1/**
2 * IBM Accelerator Family 'GenWQE'
3 *
4 * (C) Copyright IBM Corp. 2013
5 *
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@gmx.net>
9 * Author: Michael Ruettger <michael@ibmra.de>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 */
20
21/*
22 * Miscelanous functionality used in the other GenWQE driver parts.
23 */
24
25#include <linux/kernel.h>
26#include <linux/dma-mapping.h>
27#include <linux/sched.h>
28#include <linux/vmalloc.h>
29#include <linux/page-flags.h>
30#include <linux/scatterlist.h>
31#include <linux/hugetlb.h>
32#include <linux/iommu.h>
33#include <linux/delay.h>
34#include <linux/pci.h>
35#include <linux/dma-mapping.h>
36#include <linux/ctype.h>
37#include <linux/module.h>
38#include <linux/platform_device.h>
39#include <linux/delay.h>
40#include <asm/pgtable.h>
41
42#include "genwqe_driver.h"
43#include "card_base.h"
44#include "card_ddcb.h"
45
46/**
47 * __genwqe_writeq() - Write 64-bit register
48 * @cd:	        genwqe device descriptor
49 * @byte_offs:  byte offset within BAR
50 * @val:        64-bit value
51 *
52 * Return: 0 if success; < 0 if error
53 */
54int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
55{
56	struct pci_dev *pci_dev = cd->pci_dev;
57
58	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
59		return -EIO;
60
61	if (cd->mmio == NULL)
62		return -EIO;
63
64	if (pci_channel_offline(pci_dev))
65		return -EIO;
66
67	__raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
68	return 0;
69}
70
71/**
72 * __genwqe_readq() - Read 64-bit register
73 * @cd:         genwqe device descriptor
74 * @byte_offs:  offset within BAR
75 *
76 * Return: value from register
77 */
78u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
79{
80	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
81		return 0xffffffffffffffffull;
82
83	if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
84	    (byte_offs == IO_SLC_CFGREG_GFIR))
85		return 0x000000000000ffffull;
86
87	if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
88	    (byte_offs == IO_SLC_CFGREG_GFIR))
89		return 0x00000000ffff0000ull;
90
91	if (cd->mmio == NULL)
92		return 0xffffffffffffffffull;
93
94	return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
95}
96
97/**
98 * __genwqe_writel() - Write 32-bit register
99 * @cd:	        genwqe device descriptor
100 * @byte_offs:  byte offset within BAR
101 * @val:        32-bit value
102 *
103 * Return: 0 if success; < 0 if error
104 */
105int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
106{
107	struct pci_dev *pci_dev = cd->pci_dev;
108
109	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
110		return -EIO;
111
112	if (cd->mmio == NULL)
113		return -EIO;
114
115	if (pci_channel_offline(pci_dev))
116		return -EIO;
117
118	__raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
119	return 0;
120}
121
122/**
123 * __genwqe_readl() - Read 32-bit register
124 * @cd:         genwqe device descriptor
125 * @byte_offs:  offset within BAR
126 *
127 * Return: Value from register
128 */
129u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
130{
131	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
132		return 0xffffffff;
133
134	if (cd->mmio == NULL)
135		return 0xffffffff;
136
137	return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
138}
139
140/**
141 * genwqe_read_app_id() - Extract app_id
142 *
143 * app_unitcfg need to be filled with valid data first
144 */
145int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
146{
147	int i, j;
148	u32 app_id = (u32)cd->app_unitcfg;
149
150	memset(app_name, 0, len);
151	for (i = 0, j = 0; j < min(len, 4); j++) {
152		char ch = (char)((app_id >> (24 - j*8)) & 0xff);
153
154		if (ch == ' ')
155			continue;
156		app_name[i++] = isprint(ch) ? ch : 'X';
157	}
158	return i;
159}
160
161/**
162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
163 *
164 * Existing kernel functions seem to use a different polynom,
165 * therefore we could not use them here.
166 *
167 * Genwqe's Polynomial = 0x20044009
168 */
169#define CRC32_POLYNOMIAL	0x20044009
170static u32 crc32_tab[256];	/* crc32 lookup table */
171
172void genwqe_init_crc32(void)
173{
174	int i, j;
175	u32 crc;
176
177	for (i = 0;  i < 256;  i++) {
178		crc = i << 24;
179		for (j = 0;  j < 8;  j++) {
180			if (crc & 0x80000000)
181				crc = (crc << 1) ^ CRC32_POLYNOMIAL;
182			else
183				crc = (crc << 1);
184		}
185		crc32_tab[i] = crc;
186	}
187}
188
189/**
190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
191 * @buff:       pointer to data buffer
192 * @len:        length of data for calculation
193 * @init:       initial crc (0xffffffff at start)
194 *
195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
196
197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
198 * result in a crc32 of 0xf33cb7d3.
199 *
200 * The existing kernel crc functions did not cover this polynom yet.
201 *
202 * Return: crc32 checksum.
203 */
204u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
205{
206	int i;
207	u32 crc;
208
209	crc = init;
210	while (len--) {
211		i = ((crc >> 24) ^ *buff++) & 0xFF;
212		crc = (crc << 8) ^ crc32_tab[i];
213	}
214	return crc;
215}
216
217void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
218			       dma_addr_t *dma_handle)
219{
220	if (get_order(size) > MAX_ORDER)
221		return NULL;
222
223	return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
224}
225
226void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
227			     void *vaddr, dma_addr_t dma_handle)
228{
229	if (vaddr == NULL)
230		return;
231
232	pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
233}
234
235static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
236			      int num_pages)
237{
238	int i;
239	struct pci_dev *pci_dev = cd->pci_dev;
240
241	for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
242		pci_unmap_page(pci_dev, dma_list[i],
243			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
244		dma_list[i] = 0x0;
245	}
246}
247
248static int genwqe_map_pages(struct genwqe_dev *cd,
249			   struct page **page_list, int num_pages,
250			   dma_addr_t *dma_list)
251{
252	int i;
253	struct pci_dev *pci_dev = cd->pci_dev;
254
255	/* establish DMA mapping for requested pages */
256	for (i = 0; i < num_pages; i++) {
257		dma_addr_t daddr;
258
259		dma_list[i] = 0x0;
260		daddr = pci_map_page(pci_dev, page_list[i],
261				     0,	 /* map_offs */
262				     PAGE_SIZE,
263				     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
264
265		if (pci_dma_mapping_error(pci_dev, daddr)) {
266			dev_err(&pci_dev->dev,
267				"[%s] err: no dma addr daddr=%016llx!\n",
268				__func__, (long long)daddr);
269			goto err;
270		}
271
272		dma_list[i] = daddr;
273	}
274	return 0;
275
276 err:
277	genwqe_unmap_pages(cd, dma_list, num_pages);
278	return -EIO;
279}
280
281static int genwqe_sgl_size(int num_pages)
282{
283	int len, num_tlb = num_pages / 7;
284
285	len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
286	return roundup(len, PAGE_SIZE);
287}
288
289/**
290 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
291 *
292 * Allocates memory for sgl and overlapping pages. Pages which might
293 * overlap other user-space memory blocks are being cached for DMAs,
294 * such that we do not run into syncronization issues. Data is copied
295 * from user-space into the cached pages.
296 */
297int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
298			  void __user *user_addr, size_t user_size)
299{
300	int rc;
301	struct pci_dev *pci_dev = cd->pci_dev;
302
303	sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
304	sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
305	sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
306	sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
307
308	dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
309		__func__, user_addr, user_size, sgl->nr_pages,
310		sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
311
312	sgl->user_addr = user_addr;
313	sgl->user_size = user_size;
314	sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
315
316	if (get_order(sgl->sgl_size) > MAX_ORDER) {
317		dev_err(&pci_dev->dev,
318			"[%s] err: too much memory requested!\n", __func__);
319		return -ENOMEM;
320	}
321
322	sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
323					     &sgl->sgl_dma_addr);
324	if (sgl->sgl == NULL) {
325		dev_err(&pci_dev->dev,
326			"[%s] err: no memory available!\n", __func__);
327		return -ENOMEM;
328	}
329
330	/* Only use buffering on incomplete pages */
331	if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
332		sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
333						       &sgl->fpage_dma_addr);
334		if (sgl->fpage == NULL)
335			goto err_out;
336
337		/* Sync with user memory */
338		if (copy_from_user(sgl->fpage + sgl->fpage_offs,
339				   user_addr, sgl->fpage_size)) {
340			rc = -EFAULT;
341			goto err_out;
342		}
343	}
344	if (sgl->lpage_size != 0) {
345		sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
346						       &sgl->lpage_dma_addr);
347		if (sgl->lpage == NULL)
348			goto err_out1;
349
350		/* Sync with user memory */
351		if (copy_from_user(sgl->lpage, user_addr + user_size -
352				   sgl->lpage_size, sgl->lpage_size)) {
353			rc = -EFAULT;
354			goto err_out1;
355		}
356	}
357	return 0;
358
359 err_out1:
360	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
361				 sgl->fpage_dma_addr);
362 err_out:
363	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
364				 sgl->sgl_dma_addr);
365	return -ENOMEM;
366}
367
368int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
369		     dma_addr_t *dma_list)
370{
371	int i = 0, j = 0, p;
372	unsigned long dma_offs, map_offs;
373	dma_addr_t prev_daddr = 0;
374	struct sg_entry *s, *last_s = NULL;
375	size_t size = sgl->user_size;
376
377	dma_offs = 128;		/* next block if needed/dma_offset */
378	map_offs = sgl->fpage_offs; /* offset in first page */
379
380	s = &sgl->sgl[0];	/* first set of 8 entries */
381	p = 0;			/* page */
382	while (p < sgl->nr_pages) {
383		dma_addr_t daddr;
384		unsigned int size_to_map;
385
386		/* always write the chaining entry, cleanup is done later */
387		j = 0;
388		s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
389		s[j].len	 = cpu_to_be32(128);
390		s[j].flags	 = cpu_to_be32(SG_CHAINED);
391		j++;
392
393		while (j < 8) {
394			/* DMA mapping for requested page, offs, size */
395			size_to_map = min(size, PAGE_SIZE - map_offs);
396
397			if ((p == 0) && (sgl->fpage != NULL)) {
398				daddr = sgl->fpage_dma_addr + map_offs;
399
400			} else if ((p == sgl->nr_pages - 1) &&
401				   (sgl->lpage != NULL)) {
402				daddr = sgl->lpage_dma_addr;
403			} else {
404				daddr = dma_list[p] + map_offs;
405			}
406
407			size -= size_to_map;
408			map_offs = 0;
409
410			if (prev_daddr == daddr) {
411				u32 prev_len = be32_to_cpu(last_s->len);
412
413				/* pr_info("daddr combining: "
414					"%016llx/%08x -> %016llx\n",
415					prev_daddr, prev_len, daddr); */
416
417				last_s->len = cpu_to_be32(prev_len +
418							  size_to_map);
419
420				p++; /* process next page */
421				if (p == sgl->nr_pages)
422					goto fixup;  /* nothing to do */
423
424				prev_daddr = daddr + size_to_map;
425				continue;
426			}
427
428			/* start new entry */
429			s[j].target_addr = cpu_to_be64(daddr);
430			s[j].len	 = cpu_to_be32(size_to_map);
431			s[j].flags	 = cpu_to_be32(SG_DATA);
432			prev_daddr = daddr + size_to_map;
433			last_s = &s[j];
434			j++;
435
436			p++;	/* process next page */
437			if (p == sgl->nr_pages)
438				goto fixup;  /* nothing to do */
439		}
440		dma_offs += 128;
441		s += 8;		/* continue 8 elements further */
442	}
443 fixup:
444	if (j == 1) {		/* combining happend on last entry! */
445		s -= 8;		/* full shift needed on previous sgl block */
446		j =  7;		/* shift all elements */
447	}
448
449	for (i = 0; i < j; i++)	/* move elements 1 up */
450		s[i] = s[i + 1];
451
452	s[i].target_addr = cpu_to_be64(0);
453	s[i].len	 = cpu_to_be32(0);
454	s[i].flags	 = cpu_to_be32(SG_END_LIST);
455	return 0;
456}
457
458/**
459 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
460 *
461 * After the DMA transfer has been completed we free the memory for
462 * the sgl and the cached pages. Data is being transfered from cached
463 * pages into user-space buffers.
464 */
465int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
466{
467	int rc = 0;
468	struct pci_dev *pci_dev = cd->pci_dev;
469
470	if (sgl->fpage) {
471		if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
472				 sgl->fpage_size)) {
473			dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
474				__func__);
475			rc = -EFAULT;
476		}
477		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
478					 sgl->fpage_dma_addr);
479		sgl->fpage = NULL;
480		sgl->fpage_dma_addr = 0;
481	}
482	if (sgl->lpage) {
483		if (copy_to_user(sgl->user_addr + sgl->user_size -
484				 sgl->lpage_size, sgl->lpage,
485				 sgl->lpage_size)) {
486			dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
487				__func__);
488			rc = -EFAULT;
489		}
490		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
491					 sgl->lpage_dma_addr);
492		sgl->lpage = NULL;
493		sgl->lpage_dma_addr = 0;
494	}
495	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
496				 sgl->sgl_dma_addr);
497
498	sgl->sgl = NULL;
499	sgl->sgl_dma_addr = 0x0;
500	sgl->sgl_size = 0;
501	return rc;
502}
503
504/**
505 * free_user_pages() - Give pinned pages back
506 *
507 * Documentation of get_user_pages is in mm/memory.c:
508 *
509 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
510 * as appropriate) must be called after the page is finished with, and
511 * before put_page is called.
512 *
513 * FIXME Could be of use to others and might belong in the generic
514 * code, if others agree. E.g.
515 *    ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
516 *    ceph_put_page_vector in net/ceph/pagevec.c
517 *    maybe more?
518 */
519static int free_user_pages(struct page **page_list, unsigned int nr_pages,
520			   int dirty)
521{
522	unsigned int i;
523
524	for (i = 0; i < nr_pages; i++) {
525		if (page_list[i] != NULL) {
526			if (dirty)
527				set_page_dirty_lock(page_list[i]);
528			put_page(page_list[i]);
529		}
530	}
531	return 0;
532}
533
534/**
535 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
536 * @cd:         pointer to genwqe device
537 * @m:          mapping params
538 * @uaddr:      user virtual address
539 * @size:       size of memory to be mapped
540 *
541 * We need to think about how we could speed this up. Of course it is
542 * not a good idea to do this over and over again, like we are
543 * currently doing it. Nevertheless, I am curious where on the path
544 * the performance is spend. Most probably within the memory
545 * allocation functions, but maybe also in the DMA mapping code.
546 *
547 * Restrictions: The maximum size of the possible mapping currently depends
548 *               on the amount of memory we can get using kzalloc() for the
549 *               page_list and pci_alloc_consistent for the sg_list.
550 *               The sg_list is currently itself not scattered, which could
551 *               be fixed with some effort. The page_list must be split into
552 *               PAGE_SIZE chunks too. All that will make the complicated
553 *               code more complicated.
554 *
555 * Return: 0 if success
556 */
557int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
558		     unsigned long size, struct ddcb_requ *req)
559{
560	int rc = -EINVAL;
561	unsigned long data, offs;
562	struct pci_dev *pci_dev = cd->pci_dev;
563
564	if ((uaddr == NULL) || (size == 0)) {
565		m->size = 0;	/* mark unused and not added */
566		return -EINVAL;
567	}
568	m->u_vaddr = uaddr;
569	m->size    = size;
570
571	/* determine space needed for page_list. */
572	data = (unsigned long)uaddr;
573	offs = offset_in_page(data);
574	m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
575
576	m->page_list = kcalloc(m->nr_pages,
577			       sizeof(struct page *) + sizeof(dma_addr_t),
578			       GFP_KERNEL);
579	if (!m->page_list) {
580		dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
581		m->nr_pages = 0;
582		m->u_vaddr = NULL;
583		m->size = 0;	/* mark unused and not added */
584		return -ENOMEM;
585	}
586	m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
587
588	/* pin user pages in memory */
589	rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
590				 m->nr_pages,
591				 1,		/* write by caller */
592				 m->page_list);	/* ptrs to pages */
593
594	/* assumption: get_user_pages can be killed by signals. */
595	if (rc < m->nr_pages) {
596		free_user_pages(m->page_list, rc, 0);
597		rc = -EFAULT;
598		goto fail_get_user_pages;
599	}
600
601	rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
602	if (rc != 0)
603		goto fail_free_user_pages;
604
605	return 0;
606
607 fail_free_user_pages:
608	free_user_pages(m->page_list, m->nr_pages, 0);
609
610 fail_get_user_pages:
611	kfree(m->page_list);
612	m->page_list = NULL;
613	m->dma_list = NULL;
614	m->nr_pages = 0;
615	m->u_vaddr = NULL;
616	m->size = 0;		/* mark unused and not added */
617	return rc;
618}
619
620/**
621 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
622 *                        memory
623 * @cd:         pointer to genwqe device
624 * @m:          mapping params
625 */
626int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
627		       struct ddcb_requ *req)
628{
629	struct pci_dev *pci_dev = cd->pci_dev;
630
631	if (!dma_mapping_used(m)) {
632		dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
633			__func__, m);
634		return -EINVAL;
635	}
636
637	if (m->dma_list)
638		genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
639
640	if (m->page_list) {
641		free_user_pages(m->page_list, m->nr_pages, 1);
642
643		kfree(m->page_list);
644		m->page_list = NULL;
645		m->dma_list = NULL;
646		m->nr_pages = 0;
647	}
648
649	m->u_vaddr = NULL;
650	m->size = 0;		/* mark as unused and not added */
651	return 0;
652}
653
654/**
655 * genwqe_card_type() - Get chip type SLU Configuration Register
656 * @cd:         pointer to the genwqe device descriptor
657 * Return: 0: Altera Stratix-IV 230
658 *         1: Altera Stratix-IV 530
659 *         2: Altera Stratix-V A4
660 *         3: Altera Stratix-V A7
661 */
662u8 genwqe_card_type(struct genwqe_dev *cd)
663{
664	u64 card_type = cd->slu_unitcfg;
665
666	return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
667}
668
669/**
670 * genwqe_card_reset() - Reset the card
671 * @cd:         pointer to the genwqe device descriptor
672 */
673int genwqe_card_reset(struct genwqe_dev *cd)
674{
675	u64 softrst;
676	struct pci_dev *pci_dev = cd->pci_dev;
677
678	if (!genwqe_is_privileged(cd))
679		return -ENODEV;
680
681	/* new SL */
682	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
683	msleep(1000);
684	__genwqe_readq(cd, IO_HSU_FIR_CLR);
685	__genwqe_readq(cd, IO_APP_FIR_CLR);
686	__genwqe_readq(cd, IO_SLU_FIR_CLR);
687
688	/*
689	 * Read-modify-write to preserve the stealth bits
690	 *
691	 * For SL >= 039, Stealth WE bit allows removing
692	 * the read-modify-wrote.
693	 * r-m-w may require a mask 0x3C to avoid hitting hard
694	 * reset again for error reset (should be 0, chicken).
695	 */
696	softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
697	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
698
699	/* give ERRORRESET some time to finish */
700	msleep(50);
701
702	if (genwqe_need_err_masking(cd)) {
703		dev_info(&pci_dev->dev,
704			 "[%s] masking errors for old bitstreams\n", __func__);
705		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
706	}
707	return 0;
708}
709
710int genwqe_read_softreset(struct genwqe_dev *cd)
711{
712	u64 bitstream;
713
714	if (!genwqe_is_privileged(cd))
715		return -ENODEV;
716
717	bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
718	cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
719	return 0;
720}
721
722/**
723 * genwqe_set_interrupt_capability() - Configure MSI capability structure
724 * @cd:         pointer to the device
725 * Return: 0 if no error
726 */
727int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
728{
729	int rc;
730	struct pci_dev *pci_dev = cd->pci_dev;
731
732	rc = pci_enable_msi_range(pci_dev, 1, count);
733	if (rc < 0)
734		return rc;
735
736	cd->flags |= GENWQE_FLAG_MSI_ENABLED;
737	return 0;
738}
739
740/**
741 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
742 * @cd:         pointer to the device
743 */
744void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
745{
746	struct pci_dev *pci_dev = cd->pci_dev;
747
748	if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
749		pci_disable_msi(pci_dev);
750		cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
751	}
752}
753
754/**
755 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
756 * @cd:         card device
757 * @r:          debug register array
758 * @i:          index to desired entry
759 * @m:          maximum possible entries
760 * @addr:       addr which is read
761 * @index:      index in debug array
762 * @val:        read value
763 */
764static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
765		       unsigned int *i, unsigned int m, u32 addr, u32 idx,
766		       u64 val)
767{
768	if (WARN_ON_ONCE(*i >= m))
769		return -EFAULT;
770
771	r[*i].addr = addr;
772	r[*i].idx = idx;
773	r[*i].val = val;
774	++*i;
775	return 0;
776}
777
778static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
779		   unsigned int *i, unsigned int m, u32 addr, u64 val)
780{
781	return set_reg_idx(cd, r, i, m, addr, 0, val);
782}
783
784int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
785			 unsigned int max_regs, int all)
786{
787	unsigned int i, j, idx = 0;
788	u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
789	u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
790
791	/* Global FIR */
792	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
793	set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
794
795	/* UnitCfg for SLU */
796	sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
797	set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
798
799	/* UnitCfg for APP */
800	appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
801	set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
802
803	/* Check all chip Units */
804	for (i = 0; i < GENWQE_MAX_UNITS; i++) {
805
806		/* Unit FIR */
807		ufir_addr = (i << 24) | 0x008;
808		ufir = __genwqe_readq(cd, ufir_addr);
809		set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
810
811		/* Unit FEC */
812		ufec_addr = (i << 24) | 0x018;
813		ufec = __genwqe_readq(cd, ufec_addr);
814		set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
815
816		for (j = 0; j < 64; j++) {
817			/* wherever there is a primary 1, read the 2ndary */
818			if (!all && (!(ufir & (1ull << j))))
819				continue;
820
821			sfir_addr = (i << 24) | (0x100 + 8 * j);
822			sfir = __genwqe_readq(cd, sfir_addr);
823			set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
824
825			sfec_addr = (i << 24) | (0x300 + 8 * j);
826			sfec = __genwqe_readq(cd, sfec_addr);
827			set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
828		}
829	}
830
831	/* fill with invalid data until end */
832	for (i = idx; i < max_regs; i++) {
833		regs[i].addr = 0xffffffff;
834		regs[i].val = 0xffffffffffffffffull;
835	}
836	return idx;
837}
838
839/**
840 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
841 */
842int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
843{
844	int entries = 0, ring, traps, traces, trace_entries;
845	u32 eevptr_addr, l_addr, d_len, d_type;
846	u64 eevptr, val, addr;
847
848	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
849	eevptr = __genwqe_readq(cd, eevptr_addr);
850
851	if ((eevptr != 0x0) && (eevptr != -1ull)) {
852		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
853
854		while (1) {
855			val = __genwqe_readq(cd, l_addr);
856
857			if ((val == 0x0) || (val == -1ull))
858				break;
859
860			/* 38:24 */
861			d_len  = (val & 0x0000007fff000000ull) >> 24;
862
863			/* 39 */
864			d_type = (val & 0x0000008000000000ull) >> 36;
865
866			if (d_type) {	/* repeat */
867				entries += d_len;
868			} else {	/* size in bytes! */
869				entries += d_len >> 3;
870			}
871
872			l_addr += 8;
873		}
874	}
875
876	for (ring = 0; ring < 8; ring++) {
877		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
878		val = __genwqe_readq(cd, addr);
879
880		if ((val == 0x0ull) || (val == -1ull))
881			continue;
882
883		traps = (val >> 24) & 0xff;
884		traces = (val >> 16) & 0xff;
885		trace_entries = val & 0xffff;
886
887		entries += traps + (traces * trace_entries);
888	}
889	return entries;
890}
891
892/**
893 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
894 */
895int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
896			  struct genwqe_reg *regs, unsigned int max_regs)
897{
898	int i, traps, traces, trace, trace_entries, trace_entry, ring;
899	unsigned int idx = 0;
900	u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
901	u64 eevptr, e, val, addr;
902
903	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
904	eevptr = __genwqe_readq(cd, eevptr_addr);
905
906	if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
907		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
908		while (1) {
909			e = __genwqe_readq(cd, l_addr);
910			if ((e == 0x0) || (e == 0xffffffffffffffffull))
911				break;
912
913			d_addr = (e & 0x0000000000ffffffull);	    /* 23:0 */
914			d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
915			d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
916			d_addr |= GENWQE_UID_OFFS(uid);
917
918			if (d_type) {
919				for (i = 0; i < (int)d_len; i++) {
920					val = __genwqe_readq(cd, d_addr);
921					set_reg_idx(cd, regs, &idx, max_regs,
922						    d_addr, i, val);
923				}
924			} else {
925				d_len >>= 3; /* Size in bytes! */
926				for (i = 0; i < (int)d_len; i++, d_addr += 8) {
927					val = __genwqe_readq(cd, d_addr);
928					set_reg_idx(cd, regs, &idx, max_regs,
929						    d_addr, 0, val);
930				}
931			}
932			l_addr += 8;
933		}
934	}
935
936	/*
937	 * To save time, there are only 6 traces poplulated on Uid=2,
938	 * Ring=1. each with iters=512.
939	 */
940	for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
941					      2...7 are ASI rings */
942		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
943		val = __genwqe_readq(cd, addr);
944
945		if ((val == 0x0ull) || (val == -1ull))
946			continue;
947
948		traps = (val >> 24) & 0xff;	/* Number of Traps	*/
949		traces = (val >> 16) & 0xff;	/* Number of Traces	*/
950		trace_entries = val & 0xffff;	/* Entries per trace	*/
951
952		/* Note: This is a combined loop that dumps both the traps */
953		/* (for the trace == 0 case) as well as the traces 1 to    */
954		/* 'traces'.						   */
955		for (trace = 0; trace <= traces; trace++) {
956			u32 diag_sel =
957				GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
958
959			addr = (GENWQE_UID_OFFS(uid) |
960				IO_EXTENDED_DIAG_SELECTOR);
961			__genwqe_writeq(cd, addr, diag_sel);
962
963			for (trace_entry = 0;
964			     trace_entry < (trace ? trace_entries : traps);
965			     trace_entry++) {
966				addr = (GENWQE_UID_OFFS(uid) |
967					IO_EXTENDED_DIAG_READ_MBX);
968				val = __genwqe_readq(cd, addr);
969				set_reg_idx(cd, regs, &idx, max_regs, addr,
970					    (diag_sel<<16) | trace_entry, val);
971			}
972		}
973	}
974	return 0;
975}
976
977/**
978 * genwqe_write_vreg() - Write register in virtual window
979 *
980 * Note, these registers are only accessible to the PF through the
981 * VF-window. It is not intended for the VF to access.
982 */
983int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
984{
985	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
986	__genwqe_writeq(cd, reg, val);
987	return 0;
988}
989
990/**
991 * genwqe_read_vreg() - Read register in virtual window
992 *
993 * Note, these registers are only accessible to the PF through the
994 * VF-window. It is not intended for the VF to access.
995 */
996u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
997{
998	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
999	return __genwqe_readq(cd, reg);
1000}
1001
1002/**
1003 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1004 *
1005 * Note: From a design perspective it turned out to be a bad idea to
1006 * use codes here to specifiy the frequency/speed values. An old
1007 * driver cannot understand new codes and is therefore always a
1008 * problem. Better is to measure out the value or put the
1009 * speed/frequency directly into a register which is always a valid
1010 * value for old as well as for new software.
1011 *
1012 * Return: Card clock in MHz
1013 */
1014int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1015{
1016	u16 speed;		/*         MHz  MHz  MHz  MHz */
1017	static const int speed_grade[] = { 250, 200, 166, 175 };
1018
1019	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1020	if (speed >= ARRAY_SIZE(speed_grade))
1021		return 0;	/* illegal value */
1022
1023	return speed_grade[speed];
1024}
1025
1026/**
1027 * genwqe_stop_traps() - Stop traps
1028 *
1029 * Before reading out the analysis data, we need to stop the traps.
1030 */
1031void genwqe_stop_traps(struct genwqe_dev *cd)
1032{
1033	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1034}
1035
1036/**
1037 * genwqe_start_traps() - Start traps
1038 *
1039 * After having read the data, we can/must enable the traps again.
1040 */
1041void genwqe_start_traps(struct genwqe_dev *cd)
1042{
1043	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1044
1045	if (genwqe_need_err_masking(cd))
1046		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1047}
1048