pxa3xx_nand.c revision 1fbb938dff5b6bb4514a4e7600276b03c7f08e25
1/*
2 * drivers/mtd/nand/pxa3xx_nand.c
3 *
4 * Copyright © 2005 Intel Corporation
5 * Copyright © 2006 Marvell International Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/interrupt.h>
15#include <linux/platform_device.h>
16#include <linux/dma-mapping.h>
17#include <linux/delay.h>
18#include <linux/clk.h>
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
22#include <linux/io.h>
23#include <linux/irq.h>
24#include <linux/slab.h>
25
26#include <mach/dma.h>
27#include <plat/pxa3xx_nand.h>
28
29#define	CHIP_DELAY_TIMEOUT	(2 * HZ/10)
30#define NAND_STOP_DELAY		(2 * HZ/50)
31#define PAGE_CHUNK_SIZE		(2048)
32
33/* registers and bit definitions */
34#define NDCR		(0x00) /* Control register */
35#define NDTR0CS0	(0x04) /* Timing Parameter 0 for CS0 */
36#define NDTR1CS0	(0x0C) /* Timing Parameter 1 for CS0 */
37#define NDSR		(0x14) /* Status Register */
38#define NDPCR		(0x18) /* Page Count Register */
39#define NDBDR0		(0x1C) /* Bad Block Register 0 */
40#define NDBDR1		(0x20) /* Bad Block Register 1 */
41#define NDDB		(0x40) /* Data Buffer */
42#define NDCB0		(0x48) /* Command Buffer0 */
43#define NDCB1		(0x4C) /* Command Buffer1 */
44#define NDCB2		(0x50) /* Command Buffer2 */
45
46#define NDCR_SPARE_EN		(0x1 << 31)
47#define NDCR_ECC_EN		(0x1 << 30)
48#define NDCR_DMA_EN		(0x1 << 29)
49#define NDCR_ND_RUN		(0x1 << 28)
50#define NDCR_DWIDTH_C		(0x1 << 27)
51#define NDCR_DWIDTH_M		(0x1 << 26)
52#define NDCR_PAGE_SZ		(0x1 << 24)
53#define NDCR_NCSX		(0x1 << 23)
54#define NDCR_ND_MODE		(0x3 << 21)
55#define NDCR_NAND_MODE   	(0x0)
56#define NDCR_CLR_PG_CNT		(0x1 << 20)
57#define NDCR_STOP_ON_UNCOR	(0x1 << 19)
58#define NDCR_RD_ID_CNT_MASK	(0x7 << 16)
59#define NDCR_RD_ID_CNT(x)	(((x) << 16) & NDCR_RD_ID_CNT_MASK)
60
61#define NDCR_RA_START		(0x1 << 15)
62#define NDCR_PG_PER_BLK		(0x1 << 14)
63#define NDCR_ND_ARB_EN		(0x1 << 12)
64#define NDCR_INT_MASK           (0xFFF)
65
66#define NDSR_MASK		(0xfff)
67#define NDSR_RDY                (0x1 << 12)
68#define NDSR_FLASH_RDY          (0x1 << 11)
69#define NDSR_CS0_PAGED		(0x1 << 10)
70#define NDSR_CS1_PAGED		(0x1 << 9)
71#define NDSR_CS0_CMDD		(0x1 << 8)
72#define NDSR_CS1_CMDD		(0x1 << 7)
73#define NDSR_CS0_BBD		(0x1 << 6)
74#define NDSR_CS1_BBD		(0x1 << 5)
75#define NDSR_DBERR		(0x1 << 4)
76#define NDSR_SBERR		(0x1 << 3)
77#define NDSR_WRDREQ		(0x1 << 2)
78#define NDSR_RDDREQ		(0x1 << 1)
79#define NDSR_WRCMDREQ		(0x1)
80
81#define NDCB0_ST_ROW_EN         (0x1 << 26)
82#define NDCB0_AUTO_RS		(0x1 << 25)
83#define NDCB0_CSEL		(0x1 << 24)
84#define NDCB0_CMD_TYPE_MASK	(0x7 << 21)
85#define NDCB0_CMD_TYPE(x)	(((x) << 21) & NDCB0_CMD_TYPE_MASK)
86#define NDCB0_NC		(0x1 << 20)
87#define NDCB0_DBC		(0x1 << 19)
88#define NDCB0_ADDR_CYC_MASK	(0x7 << 16)
89#define NDCB0_ADDR_CYC(x)	(((x) << 16) & NDCB0_ADDR_CYC_MASK)
90#define NDCB0_CMD2_MASK		(0xff << 8)
91#define NDCB0_CMD1_MASK		(0xff)
92#define NDCB0_ADDR_CYC_SHIFT	(16)
93
94/* macros for registers read/write */
95#define nand_writel(info, off, val)	\
96	__raw_writel((val), (info)->mmio_base + (off))
97
98#define nand_readl(info, off)		\
99	__raw_readl((info)->mmio_base + (off))
100
101/* error code and state */
102enum {
103	ERR_NONE	= 0,
104	ERR_DMABUSERR	= -1,
105	ERR_SENDCMD	= -2,
106	ERR_DBERR	= -3,
107	ERR_BBERR	= -4,
108	ERR_SBERR	= -5,
109};
110
111enum {
112	STATE_IDLE = 0,
113	STATE_PREPARED,
114	STATE_CMD_HANDLE,
115	STATE_DMA_READING,
116	STATE_DMA_WRITING,
117	STATE_DMA_DONE,
118	STATE_PIO_READING,
119	STATE_PIO_WRITING,
120	STATE_CMD_DONE,
121	STATE_READY,
122};
123
124struct pxa3xx_nand_host {
125	struct nand_chip	chip;
126	struct pxa3xx_nand_cmdset *cmdset;
127	struct mtd_info         *mtd;
128	void			*info_data;
129
130	/* page size of attached chip */
131	unsigned int		page_size;
132	int			use_ecc;
133	int			cs;
134
135	/* calculated from pxa3xx_nand_flash data */
136	unsigned int		col_addr_cycles;
137	unsigned int		row_addr_cycles;
138	size_t			read_id_bytes;
139
140	/* cached register value */
141	uint32_t		reg_ndcr;
142	uint32_t		ndtr0cs0;
143	uint32_t		ndtr1cs0;
144};
145
146struct pxa3xx_nand_info {
147	struct nand_hw_control	controller;
148	struct platform_device	 *pdev;
149
150	struct clk		*clk;
151	void __iomem		*mmio_base;
152	unsigned long		mmio_phys;
153	struct completion	cmd_complete;
154
155	unsigned int 		buf_start;
156	unsigned int		buf_count;
157
158	/* DMA information */
159	int			drcmr_dat;
160	int			drcmr_cmd;
161
162	unsigned char		*data_buff;
163	unsigned char		*oob_buff;
164	dma_addr_t 		data_buff_phys;
165	int 			data_dma_ch;
166	struct pxa_dma_desc	*data_desc;
167	dma_addr_t 		data_desc_addr;
168
169	struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
170	unsigned int		state;
171
172	int			cs;
173	int			use_ecc;	/* use HW ECC ? */
174	int			use_dma;	/* use DMA ? */
175	int			is_ready;
176
177	unsigned int		page_size;	/* page size of attached chip */
178	unsigned int		data_size;	/* data size in FIFO */
179	unsigned int		oob_size;
180	int 			retcode;
181
182	/* generated NDCBx register values */
183	uint32_t		ndcb0;
184	uint32_t		ndcb1;
185	uint32_t		ndcb2;
186};
187
188static bool use_dma = 1;
189module_param(use_dma, bool, 0444);
190MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
191
192/*
193 * Default NAND flash controller configuration setup by the
194 * bootloader. This configuration is used only when pdata->keep_config is set
195 */
196static struct pxa3xx_nand_cmdset default_cmdset = {
197	.read1		= 0x3000,
198	.read2		= 0x0050,
199	.program	= 0x1080,
200	.read_status	= 0x0070,
201	.read_id	= 0x0090,
202	.erase		= 0xD060,
203	.reset		= 0x00FF,
204	.lock		= 0x002A,
205	.unlock		= 0x2423,
206	.lock_status	= 0x007A,
207};
208
209static struct pxa3xx_nand_timing timing[] = {
210	{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
211	{ 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
212	{ 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
213	{ 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
214};
215
216static struct pxa3xx_nand_flash builtin_flash_types[] = {
217{ "DEFAULT FLASH",      0,   0, 2048,  8,  8,    0, &timing[0] },
218{ "64MiB 16-bit",  0x46ec,  32,  512, 16, 16, 4096, &timing[1] },
219{ "256MiB 8-bit",  0xdaec,  64, 2048,  8,  8, 2048, &timing[1] },
220{ "4GiB 8-bit",    0xd7ec, 128, 4096,  8,  8, 8192, &timing[1] },
221{ "128MiB 8-bit",  0xa12c,  64, 2048,  8,  8, 1024, &timing[2] },
222{ "128MiB 16-bit", 0xb12c,  64, 2048, 16, 16, 1024, &timing[2] },
223{ "512MiB 8-bit",  0xdc2c,  64, 2048,  8,  8, 4096, &timing[2] },
224{ "512MiB 16-bit", 0xcc2c,  64, 2048, 16, 16, 4096, &timing[2] },
225{ "256MiB 16-bit", 0xba20,  64, 2048, 16, 16, 2048, &timing[3] },
226};
227
228/* Define a default flash type setting serve as flash detecting only */
229#define DEFAULT_FLASH_TYPE (&builtin_flash_types[0])
230
231const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL};
232
233#define NDTR0_tCH(c)	(min((c), 7) << 19)
234#define NDTR0_tCS(c)	(min((c), 7) << 16)
235#define NDTR0_tWH(c)	(min((c), 7) << 11)
236#define NDTR0_tWP(c)	(min((c), 7) << 8)
237#define NDTR0_tRH(c)	(min((c), 7) << 3)
238#define NDTR0_tRP(c)	(min((c), 7) << 0)
239
240#define NDTR1_tR(c)	(min((c), 65535) << 16)
241#define NDTR1_tWHR(c)	(min((c), 15) << 4)
242#define NDTR1_tAR(c)	(min((c), 15) << 0)
243
244/* convert nano-seconds to nand flash controller clock cycles */
245#define ns2cycle(ns, clk)	(int)((ns) * (clk / 1000000) / 1000)
246
247static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
248				   const struct pxa3xx_nand_timing *t)
249{
250	struct pxa3xx_nand_info *info = host->info_data;
251	unsigned long nand_clk = clk_get_rate(info->clk);
252	uint32_t ndtr0, ndtr1;
253
254	ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
255		NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
256		NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
257		NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
258		NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
259		NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
260
261	ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
262		NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
263		NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
264
265	host->ndtr0cs0 = ndtr0;
266	host->ndtr1cs0 = ndtr1;
267	nand_writel(info, NDTR0CS0, ndtr0);
268	nand_writel(info, NDTR1CS0, ndtr1);
269}
270
271static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info)
272{
273	struct pxa3xx_nand_host *host = info->host[info->cs];
274	int oob_enable = host->reg_ndcr & NDCR_SPARE_EN;
275
276	info->data_size = host->page_size;
277	if (!oob_enable) {
278		info->oob_size = 0;
279		return;
280	}
281
282	switch (host->page_size) {
283	case 2048:
284		info->oob_size = (info->use_ecc) ? 40 : 64;
285		break;
286	case 512:
287		info->oob_size = (info->use_ecc) ? 8 : 16;
288		break;
289	}
290}
291
292/**
293 * NOTE: it is a must to set ND_RUN firstly, then write
294 * command buffer, otherwise, it does not work.
295 * We enable all the interrupt at the same time, and
296 * let pxa3xx_nand_irq to handle all logic.
297 */
298static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
299{
300	struct pxa3xx_nand_host *host = info->host[info->cs];
301	uint32_t ndcr;
302
303	ndcr = host->reg_ndcr;
304	ndcr |= info->use_ecc ? NDCR_ECC_EN : 0;
305	ndcr |= info->use_dma ? NDCR_DMA_EN : 0;
306	ndcr |= NDCR_ND_RUN;
307
308	/* clear status bits and run */
309	nand_writel(info, NDCR, 0);
310	nand_writel(info, NDSR, NDSR_MASK);
311	nand_writel(info, NDCR, ndcr);
312}
313
314static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
315{
316	uint32_t ndcr;
317	int timeout = NAND_STOP_DELAY;
318
319	/* wait RUN bit in NDCR become 0 */
320	ndcr = nand_readl(info, NDCR);
321	while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
322		ndcr = nand_readl(info, NDCR);
323		udelay(1);
324	}
325
326	if (timeout <= 0) {
327		ndcr &= ~NDCR_ND_RUN;
328		nand_writel(info, NDCR, ndcr);
329	}
330	/* clear status bits */
331	nand_writel(info, NDSR, NDSR_MASK);
332}
333
334static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
335{
336	uint32_t ndcr;
337
338	ndcr = nand_readl(info, NDCR);
339	nand_writel(info, NDCR, ndcr & ~int_mask);
340}
341
342static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
343{
344	uint32_t ndcr;
345
346	ndcr = nand_readl(info, NDCR);
347	nand_writel(info, NDCR, ndcr | int_mask);
348}
349
350static void handle_data_pio(struct pxa3xx_nand_info *info)
351{
352	switch (info->state) {
353	case STATE_PIO_WRITING:
354		__raw_writesl(info->mmio_base + NDDB, info->data_buff,
355				DIV_ROUND_UP(info->data_size, 4));
356		if (info->oob_size > 0)
357			__raw_writesl(info->mmio_base + NDDB, info->oob_buff,
358					DIV_ROUND_UP(info->oob_size, 4));
359		break;
360	case STATE_PIO_READING:
361		__raw_readsl(info->mmio_base + NDDB, info->data_buff,
362				DIV_ROUND_UP(info->data_size, 4));
363		if (info->oob_size > 0)
364			__raw_readsl(info->mmio_base + NDDB, info->oob_buff,
365					DIV_ROUND_UP(info->oob_size, 4));
366		break;
367	default:
368		dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
369				info->state);
370		BUG();
371	}
372}
373
374static void start_data_dma(struct pxa3xx_nand_info *info)
375{
376	struct pxa_dma_desc *desc = info->data_desc;
377	int dma_len = ALIGN(info->data_size + info->oob_size, 32);
378
379	desc->ddadr = DDADR_STOP;
380	desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len;
381
382	switch (info->state) {
383	case STATE_DMA_WRITING:
384		desc->dsadr = info->data_buff_phys;
385		desc->dtadr = info->mmio_phys + NDDB;
386		desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG;
387		break;
388	case STATE_DMA_READING:
389		desc->dtadr = info->data_buff_phys;
390		desc->dsadr = info->mmio_phys + NDDB;
391		desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC;
392		break;
393	default:
394		dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
395				info->state);
396		BUG();
397	}
398
399	DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch;
400	DDADR(info->data_dma_ch) = info->data_desc_addr;
401	DCSR(info->data_dma_ch) |= DCSR_RUN;
402}
403
404static void pxa3xx_nand_data_dma_irq(int channel, void *data)
405{
406	struct pxa3xx_nand_info *info = data;
407	uint32_t dcsr;
408
409	dcsr = DCSR(channel);
410	DCSR(channel) = dcsr;
411
412	if (dcsr & DCSR_BUSERR) {
413		info->retcode = ERR_DMABUSERR;
414	}
415
416	info->state = STATE_DMA_DONE;
417	enable_int(info, NDCR_INT_MASK);
418	nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
419}
420
421static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
422{
423	struct pxa3xx_nand_info *info = devid;
424	unsigned int status, is_completed = 0;
425	unsigned int ready, cmd_done;
426
427	if (info->cs == 0) {
428		ready           = NDSR_FLASH_RDY;
429		cmd_done        = NDSR_CS0_CMDD;
430	} else {
431		ready           = NDSR_RDY;
432		cmd_done        = NDSR_CS1_CMDD;
433	}
434
435	status = nand_readl(info, NDSR);
436
437	if (status & NDSR_DBERR)
438		info->retcode = ERR_DBERR;
439	if (status & NDSR_SBERR)
440		info->retcode = ERR_SBERR;
441	if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
442		/* whether use dma to transfer data */
443		if (info->use_dma) {
444			disable_int(info, NDCR_INT_MASK);
445			info->state = (status & NDSR_RDDREQ) ?
446				      STATE_DMA_READING : STATE_DMA_WRITING;
447			start_data_dma(info);
448			goto NORMAL_IRQ_EXIT;
449		} else {
450			info->state = (status & NDSR_RDDREQ) ?
451				      STATE_PIO_READING : STATE_PIO_WRITING;
452			handle_data_pio(info);
453		}
454	}
455	if (status & cmd_done) {
456		info->state = STATE_CMD_DONE;
457		is_completed = 1;
458	}
459	if (status & ready) {
460		info->is_ready = 1;
461		info->state = STATE_READY;
462	}
463
464	if (status & NDSR_WRCMDREQ) {
465		nand_writel(info, NDSR, NDSR_WRCMDREQ);
466		status &= ~NDSR_WRCMDREQ;
467		info->state = STATE_CMD_HANDLE;
468		nand_writel(info, NDCB0, info->ndcb0);
469		nand_writel(info, NDCB0, info->ndcb1);
470		nand_writel(info, NDCB0, info->ndcb2);
471	}
472
473	/* clear NDSR to let the controller exit the IRQ */
474	nand_writel(info, NDSR, status);
475	if (is_completed)
476		complete(&info->cmd_complete);
477NORMAL_IRQ_EXIT:
478	return IRQ_HANDLED;
479}
480
481static inline int is_buf_blank(uint8_t *buf, size_t len)
482{
483	for (; len > 0; len--)
484		if (*buf++ != 0xff)
485			return 0;
486	return 1;
487}
488
489static int prepare_command_pool(struct pxa3xx_nand_info *info, int command,
490		uint16_t column, int page_addr)
491{
492	uint16_t cmd;
493	int addr_cycle, exec_cmd;
494	struct pxa3xx_nand_host *host;
495	struct mtd_info *mtd;
496
497	host = info->host[info->cs];
498	mtd = host->mtd;
499	addr_cycle = 0;
500	exec_cmd = 1;
501
502	/* reset data and oob column point to handle data */
503	info->buf_start		= 0;
504	info->buf_count		= 0;
505	info->oob_size		= 0;
506	info->use_ecc		= 0;
507	info->is_ready		= 0;
508	info->retcode		= ERR_NONE;
509	if (info->cs != 0)
510		info->ndcb0 = NDCB0_CSEL;
511	else
512		info->ndcb0 = 0;
513
514	switch (command) {
515	case NAND_CMD_READ0:
516	case NAND_CMD_PAGEPROG:
517		info->use_ecc = 1;
518	case NAND_CMD_READOOB:
519		pxa3xx_set_datasize(info);
520		break;
521	case NAND_CMD_SEQIN:
522		exec_cmd = 0;
523		break;
524	default:
525		info->ndcb1 = 0;
526		info->ndcb2 = 0;
527		break;
528	}
529
530	addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
531				    + host->col_addr_cycles);
532
533	switch (command) {
534	case NAND_CMD_READOOB:
535	case NAND_CMD_READ0:
536		cmd = host->cmdset->read1;
537		if (command == NAND_CMD_READOOB)
538			info->buf_start = mtd->writesize + column;
539		else
540			info->buf_start = column;
541
542		if (unlikely(host->page_size < PAGE_CHUNK_SIZE))
543			info->ndcb0 |= NDCB0_CMD_TYPE(0)
544					| addr_cycle
545					| (cmd & NDCB0_CMD1_MASK);
546		else
547			info->ndcb0 |= NDCB0_CMD_TYPE(0)
548					| NDCB0_DBC
549					| addr_cycle
550					| cmd;
551
552	case NAND_CMD_SEQIN:
553		/* small page addr setting */
554		if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) {
555			info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
556					| (column & 0xFF);
557
558			info->ndcb2 = 0;
559		} else {
560			info->ndcb1 = ((page_addr & 0xFFFF) << 16)
561					| (column & 0xFFFF);
562
563			if (page_addr & 0xFF0000)
564				info->ndcb2 = (page_addr & 0xFF0000) >> 16;
565			else
566				info->ndcb2 = 0;
567		}
568
569		info->buf_count = mtd->writesize + mtd->oobsize;
570		memset(info->data_buff, 0xFF, info->buf_count);
571
572		break;
573
574	case NAND_CMD_PAGEPROG:
575		if (is_buf_blank(info->data_buff,
576					(mtd->writesize + mtd->oobsize))) {
577			exec_cmd = 0;
578			break;
579		}
580
581		cmd = host->cmdset->program;
582		info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
583				| NDCB0_AUTO_RS
584				| NDCB0_ST_ROW_EN
585				| NDCB0_DBC
586				| cmd
587				| addr_cycle;
588		break;
589
590	case NAND_CMD_READID:
591		cmd = host->cmdset->read_id;
592		info->buf_count = host->read_id_bytes;
593		info->ndcb0 |= NDCB0_CMD_TYPE(3)
594				| NDCB0_ADDR_CYC(1)
595				| cmd;
596
597		info->data_size = 8;
598		break;
599	case NAND_CMD_STATUS:
600		cmd = host->cmdset->read_status;
601		info->buf_count = 1;
602		info->ndcb0 |= NDCB0_CMD_TYPE(4)
603				| NDCB0_ADDR_CYC(1)
604				| cmd;
605
606		info->data_size = 8;
607		break;
608
609	case NAND_CMD_ERASE1:
610		cmd = host->cmdset->erase;
611		info->ndcb0 |= NDCB0_CMD_TYPE(2)
612				| NDCB0_AUTO_RS
613				| NDCB0_ADDR_CYC(3)
614				| NDCB0_DBC
615				| cmd;
616		info->ndcb1 = page_addr;
617		info->ndcb2 = 0;
618
619		break;
620	case NAND_CMD_RESET:
621		cmd = host->cmdset->reset;
622		info->ndcb0 |= NDCB0_CMD_TYPE(5)
623				| cmd;
624
625		break;
626
627	case NAND_CMD_ERASE2:
628		exec_cmd = 0;
629		break;
630
631	default:
632		exec_cmd = 0;
633		dev_err(&info->pdev->dev, "non-supported command %x\n",
634				command);
635		break;
636	}
637
638	return exec_cmd;
639}
640
641static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
642				int column, int page_addr)
643{
644	struct pxa3xx_nand_host *host = mtd->priv;
645	struct pxa3xx_nand_info *info = host->info_data;
646	int ret, exec_cmd;
647
648	/*
649	 * if this is a x16 device ,then convert the input
650	 * "byte" address into a "word" address appropriate
651	 * for indexing a word-oriented device
652	 */
653	if (host->reg_ndcr & NDCR_DWIDTH_M)
654		column /= 2;
655
656	/*
657	 * There may be different NAND chip hooked to
658	 * different chip select, so check whether
659	 * chip select has been changed, if yes, reset the timing
660	 */
661	if (info->cs != host->cs) {
662		info->cs = host->cs;
663		nand_writel(info, NDTR0CS0, host->ndtr0cs0);
664		nand_writel(info, NDTR1CS0, host->ndtr1cs0);
665	}
666
667	info->state = STATE_PREPARED;
668	exec_cmd = prepare_command_pool(info, command, column, page_addr);
669	if (exec_cmd) {
670		init_completion(&info->cmd_complete);
671		pxa3xx_nand_start(info);
672
673		ret = wait_for_completion_timeout(&info->cmd_complete,
674				CHIP_DELAY_TIMEOUT);
675		if (!ret) {
676			dev_err(&info->pdev->dev, "Wait time out!!!\n");
677			/* Stop State Machine for next command cycle */
678			pxa3xx_nand_stop(info);
679		}
680	}
681	info->state = STATE_IDLE;
682}
683
684static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
685		struct nand_chip *chip, const uint8_t *buf, int oob_required)
686{
687	chip->write_buf(mtd, buf, mtd->writesize);
688	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
689}
690
691static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
692		struct nand_chip *chip, uint8_t *buf, int oob_required,
693		int page)
694{
695	struct pxa3xx_nand_host *host = mtd->priv;
696	struct pxa3xx_nand_info *info = host->info_data;
697
698	chip->read_buf(mtd, buf, mtd->writesize);
699	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
700
701	if (info->retcode == ERR_SBERR) {
702		switch (info->use_ecc) {
703		case 1:
704			mtd->ecc_stats.corrected++;
705			break;
706		case 0:
707		default:
708			break;
709		}
710	} else if (info->retcode == ERR_DBERR) {
711		/*
712		 * for blank page (all 0xff), HW will calculate its ECC as
713		 * 0, which is different from the ECC information within
714		 * OOB, ignore such double bit errors
715		 */
716		if (is_buf_blank(buf, mtd->writesize))
717			info->retcode = ERR_NONE;
718		else
719			mtd->ecc_stats.failed++;
720	}
721
722	return 0;
723}
724
725static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
726{
727	struct pxa3xx_nand_host *host = mtd->priv;
728	struct pxa3xx_nand_info *info = host->info_data;
729	char retval = 0xFF;
730
731	if (info->buf_start < info->buf_count)
732		/* Has just send a new command? */
733		retval = info->data_buff[info->buf_start++];
734
735	return retval;
736}
737
738static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
739{
740	struct pxa3xx_nand_host *host = mtd->priv;
741	struct pxa3xx_nand_info *info = host->info_data;
742	u16 retval = 0xFFFF;
743
744	if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
745		retval = *((u16 *)(info->data_buff+info->buf_start));
746		info->buf_start += 2;
747	}
748	return retval;
749}
750
751static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
752{
753	struct pxa3xx_nand_host *host = mtd->priv;
754	struct pxa3xx_nand_info *info = host->info_data;
755	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
756
757	memcpy(buf, info->data_buff + info->buf_start, real_len);
758	info->buf_start += real_len;
759}
760
761static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
762		const uint8_t *buf, int len)
763{
764	struct pxa3xx_nand_host *host = mtd->priv;
765	struct pxa3xx_nand_info *info = host->info_data;
766	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
767
768	memcpy(info->data_buff + info->buf_start, buf, real_len);
769	info->buf_start += real_len;
770}
771
772static int pxa3xx_nand_verify_buf(struct mtd_info *mtd,
773		const uint8_t *buf, int len)
774{
775	return 0;
776}
777
778static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
779{
780	return;
781}
782
783static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
784{
785	struct pxa3xx_nand_host *host = mtd->priv;
786	struct pxa3xx_nand_info *info = host->info_data;
787
788	/* pxa3xx_nand_send_command has waited for command complete */
789	if (this->state == FL_WRITING || this->state == FL_ERASING) {
790		if (info->retcode == ERR_NONE)
791			return 0;
792		else {
793			/*
794			 * any error make it return 0x01 which will tell
795			 * the caller the erase and write fail
796			 */
797			return 0x01;
798		}
799	}
800
801	return 0;
802}
803
804static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
805				    const struct pxa3xx_nand_flash *f)
806{
807	struct platform_device *pdev = info->pdev;
808	struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
809	struct pxa3xx_nand_host *host = info->host[info->cs];
810	uint32_t ndcr = 0x0; /* enable all interrupts */
811
812	if (f->page_size != 2048 && f->page_size != 512) {
813		dev_err(&pdev->dev, "Current only support 2048 and 512 size\n");
814		return -EINVAL;
815	}
816
817	if (f->flash_width != 16 && f->flash_width != 8) {
818		dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n");
819		return -EINVAL;
820	}
821
822	/* calculate flash information */
823	host->cmdset = &default_cmdset;
824	host->page_size = f->page_size;
825	host->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
826
827	/* calculate addressing information */
828	host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
829
830	if (f->num_blocks * f->page_per_block > 65536)
831		host->row_addr_cycles = 3;
832	else
833		host->row_addr_cycles = 2;
834
835	ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
836	ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
837	ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
838	ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
839	ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
840	ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
841
842	ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
843	ndcr |= NDCR_SPARE_EN; /* enable spare by default */
844
845	host->reg_ndcr = ndcr;
846
847	pxa3xx_nand_set_timing(host, f->timing);
848	return 0;
849}
850
851static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
852{
853	/*
854	 * We set 0 by hard coding here, for we don't support keep_config
855	 * when there is more than one chip attached to the controller
856	 */
857	struct pxa3xx_nand_host *host = info->host[0];
858	uint32_t ndcr = nand_readl(info, NDCR);
859
860	if (ndcr & NDCR_PAGE_SZ) {
861		host->page_size = 2048;
862		host->read_id_bytes = 4;
863	} else {
864		host->page_size = 512;
865		host->read_id_bytes = 2;
866	}
867
868	host->reg_ndcr = ndcr & ~NDCR_INT_MASK;
869	host->cmdset = &default_cmdset;
870
871	host->ndtr0cs0 = nand_readl(info, NDTR0CS0);
872	host->ndtr1cs0 = nand_readl(info, NDTR1CS0);
873
874	return 0;
875}
876
877/* the maximum possible buffer size for large page with OOB data
878 * is: 2048 + 64 = 2112 bytes, allocate a page here for both the
879 * data buffer and the DMA descriptor
880 */
881#define MAX_BUFF_SIZE	PAGE_SIZE
882
883static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
884{
885	struct platform_device *pdev = info->pdev;
886	int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc);
887
888	if (use_dma == 0) {
889		info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL);
890		if (info->data_buff == NULL)
891			return -ENOMEM;
892		return 0;
893	}
894
895	info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE,
896				&info->data_buff_phys, GFP_KERNEL);
897	if (info->data_buff == NULL) {
898		dev_err(&pdev->dev, "failed to allocate dma buffer\n");
899		return -ENOMEM;
900	}
901
902	info->data_desc = (void *)info->data_buff + data_desc_offset;
903	info->data_desc_addr = info->data_buff_phys + data_desc_offset;
904
905	info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW,
906				pxa3xx_nand_data_dma_irq, info);
907	if (info->data_dma_ch < 0) {
908		dev_err(&pdev->dev, "failed to request data dma\n");
909		dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
910				info->data_buff, info->data_buff_phys);
911		return info->data_dma_ch;
912	}
913
914	return 0;
915}
916
917static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info)
918{
919	struct mtd_info *mtd;
920	int ret;
921	mtd = info->host[info->cs]->mtd;
922	/* use the common timing to make a try */
923	ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]);
924	if (ret)
925		return ret;
926
927	pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
928	if (info->is_ready)
929		return 0;
930
931	return -ENODEV;
932}
933
934static int pxa3xx_nand_scan(struct mtd_info *mtd)
935{
936	struct pxa3xx_nand_host *host = mtd->priv;
937	struct pxa3xx_nand_info *info = host->info_data;
938	struct platform_device *pdev = info->pdev;
939	struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
940	struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL;
941	const struct pxa3xx_nand_flash *f = NULL;
942	struct nand_chip *chip = mtd->priv;
943	uint32_t id = -1;
944	uint64_t chipsize;
945	int i, ret, num;
946
947	if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
948		goto KEEP_CONFIG;
949
950	ret = pxa3xx_nand_sensing(info);
951	if (ret) {
952		dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
953			 info->cs);
954
955		return ret;
956	}
957
958	chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0);
959	id = *((uint16_t *)(info->data_buff));
960	if (id != 0)
961		dev_info(&info->pdev->dev, "Detect a flash id %x\n", id);
962	else {
963		dev_warn(&info->pdev->dev,
964			 "Read out ID 0, potential timing set wrong!!\n");
965
966		return -EINVAL;
967	}
968
969	num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1;
970	for (i = 0; i < num; i++) {
971		if (i < pdata->num_flash)
972			f = pdata->flash + i;
973		else
974			f = &builtin_flash_types[i - pdata->num_flash + 1];
975
976		/* find the chip in default list */
977		if (f->chip_id == id)
978			break;
979	}
980
981	if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) {
982		dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n");
983
984		return -EINVAL;
985	}
986
987	ret = pxa3xx_nand_config_flash(info, f);
988	if (ret) {
989		dev_err(&info->pdev->dev, "ERROR! Configure failed\n");
990		return ret;
991	}
992
993	pxa3xx_flash_ids[0].name = f->name;
994	pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff;
995	pxa3xx_flash_ids[0].pagesize = f->page_size;
996	chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size;
997	pxa3xx_flash_ids[0].chipsize = chipsize >> 20;
998	pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block;
999	if (f->flash_width == 16)
1000		pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16;
1001	pxa3xx_flash_ids[1].name = NULL;
1002	def = pxa3xx_flash_ids;
1003KEEP_CONFIG:
1004	chip->ecc.mode = NAND_ECC_HW;
1005	chip->ecc.size = host->page_size;
1006	chip->ecc.strength = 1;
1007
1008	chip->options |= NAND_NO_READRDY;
1009	if (host->reg_ndcr & NDCR_DWIDTH_M)
1010		chip->options |= NAND_BUSWIDTH_16;
1011
1012	if (nand_scan_ident(mtd, 1, def))
1013		return -ENODEV;
1014	/* calculate addressing information */
1015	if (mtd->writesize >= 2048)
1016		host->col_addr_cycles = 2;
1017	else
1018		host->col_addr_cycles = 1;
1019
1020	info->oob_buff = info->data_buff + mtd->writesize;
1021	if ((mtd->size >> chip->page_shift) > 65536)
1022		host->row_addr_cycles = 3;
1023	else
1024		host->row_addr_cycles = 2;
1025
1026	mtd->name = mtd_names[0];
1027	return nand_scan_tail(mtd);
1028}
1029
1030static int alloc_nand_resource(struct platform_device *pdev)
1031{
1032	struct pxa3xx_nand_platform_data *pdata;
1033	struct pxa3xx_nand_info *info;
1034	struct pxa3xx_nand_host *host;
1035	struct nand_chip *chip;
1036	struct mtd_info *mtd;
1037	struct resource *r;
1038	int ret, irq, cs;
1039
1040	pdata = pdev->dev.platform_data;
1041	info = kzalloc(sizeof(*info) + (sizeof(*mtd) +
1042		       sizeof(*host)) * pdata->num_cs, GFP_KERNEL);
1043	if (!info) {
1044		dev_err(&pdev->dev, "failed to allocate memory\n");
1045		return -ENOMEM;
1046	}
1047
1048	info->pdev = pdev;
1049	for (cs = 0; cs < pdata->num_cs; cs++) {
1050		mtd = (struct mtd_info *)((unsigned int)&info[1] +
1051		      (sizeof(*mtd) + sizeof(*host)) * cs);
1052		chip = (struct nand_chip *)(&mtd[1]);
1053		host = (struct pxa3xx_nand_host *)chip;
1054		info->host[cs] = host;
1055		host->mtd = mtd;
1056		host->cs = cs;
1057		host->info_data = info;
1058		mtd->priv = host;
1059		mtd->owner = THIS_MODULE;
1060
1061		chip->ecc.read_page	= pxa3xx_nand_read_page_hwecc;
1062		chip->ecc.write_page	= pxa3xx_nand_write_page_hwecc;
1063		chip->controller        = &info->controller;
1064		chip->waitfunc		= pxa3xx_nand_waitfunc;
1065		chip->select_chip	= pxa3xx_nand_select_chip;
1066		chip->cmdfunc		= pxa3xx_nand_cmdfunc;
1067		chip->read_word		= pxa3xx_nand_read_word;
1068		chip->read_byte		= pxa3xx_nand_read_byte;
1069		chip->read_buf		= pxa3xx_nand_read_buf;
1070		chip->write_buf		= pxa3xx_nand_write_buf;
1071		chip->verify_buf	= pxa3xx_nand_verify_buf;
1072	}
1073
1074	spin_lock_init(&chip->controller->lock);
1075	init_waitqueue_head(&chip->controller->wq);
1076	info->clk = clk_get(&pdev->dev, NULL);
1077	if (IS_ERR(info->clk)) {
1078		dev_err(&pdev->dev, "failed to get nand clock\n");
1079		ret = PTR_ERR(info->clk);
1080		goto fail_free_mtd;
1081	}
1082	clk_enable(info->clk);
1083
1084	r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1085	if (r == NULL) {
1086		dev_err(&pdev->dev, "no resource defined for data DMA\n");
1087		ret = -ENXIO;
1088		goto fail_put_clk;
1089	}
1090	info->drcmr_dat = r->start;
1091
1092	r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1093	if (r == NULL) {
1094		dev_err(&pdev->dev, "no resource defined for command DMA\n");
1095		ret = -ENXIO;
1096		goto fail_put_clk;
1097	}
1098	info->drcmr_cmd = r->start;
1099
1100	irq = platform_get_irq(pdev, 0);
1101	if (irq < 0) {
1102		dev_err(&pdev->dev, "no IRQ resource defined\n");
1103		ret = -ENXIO;
1104		goto fail_put_clk;
1105	}
1106
1107	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1108	if (r == NULL) {
1109		dev_err(&pdev->dev, "no IO memory resource defined\n");
1110		ret = -ENODEV;
1111		goto fail_put_clk;
1112	}
1113
1114	r = request_mem_region(r->start, resource_size(r), pdev->name);
1115	if (r == NULL) {
1116		dev_err(&pdev->dev, "failed to request memory resource\n");
1117		ret = -EBUSY;
1118		goto fail_put_clk;
1119	}
1120
1121	info->mmio_base = ioremap(r->start, resource_size(r));
1122	if (info->mmio_base == NULL) {
1123		dev_err(&pdev->dev, "ioremap() failed\n");
1124		ret = -ENODEV;
1125		goto fail_free_res;
1126	}
1127	info->mmio_phys = r->start;
1128
1129	ret = pxa3xx_nand_init_buff(info);
1130	if (ret)
1131		goto fail_free_io;
1132
1133	/* initialize all interrupts to be disabled */
1134	disable_int(info, NDSR_MASK);
1135
1136	ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED,
1137			  pdev->name, info);
1138	if (ret < 0) {
1139		dev_err(&pdev->dev, "failed to request IRQ\n");
1140		goto fail_free_buf;
1141	}
1142
1143	platform_set_drvdata(pdev, info);
1144
1145	return 0;
1146
1147fail_free_buf:
1148	free_irq(irq, info);
1149	if (use_dma) {
1150		pxa_free_dma(info->data_dma_ch);
1151		dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
1152			info->data_buff, info->data_buff_phys);
1153	} else
1154		kfree(info->data_buff);
1155fail_free_io:
1156	iounmap(info->mmio_base);
1157fail_free_res:
1158	release_mem_region(r->start, resource_size(r));
1159fail_put_clk:
1160	clk_disable(info->clk);
1161	clk_put(info->clk);
1162fail_free_mtd:
1163	kfree(info);
1164	return ret;
1165}
1166
1167static int pxa3xx_nand_remove(struct platform_device *pdev)
1168{
1169	struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1170	struct pxa3xx_nand_platform_data *pdata;
1171	struct resource *r;
1172	int irq, cs;
1173
1174	if (!info)
1175		return 0;
1176
1177	pdata = pdev->dev.platform_data;
1178	platform_set_drvdata(pdev, NULL);
1179
1180	irq = platform_get_irq(pdev, 0);
1181	if (irq >= 0)
1182		free_irq(irq, info);
1183	if (use_dma) {
1184		pxa_free_dma(info->data_dma_ch);
1185		dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE,
1186				info->data_buff, info->data_buff_phys);
1187	} else
1188		kfree(info->data_buff);
1189
1190	iounmap(info->mmio_base);
1191	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1192	release_mem_region(r->start, resource_size(r));
1193
1194	clk_disable(info->clk);
1195	clk_put(info->clk);
1196
1197	for (cs = 0; cs < pdata->num_cs; cs++)
1198		nand_release(info->host[cs]->mtd);
1199	kfree(info);
1200	return 0;
1201}
1202
1203static int pxa3xx_nand_probe(struct platform_device *pdev)
1204{
1205	struct pxa3xx_nand_platform_data *pdata;
1206	struct pxa3xx_nand_info *info;
1207	int ret, cs, probe_success;
1208
1209	pdata = pdev->dev.platform_data;
1210	if (!pdata) {
1211		dev_err(&pdev->dev, "no platform data defined\n");
1212		return -ENODEV;
1213	}
1214
1215	ret = alloc_nand_resource(pdev);
1216	if (ret) {
1217		dev_err(&pdev->dev, "alloc nand resource failed\n");
1218		return ret;
1219	}
1220
1221	info = platform_get_drvdata(pdev);
1222	probe_success = 0;
1223	for (cs = 0; cs < pdata->num_cs; cs++) {
1224		info->cs = cs;
1225		ret = pxa3xx_nand_scan(info->host[cs]->mtd);
1226		if (ret) {
1227			dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
1228				cs);
1229			continue;
1230		}
1231
1232		ret = mtd_device_parse_register(info->host[cs]->mtd, NULL,
1233						NULL, pdata->parts[cs],
1234						pdata->nr_parts[cs]);
1235		if (!ret)
1236			probe_success = 1;
1237	}
1238
1239	if (!probe_success) {
1240		pxa3xx_nand_remove(pdev);
1241		return -ENODEV;
1242	}
1243
1244	return 0;
1245}
1246
1247#ifdef CONFIG_PM
1248static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state)
1249{
1250	struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1251	struct pxa3xx_nand_platform_data *pdata;
1252	struct mtd_info *mtd;
1253	int cs;
1254
1255	pdata = pdev->dev.platform_data;
1256	if (info->state) {
1257		dev_err(&pdev->dev, "driver busy, state = %d\n", info->state);
1258		return -EAGAIN;
1259	}
1260
1261	for (cs = 0; cs < pdata->num_cs; cs++) {
1262		mtd = info->host[cs]->mtd;
1263		mtd_suspend(mtd);
1264	}
1265
1266	return 0;
1267}
1268
1269static int pxa3xx_nand_resume(struct platform_device *pdev)
1270{
1271	struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1272	struct pxa3xx_nand_platform_data *pdata;
1273	struct mtd_info *mtd;
1274	int cs;
1275
1276	pdata = pdev->dev.platform_data;
1277	/* We don't want to handle interrupt without calling mtd routine */
1278	disable_int(info, NDCR_INT_MASK);
1279
1280	/*
1281	 * Directly set the chip select to a invalid value,
1282	 * then the driver would reset the timing according
1283	 * to current chip select at the beginning of cmdfunc
1284	 */
1285	info->cs = 0xff;
1286
1287	/*
1288	 * As the spec says, the NDSR would be updated to 0x1800 when
1289	 * doing the nand_clk disable/enable.
1290	 * To prevent it damaging state machine of the driver, clear
1291	 * all status before resume
1292	 */
1293	nand_writel(info, NDSR, NDSR_MASK);
1294	for (cs = 0; cs < pdata->num_cs; cs++) {
1295		mtd = info->host[cs]->mtd;
1296		mtd_resume(mtd);
1297	}
1298
1299	return 0;
1300}
1301#else
1302#define pxa3xx_nand_suspend	NULL
1303#define pxa3xx_nand_resume	NULL
1304#endif
1305
1306static struct platform_driver pxa3xx_nand_driver = {
1307	.driver = {
1308		.name	= "pxa3xx-nand",
1309	},
1310	.probe		= pxa3xx_nand_probe,
1311	.remove		= pxa3xx_nand_remove,
1312	.suspend	= pxa3xx_nand_suspend,
1313	.resume		= pxa3xx_nand_resume,
1314};
1315
1316module_platform_driver(pxa3xx_nand_driver);
1317
1318MODULE_LICENSE("GPL");
1319MODULE_DESCRIPTION("PXA3xx NAND controller driver");
1320