1/*
2 * VMware VMCI Driver
3 *
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * for more details.
14 */
15
16#include <linux/vmw_vmci_defs.h>
17#include <linux/vmw_vmci_api.h>
18#include <linux/highmem.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/module.h>
22#include <linux/mutex.h>
23#include <linux/pagemap.h>
24#include <linux/pci.h>
25#include <linux/sched.h>
26#include <linux/slab.h>
27#include <linux/uio.h>
28#include <linux/wait.h>
29#include <linux/vmalloc.h>
30
31#include "vmci_handle_array.h"
32#include "vmci_queue_pair.h"
33#include "vmci_datagram.h"
34#include "vmci_resource.h"
35#include "vmci_context.h"
36#include "vmci_driver.h"
37#include "vmci_event.h"
38#include "vmci_route.h"
39
40/*
41 * In the following, we will distinguish between two kinds of VMX processes -
42 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
43 * VMCI page files in the VMX and supporting VM to VM communication and the
44 * newer ones that use the guest memory directly. We will in the following
45 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
46 * new-style VMX'en.
47 *
48 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
49 * removed for readability) - see below for more details on the transtions:
50 *
51 *            --------------  NEW  -------------
52 *            |                                |
53 *           \_/                              \_/
54 *     CREATED_NO_MEM <-----------------> CREATED_MEM
55 *            |    |                           |
56 *            |    o-----------------------o   |
57 *            |                            |   |
58 *           \_/                          \_/ \_/
59 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
60 *            |                            |   |
61 *            |     o----------------------o   |
62 *            |     |                          |
63 *           \_/   \_/                        \_/
64 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
65 *            |                                |
66 *            |                                |
67 *            -------------> gone <-------------
68 *
69 * In more detail. When a VMCI queue pair is first created, it will be in the
70 * VMCIQPB_NEW state. It will then move into one of the following states:
71 *
72 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
73 *
74 *     - the created was performed by a host endpoint, in which case there is
75 *       no backing memory yet.
76 *
77 *     - the create was initiated by an old-style VMX, that uses
78 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
79 *       a later point in time. This state can be distinguished from the one
80 *       above by the context ID of the creator. A host side is not allowed to
81 *       attach until the page store has been set.
82 *
83 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
84 *     is created by a VMX using the queue pair device backend that
85 *     sets the UVAs of the queue pair immediately and stores the
86 *     information for later attachers. At this point, it is ready for
87 *     the host side to attach to it.
88 *
89 * Once the queue pair is in one of the created states (with the exception of
90 * the case mentioned for older VMX'en above), it is possible to attach to the
91 * queue pair. Again we have two new states possible:
92 *
93 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
94 *   paths:
95 *
96 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
97 *       pair, and attaches to a queue pair previously created by the host side.
98 *
99 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
100 *       already created by a guest.
101 *
102 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
103 *       vmci_qp_broker_set_page_store (see below).
104 *
105 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
106 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
107 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
108 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
109 *     will be entered.
110 *
111 * From the attached queue pair, the queue pair can enter the shutdown states
112 * when either side of the queue pair detaches. If the guest side detaches
113 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
114 * the content of the queue pair will no longer be available. If the host
115 * side detaches first, the queue pair will either enter the
116 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
117 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
118 * (e.g., the host detaches while a guest is stunned).
119 *
120 * New-style VMX'en will also unmap guest memory, if the guest is
121 * quiesced, e.g., during a snapshot operation. In that case, the guest
122 * memory will no longer be available, and the queue pair will transition from
123 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
124 * in which case the queue pair will transition from the *_NO_MEM state at that
125 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
126 * since the peer may have either attached or detached in the meantime. The
127 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
128 * *_MEM state, and vice versa.
129 */
130
131/*
132 * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
133 * types are passed around to enqueue and dequeue routines.  Note that
134 * often the functions passed are simply wrappers around memcpy
135 * itself.
136 *
137 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
138 * there's an unused last parameter for the hosted side.  In
139 * ESX, that parameter holds a buffer type.
140 */
141typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
142				      u64 queue_offset, const void *src,
143				      size_t src_offset, size_t size);
144typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
145					const struct vmci_queue *queue,
146					u64 queue_offset, size_t size);
147
148/* The Kernel specific component of the struct vmci_queue structure. */
149struct vmci_queue_kern_if {
150	struct mutex __mutex;	/* Protects the queue. */
151	struct mutex *mutex;	/* Shared by producer and consumer queues. */
152	size_t num_pages;	/* Number of pages incl. header. */
153	bool host;		/* Host or guest? */
154	union {
155		struct {
156			dma_addr_t *pas;
157			void **vas;
158		} g;		/* Used by the guest. */
159		struct {
160			struct page **page;
161			struct page **header_page;
162		} h;		/* Used by the host. */
163	} u;
164};
165
166/*
167 * This structure is opaque to the clients.
168 */
169struct vmci_qp {
170	struct vmci_handle handle;
171	struct vmci_queue *produce_q;
172	struct vmci_queue *consume_q;
173	u64 produce_q_size;
174	u64 consume_q_size;
175	u32 peer;
176	u32 flags;
177	u32 priv_flags;
178	bool guest_endpoint;
179	unsigned int blocked;
180	unsigned int generation;
181	wait_queue_head_t event;
182};
183
184enum qp_broker_state {
185	VMCIQPB_NEW,
186	VMCIQPB_CREATED_NO_MEM,
187	VMCIQPB_CREATED_MEM,
188	VMCIQPB_ATTACHED_NO_MEM,
189	VMCIQPB_ATTACHED_MEM,
190	VMCIQPB_SHUTDOWN_NO_MEM,
191	VMCIQPB_SHUTDOWN_MEM,
192	VMCIQPB_GONE
193};
194
195#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
196				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
197				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
198
199/*
200 * In the queue pair broker, we always use the guest point of view for
201 * the produce and consume queue values and references, e.g., the
202 * produce queue size stored is the guests produce queue size. The
203 * host endpoint will need to swap these around. The only exception is
204 * the local queue pairs on the host, in which case the host endpoint
205 * that creates the queue pair will have the right orientation, and
206 * the attaching host endpoint will need to swap.
207 */
208struct qp_entry {
209	struct list_head list_item;
210	struct vmci_handle handle;
211	u32 peer;
212	u32 flags;
213	u64 produce_size;
214	u64 consume_size;
215	u32 ref_count;
216};
217
218struct qp_broker_entry {
219	struct vmci_resource resource;
220	struct qp_entry qp;
221	u32 create_id;
222	u32 attach_id;
223	enum qp_broker_state state;
224	bool require_trusted_attach;
225	bool created_by_trusted;
226	bool vmci_page_files;	/* Created by VMX using VMCI page files */
227	struct vmci_queue *produce_q;
228	struct vmci_queue *consume_q;
229	struct vmci_queue_header saved_produce_q;
230	struct vmci_queue_header saved_consume_q;
231	vmci_event_release_cb wakeup_cb;
232	void *client_data;
233	void *local_mem;	/* Kernel memory for local queue pair */
234};
235
236struct qp_guest_endpoint {
237	struct vmci_resource resource;
238	struct qp_entry qp;
239	u64 num_ppns;
240	void *produce_q;
241	void *consume_q;
242	struct ppn_set ppn_set;
243};
244
245struct qp_list {
246	struct list_head head;
247	struct mutex mutex;	/* Protect queue list. */
248};
249
250static struct qp_list qp_broker_list = {
251	.head = LIST_HEAD_INIT(qp_broker_list.head),
252	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
253};
254
255static struct qp_list qp_guest_endpoints = {
256	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
257	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
258};
259
260#define INVALID_VMCI_GUEST_MEM_ID  0
261#define QPE_NUM_PAGES(_QPE) ((u32) \
262			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
263			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
264
265
266/*
267 * Frees kernel VA space for a given queue and its queue header, and
268 * frees physical data pages.
269 */
270static void qp_free_queue(void *q, u64 size)
271{
272	struct vmci_queue *queue = q;
273
274	if (queue) {
275		u64 i;
276
277		/* Given size does not include header, so add in a page here. */
278		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
279			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
280					  queue->kernel_if->u.g.vas[i],
281					  queue->kernel_if->u.g.pas[i]);
282		}
283
284		vfree(queue);
285	}
286}
287
288/*
289 * Allocates kernel queue pages of specified size with IOMMU mappings,
290 * plus space for the queue structure/kernel interface and the queue
291 * header.
292 */
293static void *qp_alloc_queue(u64 size, u32 flags)
294{
295	u64 i;
296	struct vmci_queue *queue;
297	const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
298	const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
299	const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
300	const size_t queue_size =
301		sizeof(*queue) + sizeof(*queue->kernel_if) +
302		pas_size + vas_size;
303
304	queue = vmalloc(queue_size);
305	if (!queue)
306		return NULL;
307
308	queue->q_header = NULL;
309	queue->saved_header = NULL;
310	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
311	queue->kernel_if->mutex = NULL;
312	queue->kernel_if->num_pages = num_pages;
313	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
314	queue->kernel_if->u.g.vas =
315		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
316	queue->kernel_if->host = false;
317
318	for (i = 0; i < num_pages; i++) {
319		queue->kernel_if->u.g.vas[i] =
320			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
321					   &queue->kernel_if->u.g.pas[i],
322					   GFP_KERNEL);
323		if (!queue->kernel_if->u.g.vas[i]) {
324			/* Size excl. the header. */
325			qp_free_queue(queue, i * PAGE_SIZE);
326			return NULL;
327		}
328	}
329
330	/* Queue header is the first page. */
331	queue->q_header = queue->kernel_if->u.g.vas[0];
332
333	return queue;
334}
335
336/*
337 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
338 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
339 * by traversing the offset -> page translation structure for the queue.
340 * Assumes that offset + size does not wrap around in the queue.
341 */
342static int __qp_memcpy_to_queue(struct vmci_queue *queue,
343				u64 queue_offset,
344				const void *src,
345				size_t size,
346				bool is_iovec)
347{
348	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
349	size_t bytes_copied = 0;
350
351	while (bytes_copied < size) {
352		const u64 page_index =
353			(queue_offset + bytes_copied) / PAGE_SIZE;
354		const size_t page_offset =
355		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
356		void *va;
357		size_t to_copy;
358
359		if (kernel_if->host)
360			va = kmap(kernel_if->u.h.page[page_index]);
361		else
362			va = kernel_if->u.g.vas[page_index + 1];
363			/* Skip header. */
364
365		if (size - bytes_copied > PAGE_SIZE - page_offset)
366			/* Enough payload to fill up from this page. */
367			to_copy = PAGE_SIZE - page_offset;
368		else
369			to_copy = size - bytes_copied;
370
371		if (is_iovec) {
372			struct iovec *iov = (struct iovec *)src;
373			int err;
374
375			/* The iovec will track bytes_copied internally. */
376			err = memcpy_fromiovec((u8 *)va + page_offset,
377					       iov, to_copy);
378			if (err != 0) {
379				if (kernel_if->host)
380					kunmap(kernel_if->u.h.page[page_index]);
381				return VMCI_ERROR_INVALID_ARGS;
382			}
383		} else {
384			memcpy((u8 *)va + page_offset,
385			       (u8 *)src + bytes_copied, to_copy);
386		}
387
388		bytes_copied += to_copy;
389		if (kernel_if->host)
390			kunmap(kernel_if->u.h.page[page_index]);
391	}
392
393	return VMCI_SUCCESS;
394}
395
396/*
397 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
398 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
399 * by traversing the offset -> page translation structure for the queue.
400 * Assumes that offset + size does not wrap around in the queue.
401 */
402static int __qp_memcpy_from_queue(void *dest,
403				  const struct vmci_queue *queue,
404				  u64 queue_offset,
405				  size_t size,
406				  bool is_iovec)
407{
408	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
409	size_t bytes_copied = 0;
410
411	while (bytes_copied < size) {
412		const u64 page_index =
413			(queue_offset + bytes_copied) / PAGE_SIZE;
414		const size_t page_offset =
415		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
416		void *va;
417		size_t to_copy;
418
419		if (kernel_if->host)
420			va = kmap(kernel_if->u.h.page[page_index]);
421		else
422			va = kernel_if->u.g.vas[page_index + 1];
423			/* Skip header. */
424
425		if (size - bytes_copied > PAGE_SIZE - page_offset)
426			/* Enough payload to fill up this page. */
427			to_copy = PAGE_SIZE - page_offset;
428		else
429			to_copy = size - bytes_copied;
430
431		if (is_iovec) {
432			struct iovec *iov = (struct iovec *)dest;
433			int err;
434
435			/* The iovec will track bytes_copied internally. */
436			err = memcpy_toiovec(iov, (u8 *)va + page_offset,
437					     to_copy);
438			if (err != 0) {
439				if (kernel_if->host)
440					kunmap(kernel_if->u.h.page[page_index]);
441				return VMCI_ERROR_INVALID_ARGS;
442			}
443		} else {
444			memcpy((u8 *)dest + bytes_copied,
445			       (u8 *)va + page_offset, to_copy);
446		}
447
448		bytes_copied += to_copy;
449		if (kernel_if->host)
450			kunmap(kernel_if->u.h.page[page_index]);
451	}
452
453	return VMCI_SUCCESS;
454}
455
456/*
457 * Allocates two list of PPNs --- one for the pages in the produce queue,
458 * and the other for the pages in the consume queue. Intializes the list
459 * of PPNs with the page frame numbers of the KVA for the two queues (and
460 * the queue headers).
461 */
462static int qp_alloc_ppn_set(void *prod_q,
463			    u64 num_produce_pages,
464			    void *cons_q,
465			    u64 num_consume_pages, struct ppn_set *ppn_set)
466{
467	u32 *produce_ppns;
468	u32 *consume_ppns;
469	struct vmci_queue *produce_q = prod_q;
470	struct vmci_queue *consume_q = cons_q;
471	u64 i;
472
473	if (!produce_q || !num_produce_pages || !consume_q ||
474	    !num_consume_pages || !ppn_set)
475		return VMCI_ERROR_INVALID_ARGS;
476
477	if (ppn_set->initialized)
478		return VMCI_ERROR_ALREADY_EXISTS;
479
480	produce_ppns =
481	    kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
482	if (!produce_ppns)
483		return VMCI_ERROR_NO_MEM;
484
485	consume_ppns =
486	    kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
487	if (!consume_ppns) {
488		kfree(produce_ppns);
489		return VMCI_ERROR_NO_MEM;
490	}
491
492	for (i = 0; i < num_produce_pages; i++) {
493		unsigned long pfn;
494
495		produce_ppns[i] =
496			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
497		pfn = produce_ppns[i];
498
499		/* Fail allocation if PFN isn't supported by hypervisor. */
500		if (sizeof(pfn) > sizeof(*produce_ppns)
501		    && pfn != produce_ppns[i])
502			goto ppn_error;
503	}
504
505	for (i = 0; i < num_consume_pages; i++) {
506		unsigned long pfn;
507
508		consume_ppns[i] =
509			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
510		pfn = consume_ppns[i];
511
512		/* Fail allocation if PFN isn't supported by hypervisor. */
513		if (sizeof(pfn) > sizeof(*consume_ppns)
514		    && pfn != consume_ppns[i])
515			goto ppn_error;
516	}
517
518	ppn_set->num_produce_pages = num_produce_pages;
519	ppn_set->num_consume_pages = num_consume_pages;
520	ppn_set->produce_ppns = produce_ppns;
521	ppn_set->consume_ppns = consume_ppns;
522	ppn_set->initialized = true;
523	return VMCI_SUCCESS;
524
525 ppn_error:
526	kfree(produce_ppns);
527	kfree(consume_ppns);
528	return VMCI_ERROR_INVALID_ARGS;
529}
530
531/*
532 * Frees the two list of PPNs for a queue pair.
533 */
534static void qp_free_ppn_set(struct ppn_set *ppn_set)
535{
536	if (ppn_set->initialized) {
537		/* Do not call these functions on NULL inputs. */
538		kfree(ppn_set->produce_ppns);
539		kfree(ppn_set->consume_ppns);
540	}
541	memset(ppn_set, 0, sizeof(*ppn_set));
542}
543
544/*
545 * Populates the list of PPNs in the hypercall structure with the PPNS
546 * of the produce queue and the consume queue.
547 */
548static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
549{
550	memcpy(call_buf, ppn_set->produce_ppns,
551	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
552	memcpy(call_buf +
553	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
554	       ppn_set->consume_ppns,
555	       ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
556
557	return VMCI_SUCCESS;
558}
559
560static int qp_memcpy_to_queue(struct vmci_queue *queue,
561			      u64 queue_offset,
562			      const void *src, size_t src_offset, size_t size)
563{
564	return __qp_memcpy_to_queue(queue, queue_offset,
565				    (u8 *)src + src_offset, size, false);
566}
567
568static int qp_memcpy_from_queue(void *dest,
569				size_t dest_offset,
570				const struct vmci_queue *queue,
571				u64 queue_offset, size_t size)
572{
573	return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
574				      queue, queue_offset, size, false);
575}
576
577/*
578 * Copies from a given iovec from a VMCI Queue.
579 */
580static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
581				  u64 queue_offset,
582				  const void *src,
583				  size_t src_offset, size_t size)
584{
585
586	/*
587	 * We ignore src_offset because src is really a struct iovec * and will
588	 * maintain offset internally.
589	 */
590	return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
591}
592
593/*
594 * Copies to a given iovec from a VMCI Queue.
595 */
596static int qp_memcpy_from_queue_iov(void *dest,
597				    size_t dest_offset,
598				    const struct vmci_queue *queue,
599				    u64 queue_offset, size_t size)
600{
601	/*
602	 * We ignore dest_offset because dest is really a struct iovec * and
603	 * will maintain offset internally.
604	 */
605	return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
606}
607
608/*
609 * Allocates kernel VA space of specified size plus space for the queue
610 * and kernel interface.  This is different from the guest queue allocator,
611 * because we do not allocate our own queue header/data pages here but
612 * share those of the guest.
613 */
614static struct vmci_queue *qp_host_alloc_queue(u64 size)
615{
616	struct vmci_queue *queue;
617	const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
618	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
619	const size_t queue_page_size =
620	    num_pages * sizeof(*queue->kernel_if->u.h.page);
621
622	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
623	if (queue) {
624		queue->q_header = NULL;
625		queue->saved_header = NULL;
626		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
627		queue->kernel_if->host = true;
628		queue->kernel_if->mutex = NULL;
629		queue->kernel_if->num_pages = num_pages;
630		queue->kernel_if->u.h.header_page =
631		    (struct page **)((u8 *)queue + queue_size);
632		queue->kernel_if->u.h.page =
633			&queue->kernel_if->u.h.header_page[1];
634	}
635
636	return queue;
637}
638
639/*
640 * Frees kernel memory for a given queue (header plus translation
641 * structure).
642 */
643static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
644{
645	kfree(queue);
646}
647
648/*
649 * Initialize the mutex for the pair of queues.  This mutex is used to
650 * protect the q_header and the buffer from changing out from under any
651 * users of either queue.  Of course, it's only any good if the mutexes
652 * are actually acquired.  Queue structure must lie on non-paged memory
653 * or we cannot guarantee access to the mutex.
654 */
655static void qp_init_queue_mutex(struct vmci_queue *produce_q,
656				struct vmci_queue *consume_q)
657{
658	/*
659	 * Only the host queue has shared state - the guest queues do not
660	 * need to synchronize access using a queue mutex.
661	 */
662
663	if (produce_q->kernel_if->host) {
664		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
665		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
666		mutex_init(produce_q->kernel_if->mutex);
667	}
668}
669
670/*
671 * Cleans up the mutex for the pair of queues.
672 */
673static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
674				   struct vmci_queue *consume_q)
675{
676	if (produce_q->kernel_if->host) {
677		produce_q->kernel_if->mutex = NULL;
678		consume_q->kernel_if->mutex = NULL;
679	}
680}
681
682/*
683 * Acquire the mutex for the queue.  Note that the produce_q and
684 * the consume_q share a mutex.  So, only one of the two need to
685 * be passed in to this routine.  Either will work just fine.
686 */
687static void qp_acquire_queue_mutex(struct vmci_queue *queue)
688{
689	if (queue->kernel_if->host)
690		mutex_lock(queue->kernel_if->mutex);
691}
692
693/*
694 * Release the mutex for the queue.  Note that the produce_q and
695 * the consume_q share a mutex.  So, only one of the two need to
696 * be passed in to this routine.  Either will work just fine.
697 */
698static void qp_release_queue_mutex(struct vmci_queue *queue)
699{
700	if (queue->kernel_if->host)
701		mutex_unlock(queue->kernel_if->mutex);
702}
703
704/*
705 * Helper function to release pages in the PageStoreAttachInfo
706 * previously obtained using get_user_pages.
707 */
708static void qp_release_pages(struct page **pages,
709			     u64 num_pages, bool dirty)
710{
711	int i;
712
713	for (i = 0; i < num_pages; i++) {
714		if (dirty)
715			set_page_dirty(pages[i]);
716
717		page_cache_release(pages[i]);
718		pages[i] = NULL;
719	}
720}
721
722/*
723 * Lock the user pages referenced by the {produce,consume}Buffer
724 * struct into memory and populate the {produce,consume}Pages
725 * arrays in the attach structure with them.
726 */
727static int qp_host_get_user_memory(u64 produce_uva,
728				   u64 consume_uva,
729				   struct vmci_queue *produce_q,
730				   struct vmci_queue *consume_q)
731{
732	int retval;
733	int err = VMCI_SUCCESS;
734
735	retval = get_user_pages_fast((uintptr_t) produce_uva,
736				     produce_q->kernel_if->num_pages, 1,
737				     produce_q->kernel_if->u.h.header_page);
738	if (retval < produce_q->kernel_if->num_pages) {
739		pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
740		qp_release_pages(produce_q->kernel_if->u.h.header_page,
741				 retval, false);
742		err = VMCI_ERROR_NO_MEM;
743		goto out;
744	}
745
746	retval = get_user_pages_fast((uintptr_t) consume_uva,
747				     consume_q->kernel_if->num_pages, 1,
748				     consume_q->kernel_if->u.h.header_page);
749	if (retval < consume_q->kernel_if->num_pages) {
750		pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
751		qp_release_pages(consume_q->kernel_if->u.h.header_page,
752				 retval, false);
753		qp_release_pages(produce_q->kernel_if->u.h.header_page,
754				 produce_q->kernel_if->num_pages, false);
755		err = VMCI_ERROR_NO_MEM;
756	}
757
758 out:
759	return err;
760}
761
762/*
763 * Registers the specification of the user pages used for backing a queue
764 * pair. Enough information to map in pages is stored in the OS specific
765 * part of the struct vmci_queue structure.
766 */
767static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
768					struct vmci_queue *produce_q,
769					struct vmci_queue *consume_q)
770{
771	u64 produce_uva;
772	u64 consume_uva;
773
774	/*
775	 * The new style and the old style mapping only differs in
776	 * that we either get a single or two UVAs, so we split the
777	 * single UVA range at the appropriate spot.
778	 */
779	produce_uva = page_store->pages;
780	consume_uva = page_store->pages +
781	    produce_q->kernel_if->num_pages * PAGE_SIZE;
782	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
783				       consume_q);
784}
785
786/*
787 * Releases and removes the references to user pages stored in the attach
788 * struct.  Pages are released from the page cache and may become
789 * swappable again.
790 */
791static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
792					   struct vmci_queue *consume_q)
793{
794	qp_release_pages(produce_q->kernel_if->u.h.header_page,
795			 produce_q->kernel_if->num_pages, true);
796	memset(produce_q->kernel_if->u.h.header_page, 0,
797	       sizeof(*produce_q->kernel_if->u.h.header_page) *
798	       produce_q->kernel_if->num_pages);
799	qp_release_pages(consume_q->kernel_if->u.h.header_page,
800			 consume_q->kernel_if->num_pages, true);
801	memset(consume_q->kernel_if->u.h.header_page, 0,
802	       sizeof(*consume_q->kernel_if->u.h.header_page) *
803	       consume_q->kernel_if->num_pages);
804}
805
806/*
807 * Once qp_host_register_user_memory has been performed on a
808 * queue, the queue pair headers can be mapped into the
809 * kernel. Once mapped, they must be unmapped with
810 * qp_host_unmap_queues prior to calling
811 * qp_host_unregister_user_memory.
812 * Pages are pinned.
813 */
814static int qp_host_map_queues(struct vmci_queue *produce_q,
815			      struct vmci_queue *consume_q)
816{
817	int result;
818
819	if (!produce_q->q_header || !consume_q->q_header) {
820		struct page *headers[2];
821
822		if (produce_q->q_header != consume_q->q_header)
823			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
824
825		if (produce_q->kernel_if->u.h.header_page == NULL ||
826		    *produce_q->kernel_if->u.h.header_page == NULL)
827			return VMCI_ERROR_UNAVAILABLE;
828
829		headers[0] = *produce_q->kernel_if->u.h.header_page;
830		headers[1] = *consume_q->kernel_if->u.h.header_page;
831
832		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
833		if (produce_q->q_header != NULL) {
834			consume_q->q_header =
835			    (struct vmci_queue_header *)((u8 *)
836							 produce_q->q_header +
837							 PAGE_SIZE);
838			result = VMCI_SUCCESS;
839		} else {
840			pr_warn("vmap failed\n");
841			result = VMCI_ERROR_NO_MEM;
842		}
843	} else {
844		result = VMCI_SUCCESS;
845	}
846
847	return result;
848}
849
850/*
851 * Unmaps previously mapped queue pair headers from the kernel.
852 * Pages are unpinned.
853 */
854static int qp_host_unmap_queues(u32 gid,
855				struct vmci_queue *produce_q,
856				struct vmci_queue *consume_q)
857{
858	if (produce_q->q_header) {
859		if (produce_q->q_header < consume_q->q_header)
860			vunmap(produce_q->q_header);
861		else
862			vunmap(consume_q->q_header);
863
864		produce_q->q_header = NULL;
865		consume_q->q_header = NULL;
866	}
867
868	return VMCI_SUCCESS;
869}
870
871/*
872 * Finds the entry in the list corresponding to a given handle. Assumes
873 * that the list is locked.
874 */
875static struct qp_entry *qp_list_find(struct qp_list *qp_list,
876				     struct vmci_handle handle)
877{
878	struct qp_entry *entry;
879
880	if (vmci_handle_is_invalid(handle))
881		return NULL;
882
883	list_for_each_entry(entry, &qp_list->head, list_item) {
884		if (vmci_handle_is_equal(entry->handle, handle))
885			return entry;
886	}
887
888	return NULL;
889}
890
891/*
892 * Finds the entry in the list corresponding to a given handle.
893 */
894static struct qp_guest_endpoint *
895qp_guest_handle_to_entry(struct vmci_handle handle)
896{
897	struct qp_guest_endpoint *entry;
898	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
899
900	entry = qp ? container_of(
901		qp, struct qp_guest_endpoint, qp) : NULL;
902	return entry;
903}
904
905/*
906 * Finds the entry in the list corresponding to a given handle.
907 */
908static struct qp_broker_entry *
909qp_broker_handle_to_entry(struct vmci_handle handle)
910{
911	struct qp_broker_entry *entry;
912	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
913
914	entry = qp ? container_of(
915		qp, struct qp_broker_entry, qp) : NULL;
916	return entry;
917}
918
919/*
920 * Dispatches a queue pair event message directly into the local event
921 * queue.
922 */
923static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
924{
925	u32 context_id = vmci_get_context_id();
926	struct vmci_event_qp ev;
927
928	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
929	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
930					  VMCI_CONTEXT_RESOURCE_ID);
931	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
932	ev.msg.event_data.event =
933	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
934	ev.payload.peer_id = context_id;
935	ev.payload.handle = handle;
936
937	return vmci_event_dispatch(&ev.msg.hdr);
938}
939
940/*
941 * Allocates and initializes a qp_guest_endpoint structure.
942 * Allocates a queue_pair rid (and handle) iff the given entry has
943 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
944 * are reserved handles.  Assumes that the QP list mutex is held
945 * by the caller.
946 */
947static struct qp_guest_endpoint *
948qp_guest_endpoint_create(struct vmci_handle handle,
949			 u32 peer,
950			 u32 flags,
951			 u64 produce_size,
952			 u64 consume_size,
953			 void *produce_q,
954			 void *consume_q)
955{
956	int result;
957	struct qp_guest_endpoint *entry;
958	/* One page each for the queue headers. */
959	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
960	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
961
962	if (vmci_handle_is_invalid(handle)) {
963		u32 context_id = vmci_get_context_id();
964
965		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
966	}
967
968	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
969	if (entry) {
970		entry->qp.peer = peer;
971		entry->qp.flags = flags;
972		entry->qp.produce_size = produce_size;
973		entry->qp.consume_size = consume_size;
974		entry->qp.ref_count = 0;
975		entry->num_ppns = num_ppns;
976		entry->produce_q = produce_q;
977		entry->consume_q = consume_q;
978		INIT_LIST_HEAD(&entry->qp.list_item);
979
980		/* Add resource obj */
981		result = vmci_resource_add(&entry->resource,
982					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
983					   handle);
984		entry->qp.handle = vmci_resource_handle(&entry->resource);
985		if ((result != VMCI_SUCCESS) ||
986		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
987			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
988				handle.context, handle.resource, result);
989			kfree(entry);
990			entry = NULL;
991		}
992	}
993	return entry;
994}
995
996/*
997 * Frees a qp_guest_endpoint structure.
998 */
999static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1000{
1001	qp_free_ppn_set(&entry->ppn_set);
1002	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1003	qp_free_queue(entry->produce_q, entry->qp.produce_size);
1004	qp_free_queue(entry->consume_q, entry->qp.consume_size);
1005	/* Unlink from resource hash table and free callback */
1006	vmci_resource_remove(&entry->resource);
1007
1008	kfree(entry);
1009}
1010
1011/*
1012 * Helper to make a queue_pairAlloc hypercall when the driver is
1013 * supporting a guest device.
1014 */
1015static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1016{
1017	struct vmci_qp_alloc_msg *alloc_msg;
1018	size_t msg_size;
1019	int result;
1020
1021	if (!entry || entry->num_ppns <= 2)
1022		return VMCI_ERROR_INVALID_ARGS;
1023
1024	msg_size = sizeof(*alloc_msg) +
1025	    (size_t) entry->num_ppns * sizeof(u32);
1026	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1027	if (!alloc_msg)
1028		return VMCI_ERROR_NO_MEM;
1029
1030	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1031					      VMCI_QUEUEPAIR_ALLOC);
1032	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1033	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1034	alloc_msg->handle = entry->qp.handle;
1035	alloc_msg->peer = entry->qp.peer;
1036	alloc_msg->flags = entry->qp.flags;
1037	alloc_msg->produce_size = entry->qp.produce_size;
1038	alloc_msg->consume_size = entry->qp.consume_size;
1039	alloc_msg->num_ppns = entry->num_ppns;
1040
1041	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1042				     &entry->ppn_set);
1043	if (result == VMCI_SUCCESS)
1044		result = vmci_send_datagram(&alloc_msg->hdr);
1045
1046	kfree(alloc_msg);
1047
1048	return result;
1049}
1050
1051/*
1052 * Helper to make a queue_pairDetach hypercall when the driver is
1053 * supporting a guest device.
1054 */
1055static int qp_detatch_hypercall(struct vmci_handle handle)
1056{
1057	struct vmci_qp_detach_msg detach_msg;
1058
1059	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1060					      VMCI_QUEUEPAIR_DETACH);
1061	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1062	detach_msg.hdr.payload_size = sizeof(handle);
1063	detach_msg.handle = handle;
1064
1065	return vmci_send_datagram(&detach_msg.hdr);
1066}
1067
1068/*
1069 * Adds the given entry to the list. Assumes that the list is locked.
1070 */
1071static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1072{
1073	if (entry)
1074		list_add(&entry->list_item, &qp_list->head);
1075}
1076
1077/*
1078 * Removes the given entry from the list. Assumes that the list is locked.
1079 */
1080static void qp_list_remove_entry(struct qp_list *qp_list,
1081				 struct qp_entry *entry)
1082{
1083	if (entry)
1084		list_del(&entry->list_item);
1085}
1086
1087/*
1088 * Helper for VMCI queue_pair detach interface. Frees the physical
1089 * pages for the queue pair.
1090 */
1091static int qp_detatch_guest_work(struct vmci_handle handle)
1092{
1093	int result;
1094	struct qp_guest_endpoint *entry;
1095	u32 ref_count = ~0;	/* To avoid compiler warning below */
1096
1097	mutex_lock(&qp_guest_endpoints.mutex);
1098
1099	entry = qp_guest_handle_to_entry(handle);
1100	if (!entry) {
1101		mutex_unlock(&qp_guest_endpoints.mutex);
1102		return VMCI_ERROR_NOT_FOUND;
1103	}
1104
1105	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1106		result = VMCI_SUCCESS;
1107
1108		if (entry->qp.ref_count > 1) {
1109			result = qp_notify_peer_local(false, handle);
1110			/*
1111			 * We can fail to notify a local queuepair
1112			 * because we can't allocate.  We still want
1113			 * to release the entry if that happens, so
1114			 * don't bail out yet.
1115			 */
1116		}
1117	} else {
1118		result = qp_detatch_hypercall(handle);
1119		if (result < VMCI_SUCCESS) {
1120			/*
1121			 * We failed to notify a non-local queuepair.
1122			 * That other queuepair might still be
1123			 * accessing the shared memory, so don't
1124			 * release the entry yet.  It will get cleaned
1125			 * up by VMCIqueue_pair_Exit() if necessary
1126			 * (assuming we are going away, otherwise why
1127			 * did this fail?).
1128			 */
1129
1130			mutex_unlock(&qp_guest_endpoints.mutex);
1131			return result;
1132		}
1133	}
1134
1135	/*
1136	 * If we get here then we either failed to notify a local queuepair, or
1137	 * we succeeded in all cases.  Release the entry if required.
1138	 */
1139
1140	entry->qp.ref_count--;
1141	if (entry->qp.ref_count == 0)
1142		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1143
1144	/* If we didn't remove the entry, this could change once we unlock. */
1145	if (entry)
1146		ref_count = entry->qp.ref_count;
1147
1148	mutex_unlock(&qp_guest_endpoints.mutex);
1149
1150	if (ref_count == 0)
1151		qp_guest_endpoint_destroy(entry);
1152
1153	return result;
1154}
1155
1156/*
1157 * This functions handles the actual allocation of a VMCI queue
1158 * pair guest endpoint. Allocates physical pages for the queue
1159 * pair. It makes OS dependent calls through generic wrappers.
1160 */
1161static int qp_alloc_guest_work(struct vmci_handle *handle,
1162			       struct vmci_queue **produce_q,
1163			       u64 produce_size,
1164			       struct vmci_queue **consume_q,
1165			       u64 consume_size,
1166			       u32 peer,
1167			       u32 flags,
1168			       u32 priv_flags)
1169{
1170	const u64 num_produce_pages =
1171	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1172	const u64 num_consume_pages =
1173	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1174	void *my_produce_q = NULL;
1175	void *my_consume_q = NULL;
1176	int result;
1177	struct qp_guest_endpoint *queue_pair_entry = NULL;
1178
1179	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1180		return VMCI_ERROR_NO_ACCESS;
1181
1182	mutex_lock(&qp_guest_endpoints.mutex);
1183
1184	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1185	if (queue_pair_entry) {
1186		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1187			/* Local attach case. */
1188			if (queue_pair_entry->qp.ref_count > 1) {
1189				pr_devel("Error attempting to attach more than once\n");
1190				result = VMCI_ERROR_UNAVAILABLE;
1191				goto error_keep_entry;
1192			}
1193
1194			if (queue_pair_entry->qp.produce_size != consume_size ||
1195			    queue_pair_entry->qp.consume_size !=
1196			    produce_size ||
1197			    queue_pair_entry->qp.flags !=
1198			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1199				pr_devel("Error mismatched queue pair in local attach\n");
1200				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1201				goto error_keep_entry;
1202			}
1203
1204			/*
1205			 * Do a local attach.  We swap the consume and
1206			 * produce queues for the attacher and deliver
1207			 * an attach event.
1208			 */
1209			result = qp_notify_peer_local(true, *handle);
1210			if (result < VMCI_SUCCESS)
1211				goto error_keep_entry;
1212
1213			my_produce_q = queue_pair_entry->consume_q;
1214			my_consume_q = queue_pair_entry->produce_q;
1215			goto out;
1216		}
1217
1218		result = VMCI_ERROR_ALREADY_EXISTS;
1219		goto error_keep_entry;
1220	}
1221
1222	my_produce_q = qp_alloc_queue(produce_size, flags);
1223	if (!my_produce_q) {
1224		pr_warn("Error allocating pages for produce queue\n");
1225		result = VMCI_ERROR_NO_MEM;
1226		goto error;
1227	}
1228
1229	my_consume_q = qp_alloc_queue(consume_size, flags);
1230	if (!my_consume_q) {
1231		pr_warn("Error allocating pages for consume queue\n");
1232		result = VMCI_ERROR_NO_MEM;
1233		goto error;
1234	}
1235
1236	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1237						    produce_size, consume_size,
1238						    my_produce_q, my_consume_q);
1239	if (!queue_pair_entry) {
1240		pr_warn("Error allocating memory in %s\n", __func__);
1241		result = VMCI_ERROR_NO_MEM;
1242		goto error;
1243	}
1244
1245	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1246				  num_consume_pages,
1247				  &queue_pair_entry->ppn_set);
1248	if (result < VMCI_SUCCESS) {
1249		pr_warn("qp_alloc_ppn_set failed\n");
1250		goto error;
1251	}
1252
1253	/*
1254	 * It's only necessary to notify the host if this queue pair will be
1255	 * attached to from another context.
1256	 */
1257	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1258		/* Local create case. */
1259		u32 context_id = vmci_get_context_id();
1260
1261		/*
1262		 * Enforce similar checks on local queue pairs as we
1263		 * do for regular ones.  The handle's context must
1264		 * match the creator or attacher context id (here they
1265		 * are both the current context id) and the
1266		 * attach-only flag cannot exist during create.  We
1267		 * also ensure specified peer is this context or an
1268		 * invalid one.
1269		 */
1270		if (queue_pair_entry->qp.handle.context != context_id ||
1271		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1272		     queue_pair_entry->qp.peer != context_id)) {
1273			result = VMCI_ERROR_NO_ACCESS;
1274			goto error;
1275		}
1276
1277		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1278			result = VMCI_ERROR_NOT_FOUND;
1279			goto error;
1280		}
1281	} else {
1282		result = qp_alloc_hypercall(queue_pair_entry);
1283		if (result < VMCI_SUCCESS) {
1284			pr_warn("qp_alloc_hypercall result = %d\n", result);
1285			goto error;
1286		}
1287	}
1288
1289	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1290			    (struct vmci_queue *)my_consume_q);
1291
1292	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1293
1294 out:
1295	queue_pair_entry->qp.ref_count++;
1296	*handle = queue_pair_entry->qp.handle;
1297	*produce_q = (struct vmci_queue *)my_produce_q;
1298	*consume_q = (struct vmci_queue *)my_consume_q;
1299
1300	/*
1301	 * We should initialize the queue pair header pages on a local
1302	 * queue pair create.  For non-local queue pairs, the
1303	 * hypervisor initializes the header pages in the create step.
1304	 */
1305	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1306	    queue_pair_entry->qp.ref_count == 1) {
1307		vmci_q_header_init((*produce_q)->q_header, *handle);
1308		vmci_q_header_init((*consume_q)->q_header, *handle);
1309	}
1310
1311	mutex_unlock(&qp_guest_endpoints.mutex);
1312
1313	return VMCI_SUCCESS;
1314
1315 error:
1316	mutex_unlock(&qp_guest_endpoints.mutex);
1317	if (queue_pair_entry) {
1318		/* The queues will be freed inside the destroy routine. */
1319		qp_guest_endpoint_destroy(queue_pair_entry);
1320	} else {
1321		qp_free_queue(my_produce_q, produce_size);
1322		qp_free_queue(my_consume_q, consume_size);
1323	}
1324	return result;
1325
1326 error_keep_entry:
1327	/* This path should only be used when an existing entry was found. */
1328	mutex_unlock(&qp_guest_endpoints.mutex);
1329	return result;
1330}
1331
1332/*
1333 * The first endpoint issuing a queue pair allocation will create the state
1334 * of the queue pair in the queue pair broker.
1335 *
1336 * If the creator is a guest, it will associate a VMX virtual address range
1337 * with the queue pair as specified by the page_store. For compatibility with
1338 * older VMX'en, that would use a separate step to set the VMX virtual
1339 * address range, the virtual address range can be registered later using
1340 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1341 * used.
1342 *
1343 * If the creator is the host, a page_store of NULL should be used as well,
1344 * since the host is not able to supply a page store for the queue pair.
1345 *
1346 * For older VMX and host callers, the queue pair will be created in the
1347 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1348 * created in VMCOQPB_CREATED_MEM state.
1349 */
1350static int qp_broker_create(struct vmci_handle handle,
1351			    u32 peer,
1352			    u32 flags,
1353			    u32 priv_flags,
1354			    u64 produce_size,
1355			    u64 consume_size,
1356			    struct vmci_qp_page_store *page_store,
1357			    struct vmci_ctx *context,
1358			    vmci_event_release_cb wakeup_cb,
1359			    void *client_data, struct qp_broker_entry **ent)
1360{
1361	struct qp_broker_entry *entry = NULL;
1362	const u32 context_id = vmci_ctx_get_id(context);
1363	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1364	int result;
1365	u64 guest_produce_size;
1366	u64 guest_consume_size;
1367
1368	/* Do not create if the caller asked not to. */
1369	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1370		return VMCI_ERROR_NOT_FOUND;
1371
1372	/*
1373	 * Creator's context ID should match handle's context ID or the creator
1374	 * must allow the context in handle's context ID as the "peer".
1375	 */
1376	if (handle.context != context_id && handle.context != peer)
1377		return VMCI_ERROR_NO_ACCESS;
1378
1379	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1380		return VMCI_ERROR_DST_UNREACHABLE;
1381
1382	/*
1383	 * Creator's context ID for local queue pairs should match the
1384	 * peer, if a peer is specified.
1385	 */
1386	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1387		return VMCI_ERROR_NO_ACCESS;
1388
1389	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1390	if (!entry)
1391		return VMCI_ERROR_NO_MEM;
1392
1393	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1394		/*
1395		 * The queue pair broker entry stores values from the guest
1396		 * point of view, so a creating host side endpoint should swap
1397		 * produce and consume values -- unless it is a local queue
1398		 * pair, in which case no swapping is necessary, since the local
1399		 * attacher will swap queues.
1400		 */
1401
1402		guest_produce_size = consume_size;
1403		guest_consume_size = produce_size;
1404	} else {
1405		guest_produce_size = produce_size;
1406		guest_consume_size = consume_size;
1407	}
1408
1409	entry->qp.handle = handle;
1410	entry->qp.peer = peer;
1411	entry->qp.flags = flags;
1412	entry->qp.produce_size = guest_produce_size;
1413	entry->qp.consume_size = guest_consume_size;
1414	entry->qp.ref_count = 1;
1415	entry->create_id = context_id;
1416	entry->attach_id = VMCI_INVALID_ID;
1417	entry->state = VMCIQPB_NEW;
1418	entry->require_trusted_attach =
1419	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1420	entry->created_by_trusted =
1421	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1422	entry->vmci_page_files = false;
1423	entry->wakeup_cb = wakeup_cb;
1424	entry->client_data = client_data;
1425	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1426	if (entry->produce_q == NULL) {
1427		result = VMCI_ERROR_NO_MEM;
1428		goto error;
1429	}
1430	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1431	if (entry->consume_q == NULL) {
1432		result = VMCI_ERROR_NO_MEM;
1433		goto error;
1434	}
1435
1436	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1437
1438	INIT_LIST_HEAD(&entry->qp.list_item);
1439
1440	if (is_local) {
1441		u8 *tmp;
1442
1443		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1444					   PAGE_SIZE, GFP_KERNEL);
1445		if (entry->local_mem == NULL) {
1446			result = VMCI_ERROR_NO_MEM;
1447			goto error;
1448		}
1449		entry->state = VMCIQPB_CREATED_MEM;
1450		entry->produce_q->q_header = entry->local_mem;
1451		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1452		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1453		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1454	} else if (page_store) {
1455		/*
1456		 * The VMX already initialized the queue pair headers, so no
1457		 * need for the kernel side to do that.
1458		 */
1459		result = qp_host_register_user_memory(page_store,
1460						      entry->produce_q,
1461						      entry->consume_q);
1462		if (result < VMCI_SUCCESS)
1463			goto error;
1464
1465		entry->state = VMCIQPB_CREATED_MEM;
1466	} else {
1467		/*
1468		 * A create without a page_store may be either a host
1469		 * side create (in which case we are waiting for the
1470		 * guest side to supply the memory) or an old style
1471		 * queue pair create (in which case we will expect a
1472		 * set page store call as the next step).
1473		 */
1474		entry->state = VMCIQPB_CREATED_NO_MEM;
1475	}
1476
1477	qp_list_add_entry(&qp_broker_list, &entry->qp);
1478	if (ent != NULL)
1479		*ent = entry;
1480
1481	/* Add to resource obj */
1482	result = vmci_resource_add(&entry->resource,
1483				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1484				   handle);
1485	if (result != VMCI_SUCCESS) {
1486		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1487			handle.context, handle.resource, result);
1488		goto error;
1489	}
1490
1491	entry->qp.handle = vmci_resource_handle(&entry->resource);
1492	if (is_local) {
1493		vmci_q_header_init(entry->produce_q->q_header,
1494				   entry->qp.handle);
1495		vmci_q_header_init(entry->consume_q->q_header,
1496				   entry->qp.handle);
1497	}
1498
1499	vmci_ctx_qp_create(context, entry->qp.handle);
1500
1501	return VMCI_SUCCESS;
1502
1503 error:
1504	if (entry != NULL) {
1505		qp_host_free_queue(entry->produce_q, guest_produce_size);
1506		qp_host_free_queue(entry->consume_q, guest_consume_size);
1507		kfree(entry);
1508	}
1509
1510	return result;
1511}
1512
1513/*
1514 * Enqueues an event datagram to notify the peer VM attached to
1515 * the given queue pair handle about attach/detach event by the
1516 * given VM.  Returns Payload size of datagram enqueued on
1517 * success, error code otherwise.
1518 */
1519static int qp_notify_peer(bool attach,
1520			  struct vmci_handle handle,
1521			  u32 my_id,
1522			  u32 peer_id)
1523{
1524	int rv;
1525	struct vmci_event_qp ev;
1526
1527	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1528	    peer_id == VMCI_INVALID_ID)
1529		return VMCI_ERROR_INVALID_ARGS;
1530
1531	/*
1532	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1533	 * number of pending events from the hypervisor to a given VM
1534	 * otherwise a rogue VM could do an arbitrary number of attach
1535	 * and detach operations causing memory pressure in the host
1536	 * kernel.
1537	 */
1538
1539	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1540	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1541					  VMCI_CONTEXT_RESOURCE_ID);
1542	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1543	ev.msg.event_data.event = attach ?
1544	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1545	ev.payload.handle = handle;
1546	ev.payload.peer_id = my_id;
1547
1548	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1549				    &ev.msg.hdr, false);
1550	if (rv < VMCI_SUCCESS)
1551		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1552			attach ? "ATTACH" : "DETACH", peer_id);
1553
1554	return rv;
1555}
1556
1557/*
1558 * The second endpoint issuing a queue pair allocation will attach to
1559 * the queue pair registered with the queue pair broker.
1560 *
1561 * If the attacher is a guest, it will associate a VMX virtual address
1562 * range with the queue pair as specified by the page_store. At this
1563 * point, the already attach host endpoint may start using the queue
1564 * pair, and an attach event is sent to it. For compatibility with
1565 * older VMX'en, that used a separate step to set the VMX virtual
1566 * address range, the virtual address range can be registered later
1567 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1568 * NULL should be used, and the attach event will be generated once
1569 * the actual page store has been set.
1570 *
1571 * If the attacher is the host, a page_store of NULL should be used as
1572 * well, since the page store information is already set by the guest.
1573 *
1574 * For new VMX and host callers, the queue pair will be moved to the
1575 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1576 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1577 */
1578static int qp_broker_attach(struct qp_broker_entry *entry,
1579			    u32 peer,
1580			    u32 flags,
1581			    u32 priv_flags,
1582			    u64 produce_size,
1583			    u64 consume_size,
1584			    struct vmci_qp_page_store *page_store,
1585			    struct vmci_ctx *context,
1586			    vmci_event_release_cb wakeup_cb,
1587			    void *client_data,
1588			    struct qp_broker_entry **ent)
1589{
1590	const u32 context_id = vmci_ctx_get_id(context);
1591	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1592	int result;
1593
1594	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1595	    entry->state != VMCIQPB_CREATED_MEM)
1596		return VMCI_ERROR_UNAVAILABLE;
1597
1598	if (is_local) {
1599		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1600		    context_id != entry->create_id) {
1601			return VMCI_ERROR_INVALID_ARGS;
1602		}
1603	} else if (context_id == entry->create_id ||
1604		   context_id == entry->attach_id) {
1605		return VMCI_ERROR_ALREADY_EXISTS;
1606	}
1607
1608	if (VMCI_CONTEXT_IS_VM(context_id) &&
1609	    VMCI_CONTEXT_IS_VM(entry->create_id))
1610		return VMCI_ERROR_DST_UNREACHABLE;
1611
1612	/*
1613	 * If we are attaching from a restricted context then the queuepair
1614	 * must have been created by a trusted endpoint.
1615	 */
1616	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1617	    !entry->created_by_trusted)
1618		return VMCI_ERROR_NO_ACCESS;
1619
1620	/*
1621	 * If we are attaching to a queuepair that was created by a restricted
1622	 * context then we must be trusted.
1623	 */
1624	if (entry->require_trusted_attach &&
1625	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1626		return VMCI_ERROR_NO_ACCESS;
1627
1628	/*
1629	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1630	 * control check is not performed.
1631	 */
1632	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1633		return VMCI_ERROR_NO_ACCESS;
1634
1635	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1636		/*
1637		 * Do not attach if the caller doesn't support Host Queue Pairs
1638		 * and a host created this queue pair.
1639		 */
1640
1641		if (!vmci_ctx_supports_host_qp(context))
1642			return VMCI_ERROR_INVALID_RESOURCE;
1643
1644	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1645		struct vmci_ctx *create_context;
1646		bool supports_host_qp;
1647
1648		/*
1649		 * Do not attach a host to a user created queue pair if that
1650		 * user doesn't support host queue pair end points.
1651		 */
1652
1653		create_context = vmci_ctx_get(entry->create_id);
1654		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1655		vmci_ctx_put(create_context);
1656
1657		if (!supports_host_qp)
1658			return VMCI_ERROR_INVALID_RESOURCE;
1659	}
1660
1661	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1662		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1663
1664	if (context_id != VMCI_HOST_CONTEXT_ID) {
1665		/*
1666		 * The queue pair broker entry stores values from the guest
1667		 * point of view, so an attaching guest should match the values
1668		 * stored in the entry.
1669		 */
1670
1671		if (entry->qp.produce_size != produce_size ||
1672		    entry->qp.consume_size != consume_size) {
1673			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1674		}
1675	} else if (entry->qp.produce_size != consume_size ||
1676		   entry->qp.consume_size != produce_size) {
1677		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1678	}
1679
1680	if (context_id != VMCI_HOST_CONTEXT_ID) {
1681		/*
1682		 * If a guest attached to a queue pair, it will supply
1683		 * the backing memory.  If this is a pre NOVMVM vmx,
1684		 * the backing memory will be supplied by calling
1685		 * vmci_qp_broker_set_page_store() following the
1686		 * return of the vmci_qp_broker_alloc() call. If it is
1687		 * a vmx of version NOVMVM or later, the page store
1688		 * must be supplied as part of the
1689		 * vmci_qp_broker_alloc call.  Under all circumstances
1690		 * must the initially created queue pair not have any
1691		 * memory associated with it already.
1692		 */
1693
1694		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1695			return VMCI_ERROR_INVALID_ARGS;
1696
1697		if (page_store != NULL) {
1698			/*
1699			 * Patch up host state to point to guest
1700			 * supplied memory. The VMX already
1701			 * initialized the queue pair headers, so no
1702			 * need for the kernel side to do that.
1703			 */
1704
1705			result = qp_host_register_user_memory(page_store,
1706							      entry->produce_q,
1707							      entry->consume_q);
1708			if (result < VMCI_SUCCESS)
1709				return result;
1710
1711			entry->state = VMCIQPB_ATTACHED_MEM;
1712		} else {
1713			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1714		}
1715	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1716		/*
1717		 * The host side is attempting to attach to a queue
1718		 * pair that doesn't have any memory associated with
1719		 * it. This must be a pre NOVMVM vmx that hasn't set
1720		 * the page store information yet, or a quiesced VM.
1721		 */
1722
1723		return VMCI_ERROR_UNAVAILABLE;
1724	} else {
1725		/* The host side has successfully attached to a queue pair. */
1726		entry->state = VMCIQPB_ATTACHED_MEM;
1727	}
1728
1729	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1730		result =
1731		    qp_notify_peer(true, entry->qp.handle, context_id,
1732				   entry->create_id);
1733		if (result < VMCI_SUCCESS)
1734			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1735				entry->create_id, entry->qp.handle.context,
1736				entry->qp.handle.resource);
1737	}
1738
1739	entry->attach_id = context_id;
1740	entry->qp.ref_count++;
1741	if (wakeup_cb) {
1742		entry->wakeup_cb = wakeup_cb;
1743		entry->client_data = client_data;
1744	}
1745
1746	/*
1747	 * When attaching to local queue pairs, the context already has
1748	 * an entry tracking the queue pair, so don't add another one.
1749	 */
1750	if (!is_local)
1751		vmci_ctx_qp_create(context, entry->qp.handle);
1752
1753	if (ent != NULL)
1754		*ent = entry;
1755
1756	return VMCI_SUCCESS;
1757}
1758
1759/*
1760 * queue_pair_Alloc for use when setting up queue pair endpoints
1761 * on the host.
1762 */
1763static int qp_broker_alloc(struct vmci_handle handle,
1764			   u32 peer,
1765			   u32 flags,
1766			   u32 priv_flags,
1767			   u64 produce_size,
1768			   u64 consume_size,
1769			   struct vmci_qp_page_store *page_store,
1770			   struct vmci_ctx *context,
1771			   vmci_event_release_cb wakeup_cb,
1772			   void *client_data,
1773			   struct qp_broker_entry **ent,
1774			   bool *swap)
1775{
1776	const u32 context_id = vmci_ctx_get_id(context);
1777	bool create;
1778	struct qp_broker_entry *entry = NULL;
1779	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1780	int result;
1781
1782	if (vmci_handle_is_invalid(handle) ||
1783	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1784	    !(produce_size || consume_size) ||
1785	    !context || context_id == VMCI_INVALID_ID ||
1786	    handle.context == VMCI_INVALID_ID) {
1787		return VMCI_ERROR_INVALID_ARGS;
1788	}
1789
1790	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1791		return VMCI_ERROR_INVALID_ARGS;
1792
1793	/*
1794	 * In the initial argument check, we ensure that non-vmkernel hosts
1795	 * are not allowed to create local queue pairs.
1796	 */
1797
1798	mutex_lock(&qp_broker_list.mutex);
1799
1800	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1801		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1802			 context_id, handle.context, handle.resource);
1803		mutex_unlock(&qp_broker_list.mutex);
1804		return VMCI_ERROR_ALREADY_EXISTS;
1805	}
1806
1807	if (handle.resource != VMCI_INVALID_ID)
1808		entry = qp_broker_handle_to_entry(handle);
1809
1810	if (!entry) {
1811		create = true;
1812		result =
1813		    qp_broker_create(handle, peer, flags, priv_flags,
1814				     produce_size, consume_size, page_store,
1815				     context, wakeup_cb, client_data, ent);
1816	} else {
1817		create = false;
1818		result =
1819		    qp_broker_attach(entry, peer, flags, priv_flags,
1820				     produce_size, consume_size, page_store,
1821				     context, wakeup_cb, client_data, ent);
1822	}
1823
1824	mutex_unlock(&qp_broker_list.mutex);
1825
1826	if (swap)
1827		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1828		    !(create && is_local);
1829
1830	return result;
1831}
1832
1833/*
1834 * This function implements the kernel API for allocating a queue
1835 * pair.
1836 */
1837static int qp_alloc_host_work(struct vmci_handle *handle,
1838			      struct vmci_queue **produce_q,
1839			      u64 produce_size,
1840			      struct vmci_queue **consume_q,
1841			      u64 consume_size,
1842			      u32 peer,
1843			      u32 flags,
1844			      u32 priv_flags,
1845			      vmci_event_release_cb wakeup_cb,
1846			      void *client_data)
1847{
1848	struct vmci_handle new_handle;
1849	struct vmci_ctx *context;
1850	struct qp_broker_entry *entry;
1851	int result;
1852	bool swap;
1853
1854	if (vmci_handle_is_invalid(*handle)) {
1855		new_handle = vmci_make_handle(
1856			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1857	} else
1858		new_handle = *handle;
1859
1860	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1861	entry = NULL;
1862	result =
1863	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1864			    produce_size, consume_size, NULL, context,
1865			    wakeup_cb, client_data, &entry, &swap);
1866	if (result == VMCI_SUCCESS) {
1867		if (swap) {
1868			/*
1869			 * If this is a local queue pair, the attacher
1870			 * will swap around produce and consume
1871			 * queues.
1872			 */
1873
1874			*produce_q = entry->consume_q;
1875			*consume_q = entry->produce_q;
1876		} else {
1877			*produce_q = entry->produce_q;
1878			*consume_q = entry->consume_q;
1879		}
1880
1881		*handle = vmci_resource_handle(&entry->resource);
1882	} else {
1883		*handle = VMCI_INVALID_HANDLE;
1884		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1885			 result);
1886	}
1887	vmci_ctx_put(context);
1888	return result;
1889}
1890
1891/*
1892 * Allocates a VMCI queue_pair. Only checks validity of input
1893 * arguments. The real work is done in the host or guest
1894 * specific function.
1895 */
1896int vmci_qp_alloc(struct vmci_handle *handle,
1897		  struct vmci_queue **produce_q,
1898		  u64 produce_size,
1899		  struct vmci_queue **consume_q,
1900		  u64 consume_size,
1901		  u32 peer,
1902		  u32 flags,
1903		  u32 priv_flags,
1904		  bool guest_endpoint,
1905		  vmci_event_release_cb wakeup_cb,
1906		  void *client_data)
1907{
1908	if (!handle || !produce_q || !consume_q ||
1909	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1910		return VMCI_ERROR_INVALID_ARGS;
1911
1912	if (guest_endpoint) {
1913		return qp_alloc_guest_work(handle, produce_q,
1914					   produce_size, consume_q,
1915					   consume_size, peer,
1916					   flags, priv_flags);
1917	} else {
1918		return qp_alloc_host_work(handle, produce_q,
1919					  produce_size, consume_q,
1920					  consume_size, peer, flags,
1921					  priv_flags, wakeup_cb, client_data);
1922	}
1923}
1924
1925/*
1926 * This function implements the host kernel API for detaching from
1927 * a queue pair.
1928 */
1929static int qp_detatch_host_work(struct vmci_handle handle)
1930{
1931	int result;
1932	struct vmci_ctx *context;
1933
1934	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1935
1936	result = vmci_qp_broker_detach(handle, context);
1937
1938	vmci_ctx_put(context);
1939	return result;
1940}
1941
1942/*
1943 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1944 * Real work is done in the host or guest specific function.
1945 */
1946static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1947{
1948	if (vmci_handle_is_invalid(handle))
1949		return VMCI_ERROR_INVALID_ARGS;
1950
1951	if (guest_endpoint)
1952		return qp_detatch_guest_work(handle);
1953	else
1954		return qp_detatch_host_work(handle);
1955}
1956
1957/*
1958 * Returns the entry from the head of the list. Assumes that the list is
1959 * locked.
1960 */
1961static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1962{
1963	if (!list_empty(&qp_list->head)) {
1964		struct qp_entry *entry =
1965		    list_first_entry(&qp_list->head, struct qp_entry,
1966				     list_item);
1967		return entry;
1968	}
1969
1970	return NULL;
1971}
1972
1973void vmci_qp_broker_exit(void)
1974{
1975	struct qp_entry *entry;
1976	struct qp_broker_entry *be;
1977
1978	mutex_lock(&qp_broker_list.mutex);
1979
1980	while ((entry = qp_list_get_head(&qp_broker_list))) {
1981		be = (struct qp_broker_entry *)entry;
1982
1983		qp_list_remove_entry(&qp_broker_list, entry);
1984		kfree(be);
1985	}
1986
1987	mutex_unlock(&qp_broker_list.mutex);
1988}
1989
1990/*
1991 * Requests that a queue pair be allocated with the VMCI queue
1992 * pair broker. Allocates a queue pair entry if one does not
1993 * exist. Attaches to one if it exists, and retrieves the page
1994 * files backing that queue_pair.  Assumes that the queue pair
1995 * broker lock is held.
1996 */
1997int vmci_qp_broker_alloc(struct vmci_handle handle,
1998			 u32 peer,
1999			 u32 flags,
2000			 u32 priv_flags,
2001			 u64 produce_size,
2002			 u64 consume_size,
2003			 struct vmci_qp_page_store *page_store,
2004			 struct vmci_ctx *context)
2005{
2006	return qp_broker_alloc(handle, peer, flags, priv_flags,
2007			       produce_size, consume_size,
2008			       page_store, context, NULL, NULL, NULL, NULL);
2009}
2010
2011/*
2012 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2013 * step to add the UVAs of the VMX mapping of the queue pair. This function
2014 * provides backwards compatibility with such VMX'en, and takes care of
2015 * registering the page store for a queue pair previously allocated by the
2016 * VMX during create or attach. This function will move the queue pair state
2017 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2018 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2019 * attached state with memory, the queue pair is ready to be used by the
2020 * host peer, and an attached event will be generated.
2021 *
2022 * Assumes that the queue pair broker lock is held.
2023 *
2024 * This function is only used by the hosted platform, since there is no
2025 * issue with backwards compatibility for vmkernel.
2026 */
2027int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2028				  u64 produce_uva,
2029				  u64 consume_uva,
2030				  struct vmci_ctx *context)
2031{
2032	struct qp_broker_entry *entry;
2033	int result;
2034	const u32 context_id = vmci_ctx_get_id(context);
2035
2036	if (vmci_handle_is_invalid(handle) || !context ||
2037	    context_id == VMCI_INVALID_ID)
2038		return VMCI_ERROR_INVALID_ARGS;
2039
2040	/*
2041	 * We only support guest to host queue pairs, so the VMX must
2042	 * supply UVAs for the mapped page files.
2043	 */
2044
2045	if (produce_uva == 0 || consume_uva == 0)
2046		return VMCI_ERROR_INVALID_ARGS;
2047
2048	mutex_lock(&qp_broker_list.mutex);
2049
2050	if (!vmci_ctx_qp_exists(context, handle)) {
2051		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2052			context_id, handle.context, handle.resource);
2053		result = VMCI_ERROR_NOT_FOUND;
2054		goto out;
2055	}
2056
2057	entry = qp_broker_handle_to_entry(handle);
2058	if (!entry) {
2059		result = VMCI_ERROR_NOT_FOUND;
2060		goto out;
2061	}
2062
2063	/*
2064	 * If I'm the owner then I can set the page store.
2065	 *
2066	 * Or, if a host created the queue_pair and I'm the attached peer
2067	 * then I can set the page store.
2068	 */
2069	if (entry->create_id != context_id &&
2070	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2071	     entry->attach_id != context_id)) {
2072		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2073		goto out;
2074	}
2075
2076	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2077	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2078		result = VMCI_ERROR_UNAVAILABLE;
2079		goto out;
2080	}
2081
2082	result = qp_host_get_user_memory(produce_uva, consume_uva,
2083					 entry->produce_q, entry->consume_q);
2084	if (result < VMCI_SUCCESS)
2085		goto out;
2086
2087	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2088	if (result < VMCI_SUCCESS) {
2089		qp_host_unregister_user_memory(entry->produce_q,
2090					       entry->consume_q);
2091		goto out;
2092	}
2093
2094	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2095		entry->state = VMCIQPB_CREATED_MEM;
2096	else
2097		entry->state = VMCIQPB_ATTACHED_MEM;
2098
2099	entry->vmci_page_files = true;
2100
2101	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2102		result =
2103		    qp_notify_peer(true, handle, context_id, entry->create_id);
2104		if (result < VMCI_SUCCESS) {
2105			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2106				entry->create_id, entry->qp.handle.context,
2107				entry->qp.handle.resource);
2108		}
2109	}
2110
2111	result = VMCI_SUCCESS;
2112 out:
2113	mutex_unlock(&qp_broker_list.mutex);
2114	return result;
2115}
2116
2117/*
2118 * Resets saved queue headers for the given QP broker
2119 * entry. Should be used when guest memory becomes available
2120 * again, or the guest detaches.
2121 */
2122static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2123{
2124	entry->produce_q->saved_header = NULL;
2125	entry->consume_q->saved_header = NULL;
2126}
2127
2128/*
2129 * The main entry point for detaching from a queue pair registered with the
2130 * queue pair broker. If more than one endpoint is attached to the queue
2131 * pair, the first endpoint will mainly decrement a reference count and
2132 * generate a notification to its peer. The last endpoint will clean up
2133 * the queue pair state registered with the broker.
2134 *
2135 * When a guest endpoint detaches, it will unmap and unregister the guest
2136 * memory backing the queue pair. If the host is still attached, it will
2137 * no longer be able to access the queue pair content.
2138 *
2139 * If the queue pair is already in a state where there is no memory
2140 * registered for the queue pair (any *_NO_MEM state), it will transition to
2141 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2142 * endpoint is the first of two endpoints to detach. If the host endpoint is
2143 * the first out of two to detach, the queue pair will move to the
2144 * VMCIQPB_SHUTDOWN_MEM state.
2145 */
2146int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2147{
2148	struct qp_broker_entry *entry;
2149	const u32 context_id = vmci_ctx_get_id(context);
2150	u32 peer_id;
2151	bool is_local = false;
2152	int result;
2153
2154	if (vmci_handle_is_invalid(handle) || !context ||
2155	    context_id == VMCI_INVALID_ID) {
2156		return VMCI_ERROR_INVALID_ARGS;
2157	}
2158
2159	mutex_lock(&qp_broker_list.mutex);
2160
2161	if (!vmci_ctx_qp_exists(context, handle)) {
2162		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2163			 context_id, handle.context, handle.resource);
2164		result = VMCI_ERROR_NOT_FOUND;
2165		goto out;
2166	}
2167
2168	entry = qp_broker_handle_to_entry(handle);
2169	if (!entry) {
2170		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2171			 context_id, handle.context, handle.resource);
2172		result = VMCI_ERROR_NOT_FOUND;
2173		goto out;
2174	}
2175
2176	if (context_id != entry->create_id && context_id != entry->attach_id) {
2177		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2178		goto out;
2179	}
2180
2181	if (context_id == entry->create_id) {
2182		peer_id = entry->attach_id;
2183		entry->create_id = VMCI_INVALID_ID;
2184	} else {
2185		peer_id = entry->create_id;
2186		entry->attach_id = VMCI_INVALID_ID;
2187	}
2188	entry->qp.ref_count--;
2189
2190	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2191
2192	if (context_id != VMCI_HOST_CONTEXT_ID) {
2193		bool headers_mapped;
2194
2195		/*
2196		 * Pre NOVMVM vmx'en may detach from a queue pair
2197		 * before setting the page store, and in that case
2198		 * there is no user memory to detach from. Also, more
2199		 * recent VMX'en may detach from a queue pair in the
2200		 * quiesced state.
2201		 */
2202
2203		qp_acquire_queue_mutex(entry->produce_q);
2204		headers_mapped = entry->produce_q->q_header ||
2205		    entry->consume_q->q_header;
2206		if (QPBROKERSTATE_HAS_MEM(entry)) {
2207			result =
2208			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2209						 entry->produce_q,
2210						 entry->consume_q);
2211			if (result < VMCI_SUCCESS)
2212				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2213					handle.context, handle.resource,
2214					result);
2215
2216			if (entry->vmci_page_files)
2217				qp_host_unregister_user_memory(entry->produce_q,
2218							       entry->
2219							       consume_q);
2220			else
2221				qp_host_unregister_user_memory(entry->produce_q,
2222							       entry->
2223							       consume_q);
2224
2225		}
2226
2227		if (!headers_mapped)
2228			qp_reset_saved_headers(entry);
2229
2230		qp_release_queue_mutex(entry->produce_q);
2231
2232		if (!headers_mapped && entry->wakeup_cb)
2233			entry->wakeup_cb(entry->client_data);
2234
2235	} else {
2236		if (entry->wakeup_cb) {
2237			entry->wakeup_cb = NULL;
2238			entry->client_data = NULL;
2239		}
2240	}
2241
2242	if (entry->qp.ref_count == 0) {
2243		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2244
2245		if (is_local)
2246			kfree(entry->local_mem);
2247
2248		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2249		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2250		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2251		/* Unlink from resource hash table and free callback */
2252		vmci_resource_remove(&entry->resource);
2253
2254		kfree(entry);
2255
2256		vmci_ctx_qp_destroy(context, handle);
2257	} else {
2258		qp_notify_peer(false, handle, context_id, peer_id);
2259		if (context_id == VMCI_HOST_CONTEXT_ID &&
2260		    QPBROKERSTATE_HAS_MEM(entry)) {
2261			entry->state = VMCIQPB_SHUTDOWN_MEM;
2262		} else {
2263			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2264		}
2265
2266		if (!is_local)
2267			vmci_ctx_qp_destroy(context, handle);
2268
2269	}
2270	result = VMCI_SUCCESS;
2271 out:
2272	mutex_unlock(&qp_broker_list.mutex);
2273	return result;
2274}
2275
2276/*
2277 * Establishes the necessary mappings for a queue pair given a
2278 * reference to the queue pair guest memory. This is usually
2279 * called when a guest is unquiesced and the VMX is allowed to
2280 * map guest memory once again.
2281 */
2282int vmci_qp_broker_map(struct vmci_handle handle,
2283		       struct vmci_ctx *context,
2284		       u64 guest_mem)
2285{
2286	struct qp_broker_entry *entry;
2287	const u32 context_id = vmci_ctx_get_id(context);
2288	bool is_local = false;
2289	int result;
2290
2291	if (vmci_handle_is_invalid(handle) || !context ||
2292	    context_id == VMCI_INVALID_ID)
2293		return VMCI_ERROR_INVALID_ARGS;
2294
2295	mutex_lock(&qp_broker_list.mutex);
2296
2297	if (!vmci_ctx_qp_exists(context, handle)) {
2298		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2299			 context_id, handle.context, handle.resource);
2300		result = VMCI_ERROR_NOT_FOUND;
2301		goto out;
2302	}
2303
2304	entry = qp_broker_handle_to_entry(handle);
2305	if (!entry) {
2306		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2307			 context_id, handle.context, handle.resource);
2308		result = VMCI_ERROR_NOT_FOUND;
2309		goto out;
2310	}
2311
2312	if (context_id != entry->create_id && context_id != entry->attach_id) {
2313		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2314		goto out;
2315	}
2316
2317	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2318	result = VMCI_SUCCESS;
2319
2320	if (context_id != VMCI_HOST_CONTEXT_ID) {
2321		struct vmci_qp_page_store page_store;
2322
2323		page_store.pages = guest_mem;
2324		page_store.len = QPE_NUM_PAGES(entry->qp);
2325
2326		qp_acquire_queue_mutex(entry->produce_q);
2327		qp_reset_saved_headers(entry);
2328		result =
2329		    qp_host_register_user_memory(&page_store,
2330						 entry->produce_q,
2331						 entry->consume_q);
2332		qp_release_queue_mutex(entry->produce_q);
2333		if (result == VMCI_SUCCESS) {
2334			/* Move state from *_NO_MEM to *_MEM */
2335
2336			entry->state++;
2337
2338			if (entry->wakeup_cb)
2339				entry->wakeup_cb(entry->client_data);
2340		}
2341	}
2342
2343 out:
2344	mutex_unlock(&qp_broker_list.mutex);
2345	return result;
2346}
2347
2348/*
2349 * Saves a snapshot of the queue headers for the given QP broker
2350 * entry. Should be used when guest memory is unmapped.
2351 * Results:
2352 * VMCI_SUCCESS on success, appropriate error code if guest memory
2353 * can't be accessed..
2354 */
2355static int qp_save_headers(struct qp_broker_entry *entry)
2356{
2357	int result;
2358
2359	if (entry->produce_q->saved_header != NULL &&
2360	    entry->consume_q->saved_header != NULL) {
2361		/*
2362		 *  If the headers have already been saved, we don't need to do
2363		 *  it again, and we don't want to map in the headers
2364		 *  unnecessarily.
2365		 */
2366
2367		return VMCI_SUCCESS;
2368	}
2369
2370	if (NULL == entry->produce_q->q_header ||
2371	    NULL == entry->consume_q->q_header) {
2372		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2373		if (result < VMCI_SUCCESS)
2374			return result;
2375	}
2376
2377	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2378	       sizeof(entry->saved_produce_q));
2379	entry->produce_q->saved_header = &entry->saved_produce_q;
2380	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2381	       sizeof(entry->saved_consume_q));
2382	entry->consume_q->saved_header = &entry->saved_consume_q;
2383
2384	return VMCI_SUCCESS;
2385}
2386
2387/*
2388 * Removes all references to the guest memory of a given queue pair, and
2389 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2390 * called when a VM is being quiesced where access to guest memory should
2391 * avoided.
2392 */
2393int vmci_qp_broker_unmap(struct vmci_handle handle,
2394			 struct vmci_ctx *context,
2395			 u32 gid)
2396{
2397	struct qp_broker_entry *entry;
2398	const u32 context_id = vmci_ctx_get_id(context);
2399	bool is_local = false;
2400	int result;
2401
2402	if (vmci_handle_is_invalid(handle) || !context ||
2403	    context_id == VMCI_INVALID_ID)
2404		return VMCI_ERROR_INVALID_ARGS;
2405
2406	mutex_lock(&qp_broker_list.mutex);
2407
2408	if (!vmci_ctx_qp_exists(context, handle)) {
2409		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2410			 context_id, handle.context, handle.resource);
2411		result = VMCI_ERROR_NOT_FOUND;
2412		goto out;
2413	}
2414
2415	entry = qp_broker_handle_to_entry(handle);
2416	if (!entry) {
2417		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2418			 context_id, handle.context, handle.resource);
2419		result = VMCI_ERROR_NOT_FOUND;
2420		goto out;
2421	}
2422
2423	if (context_id != entry->create_id && context_id != entry->attach_id) {
2424		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2425		goto out;
2426	}
2427
2428	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2429
2430	if (context_id != VMCI_HOST_CONTEXT_ID) {
2431		qp_acquire_queue_mutex(entry->produce_q);
2432		result = qp_save_headers(entry);
2433		if (result < VMCI_SUCCESS)
2434			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2435				handle.context, handle.resource, result);
2436
2437		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2438
2439		/*
2440		 * On hosted, when we unmap queue pairs, the VMX will also
2441		 * unmap the guest memory, so we invalidate the previously
2442		 * registered memory. If the queue pair is mapped again at a
2443		 * later point in time, we will need to reregister the user
2444		 * memory with a possibly new user VA.
2445		 */
2446		qp_host_unregister_user_memory(entry->produce_q,
2447					       entry->consume_q);
2448
2449		/*
2450		 * Move state from *_MEM to *_NO_MEM.
2451		 */
2452		entry->state--;
2453
2454		qp_release_queue_mutex(entry->produce_q);
2455	}
2456
2457	result = VMCI_SUCCESS;
2458
2459 out:
2460	mutex_unlock(&qp_broker_list.mutex);
2461	return result;
2462}
2463
2464/*
2465 * Destroys all guest queue pair endpoints. If active guest queue
2466 * pairs still exist, hypercalls to attempt detach from these
2467 * queue pairs will be made. Any failure to detach is silently
2468 * ignored.
2469 */
2470void vmci_qp_guest_endpoints_exit(void)
2471{
2472	struct qp_entry *entry;
2473	struct qp_guest_endpoint *ep;
2474
2475	mutex_lock(&qp_guest_endpoints.mutex);
2476
2477	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2478		ep = (struct qp_guest_endpoint *)entry;
2479
2480		/* Don't make a hypercall for local queue_pairs. */
2481		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2482			qp_detatch_hypercall(entry->handle);
2483
2484		/* We cannot fail the exit, so let's reset ref_count. */
2485		entry->ref_count = 0;
2486		qp_list_remove_entry(&qp_guest_endpoints, entry);
2487
2488		qp_guest_endpoint_destroy(ep);
2489	}
2490
2491	mutex_unlock(&qp_guest_endpoints.mutex);
2492}
2493
2494/*
2495 * Helper routine that will lock the queue pair before subsequent
2496 * operations.
2497 * Note: Non-blocking on the host side is currently only implemented in ESX.
2498 * Since non-blocking isn't yet implemented on the host personality we
2499 * have no reason to acquire a spin lock.  So to avoid the use of an
2500 * unnecessary lock only acquire the mutex if we can block.
2501 */
2502static void qp_lock(const struct vmci_qp *qpair)
2503{
2504	qp_acquire_queue_mutex(qpair->produce_q);
2505}
2506
2507/*
2508 * Helper routine that unlocks the queue pair after calling
2509 * qp_lock.
2510 */
2511static void qp_unlock(const struct vmci_qp *qpair)
2512{
2513	qp_release_queue_mutex(qpair->produce_q);
2514}
2515
2516/*
2517 * The queue headers may not be mapped at all times. If a queue is
2518 * currently not mapped, it will be attempted to do so.
2519 */
2520static int qp_map_queue_headers(struct vmci_queue *produce_q,
2521				struct vmci_queue *consume_q)
2522{
2523	int result;
2524
2525	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2526		result = qp_host_map_queues(produce_q, consume_q);
2527		if (result < VMCI_SUCCESS)
2528			return (produce_q->saved_header &&
2529				consume_q->saved_header) ?
2530			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2531			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2532	}
2533
2534	return VMCI_SUCCESS;
2535}
2536
2537/*
2538 * Helper routine that will retrieve the produce and consume
2539 * headers of a given queue pair. If the guest memory of the
2540 * queue pair is currently not available, the saved queue headers
2541 * will be returned, if these are available.
2542 */
2543static int qp_get_queue_headers(const struct vmci_qp *qpair,
2544				struct vmci_queue_header **produce_q_header,
2545				struct vmci_queue_header **consume_q_header)
2546{
2547	int result;
2548
2549	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2550	if (result == VMCI_SUCCESS) {
2551		*produce_q_header = qpair->produce_q->q_header;
2552		*consume_q_header = qpair->consume_q->q_header;
2553	} else if (qpair->produce_q->saved_header &&
2554		   qpair->consume_q->saved_header) {
2555		*produce_q_header = qpair->produce_q->saved_header;
2556		*consume_q_header = qpair->consume_q->saved_header;
2557		result = VMCI_SUCCESS;
2558	}
2559
2560	return result;
2561}
2562
2563/*
2564 * Callback from VMCI queue pair broker indicating that a queue
2565 * pair that was previously not ready, now either is ready or
2566 * gone forever.
2567 */
2568static int qp_wakeup_cb(void *client_data)
2569{
2570	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2571
2572	qp_lock(qpair);
2573	while (qpair->blocked > 0) {
2574		qpair->blocked--;
2575		qpair->generation++;
2576		wake_up(&qpair->event);
2577	}
2578	qp_unlock(qpair);
2579
2580	return VMCI_SUCCESS;
2581}
2582
2583/*
2584 * Makes the calling thread wait for the queue pair to become
2585 * ready for host side access.  Returns true when thread is
2586 * woken up after queue pair state change, false otherwise.
2587 */
2588static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2589{
2590	unsigned int generation;
2591
2592	qpair->blocked++;
2593	generation = qpair->generation;
2594	qp_unlock(qpair);
2595	wait_event(qpair->event, generation != qpair->generation);
2596	qp_lock(qpair);
2597
2598	return true;
2599}
2600
2601/*
2602 * Enqueues a given buffer to the produce queue using the provided
2603 * function. As many bytes as possible (space available in the queue)
2604 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2605 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2606 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2607 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2608 * an error occured when accessing the buffer,
2609 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2610 * available.  Otherwise, the number of bytes written to the queue is
2611 * returned.  Updates the tail pointer of the produce queue.
2612 */
2613static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2614				 struct vmci_queue *consume_q,
2615				 const u64 produce_q_size,
2616				 const void *buf,
2617				 size_t buf_size,
2618				 vmci_memcpy_to_queue_func memcpy_to_queue)
2619{
2620	s64 free_space;
2621	u64 tail;
2622	size_t written;
2623	ssize_t result;
2624
2625	result = qp_map_queue_headers(produce_q, consume_q);
2626	if (unlikely(result != VMCI_SUCCESS))
2627		return result;
2628
2629	free_space = vmci_q_header_free_space(produce_q->q_header,
2630					      consume_q->q_header,
2631					      produce_q_size);
2632	if (free_space == 0)
2633		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2634
2635	if (free_space < VMCI_SUCCESS)
2636		return (ssize_t) free_space;
2637
2638	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2639	tail = vmci_q_header_producer_tail(produce_q->q_header);
2640	if (likely(tail + written < produce_q_size)) {
2641		result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2642	} else {
2643		/* Tail pointer wraps around. */
2644
2645		const size_t tmp = (size_t) (produce_q_size - tail);
2646
2647		result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2648		if (result >= VMCI_SUCCESS)
2649			result = memcpy_to_queue(produce_q, 0, buf, tmp,
2650						 written - tmp);
2651	}
2652
2653	if (result < VMCI_SUCCESS)
2654		return result;
2655
2656	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2657					produce_q_size);
2658	return written;
2659}
2660
2661/*
2662 * Dequeues data (if available) from the given consume queue. Writes data
2663 * to the user provided buffer using the provided function.
2664 * Assumes the queue->mutex has been acquired.
2665 * Results:
2666 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2667 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2668 * (as defined by the queue size).
2669 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2670 * Otherwise the number of bytes dequeued is returned.
2671 * Side effects:
2672 * Updates the head pointer of the consume queue.
2673 */
2674static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2675				 struct vmci_queue *consume_q,
2676				 const u64 consume_q_size,
2677				 void *buf,
2678				 size_t buf_size,
2679				 vmci_memcpy_from_queue_func memcpy_from_queue,
2680				 bool update_consumer)
2681{
2682	s64 buf_ready;
2683	u64 head;
2684	size_t read;
2685	ssize_t result;
2686
2687	result = qp_map_queue_headers(produce_q, consume_q);
2688	if (unlikely(result != VMCI_SUCCESS))
2689		return result;
2690
2691	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2692					    produce_q->q_header,
2693					    consume_q_size);
2694	if (buf_ready == 0)
2695		return VMCI_ERROR_QUEUEPAIR_NODATA;
2696
2697	if (buf_ready < VMCI_SUCCESS)
2698		return (ssize_t) buf_ready;
2699
2700	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2701	head = vmci_q_header_consumer_head(produce_q->q_header);
2702	if (likely(head + read < consume_q_size)) {
2703		result = memcpy_from_queue(buf, 0, consume_q, head, read);
2704	} else {
2705		/* Head pointer wraps around. */
2706
2707		const size_t tmp = (size_t) (consume_q_size - head);
2708
2709		result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2710		if (result >= VMCI_SUCCESS)
2711			result = memcpy_from_queue(buf, tmp, consume_q, 0,
2712						   read - tmp);
2713
2714	}
2715
2716	if (result < VMCI_SUCCESS)
2717		return result;
2718
2719	if (update_consumer)
2720		vmci_q_header_add_consumer_head(produce_q->q_header,
2721						read, consume_q_size);
2722
2723	return read;
2724}
2725
2726/*
2727 * vmci_qpair_alloc() - Allocates a queue pair.
2728 * @qpair:      Pointer for the new vmci_qp struct.
2729 * @handle:     Handle to track the resource.
2730 * @produce_qsize:      Desired size of the producer queue.
2731 * @consume_qsize:      Desired size of the consumer queue.
2732 * @peer:       ContextID of the peer.
2733 * @flags:      VMCI flags.
2734 * @priv_flags: VMCI priviledge flags.
2735 *
2736 * This is the client interface for allocating the memory for a
2737 * vmci_qp structure and then attaching to the underlying
2738 * queue.  If an error occurs allocating the memory for the
2739 * vmci_qp structure no attempt is made to attach.  If an
2740 * error occurs attaching, then the structure is freed.
2741 */
2742int vmci_qpair_alloc(struct vmci_qp **qpair,
2743		     struct vmci_handle *handle,
2744		     u64 produce_qsize,
2745		     u64 consume_qsize,
2746		     u32 peer,
2747		     u32 flags,
2748		     u32 priv_flags)
2749{
2750	struct vmci_qp *my_qpair;
2751	int retval;
2752	struct vmci_handle src = VMCI_INVALID_HANDLE;
2753	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2754	enum vmci_route route;
2755	vmci_event_release_cb wakeup_cb;
2756	void *client_data;
2757
2758	/*
2759	 * Restrict the size of a queuepair.  The device already
2760	 * enforces a limit on the total amount of memory that can be
2761	 * allocated to queuepairs for a guest.  However, we try to
2762	 * allocate this memory before we make the queuepair
2763	 * allocation hypercall.  On Linux, we allocate each page
2764	 * separately, which means rather than fail, the guest will
2765	 * thrash while it tries to allocate, and will become
2766	 * increasingly unresponsive to the point where it appears to
2767	 * be hung.  So we place a limit on the size of an individual
2768	 * queuepair here, and leave the device to enforce the
2769	 * restriction on total queuepair memory.  (Note that this
2770	 * doesn't prevent all cases; a user with only this much
2771	 * physical memory could still get into trouble.)  The error
2772	 * used by the device is NO_RESOURCES, so use that here too.
2773	 */
2774
2775	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2776	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2777		return VMCI_ERROR_NO_RESOURCES;
2778
2779	retval = vmci_route(&src, &dst, false, &route);
2780	if (retval < VMCI_SUCCESS)
2781		route = vmci_guest_code_active() ?
2782		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2783
2784	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2785		pr_devel("NONBLOCK OR PINNED set");
2786		return VMCI_ERROR_INVALID_ARGS;
2787	}
2788
2789	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2790	if (!my_qpair)
2791		return VMCI_ERROR_NO_MEM;
2792
2793	my_qpair->produce_q_size = produce_qsize;
2794	my_qpair->consume_q_size = consume_qsize;
2795	my_qpair->peer = peer;
2796	my_qpair->flags = flags;
2797	my_qpair->priv_flags = priv_flags;
2798
2799	wakeup_cb = NULL;
2800	client_data = NULL;
2801
2802	if (VMCI_ROUTE_AS_HOST == route) {
2803		my_qpair->guest_endpoint = false;
2804		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2805			my_qpair->blocked = 0;
2806			my_qpair->generation = 0;
2807			init_waitqueue_head(&my_qpair->event);
2808			wakeup_cb = qp_wakeup_cb;
2809			client_data = (void *)my_qpair;
2810		}
2811	} else {
2812		my_qpair->guest_endpoint = true;
2813	}
2814
2815	retval = vmci_qp_alloc(handle,
2816			       &my_qpair->produce_q,
2817			       my_qpair->produce_q_size,
2818			       &my_qpair->consume_q,
2819			       my_qpair->consume_q_size,
2820			       my_qpair->peer,
2821			       my_qpair->flags,
2822			       my_qpair->priv_flags,
2823			       my_qpair->guest_endpoint,
2824			       wakeup_cb, client_data);
2825
2826	if (retval < VMCI_SUCCESS) {
2827		kfree(my_qpair);
2828		return retval;
2829	}
2830
2831	*qpair = my_qpair;
2832	my_qpair->handle = *handle;
2833
2834	return retval;
2835}
2836EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2837
2838/*
2839 * vmci_qpair_detach() - Detatches the client from a queue pair.
2840 * @qpair:      Reference of a pointer to the qpair struct.
2841 *
2842 * This is the client interface for detaching from a VMCIQPair.
2843 * Note that this routine will free the memory allocated for the
2844 * vmci_qp structure too.
2845 */
2846int vmci_qpair_detach(struct vmci_qp **qpair)
2847{
2848	int result;
2849	struct vmci_qp *old_qpair;
2850
2851	if (!qpair || !(*qpair))
2852		return VMCI_ERROR_INVALID_ARGS;
2853
2854	old_qpair = *qpair;
2855	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2856
2857	/*
2858	 * The guest can fail to detach for a number of reasons, and
2859	 * if it does so, it will cleanup the entry (if there is one).
2860	 * The host can fail too, but it won't cleanup the entry
2861	 * immediately, it will do that later when the context is
2862	 * freed.  Either way, we need to release the qpair struct
2863	 * here; there isn't much the caller can do, and we don't want
2864	 * to leak.
2865	 */
2866
2867	memset(old_qpair, 0, sizeof(*old_qpair));
2868	old_qpair->handle = VMCI_INVALID_HANDLE;
2869	old_qpair->peer = VMCI_INVALID_ID;
2870	kfree(old_qpair);
2871	*qpair = NULL;
2872
2873	return result;
2874}
2875EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2876
2877/*
2878 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2879 * @qpair:      Pointer to the queue pair struct.
2880 * @producer_tail:      Reference used for storing producer tail index.
2881 * @consumer_head:      Reference used for storing the consumer head index.
2882 *
2883 * This is the client interface for getting the current indexes of the
2884 * QPair from the point of the view of the caller as the producer.
2885 */
2886int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2887				   u64 *producer_tail,
2888				   u64 *consumer_head)
2889{
2890	struct vmci_queue_header *produce_q_header;
2891	struct vmci_queue_header *consume_q_header;
2892	int result;
2893
2894	if (!qpair)
2895		return VMCI_ERROR_INVALID_ARGS;
2896
2897	qp_lock(qpair);
2898	result =
2899	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2900	if (result == VMCI_SUCCESS)
2901		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2902					   producer_tail, consumer_head);
2903	qp_unlock(qpair);
2904
2905	if (result == VMCI_SUCCESS &&
2906	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2907	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2908		return VMCI_ERROR_INVALID_SIZE;
2909
2910	return result;
2911}
2912EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2913
2914/*
2915 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2916 * @qpair:      Pointer to the queue pair struct.
2917 * @consumer_tail:      Reference used for storing consumer tail index.
2918 * @producer_head:      Reference used for storing the producer head index.
2919 *
2920 * This is the client interface for getting the current indexes of the
2921 * QPair from the point of the view of the caller as the consumer.
2922 */
2923int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2924				   u64 *consumer_tail,
2925				   u64 *producer_head)
2926{
2927	struct vmci_queue_header *produce_q_header;
2928	struct vmci_queue_header *consume_q_header;
2929	int result;
2930
2931	if (!qpair)
2932		return VMCI_ERROR_INVALID_ARGS;
2933
2934	qp_lock(qpair);
2935	result =
2936	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2937	if (result == VMCI_SUCCESS)
2938		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2939					   consumer_tail, producer_head);
2940	qp_unlock(qpair);
2941
2942	if (result == VMCI_SUCCESS &&
2943	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2944	     (producer_head && *producer_head >= qpair->consume_q_size)))
2945		return VMCI_ERROR_INVALID_SIZE;
2946
2947	return result;
2948}
2949EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2950
2951/*
2952 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2953 * @qpair:      Pointer to the queue pair struct.
2954 *
2955 * This is the client interface for getting the amount of free
2956 * space in the QPair from the point of the view of the caller as
2957 * the producer which is the common case.  Returns < 0 if err, else
2958 * available bytes into which data can be enqueued if > 0.
2959 */
2960s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2961{
2962	struct vmci_queue_header *produce_q_header;
2963	struct vmci_queue_header *consume_q_header;
2964	s64 result;
2965
2966	if (!qpair)
2967		return VMCI_ERROR_INVALID_ARGS;
2968
2969	qp_lock(qpair);
2970	result =
2971	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2972	if (result == VMCI_SUCCESS)
2973		result = vmci_q_header_free_space(produce_q_header,
2974						  consume_q_header,
2975						  qpair->produce_q_size);
2976	else
2977		result = 0;
2978
2979	qp_unlock(qpair);
2980
2981	return result;
2982}
2983EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2984
2985/*
2986 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2987 * @qpair:      Pointer to the queue pair struct.
2988 *
2989 * This is the client interface for getting the amount of free
2990 * space in the QPair from the point of the view of the caller as
2991 * the consumer which is not the common case.  Returns < 0 if err, else
2992 * available bytes into which data can be enqueued if > 0.
2993 */
2994s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2995{
2996	struct vmci_queue_header *produce_q_header;
2997	struct vmci_queue_header *consume_q_header;
2998	s64 result;
2999
3000	if (!qpair)
3001		return VMCI_ERROR_INVALID_ARGS;
3002
3003	qp_lock(qpair);
3004	result =
3005	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3006	if (result == VMCI_SUCCESS)
3007		result = vmci_q_header_free_space(consume_q_header,
3008						  produce_q_header,
3009						  qpair->consume_q_size);
3010	else
3011		result = 0;
3012
3013	qp_unlock(qpair);
3014
3015	return result;
3016}
3017EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3018
3019/*
3020 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3021 * producer queue.
3022 * @qpair:      Pointer to the queue pair struct.
3023 *
3024 * This is the client interface for getting the amount of
3025 * enqueued data in the QPair from the point of the view of the
3026 * caller as the producer which is not the common case.  Returns < 0 if err,
3027 * else available bytes that may be read.
3028 */
3029s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3030{
3031	struct vmci_queue_header *produce_q_header;
3032	struct vmci_queue_header *consume_q_header;
3033	s64 result;
3034
3035	if (!qpair)
3036		return VMCI_ERROR_INVALID_ARGS;
3037
3038	qp_lock(qpair);
3039	result =
3040	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3041	if (result == VMCI_SUCCESS)
3042		result = vmci_q_header_buf_ready(produce_q_header,
3043						 consume_q_header,
3044						 qpair->produce_q_size);
3045	else
3046		result = 0;
3047
3048	qp_unlock(qpair);
3049
3050	return result;
3051}
3052EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3053
3054/*
3055 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3056 * consumer queue.
3057 * @qpair:      Pointer to the queue pair struct.
3058 *
3059 * This is the client interface for getting the amount of
3060 * enqueued data in the QPair from the point of the view of the
3061 * caller as the consumer which is the normal case.  Returns < 0 if err,
3062 * else available bytes that may be read.
3063 */
3064s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3065{
3066	struct vmci_queue_header *produce_q_header;
3067	struct vmci_queue_header *consume_q_header;
3068	s64 result;
3069
3070	if (!qpair)
3071		return VMCI_ERROR_INVALID_ARGS;
3072
3073	qp_lock(qpair);
3074	result =
3075	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3076	if (result == VMCI_SUCCESS)
3077		result = vmci_q_header_buf_ready(consume_q_header,
3078						 produce_q_header,
3079						 qpair->consume_q_size);
3080	else
3081		result = 0;
3082
3083	qp_unlock(qpair);
3084
3085	return result;
3086}
3087EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3088
3089/*
3090 * vmci_qpair_enqueue() - Throw data on the queue.
3091 * @qpair:      Pointer to the queue pair struct.
3092 * @buf:        Pointer to buffer containing data
3093 * @buf_size:   Length of buffer.
3094 * @buf_type:   Buffer type (Unused).
3095 *
3096 * This is the client interface for enqueueing data into the queue.
3097 * Returns number of bytes enqueued or < 0 on error.
3098 */
3099ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3100			   const void *buf,
3101			   size_t buf_size,
3102			   int buf_type)
3103{
3104	ssize_t result;
3105
3106	if (!qpair || !buf)
3107		return VMCI_ERROR_INVALID_ARGS;
3108
3109	qp_lock(qpair);
3110
3111	do {
3112		result = qp_enqueue_locked(qpair->produce_q,
3113					   qpair->consume_q,
3114					   qpair->produce_q_size,
3115					   buf, buf_size,
3116					   qp_memcpy_to_queue);
3117
3118		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3119		    !qp_wait_for_ready_queue(qpair))
3120			result = VMCI_ERROR_WOULD_BLOCK;
3121
3122	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3123
3124	qp_unlock(qpair);
3125
3126	return result;
3127}
3128EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3129
3130/*
3131 * vmci_qpair_dequeue() - Get data from the queue.
3132 * @qpair:      Pointer to the queue pair struct.
3133 * @buf:        Pointer to buffer for the data
3134 * @buf_size:   Length of buffer.
3135 * @buf_type:   Buffer type (Unused).
3136 *
3137 * This is the client interface for dequeueing data from the queue.
3138 * Returns number of bytes dequeued or < 0 on error.
3139 */
3140ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3141			   void *buf,
3142			   size_t buf_size,
3143			   int buf_type)
3144{
3145	ssize_t result;
3146
3147	if (!qpair || !buf)
3148		return VMCI_ERROR_INVALID_ARGS;
3149
3150	qp_lock(qpair);
3151
3152	do {
3153		result = qp_dequeue_locked(qpair->produce_q,
3154					   qpair->consume_q,
3155					   qpair->consume_q_size,
3156					   buf, buf_size,
3157					   qp_memcpy_from_queue, true);
3158
3159		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3160		    !qp_wait_for_ready_queue(qpair))
3161			result = VMCI_ERROR_WOULD_BLOCK;
3162
3163	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3164
3165	qp_unlock(qpair);
3166
3167	return result;
3168}
3169EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3170
3171/*
3172 * vmci_qpair_peek() - Peek at the data in the queue.
3173 * @qpair:      Pointer to the queue pair struct.
3174 * @buf:        Pointer to buffer for the data
3175 * @buf_size:   Length of buffer.
3176 * @buf_type:   Buffer type (Unused on Linux).
3177 *
3178 * This is the client interface for peeking into a queue.  (I.e.,
3179 * copy data from the queue without updating the head pointer.)
3180 * Returns number of bytes dequeued or < 0 on error.
3181 */
3182ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3183			void *buf,
3184			size_t buf_size,
3185			int buf_type)
3186{
3187	ssize_t result;
3188
3189	if (!qpair || !buf)
3190		return VMCI_ERROR_INVALID_ARGS;
3191
3192	qp_lock(qpair);
3193
3194	do {
3195		result = qp_dequeue_locked(qpair->produce_q,
3196					   qpair->consume_q,
3197					   qpair->consume_q_size,
3198					   buf, buf_size,
3199					   qp_memcpy_from_queue, false);
3200
3201		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3202		    !qp_wait_for_ready_queue(qpair))
3203			result = VMCI_ERROR_WOULD_BLOCK;
3204
3205	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3206
3207	qp_unlock(qpair);
3208
3209	return result;
3210}
3211EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3212
3213/*
3214 * vmci_qpair_enquev() - Throw data on the queue using iov.
3215 * @qpair:      Pointer to the queue pair struct.
3216 * @iov:        Pointer to buffer containing data
3217 * @iov_size:   Length of buffer.
3218 * @buf_type:   Buffer type (Unused).
3219 *
3220 * This is the client interface for enqueueing data into the queue.
3221 * This function uses IO vectors to handle the work. Returns number
3222 * of bytes enqueued or < 0 on error.
3223 */
3224ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3225			  void *iov,
3226			  size_t iov_size,
3227			  int buf_type)
3228{
3229	ssize_t result;
3230
3231	if (!qpair || !iov)
3232		return VMCI_ERROR_INVALID_ARGS;
3233
3234	qp_lock(qpair);
3235
3236	do {
3237		result = qp_enqueue_locked(qpair->produce_q,
3238					   qpair->consume_q,
3239					   qpair->produce_q_size,
3240					   iov, iov_size,
3241					   qp_memcpy_to_queue_iov);
3242
3243		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3244		    !qp_wait_for_ready_queue(qpair))
3245			result = VMCI_ERROR_WOULD_BLOCK;
3246
3247	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3248
3249	qp_unlock(qpair);
3250
3251	return result;
3252}
3253EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3254
3255/*
3256 * vmci_qpair_dequev() - Get data from the queue using iov.
3257 * @qpair:      Pointer to the queue pair struct.
3258 * @iov:        Pointer to buffer for the data
3259 * @iov_size:   Length of buffer.
3260 * @buf_type:   Buffer type (Unused).
3261 *
3262 * This is the client interface for dequeueing data from the queue.
3263 * This function uses IO vectors to handle the work. Returns number
3264 * of bytes dequeued or < 0 on error.
3265 */
3266ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3267			  void *iov,
3268			  size_t iov_size,
3269			  int buf_type)
3270{
3271	ssize_t result;
3272
3273	if (!qpair || !iov)
3274		return VMCI_ERROR_INVALID_ARGS;
3275
3276	qp_lock(qpair);
3277
3278	do {
3279		result = qp_dequeue_locked(qpair->produce_q,
3280					   qpair->consume_q,
3281					   qpair->consume_q_size,
3282					   iov, iov_size,
3283					   qp_memcpy_from_queue_iov,
3284					   true);
3285
3286		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3287		    !qp_wait_for_ready_queue(qpair))
3288			result = VMCI_ERROR_WOULD_BLOCK;
3289
3290	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3291
3292	qp_unlock(qpair);
3293
3294	return result;
3295}
3296EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3297
3298/*
3299 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3300 * @qpair:      Pointer to the queue pair struct.
3301 * @iov:        Pointer to buffer for the data
3302 * @iov_size:   Length of buffer.
3303 * @buf_type:   Buffer type (Unused on Linux).
3304 *
3305 * This is the client interface for peeking into a queue.  (I.e.,
3306 * copy data from the queue without updating the head pointer.)
3307 * This function uses IO vectors to handle the work. Returns number
3308 * of bytes peeked or < 0 on error.
3309 */
3310ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3311			 void *iov,
3312			 size_t iov_size,
3313			 int buf_type)
3314{
3315	ssize_t result;
3316
3317	if (!qpair || !iov)
3318		return VMCI_ERROR_INVALID_ARGS;
3319
3320	qp_lock(qpair);
3321
3322	do {
3323		result = qp_dequeue_locked(qpair->produce_q,
3324					   qpair->consume_q,
3325					   qpair->consume_q_size,
3326					   iov, iov_size,
3327					   qp_memcpy_from_queue_iov,
3328					   false);
3329
3330		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3331		    !qp_wait_for_ready_queue(qpair))
3332			result = VMCI_ERROR_WOULD_BLOCK;
3333
3334	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3335
3336	qp_unlock(qpair);
3337	return result;
3338}
3339EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3340