1/*
2 * Handles the M-Systems DiskOnChip G3 chip
3 *
4 * Copyright (C) 2011 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 *
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/platform_device.h>
26#include <linux/string.h>
27#include <linux/slab.h>
28#include <linux/io.h>
29#include <linux/delay.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
32#include <linux/bitmap.h>
33#include <linux/bitrev.h>
34#include <linux/bch.h>
35
36#include <linux/debugfs.h>
37#include <linux/seq_file.h>
38
39#define CREATE_TRACE_POINTS
40#include "docg3.h"
41
42/*
43 * This driver handles the DiskOnChip G3 flash memory.
44 *
45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
46 * several functions available on the chip, as :
47 *  - IPL write
48 *
49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50 * the driver assumes a 16bits data bus.
51 *
52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53 *  - a 1 byte Hamming code stored in the OOB for each page
54 *  - a 7 bytes BCH code stored in the OOB for each page
55 * The BCH ECC is :
56 *  - BCH is in GF(2^14)
57 *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
58 *                                   + 1 hamming byte)
59 *  - BCH can correct up to 4 bits (t = 4)
60 *  - BCH syndroms are calculated in hardware, and checked in hardware as well
61 *
62 */
63
64static unsigned int reliable_mode;
65module_param(reliable_mode, uint, 0);
66MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
67		 "2=reliable) : MLC normal operations are in normal mode");
68
69/**
70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74 * @oobavail: 8 available bytes remaining after ECC toll
75 */
76static struct nand_ecclayout docg3_oobinfo = {
77	.eccbytes = 8,
78	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79	.oobfree = {{0, 7}, {15, 1} },
80	.oobavail = 8,
81};
82
83static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
84{
85	u8 val = readb(docg3->cascade->base + reg);
86
87	trace_docg3_io(0, 8, reg, (int)val);
88	return val;
89}
90
91static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
92{
93	u16 val = readw(docg3->cascade->base + reg);
94
95	trace_docg3_io(0, 16, reg, (int)val);
96	return val;
97}
98
99static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
100{
101	writeb(val, docg3->cascade->base + reg);
102	trace_docg3_io(1, 8, reg, val);
103}
104
105static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
106{
107	writew(val, docg3->cascade->base + reg);
108	trace_docg3_io(1, 16, reg, val);
109}
110
111static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
112{
113	doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
114}
115
116static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
117{
118	doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
119}
120
121static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
122{
123	doc_writeb(docg3, addr, DOC_FLASHADDRESS);
124}
125
126static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
127
128static int doc_register_readb(struct docg3 *docg3, int reg)
129{
130	u8 val;
131
132	doc_writew(docg3, reg, DOC_READADDRESS);
133	val = doc_readb(docg3, reg);
134	doc_vdbg("Read register %04x : %02x\n", reg, val);
135	return val;
136}
137
138static int doc_register_readw(struct docg3 *docg3, int reg)
139{
140	u16 val;
141
142	doc_writew(docg3, reg, DOC_READADDRESS);
143	val = doc_readw(docg3, reg);
144	doc_vdbg("Read register %04x : %04x\n", reg, val);
145	return val;
146}
147
148/**
149 * doc_delay - delay docg3 operations
150 * @docg3: the device
151 * @nbNOPs: the number of NOPs to issue
152 *
153 * As no specification is available, the right timings between chip commands are
154 * unknown. The only available piece of information are the observed nops on a
155 * working docg3 chip.
156 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
157 * friendlier msleep() functions or blocking mdelay().
158 */
159static void doc_delay(struct docg3 *docg3, int nbNOPs)
160{
161	int i;
162
163	doc_vdbg("NOP x %d\n", nbNOPs);
164	for (i = 0; i < nbNOPs; i++)
165		doc_writeb(docg3, 0, DOC_NOP);
166}
167
168static int is_prot_seq_error(struct docg3 *docg3)
169{
170	int ctrl;
171
172	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
173	return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
174}
175
176static int doc_is_ready(struct docg3 *docg3)
177{
178	int ctrl;
179
180	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
181	return ctrl & DOC_CTRL_FLASHREADY;
182}
183
184static int doc_wait_ready(struct docg3 *docg3)
185{
186	int maxWaitCycles = 100;
187
188	do {
189		doc_delay(docg3, 4);
190		cpu_relax();
191	} while (!doc_is_ready(docg3) && maxWaitCycles--);
192	doc_delay(docg3, 2);
193	if (maxWaitCycles > 0)
194		return 0;
195	else
196		return -EIO;
197}
198
199static int doc_reset_seq(struct docg3 *docg3)
200{
201	int ret;
202
203	doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
204	doc_flash_sequence(docg3, DOC_SEQ_RESET);
205	doc_flash_command(docg3, DOC_CMD_RESET);
206	doc_delay(docg3, 2);
207	ret = doc_wait_ready(docg3);
208
209	doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
210	return ret;
211}
212
213/**
214 * doc_read_data_area - Read data from data area
215 * @docg3: the device
216 * @buf: the buffer to fill in (might be NULL is dummy reads)
217 * @len: the length to read
218 * @first: first time read, DOC_READADDRESS should be set
219 *
220 * Reads bytes from flash data. Handles the single byte / even bytes reads.
221 */
222static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
223			       int first)
224{
225	int i, cdr, len4;
226	u16 data16, *dst16;
227	u8 data8, *dst8;
228
229	doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
230	cdr = len & 0x1;
231	len4 = len - cdr;
232
233	if (first)
234		doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
235	dst16 = buf;
236	for (i = 0; i < len4; i += 2) {
237		data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
238		if (dst16) {
239			*dst16 = data16;
240			dst16++;
241		}
242	}
243
244	if (cdr) {
245		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
246			   DOC_READADDRESS);
247		doc_delay(docg3, 1);
248		dst8 = (u8 *)dst16;
249		for (i = 0; i < cdr; i++) {
250			data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
251			if (dst8) {
252				*dst8 = data8;
253				dst8++;
254			}
255		}
256	}
257}
258
259/**
260 * doc_write_data_area - Write data into data area
261 * @docg3: the device
262 * @buf: the buffer to get input bytes from
263 * @len: the length to write
264 *
265 * Writes bytes into flash data. Handles the single byte / even bytes writes.
266 */
267static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
268{
269	int i, cdr, len4;
270	u16 *src16;
271	u8 *src8;
272
273	doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
274	cdr = len & 0x3;
275	len4 = len - cdr;
276
277	doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
278	src16 = (u16 *)buf;
279	for (i = 0; i < len4; i += 2) {
280		doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
281		src16++;
282	}
283
284	src8 = (u8 *)src16;
285	for (i = 0; i < cdr; i++) {
286		doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
287			   DOC_READADDRESS);
288		doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
289		src8++;
290	}
291}
292
293/**
294 * doc_set_data_mode - Sets the flash to normal or reliable data mode
295 * @docg3: the device
296 *
297 * The reliable data mode is a bit slower than the fast mode, but less errors
298 * occur.  Entering the reliable mode cannot be done without entering the fast
299 * mode first.
300 *
301 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
302 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
303 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
304 * result, which is a logical and between bytes from page 0 and page 1 (which is
305 * consistent with the fact that writing to a page is _clearing_ bits of that
306 * page).
307 */
308static void doc_set_reliable_mode(struct docg3 *docg3)
309{
310	static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
311
312	doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
313	switch (docg3->reliable) {
314	case 0:
315		break;
316	case 1:
317		doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
318		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
319		break;
320	case 2:
321		doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
322		doc_flash_command(docg3, DOC_CMD_FAST_MODE);
323		doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
324		break;
325	default:
326		doc_err("doc_set_reliable_mode(): invalid mode\n");
327		break;
328	}
329	doc_delay(docg3, 2);
330}
331
332/**
333 * doc_set_asic_mode - Set the ASIC mode
334 * @docg3: the device
335 * @mode: the mode
336 *
337 * The ASIC can work in 3 modes :
338 *  - RESET: all registers are zeroed
339 *  - NORMAL: receives and handles commands
340 *  - POWERDOWN: minimal poweruse, flash parts shut off
341 */
342static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
343{
344	int i;
345
346	for (i = 0; i < 12; i++)
347		doc_readb(docg3, DOC_IOSPACE_IPL);
348
349	mode |= DOC_ASICMODE_MDWREN;
350	doc_dbg("doc_set_asic_mode(%02x)\n", mode);
351	doc_writeb(docg3, mode, DOC_ASICMODE);
352	doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
353	doc_delay(docg3, 1);
354}
355
356/**
357 * doc_set_device_id - Sets the devices id for cascaded G3 chips
358 * @docg3: the device
359 * @id: the chip to select (amongst 0, 1, 2, 3)
360 *
361 * There can be 4 cascaded G3 chips. This function selects the one which will
362 * should be the active one.
363 */
364static void doc_set_device_id(struct docg3 *docg3, int id)
365{
366	u8 ctrl;
367
368	doc_dbg("doc_set_device_id(%d)\n", id);
369	doc_writeb(docg3, id, DOC_DEVICESELECT);
370	ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
371
372	ctrl &= ~DOC_CTRL_VIOLATION;
373	ctrl |= DOC_CTRL_CE;
374	doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
375}
376
377/**
378 * doc_set_extra_page_mode - Change flash page layout
379 * @docg3: the device
380 *
381 * Normally, the flash page is split into the data (512 bytes) and the out of
382 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
383 * leveling counters are stored.  To access this last area of 4 bytes, a special
384 * mode must be input to the flash ASIC.
385 *
386 * Returns 0 if no error occurred, -EIO else.
387 */
388static int doc_set_extra_page_mode(struct docg3 *docg3)
389{
390	int fctrl;
391
392	doc_dbg("doc_set_extra_page_mode()\n");
393	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
394	doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
395	doc_delay(docg3, 2);
396
397	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
398	if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
399		return -EIO;
400	else
401		return 0;
402}
403
404/**
405 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
406 * @docg3: the device
407 * @sector: the sector
408 */
409static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
410{
411	doc_delay(docg3, 1);
412	doc_flash_address(docg3, sector & 0xff);
413	doc_flash_address(docg3, (sector >> 8) & 0xff);
414	doc_flash_address(docg3, (sector >> 16) & 0xff);
415	doc_delay(docg3, 1);
416}
417
418/**
419 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
420 * @docg3: the device
421 * @sector: the sector
422 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
423 */
424static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
425{
426	ofs = ofs >> 2;
427	doc_delay(docg3, 1);
428	doc_flash_address(docg3, ofs & 0xff);
429	doc_flash_address(docg3, sector & 0xff);
430	doc_flash_address(docg3, (sector >> 8) & 0xff);
431	doc_flash_address(docg3, (sector >> 16) & 0xff);
432	doc_delay(docg3, 1);
433}
434
435/**
436 * doc_seek - Set both flash planes to the specified block, page for reading
437 * @docg3: the device
438 * @block0: the first plane block index
439 * @block1: the second plane block index
440 * @page: the page index within the block
441 * @wear: if true, read will occur on the 4 extra bytes of the wear area
442 * @ofs: offset in page to read
443 *
444 * Programs the flash even and odd planes to the specific block and page.
445 * Alternatively, programs the flash to the wear area of the specified page.
446 */
447static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
448			 int wear, int ofs)
449{
450	int sector, ret = 0;
451
452	doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
453		block0, block1, page, ofs, wear);
454
455	if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
456		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
457		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
458		doc_delay(docg3, 2);
459	} else {
460		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
461		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
462		doc_delay(docg3, 2);
463	}
464
465	doc_set_reliable_mode(docg3);
466	if (wear)
467		ret = doc_set_extra_page_mode(docg3);
468	if (ret)
469		goto out;
470
471	doc_flash_sequence(docg3, DOC_SEQ_READ);
472	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
473	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
474	doc_setup_addr_sector(docg3, sector);
475
476	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
477	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
478	doc_setup_addr_sector(docg3, sector);
479	doc_delay(docg3, 1);
480
481out:
482	return ret;
483}
484
485/**
486 * doc_write_seek - Set both flash planes to the specified block, page for writing
487 * @docg3: the device
488 * @block0: the first plane block index
489 * @block1: the second plane block index
490 * @page: the page index within the block
491 * @ofs: offset in page to write
492 *
493 * Programs the flash even and odd planes to the specific block and page.
494 * Alternatively, programs the flash to the wear area of the specified page.
495 */
496static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
497			 int ofs)
498{
499	int ret = 0, sector;
500
501	doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
502		block0, block1, page, ofs);
503
504	doc_set_reliable_mode(docg3);
505
506	if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
507		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
508		doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
509		doc_delay(docg3, 2);
510	} else {
511		doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
512		doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
513		doc_delay(docg3, 2);
514	}
515
516	doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
517	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
518
519	sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
520	doc_setup_writeaddr_sector(docg3, sector, ofs);
521
522	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
523	doc_delay(docg3, 2);
524	ret = doc_wait_ready(docg3);
525	if (ret)
526		goto out;
527
528	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
529	sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
530	doc_setup_writeaddr_sector(docg3, sector, ofs);
531	doc_delay(docg3, 1);
532
533out:
534	return ret;
535}
536
537
538/**
539 * doc_read_page_ecc_init - Initialize hardware ECC engine
540 * @docg3: the device
541 * @len: the number of bytes covered by the ECC (BCH covered)
542 *
543 * The function does initialize the hardware ECC engine to compute the Hamming
544 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
545 *
546 * Return 0 if succeeded, -EIO on error
547 */
548static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
549{
550	doc_writew(docg3, DOC_ECCCONF0_READ_MODE
551		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
552		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
553		   DOC_ECCCONF0);
554	doc_delay(docg3, 4);
555	doc_register_readb(docg3, DOC_FLASHCONTROL);
556	return doc_wait_ready(docg3);
557}
558
559/**
560 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
561 * @docg3: the device
562 * @len: the number of bytes covered by the ECC (BCH covered)
563 *
564 * The function does initialize the hardware ECC engine to compute the Hamming
565 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
566 *
567 * Return 0 if succeeded, -EIO on error
568 */
569static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
570{
571	doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
572		   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
573		   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
574		   DOC_ECCCONF0);
575	doc_delay(docg3, 4);
576	doc_register_readb(docg3, DOC_FLASHCONTROL);
577	return doc_wait_ready(docg3);
578}
579
580/**
581 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
582 * @docg3: the device
583 *
584 * Disables the hardware ECC generator and checker, for unchecked reads (as when
585 * reading OOB only or write status byte).
586 */
587static void doc_ecc_disable(struct docg3 *docg3)
588{
589	doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
590	doc_delay(docg3, 4);
591}
592
593/**
594 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
595 * @docg3: the device
596 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
597 *
598 * This function programs the ECC hardware to compute the hamming code on the
599 * last provided N bytes to the hardware generator.
600 */
601static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
602{
603	u8 ecc_conf1;
604
605	ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
606	ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
607	ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
608	doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
609}
610
611/**
612 * doc_ecc_bch_fix_data - Fix if need be read data from flash
613 * @docg3: the device
614 * @buf: the buffer of read data (512 + 7 + 1 bytes)
615 * @hwecc: the hardware calculated ECC.
616 *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
617 *         area data, and calc_ecc the ECC calculated by the hardware generator.
618 *
619 * Checks if the received data matches the ECC, and if an error is detected,
620 * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
621 * understands the (data, ecc, syndroms) in an inverted order in comparison to
622 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
623 * bit6 and bit 1, ...) for all ECC data.
624 *
625 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
626 * algorithm is used to decode this.  However the hw operates on page
627 * data in a bit order that is the reverse of that of the bch alg,
628 * requiring that the bits be reversed on the result.  Thanks to Ivan
629 * Djelic for his analysis.
630 *
631 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
632 * errors were detected and cannot be fixed.
633 */
634static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
635{
636	u8 ecc[DOC_ECC_BCH_SIZE];
637	int errorpos[DOC_ECC_BCH_T], i, numerrs;
638
639	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
640		ecc[i] = bitrev8(hwecc[i]);
641	numerrs = decode_bch(docg3->cascade->bch, NULL,
642			     DOC_ECC_BCH_COVERED_BYTES,
643			     NULL, ecc, NULL, errorpos);
644	BUG_ON(numerrs == -EINVAL);
645	if (numerrs < 0)
646		goto out;
647
648	for (i = 0; i < numerrs; i++)
649		errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
650	for (i = 0; i < numerrs; i++)
651		if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
652			/* error is located in data, correct it */
653			change_bit(errorpos[i], buf);
654out:
655	doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
656	return numerrs;
657}
658
659
660/**
661 * doc_read_page_prepare - Prepares reading data from a flash page
662 * @docg3: the device
663 * @block0: the first plane block index on flash memory
664 * @block1: the second plane block index on flash memory
665 * @page: the page index in the block
666 * @offset: the offset in the page (must be a multiple of 4)
667 *
668 * Prepares the page to be read in the flash memory :
669 *   - tell ASIC to map the flash pages
670 *   - tell ASIC to be in read mode
671 *
672 * After a call to this method, a call to doc_read_page_finish is mandatory,
673 * to end the read cycle of the flash.
674 *
675 * Read data from a flash page. The length to be read must be between 0 and
676 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
677 * the extra bytes reading is not implemented).
678 *
679 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
680 * in two steps:
681 *  - one read of 512 bytes at offset 0
682 *  - one read of 512 bytes at offset 512 + 16
683 *
684 * Returns 0 if successful, -EIO if a read error occurred.
685 */
686static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
687				 int page, int offset)
688{
689	int wear_area = 0, ret = 0;
690
691	doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
692		block0, block1, page, offset);
693	if (offset >= DOC_LAYOUT_WEAR_OFFSET)
694		wear_area = 1;
695	if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
696		return -EINVAL;
697
698	doc_set_device_id(docg3, docg3->device_id);
699	ret = doc_reset_seq(docg3);
700	if (ret)
701		goto err;
702
703	/* Program the flash address block and page */
704	ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
705	if (ret)
706		goto err;
707
708	doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
709	doc_delay(docg3, 2);
710	doc_wait_ready(docg3);
711
712	doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
713	doc_delay(docg3, 1);
714	if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
715		offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
716	doc_flash_address(docg3, offset >> 2);
717	doc_delay(docg3, 1);
718	doc_wait_ready(docg3);
719
720	doc_flash_command(docg3, DOC_CMD_READ_FLASH);
721
722	return 0;
723err:
724	doc_writeb(docg3, 0, DOC_DATAEND);
725	doc_delay(docg3, 2);
726	return -EIO;
727}
728
729/**
730 * doc_read_page_getbytes - Reads bytes from a prepared page
731 * @docg3: the device
732 * @len: the number of bytes to be read (must be a multiple of 4)
733 * @buf: the buffer to be filled in (or NULL is forget bytes)
734 * @first: 1 if first time read, DOC_READADDRESS should be set
735 * @last_odd: 1 if last read ended up on an odd byte
736 *
737 * Reads bytes from a prepared page. There is a trickery here : if the last read
738 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
739 * planes, the first byte must be read apart. If a word (16bit) read was used,
740 * the read would return the byte of plane 2 as low *and* high endian, which
741 * will mess the read.
742 *
743 */
744static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
745				  int first, int last_odd)
746{
747	if (last_odd && len > 0) {
748		doc_read_data_area(docg3, buf, 1, first);
749		doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
750	} else {
751		doc_read_data_area(docg3, buf, len, first);
752	}
753	doc_delay(docg3, 2);
754	return len;
755}
756
757/**
758 * doc_write_page_putbytes - Writes bytes into a prepared page
759 * @docg3: the device
760 * @len: the number of bytes to be written
761 * @buf: the buffer of input bytes
762 *
763 */
764static void doc_write_page_putbytes(struct docg3 *docg3, int len,
765				    const u_char *buf)
766{
767	doc_write_data_area(docg3, buf, len);
768	doc_delay(docg3, 2);
769}
770
771/**
772 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
773 * @docg3: the device
774 * @hwecc:  the array of 7 integers where the hardware ecc will be stored
775 */
776static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
777{
778	int i;
779
780	for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
781		hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
782}
783
784/**
785 * doc_page_finish - Ends reading/writing of a flash page
786 * @docg3: the device
787 */
788static void doc_page_finish(struct docg3 *docg3)
789{
790	doc_writeb(docg3, 0, DOC_DATAEND);
791	doc_delay(docg3, 2);
792}
793
794/**
795 * doc_read_page_finish - Ends reading of a flash page
796 * @docg3: the device
797 *
798 * As a side effect, resets the chip selector to 0. This ensures that after each
799 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
800 * reboot will boot on floor 0, where the IPL is.
801 */
802static void doc_read_page_finish(struct docg3 *docg3)
803{
804	doc_page_finish(docg3);
805	doc_set_device_id(docg3, 0);
806}
807
808/**
809 * calc_block_sector - Calculate blocks, pages and ofs.
810
811 * @from: offset in flash
812 * @block0: first plane block index calculated
813 * @block1: second plane block index calculated
814 * @page: page calculated
815 * @ofs: offset in page
816 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
817 * reliable mode.
818 *
819 * The calculation is based on the reliable/normal mode. In normal mode, the 64
820 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
821 * clones, only 32 pages per block are available.
822 */
823static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
824			      int *ofs, int reliable)
825{
826	uint sector, pages_biblock;
827
828	pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
829	if (reliable == 1 || reliable == 2)
830		pages_biblock /= 2;
831
832	sector = from / DOC_LAYOUT_PAGE_SIZE;
833	*block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
834	*block1 = *block0 + 1;
835	*page = sector % pages_biblock;
836	*page /= DOC_LAYOUT_NBPLANES;
837	if (reliable == 1 || reliable == 2)
838		*page *= 2;
839	if (sector % 2)
840		*ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
841	else
842		*ofs = 0;
843}
844
845/**
846 * doc_read_oob - Read out of band bytes from flash
847 * @mtd: the device
848 * @from: the offset from first block and first page, in bytes, aligned on page
849 *        size
850 * @ops: the mtd oob structure
851 *
852 * Reads flash memory OOB area of pages.
853 *
854 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
855 */
856static int doc_read_oob(struct mtd_info *mtd, loff_t from,
857			struct mtd_oob_ops *ops)
858{
859	struct docg3 *docg3 = mtd->priv;
860	int block0, block1, page, ret, skip, ofs = 0;
861	u8 *oobbuf = ops->oobbuf;
862	u8 *buf = ops->datbuf;
863	size_t len, ooblen, nbdata, nboob;
864	u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
865	int max_bitflips = 0;
866
867	if (buf)
868		len = ops->len;
869	else
870		len = 0;
871	if (oobbuf)
872		ooblen = ops->ooblen;
873	else
874		ooblen = 0;
875
876	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
877		oobbuf += ops->ooboffs;
878
879	doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
880		from, ops->mode, buf, len, oobbuf, ooblen);
881	if (ooblen % DOC_LAYOUT_OOB_SIZE)
882		return -EINVAL;
883
884	if (from + len > mtd->size)
885		return -EINVAL;
886
887	ops->oobretlen = 0;
888	ops->retlen = 0;
889	ret = 0;
890	skip = from % DOC_LAYOUT_PAGE_SIZE;
891	mutex_lock(&docg3->cascade->lock);
892	while (ret >= 0 && (len > 0 || ooblen > 0)) {
893		calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
894			docg3->reliable);
895		nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
896		nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
897		ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
898		if (ret < 0)
899			goto out;
900		ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
901		if (ret < 0)
902			goto err_in_read;
903		ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
904		if (ret < skip)
905			goto err_in_read;
906		ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
907		if (ret < nbdata)
908			goto err_in_read;
909		doc_read_page_getbytes(docg3,
910				       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
911				       NULL, 0, (skip + nbdata) % 2);
912		ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
913		if (ret < nboob)
914			goto err_in_read;
915		doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
916				       NULL, 0, nboob % 2);
917
918		doc_get_bch_hw_ecc(docg3, hwecc);
919		eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
920
921		if (nboob >= DOC_LAYOUT_OOB_SIZE) {
922			doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
923			doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
924			doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
925			doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
926		}
927		doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
928		doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
929
930		ret = -EIO;
931		if (is_prot_seq_error(docg3))
932			goto err_in_read;
933		ret = 0;
934		if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
935		    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
936		    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
937		    (ops->mode != MTD_OPS_RAW) &&
938		    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
939			ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
940			if (ret < 0) {
941				mtd->ecc_stats.failed++;
942				ret = -EBADMSG;
943			}
944			if (ret > 0) {
945				mtd->ecc_stats.corrected += ret;
946				max_bitflips = max(max_bitflips, ret);
947				ret = max_bitflips;
948			}
949		}
950
951		doc_read_page_finish(docg3);
952		ops->retlen += nbdata;
953		ops->oobretlen += nboob;
954		buf += nbdata;
955		oobbuf += nboob;
956		len -= nbdata;
957		ooblen -= nboob;
958		from += DOC_LAYOUT_PAGE_SIZE;
959		skip = 0;
960	}
961
962out:
963	mutex_unlock(&docg3->cascade->lock);
964	return ret;
965err_in_read:
966	doc_read_page_finish(docg3);
967	goto out;
968}
969
970/**
971 * doc_read - Read bytes from flash
972 * @mtd: the device
973 * @from: the offset from first block and first page, in bytes, aligned on page
974 *        size
975 * @len: the number of bytes to read (must be a multiple of 4)
976 * @retlen: the number of bytes actually read
977 * @buf: the filled in buffer
978 *
979 * Reads flash memory pages. This function does not read the OOB chunk, but only
980 * the page data.
981 *
982 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
983 */
984static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
985	     size_t *retlen, u_char *buf)
986{
987	struct mtd_oob_ops ops;
988	size_t ret;
989
990	memset(&ops, 0, sizeof(ops));
991	ops.datbuf = buf;
992	ops.len = len;
993	ops.mode = MTD_OPS_AUTO_OOB;
994
995	ret = doc_read_oob(mtd, from, &ops);
996	*retlen = ops.retlen;
997	return ret;
998}
999
1000static int doc_reload_bbt(struct docg3 *docg3)
1001{
1002	int block = DOC_LAYOUT_BLOCK_BBT;
1003	int ret = 0, nbpages, page;
1004	u_char *buf = docg3->bbt;
1005
1006	nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1007	for (page = 0; !ret && (page < nbpages); page++) {
1008		ret = doc_read_page_prepare(docg3, block, block + 1,
1009					    page + DOC_LAYOUT_PAGE_BBT, 0);
1010		if (!ret)
1011			ret = doc_read_page_ecc_init(docg3,
1012						     DOC_LAYOUT_PAGE_SIZE);
1013		if (!ret)
1014			doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1015					       buf, 1, 0);
1016		buf += DOC_LAYOUT_PAGE_SIZE;
1017	}
1018	doc_read_page_finish(docg3);
1019	return ret;
1020}
1021
1022/**
1023 * doc_block_isbad - Checks whether a block is good or not
1024 * @mtd: the device
1025 * @from: the offset to find the correct block
1026 *
1027 * Returns 1 if block is bad, 0 if block is good
1028 */
1029static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1030{
1031	struct docg3 *docg3 = mtd->priv;
1032	int block0, block1, page, ofs, is_good;
1033
1034	calc_block_sector(from, &block0, &block1, &page, &ofs,
1035		docg3->reliable);
1036	doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1037		from, block0, block1, page, ofs);
1038
1039	if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1040		return 0;
1041	if (block1 > docg3->max_block)
1042		return -EINVAL;
1043
1044	is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1045	return !is_good;
1046}
1047
1048#if 0
1049/**
1050 * doc_get_erase_count - Get block erase count
1051 * @docg3: the device
1052 * @from: the offset in which the block is.
1053 *
1054 * Get the number of times a block was erased. The number is the maximum of
1055 * erase times between first and second plane (which should be equal normally).
1056 *
1057 * Returns The number of erases, or -EINVAL or -EIO on error.
1058 */
1059static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1060{
1061	u8 buf[DOC_LAYOUT_WEAR_SIZE];
1062	int ret, plane1_erase_count, plane2_erase_count;
1063	int block0, block1, page, ofs;
1064
1065	doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1066	if (from % DOC_LAYOUT_PAGE_SIZE)
1067		return -EINVAL;
1068	calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1069	if (block1 > docg3->max_block)
1070		return -EINVAL;
1071
1072	ret = doc_reset_seq(docg3);
1073	if (!ret)
1074		ret = doc_read_page_prepare(docg3, block0, block1, page,
1075					    ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1076	if (!ret)
1077		ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1078					     buf, 1, 0);
1079	doc_read_page_finish(docg3);
1080
1081	if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1082		return -EIO;
1083	plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1084		| ((u8)(~buf[5]) << 16);
1085	plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1086		| ((u8)(~buf[7]) << 16);
1087
1088	return max(plane1_erase_count, plane2_erase_count);
1089}
1090#endif
1091
1092/**
1093 * doc_get_op_status - get erase/write operation status
1094 * @docg3: the device
1095 *
1096 * Queries the status from the chip, and returns it
1097 *
1098 * Returns the status (bits DOC_PLANES_STATUS_*)
1099 */
1100static int doc_get_op_status(struct docg3 *docg3)
1101{
1102	u8 status;
1103
1104	doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1105	doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1106	doc_delay(docg3, 5);
1107
1108	doc_ecc_disable(docg3);
1109	doc_read_data_area(docg3, &status, 1, 1);
1110	return status;
1111}
1112
1113/**
1114 * doc_write_erase_wait_status - wait for write or erase completion
1115 * @docg3: the device
1116 *
1117 * Wait for the chip to be ready again after erase or write operation, and check
1118 * erase/write status.
1119 *
1120 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1121 * timeout
1122 */
1123static int doc_write_erase_wait_status(struct docg3 *docg3)
1124{
1125	int i, status, ret = 0;
1126
1127	for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1128		msleep(20);
1129	if (!doc_is_ready(docg3)) {
1130		doc_dbg("Timeout reached and the chip is still not ready\n");
1131		ret = -EAGAIN;
1132		goto out;
1133	}
1134
1135	status = doc_get_op_status(docg3);
1136	if (status & DOC_PLANES_STATUS_FAIL) {
1137		doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1138			status);
1139		ret = -EIO;
1140	}
1141
1142out:
1143	doc_page_finish(docg3);
1144	return ret;
1145}
1146
1147/**
1148 * doc_erase_block - Erase a couple of blocks
1149 * @docg3: the device
1150 * @block0: the first block to erase (leftmost plane)
1151 * @block1: the second block to erase (rightmost plane)
1152 *
1153 * Erase both blocks, and return operation status
1154 *
1155 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1156 * ready for too long
1157 */
1158static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1159{
1160	int ret, sector;
1161
1162	doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1163	ret = doc_reset_seq(docg3);
1164	if (ret)
1165		return -EIO;
1166
1167	doc_set_reliable_mode(docg3);
1168	doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1169
1170	sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1171	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1172	doc_setup_addr_sector(docg3, sector);
1173	sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1174	doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1175	doc_setup_addr_sector(docg3, sector);
1176	doc_delay(docg3, 1);
1177
1178	doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1179	doc_delay(docg3, 2);
1180
1181	if (is_prot_seq_error(docg3)) {
1182		doc_err("Erase blocks %d,%d error\n", block0, block1);
1183		return -EIO;
1184	}
1185
1186	return doc_write_erase_wait_status(docg3);
1187}
1188
1189/**
1190 * doc_erase - Erase a portion of the chip
1191 * @mtd: the device
1192 * @info: the erase info
1193 *
1194 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1195 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1196 *
1197 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1198 * issue
1199 */
1200static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1201{
1202	struct docg3 *docg3 = mtd->priv;
1203	uint64_t len;
1204	int block0, block1, page, ret, ofs = 0;
1205
1206	doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1207
1208	info->state = MTD_ERASE_PENDING;
1209	calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1210			  &ofs, docg3->reliable);
1211	ret = -EINVAL;
1212	if (info->addr + info->len > mtd->size || page || ofs)
1213		goto reset_err;
1214
1215	ret = 0;
1216	calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1217			  docg3->reliable);
1218	mutex_lock(&docg3->cascade->lock);
1219	doc_set_device_id(docg3, docg3->device_id);
1220	doc_set_reliable_mode(docg3);
1221	for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1222		info->state = MTD_ERASING;
1223		ret = doc_erase_block(docg3, block0, block1);
1224		block0 += 2;
1225		block1 += 2;
1226	}
1227	mutex_unlock(&docg3->cascade->lock);
1228
1229	if (ret)
1230		goto reset_err;
1231
1232	info->state = MTD_ERASE_DONE;
1233	return 0;
1234
1235reset_err:
1236	info->state = MTD_ERASE_FAILED;
1237	return ret;
1238}
1239
1240/**
1241 * doc_write_page - Write a single page to the chip
1242 * @docg3: the device
1243 * @to: the offset from first block and first page, in bytes, aligned on page
1244 *      size
1245 * @buf: buffer to get bytes from
1246 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1247 *       written)
1248 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1249 *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1250 *           remaining ones are filled with hardware Hamming and BCH
1251 *           computations. Its value is not meaningfull is oob == NULL.
1252 *
1253 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1254 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1255 * BCH generator if autoecc is not null.
1256 *
1257 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1258 */
1259static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1260			  const u_char *oob, int autoecc)
1261{
1262	int block0, block1, page, ret, ofs = 0;
1263	u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1264
1265	doc_dbg("doc_write_page(to=%lld)\n", to);
1266	calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1267
1268	doc_set_device_id(docg3, docg3->device_id);
1269	ret = doc_reset_seq(docg3);
1270	if (ret)
1271		goto err;
1272
1273	/* Program the flash address block and page */
1274	ret = doc_write_seek(docg3, block0, block1, page, ofs);
1275	if (ret)
1276		goto err;
1277
1278	doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1279	doc_delay(docg3, 2);
1280	doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1281
1282	if (oob && autoecc) {
1283		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1284		doc_delay(docg3, 2);
1285		oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1286
1287		hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1288		doc_delay(docg3, 2);
1289		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1290					&hamming);
1291		doc_delay(docg3, 2);
1292
1293		doc_get_bch_hw_ecc(docg3, hwecc);
1294		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1295		doc_delay(docg3, 2);
1296
1297		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1298	}
1299	if (oob && !autoecc)
1300		doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1301
1302	doc_delay(docg3, 2);
1303	doc_page_finish(docg3);
1304	doc_delay(docg3, 2);
1305	doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1306	doc_delay(docg3, 2);
1307
1308	/*
1309	 * The wait status will perform another doc_page_finish() call, but that
1310	 * seems to please the docg3, so leave it.
1311	 */
1312	ret = doc_write_erase_wait_status(docg3);
1313	return ret;
1314err:
1315	doc_read_page_finish(docg3);
1316	return ret;
1317}
1318
1319/**
1320 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1321 * @ops: the oob operations
1322 *
1323 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1324 */
1325static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1326{
1327	int autoecc;
1328
1329	switch (ops->mode) {
1330	case MTD_OPS_PLACE_OOB:
1331	case MTD_OPS_AUTO_OOB:
1332		autoecc = 1;
1333		break;
1334	case MTD_OPS_RAW:
1335		autoecc = 0;
1336		break;
1337	default:
1338		autoecc = -EINVAL;
1339	}
1340	return autoecc;
1341}
1342
1343/**
1344 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1345 * @dst: the target 16 bytes OOB buffer
1346 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1347 *
1348 */
1349static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1350{
1351	memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1352	dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1353}
1354
1355/**
1356 * doc_backup_oob - Backup OOB into docg3 structure
1357 * @docg3: the device
1358 * @to: the page offset in the chip
1359 * @ops: the OOB size and buffer
1360 *
1361 * As the docg3 should write a page with its OOB in one pass, and some userland
1362 * applications do write_oob() to setup the OOB and then write(), store the OOB
1363 * into a temporary storage. This is very dangerous, as 2 concurrent
1364 * applications could store an OOB, and then write their pages (which will
1365 * result into one having its OOB corrupted).
1366 *
1367 * The only reliable way would be for userland to call doc_write_oob() with both
1368 * the page data _and_ the OOB area.
1369 *
1370 * Returns 0 if success, -EINVAL if ops content invalid
1371 */
1372static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1373			  struct mtd_oob_ops *ops)
1374{
1375	int ooblen = ops->ooblen, autoecc;
1376
1377	if (ooblen != DOC_LAYOUT_OOB_SIZE)
1378		return -EINVAL;
1379	autoecc = doc_guess_autoecc(ops);
1380	if (autoecc < 0)
1381		return autoecc;
1382
1383	docg3->oob_write_ofs = to;
1384	docg3->oob_autoecc = autoecc;
1385	if (ops->mode == MTD_OPS_AUTO_OOB) {
1386		doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1387		ops->oobretlen = 8;
1388	} else {
1389		memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1390		ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1391	}
1392	return 0;
1393}
1394
1395/**
1396 * doc_write_oob - Write out of band bytes to flash
1397 * @mtd: the device
1398 * @ofs: the offset from first block and first page, in bytes, aligned on page
1399 *       size
1400 * @ops: the mtd oob structure
1401 *
1402 * Either write OOB data into a temporary buffer, for the subsequent write
1403 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1404 * as well, issue the page write.
1405 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1406 * still be filled in if asked for).
1407 *
1408 * Returns 0 is successful, EINVAL if length is not 14 bytes
1409 */
1410static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1411			 struct mtd_oob_ops *ops)
1412{
1413	struct docg3 *docg3 = mtd->priv;
1414	int ret, autoecc, oobdelta;
1415	u8 *oobbuf = ops->oobbuf;
1416	u8 *buf = ops->datbuf;
1417	size_t len, ooblen;
1418	u8 oob[DOC_LAYOUT_OOB_SIZE];
1419
1420	if (buf)
1421		len = ops->len;
1422	else
1423		len = 0;
1424	if (oobbuf)
1425		ooblen = ops->ooblen;
1426	else
1427		ooblen = 0;
1428
1429	if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1430		oobbuf += ops->ooboffs;
1431
1432	doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1433		ofs, ops->mode, buf, len, oobbuf, ooblen);
1434	switch (ops->mode) {
1435	case MTD_OPS_PLACE_OOB:
1436	case MTD_OPS_RAW:
1437		oobdelta = mtd->oobsize;
1438		break;
1439	case MTD_OPS_AUTO_OOB:
1440		oobdelta = mtd->ecclayout->oobavail;
1441		break;
1442	default:
1443		return -EINVAL;
1444	}
1445	if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1446	    (ofs % DOC_LAYOUT_PAGE_SIZE))
1447		return -EINVAL;
1448	if (len && ooblen &&
1449	    (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1450		return -EINVAL;
1451	if (ofs + len > mtd->size)
1452		return -EINVAL;
1453
1454	ops->oobretlen = 0;
1455	ops->retlen = 0;
1456	ret = 0;
1457	if (len == 0 && ooblen == 0)
1458		return -EINVAL;
1459	if (len == 0 && ooblen > 0)
1460		return doc_backup_oob(docg3, ofs, ops);
1461
1462	autoecc = doc_guess_autoecc(ops);
1463	if (autoecc < 0)
1464		return autoecc;
1465
1466	mutex_lock(&docg3->cascade->lock);
1467	while (!ret && len > 0) {
1468		memset(oob, 0, sizeof(oob));
1469		if (ofs == docg3->oob_write_ofs)
1470			memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1471		else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1472			doc_fill_autooob(oob, oobbuf);
1473		else if (ooblen > 0)
1474			memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1475		ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1476
1477		ofs += DOC_LAYOUT_PAGE_SIZE;
1478		len -= DOC_LAYOUT_PAGE_SIZE;
1479		buf += DOC_LAYOUT_PAGE_SIZE;
1480		if (ooblen) {
1481			oobbuf += oobdelta;
1482			ooblen -= oobdelta;
1483			ops->oobretlen += oobdelta;
1484		}
1485		ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1486	}
1487
1488	doc_set_device_id(docg3, 0);
1489	mutex_unlock(&docg3->cascade->lock);
1490	return ret;
1491}
1492
1493/**
1494 * doc_write - Write a buffer to the chip
1495 * @mtd: the device
1496 * @to: the offset from first block and first page, in bytes, aligned on page
1497 *      size
1498 * @len: the number of bytes to write (must be a full page size, ie. 512)
1499 * @retlen: the number of bytes actually written (0 or 512)
1500 * @buf: the buffer to get bytes from
1501 *
1502 * Writes data to the chip.
1503 *
1504 * Returns 0 if write successful, -EIO if write error
1505 */
1506static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1507		     size_t *retlen, const u_char *buf)
1508{
1509	struct docg3 *docg3 = mtd->priv;
1510	int ret;
1511	struct mtd_oob_ops ops;
1512
1513	doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1514	ops.datbuf = (char *)buf;
1515	ops.len = len;
1516	ops.mode = MTD_OPS_PLACE_OOB;
1517	ops.oobbuf = NULL;
1518	ops.ooblen = 0;
1519	ops.ooboffs = 0;
1520
1521	ret = doc_write_oob(mtd, to, &ops);
1522	*retlen = ops.retlen;
1523	return ret;
1524}
1525
1526static struct docg3 *sysfs_dev2docg3(struct device *dev,
1527				     struct device_attribute *attr)
1528{
1529	int floor;
1530	struct platform_device *pdev = to_platform_device(dev);
1531	struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1532
1533	floor = attr->attr.name[1] - '0';
1534	if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1535		return NULL;
1536	else
1537		return docg3_floors[floor]->priv;
1538}
1539
1540static ssize_t dps0_is_key_locked(struct device *dev,
1541				  struct device_attribute *attr, char *buf)
1542{
1543	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1544	int dps0;
1545
1546	mutex_lock(&docg3->cascade->lock);
1547	doc_set_device_id(docg3, docg3->device_id);
1548	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1549	doc_set_device_id(docg3, 0);
1550	mutex_unlock(&docg3->cascade->lock);
1551
1552	return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1553}
1554
1555static ssize_t dps1_is_key_locked(struct device *dev,
1556				  struct device_attribute *attr, char *buf)
1557{
1558	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1559	int dps1;
1560
1561	mutex_lock(&docg3->cascade->lock);
1562	doc_set_device_id(docg3, docg3->device_id);
1563	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1564	doc_set_device_id(docg3, 0);
1565	mutex_unlock(&docg3->cascade->lock);
1566
1567	return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1568}
1569
1570static ssize_t dps0_insert_key(struct device *dev,
1571			       struct device_attribute *attr,
1572			       const char *buf, size_t count)
1573{
1574	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1575	int i;
1576
1577	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1578		return -EINVAL;
1579
1580	mutex_lock(&docg3->cascade->lock);
1581	doc_set_device_id(docg3, docg3->device_id);
1582	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1583		doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1584	doc_set_device_id(docg3, 0);
1585	mutex_unlock(&docg3->cascade->lock);
1586	return count;
1587}
1588
1589static ssize_t dps1_insert_key(struct device *dev,
1590			       struct device_attribute *attr,
1591			       const char *buf, size_t count)
1592{
1593	struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1594	int i;
1595
1596	if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1597		return -EINVAL;
1598
1599	mutex_lock(&docg3->cascade->lock);
1600	doc_set_device_id(docg3, docg3->device_id);
1601	for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1602		doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1603	doc_set_device_id(docg3, 0);
1604	mutex_unlock(&docg3->cascade->lock);
1605	return count;
1606}
1607
1608#define FLOOR_SYSFS(id) { \
1609	__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1610	__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1611	__ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1612	__ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1613}
1614
1615static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1616	FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1617};
1618
1619static int doc_register_sysfs(struct platform_device *pdev,
1620			      struct docg3_cascade *cascade)
1621{
1622	int ret = 0, floor, i = 0;
1623	struct device *dev = &pdev->dev;
1624
1625	for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1626		     cascade->floors[floor]; floor++)
1627		for (i = 0; !ret && i < 4; i++)
1628			ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1629	if (!ret)
1630		return 0;
1631	do {
1632		while (--i >= 0)
1633			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1634		i = 4;
1635	} while (--floor >= 0);
1636	return ret;
1637}
1638
1639static void doc_unregister_sysfs(struct platform_device *pdev,
1640				 struct docg3_cascade *cascade)
1641{
1642	struct device *dev = &pdev->dev;
1643	int floor, i;
1644
1645	for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1646	     floor++)
1647		for (i = 0; i < 4; i++)
1648			device_remove_file(dev, &doc_sys_attrs[floor][i]);
1649}
1650
1651/*
1652 * Debug sysfs entries
1653 */
1654static int dbg_flashctrl_show(struct seq_file *s, void *p)
1655{
1656	struct docg3 *docg3 = (struct docg3 *)s->private;
1657
1658	int pos = 0;
1659	u8 fctrl;
1660
1661	mutex_lock(&docg3->cascade->lock);
1662	fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1663	mutex_unlock(&docg3->cascade->lock);
1664
1665	pos += seq_printf(s,
1666		 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1667		 fctrl,
1668		 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1669		 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1670		 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1671		 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1672		 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1673	return pos;
1674}
1675DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1676
1677static int dbg_asicmode_show(struct seq_file *s, void *p)
1678{
1679	struct docg3 *docg3 = (struct docg3 *)s->private;
1680
1681	int pos = 0, pctrl, mode;
1682
1683	mutex_lock(&docg3->cascade->lock);
1684	pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1685	mode = pctrl & 0x03;
1686	mutex_unlock(&docg3->cascade->lock);
1687
1688	pos += seq_printf(s,
1689			 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1690			 pctrl,
1691			 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1692			 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1693			 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1694			 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1695			 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1696			 mode >> 1, mode & 0x1);
1697
1698	switch (mode) {
1699	case DOC_ASICMODE_RESET:
1700		pos += seq_puts(s, "reset");
1701		break;
1702	case DOC_ASICMODE_NORMAL:
1703		pos += seq_puts(s, "normal");
1704		break;
1705	case DOC_ASICMODE_POWERDOWN:
1706		pos += seq_puts(s, "powerdown");
1707		break;
1708	}
1709	pos += seq_puts(s, ")\n");
1710	return pos;
1711}
1712DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1713
1714static int dbg_device_id_show(struct seq_file *s, void *p)
1715{
1716	struct docg3 *docg3 = (struct docg3 *)s->private;
1717	int pos = 0;
1718	int id;
1719
1720	mutex_lock(&docg3->cascade->lock);
1721	id = doc_register_readb(docg3, DOC_DEVICESELECT);
1722	mutex_unlock(&docg3->cascade->lock);
1723
1724	pos += seq_printf(s, "DeviceId = %d\n", id);
1725	return pos;
1726}
1727DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1728
1729static int dbg_protection_show(struct seq_file *s, void *p)
1730{
1731	struct docg3 *docg3 = (struct docg3 *)s->private;
1732	int pos = 0;
1733	int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1734
1735	mutex_lock(&docg3->cascade->lock);
1736	protect = doc_register_readb(docg3, DOC_PROTECTION);
1737	dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1738	dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1739	dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1740	dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1741	dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1742	dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1743	mutex_unlock(&docg3->cascade->lock);
1744
1745	pos += seq_printf(s, "Protection = 0x%02x (",
1746			 protect);
1747	if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1748		pos += seq_puts(s, "FOUNDRY_OTP_LOCK,");
1749	if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1750		pos += seq_puts(s, "CUSTOMER_OTP_LOCK,");
1751	if (protect & DOC_PROTECT_LOCK_INPUT)
1752		pos += seq_puts(s, "LOCK_INPUT,");
1753	if (protect & DOC_PROTECT_STICKY_LOCK)
1754		pos += seq_puts(s, "STICKY_LOCK,");
1755	if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1756		pos += seq_puts(s, "PROTECTION ON,");
1757	if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1758		pos += seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1759	if (protect & DOC_PROTECT_PROTECTION_ERROR)
1760		pos += seq_puts(s, "PROTECT_ERR,");
1761	else
1762		pos += seq_puts(s, "NO_PROTECT_ERR");
1763	pos += seq_puts(s, ")\n");
1764
1765	pos += seq_printf(s, "DPS0 = 0x%02x : "
1766			 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1767			 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1768			 dps0, dps0_low, dps0_high,
1769			 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1770			 !!(dps0 & DOC_DPS_READ_PROTECTED),
1771			 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1772			 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1773			 !!(dps0 & DOC_DPS_KEY_OK));
1774	pos += seq_printf(s, "DPS1 = 0x%02x : "
1775			 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1776			 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1777			 dps1, dps1_low, dps1_high,
1778			 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1779			 !!(dps1 & DOC_DPS_READ_PROTECTED),
1780			 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1781			 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1782			 !!(dps1 & DOC_DPS_KEY_OK));
1783	return pos;
1784}
1785DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1786
1787static int __init doc_dbg_register(struct docg3 *docg3)
1788{
1789	struct dentry *root, *entry;
1790
1791	root = debugfs_create_dir("docg3", NULL);
1792	if (!root)
1793		return -ENOMEM;
1794
1795	entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1796				  &flashcontrol_fops);
1797	if (entry)
1798		entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1799					    docg3, &asic_mode_fops);
1800	if (entry)
1801		entry = debugfs_create_file("device_id", S_IRUSR, root,
1802					    docg3, &device_id_fops);
1803	if (entry)
1804		entry = debugfs_create_file("protection", S_IRUSR, root,
1805					    docg3, &protection_fops);
1806	if (entry) {
1807		docg3->debugfs_root = root;
1808		return 0;
1809	} else {
1810		debugfs_remove_recursive(root);
1811		return -ENOMEM;
1812	}
1813}
1814
1815static void __exit doc_dbg_unregister(struct docg3 *docg3)
1816{
1817	debugfs_remove_recursive(docg3->debugfs_root);
1818}
1819
1820/**
1821 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1822 * @chip_id: The chip ID of the supported chip
1823 * @mtd: The structure to fill
1824 */
1825static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1826{
1827	struct docg3 *docg3 = mtd->priv;
1828	int cfg;
1829
1830	cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1831	docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1832	docg3->reliable = reliable_mode;
1833
1834	switch (chip_id) {
1835	case DOC_CHIPID_G3:
1836		mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1837				      docg3->device_id);
1838		docg3->max_block = 2047;
1839		break;
1840	}
1841	mtd->type = MTD_NANDFLASH;
1842	mtd->flags = MTD_CAP_NANDFLASH;
1843	mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1844	if (docg3->reliable == 2)
1845		mtd->size /= 2;
1846	mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1847	if (docg3->reliable == 2)
1848		mtd->erasesize /= 2;
1849	mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1850	mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1851	mtd->owner = THIS_MODULE;
1852	mtd->_erase = doc_erase;
1853	mtd->_read = doc_read;
1854	mtd->_write = doc_write;
1855	mtd->_read_oob = doc_read_oob;
1856	mtd->_write_oob = doc_write_oob;
1857	mtd->_block_isbad = doc_block_isbad;
1858	mtd->ecclayout = &docg3_oobinfo;
1859	mtd->ecc_strength = DOC_ECC_BCH_T;
1860}
1861
1862/**
1863 * doc_probe_device - Check if a device is available
1864 * @base: the io space where the device is probed
1865 * @floor: the floor of the probed device
1866 * @dev: the device
1867 * @cascade: the cascade of chips this devices will belong to
1868 *
1869 * Checks whether a device at the specified IO range, and floor is available.
1870 *
1871 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1872 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1873 * launched.
1874 */
1875static struct mtd_info * __init
1876doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1877{
1878	int ret, bbt_nbpages;
1879	u16 chip_id, chip_id_inv;
1880	struct docg3 *docg3;
1881	struct mtd_info *mtd;
1882
1883	ret = -ENOMEM;
1884	docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1885	if (!docg3)
1886		goto nomem1;
1887	mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1888	if (!mtd)
1889		goto nomem2;
1890	mtd->priv = docg3;
1891	bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1892				   8 * DOC_LAYOUT_PAGE_SIZE);
1893	docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1894	if (!docg3->bbt)
1895		goto nomem3;
1896
1897	docg3->dev = dev;
1898	docg3->device_id = floor;
1899	docg3->cascade = cascade;
1900	doc_set_device_id(docg3, docg3->device_id);
1901	if (!floor)
1902		doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1903	doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1904
1905	chip_id = doc_register_readw(docg3, DOC_CHIPID);
1906	chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1907
1908	ret = 0;
1909	if (chip_id != (u16)(~chip_id_inv)) {
1910		goto nomem3;
1911	}
1912
1913	switch (chip_id) {
1914	case DOC_CHIPID_G3:
1915		doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1916			 docg3->cascade->base, floor);
1917		break;
1918	default:
1919		doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1920		goto nomem3;
1921	}
1922
1923	doc_set_driver_info(chip_id, mtd);
1924
1925	doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1926	doc_reload_bbt(docg3);
1927	return mtd;
1928
1929nomem3:
1930	kfree(mtd);
1931nomem2:
1932	kfree(docg3);
1933nomem1:
1934	return ERR_PTR(ret);
1935}
1936
1937/**
1938 * doc_release_device - Release a docg3 floor
1939 * @mtd: the device
1940 */
1941static void doc_release_device(struct mtd_info *mtd)
1942{
1943	struct docg3 *docg3 = mtd->priv;
1944
1945	mtd_device_unregister(mtd);
1946	kfree(docg3->bbt);
1947	kfree(docg3);
1948	kfree(mtd->name);
1949	kfree(mtd);
1950}
1951
1952/**
1953 * docg3_resume - Awakens docg3 floor
1954 * @pdev: platfrom device
1955 *
1956 * Returns 0 (always successful)
1957 */
1958static int docg3_resume(struct platform_device *pdev)
1959{
1960	int i;
1961	struct docg3_cascade *cascade;
1962	struct mtd_info **docg3_floors, *mtd;
1963	struct docg3 *docg3;
1964
1965	cascade = platform_get_drvdata(pdev);
1966	docg3_floors = cascade->floors;
1967	mtd = docg3_floors[0];
1968	docg3 = mtd->priv;
1969
1970	doc_dbg("docg3_resume()\n");
1971	for (i = 0; i < 12; i++)
1972		doc_readb(docg3, DOC_IOSPACE_IPL);
1973	return 0;
1974}
1975
1976/**
1977 * docg3_suspend - Put in low power mode the docg3 floor
1978 * @pdev: platform device
1979 * @state: power state
1980 *
1981 * Shuts off most of docg3 circuitery to lower power consumption.
1982 *
1983 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1984 */
1985static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1986{
1987	int floor, i;
1988	struct docg3_cascade *cascade;
1989	struct mtd_info **docg3_floors, *mtd;
1990	struct docg3 *docg3;
1991	u8 ctrl, pwr_down;
1992
1993	cascade = platform_get_drvdata(pdev);
1994	docg3_floors = cascade->floors;
1995	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1996		mtd = docg3_floors[floor];
1997		if (!mtd)
1998			continue;
1999		docg3 = mtd->priv;
2000
2001		doc_writeb(docg3, floor, DOC_DEVICESELECT);
2002		ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2003		ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2004		doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2005
2006		for (i = 0; i < 10; i++) {
2007			usleep_range(3000, 4000);
2008			pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2009			if (pwr_down & DOC_POWERDOWN_READY)
2010				break;
2011		}
2012		if (pwr_down & DOC_POWERDOWN_READY) {
2013			doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2014				floor);
2015		} else {
2016			doc_err("docg3_suspend(): floor %d powerdown failed\n",
2017				floor);
2018			return -EIO;
2019		}
2020	}
2021
2022	mtd = docg3_floors[0];
2023	docg3 = mtd->priv;
2024	doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2025	return 0;
2026}
2027
2028/**
2029 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2030 * @pdev: platform device
2031 *
2032 * Probes for a G3 chip at the specified IO space in the platform data
2033 * ressources. The floor 0 must be available.
2034 *
2035 * Returns 0 on success, -ENOMEM, -ENXIO on error
2036 */
2037static int __init docg3_probe(struct platform_device *pdev)
2038{
2039	struct device *dev = &pdev->dev;
2040	struct mtd_info *mtd;
2041	struct resource *ress;
2042	void __iomem *base;
2043	int ret, floor, found = 0;
2044	struct docg3_cascade *cascade;
2045
2046	ret = -ENXIO;
2047	ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2048	if (!ress) {
2049		dev_err(dev, "No I/O memory resource defined\n");
2050		return ret;
2051	}
2052	base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
2053
2054	ret = -ENOMEM;
2055	cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS,
2056			       GFP_KERNEL);
2057	if (!cascade)
2058		return ret;
2059	cascade->base = base;
2060	mutex_init(&cascade->lock);
2061	cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2062			     DOC_ECC_BCH_PRIMPOLY);
2063	if (!cascade->bch)
2064		return ret;
2065
2066	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2067		mtd = doc_probe_device(cascade, floor, dev);
2068		if (IS_ERR(mtd)) {
2069			ret = PTR_ERR(mtd);
2070			goto err_probe;
2071		}
2072		if (!mtd) {
2073			if (floor == 0)
2074				goto notfound;
2075			else
2076				continue;
2077		}
2078		cascade->floors[floor] = mtd;
2079		ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2080						0);
2081		if (ret)
2082			goto err_probe;
2083		found++;
2084	}
2085
2086	ret = doc_register_sysfs(pdev, cascade);
2087	if (ret)
2088		goto err_probe;
2089	if (!found)
2090		goto notfound;
2091
2092	platform_set_drvdata(pdev, cascade);
2093	doc_dbg_register(cascade->floors[0]->priv);
2094	return 0;
2095
2096notfound:
2097	ret = -ENODEV;
2098	dev_info(dev, "No supported DiskOnChip found\n");
2099err_probe:
2100	free_bch(cascade->bch);
2101	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2102		if (cascade->floors[floor])
2103			doc_release_device(cascade->floors[floor]);
2104	return ret;
2105}
2106
2107/**
2108 * docg3_release - Release the driver
2109 * @pdev: the platform device
2110 *
2111 * Returns 0
2112 */
2113static int __exit docg3_release(struct platform_device *pdev)
2114{
2115	struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2116	struct docg3 *docg3 = cascade->floors[0]->priv;
2117	int floor;
2118
2119	doc_unregister_sysfs(pdev, cascade);
2120	doc_dbg_unregister(docg3);
2121	for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2122		if (cascade->floors[floor])
2123			doc_release_device(cascade->floors[floor]);
2124
2125	free_bch(docg3->cascade->bch);
2126	return 0;
2127}
2128
2129static struct platform_driver g3_driver = {
2130	.driver		= {
2131		.name	= "docg3",
2132		.owner	= THIS_MODULE,
2133	},
2134	.suspend	= docg3_suspend,
2135	.resume		= docg3_resume,
2136	.remove		= __exit_p(docg3_release),
2137};
2138
2139module_platform_driver_probe(g3_driver, docg3_probe);
2140
2141MODULE_LICENSE("GPL");
2142MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2143MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2144