pxa3xx_nand.c revision 9ca7944deb25d415f7fc5915b9828a857161b97f
1/*
2 * drivers/mtd/nand/pxa3xx_nand.c
3 *
4 * Copyright © 2005 Intel Corporation
5 * Copyright © 2006 Marvell International Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/interrupt.h>
15#include <linux/platform_device.h>
16#include <linux/dma-mapping.h>
17#include <linux/delay.h>
18#include <linux/clk.h>
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
22#include <linux/io.h>
23#include <linux/irq.h>
24#include <linux/slab.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
27
28#include <mach/dma.h>
29#include <linux/platform_data/mtd-nand-pxa3xx.h>
30
31#define	CHIP_DELAY_TIMEOUT	(2 * HZ/10)
32#define NAND_STOP_DELAY		(2 * HZ/50)
33#define PAGE_CHUNK_SIZE		(2048)
34
35/* registers and bit definitions */
36#define NDCR		(0x00) /* Control register */
37#define NDTR0CS0	(0x04) /* Timing Parameter 0 for CS0 */
38#define NDTR1CS0	(0x0C) /* Timing Parameter 1 for CS0 */
39#define NDSR		(0x14) /* Status Register */
40#define NDPCR		(0x18) /* Page Count Register */
41#define NDBDR0		(0x1C) /* Bad Block Register 0 */
42#define NDBDR1		(0x20) /* Bad Block Register 1 */
43#define NDDB		(0x40) /* Data Buffer */
44#define NDCB0		(0x48) /* Command Buffer0 */
45#define NDCB1		(0x4C) /* Command Buffer1 */
46#define NDCB2		(0x50) /* Command Buffer2 */
47
48#define NDCR_SPARE_EN		(0x1 << 31)
49#define NDCR_ECC_EN		(0x1 << 30)
50#define NDCR_DMA_EN		(0x1 << 29)
51#define NDCR_ND_RUN		(0x1 << 28)
52#define NDCR_DWIDTH_C		(0x1 << 27)
53#define NDCR_DWIDTH_M		(0x1 << 26)
54#define NDCR_PAGE_SZ		(0x1 << 24)
55#define NDCR_NCSX		(0x1 << 23)
56#define NDCR_ND_MODE		(0x3 << 21)
57#define NDCR_NAND_MODE   	(0x0)
58#define NDCR_CLR_PG_CNT		(0x1 << 20)
59#define NDCR_STOP_ON_UNCOR	(0x1 << 19)
60#define NDCR_RD_ID_CNT_MASK	(0x7 << 16)
61#define NDCR_RD_ID_CNT(x)	(((x) << 16) & NDCR_RD_ID_CNT_MASK)
62
63#define NDCR_RA_START		(0x1 << 15)
64#define NDCR_PG_PER_BLK		(0x1 << 14)
65#define NDCR_ND_ARB_EN		(0x1 << 12)
66#define NDCR_INT_MASK           (0xFFF)
67
68#define NDSR_MASK		(0xfff)
69#define NDSR_RDY                (0x1 << 12)
70#define NDSR_FLASH_RDY          (0x1 << 11)
71#define NDSR_CS0_PAGED		(0x1 << 10)
72#define NDSR_CS1_PAGED		(0x1 << 9)
73#define NDSR_CS0_CMDD		(0x1 << 8)
74#define NDSR_CS1_CMDD		(0x1 << 7)
75#define NDSR_CS0_BBD		(0x1 << 6)
76#define NDSR_CS1_BBD		(0x1 << 5)
77#define NDSR_DBERR		(0x1 << 4)
78#define NDSR_SBERR		(0x1 << 3)
79#define NDSR_WRDREQ		(0x1 << 2)
80#define NDSR_RDDREQ		(0x1 << 1)
81#define NDSR_WRCMDREQ		(0x1)
82
83#define NDCB0_ST_ROW_EN         (0x1 << 26)
84#define NDCB0_AUTO_RS		(0x1 << 25)
85#define NDCB0_CSEL		(0x1 << 24)
86#define NDCB0_CMD_TYPE_MASK	(0x7 << 21)
87#define NDCB0_CMD_TYPE(x)	(((x) << 21) & NDCB0_CMD_TYPE_MASK)
88#define NDCB0_NC		(0x1 << 20)
89#define NDCB0_DBC		(0x1 << 19)
90#define NDCB0_ADDR_CYC_MASK	(0x7 << 16)
91#define NDCB0_ADDR_CYC(x)	(((x) << 16) & NDCB0_ADDR_CYC_MASK)
92#define NDCB0_CMD2_MASK		(0xff << 8)
93#define NDCB0_CMD1_MASK		(0xff)
94#define NDCB0_ADDR_CYC_SHIFT	(16)
95
96/* macros for registers read/write */
97#define nand_writel(info, off, val)	\
98	__raw_writel((val), (info)->mmio_base + (off))
99
100#define nand_readl(info, off)		\
101	__raw_readl((info)->mmio_base + (off))
102
103/* error code and state */
104enum {
105	ERR_NONE	= 0,
106	ERR_DMABUSERR	= -1,
107	ERR_SENDCMD	= -2,
108	ERR_DBERR	= -3,
109	ERR_BBERR	= -4,
110	ERR_SBERR	= -5,
111};
112
113enum {
114	STATE_IDLE = 0,
115	STATE_PREPARED,
116	STATE_CMD_HANDLE,
117	STATE_DMA_READING,
118	STATE_DMA_WRITING,
119	STATE_DMA_DONE,
120	STATE_PIO_READING,
121	STATE_PIO_WRITING,
122	STATE_CMD_DONE,
123	STATE_READY,
124};
125
126struct pxa3xx_nand_host {
127	struct nand_chip	chip;
128	struct pxa3xx_nand_cmdset *cmdset;
129	struct mtd_info         *mtd;
130	void			*info_data;
131
132	/* page size of attached chip */
133	unsigned int		page_size;
134	int			use_ecc;
135	int			cs;
136
137	/* calculated from pxa3xx_nand_flash data */
138	unsigned int		col_addr_cycles;
139	unsigned int		row_addr_cycles;
140	size_t			read_id_bytes;
141
142	/* cached register value */
143	uint32_t		reg_ndcr;
144	uint32_t		ndtr0cs0;
145	uint32_t		ndtr1cs0;
146};
147
148struct pxa3xx_nand_info {
149	struct nand_hw_control	controller;
150	struct platform_device	 *pdev;
151
152	struct clk		*clk;
153	void __iomem		*mmio_base;
154	unsigned long		mmio_phys;
155	struct completion	cmd_complete;
156
157	unsigned int 		buf_start;
158	unsigned int		buf_count;
159
160	/* DMA information */
161	int			drcmr_dat;
162	int			drcmr_cmd;
163
164	unsigned char		*data_buff;
165	unsigned char		*oob_buff;
166	dma_addr_t 		data_buff_phys;
167	int 			data_dma_ch;
168	struct pxa_dma_desc	*data_desc;
169	dma_addr_t 		data_desc_addr;
170
171	struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
172	unsigned int		state;
173
174	int			cs;
175	int			use_ecc;	/* use HW ECC ? */
176	int			use_dma;	/* use DMA ? */
177	int			is_ready;
178
179	unsigned int		page_size;	/* page size of attached chip */
180	unsigned int		data_size;	/* data size in FIFO */
181	unsigned int		oob_size;
182	int 			retcode;
183
184	/* generated NDCBx register values */
185	uint32_t		ndcb0;
186	uint32_t		ndcb1;
187	uint32_t		ndcb2;
188};
189
190static bool use_dma = 1;
191module_param(use_dma, bool, 0444);
192MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
193
194/*
195 * Default NAND flash controller configuration setup by the
196 * bootloader. This configuration is used only when pdata->keep_config is set
197 */
198static struct pxa3xx_nand_cmdset default_cmdset = {
199	.read1		= 0x3000,
200	.read2		= 0x0050,
201	.program	= 0x1080,
202	.read_status	= 0x0070,
203	.read_id	= 0x0090,
204	.erase		= 0xD060,
205	.reset		= 0x00FF,
206	.lock		= 0x002A,
207	.unlock		= 0x2423,
208	.lock_status	= 0x007A,
209};
210
211static struct pxa3xx_nand_timing timing[] = {
212	{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
213	{ 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
214	{ 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
215	{ 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
216};
217
218static struct pxa3xx_nand_flash builtin_flash_types[] = {
219{ "DEFAULT FLASH",      0,   0, 2048,  8,  8,    0, &timing[0] },
220{ "64MiB 16-bit",  0x46ec,  32,  512, 16, 16, 4096, &timing[1] },
221{ "256MiB 8-bit",  0xdaec,  64, 2048,  8,  8, 2048, &timing[1] },
222{ "4GiB 8-bit",    0xd7ec, 128, 4096,  8,  8, 8192, &timing[1] },
223{ "128MiB 8-bit",  0xa12c,  64, 2048,  8,  8, 1024, &timing[2] },
224{ "128MiB 16-bit", 0xb12c,  64, 2048, 16, 16, 1024, &timing[2] },
225{ "512MiB 8-bit",  0xdc2c,  64, 2048,  8,  8, 4096, &timing[2] },
226{ "512MiB 16-bit", 0xcc2c,  64, 2048, 16, 16, 4096, &timing[2] },
227{ "256MiB 16-bit", 0xba20,  64, 2048, 16, 16, 2048, &timing[3] },
228};
229
230/* Define a default flash type setting serve as flash detecting only */
231#define DEFAULT_FLASH_TYPE (&builtin_flash_types[0])
232
233const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL};
234
235#define NDTR0_tCH(c)	(min((c), 7) << 19)
236#define NDTR0_tCS(c)	(min((c), 7) << 16)
237#define NDTR0_tWH(c)	(min((c), 7) << 11)
238#define NDTR0_tWP(c)	(min((c), 7) << 8)
239#define NDTR0_tRH(c)	(min((c), 7) << 3)
240#define NDTR0_tRP(c)	(min((c), 7) << 0)
241
242#define NDTR1_tR(c)	(min((c), 65535) << 16)
243#define NDTR1_tWHR(c)	(min((c), 15) << 4)
244#define NDTR1_tAR(c)	(min((c), 15) << 0)
245
246/* convert nano-seconds to nand flash controller clock cycles */
247#define ns2cycle(ns, clk)	(int)((ns) * (clk / 1000000) / 1000)
248
249static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
250				   const struct pxa3xx_nand_timing *t)
251{
252	struct pxa3xx_nand_info *info = host->info_data;
253	unsigned long nand_clk = clk_get_rate(info->clk);
254	uint32_t ndtr0, ndtr1;
255
256	ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
257		NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
258		NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
259		NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
260		NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
261		NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
262
263	ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
264		NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
265		NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
266
267	host->ndtr0cs0 = ndtr0;
268	host->ndtr1cs0 = ndtr1;
269	nand_writel(info, NDTR0CS0, ndtr0);
270	nand_writel(info, NDTR1CS0, ndtr1);
271}
272
273static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info)
274{
275	struct pxa3xx_nand_host *host = info->host[info->cs];
276	int oob_enable = host->reg_ndcr & NDCR_SPARE_EN;
277
278	info->data_size = host->page_size;
279	if (!oob_enable) {
280		info->oob_size = 0;
281		return;
282	}
283
284	switch (host->page_size) {
285	case 2048:
286		info->oob_size = (info->use_ecc) ? 40 : 64;
287		break;
288	case 512:
289		info->oob_size = (info->use_ecc) ? 8 : 16;
290		break;
291	}
292}
293
294/**
295 * NOTE: it is a must to set ND_RUN firstly, then write
296 * command buffer, otherwise, it does not work.
297 * We enable all the interrupt at the same time, and
298 * let pxa3xx_nand_irq to handle all logic.
299 */
300static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
301{
302	struct pxa3xx_nand_host *host = info->host[info->cs];
303	uint32_t ndcr;
304
305	ndcr = host->reg_ndcr;
306	ndcr |= info->use_ecc ? NDCR_ECC_EN : 0;
307	ndcr |= info->use_dma ? NDCR_DMA_EN : 0;
308	ndcr |= NDCR_ND_RUN;
309
310	/* clear status bits and run */
311	nand_writel(info, NDCR, 0);
312	nand_writel(info, NDSR, NDSR_MASK);
313	nand_writel(info, NDCR, ndcr);
314}
315
316static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
317{
318	uint32_t ndcr;
319	int timeout = NAND_STOP_DELAY;
320
321	/* wait RUN bit in NDCR become 0 */
322	ndcr = nand_readl(info, NDCR);
323	while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
324		ndcr = nand_readl(info, NDCR);
325		udelay(1);
326	}
327
328	if (timeout <= 0) {
329		ndcr &= ~NDCR_ND_RUN;
330		nand_writel(info, NDCR, ndcr);
331	}
332	/* clear status bits */
333	nand_writel(info, NDSR, NDSR_MASK);
334}
335
336static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
337{
338	uint32_t ndcr;
339
340	ndcr = nand_readl(info, NDCR);
341	nand_writel(info, NDCR, ndcr & ~int_mask);
342}
343
344static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
345{
346	uint32_t ndcr;
347
348	ndcr = nand_readl(info, NDCR);
349	nand_writel(info, NDCR, ndcr | int_mask);
350}
351
352static void handle_data_pio(struct pxa3xx_nand_info *info)
353{
354	switch (info->state) {
355	case STATE_PIO_WRITING:
356		__raw_writesl(info->mmio_base + NDDB, info->data_buff,
357				DIV_ROUND_UP(info->data_size, 4));
358		if (info->oob_size > 0)
359			__raw_writesl(info->mmio_base + NDDB, info->oob_buff,
360					DIV_ROUND_UP(info->oob_size, 4));
361		break;
362	case STATE_PIO_READING:
363		__raw_readsl(info->mmio_base + NDDB, info->data_buff,
364				DIV_ROUND_UP(info->data_size, 4));
365		if (info->oob_size > 0)
366			__raw_readsl(info->mmio_base + NDDB, info->oob_buff,
367					DIV_ROUND_UP(info->oob_size, 4));
368		break;
369	default:
370		dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
371				info->state);
372		BUG();
373	}
374}
375
376static void start_data_dma(struct pxa3xx_nand_info *info)
377{
378	struct pxa_dma_desc *desc = info->data_desc;
379	int dma_len = ALIGN(info->data_size + info->oob_size, 32);
380
381	desc->ddadr = DDADR_STOP;
382	desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len;
383
384	switch (info->state) {
385	case STATE_DMA_WRITING:
386		desc->dsadr = info->data_buff_phys;
387		desc->dtadr = info->mmio_phys + NDDB;
388		desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG;
389		break;
390	case STATE_DMA_READING:
391		desc->dtadr = info->data_buff_phys;
392		desc->dsadr = info->mmio_phys + NDDB;
393		desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC;
394		break;
395	default:
396		dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
397				info->state);
398		BUG();
399	}
400
401	DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch;
402	DDADR(info->data_dma_ch) = info->data_desc_addr;
403	DCSR(info->data_dma_ch) |= DCSR_RUN;
404}
405
406static void pxa3xx_nand_data_dma_irq(int channel, void *data)
407{
408	struct pxa3xx_nand_info *info = data;
409	uint32_t dcsr;
410
411	dcsr = DCSR(channel);
412	DCSR(channel) = dcsr;
413
414	if (dcsr & DCSR_BUSERR) {
415		info->retcode = ERR_DMABUSERR;
416	}
417
418	info->state = STATE_DMA_DONE;
419	enable_int(info, NDCR_INT_MASK);
420	nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
421}
422
423static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
424{
425	struct pxa3xx_nand_info *info = devid;
426	unsigned int status, is_completed = 0;
427	unsigned int ready, cmd_done;
428
429	if (info->cs == 0) {
430		ready           = NDSR_FLASH_RDY;
431		cmd_done        = NDSR_CS0_CMDD;
432	} else {
433		ready           = NDSR_RDY;
434		cmd_done        = NDSR_CS1_CMDD;
435	}
436
437	status = nand_readl(info, NDSR);
438
439	if (status & NDSR_DBERR)
440		info->retcode = ERR_DBERR;
441	if (status & NDSR_SBERR)
442		info->retcode = ERR_SBERR;
443	if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
444		/* whether use dma to transfer data */
445		if (info->use_dma) {
446			disable_int(info, NDCR_INT_MASK);
447			info->state = (status & NDSR_RDDREQ) ?
448				      STATE_DMA_READING : STATE_DMA_WRITING;
449			start_data_dma(info);
450			goto NORMAL_IRQ_EXIT;
451		} else {
452			info->state = (status & NDSR_RDDREQ) ?
453				      STATE_PIO_READING : STATE_PIO_WRITING;
454			handle_data_pio(info);
455		}
456	}
457	if (status & cmd_done) {
458		info->state = STATE_CMD_DONE;
459		is_completed = 1;
460	}
461	if (status & ready) {
462		info->is_ready = 1;
463		info->state = STATE_READY;
464	}
465
466	if (status & NDSR_WRCMDREQ) {
467		nand_writel(info, NDSR, NDSR_WRCMDREQ);
468		status &= ~NDSR_WRCMDREQ;
469		info->state = STATE_CMD_HANDLE;
470		nand_writel(info, NDCB0, info->ndcb0);
471		nand_writel(info, NDCB0, info->ndcb1);
472		nand_writel(info, NDCB0, info->ndcb2);
473	}
474
475	/* clear NDSR to let the controller exit the IRQ */
476	nand_writel(info, NDSR, status);
477	if (is_completed)
478		complete(&info->cmd_complete);
479NORMAL_IRQ_EXIT:
480	return IRQ_HANDLED;
481}
482
483static inline int is_buf_blank(uint8_t *buf, size_t len)
484{
485	for (; len > 0; len--)
486		if (*buf++ != 0xff)
487			return 0;
488	return 1;
489}
490
491static int prepare_command_pool(struct pxa3xx_nand_info *info, int command,
492		uint16_t column, int page_addr)
493{
494	uint16_t cmd;
495	int addr_cycle, exec_cmd;
496	struct pxa3xx_nand_host *host;
497	struct mtd_info *mtd;
498
499	host = info->host[info->cs];
500	mtd = host->mtd;
501	addr_cycle = 0;
502	exec_cmd = 1;
503
504	/* reset data and oob column point to handle data */
505	info->buf_start		= 0;
506	info->buf_count		= 0;
507	info->oob_size		= 0;
508	info->use_ecc		= 0;
509	info->is_ready		= 0;
510	info->retcode		= ERR_NONE;
511	if (info->cs != 0)
512		info->ndcb0 = NDCB0_CSEL;
513	else
514		info->ndcb0 = 0;
515
516	switch (command) {
517	case NAND_CMD_READ0:
518	case NAND_CMD_PAGEPROG:
519		info->use_ecc = 1;
520	case NAND_CMD_READOOB:
521		pxa3xx_set_datasize(info);
522		break;
523	case NAND_CMD_SEQIN:
524		exec_cmd = 0;
525		break;
526	default:
527		info->ndcb1 = 0;
528		info->ndcb2 = 0;
529		break;
530	}
531
532	addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
533				    + host->col_addr_cycles);
534
535	switch (command) {
536	case NAND_CMD_READOOB:
537	case NAND_CMD_READ0:
538		cmd = host->cmdset->read1;
539		if (command == NAND_CMD_READOOB)
540			info->buf_start = mtd->writesize + column;
541		else
542			info->buf_start = column;
543
544		if (unlikely(host->page_size < PAGE_CHUNK_SIZE))
545			info->ndcb0 |= NDCB0_CMD_TYPE(0)
546					| addr_cycle
547					| (cmd & NDCB0_CMD1_MASK);
548		else
549			info->ndcb0 |= NDCB0_CMD_TYPE(0)
550					| NDCB0_DBC
551					| addr_cycle
552					| cmd;
553
554	case NAND_CMD_SEQIN:
555		/* small page addr setting */
556		if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) {
557			info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
558					| (column & 0xFF);
559
560			info->ndcb2 = 0;
561		} else {
562			info->ndcb1 = ((page_addr & 0xFFFF) << 16)
563					| (column & 0xFFFF);
564
565			if (page_addr & 0xFF0000)
566				info->ndcb2 = (page_addr & 0xFF0000) >> 16;
567			else
568				info->ndcb2 = 0;
569		}
570
571		info->buf_count = mtd->writesize + mtd->oobsize;
572		memset(info->data_buff, 0xFF, info->buf_count);
573
574		break;
575
576	case NAND_CMD_PAGEPROG:
577		if (is_buf_blank(info->data_buff,
578					(mtd->writesize + mtd->oobsize))) {
579			exec_cmd = 0;
580			break;
581		}
582
583		cmd = host->cmdset->program;
584		info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
585				| NDCB0_AUTO_RS
586				| NDCB0_ST_ROW_EN
587				| NDCB0_DBC
588				| cmd
589				| addr_cycle;
590		break;
591
592	case NAND_CMD_READID:
593		cmd = host->cmdset->read_id;
594		info->buf_count = host->read_id_bytes;
595		info->ndcb0 |= NDCB0_CMD_TYPE(3)
596				| NDCB0_ADDR_CYC(1)
597				| cmd;
598
599		info->data_size = 8;
600		break;
601	case NAND_CMD_STATUS:
602		cmd = host->cmdset->read_status;
603		info->buf_count = 1;
604		info->ndcb0 |= NDCB0_CMD_TYPE(4)
605				| NDCB0_ADDR_CYC(1)
606				| cmd;
607
608		info->data_size = 8;
609		break;
610
611	case NAND_CMD_ERASE1:
612		cmd = host->cmdset->erase;
613		info->ndcb0 |= NDCB0_CMD_TYPE(2)
614				| NDCB0_AUTO_RS
615				| NDCB0_ADDR_CYC(3)
616				| NDCB0_DBC
617				| cmd;
618		info->ndcb1 = page_addr;
619		info->ndcb2 = 0;
620
621		break;
622	case NAND_CMD_RESET:
623		cmd = host->cmdset->reset;
624		info->ndcb0 |= NDCB0_CMD_TYPE(5)
625				| cmd;
626
627		break;
628
629	case NAND_CMD_ERASE2:
630		exec_cmd = 0;
631		break;
632
633	default:
634		exec_cmd = 0;
635		dev_err(&info->pdev->dev, "non-supported command %x\n",
636				command);
637		break;
638	}
639
640	return exec_cmd;
641}
642
643static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
644				int column, int page_addr)
645{
646	struct pxa3xx_nand_host *host = mtd->priv;
647	struct pxa3xx_nand_info *info = host->info_data;
648	int ret, exec_cmd;
649
650	/*
651	 * if this is a x16 device ,then convert the input
652	 * "byte" address into a "word" address appropriate
653	 * for indexing a word-oriented device
654	 */
655	if (host->reg_ndcr & NDCR_DWIDTH_M)
656		column /= 2;
657
658	/*
659	 * There may be different NAND chip hooked to
660	 * different chip select, so check whether
661	 * chip select has been changed, if yes, reset the timing
662	 */
663	if (info->cs != host->cs) {
664		info->cs = host->cs;
665		nand_writel(info, NDTR0CS0, host->ndtr0cs0);
666		nand_writel(info, NDTR1CS0, host->ndtr1cs0);
667	}
668
669	info->state = STATE_PREPARED;
670	exec_cmd = prepare_command_pool(info, command, column, page_addr);
671	if (exec_cmd) {
672		init_completion(&info->cmd_complete);
673		pxa3xx_nand_start(info);
674
675		ret = wait_for_completion_timeout(&info->cmd_complete,
676				CHIP_DELAY_TIMEOUT);
677		if (!ret) {
678			dev_err(&info->pdev->dev, "Wait time out!!!\n");
679			/* Stop State Machine for next command cycle */
680			pxa3xx_nand_stop(info);
681		}
682	}
683	info->state = STATE_IDLE;
684}
685
686static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
687		struct nand_chip *chip, const uint8_t *buf, int oob_required)
688{
689	chip->write_buf(mtd, buf, mtd->writesize);
690	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
691
692	return 0;
693}
694
695static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
696		struct nand_chip *chip, uint8_t *buf, int oob_required,
697		int page)
698{
699	struct pxa3xx_nand_host *host = mtd->priv;
700	struct pxa3xx_nand_info *info = host->info_data;
701
702	chip->read_buf(mtd, buf, mtd->writesize);
703	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
704
705	if (info->retcode == ERR_SBERR) {
706		switch (info->use_ecc) {
707		case 1:
708			mtd->ecc_stats.corrected++;
709			break;
710		case 0:
711		default:
712			break;
713		}
714	} else if (info->retcode == ERR_DBERR) {
715		/*
716		 * for blank page (all 0xff), HW will calculate its ECC as
717		 * 0, which is different from the ECC information within
718		 * OOB, ignore such double bit errors
719		 */
720		if (is_buf_blank(buf, mtd->writesize))
721			info->retcode = ERR_NONE;
722		else
723			mtd->ecc_stats.failed++;
724	}
725
726	return 0;
727}
728
729static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
730{
731	struct pxa3xx_nand_host *host = mtd->priv;
732	struct pxa3xx_nand_info *info = host->info_data;
733	char retval = 0xFF;
734
735	if (info->buf_start < info->buf_count)
736		/* Has just send a new command? */
737		retval = info->data_buff[info->buf_start++];
738
739	return retval;
740}
741
742static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
743{
744	struct pxa3xx_nand_host *host = mtd->priv;
745	struct pxa3xx_nand_info *info = host->info_data;
746	u16 retval = 0xFFFF;
747
748	if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
749		retval = *((u16 *)(info->data_buff+info->buf_start));
750		info->buf_start += 2;
751	}
752	return retval;
753}
754
755static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
756{
757	struct pxa3xx_nand_host *host = mtd->priv;
758	struct pxa3xx_nand_info *info = host->info_data;
759	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
760
761	memcpy(buf, info->data_buff + info->buf_start, real_len);
762	info->buf_start += real_len;
763}
764
765static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
766		const uint8_t *buf, int len)
767{
768	struct pxa3xx_nand_host *host = mtd->priv;
769	struct pxa3xx_nand_info *info = host->info_data;
770	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
771
772	memcpy(info->data_buff + info->buf_start, buf, real_len);
773	info->buf_start += real_len;
774}
775
776static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
777{
778	return;
779}
780
781static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
782{
783	struct pxa3xx_nand_host *host = mtd->priv;
784	struct pxa3xx_nand_info *info = host->info_data;
785
786	/* pxa3xx_nand_send_command has waited for command complete */
787	if (this->state == FL_WRITING || this->state == FL_ERASING) {
788		if (info->retcode == ERR_NONE)
789			return 0;
790		else {
791			/*
792			 * any error make it return 0x01 which will tell
793			 * the caller the erase and write fail
794			 */
795			return 0x01;
796		}
797	}
798
799	return 0;
800}
801
802static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
803				    const struct pxa3xx_nand_flash *f)
804{
805	struct platform_device *pdev = info->pdev;
806	struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
807	struct pxa3xx_nand_host *host = info->host[info->cs];
808	uint32_t ndcr = 0x0; /* enable all interrupts */
809
810	if (f->page_size != 2048 && f->page_size != 512) {
811		dev_err(&pdev->dev, "Current only support 2048 and 512 size\n");
812		return -EINVAL;
813	}
814
815	if (f->flash_width != 16 && f->flash_width != 8) {
816		dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n");
817		return -EINVAL;
818	}
819
820	/* calculate flash information */
821	host->cmdset = &default_cmdset;
822	host->page_size = f->page_size;
823	host->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
824
825	/* calculate addressing information */
826	host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
827
828	if (f->num_blocks * f->page_per_block > 65536)
829		host->row_addr_cycles = 3;
830	else
831		host->row_addr_cycles = 2;
832
833	ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
834	ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
835	ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
836	ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
837	ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
838	ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
839
840	ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
841	ndcr |= NDCR_SPARE_EN; /* enable spare by default */
842
843	host->reg_ndcr = ndcr;
844
845	pxa3xx_nand_set_timing(host, f->timing);
846	return 0;
847}
848
849static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
850{
851	/*
852	 * We set 0 by hard coding here, for we don't support keep_config
853	 * when there is more than one chip attached to the controller
854	 */
855	struct pxa3xx_nand_host *host = info->host[0];
856	uint32_t ndcr = nand_readl(info, NDCR);
857
858	if (ndcr & NDCR_PAGE_SZ) {
859		host->page_size = 2048;
860		host->read_id_bytes = 4;
861	} else {
862		host->page_size = 512;
863		host->read_id_bytes = 2;
864	}
865
866	host->reg_ndcr = ndcr & ~NDCR_INT_MASK;
867	host->cmdset = &default_cmdset;
868
869	host->ndtr0cs0 = nand_readl(info, NDTR0CS0);
870	host->ndtr1cs0 = nand_readl(info, NDTR1CS0);
871
872	return 0;
873}
874
875/* the maximum possible buffer size for large page with OOB data
876 * is: 2048 + 64 = 2112 bytes, allocate a page here for both the
877 * data buffer and the DMA descriptor
878 */
879#define MAX_BUFF_SIZE	PAGE_SIZE
880
881static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
882{
883	struct platform_device *pdev = info->pdev;
884	int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc);
885
886	if (use_dma == 0) {
887		info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL);
888		if (info->data_buff == NULL)
889			return -ENOMEM;
890		return 0;
891	}
892
893	info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE,
894				&info->data_buff_phys, GFP_KERNEL);
895	if (info->data_buff == NULL) {
896		dev_err(&pdev->dev, "failed to allocate dma buffer\n");
897		return -ENOMEM;
898	}
899
900	info->data_desc = (void *)info->data_buff + data_desc_offset;
901	info->data_desc_addr = info->data_buff_phys + data_desc_offset;
902
903	info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW,
904				pxa3xx_nand_data_dma_irq, info);
905	if (info->data_dma_ch < 0) {
906		dev_err(&pdev->dev, "failed to request data dma\n");
907		dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
908				info->data_buff, info->data_buff_phys);
909		return info->data_dma_ch;
910	}
911
912	return 0;
913}
914
915static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info)
916{
917	struct mtd_info *mtd;
918	int ret;
919	mtd = info->host[info->cs]->mtd;
920	/* use the common timing to make a try */
921	ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]);
922	if (ret)
923		return ret;
924
925	pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
926	if (info->is_ready)
927		return 0;
928
929	return -ENODEV;
930}
931
932static int pxa3xx_nand_scan(struct mtd_info *mtd)
933{
934	struct pxa3xx_nand_host *host = mtd->priv;
935	struct pxa3xx_nand_info *info = host->info_data;
936	struct platform_device *pdev = info->pdev;
937	struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
938	struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL;
939	const struct pxa3xx_nand_flash *f = NULL;
940	struct nand_chip *chip = mtd->priv;
941	uint32_t id = -1;
942	uint64_t chipsize;
943	int i, ret, num;
944
945	if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
946		goto KEEP_CONFIG;
947
948	ret = pxa3xx_nand_sensing(info);
949	if (ret) {
950		dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
951			 info->cs);
952
953		return ret;
954	}
955
956	chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0);
957	id = *((uint16_t *)(info->data_buff));
958	if (id != 0)
959		dev_info(&info->pdev->dev, "Detect a flash id %x\n", id);
960	else {
961		dev_warn(&info->pdev->dev,
962			 "Read out ID 0, potential timing set wrong!!\n");
963
964		return -EINVAL;
965	}
966
967	num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1;
968	for (i = 0; i < num; i++) {
969		if (i < pdata->num_flash)
970			f = pdata->flash + i;
971		else
972			f = &builtin_flash_types[i - pdata->num_flash + 1];
973
974		/* find the chip in default list */
975		if (f->chip_id == id)
976			break;
977	}
978
979	if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) {
980		dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n");
981
982		return -EINVAL;
983	}
984
985	ret = pxa3xx_nand_config_flash(info, f);
986	if (ret) {
987		dev_err(&info->pdev->dev, "ERROR! Configure failed\n");
988		return ret;
989	}
990
991	pxa3xx_flash_ids[0].name = f->name;
992	pxa3xx_flash_ids[0].dev_id = (f->chip_id >> 8) & 0xffff;
993	pxa3xx_flash_ids[0].pagesize = f->page_size;
994	chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size;
995	pxa3xx_flash_ids[0].chipsize = chipsize >> 20;
996	pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block;
997	if (f->flash_width == 16)
998		pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16;
999	pxa3xx_flash_ids[1].name = NULL;
1000	def = pxa3xx_flash_ids;
1001KEEP_CONFIG:
1002	chip->ecc.mode = NAND_ECC_HW;
1003	chip->ecc.size = host->page_size;
1004	chip->ecc.strength = 1;
1005
1006	if (host->reg_ndcr & NDCR_DWIDTH_M)
1007		chip->options |= NAND_BUSWIDTH_16;
1008
1009	if (nand_scan_ident(mtd, 1, def))
1010		return -ENODEV;
1011	/* calculate addressing information */
1012	if (mtd->writesize >= 2048)
1013		host->col_addr_cycles = 2;
1014	else
1015		host->col_addr_cycles = 1;
1016
1017	info->oob_buff = info->data_buff + mtd->writesize;
1018	if ((mtd->size >> chip->page_shift) > 65536)
1019		host->row_addr_cycles = 3;
1020	else
1021		host->row_addr_cycles = 2;
1022
1023	mtd->name = mtd_names[0];
1024	return nand_scan_tail(mtd);
1025}
1026
1027static int alloc_nand_resource(struct platform_device *pdev)
1028{
1029	struct pxa3xx_nand_platform_data *pdata;
1030	struct pxa3xx_nand_info *info;
1031	struct pxa3xx_nand_host *host;
1032	struct nand_chip *chip = NULL;
1033	struct mtd_info *mtd;
1034	struct resource *r;
1035	int ret, irq, cs;
1036
1037	pdata = pdev->dev.platform_data;
1038	info = devm_kzalloc(&pdev->dev, sizeof(*info) + (sizeof(*mtd) +
1039			    sizeof(*host)) * pdata->num_cs, GFP_KERNEL);
1040	if (!info)
1041		return -ENOMEM;
1042
1043	info->pdev = pdev;
1044	for (cs = 0; cs < pdata->num_cs; cs++) {
1045		mtd = (struct mtd_info *)((unsigned int)&info[1] +
1046		      (sizeof(*mtd) + sizeof(*host)) * cs);
1047		chip = (struct nand_chip *)(&mtd[1]);
1048		host = (struct pxa3xx_nand_host *)chip;
1049		info->host[cs] = host;
1050		host->mtd = mtd;
1051		host->cs = cs;
1052		host->info_data = info;
1053		mtd->priv = host;
1054		mtd->owner = THIS_MODULE;
1055
1056		chip->ecc.read_page	= pxa3xx_nand_read_page_hwecc;
1057		chip->ecc.write_page	= pxa3xx_nand_write_page_hwecc;
1058		chip->controller        = &info->controller;
1059		chip->waitfunc		= pxa3xx_nand_waitfunc;
1060		chip->select_chip	= pxa3xx_nand_select_chip;
1061		chip->cmdfunc		= pxa3xx_nand_cmdfunc;
1062		chip->read_word		= pxa3xx_nand_read_word;
1063		chip->read_byte		= pxa3xx_nand_read_byte;
1064		chip->read_buf		= pxa3xx_nand_read_buf;
1065		chip->write_buf		= pxa3xx_nand_write_buf;
1066	}
1067
1068	spin_lock_init(&chip->controller->lock);
1069	init_waitqueue_head(&chip->controller->wq);
1070	info->clk = devm_clk_get(&pdev->dev, NULL);
1071	if (IS_ERR(info->clk)) {
1072		dev_err(&pdev->dev, "failed to get nand clock\n");
1073		return PTR_ERR(info->clk);
1074	}
1075	clk_enable(info->clk);
1076
1077	/*
1078	 * This is a dirty hack to make this driver work from devicetree
1079	 * bindings. It can be removed once we have a prober DMA controller
1080	 * framework for DT.
1081	 */
1082	if (pdev->dev.of_node && cpu_is_pxa3xx()) {
1083		info->drcmr_dat = 97;
1084		info->drcmr_cmd = 99;
1085	} else {
1086		r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1087		if (r == NULL) {
1088			dev_err(&pdev->dev, "no resource defined for data DMA\n");
1089			ret = -ENXIO;
1090			goto fail_disable_clk;
1091		}
1092		info->drcmr_dat = r->start;
1093
1094		r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1095		if (r == NULL) {
1096			dev_err(&pdev->dev, "no resource defined for command DMA\n");
1097			ret = -ENXIO;
1098			goto fail_disable_clk;
1099		}
1100		info->drcmr_cmd = r->start;
1101	}
1102
1103	irq = platform_get_irq(pdev, 0);
1104	if (irq < 0) {
1105		dev_err(&pdev->dev, "no IRQ resource defined\n");
1106		ret = -ENXIO;
1107		goto fail_disable_clk;
1108	}
1109
1110	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1111	info->mmio_base = devm_ioremap_resource(&pdev->dev, r);
1112	if (IS_ERR(info->mmio_base)) {
1113		ret = PTR_ERR(info->mmio_base);
1114		goto fail_disable_clk;
1115	}
1116	info->mmio_phys = r->start;
1117
1118	ret = pxa3xx_nand_init_buff(info);
1119	if (ret)
1120		goto fail_disable_clk;
1121
1122	/* initialize all interrupts to be disabled */
1123	disable_int(info, NDSR_MASK);
1124
1125	ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED,
1126			  pdev->name, info);
1127	if (ret < 0) {
1128		dev_err(&pdev->dev, "failed to request IRQ\n");
1129		goto fail_free_buf;
1130	}
1131
1132	platform_set_drvdata(pdev, info);
1133
1134	return 0;
1135
1136fail_free_buf:
1137	free_irq(irq, info);
1138	if (use_dma) {
1139		pxa_free_dma(info->data_dma_ch);
1140		dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
1141			info->data_buff, info->data_buff_phys);
1142	} else
1143		kfree(info->data_buff);
1144fail_disable_clk:
1145	clk_disable(info->clk);
1146	return ret;
1147}
1148
1149static int pxa3xx_nand_remove(struct platform_device *pdev)
1150{
1151	struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1152	struct pxa3xx_nand_platform_data *pdata;
1153	int irq, cs;
1154
1155	if (!info)
1156		return 0;
1157
1158	pdata = pdev->dev.platform_data;
1159	platform_set_drvdata(pdev, NULL);
1160
1161	irq = platform_get_irq(pdev, 0);
1162	if (irq >= 0)
1163		free_irq(irq, info);
1164	if (use_dma) {
1165		pxa_free_dma(info->data_dma_ch);
1166		dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE,
1167				info->data_buff, info->data_buff_phys);
1168	} else
1169		kfree(info->data_buff);
1170
1171	clk_disable(info->clk);
1172
1173	for (cs = 0; cs < pdata->num_cs; cs++)
1174		nand_release(info->host[cs]->mtd);
1175	return 0;
1176}
1177
1178#ifdef CONFIG_OF
1179static struct of_device_id pxa3xx_nand_dt_ids[] = {
1180	{ .compatible = "marvell,pxa3xx-nand" },
1181	{}
1182};
1183MODULE_DEVICE_TABLE(of, i2c_pxa_dt_ids);
1184
1185static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1186{
1187	struct pxa3xx_nand_platform_data *pdata;
1188	struct device_node *np = pdev->dev.of_node;
1189	const struct of_device_id *of_id =
1190			of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
1191
1192	if (!of_id)
1193		return 0;
1194
1195	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1196	if (!pdata)
1197		return -ENOMEM;
1198
1199	if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
1200		pdata->enable_arbiter = 1;
1201	if (of_get_property(np, "marvell,nand-keep-config", NULL))
1202		pdata->keep_config = 1;
1203	of_property_read_u32(np, "num-cs", &pdata->num_cs);
1204
1205	pdev->dev.platform_data = pdata;
1206
1207	return 0;
1208}
1209#else
1210static inline int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1211{
1212	return 0;
1213}
1214#endif
1215
1216static int pxa3xx_nand_probe(struct platform_device *pdev)
1217{
1218	struct pxa3xx_nand_platform_data *pdata;
1219	struct mtd_part_parser_data ppdata = {};
1220	struct pxa3xx_nand_info *info;
1221	int ret, cs, probe_success;
1222
1223	ret = pxa3xx_nand_probe_dt(pdev);
1224	if (ret)
1225		return ret;
1226
1227	pdata = pdev->dev.platform_data;
1228	if (!pdata) {
1229		dev_err(&pdev->dev, "no platform data defined\n");
1230		return -ENODEV;
1231	}
1232
1233	ret = alloc_nand_resource(pdev);
1234	if (ret) {
1235		dev_err(&pdev->dev, "alloc nand resource failed\n");
1236		return ret;
1237	}
1238
1239	info = platform_get_drvdata(pdev);
1240	probe_success = 0;
1241	for (cs = 0; cs < pdata->num_cs; cs++) {
1242		info->cs = cs;
1243		ret = pxa3xx_nand_scan(info->host[cs]->mtd);
1244		if (ret) {
1245			dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
1246				cs);
1247			continue;
1248		}
1249
1250		ppdata.of_node = pdev->dev.of_node;
1251		ret = mtd_device_parse_register(info->host[cs]->mtd, NULL,
1252						&ppdata, pdata->parts[cs],
1253						pdata->nr_parts[cs]);
1254		if (!ret)
1255			probe_success = 1;
1256	}
1257
1258	if (!probe_success) {
1259		pxa3xx_nand_remove(pdev);
1260		return -ENODEV;
1261	}
1262
1263	return 0;
1264}
1265
1266#ifdef CONFIG_PM
1267static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state)
1268{
1269	struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1270	struct pxa3xx_nand_platform_data *pdata;
1271	struct mtd_info *mtd;
1272	int cs;
1273
1274	pdata = pdev->dev.platform_data;
1275	if (info->state) {
1276		dev_err(&pdev->dev, "driver busy, state = %d\n", info->state);
1277		return -EAGAIN;
1278	}
1279
1280	for (cs = 0; cs < pdata->num_cs; cs++) {
1281		mtd = info->host[cs]->mtd;
1282		mtd_suspend(mtd);
1283	}
1284
1285	return 0;
1286}
1287
1288static int pxa3xx_nand_resume(struct platform_device *pdev)
1289{
1290	struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1291	struct pxa3xx_nand_platform_data *pdata;
1292	struct mtd_info *mtd;
1293	int cs;
1294
1295	pdata = pdev->dev.platform_data;
1296	/* We don't want to handle interrupt without calling mtd routine */
1297	disable_int(info, NDCR_INT_MASK);
1298
1299	/*
1300	 * Directly set the chip select to a invalid value,
1301	 * then the driver would reset the timing according
1302	 * to current chip select at the beginning of cmdfunc
1303	 */
1304	info->cs = 0xff;
1305
1306	/*
1307	 * As the spec says, the NDSR would be updated to 0x1800 when
1308	 * doing the nand_clk disable/enable.
1309	 * To prevent it damaging state machine of the driver, clear
1310	 * all status before resume
1311	 */
1312	nand_writel(info, NDSR, NDSR_MASK);
1313	for (cs = 0; cs < pdata->num_cs; cs++) {
1314		mtd = info->host[cs]->mtd;
1315		mtd_resume(mtd);
1316	}
1317
1318	return 0;
1319}
1320#else
1321#define pxa3xx_nand_suspend	NULL
1322#define pxa3xx_nand_resume	NULL
1323#endif
1324
1325static struct platform_driver pxa3xx_nand_driver = {
1326	.driver = {
1327		.name	= "pxa3xx-nand",
1328		.of_match_table = of_match_ptr(pxa3xx_nand_dt_ids),
1329	},
1330	.probe		= pxa3xx_nand_probe,
1331	.remove		= pxa3xx_nand_remove,
1332	.suspend	= pxa3xx_nand_suspend,
1333	.resume		= pxa3xx_nand_resume,
1334};
1335
1336module_platform_driver(pxa3xx_nand_driver);
1337
1338MODULE_LICENSE("GPL");
1339MODULE_DESCRIPTION("PXA3xx NAND controller driver");
1340