			/* RSVD */
1636	{0x37, 0x04},			/* ADC */
1637	{0x39, 0x43},			/* OFON */
1638	{OV7670_R3A_TSLB, 0x00},
1639	{OV7670_R3C_COM12, 0x6c},
1640	{OV7670_R3D_COM13, 0x98},
1641	{OV7670_R3F_EDGE, 0x23},
1642	{OV7670_R40_COM15, 0xc1},
1643	{OV7670_R41_COM16, 0x22},
1644	{0x6b, 0x0a},			/* DBLV */
1645	{0xa1, 0x08},			/* RSVD */
1646	{0x69, 0x80},			/* HV */
1647	{0x43, 0xf0},			/* RSVD.. */
1648	{0x44, 0x10},
1649	{0x45, 0x78},
1650	{0x46, 0xa8},
1651	{0x47, 0x60},
1652	{0x48, 0x80},
1653	{0x59, 0xba},
1654	{0x5a, 0x9a},
1655	{0x5b, 0x22},
1656	{0x5c, 0xb9},
1657	{0x5d, 0x9b},
1658	{0x5e, 0x10},
1659	{0x5f, 0xe0},
1660	{0x60, 0x85},
1661	{0x61, 0x60},
1662	{0x9f, 0x9d},			/* RSVD */
1663	{0xa0, 0xa0},			/* DSPC2 */
1664	{0x4f, 0x60},			/* matrix */
1665	{0x50, 0x64},
1666	{0x51, 0x04},
1667	{0x52, 0x18},
1668	{0x53, 0x3c},
1669	{0x54, 0x54},
1670	{0x55, 0x40},
1671	{0x56, 0x40},
1672	{0x57, 0x40},
1673	{0x58, 0x0d},			/* matrix sign */
1674	{0x8b, 0xcc},			/* RSVD */
1675	{0x8c, 0xcc},
1676	{0x8d, 0xcf},
1677	{0x6c, 0x40},			/* gamma curve */
1678	{0x6d, 0xe0},
1679	{0x6e, 0xa0},
1680	{0x6f, 0x80},
1681	{0x70, 0x70},
1682	{0x71, 0x80},
1683	{0x72, 0x60},
1684	{0x73, 0x60},
1685	{0x74, 0x50},
1686	{0x75, 0x40},
1687	{0x76, 0x38},
1688	{0x77, 0x3c},
1689	{0x78, 0x32},
1690	{0x79, 0x1a},
1691	{0x7a, 0x28},
1692	{0x7b, 0x24},
1693	{0x7c, 0x04},			/* gamma curve */
1694	{0x7d, 0x12},
1695	{0x7e, 0x26},
1696	{0x7f, 0x46},
1697	{0x80, 0x54},
1698	{0x81, 0x64},
1699	{0x82, 0x70},
1700	{0x83, 0x7c},
1701	{0x84, 0x86},
1702	{0x85, 0x8e},
1703	{0x86, 0x9c},
1704	{0x87, 0xab},
1705	{0x88, 0xc4},
1706	{0x89, 0xd1},
1707	{0x8a, 0xe5},
1708	{OV7670_R14_COM9, 0x1e},
1709	{OV7670_R24_AEW, 0x80},
1710	{OV7670_R25_AEB, 0x72},
1711	{OV7670_R26_VPT, 0xb3},
1712	{0x62, 0x80},			/* LCC1 */
1713	{0x63, 0x80},			/* LCC2 */
1714	{0x64, 0x06},			/* LCC3 */
1715	{0x65, 0x00},			/* LCC4 */
1716	{0x66, 0x01},			/* LCC5 */
1717	{0x94, 0x0e},			/* RSVD.. */
1718	{0x95, 0x14},
1719	{OV7670_R13_COM8, OV7670_COM8_FASTAEC
1720			| OV7670_COM8_AECSTEP
1721			| OV7670_COM8_BFILT
1722			| 0x10
1723			| OV7670_COM8_AGC
1724			| OV7670_COM8_AWB
1725			| OV7670_COM8_AEC},
1726	{0xa1, 0xc8}
1727};
1728static const struct ov_i2c_regvals norm_9600[] = {
1729	{0x12, 0x80},
1730	{0x0c, 0x28},
1731	{0x11, 0x80},
1732	{0x13, 0xb5},
1733	{0x14, 0x3e},
1734	{0x1b, 0x04},
1735	{0x24, 0xb0},
1736	{0x25, 0x90},
1737	{0x26, 0x94},
1738	{0x35, 0x90},
1739	{0x37, 0x07},
1740	{0x38, 0x08},
1741	{0x01, 0x8e},
1742	{0x02, 0x85}
1743};
1744
1745/* 7670. Defaults taken from OmniVision provided data,
1746*  as provided by Jonathan Corbet of OLPC		*/
1747static const struct ov_i2c_regvals norm_7670[] = {
1748	{ OV7670_R12_COM7, OV7670_COM7_RESET },
1749	{ OV7670_R3A_TSLB, 0x04 },		/* OV */
1750	{ OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1751	{ OV7670_R11_CLKRC, 0x01 },
1752/*
1753 * Set the hardware window.  These values from OV don't entirely
1754 * make sense - hstop is less than hstart.  But they work...
1755 */
1756	{ OV7670_R17_HSTART, 0x13 },
1757	{ OV7670_R18_HSTOP, 0x01 },
1758	{ OV7670_R32_HREF, 0xb6 },
1759	{ OV7670_R19_VSTART, 0x02 },
1760	{ OV7670_R1A_VSTOP, 0x7a },
1761	{ OV7670_R03_VREF, 0x0a },
1762
1763	{ OV7670_R0C_COM3, 0x00 },
1764	{ OV7670_R3E_COM14, 0x00 },
1765/* Mystery scaling numbers */
1766	{ 0x70, 0x3a },
1767	{ 0x71, 0x35 },
1768	{ 0x72, 0x11 },
1769	{ 0x73, 0xf0 },
1770	{ 0xa2, 0x02 },
1771/*	{ OV7670_R15_COM10, 0x0 }, */
1772
1773/* Gamma curve values */
1774	{ 0x7a, 0x20 },
1775	{ 0x7b, 0x10 },
1776	{ 0x7c, 0x1e },
1777	{ 0x7d, 0x35 },
1778	{ 0x7e, 0x5a },
1779	{ 0x7f, 0x69 },
1780	{ 0x80, 0x76 },
1781	{ 0x81, 0x80 },
1782	{ 0x82, 0x88 },
1783	{ 0x83, 0x8f },
1784	{ 0x84, 0x96 },
1785	{ 0x85, 0xa3 },
1786	{ 0x86, 0xaf },
1787	{ 0x87, 0xc4 },
1788	{ 0x88, 0xd7 },
1789	{ 0x89, 0xe8 },
1790
1791/* AGC and AEC parameters.  Note we start by disabling those features,
1792   then turn them only after tweaking the values. */
1793	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1794			 | OV7670_COM8_AECSTEP
1795			 | OV7670_COM8_BFILT },
1796	{ OV7670_R00_GAIN, 0x00 },
1797	{ OV7670_R10_AECH, 0x00 },
1798	{ OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1799	{ OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1800	{ OV7670_RA5_BD50MAX, 0x05 },
1801	{ OV7670_RAB_BD60MAX, 0x07 },
1802	{ OV7670_R24_AEW, 0x95 },
1803	{ OV7670_R25_AEB, 0x33 },
1804	{ OV7670_R26_VPT, 0xe3 },
1805	{ OV7670_R9F_HAECC1, 0x78 },
1806	{ OV7670_RA0_HAECC2, 0x68 },
1807	{ 0xa1, 0x03 }, /* magic */
1808	{ OV7670_RA6_HAECC3, 0xd8 },
1809	{ OV7670_RA7_HAECC4, 0xd8 },
1810	{ OV7670_RA8_HAECC5, 0xf0 },
1811	{ OV7670_RA9_HAECC6, 0x90 },
1812	{ OV7670_RAA_HAECC7, 0x94 },
1813	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1814			| OV7670_COM8_AECSTEP
1815			| OV7670_COM8_BFILT
1816			| OV7670_COM8_AGC
1817			| OV7670_COM8_AEC },
1818
1819/* Almost all of these are magic "reserved" values.  */
1820	{ OV7670_R0E_COM5, 0x61 },
1821	{ OV7670_R0F_COM6, 0x4b },
1822	{ 0x16, 0x02 },
1823	{ OV7670_R1E_MVFP, 0x07 },
1824	{ 0x21, 0x02 },
1825	{ 0x22, 0x91 },
1826	{ 0x29, 0x07 },
1827	{ 0x33, 0x0b },
1828	{ 0x35, 0x0b },
1829	{ 0x37, 0x1d },
1830	{ 0x38, 0x71 },
1831	{ 0x39, 0x2a },
1832	{ OV7670_R3C_COM12, 0x78 },
1833	{ 0x4d, 0x40 },
1834	{ 0x4e, 0x20 },
1835	{ OV7670_R69_GFIX, 0x00 },
1836	{ 0x6b, 0x4a },
1837	{ 0x74, 0x10 },
1838	{ 0x8d, 0x4f },
1839	{ 0x8e, 0x00 },
1840	{ 0x8f, 0x00 },
1841	{ 0x90, 0x00 },
1842	{ 0x91, 0x00 },
1843	{ 0x96, 0x00 },
1844	{ 0x9a, 0x00 },
1845	{ 0xb0, 0x84 },
1846	{ 0xb1, 0x0c },
1847	{ 0xb2, 0x0e },
1848	{ 0xb3, 0x82 },
1849	{ 0xb8, 0x0a },
1850
1851/* More reserved magic, some of which tweaks white balance */
1852	{ 0x43, 0x0a },
1853	{ 0x44, 0xf0 },
1854	{ 0x45, 0x34 },
1855	{ 0x46, 0x58 },
1856	{ 0x47, 0x28 },
1857	{ 0x48, 0x3a },
1858	{ 0x59, 0x88 },
1859	{ 0x5a, 0x88 },
1860	{ 0x5b, 0x44 },
1861	{ 0x5c, 0x67 },
1862	{ 0x5d, 0x49 },
1863	{ 0x5e, 0x0e },
1864	{ 0x6c, 0x0a },
1865	{ 0x6d, 0x55 },
1866	{ 0x6e, 0x11 },
1867	{ 0x6f, 0x9f },			/* "9e for advance AWB" */
1868	{ 0x6a, 0x40 },
1869	{ OV7670_R01_BLUE, 0x40 },
1870	{ OV7670_R02_RED, 0x60 },
1871	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1872			| OV7670_COM8_AECSTEP
1873			| OV7670_COM8_BFILT
1874			| OV7670_COM8_AGC
1875			| OV7670_COM8_AEC
1876			| OV7670_COM8_AWB },
1877
1878/* Matrix coefficients */
1879	{ 0x4f, 0x80 },
1880	{ 0x50, 0x80 },
1881	{ 0x51, 0x00 },
1882	{ 0x52, 0x22 },
1883	{ 0x53, 0x5e },
1884	{ 0x54, 0x80 },
1885	{ 0x58, 0x9e },
1886
1887	{ OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1888	{ OV7670_R3F_EDGE, 0x00 },
1889	{ 0x75, 0x05 },
1890	{ 0x76, 0xe1 },
1891	{ 0x4c, 0x00 },
1892	{ 0x77, 0x01 },
1893	{ OV7670_R3D_COM13, OV7670_COM13_GAMMA
1894			  | OV7670_COM13_UVSAT
1895			  | 2},		/* was 3 */
1896	{ 0x4b, 0x09 },
1897	{ 0xc9, 0x60 },
1898	{ OV7670_R41_COM16, 0x38 },
1899	{ 0x56, 0x40 },
1900
1901	{ 0x34, 0x11 },
1902	{ OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1903	{ 0xa4, 0x88 },
1904	{ 0x96, 0x00 },
1905	{ 0x97, 0x30 },
1906	{ 0x98, 0x20 },
1907	{ 0x99, 0x30 },
1908	{ 0x9a, 0x84 },
1909	{ 0x9b, 0x29 },
1910	{ 0x9c, 0x03 },
1911	{ 0x9d, 0x4c },
1912	{ 0x9e, 0x3f },
1913	{ 0x78, 0x04 },
1914
1915/* Extra-weird stuff.  Some sort of multiplexor register */
1916	{ 0x79, 0x01 },
1917	{ 0xc8, 0xf0 },
1918	{ 0x79, 0x0f },
1919	{ 0xc8, 0x00 },
1920	{ 0x79, 0x10 },
1921	{ 0xc8, 0x7e },
1922	{ 0x79, 0x0a },
1923	{ 0xc8, 0x80 },
1924	{ 0x79, 0x0b },
1925	{ 0xc8, 0x01 },
1926	{ 0x79, 0x0c },
1927	{ 0xc8, 0x0f },
1928	{ 0x79, 0x0d },
1929	{ 0xc8, 0x20 },
1930	{ 0x79, 0x09 },
1931	{ 0xc8, 0x80 },
1932	{ 0x79, 0x02 },
1933	{ 0xc8, 0xc0 },
1934	{ 0x79, 0x03 },
1935	{ 0xc8, 0x40 },
1936	{ 0x79, 0x05 },
1937	{ 0xc8, 0x30 },
1938	{ 0x79, 0x26 },
1939};
1940
1941static const struct ov_i2c_regvals norm_8610[] = {
1942	{ 0x12, 0x80 },
1943	{ 0x00, 0x00 },
1944	{ 0x01, 0x80 },
1945	{ 0x02, 0x80 },
1946	{ 0x03, 0xc0 },
1947	{ 0x04, 0x30 },
1948	{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1949	{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1950	{ 0x0a, 0x86 },
1951	{ 0x0b, 0xb0 },
1952	{ 0x0c, 0x20 },
1953	{ 0x0d, 0x20 },
1954	{ 0x11, 0x01 },
1955	{ 0x12, 0x25 },
1956	{ 0x13, 0x01 },
1957	{ 0x14, 0x04 },
1958	{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
1959	{ 0x16, 0x03 },
1960	{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1961	{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1962	{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1963	{ 0x1a, 0xf5 },
1964	{ 0x1b, 0x00 },
1965	{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1966	{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1967	{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1968	{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1969	{ 0x26, 0xa2 },
1970	{ 0x27, 0xea },
1971	{ 0x28, 0x00 },
1972	{ 0x29, 0x00 },
1973	{ 0x2a, 0x80 },
1974	{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1975	{ 0x2c, 0xac },
1976	{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1977	{ 0x2e, 0x80 },
1978	{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1979	{ 0x4c, 0x00 },
1980	{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1981	{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1982	{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1983	{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1984	{ 0x63, 0xff },
1985	{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1986			 * maybe thats wrong */
1987	{ 0x65, 0x00 },
1988	{ 0x66, 0x55 },
1989	{ 0x67, 0xb0 },
1990	{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1991	{ 0x69, 0x02 },
1992	{ 0x6a, 0x22 },
1993	{ 0x6b, 0x00 },
1994	{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1995			 * deleting bit7 colors the first images red */
1996	{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1997	{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1998	{ 0x6f, 0x01 },
1999	{ 0x70, 0x8b },
2000	{ 0x71, 0x00 },
2001	{ 0x72, 0x14 },
2002	{ 0x73, 0x54 },
2003	{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
2004	{ 0x75, 0x0e },
2005	{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
2006	{ 0x77, 0xff },
2007	{ 0x78, 0x80 },
2008	{ 0x79, 0x80 },
2009	{ 0x7a, 0x80 },
2010	{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
2011	{ 0x7c, 0x00 },
2012	{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
2013	{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
2014	{ 0x7f, 0xfb },
2015	{ 0x80, 0x28 },
2016	{ 0x81, 0x00 },
2017	{ 0x82, 0x23 },
2018	{ 0x83, 0x0b },
2019	{ 0x84, 0x00 },
2020	{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2021	{ 0x86, 0xc9 },
2022	{ 0x87, 0x00 },
2023	{ 0x88, 0x00 },
2024	{ 0x89, 0x01 },
2025	{ 0x12, 0x20 },
2026	{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2027};
2028
2029static unsigned char ov7670_abs_to_sm(unsigned char v)
2030{
2031	if (v > 127)
2032		return v & 0x7f;
2033	return (128 - v) | 0x80;
2034}
2035
2036/* Write a OV519 register */
2037static void reg_w(struct sd *sd, u16 index, u16 value)
2038{
2039	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2040	int ret, req = 0;
2041
2042	if (sd->gspca_dev.usb_err < 0)
2043		return;
2044
2045	switch (sd->bridge) {
2046	case BRIDGE_OV511:
2047	case BRIDGE_OV511PLUS:
2048		req = 2;
2049		break;
2050	case BRIDGE_OVFX2:
2051		req = 0x0a;
2052		/* fall through */
2053	case BRIDGE_W9968CF:
2054		PDEBUG(D_USBO, "SET %02x %04x %04x",
2055				req, value, index);
2056		ret = usb_control_msg(sd->gspca_dev.dev,
2057			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2058			req,
2059			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2060			value, index, NULL, 0, 500);
2061		goto leave;
2062	default:
2063		req = 1;
2064	}
2065
2066	PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2067			req, index, value);
2068	sd->gspca_dev.usb_buf[0] = value;
2069	ret = usb_control_msg(sd->gspca_dev.dev,
2070			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2071			req,
2072			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2073			0, index,
2074			sd->gspca_dev.usb_buf, 1, 500);
2075leave:
2076	if (ret < 0) {
2077		PERR("reg_w %02x failed %d\n", index, ret);
2078		sd->gspca_dev.usb_err = ret;
2079		return;
2080	}
2081}
2082
2083/* Read from a OV519 register, note not valid for the w9968cf!! */
2084/* returns: negative is error, pos or zero is data */
2085static int reg_r(struct sd *sd, u16 index)
2086{
2087	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2088	int ret;
2089	int req;
2090
2091	if (sd->gspca_dev.usb_err < 0)
2092		return -1;
2093
2094	switch (sd->bridge) {
2095	case BRIDGE_OV511:
2096	case BRIDGE_OV511PLUS:
2097		req = 3;
2098		break;
2099	case BRIDGE_OVFX2:
2100		req = 0x0b;
2101		break;
2102	default:
2103		req = 1;
2104	}
2105
2106	ret = usb_control_msg(sd->gspca_dev.dev,
2107			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2108			req,
2109			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2110			0, index, sd->gspca_dev.usb_buf, 1, 500);
2111
2112	if (ret >= 0) {
2113		ret = sd->gspca_dev.usb_buf[0];
2114		PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2115			req, index, ret);
2116	} else {
2117		PERR("reg_r %02x failed %d\n", index, ret);
2118		sd->gspca_dev.usb_err = ret;
2119	}
2120
2121	return ret;
2122}
2123
2124/* Read 8 values from a OV519 register */
2125static int reg_r8(struct sd *sd,
2126		  u16 index)
2127{
2128	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2129	int ret;
2130
2131	if (sd->gspca_dev.usb_err < 0)
2132		return -1;
2133
2134	ret = usb_control_msg(sd->gspca_dev.dev,
2135			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2136			1,			/* REQ_IO */
2137			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2138			0, index, sd->gspca_dev.usb_buf, 8, 500);
2139
2140	if (ret >= 0) {
2141		ret = sd->gspca_dev.usb_buf[0];
2142	} else {
2143		PERR("reg_r8 %02x failed %d\n", index, ret);
2144		sd->gspca_dev.usb_err = ret;
2145	}
2146
2147	return ret;
2148}
2149
2150/*
2151 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2152 * the same position as 1's in "mask" are cleared and set to "value". Bits
2153 * that are in the same position as 0's in "mask" are preserved, regardless
2154 * of their respective state in "value".
2155 */
2156static void reg_w_mask(struct sd *sd,
2157			u16 index,
2158			u8 value,
2159			u8 mask)
2160{
2161	int ret;
2162	u8 oldval;
2163
2164	if (mask != 0xff) {
2165		value &= mask;			/* Enforce mask on value */
2166		ret = reg_r(sd, index);
2167		if (ret < 0)
2168			return;
2169
2170		oldval = ret & ~mask;		/* Clear the masked bits */
2171		value |= oldval;		/* Set the desired bits */
2172	}
2173	reg_w(sd, index, value);
2174}
2175
2176/*
2177 * Writes multiple (n) byte value to a single register. Only valid with certain
2178 * registers (0x30 and 0xc4 - 0xce).
2179 */
2180static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2181{
2182	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2183	int ret;
2184
2185	if (sd->gspca_dev.usb_err < 0)
2186		return;
2187
2188	*((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2189
2190	ret = usb_control_msg(sd->gspca_dev.dev,
2191			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2192			1 /* REG_IO */,
2193			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2194			0, index,
2195			sd->gspca_dev.usb_buf, n, 500);
2196	if (ret < 0) {
2197		PERR("reg_w32 %02x failed %d\n", index, ret);
2198		sd->gspca_dev.usb_err = ret;
2199	}
2200}
2201
2202static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2203{
2204	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2205	int rc, retries;
2206
2207	PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2208
2209	/* Three byte write cycle */
2210	for (retries = 6; ; ) {
2211		/* Select camera register */
2212		reg_w(sd, R51x_I2C_SADDR_3, reg);
2213
2214		/* Write "value" to I2C data port of OV511 */
2215		reg_w(sd, R51x_I2C_DATA, value);
2216
2217		/* Initiate 3-byte write cycle */
2218		reg_w(sd, R511_I2C_CTL, 0x01);
2219
2220		do {
2221			rc = reg_r(sd, R511_I2C_CTL);
2222		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2223
2224		if (rc < 0)
2225			return;
2226
2227		if ((rc & 2) == 0) /* Ack? */
2228			break;
2229		if (--retries < 0) {
2230			PDEBUG(D_USBO, "i2c write retries exhausted");
2231			return;
2232		}
2233	}
2234}
2235
2236static int ov511_i2c_r(struct sd *sd, u8 reg)
2237{
2238	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2239	int rc, value, retries;
2240
2241	/* Two byte write cycle */
2242	for (retries = 6; ; ) {
2243		/* Select camera register */
2244		reg_w(sd, R51x_I2C_SADDR_2, reg);
2245
2246		/* Initiate 2-byte write cycle */
2247		reg_w(sd, R511_I2C_CTL, 0x03);
2248
2249		do {
2250			rc = reg_r(sd, R511_I2C_CTL);
2251		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2252
2253		if (rc < 0)
2254			return rc;
2255
2256		if ((rc & 2) == 0) /* Ack? */
2257			break;
2258
2259		/* I2C abort */
2260		reg_w(sd, R511_I2C_CTL, 0x10);
2261
2262		if (--retries < 0) {
2263			PDEBUG(D_USBI, "i2c write retries exhausted");
2264			return -1;
2265		}
2266	}
2267
2268	/* Two byte read cycle */
2269	for (retries = 6; ; ) {
2270		/* Initiate 2-byte read cycle */
2271		reg_w(sd, R511_I2C_CTL, 0x05);
2272
2273		do {
2274			rc = reg_r(sd, R511_I2C_CTL);
2275		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2276
2277		if (rc < 0)
2278			return rc;
2279
2280		if ((rc & 2) == 0) /* Ack? */
2281			break;
2282
2283		/* I2C abort */
2284		reg_w(sd, R511_I2C_CTL, 0x10);
2285
2286		if (--retries < 0) {
2287			PDEBUG(D_USBI, "i2c read retries exhausted");
2288			return -1;
2289		}
2290	}
2291
2292	value = reg_r(sd, R51x_I2C_DATA);
2293
2294	PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2295
2296	/* This is needed to make i2c_w() work */
2297	reg_w(sd, R511_I2C_CTL, 0x05);
2298
2299	return value;
2300}
2301
2302/*
2303 * The OV518 I2C I/O procedure is different, hence, this function.
2304 * This is normally only called from i2c_w(). Note that this function
2305 * always succeeds regardless of whether the sensor is present and working.
2306 */
2307static void ov518_i2c_w(struct sd *sd,
2308		u8 reg,
2309		u8 value)
2310{
2311	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2312
2313	PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2314
2315	/* Select camera register */
2316	reg_w(sd, R51x_I2C_SADDR_3, reg);
2317
2318	/* Write "value" to I2C data port of OV511 */
2319	reg_w(sd, R51x_I2C_DATA, value);
2320
2321	/* Initiate 3-byte write cycle */
2322	reg_w(sd, R518_I2C_CTL, 0x01);
2323
2324	/* wait for write complete */
2325	msleep(4);
2326	reg_r8(sd, R518_I2C_CTL);
2327}
2328
2329/*
2330 * returns: negative is error, pos or zero is data
2331 *
2332 * The OV518 I2C I/O procedure is different, hence, this function.
2333 * This is normally only called from i2c_r(). Note that this function
2334 * always succeeds regardless of whether the sensor is present and working.
2335 */
2336static int ov518_i2c_r(struct sd *sd, u8 reg)
2337{
2338	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2339	int value;
2340
2341	/* Select camera register */
2342	reg_w(sd, R51x_I2C_SADDR_2, reg);
2343
2344	/* Initiate 2-byte write cycle */
2345	reg_w(sd, R518_I2C_CTL, 0x03);
2346	reg_r8(sd, R518_I2C_CTL);
2347
2348	/* Initiate 2-byte read cycle */
2349	reg_w(sd, R518_I2C_CTL, 0x05);
2350	reg_r8(sd, R518_I2C_CTL);
2351
2352	value = reg_r(sd, R51x_I2C_DATA);
2353	PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2354	return value;
2355}
2356
2357static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2358{
2359	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2360	int ret;
2361
2362	if (sd->gspca_dev.usb_err < 0)
2363		return;
2364
2365	ret = usb_control_msg(sd->gspca_dev.dev,
2366			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2367			0x02,
2368			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2369			(u16) value, (u16) reg, NULL, 0, 500);
2370
2371	if (ret < 0) {
2372		PERR("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2373		sd->gspca_dev.usb_err = ret;
2374	}
2375
2376	PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2377}
2378
2379static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2380{
2381	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2382	int ret;
2383
2384	if (sd->gspca_dev.usb_err < 0)
2385		return -1;
2386
2387	ret = usb_control_msg(sd->gspca_dev.dev,
2388			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2389			0x03,
2390			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2391			0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2392
2393	if (ret >= 0) {
2394		ret = sd->gspca_dev.usb_buf[0];
2395		PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2396	} else {
2397		PERR("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2398		sd->gspca_dev.usb_err = ret;
2399	}
2400
2401	return ret;
2402}
2403
2404static void i2c_w(struct sd *sd, u8 reg, u8 value)
2405{
2406	if (sd->sensor_reg_cache[reg] == value)
2407		return;
2408
2409	switch (sd->bridge) {
2410	case BRIDGE_OV511:
2411	case BRIDGE_OV511PLUS:
2412		ov511_i2c_w(sd, reg, value);
2413		break;
2414	case BRIDGE_OV518:
2415	case BRIDGE_OV518PLUS:
2416	case BRIDGE_OV519:
2417		ov518_i2c_w(sd, reg, value);
2418		break;
2419	case BRIDGE_OVFX2:
2420		ovfx2_i2c_w(sd, reg, value);
2421		break;
2422	case BRIDGE_W9968CF:
2423		w9968cf_i2c_w(sd, reg, value);
2424		break;
2425	}
2426
2427	if (sd->gspca_dev.usb_err >= 0) {
2428		/* Up on sensor reset empty the register cache */
2429		if (reg == 0x12 && (value & 0x80))
2430			memset(sd->sensor_reg_cache, -1,
2431				sizeof(sd->sensor_reg_cache));
2432		else
2433			sd->sensor_reg_cache[reg] = value;
2434	}
2435}
2436
2437static int i2c_r(struct sd *sd, u8 reg)
2438{
2439	int ret = -1;
2440
2441	if (sd->sensor_reg_cache[reg] != -1)
2442		return sd->sensor_reg_cache[reg];
2443
2444	switch (sd->bridge) {
2445	case BRIDGE_OV511:
2446	case BRIDGE_OV511PLUS:
2447		ret = ov511_i2c_r(sd, reg);
2448		break;
2449	case BRIDGE_OV518:
2450	case BRIDGE_OV518PLUS:
2451	case BRIDGE_OV519:
2452		ret = ov518_i2c_r(sd, reg);
2453		break;
2454	case BRIDGE_OVFX2:
2455		ret = ovfx2_i2c_r(sd, reg);
2456		break;
2457	case BRIDGE_W9968CF:
2458		ret = w9968cf_i2c_r(sd, reg);
2459		break;
2460	}
2461
2462	if (ret >= 0)
2463		sd->sensor_reg_cache[reg] = ret;
2464
2465	return ret;
2466}
2467
2468/* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2469 * the same position as 1's in "mask" are cleared and set to "value". Bits
2470 * that are in the same position as 0's in "mask" are preserved, regardless
2471 * of their respective state in "value".
2472 */
2473static void i2c_w_mask(struct sd *sd,
2474			u8 reg,
2475			u8 value,
2476			u8 mask)
2477{
2478	int rc;
2479	u8 oldval;
2480
2481	value &= mask;			/* Enforce mask on value */
2482	rc = i2c_r(sd, reg);
2483	if (rc < 0)
2484		return;
2485	oldval = rc & ~mask;		/* Clear the masked bits */
2486	value |= oldval;		/* Set the desired bits */
2487	i2c_w(sd, reg, value);
2488}
2489
2490/* Temporarily stops OV511 from functioning. Must do this before changing
2491 * registers while the camera is streaming */
2492static inline void ov51x_stop(struct sd *sd)
2493{
2494	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2495
2496	PDEBUG(D_STREAM, "stopping");
2497	sd->stopped = 1;
2498	switch (sd->bridge) {
2499	case BRIDGE_OV511:
2500	case BRIDGE_OV511PLUS:
2501		reg_w(sd, R51x_SYS_RESET, 0x3d);
2502		break;
2503	case BRIDGE_OV518:
2504	case BRIDGE_OV518PLUS:
2505		reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2506		break;
2507	case BRIDGE_OV519:
2508		reg_w(sd, OV519_R51_RESET1, 0x0f);
2509		reg_w(sd, OV519_R51_RESET1, 0x00);
2510		reg_w(sd, 0x22, 0x00);		/* FRAR */
2511		break;
2512	case BRIDGE_OVFX2:
2513		reg_w_mask(sd, 0x0f, 0x00, 0x02);
2514		break;
2515	case BRIDGE_W9968CF:
2516		reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2517		break;
2518	}
2519}
2520
2521/* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2522 * actually stopped (for performance). */
2523static inline void ov51x_restart(struct sd *sd)
2524{
2525	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2526
2527	PDEBUG(D_STREAM, "restarting");
2528	if (!sd->stopped)
2529		return;
2530	sd->stopped = 0;
2531
2532	/* Reinitialize the stream */
2533	switch (sd->bridge) {
2534	case BRIDGE_OV511:
2535	case BRIDGE_OV511PLUS:
2536		reg_w(sd, R51x_SYS_RESET, 0x00);
2537		break;
2538	case BRIDGE_OV518:
2539	case BRIDGE_OV518PLUS:
2540		reg_w(sd, 0x2f, 0x80);
2541		reg_w(sd, R51x_SYS_RESET, 0x00);
2542		break;
2543	case BRIDGE_OV519:
2544		reg_w(sd, OV519_R51_RESET1, 0x0f);
2545		reg_w(sd, OV519_R51_RESET1, 0x00);
2546		reg_w(sd, 0x22, 0x1d);		/* FRAR */
2547		break;
2548	case BRIDGE_OVFX2:
2549		reg_w_mask(sd, 0x0f, 0x02, 0x02);
2550		break;
2551	case BRIDGE_W9968CF:
2552		reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2553		break;
2554	}
2555}
2556
2557static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2558
2559/* This does an initial reset of an OmniVision sensor and ensures that I2C
2560 * is synchronized. Returns <0 on failure.
2561 */
2562static int init_ov_sensor(struct sd *sd, u8 slave)
2563{
2564	int i;
2565	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2566
2567	ov51x_set_slave_ids(sd, slave);
2568
2569	/* Reset the sensor */
2570	i2c_w(sd, 0x12, 0x80);
2571
2572	/* Wait for it to initialize */
2573	msleep(150);
2574
2575	for (i = 0; i < i2c_detect_tries; i++) {
2576		if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2577		    i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2578			PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2579			return 0;
2580		}
2581
2582		/* Reset the sensor */
2583		i2c_w(sd, 0x12, 0x80);
2584
2585		/* Wait for it to initialize */
2586		msleep(150);
2587
2588		/* Dummy read to sync I2C */
2589		if (i2c_r(sd, 0x00) < 0)
2590			return -1;
2591	}
2592	return -1;
2593}
2594
2595/* Set the read and write slave IDs. The "slave" argument is the write slave,
2596 * and the read slave will be set to (slave + 1).
2597 * This should not be called from outside the i2c I/O functions.
2598 * Sets I2C read and write slave IDs. Returns <0 for error
2599 */
2600static void ov51x_set_slave_ids(struct sd *sd,
2601				u8 slave)
2602{
2603	switch (sd->bridge) {
2604	case BRIDGE_OVFX2:
2605		reg_w(sd, OVFX2_I2C_ADDR, slave);
2606		return;
2607	case BRIDGE_W9968CF:
2608		sd->sensor_addr = slave;
2609		return;
2610	}
2611
2612	reg_w(sd, R51x_I2C_W_SID, slave);
2613	reg_w(sd, R51x_I2C_R_SID, slave + 1);
2614}
2615
2616static void write_regvals(struct sd *sd,
2617			 const struct ov_regvals *regvals,
2618			 int n)
2619{
2620	while (--n >= 0) {
2621		reg_w(sd, regvals->reg, regvals->val);
2622		regvals++;
2623	}
2624}
2625
2626static void write_i2c_regvals(struct sd *sd,
2627			const struct ov_i2c_regvals *regvals,
2628			int n)
2629{
2630	while (--n >= 0) {
2631		i2c_w(sd, regvals->reg, regvals->val);
2632		regvals++;
2633	}
2634}
2635
2636/****************************************************************************
2637 *
2638 * OV511 and sensor configuration
2639 *
2640 ***************************************************************************/
2641
2642/* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2643static void ov_hires_configure(struct sd *sd)
2644{
2645	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2646	int high, low;
2647
2648	if (sd->bridge != BRIDGE_OVFX2) {
2649		PERR("error hires sensors only supported with ovfx2\n");
2650		return;
2651	}
2652
2653	PDEBUG(D_PROBE, "starting ov hires configuration");
2654
2655	/* Detect sensor (sub)type */
2656	high = i2c_r(sd, 0x0a);
2657	low = i2c_r(sd, 0x0b);
2658	/* info("%x, %x", high, low); */
2659	switch (high) {
2660	case 0x96:
2661		switch (low) {
2662		case 0x40:
2663			PDEBUG(D_PROBE, "Sensor is a OV2610");
2664			sd->sensor = SEN_OV2610;
2665			return;
2666		case 0x41:
2667			PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2668			sd->sensor = SEN_OV2610AE;
2669			return;
2670		case 0xb1:
2671			PDEBUG(D_PROBE, "Sensor is a OV9600");
2672			sd->sensor = SEN_OV9600;
2673			return;
2674		}
2675		break;
2676	case 0x36:
2677		if ((low & 0x0f) == 0x00) {
2678			PDEBUG(D_PROBE, "Sensor is a OV3610");
2679			sd->sensor = SEN_OV3610;
2680			return;
2681		}
2682		break;
2683	}
2684	PERR("Error unknown sensor type: %02x%02x\n", high, low);
2685}
2686
2687/* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2688 * the same register settings as the OV8610, since they are very similar.
2689 */
2690static void ov8xx0_configure(struct sd *sd)
2691{
2692	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2693	int rc;
2694
2695	PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2696
2697	/* Detect sensor (sub)type */
2698	rc = i2c_r(sd, OV7610_REG_COM_I);
2699	if (rc < 0) {
2700		PERR("Error detecting sensor type");
2701		return;
2702	}
2703	if ((rc & 3) == 1)
2704		sd->sensor = SEN_OV8610;
2705	else
2706		PERR("Unknown image sensor version: %d\n", rc & 3);
2707}
2708
2709/* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2710 * the same register settings as the OV7610, since they are very similar.
2711 */
2712static void ov7xx0_configure(struct sd *sd)
2713{
2714	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2715	int rc, high, low;
2716
2717	PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2718
2719	/* Detect sensor (sub)type */
2720	rc = i2c_r(sd, OV7610_REG_COM_I);
2721
2722	/* add OV7670 here
2723	 * it appears to be wrongly detected as a 7610 by default */
2724	if (rc < 0) {
2725		PERR("Error detecting sensor type\n");
2726		return;
2727	}
2728	if ((rc & 3) == 3) {
2729		/* quick hack to make OV7670s work */
2730		high = i2c_r(sd, 0x0a);
2731		low = i2c_r(sd, 0x0b);
2732		/* info("%x, %x", high, low); */
2733		if (high == 0x76 && (low & 0xf0) == 0x70) {
2734			PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2735			sd->sensor = SEN_OV7670;
2736		} else {
2737			PDEBUG(D_PROBE, "Sensor is an OV7610");
2738			sd->sensor = SEN_OV7610;
2739		}
2740	} else if ((rc & 3) == 1) {
2741		/* I don't know what's different about the 76BE yet. */
2742		if (i2c_r(sd, 0x15) & 1) {
2743			PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2744			sd->sensor = SEN_OV7620AE;
2745		} else {
2746			PDEBUG(D_PROBE, "Sensor is an OV76BE");
2747			sd->sensor = SEN_OV76BE;
2748		}
2749	} else if ((rc & 3) == 0) {
2750		/* try to read product id registers */
2751		high = i2c_r(sd, 0x0a);
2752		if (high < 0) {
2753			PERR("Error detecting camera chip PID\n");
2754			return;
2755		}
2756		low = i2c_r(sd, 0x0b);
2757		if (low < 0) {
2758			PERR("Error detecting camera chip VER\n");
2759			return;
2760		}
2761		if (high == 0x76) {
2762			switch (low) {
2763			case 0x30:
2764				PERR("Sensor is an OV7630/OV7635\n");
2765				PERR("7630 is not supported by this driver\n");
2766				return;
2767			case 0x40:
2768				PDEBUG(D_PROBE, "Sensor is an OV7645");
2769				sd->sensor = SEN_OV7640; /* FIXME */
2770				break;
2771			case 0x45:
2772				PDEBUG(D_PROBE, "Sensor is an OV7645B");
2773				sd->sensor = SEN_OV7640; /* FIXME */
2774				break;
2775			case 0x48:
2776				PDEBUG(D_PROBE, "Sensor is an OV7648");
2777				sd->sensor = SEN_OV7648;
2778				break;
2779			case 0x60:
2780				PDEBUG(D_PROBE, "Sensor is a OV7660");
2781				sd->sensor = SEN_OV7660;
2782				break;
2783			default:
2784				PERR("Unknown sensor: 0x76%02x\n", low);
2785				return;
2786			}
2787		} else {
2788			PDEBUG(D_PROBE, "Sensor is an OV7620");
2789			sd->sensor = SEN_OV7620;
2790		}
2791	} else {
2792		PERR("Unknown image sensor version: %d\n", rc & 3);
2793	}
2794}
2795
2796/* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2797static void ov6xx0_configure(struct sd *sd)
2798{
2799	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2800	int rc;
2801
2802	PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2803
2804	/* Detect sensor (sub)type */
2805	rc = i2c_r(sd, OV7610_REG_COM_I);
2806	if (rc < 0) {
2807		PERR("Error detecting sensor type\n");
2808		return;
2809	}
2810
2811	/* Ugh. The first two bits are the version bits, but
2812	 * the entire register value must be used. I guess OVT
2813	 * underestimated how many variants they would make. */
2814	switch (rc) {
2815	case 0x00:
2816		sd->sensor = SEN_OV6630;
2817		pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2818		break;
2819	case 0x01:
2820		sd->sensor = SEN_OV6620;
2821		PDEBUG(D_PROBE, "Sensor is an OV6620");
2822		break;
2823	case 0x02:
2824		sd->sensor = SEN_OV6630;
2825		PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2826		break;
2827	case 0x03:
2828		sd->sensor = SEN_OV66308AF;
2829		PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2830		break;
2831	case 0x90:
2832		sd->sensor = SEN_OV6630;
2833		pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2834		break;
2835	default:
2836		PERR("FATAL: Unknown sensor version: 0x%02x\n", rc);
2837		return;
2838	}
2839
2840	/* Set sensor-specific vars */
2841	sd->sif = 1;
2842}
2843
2844/* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2845static void ov51x_led_control(struct sd *sd, int on)
2846{
2847	if (sd->invert_led)
2848		on = !on;
2849
2850	switch (sd->bridge) {
2851	/* OV511 has no LED control */
2852	case BRIDGE_OV511PLUS:
2853		reg_w(sd, R511_SYS_LED_CTL, on);
2854		break;
2855	case BRIDGE_OV518:
2856	case BRIDGE_OV518PLUS:
2857		reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2858		break;
2859	case BRIDGE_OV519:
2860		reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2861		break;
2862	}
2863}
2864
2865static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2866{
2867	struct sd *sd = (struct sd *) gspca_dev;
2868
2869	if (!sd->snapshot_needs_reset)
2870		return;
2871
2872	/* Note it is important that we clear sd->snapshot_needs_reset,
2873	   before actually clearing the snapshot state in the bridge
2874	   otherwise we might race with the pkt_scan interrupt handler */
2875	sd->snapshot_needs_reset = 0;
2876
2877	switch (sd->bridge) {
2878	case BRIDGE_OV511:
2879	case BRIDGE_OV511PLUS:
2880		reg_w(sd, R51x_SYS_SNAP, 0x02);
2881		reg_w(sd, R51x_SYS_SNAP, 0x00);
2882		break;
2883	case BRIDGE_OV518:
2884	case BRIDGE_OV518PLUS:
2885		reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2886		reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2887		break;
2888	case BRIDGE_OV519:
2889		reg_w(sd, R51x_SYS_RESET, 0x40);
2890		reg_w(sd, R51x_SYS_RESET, 0x00);
2891		break;
2892	}
2893}
2894
2895static void ov51x_upload_quan_tables(struct sd *sd)
2896{
2897	const unsigned char yQuanTable511[] = {
2898		0, 1, 1, 2, 2, 3, 3, 4,
2899		1, 1, 1, 2, 2, 3, 4, 4,
2900		1, 1, 2, 2, 3, 4, 4, 4,
2901		2, 2, 2, 3, 4, 4, 4, 4,
2902		2, 2, 3, 4, 4, 5, 5, 5,
2903		3, 3, 4, 4, 5, 5, 5, 5,
2904		3, 4, 4, 4, 5, 5, 5, 5,
2905		4, 4, 4, 4, 5, 5, 5, 5
2906	};
2907
2908	const unsigned char uvQuanTable511[] = {
2909		0, 2, 2, 3, 4, 4, 4, 4,
2910		2, 2, 2, 4, 4, 4, 4, 4,
2911		2, 2, 3, 4, 4, 4, 4, 4,
2912		3, 4, 4, 4, 4, 4, 4, 4,
2913		4, 4, 4, 4, 4, 4, 4, 4,
2914		4, 4, 4, 4, 4, 4, 4, 4,
2915		4, 4, 4, 4, 4, 4, 4, 4,
2916		4, 4, 4, 4, 4, 4, 4, 4
2917	};
2918
2919	/* OV518 quantization tables are 8x4 (instead of 8x8) */
2920	const unsigned char yQuanTable518[] = {
2921		5, 4, 5, 6, 6, 7, 7, 7,
2922		5, 5, 5, 5, 6, 7, 7, 7,
2923		6, 6, 6, 6, 7, 7, 7, 8,
2924		7, 7, 6, 7, 7, 7, 8, 8
2925	};
2926	const unsigned char uvQuanTable518[] = {
2927		6, 6, 6, 7, 7, 7, 7, 7,
2928		6, 6, 6, 7, 7, 7, 7, 7,
2929		6, 6, 6, 7, 7, 7, 7, 8,
2930		7, 7, 7, 7, 7, 7, 8, 8
2931	};
2932
2933	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2934	const unsigned char *pYTable, *pUVTable;
2935	unsigned char val0, val1;
2936	int i, size, reg = R51x_COMP_LUT_BEGIN;
2937
2938	PDEBUG(D_PROBE, "Uploading quantization tables");
2939
2940	if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2941		pYTable = yQuanTable511;
2942		pUVTable = uvQuanTable511;
2943		size = 32;
2944	} else {
2945		pYTable = yQuanTable518;
2946		pUVTable = uvQuanTable518;
2947		size = 16;
2948	}
2949
2950	for (i = 0; i < size; i++) {
2951		val0 = *pYTable++;
2952		val1 = *pYTable++;
2953		val0 &= 0x0f;
2954		val1 &= 0x0f;
2955		val0 |= val1 << 4;
2956		reg_w(sd, reg, val0);
2957
2958		val0 = *pUVTable++;
2959		val1 = *pUVTable++;
2960		val0 &= 0x0f;
2961		val1 &= 0x0f;
2962		val0 |= val1 << 4;
2963		reg_w(sd, reg + size, val0);
2964
2965		reg++;
2966	}
2967}
2968
2969/* This initializes the OV511/OV511+ and the sensor */
2970static void ov511_configure(struct gspca_dev *gspca_dev)
2971{
2972	struct sd *sd = (struct sd *) gspca_dev;
2973
2974	/* For 511 and 511+ */
2975	const struct ov_regvals init_511[] = {
2976		{ R51x_SYS_RESET,	0x7f },
2977		{ R51x_SYS_INIT,	0x01 },
2978		{ R51x_SYS_RESET,	0x7f },
2979		{ R51x_SYS_INIT,	0x01 },
2980		{ R51x_SYS_RESET,	0x3f },
2981		{ R51x_SYS_INIT,	0x01 },
2982		{ R51x_SYS_RESET,	0x3d },
2983	};
2984
2985	const struct ov_regvals norm_511[] = {
2986		{ R511_DRAM_FLOW_CTL,	0x01 },
2987		{ R51x_SYS_SNAP,	0x00 },
2988		{ R51x_SYS_SNAP,	0x02 },
2989		{ R51x_SYS_SNAP,	0x00 },
2990		{ R511_FIFO_OPTS,	0x1f },
2991		{ R511_COMP_EN,		0x00 },
2992		{ R511_COMP_LUT_EN,	0x03 },
2993	};
2994
2995	const struct ov_regvals norm_511_p[] = {
2996		{ R511_DRAM_FLOW_CTL,	0xff },
2997		{ R51x_SYS_SNAP,	0x00 },
2998		{ R51x_SYS_SNAP,	0x02 },
2999		{ R51x_SYS_SNAP,	0x00 },
3000		{ R511_FIFO_OPTS,	0xff },
3001		{ R511_COMP_EN,		0x00 },
3002		{ R511_COMP_LUT_EN,	0x03 },
3003	};
3004
3005	const struct ov_regvals compress_511[] = {
3006		{ 0x70, 0x1f },
3007		{ 0x71, 0x05 },
3008		{ 0x72, 0x06 },
3009		{ 0x73, 0x06 },
3010		{ 0x74, 0x14 },
3011		{ 0x75, 0x03 },
3012		{ 0x76, 0x04 },
3013		{ 0x77, 0x04 },
3014	};
3015
3016	PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
3017
3018	write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3019
3020	switch (sd->bridge) {
3021	case BRIDGE_OV511:
3022		write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3023		break;
3024	case BRIDGE_OV511PLUS:
3025		write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3026		break;
3027	}
3028
3029	/* Init compression */
3030	write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3031
3032	ov51x_upload_quan_tables(sd);
3033}
3034
3035/* This initializes the OV518/OV518+ and the sensor */
3036static void ov518_configure(struct gspca_dev *gspca_dev)
3037{
3038	struct sd *sd = (struct sd *) gspca_dev;
3039
3040	/* For 518 and 518+ */
3041	const struct ov_regvals init_518[] = {
3042		{ R51x_SYS_RESET,	0x40 },
3043		{ R51x_SYS_INIT,	0xe1 },
3044		{ R51x_SYS_RESET,	0x3e },
3045		{ R51x_SYS_INIT,	0xe1 },
3046		{ R51x_SYS_RESET,	0x00 },
3047		{ R51x_SYS_INIT,	0xe1 },
3048		{ 0x46,			0x00 },
3049		{ 0x5d,			0x03 },
3050	};
3051
3052	const struct ov_regvals norm_518[] = {
3053		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3054		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3055		{ 0x31,			0x0f },
3056		{ 0x5d,			0x03 },
3057		{ 0x24,			0x9f },
3058		{ 0x25,			0x90 },
3059		{ 0x20,			0x00 },
3060		{ 0x51,			0x04 },
3061		{ 0x71,			0x19 },
3062		{ 0x2f,			0x80 },
3063	};
3064
3065	const struct ov_regvals norm_518_p[] = {
3066		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3067		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3068		{ 0x31,			0x0f },
3069		{ 0x5d,			0x03 },
3070		{ 0x24,			0x9f },
3071		{ 0x25,			0x90 },
3072		{ 0x20,			0x60 },
3073		{ 0x51,			0x02 },
3074		{ 0x71,			0x19 },
3075		{ 0x40,			0xff },
3076		{ 0x41,			0x42 },
3077		{ 0x46,			0x00 },
3078		{ 0x33,			0x04 },
3079		{ 0x21,			0x19 },
3080		{ 0x3f,			0x10 },
3081		{ 0x2f,			0x80 },
3082	};
3083
3084	/* First 5 bits of custom ID reg are a revision ID on OV518 */
3085	sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3086	PDEBUG(D_PROBE, "Device revision %d", sd->revision);
3087
3088	write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3089
3090	/* Set LED GPIO pin to output mode */
3091	reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3092
3093	switch (sd->bridge) {
3094	case BRIDGE_OV518:
3095		write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3096		break;
3097	case BRIDGE_OV518PLUS:
3098		write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3099		break;
3100	}
3101
3102	ov51x_upload_quan_tables(sd);
3103
3104	reg_w(sd, 0x2f, 0x80);
3105}
3106
3107static void ov519_configure(struct sd *sd)
3108{
3109	static const struct ov_regvals init_519[] = {
3110		{ 0x5a, 0x6d }, /* EnableSystem */
3111		{ 0x53, 0x9b }, /* don't enable the microcontroller */
3112		{ OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3113		{ 0x5d, 0x03 },
3114		{ 0x49, 0x01 },
3115		{ 0x48, 0x00 },
3116		/* Set LED pin to output mode. Bit 4 must be cleared or sensor
3117		 * detection will fail. This deserves further investigation. */
3118		{ OV519_GPIO_IO_CTRL0,   0xee },
3119		{ OV519_R51_RESET1, 0x0f },
3120		{ OV519_R51_RESET1, 0x00 },
3121		{ 0x22, 0x00 },
3122		/* windows reads 0x55 at this point*/
3123	};
3124
3125	write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3126}
3127
3128static void ovfx2_configure(struct sd *sd)
3129{
3130	static const struct ov_regvals init_fx2[] = {
3131		{ 0x00, 0x60 },
3132		{ 0x02, 0x01 },
3133		{ 0x0f, 0x1d },
3134		{ 0xe9, 0x82 },
3135		{ 0xea, 0xc7 },
3136		{ 0xeb, 0x10 },
3137		{ 0xec, 0xf6 },
3138	};
3139
3140	sd->stopped = 1;
3141
3142	write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3143}
3144
3145/* set the mode */
3146/* This function works for ov7660 only */
3147static void ov519_set_mode(struct sd *sd)
3148{
3149	static const struct ov_regvals bridge_ov7660[2][10] = {
3150		{{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3151		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3152		 {0x25, 0x01}, {0x26, 0x00}},
3153		{{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3154		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3155		 {0x25, 0x03}, {0x26, 0x00}}
3156	};
3157	static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3158		{{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3159		{{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3160	};
3161	static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3162		{OV7670_R17_HSTART, 0x13},
3163		{OV7670_R18_HSTOP, 0x01},
3164		{OV7670_R32_HREF, 0x92},
3165		{OV7670_R19_VSTART, 0x02},
3166		{OV7670_R1A_VSTOP, 0x7a},
3167		{OV7670_R03_VREF, 0x00},
3168/*		{0x33, 0x00}, */
3169/*		{0x34, 0x07}, */
3170/*		{0x36, 0x00}, */
3171/*		{0x6b, 0x0a}, */
3172	};
3173
3174	write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3175			ARRAY_SIZE(bridge_ov7660[0]));
3176	write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3177			ARRAY_SIZE(sensor_ov7660[0]));
3178	write_i2c_regvals(sd, sensor_ov7660_2,
3179			ARRAY_SIZE(sensor_ov7660_2));
3180}
3181
3182/* set the frame rate */
3183/* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3184static void ov519_set_fr(struct sd *sd)
3185{
3186	int fr;
3187	u8 clock;
3188	/* frame rate table with indices:
3189	 *	- mode = 0: 320x240, 1: 640x480
3190	 *	- fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3191	 *	- reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3192	 */
3193	static const u8 fr_tb[2][6][3] = {
3194		{{0x04, 0xff, 0x00},
3195		 {0x04, 0x1f, 0x00},
3196		 {0x04, 0x1b, 0x00},
3197		 {0x04, 0x15, 0x00},
3198		 {0x04, 0x09, 0x00},
3199		 {0x04, 0x01, 0x00}},
3200		{{0x0c, 0xff, 0x00},
3201		 {0x0c, 0x1f, 0x00},
3202		 {0x0c, 0x1b, 0x00},
3203		 {0x04, 0xff, 0x01},
3204		 {0x04, 0x1f, 0x01},
3205		 {0x04, 0x1b, 0x01}},
3206	};
3207
3208	if (frame_rate > 0)
3209		sd->frame_rate = frame_rate;
3210	if (sd->frame_rate >= 30)
3211		fr = 0;
3212	else if (sd->frame_rate >= 25)
3213		fr = 1;
3214	else if (sd->frame_rate >= 20)
3215		fr = 2;
3216	else if (sd->frame_rate >= 15)
3217		fr = 3;
3218	else if (sd->frame_rate >= 10)
3219		fr = 4;
3220	else
3221		fr = 5;
3222	reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3223	reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3224	clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3225	if (sd->sensor == SEN_OV7660)
3226		clock |= 0x80;		/* enable double clock */
3227	ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3228}
3229
3230static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3231{
3232	struct sd *sd = (struct sd *) gspca_dev;
3233
3234	i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3235}
3236
3237/* this function is called at probe time */
3238static int sd_config(struct gspca_dev *gspca_dev,
3239			const struct usb_device_id *id)
3240{
3241	struct sd *sd = (struct sd *) gspca_dev;
3242	struct cam *cam = &gspca_dev->cam;
3243
3244	sd->bridge = id->driver_info & BRIDGE_MASK;
3245	sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3246
3247	switch (sd->bridge) {
3248	case BRIDGE_OV511:
3249	case BRIDGE_OV511PLUS:
3250		cam->cam_mode = ov511_vga_mode;
3251		cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3252		break;
3253	case BRIDGE_OV518:
3254	case BRIDGE_OV518PLUS:
3255		cam->cam_mode = ov518_vga_mode;
3256		cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3257		break;
3258	case BRIDGE_OV519:
3259		cam->cam_mode = ov519_vga_mode;
3260		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3261		break;
3262	case BRIDGE_OVFX2:
3263		cam->cam_mode = ov519_vga_mode;
3264		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3265		cam->bulk_size = OVFX2_BULK_SIZE;
3266		cam->bulk_nurbs = MAX_NURBS;
3267		cam->bulk = 1;
3268		break;
3269	case BRIDGE_W9968CF:
3270		cam->cam_mode = w9968cf_vga_mode;
3271		cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3272		break;
3273	}
3274
3275	sd->frame_rate = 15;
3276
3277	return 0;
3278}
3279
3280/* this function is called at probe and resume time */
3281static int sd_init(struct gspca_dev *gspca_dev)
3282{
3283	struct sd *sd = (struct sd *) gspca_dev;
3284	struct cam *cam = &gspca_dev->cam;
3285
3286	switch (sd->bridge) {
3287	case BRIDGE_OV511:
3288	case BRIDGE_OV511PLUS:
3289		ov511_configure(gspca_dev);
3290		break;
3291	case BRIDGE_OV518:
3292	case BRIDGE_OV518PLUS:
3293		ov518_configure(gspca_dev);
3294		break;
3295	case BRIDGE_OV519:
3296		ov519_configure(sd);
3297		break;
3298	case BRIDGE_OVFX2:
3299		ovfx2_configure(sd);
3300		break;
3301	case BRIDGE_W9968CF:
3302		w9968cf_configure(sd);
3303		break;
3304	}
3305
3306	/* The OV519 must be more aggressive about sensor detection since
3307	 * I2C write will never fail if the sensor is not present. We have
3308	 * to try to initialize the sensor to detect its presence */
3309	sd->sensor = -1;
3310
3311	/* Test for 76xx */
3312	if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3313		ov7xx0_configure(sd);
3314
3315	/* Test for 6xx0 */
3316	} else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3317		ov6xx0_configure(sd);
3318
3319	/* Test for 8xx0 */
3320	} else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3321		ov8xx0_configure(sd);
3322
3323	/* Test for 3xxx / 2xxx */
3324	} else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3325		ov_hires_configure(sd);
3326	} else {
3327		PERR("Can't determine sensor slave IDs\n");
3328		goto error;
3329	}
3330
3331	if (sd->sensor < 0)
3332		goto error;
3333
3334	ov51x_led_control(sd, 0);	/* turn LED off */
3335
3336	switch (sd->bridge) {
3337	case BRIDGE_OV511:
3338	case BRIDGE_OV511PLUS:
3339		if (sd->sif) {
3340			cam->cam_mode = ov511_sif_mode;
3341			cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3342		}
3343		break;
3344	case BRIDGE_OV518:
3345	case BRIDGE_OV518PLUS:
3346		if (sd->sif) {
3347			cam->cam_mode = ov518_sif_mode;
3348			cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3349		}
3350		break;
3351	case BRIDGE_OV519:
3352		if (sd->sif) {
3353			cam->cam_mode = ov519_sif_mode;
3354			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3355		}
3356		break;
3357	case BRIDGE_OVFX2:
3358		switch (sd->sensor) {
3359		case SEN_OV2610:
3360		case SEN_OV2610AE:
3361			cam->cam_mode = ovfx2_ov2610_mode;
3362			cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3363			break;
3364		case SEN_OV3610:
3365			cam->cam_mode = ovfx2_ov3610_mode;
3366			cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3367			break;
3368		case SEN_OV9600:
3369			cam->cam_mode = ovfx2_ov9600_mode;
3370			cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3371			break;
3372		default:
3373			if (sd->sif) {
3374				cam->cam_mode = ov519_sif_mode;
3375				cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3376			}
3377			break;
3378		}
3379		break;
3380	case BRIDGE_W9968CF:
3381		if (sd->sif)
3382			cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3383
3384		/* w9968cf needs initialisation once the sensor is known */
3385		w9968cf_init(sd);
3386		break;
3387	}
3388
3389	/* initialize the sensor */
3390	switch (sd->sensor) {
3391	case SEN_OV2610:
3392		write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3393
3394		/* Enable autogain, autoexpo, awb, bandfilter */
3395		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3396		break;
3397	case SEN_OV2610AE:
3398		write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3399
3400		/* enable autoexpo */
3401		i2c_w_mask(sd, 0x13, 0x05, 0x05);
3402		break;
3403	case SEN_OV3610:
3404		write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3405
3406		/* Enable autogain, autoexpo, awb, bandfilter */
3407		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3408		break;
3409	case SEN_OV6620:
3410		write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3411		break;
3412	case SEN_OV6630:
3413	case SEN_OV66308AF:
3414		write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3415		break;
3416	default:
3417/*	case SEN_OV7610: */
3418/*	case SEN_OV76BE: */
3419		write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3420		i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3421		break;
3422	case SEN_OV7620:
3423	case SEN_OV7620AE:
3424		write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3425		break;
3426	case SEN_OV7640:
3427	case SEN_OV7648:
3428		write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3429		break;
3430	case SEN_OV7660:
3431		i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3432		msleep(14);
3433		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3434		write_regvals(sd, init_519_ov7660,
3435				ARRAY_SIZE(init_519_ov7660));
3436		write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3437		sd->gspca_dev.curr_mode = 1;	/* 640x480 */
3438		ov519_set_mode(sd);
3439		ov519_set_fr(sd);
3440		sd_reset_snapshot(gspca_dev);
3441		ov51x_restart(sd);
3442		ov51x_stop(sd);			/* not in win traces */
3443		ov51x_led_control(sd, 0);
3444		break;
3445	case SEN_OV7670:
3446		write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3447		break;
3448	case SEN_OV8610:
3449		write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3450		break;
3451	case SEN_OV9600:
3452		write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3453
3454		/* enable autoexpo */
3455/*		i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3456		break;
3457	}
3458	return gspca_dev->usb_err;
3459error:
3460	PERR("OV519 Config failed");
3461	return -EINVAL;
3462}
3463
3464/* function called at start time before URB creation */
3465static int sd_isoc_init(struct gspca_dev *gspca_dev)
3466{
3467	struct sd *sd = (struct sd *) gspca_dev;
3468
3469	switch (sd->bridge) {
3470	case BRIDGE_OVFX2:
3471		if (gspca_dev->pixfmt.width != 800)
3472			gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3473		else
3474			gspca_dev->cam.bulk_size = 7 * 4096;
3475		break;
3476	}
3477	return 0;
3478}
3479
3480/* Set up the OV511/OV511+ with the given image parameters.
3481 *
3482 * Do not put any sensor-specific code in here (including I2C I/O functions)
3483 */
3484static void ov511_mode_init_regs(struct sd *sd)
3485{
3486	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3487	int hsegs, vsegs, packet_size, fps, needed;
3488	int interlaced = 0;
3489	struct usb_host_interface *alt;
3490	struct usb_interface *intf;
3491
3492	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3493	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3494	if (!alt) {
3495		PERR("Couldn't get altsetting\n");
3496		sd->gspca_dev.usb_err = -EIO;
3497		return;
3498	}
3499
3500	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3501	reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3502
3503	reg_w(sd, R511_CAM_UV_EN, 0x01);
3504	reg_w(sd, R511_SNAP_UV_EN, 0x01);
3505	reg_w(sd, R511_SNAP_OPTS, 0x03);
3506
3507	/* Here I'm assuming that snapshot size == image size.
3508	 * I hope that's always true. --claudio
3509	 */
3510	hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3511	vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3512
3513	reg_w(sd, R511_CAM_PXCNT, hsegs);
3514	reg_w(sd, R511_CAM_LNCNT, vsegs);
3515	reg_w(sd, R511_CAM_PXDIV, 0x00);
3516	reg_w(sd, R511_CAM_LNDIV, 0x00);
3517
3518	/* YUV420, low pass filter on */
3519	reg_w(sd, R511_CAM_OPTS, 0x03);
3520
3521	/* Snapshot additions */
3522	reg_w(sd, R511_SNAP_PXCNT, hsegs);
3523	reg_w(sd, R511_SNAP_LNCNT, vsegs);
3524	reg_w(sd, R511_SNAP_PXDIV, 0x00);
3525	reg_w(sd, R511_SNAP_LNDIV, 0x00);
3526
3527	/******** Set the framerate ********/
3528	if (frame_rate > 0)
3529		sd->frame_rate = frame_rate;
3530
3531	switch (sd->sensor) {
3532	case SEN_OV6620:
3533		/* No framerate control, doesn't like higher rates yet */
3534		sd->clockdiv = 3;
3535		break;
3536
3537	/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3538	   for more sensors we need to do this for them too */
3539	case SEN_OV7620:
3540	case SEN_OV7620AE:
3541	case SEN_OV7640:
3542	case SEN_OV7648:
3543	case SEN_OV76BE:
3544		if (sd->gspca_dev.pixfmt.width == 320)
3545			interlaced = 1;
3546		/* Fall through */
3547	case SEN_OV6630:
3548	case SEN_OV7610:
3549	case SEN_OV7670:
3550		switch (sd->frame_rate) {
3551		case 30:
3552		case 25:
3553			/* Not enough bandwidth to do 640x480 @ 30 fps */
3554			if (sd->gspca_dev.pixfmt.width != 640) {
3555				sd->clockdiv = 0;
3556				break;
3557			}
3558			/* Fall through for 640x480 case */
3559		default:
3560/*		case 20: */
3561/*		case 15: */
3562			sd->clockdiv = 1;
3563			break;
3564		case 10:
3565			sd->clockdiv = 2;
3566			break;
3567		case 5:
3568			sd->clockdiv = 5;
3569			break;
3570		}
3571		if (interlaced) {
3572			sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3573			/* Higher then 10 does not work */
3574			if (sd->clockdiv > 10)
3575				sd->clockdiv = 10;
3576		}
3577		break;
3578
3579	case SEN_OV8610:
3580		/* No framerate control ?? */
3581		sd->clockdiv = 0;
3582		break;
3583	}
3584
3585	/* Check if we have enough bandwidth to disable compression */
3586	fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3587	needed = fps * sd->gspca_dev.pixfmt.width *
3588			sd->gspca_dev.pixfmt.height * 3 / 2;
3589	/* 1000 isoc packets/sec */
3590	if (needed > 1000 * packet_size) {
3591		/* Enable Y and UV quantization and compression */
3592		reg_w(sd, R511_COMP_EN, 0x07);
3593		reg_w(sd, R511_COMP_LUT_EN, 0x03);
3594	} else {
3595		reg_w(sd, R511_COMP_EN, 0x06);
3596		reg_w(sd, R511_COMP_LUT_EN, 0x00);
3597	}
3598
3599	reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3600	reg_w(sd, R51x_SYS_RESET, 0);
3601}
3602
3603/* Sets up the OV518/OV518+ with the given image parameters
3604 *
3605 * OV518 needs a completely different approach, until we can figure out what
3606 * the individual registers do. Also, only 15 FPS is supported now.
3607 *
3608 * Do not put any sensor-specific code in here (including I2C I/O functions)
3609 */
3610static void ov518_mode_init_regs(struct sd *sd)
3611{
3612	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3613	int hsegs, vsegs, packet_size;
3614	struct usb_host_interface *alt;
3615	struct usb_interface *intf;
3616
3617	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3618	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3619	if (!alt) {
3620		PERR("Couldn't get altsetting\n");
3621		sd->gspca_dev.usb_err = -EIO;
3622		return;
3623	}
3624
3625	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3626	ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3627
3628	/******** Set the mode ********/
3629	reg_w(sd, 0x2b, 0);
3630	reg_w(sd, 0x2c, 0);
3631	reg_w(sd, 0x2d, 0);
3632	reg_w(sd, 0x2e, 0);
3633	reg_w(sd, 0x3b, 0);
3634	reg_w(sd, 0x3c, 0);
3635	reg_w(sd, 0x3d, 0);
3636	reg_w(sd, 0x3e, 0);
3637
3638	if (sd->bridge == BRIDGE_OV518) {
3639		/* Set 8-bit (YVYU) input format */
3640		reg_w_mask(sd, 0x20, 0x08, 0x08);
3641
3642		/* Set 12-bit (4:2:0) output format */
3643		reg_w_mask(sd, 0x28, 0x80, 0xf0);
3644		reg_w_mask(sd, 0x38, 0x80, 0xf0);
3645	} else {
3646		reg_w(sd, 0x28, 0x80);
3647		reg_w(sd, 0x38, 0x80);
3648	}
3649
3650	hsegs = sd->gspca_dev.pixfmt.width / 16;
3651	vsegs = sd->gspca_dev.pixfmt.height / 4;
3652
3653	reg_w(sd, 0x29, hsegs);
3654	reg_w(sd, 0x2a, vsegs);
3655
3656	reg_w(sd, 0x39, hsegs);
3657	reg_w(sd, 0x3a, vsegs);
3658
3659	/* Windows driver does this here; who knows why */
3660	reg_w(sd, 0x2f, 0x80);
3661
3662	/******** Set the framerate ********/
3663	if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3664					      sd->sensor == SEN_OV7620AE)
3665		sd->clockdiv = 0;
3666	else
3667		sd->clockdiv = 1;
3668
3669	/* Mode independent, but framerate dependent, regs */
3670	/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3671	reg_w(sd, 0x51, 0x04);
3672	reg_w(sd, 0x22, 0x18);
3673	reg_w(sd, 0x23, 0xff);
3674
3675	if (sd->bridge == BRIDGE_OV518PLUS) {
3676		switch (sd->sensor) {
3677		case SEN_OV7620AE:
3678			/*
3679			 * HdG: 640x480 needs special handling on device
3680			 * revision 2, we check for device revison > 0 to
3681			 * avoid regressions, as we don't know the correct
3682			 * thing todo for revision 1.
3683			 *
3684			 * Also this likely means we don't need to
3685			 * differentiate between the OV7620 and OV7620AE,
3686			 * earlier testing hitting this same problem likely
3687			 * happened to be with revision < 2 cams using an
3688			 * OV7620 and revision 2 cams using an OV7620AE.
3689			 */
3690			if (sd->revision > 0 &&
3691					sd->gspca_dev.pixfmt.width == 640) {
3692				reg_w(sd, 0x20, 0x60);
3693				reg_w(sd, 0x21, 0x1f);
3694			} else {
3695				reg_w(sd, 0x20, 0x00);
3696				reg_w(sd, 0x21, 0x19);
3697			}
3698			break;
3699		case SEN_OV7620:
3700			reg_w(sd, 0x20, 0x00);
3701			reg_w(sd, 0x21, 0x19);
3702			break;
3703		default:
3704			reg_w(sd, 0x21, 0x19);
3705		}
3706	} else
3707		reg_w(sd, 0x71, 0x17);	/* Compression-related? */
3708
3709	/* FIXME: Sensor-specific */
3710	/* Bit 5 is what matters here. Of course, it is "reserved" */
3711	i2c_w(sd, 0x54, 0x23);
3712
3713	reg_w(sd, 0x2f, 0x80);
3714
3715	if (sd->bridge == BRIDGE_OV518PLUS) {
3716		reg_w(sd, 0x24, 0x94);
3717		reg_w(sd, 0x25, 0x90);
3718		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3719		ov518_reg_w32(sd, 0xc6,    540, 2);	/* 21ch   */
3720		ov518_reg_w32(sd, 0xc7,    540, 2);	/* 21ch   */
3721		ov518_reg_w32(sd, 0xc8,    108, 2);	/* 6ch    */
3722		ov518_reg_w32(sd, 0xca, 131098, 3);	/* 2001ah */
3723		ov518_reg_w32(sd, 0xcb,    532, 2);	/* 214h   */
3724		ov518_reg_w32(sd, 0xcc,   2400, 2);	/* 960h   */
3725		ov518_reg_w32(sd, 0xcd,     32, 2);	/* 20h    */
3726		ov518_reg_w32(sd, 0xce,    608, 2);	/* 260h   */
3727	} else {
3728		reg_w(sd, 0x24, 0x9f);
3729		reg_w(sd, 0x25, 0x90);
3730		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3731		ov518_reg_w32(sd, 0xc6,    381, 2);	/* 17dh   */
3732		ov518_reg_w32(sd, 0xc7,    381, 2);	/* 17dh   */
3733		ov518_reg_w32(sd, 0xc8,    128, 2);	/* 80h    */
3734		ov518_reg_w32(sd, 0xca, 183331, 3);	/* 2cc23h */
3735		ov518_reg_w32(sd, 0xcb,    746, 2);	/* 2eah   */
3736		ov518_reg_w32(sd, 0xcc,   1750, 2);	/* 6d6h   */
3737		ov518_reg_w32(sd, 0xcd,     45, 2);	/* 2dh    */
3738		ov518_reg_w32(sd, 0xce,    851, 2);	/* 353h   */
3739	}
3740
3741	reg_w(sd, 0x2f, 0x80);
3742}
3743
3744/* Sets up the OV519 with the given image parameters
3745 *
3746 * OV519 needs a completely different approach, until we can figure out what
3747 * the individual registers do.
3748 *
3749 * Do not put any sensor-specific code in here (including I2C I/O functions)
3750 */
3751static void ov519_mode_init_regs(struct sd *sd)
3752{
3753	static const struct ov_regvals mode_init_519_ov7670[] = {
3754		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3755		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3756		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3757		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3758		{ 0xa3,	0x18 },
3759		{ 0xa4,	0x04 },
3760		{ 0xa5,	0x28 },
3761		{ 0x37,	0x00 },	/* SetUsbInit */
3762		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3763		/* Enable both fields, YUV Input, disable defect comp (why?) */
3764		{ 0x20,	0x0c },
3765		{ 0x21,	0x38 },
3766		{ 0x22,	0x1d },
3767		{ 0x17,	0x50 }, /* undocumented */
3768		{ 0x37,	0x00 }, /* undocumented */
3769		{ 0x40,	0xff }, /* I2C timeout counter */
3770		{ 0x46,	0x00 }, /* I2C clock prescaler */
3771		{ 0x59,	0x04 },	/* new from windrv 090403 */
3772		{ 0xff,	0x00 }, /* undocumented */
3773		/* windows reads 0x55 at this point, why? */
3774	};
3775
3776	static const struct ov_regvals mode_init_519[] = {
3777		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3778		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3779		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3780		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3781		{ 0xa3,	0x18 },
3782		{ 0xa4,	0x04 },
3783		{ 0xa5,	0x28 },
3784		{ 0x37,	0x00 },	/* SetUsbInit */
3785		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3786		/* Enable both fields, YUV Input, disable defect comp (why?) */
3787		{ 0x22,	0x1d },
3788		{ 0x17,	0x50 }, /* undocumented */
3789		{ 0x37,	0x00 }, /* undocumented */
3790		{ 0x40,	0xff }, /* I2C timeout counter */
3791		{ 0x46,	0x00 }, /* I2C clock prescaler */
3792		{ 0x59,	0x04 },	/* new from windrv 090403 */
3793		{ 0xff,	0x00 }, /* undocumented */
3794		/* windows reads 0x55 at this point, why? */
3795	};
3796
3797	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3798
3799	/******** Set the mode ********/
3800	switch (sd->sensor) {
3801	default:
3802		write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3803		if (sd->sensor == SEN_OV7640 ||
3804		    sd->sensor == SEN_OV7648) {
3805			/* Select 8-bit input mode */
3806			reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3807		}
3808		break;
3809	case SEN_OV7660:
3810		return;		/* done by ov519_set_mode/fr() */
3811	case SEN_OV7670:
3812		write_regvals(sd, mode_init_519_ov7670,
3813				ARRAY_SIZE(mode_init_519_ov7670));
3814		break;
3815	}
3816
3817	reg_w(sd, OV519_R10_H_SIZE,	sd->gspca_dev.pixfmt.width >> 4);
3818	reg_w(sd, OV519_R11_V_SIZE,	sd->gspca_dev.pixfmt.height >> 3);
3819	if (sd->sensor == SEN_OV7670 &&
3820	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3821		reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3822	else if (sd->sensor == SEN_OV7648 &&
3823	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3824		reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3825	else
3826		reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3827	reg_w(sd, OV519_R13_X_OFFSETH,	0x00);
3828	reg_w(sd, OV519_R14_Y_OFFSETL,	0x00);
3829	reg_w(sd, OV519_R15_Y_OFFSETH,	0x00);
3830	reg_w(sd, OV519_R16_DIVIDER,	0x00);
3831	reg_w(sd, OV519_R25_FORMAT,	0x03); /* YUV422 */
3832	reg_w(sd, 0x26,			0x00); /* Undocumented */
3833
3834	/******** Set the framerate ********/
3835	if (frame_rate > 0)
3836		sd->frame_rate = frame_rate;
3837
3838/* FIXME: These are only valid at the max resolution. */
3839	sd->clockdiv = 0;
3840	switch (sd->sensor) {
3841	case SEN_OV7640:
3842	case SEN_OV7648:
3843		switch (sd->frame_rate) {
3844		default:
3845/*		case 30: */
3846			reg_w(sd, 0xa4, 0x0c);
3847			reg_w(sd, 0x23, 0xff);
3848			break;
3849		case 25:
3850			reg_w(sd, 0xa4, 0x0c);
3851			reg_w(sd, 0x23, 0x1f);
3852			break;
3853		case 20:
3854			reg_w(sd, 0xa4, 0x0c);
3855			reg_w(sd, 0x23, 0x1b);
3856			break;
3857		case 15:
3858			reg_w(sd, 0xa4, 0x04);
3859			reg_w(sd, 0x23, 0xff);
3860			sd->clockdiv = 1;
3861			break;
3862		case 10:
3863			reg_w(sd, 0xa4, 0x04);
3864			reg_w(sd, 0x23, 0x1f);
3865			sd->clockdiv = 1;
3866			break;
3867		case 5:
3868			reg_w(sd, 0xa4, 0x04);
3869			reg_w(sd, 0x23, 0x1b);
3870			sd->clockdiv = 1;
3871			break;
3872		}
3873		break;
3874	case SEN_OV8610:
3875		switch (sd->frame_rate) {
3876		default:	/* 15 fps */
3877/*		case 15: */
3878			reg_w(sd, 0xa4, 0x06);
3879			reg_w(sd, 0x23, 0xff);
3880			break;
3881		case 10:
3882			reg_w(sd, 0xa4, 0x06);
3883			reg_w(sd, 0x23, 0x1f);
3884			break;
3885		case 5:
3886			reg_w(sd, 0xa4, 0x06);
3887			reg_w(sd, 0x23, 0x1b);
3888			break;
3889		}
3890		break;
3891	case SEN_OV7670:		/* guesses, based on 7640 */
3892		PDEBUG(D_STREAM, "Setting framerate to %d fps",
3893				 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3894		reg_w(sd, 0xa4, 0x10);
3895		switch (sd->frame_rate) {
3896		case 30:
3897			reg_w(sd, 0x23, 0xff);
3898			break;
3899		case 20:
3900			reg_w(sd, 0x23, 0x1b);
3901			break;
3902		default:
3903/*		case 15: */
3904			reg_w(sd, 0x23, 0xff);
3905			sd->clockdiv = 1;
3906			break;
3907		}
3908		break;
3909	}
3910}
3911
3912static void mode_init_ov_sensor_regs(struct sd *sd)
3913{
3914	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3915	int qvga, xstart, xend, ystart, yend;
3916	u8 v;
3917
3918	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3919
3920	/******** Mode (VGA/QVGA) and sensor specific regs ********/
3921	switch (sd->sensor) {
3922	case SEN_OV2610:
3923		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3924		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3925		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3926		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3927		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3928		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3929		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3930		return;
3931	case SEN_OV2610AE: {
3932		u8 v;
3933
3934		/* frame rates:
3935		 *	10fps / 5 fps for 1600x1200
3936		 *	40fps / 20fps for 800x600
3937		 */
3938		v = 80;
3939		if (qvga) {
3940			if (sd->frame_rate < 25)
3941				v = 0x81;
3942		} else {
3943			if (sd->frame_rate < 10)
3944				v = 0x81;
3945		}
3946		i2c_w(sd, 0x11, v);
3947		i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3948		return;
3949	    }
3950	case SEN_OV3610:
3951		if (qvga) {
3952			xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3953				(0x1f << 4);
3954			ystart = (776 - gspca_dev->pixfmt.height) / 2;
3955		} else {
3956			xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3957				(0x10 << 4);
3958			ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3959		}
3960		xend = xstart + gspca_dev->pixfmt.width;
3961		yend = ystart + gspca_dev->pixfmt.height;
3962		/* Writing to the COMH register resets the other windowing regs
3963		   to their default values, so we must do this first. */
3964		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3965		i2c_w_mask(sd, 0x32,
3966			   (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3967			   0x3f);
3968		i2c_w_mask(sd, 0x03,
3969			   (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3970			   0x0f);
3971		i2c_w(sd, 0x17, xstart >> 4);
3972		i2c_w(sd, 0x18, xend >> 4);
3973		i2c_w(sd, 0x19, ystart >> 3);
3974		i2c_w(sd, 0x1a, yend >> 3);
3975		return;
3976	case SEN_OV8610:
3977		/* For OV8610 qvga means qsvga */
3978		i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3979		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3980		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3981		i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3982		i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3983		break;
3984	case SEN_OV7610:
3985		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3986		i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3987		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3988		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3989		break;
3990	case SEN_OV7620:
3991	case SEN_OV7620AE:
3992	case SEN_OV76BE:
3993		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3994		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3995		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3996		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3997		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3998		i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3999		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4000		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4001		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4002		if (sd->sensor == SEN_OV76BE)
4003			i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4004		break;
4005	case SEN_OV7640:
4006	case SEN_OV7648:
4007		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4008		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4009		/* Setting this undocumented bit in qvga mode removes a very
4010		   annoying vertical shaking of the image */
4011		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4012		/* Unknown */
4013		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4014		/* Allow higher automatic gain (to allow higher framerates) */
4015		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4016		i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
4017		break;
4018	case SEN_OV7670:
4019		/* set COM7_FMT_VGA or COM7_FMT_QVGA
4020		 * do we need to set anything else?
4021		 *	HSTART etc are set in set_ov_sensor_window itself */
4022		i2c_w_mask(sd, OV7670_R12_COM7,
4023			 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4024			 OV7670_COM7_FMT_MASK);
4025		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4026		i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4027				OV7670_COM8_AWB);
4028		if (qvga) {		/* QVGA from ov7670.c by
4029					 * Jonathan Corbet */
4030			xstart = 164;
4031			xend = 28;
4032			ystart = 14;
4033			yend = 494;
4034		} else {		/* VGA */
4035			xstart = 158;
4036			xend = 14;
4037			ystart = 10;
4038			yend = 490;
4039		}
4040		/* OV7670 hardware window registers are split across
4041		 * multiple locations */
4042		i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4043		i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4044		v = i2c_r(sd, OV7670_R32_HREF);
4045		v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4046		msleep(10);	/* need to sleep between read and write to
4047				 * same reg! */
4048		i2c_w(sd, OV7670_R32_HREF, v);
4049
4050		i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4051		i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4052		v = i2c_r(sd, OV7670_R03_VREF);
4053		v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4054		msleep(10);	/* need to sleep between read and write to
4055				 * same reg! */
4056		i2c_w(sd, OV7670_R03_VREF, v);
4057		break;
4058	case SEN_OV6620:
4059		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4060		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4061		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4062		break;
4063	case SEN_OV6630:
4064	case SEN_OV66308AF:
4065		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4066		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4067		break;
4068	case SEN_OV9600: {
4069		const struct ov_i2c_regvals *vals;
4070		static const struct ov_i2c_regvals sxga_15[] = {
4071			{0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4072		};
4073		static const struct ov_i2c_regvals sxga_7_5[] = {
4074			{0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4075		};
4076		static const struct ov_i2c_regvals vga_30[] = {
4077			{0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4078		};
4079		static const struct ov_i2c_regvals vga_15[] = {
4080			{0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4081		};
4082
4083		/* frame rates:
4084		 *	15fps / 7.5 fps for 1280x1024
4085		 *	30fps / 15fps for 640x480
4086		 */
4087		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4088		if (qvga)
4089			vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4090		else
4091			vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4092		write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4093		return;
4094	    }
4095	default:
4096		return;
4097	}
4098
4099	/******** Clock programming ********/
4100	i2c_w(sd, 0x11, sd->clockdiv);
4101}
4102
4103/* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4104static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4105{
4106	struct sd *sd = (struct sd *) gspca_dev;
4107
4108	if (sd->gspca_dev.streaming)
4109		reg_w(sd, OV519_R51_RESET1, 0x0f);	/* block stream */
4110	i2c_w_mask(sd, OV7670_R1E_MVFP,
4111		OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4112		OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4113	if (sd->gspca_dev.streaming)
4114		reg_w(sd, OV519_R51_RESET1, 0x00);	/* restart stream */
4115}
4116
4117static void set_ov_sensor_window(struct sd *sd)
4118{
4119	struct gspca_dev *gspca_dev;
4120	int qvga, crop;
4121	int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4122
4123	/* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4124	switch (sd->sensor) {
4125	case SEN_OV2610:
4126	case SEN_OV2610AE:
4127	case SEN_OV3610:
4128	case SEN_OV7670:
4129	case SEN_OV9600:
4130		mode_init_ov_sensor_regs(sd);
4131		return;
4132	case SEN_OV7660:
4133		ov519_set_mode(sd);
4134		ov519_set_fr(sd);
4135		return;
4136	}
4137
4138	gspca_dev = &sd->gspca_dev;
4139	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4140	crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4141
4142	/* The different sensor ICs handle setting up of window differently.
4143	 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4144	switch (sd->sensor) {
4145	case SEN_OV8610:
4146		hwsbase = 0x1e;
4147		hwebase = 0x1e;
4148		vwsbase = 0x02;
4149		vwebase = 0x02;
4150		break;
4151	case SEN_OV7610:
4152	case SEN_OV76BE:
4153		hwsbase = 0x38;
4154		hwebase = 0x3a;
4155		vwsbase = vwebase = 0x05;
4156		break;
4157	case SEN_OV6620:
4158	case SEN_OV6630:
4159	case SEN_OV66308AF:
4160		hwsbase = 0x38;
4161		hwebase = 0x3a;
4162		vwsbase = 0x05;
4163		vwebase = 0x06;
4164		if (sd->sensor == SEN_OV66308AF && qvga)
4165			/* HDG: this fixes U and V getting swapped */
4166			hwsbase++;
4167		if (crop) {
4168			hwsbase += 8;
4169			hwebase += 8;
4170			vwsbase += 11;
4171			vwebase += 11;
4172		}
4173		break;
4174	case SEN_OV7620:
4175	case SEN_OV7620AE:
4176		hwsbase = 0x2f;		/* From 7620.SET (spec is wrong) */
4177		hwebase = 0x2f;
4178		vwsbase = vwebase = 0x05;
4179		break;
4180	case SEN_OV7640:
4181	case SEN_OV7648:
4182		hwsbase = 0x1a;
4183		hwebase = 0x1a;
4184		vwsbase = vwebase = 0x03;
4185		break;
4186	default:
4187		return;
4188	}
4189
4190	switch (sd->sensor) {
4191	case SEN_OV6620:
4192	case SEN_OV6630:
4193	case SEN_OV66308AF:
4194		if (qvga) {		/* QCIF */
4195			hwscale = 0;
4196			vwscale = 0;
4197		} else {		/* CIF */
4198			hwscale = 1;
4199			vwscale = 1;	/* The datasheet says 0;
4200					 * it's wrong */
4201		}
4202		break;
4203	case SEN_OV8610:
4204		if (qvga) {		/* QSVGA */
4205			hwscale = 1;
4206			vwscale = 1;
4207		} else {		/* SVGA */
4208			hwscale = 2;
4209			vwscale = 2;
4210		}
4211		break;
4212	default:			/* SEN_OV7xx0 */
4213		if (qvga) {		/* QVGA */
4214			hwscale = 1;
4215			vwscale = 0;
4216		} else {		/* VGA */
4217			hwscale = 2;
4218			vwscale = 1;
4219		}
4220	}
4221
4222	mode_init_ov_sensor_regs(sd);
4223
4224	i2c_w(sd, 0x17, hwsbase);
4225	i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4226	i2c_w(sd, 0x19, vwsbase);
4227	i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4228}
4229
4230/* -- start the camera -- */
4231static int sd_start(struct gspca_dev *gspca_dev)
4232{
4233	struct sd *sd = (struct sd *) gspca_dev;
4234
4235	/* Default for most bridges, allow bridge_mode_init_regs to override */
4236	sd->sensor_width = sd->gspca_dev.pixfmt.width;
4237	sd->sensor_height = sd->gspca_dev.pixfmt.height;
4238
4239	switch (sd->bridge) {
4240	case BRIDGE_OV511:
4241	case BRIDGE_OV511PLUS:
4242		ov511_mode_init_regs(sd);
4243		break;
4244	case BRIDGE_OV518:
4245	case BRIDGE_OV518PLUS:
4246		ov518_mode_init_regs(sd);
4247		break;
4248	case BRIDGE_OV519:
4249		ov519_mode_init_regs(sd);
4250		break;
4251	/* case BRIDGE_OVFX2: nothing to do */
4252	case BRIDGE_W9968CF:
4253		w9968cf_mode_init_regs(sd);
4254		break;
4255	}
4256
4257	set_ov_sensor_window(sd);
4258
4259	/* Force clear snapshot state in case the snapshot button was
4260	   pressed while we weren't streaming */
4261	sd->snapshot_needs_reset = 1;
4262	sd_reset_snapshot(gspca_dev);
4263
4264	sd->first_frame = 3;
4265
4266	ov51x_restart(sd);
4267	ov51x_led_control(sd, 1);
4268	return gspca_dev->usb_err;
4269}
4270
4271static void sd_stopN(struct gspca_dev *gspca_dev)
4272{
4273	struct sd *sd = (struct sd *) gspca_dev;
4274
4275	ov51x_stop(sd);
4276	ov51x_led_control(sd, 0);
4277}
4278
4279static void sd_stop0(struct gspca_dev *gspca_dev)
4280{
4281	struct sd *sd = (struct sd *) gspca_dev;
4282
4283	if (!sd->gspca_dev.present)
4284		return;
4285	if (sd->bridge == BRIDGE_W9968CF)
4286		w9968cf_stop0(sd);
4287
4288#if IS_ENABLED(CONFIG_INPUT)
4289	/* If the last button state is pressed, release it now! */
4290	if (sd->snapshot_pressed) {
4291		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4292		input_sync(gspca_dev->input_dev);
4293		sd->snapshot_pressed = 0;
4294	}
4295#endif
4296	if (sd->bridge == BRIDGE_OV519)
4297		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4298}
4299
4300static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4301{
4302	struct sd *sd = (struct sd *) gspca_dev;
4303
4304	if (sd->snapshot_pressed != state) {
4305#if IS_ENABLED(CONFIG_INPUT)
4306		input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4307		input_sync(gspca_dev->input_dev);
4308#endif
4309		if (state)
4310			sd->snapshot_needs_reset = 1;
4311
4312		sd->snapshot_pressed = state;
4313	} else {
4314		/* On the ov511 / ov519 we need to reset the button state
4315		   multiple times, as resetting does not work as long as the
4316		   button stays pressed */
4317		switch (sd->bridge) {
4318		case BRIDGE_OV511:
4319		case BRIDGE_OV511PLUS:
4320		case BRIDGE_OV519:
4321			if (state)
4322				sd->snapshot_needs_reset = 1;
4323			break;
4324		}
4325	}
4326}
4327
4328static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4329			u8 *in,			/* isoc packet */
4330			int len)		/* iso packet length */
4331{
4332	struct sd *sd = (struct sd *) gspca_dev;
4333
4334	/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4335	 * byte non-zero. The EOF packet has image width/height in the
4336	 * 10th and 11th bytes. The 9th byte is given as follows:
4337	 *
4338	 * bit 7: EOF
4339	 *     6: compression enabled
4340	 *     5: 422/420/400 modes
4341	 *     4: 422/420/400 modes
4342	 *     3: 1
4343	 *     2: snapshot button on
4344	 *     1: snapshot frame
4345	 *     0: even/odd field
4346	 */
4347	if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4348	    (in[8] & 0x08)) {
4349		ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4350		if (in[8] & 0x80) {
4351			/* Frame end */
4352			if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4353			    (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4354				PERR("Invalid frame size, got: %dx%d,"
4355					" requested: %dx%d\n",
4356					(in[9] + 1) * 8, (in[10] + 1) * 8,
4357					gspca_dev->pixfmt.width,
4358					gspca_dev->pixfmt.height);
4359				gspca_dev->last_packet_type = DISCARD_PACKET;
4360				return;
4361			}
4362			/* Add 11 byte footer to frame, might be useful */
4363			gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4364			return;
4365		} else {
4366			/* Frame start */
4367			gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4368			sd->packet_nr = 0;
4369		}
4370	}
4371
4372	/* Ignore the packet number */
4373	len--;
4374
4375	/* intermediate packet */
4376	gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4377}
4378
4379static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4380			u8 *data,			/* isoc packet */
4381			int len)			/* iso packet length */
4382{
4383	struct sd *sd = (struct sd *) gspca_dev;
4384
4385	/* A false positive here is likely, until OVT gives me
4386	 * the definitive SOF/EOF format */
4387	if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4388		ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4389		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4390		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4391		sd->packet_nr = 0;
4392	}
4393
4394	if (gspca_dev->last_packet_type == DISCARD_PACKET)
4395		return;
4396
4397	/* Does this device use packet numbers ? */
4398	if (len & 7) {
4399		len--;
4400		if (sd->packet_nr == data[len])
4401			sd->packet_nr++;
4402		/* The last few packets of the frame (which are all 0's
4403		   except that they may contain part of the footer), are
4404		   numbered 0 */
4405		else if (sd->packet_nr == 0 || data[len]) {
4406			PERR("Invalid packet nr: %d (expect: %d)",
4407				(int)data[len], (int)sd->packet_nr);
4408			gspca_dev->last_packet_type = DISCARD_PACKET;
4409			return;
4410		}
4411	}
4412
4413	/* intermediate packet */
4414	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4415}
4416
4417static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4418			u8 *data,			/* isoc packet */
4419			int len)			/* iso packet length */
4420{
4421	/* Header of ov519 is 16 bytes:
4422	 *     Byte     Value      Description
4423	 *	0	0xff	magic
4424	 *	1	0xff	magic
4425	 *	2	0xff	magic
4426	 *	3	0xXX	0x50 = SOF, 0x51 = EOF
4427	 *	9	0xXX	0x01 initial frame without data,
4428	 *			0x00 standard frame with image
4429	 *	14	Lo	in EOF: length of image data / 8
4430	 *	15	Hi
4431	 */
4432
4433	if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4434		switch (data[3]) {
4435		case 0x50:		/* start of frame */
4436			/* Don't check the button state here, as the state
4437			   usually (always ?) changes at EOF and checking it
4438			   here leads to unnecessary snapshot state resets. */
4439#define HDRSZ 16
4440			data += HDRSZ;
4441			len -= HDRSZ;
4442#undef HDRSZ
4443			if (data[0] == 0xff || data[1] == 0xd8)
4444				gspca_frame_add(gspca_dev, FIRST_PACKET,
4445						data, len);
4446			else
4447				gspca_dev->last_packet_type = DISCARD_PACKET;
4448			return;
4449		case 0x51:		/* end of frame */
4450			ov51x_handle_button(gspca_dev, data[11] & 1);
4451			if (data[9] != 0)
4452				gspca_dev->last_packet_type = DISCARD_PACKET;
4453			gspca_frame_add(gspca_dev, LAST_PACKET,
4454					NULL, 0);
4455			return;
4456		}
4457	}
4458
4459	/* intermediate packet */
4460	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4461}
4462
4463static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4464			u8 *data,			/* isoc packet */
4465			int len)			/* iso packet length */
4466{
4467	struct sd *sd = (struct sd *) gspca_dev;
4468
4469	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4470
4471	/* A short read signals EOF */
4472	if (len < gspca_dev->cam.bulk_size) {
4473		/* If the frame is short, and it is one of the first ones
4474		   the sensor and bridge are still syncing, so drop it. */
4475		if (sd->first_frame) {
4476			sd->first_frame--;
4477			if (gspca_dev->image_len <
4478				  sd->gspca_dev.pixfmt.width *
4479					sd->gspca_dev.pixfmt.height)
4480				gspca_dev->last_packet_type = DISCARD_PACKET;
4481		}
4482		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4483		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4484	}
4485}
4486
4487static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4488			u8 *data,			/* isoc packet */
4489			int len)			/* iso packet length */
4490{
4491	struct sd *sd = (struct sd *) gspca_dev;
4492
4493	switch (sd->bridge) {
4494	case BRIDGE_OV511:
4495	case BRIDGE_OV511PLUS:
4496		ov511_pkt_scan(gspca_dev, data, len);
4497		break;
4498	case BRIDGE_OV518:
4499	case BRIDGE_OV518PLUS:
4500		ov518_pkt_scan(gspca_dev, data, len);
4501		break;
4502	case BRIDGE_OV519:
4503		ov519_pkt_scan(gspca_dev, data, len);
4504		break;
4505	case BRIDGE_OVFX2:
4506		ovfx2_pkt_scan(gspca_dev, data, len);
4507		break;
4508	case BRIDGE_W9968CF:
4509		w9968cf_pkt_scan(gspca_dev, data, len);
4510		break;
4511	}
4512}
4513
4514/* -- management routines -- */
4515
4516static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4517{
4518	struct sd *sd = (struct sd *) gspca_dev;
4519	static const struct ov_i2c_regvals brit_7660[][7] = {
4520		{{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4521			{0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4522		{{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4523			{0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4524		{{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4525			{0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4526		{{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4527			{0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4528		{{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4529			{0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4530		{{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4531			{0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4532		{{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4533			{0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4534	};
4535
4536	switch (sd->sensor) {
4537	case SEN_OV8610:
4538	case SEN_OV7610:
4539	case SEN_OV76BE:
4540	case SEN_OV6620:
4541	case SEN_OV6630:
4542	case SEN_OV66308AF:
4543	case SEN_OV7640:
4544	case SEN_OV7648:
4545		i2c_w(sd, OV7610_REG_BRT, val);
4546		break;
4547	case SEN_OV7620:
4548	case SEN_OV7620AE:
4549		i2c_w(sd, OV7610_REG_BRT, val);
4550		break;
4551	case SEN_OV7660:
4552		write_i2c_regvals(sd, brit_7660[val],
4553				ARRAY_SIZE(brit_7660[0]));
4554		break;
4555	case SEN_OV7670:
4556/*win trace
4557 *		i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4558		i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4559		break;
4560	}
4561}
4562
4563static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4564{
4565	struct sd *sd = (struct sd *) gspca_dev;
4566	static const struct ov_i2c_regvals contrast_7660[][31] = {
4567		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4568		 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4569		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4570		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4571		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4572		 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4573		 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4574		 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4575		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4576		 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4577		 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4578		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4579		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4580		 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4581		 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4582		 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4583		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4584		 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4585		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4586		 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4587		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4588		 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4589		 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4590		 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4591		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4592		 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4593		 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4594		 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4595		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4596		 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4597		 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4598		 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4599		{{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4600		 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4601		 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4602		 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4603		 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4604		 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4605		 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4606		 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4607		{{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4608		 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4609		 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4610		 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4611		 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4612		 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4613		 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4614		 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4615		{{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4616		 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4617		 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4618		 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4619		 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4620		 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4621		 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4622		 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4623	};
4624
4625	switch (sd->sensor) {
4626	case SEN_OV7610:
4627	case SEN_OV6620:
4628		i2c_w(sd, OV7610_REG_CNT, val);
4629		break;
4630	case SEN_OV6630:
4631	case SEN_OV66308AF:
4632		i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4633		break;
4634	case SEN_OV8610: {
4635		static const u8 ctab[] = {
4636			0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4637		};
4638
4639		/* Use Y gamma control instead. Bit 0 enables it. */
4640		i2c_w(sd, 0x64, ctab[val >> 5]);
4641		break;
4642	    }
4643	case SEN_OV7620:
4644	case SEN_OV7620AE: {
4645		static const u8 ctab[] = {
4646			0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4647			0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4648		};
4649
4650		/* Use Y gamma control instead. Bit 0 enables it. */
4651		i2c_w(sd, 0x64, ctab[val >> 4]);
4652		break;
4653	    }
4654	case SEN_OV7660:
4655		write_i2c_regvals(sd, contrast_7660[val],
4656					ARRAY_SIZE(contrast_7660[0]));
4657		break;
4658	case SEN_OV7670:
4659		/* check that this isn't just the same as ov7610 */
4660		i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4661		break;
4662	}
4663}
4664
4665static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4666{
4667	struct sd *sd = (struct sd *) gspca_dev;
4668
4669	i2c_w(sd, 0x10, val);
4670}
4671
4672static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4673{
4674	struct sd *sd = (struct sd *) gspca_dev;
4675	static const struct ov_i2c_regvals colors_7660[][6] = {
4676		{{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4677		 {0x53, 0x19}, {0x54, 0x23}},
4678		{{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4679		 {0x53, 0x2c}, {0x54, 0x3e}},
4680		{{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4681		 {0x53, 0x40}, {0x54, 0x59}},
4682		{{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4683		 {0x53, 0x53}, {0x54, 0x73}},
4684		{{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4685		 {0x53, 0x66}, {0x54, 0x8e}},
4686	};
4687
4688	switch (sd->sensor) {
4689	case SEN_OV8610:
4690	case SEN_OV7610:
4691	case SEN_OV76BE:
4692	case SEN_OV6620:
4693	case SEN_OV6630:
4694	case SEN_OV66308AF:
4695		i2c_w(sd, OV7610_REG_SAT, val);
4696		break;
4697	case SEN_OV7620:
4698	case SEN_OV7620AE:
4699		/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4700/*		rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4701		if (rc < 0)
4702			goto out; */
4703		i2c_w(sd, OV7610_REG_SAT, val);
4704		break;
4705	case SEN_OV7640:
4706	case SEN_OV7648:
4707		i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4708		break;
4709	case SEN_OV7660:
4710		write_i2c_regvals(sd, colors_7660[val],
4711					ARRAY_SIZE(colors_7660[0]));
4712		break;
4713	case SEN_OV7670:
4714		/* supported later once I work out how to do it
4715		 * transparently fail now! */
4716		/* set REG_COM13 values for UV sat auto mode */
4717		break;
4718	}
4719}
4720
4721static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4722{
4723	struct sd *sd = (struct sd *) gspca_dev;
4724
4725	i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4726}
4727
4728static void setfreq_i(struct sd *sd, s32 val)
4729{
4730	if (sd->sensor == SEN_OV7660
4731	 || sd->sensor == SEN_OV7670) {
4732		switch (val) {
4733		case 0: /* Banding filter disabled */
4734			i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4735			break;
4736		case 1: /* 50 hz */
4737			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4738				   OV7670_COM8_BFILT);
4739			i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4740			break;
4741		case 2: /* 60 hz */
4742			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4743				   OV7670_COM8_BFILT);
4744			i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4745			break;
4746		case 3: /* Auto hz - ov7670 only */
4747			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4748				   OV7670_COM8_BFILT);
4749			i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4750				   0x18);
4751			break;
4752		}
4753	} else {
4754		switch (val) {
4755		case 0: /* Banding filter disabled */
4756			i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4757			i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4758			break;
4759		case 1: /* 50 hz (filter on and framerate adj) */
4760			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4761			i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4762			/* 20 fps -> 16.667 fps */
4763			if (sd->sensor == SEN_OV6620 ||
4764			    sd->sensor == SEN_OV6630 ||
4765			    sd->sensor == SEN_OV66308AF)
4766				i2c_w(sd, 0x2b, 0x5e);
4767			else
4768				i2c_w(sd, 0x2b, 0xac);
4769			break;
4770		case 2: /* 60 hz (filter on, ...) */
4771			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4772			if (sd->sensor == SEN_OV6620 ||
4773			    sd->sensor == SEN_OV6630 ||
4774			    sd->sensor == SEN_OV66308AF) {
4775				/* 20 fps -> 15 fps */
4776				i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4777				i2c_w(sd, 0x2b, 0xa8);
4778			} else {
4779				/* no framerate adj. */
4780				i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4781			}
4782			break;
4783		}
4784	}
4785}
4786
4787static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4788{
4789	struct sd *sd = (struct sd *) gspca_dev;
4790
4791	setfreq_i(sd, val);
4792
4793	/* Ugly but necessary */
4794	if (sd->bridge == BRIDGE_W9968CF)
4795		w9968cf_set_crop_window(sd);
4796}
4797
4798static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4799			struct v4l2_jpegcompression *jcomp)
4800{
4801	struct sd *sd = (struct sd *) gspca_dev;
4802
4803	if (sd->bridge != BRIDGE_W9968CF)
4804		return -ENOTTY;
4805
4806	memset(jcomp, 0, sizeof *jcomp);
4807	jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4808	jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4809			      V4L2_JPEG_MARKER_DRI;
4810	return 0;
4811}
4812
4813static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4814			const struct v4l2_jpegcompression *jcomp)
4815{
4816	struct sd *sd = (struct sd *) gspca_dev;
4817
4818	if (sd->bridge != BRIDGE_W9968CF)
4819		return -ENOTTY;
4820
4821	v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4822	return 0;
4823}
4824
4825static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4826{
4827	struct gspca_dev *gspca_dev =
4828		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4829	struct sd *sd = (struct sd *)gspca_dev;
4830
4831	gspca_dev->usb_err = 0;
4832
4833	switch (ctrl->id) {
4834	case V4L2_CID_AUTOGAIN:
4835		gspca_dev->exposure->val = i2c_r(sd, 0x10);
4836		break;
4837	}
4838	return 0;
4839}
4840
4841static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4842{
4843	struct gspca_dev *gspca_dev =
4844		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4845	struct sd *sd = (struct sd *)gspca_dev;
4846
4847	gspca_dev->usb_err = 0;
4848
4849	if (!gspca_dev->streaming)
4850		return 0;
4851
4852	switch (ctrl->id) {
4853	case V4L2_CID_BRIGHTNESS:
4854		setbrightness(gspca_dev, ctrl->val);
4855		break;
4856	case V4L2_CID_CONTRAST:
4857		setcontrast(gspca_dev, ctrl->val);
4858		break;
4859	case V4L2_CID_POWER_LINE_FREQUENCY:
4860		setfreq(gspca_dev, ctrl->val);
4861		break;
4862	case V4L2_CID_AUTOBRIGHTNESS:
4863		if (ctrl->is_new)
4864			setautobright(gspca_dev, ctrl->val);
4865		if (!ctrl->val && sd->brightness->is_new)
4866			setbrightness(gspca_dev, sd->brightness->val);
4867		break;
4868	case V4L2_CID_SATURATION:
4869		setcolors(gspca_dev, ctrl->val);
4870		break;
4871	case V4L2_CID_HFLIP:
4872		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4873		break;
4874	case V4L2_CID_AUTOGAIN:
4875		if (ctrl->is_new)
4876			setautogain(gspca_dev, ctrl->val);
4877		if (!ctrl->val && gspca_dev->exposure->is_new)
4878			setexposure(gspca_dev, gspca_dev->exposure->val);
4879		break;
4880	case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4881		return -EBUSY; /* Should never happen, as we grab the ctrl */
4882	}
4883	return gspca_dev->usb_err;
4884}
4885
4886static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4887	.g_volatile_ctrl = sd_g_volatile_ctrl,
4888	.s_ctrl = sd_s_ctrl,
4889};
4890
4891static int sd_init_controls(struct gspca_dev *gspca_dev)
4892{
4893	struct sd *sd = (struct sd *)gspca_dev;
4894	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4895
4896	gspca_dev->vdev.ctrl_handler = hdl;
4897	v4l2_ctrl_handler_init(hdl, 10);
4898	if (valid_controls[sd->sensor].has_brightness)
4899		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4900			V4L2_CID_BRIGHTNESS, 0,
4901			sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4902			sd->sensor == SEN_OV7660 ? 3 : 127);
4903	if (valid_controls[sd->sensor].has_contrast) {
4904		if (sd->sensor == SEN_OV7660)
4905			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4906				V4L2_CID_CONTRAST, 0, 6, 1, 3);
4907		else
4908			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4909				V4L2_CID_CONTRAST, 0, 255, 1,
4910				(sd->sensor == SEN_OV6630 ||
4911				 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4912	}
4913	if (valid_controls[sd->sensor].has_sat)
4914		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4915			V4L2_CID_SATURATION, 0,
4916			sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4917			sd->sensor == SEN_OV7660 ? 2 : 127);
4918	if (valid_controls[sd->sensor].has_exposure)
4919		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4920			V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4921	if (valid_controls[sd->sensor].has_hvflip) {
4922		sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4923			V4L2_CID_HFLIP, 0, 1, 1, 0);
4924		sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4925			V4L2_CID_VFLIP, 0, 1, 1, 0);
4926	}
4927	if (valid_controls[sd->sensor].has_autobright)
4928		sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4929			V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4930	if (valid_controls[sd->sensor].has_autogain)
4931		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4932			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4933	if (valid_controls[sd->sensor].has_freq) {
4934		if (sd->sensor == SEN_OV7670)
4935			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4936				V4L2_CID_POWER_LINE_FREQUENCY,
4937				V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4938				V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4939		else
4940			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4941				V4L2_CID_POWER_LINE_FREQUENCY,
4942				V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4943	}
4944	if (sd->bridge == BRIDGE_W9968CF)
4945		sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4946			V4L2_CID_JPEG_COMPRESSION_QUALITY,
4947			QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4948
4949	if (hdl->error) {
4950		PERR("Could not initialize controls\n");
4951		return hdl->error;
4952	}
4953	if (gspca_dev->autogain)
4954		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4955	if (sd->autobright)
4956		v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4957	if (sd->hflip)
4958		v4l2_ctrl_cluster(2, &sd->hflip);
4959	return 0;
4960}
4961
4962/* sub-driver description */
4963static const struct sd_desc sd_desc = {
4964	.name = MODULE_NAME,
4965	.config = sd_config,
4966	.init = sd_init,
4967	.init_controls = sd_init_controls,
4968	.isoc_init = sd_isoc_init,
4969	.start = sd_start,
4970	.stopN = sd_stopN,
4971	.stop0 = sd_stop0,
4972	.pkt_scan = sd_pkt_scan,
4973	.dq_callback = sd_reset_snapshot,
4974	.get_jcomp = sd_get_jcomp,
4975	.set_jcomp = sd_set_jcomp,
4976#if IS_ENABLED(CONFIG_INPUT)
4977	.other_input = 1,
4978#endif
4979};
4980
4981/* -- module initialisation -- */
4982static const struct usb_device_id device_table[] = {
4983	{USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4984	{USB_DEVICE(0x041e, 0x4052),
4985		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4986	{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4987	{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4988	{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4989	{USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4990	{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4991	{USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4992	{USB_DEVICE(0x045e, 0x028c),
4993		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4994	{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4995	{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4996	{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4997	{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4998	{USB_DEVICE(0x05a9, 0x0519),
4999		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5000	{USB_DEVICE(0x05a9, 0x0530),
5001		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5002	{USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
5003	{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
5004	{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
5005	{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
5006	{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
5007	{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
5008	{USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
5009	{USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
5010	{USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
5011	{USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
5012	{}
5013};
5014
5015MODULE_DEVICE_TABLE(usb, device_table);
5016
5017/* -- device connect -- */
5018static int sd_probe(struct usb_interface *intf,
5019			const struct usb_device_id *id)
5020{
5021	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
5022				THIS_MODULE);
5023}
5024
5025static struct usb_driver sd_driver = {
5026	.name = MODULE_NAME,
5027	.id_table = device_table,
5028	.probe = sd_probe,
5029	.disconnect = gspca_disconnect,
5030#ifdef CONFIG_PM
5031	.suspend = gspca_suspend,
5032	.resume = gspca_resume,
5033	.reset_resume = gspca_resume,
5034#endif
5035};
5036
5037module_usb_driver(sd_driver);
5038
5039module_param(frame_rate, int, 0644);
5040MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");
5041