1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
22 * UBI attaching sub-system.
23 *
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
26 *
27 * The attaching information is represented by a &struct ubi_attach_info'
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
36 * per-LEB objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 *
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
44 *
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
49 *
50 * UBI tries to distinguish between 2 types of corruptions.
51 *
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
58 *
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
62 *
63 * 2. Unexpected corruptions which are not caused by power cuts. During
64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some  point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
68 *
69 * However, it is difficult to reliably distinguish between these types of
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
75 * are as follows.
76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
77 *     to just erase this PEB - this is corruption type 1.
78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
79 *     NAND), it is probably a PEB which was being erased when power cut
80 *     happened, so this is corruption type 1. However, this is just a guess,
81 *     which might be wrong.
82 *   o Otherwise this is corruption type 2.
83 */
84
85#include <linux/err.h>
86#include <linux/slab.h>
87#include <linux/crc32.h>
88#include <linux/math64.h>
89#include <linux/random.h>
90#include "ubi.h"
91
92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93
94/* Temporary variables used during scanning */
95static struct ubi_ec_hdr *ech;
96static struct ubi_vid_hdr *vidh;
97
98/**
99 * add_to_list - add physical eraseblock to a list.
100 * @ai: attaching information
101 * @pnum: physical eraseblock number to add
102 * @vol_id: the last used volume id for the PEB
103 * @lnum: the last used LEB number for the PEB
104 * @ec: erase counter of the physical eraseblock
105 * @to_head: if not zero, add to the head of the list
106 * @list: the list to add to
107 *
108 * This function allocates a 'struct ubi_ainf_peb' object for physical
109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110 * It stores the @lnum and @vol_id alongside, which can both be
111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112 * If @to_head is not zero, PEB will be added to the head of the list, which
113 * basically means it will be processed first later. E.g., we add corrupted
114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
115 * sure we erase them first and get rid of corruptions ASAP. This function
116 * returns zero in case of success and a negative error code in case of
117 * failure.
118 */
119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120		       int lnum, int ec, int to_head, struct list_head *list)
121{
122	struct ubi_ainf_peb *aeb;
123
124	if (list == &ai->free) {
125		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126	} else if (list == &ai->erase) {
127		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128	} else if (list == &ai->alien) {
129		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130		ai->alien_peb_count += 1;
131	} else
132		BUG();
133
134	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135	if (!aeb)
136		return -ENOMEM;
137
138	aeb->pnum = pnum;
139	aeb->vol_id = vol_id;
140	aeb->lnum = lnum;
141	aeb->ec = ec;
142	if (to_head)
143		list_add(&aeb->u.list, list);
144	else
145		list_add_tail(&aeb->u.list, list);
146	return 0;
147}
148
149/**
150 * add_corrupted - add a corrupted physical eraseblock.
151 * @ai: attaching information
152 * @pnum: physical eraseblock number to add
153 * @ec: erase counter of the physical eraseblock
154 *
155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
157 * was presumably not caused by a power cut. Returns zero in case of success
158 * and a negative error code in case of failure.
159 */
160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
161{
162	struct ubi_ainf_peb *aeb;
163
164	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165
166	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167	if (!aeb)
168		return -ENOMEM;
169
170	ai->corr_peb_count += 1;
171	aeb->pnum = pnum;
172	aeb->ec = ec;
173	list_add(&aeb->u.list, &ai->corr);
174	return 0;
175}
176
177/**
178 * validate_vid_hdr - check volume identifier header.
179 * @vid_hdr: the volume identifier header to check
180 * @av: information about the volume this logical eraseblock belongs to
181 * @pnum: physical eraseblock number the VID header came from
182 *
183 * This function checks that data stored in @vid_hdr is consistent. Returns
184 * non-zero if an inconsistency was found and zero if not.
185 *
186 * Note, UBI does sanity check of everything it reads from the flash media.
187 * Most of the checks are done in the I/O sub-system. Here we check that the
188 * information in the VID header is consistent to the information in other VID
189 * headers of the same volume.
190 */
191static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
192			    const struct ubi_ainf_volume *av, int pnum)
193{
194	int vol_type = vid_hdr->vol_type;
195	int vol_id = be32_to_cpu(vid_hdr->vol_id);
196	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197	int data_pad = be32_to_cpu(vid_hdr->data_pad);
198
199	if (av->leb_count != 0) {
200		int av_vol_type;
201
202		/*
203		 * This is not the first logical eraseblock belonging to this
204		 * volume. Ensure that the data in its VID header is consistent
205		 * to the data in previous logical eraseblock headers.
206		 */
207
208		if (vol_id != av->vol_id) {
209			ubi_err("inconsistent vol_id");
210			goto bad;
211		}
212
213		if (av->vol_type == UBI_STATIC_VOLUME)
214			av_vol_type = UBI_VID_STATIC;
215		else
216			av_vol_type = UBI_VID_DYNAMIC;
217
218		if (vol_type != av_vol_type) {
219			ubi_err("inconsistent vol_type");
220			goto bad;
221		}
222
223		if (used_ebs != av->used_ebs) {
224			ubi_err("inconsistent used_ebs");
225			goto bad;
226		}
227
228		if (data_pad != av->data_pad) {
229			ubi_err("inconsistent data_pad");
230			goto bad;
231		}
232	}
233
234	return 0;
235
236bad:
237	ubi_err("inconsistent VID header at PEB %d", pnum);
238	ubi_dump_vid_hdr(vid_hdr);
239	ubi_dump_av(av);
240	return -EINVAL;
241}
242
243/**
244 * add_volume - add volume to the attaching information.
245 * @ai: attaching information
246 * @vol_id: ID of the volume to add
247 * @pnum: physical eraseblock number
248 * @vid_hdr: volume identifier header
249 *
250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
251 * present in the attaching information, this function does nothing. Otherwise
252 * it adds corresponding volume to the attaching information. Returns a pointer
253 * to the allocated "av" object in case of success and a negative error code in
254 * case of failure.
255 */
256static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
257					  int vol_id, int pnum,
258					  const struct ubi_vid_hdr *vid_hdr)
259{
260	struct ubi_ainf_volume *av;
261	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
262
263	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
264
265	/* Walk the volume RB-tree to look if this volume is already present */
266	while (*p) {
267		parent = *p;
268		av = rb_entry(parent, struct ubi_ainf_volume, rb);
269
270		if (vol_id == av->vol_id)
271			return av;
272
273		if (vol_id > av->vol_id)
274			p = &(*p)->rb_left;
275		else
276			p = &(*p)->rb_right;
277	}
278
279	/* The volume is absent - add it */
280	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281	if (!av)
282		return ERR_PTR(-ENOMEM);
283
284	av->highest_lnum = av->leb_count = 0;
285	av->vol_id = vol_id;
286	av->root = RB_ROOT;
287	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289	av->compat = vid_hdr->compat;
290	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
291							    : UBI_STATIC_VOLUME;
292	if (vol_id > ai->highest_vol_id)
293		ai->highest_vol_id = vol_id;
294
295	rb_link_node(&av->rb, parent, p);
296	rb_insert_color(&av->rb, &ai->volumes);
297	ai->vols_found += 1;
298	dbg_bld("added volume %d", vol_id);
299	return av;
300}
301
302/**
303 * ubi_compare_lebs - find out which logical eraseblock is newer.
304 * @ubi: UBI device description object
305 * @aeb: first logical eraseblock to compare
306 * @pnum: physical eraseblock number of the second logical eraseblock to
307 * compare
308 * @vid_hdr: volume identifier header of the second logical eraseblock
309 *
310 * This function compares 2 copies of a LEB and informs which one is newer. In
311 * case of success this function returns a positive value, in case of failure, a
312 * negative error code is returned. The success return codes use the following
313 * bits:
314 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
315 *       second PEB (described by @pnum and @vid_hdr);
316 *     o bit 0 is set: the second PEB is newer;
317 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318 *     o bit 1 is set: bit-flips were detected in the newer LEB;
319 *     o bit 2 is cleared: the older LEB is not corrupted;
320 *     o bit 2 is set: the older LEB is corrupted.
321 */
322int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
323			int pnum, const struct ubi_vid_hdr *vid_hdr)
324{
325	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
326	uint32_t data_crc, crc;
327	struct ubi_vid_hdr *vh = NULL;
328	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
329
330	if (sqnum2 == aeb->sqnum) {
331		/*
332		 * This must be a really ancient UBI image which has been
333		 * created before sequence numbers support has been added. At
334		 * that times we used 32-bit LEB versions stored in logical
335		 * eraseblocks. That was before UBI got into mainline. We do not
336		 * support these images anymore. Well, those images still work,
337		 * but only if no unclean reboots happened.
338		 */
339		ubi_err("unsupported on-flash UBI format");
340		return -EINVAL;
341	}
342
343	/* Obviously the LEB with lower sequence counter is older */
344	second_is_newer = (sqnum2 > aeb->sqnum);
345
346	/*
347	 * Now we know which copy is newer. If the copy flag of the PEB with
348	 * newer version is not set, then we just return, otherwise we have to
349	 * check data CRC. For the second PEB we already have the VID header,
350	 * for the first one - we'll need to re-read it from flash.
351	 *
352	 * Note: this may be optimized so that we wouldn't read twice.
353	 */
354
355	if (second_is_newer) {
356		if (!vid_hdr->copy_flag) {
357			/* It is not a copy, so it is newer */
358			dbg_bld("second PEB %d is newer, copy_flag is unset",
359				pnum);
360			return 1;
361		}
362	} else {
363		if (!aeb->copy_flag) {
364			/* It is not a copy, so it is newer */
365			dbg_bld("first PEB %d is newer, copy_flag is unset",
366				pnum);
367			return bitflips << 1;
368		}
369
370		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
371		if (!vh)
372			return -ENOMEM;
373
374		pnum = aeb->pnum;
375		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
376		if (err) {
377			if (err == UBI_IO_BITFLIPS)
378				bitflips = 1;
379			else {
380				ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
381					pnum, err);
382				if (err > 0)
383					err = -EIO;
384
385				goto out_free_vidh;
386			}
387		}
388
389		vid_hdr = vh;
390	}
391
392	/* Read the data of the copy and check the CRC */
393
394	len = be32_to_cpu(vid_hdr->data_size);
395
396	mutex_lock(&ubi->buf_mutex);
397	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
398	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
399		goto out_unlock;
400
401	data_crc = be32_to_cpu(vid_hdr->data_crc);
402	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
403	if (crc != data_crc) {
404		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
405			pnum, crc, data_crc);
406		corrupted = 1;
407		bitflips = 0;
408		second_is_newer = !second_is_newer;
409	} else {
410		dbg_bld("PEB %d CRC is OK", pnum);
411		bitflips = !!err;
412	}
413	mutex_unlock(&ubi->buf_mutex);
414
415	ubi_free_vid_hdr(ubi, vh);
416
417	if (second_is_newer)
418		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
419	else
420		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
421
422	return second_is_newer | (bitflips << 1) | (corrupted << 2);
423
424out_unlock:
425	mutex_unlock(&ubi->buf_mutex);
426out_free_vidh:
427	ubi_free_vid_hdr(ubi, vh);
428	return err;
429}
430
431/**
432 * ubi_add_to_av - add used physical eraseblock to the attaching information.
433 * @ubi: UBI device description object
434 * @ai: attaching information
435 * @pnum: the physical eraseblock number
436 * @ec: erase counter
437 * @vid_hdr: the volume identifier header
438 * @bitflips: if bit-flips were detected when this physical eraseblock was read
439 *
440 * This function adds information about a used physical eraseblock to the
441 * 'used' tree of the corresponding volume. The function is rather complex
442 * because it has to handle cases when this is not the first physical
443 * eraseblock belonging to the same logical eraseblock, and the newer one has
444 * to be picked, while the older one has to be dropped. This function returns
445 * zero in case of success and a negative error code in case of failure.
446 */
447int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
448		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
449{
450	int err, vol_id, lnum;
451	unsigned long long sqnum;
452	struct ubi_ainf_volume *av;
453	struct ubi_ainf_peb *aeb;
454	struct rb_node **p, *parent = NULL;
455
456	vol_id = be32_to_cpu(vid_hdr->vol_id);
457	lnum = be32_to_cpu(vid_hdr->lnum);
458	sqnum = be64_to_cpu(vid_hdr->sqnum);
459
460	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
461		pnum, vol_id, lnum, ec, sqnum, bitflips);
462
463	av = add_volume(ai, vol_id, pnum, vid_hdr);
464	if (IS_ERR(av))
465		return PTR_ERR(av);
466
467	if (ai->max_sqnum < sqnum)
468		ai->max_sqnum = sqnum;
469
470	/*
471	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
472	 * if this is the first instance of this logical eraseblock or not.
473	 */
474	p = &av->root.rb_node;
475	while (*p) {
476		int cmp_res;
477
478		parent = *p;
479		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
480		if (lnum != aeb->lnum) {
481			if (lnum < aeb->lnum)
482				p = &(*p)->rb_left;
483			else
484				p = &(*p)->rb_right;
485			continue;
486		}
487
488		/*
489		 * There is already a physical eraseblock describing the same
490		 * logical eraseblock present.
491		 */
492
493		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
494			aeb->pnum, aeb->sqnum, aeb->ec);
495
496		/*
497		 * Make sure that the logical eraseblocks have different
498		 * sequence numbers. Otherwise the image is bad.
499		 *
500		 * However, if the sequence number is zero, we assume it must
501		 * be an ancient UBI image from the era when UBI did not have
502		 * sequence numbers. We still can attach these images, unless
503		 * there is a need to distinguish between old and new
504		 * eraseblocks, in which case we'll refuse the image in
505		 * 'ubi_compare_lebs()'. In other words, we attach old clean
506		 * images, but refuse attaching old images with duplicated
507		 * logical eraseblocks because there was an unclean reboot.
508		 */
509		if (aeb->sqnum == sqnum && sqnum != 0) {
510			ubi_err("two LEBs with same sequence number %llu",
511				sqnum);
512			ubi_dump_aeb(aeb, 0);
513			ubi_dump_vid_hdr(vid_hdr);
514			return -EINVAL;
515		}
516
517		/*
518		 * Now we have to drop the older one and preserve the newer
519		 * one.
520		 */
521		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
522		if (cmp_res < 0)
523			return cmp_res;
524
525		if (cmp_res & 1) {
526			/*
527			 * This logical eraseblock is newer than the one
528			 * found earlier.
529			 */
530			err = validate_vid_hdr(vid_hdr, av, pnum);
531			if (err)
532				return err;
533
534			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
535					  aeb->lnum, aeb->ec, cmp_res & 4,
536					  &ai->erase);
537			if (err)
538				return err;
539
540			aeb->ec = ec;
541			aeb->pnum = pnum;
542			aeb->vol_id = vol_id;
543			aeb->lnum = lnum;
544			aeb->scrub = ((cmp_res & 2) || bitflips);
545			aeb->copy_flag = vid_hdr->copy_flag;
546			aeb->sqnum = sqnum;
547
548			if (av->highest_lnum == lnum)
549				av->last_data_size =
550					be32_to_cpu(vid_hdr->data_size);
551
552			return 0;
553		} else {
554			/*
555			 * This logical eraseblock is older than the one found
556			 * previously.
557			 */
558			return add_to_list(ai, pnum, vol_id, lnum, ec,
559					   cmp_res & 4, &ai->erase);
560		}
561	}
562
563	/*
564	 * We've met this logical eraseblock for the first time, add it to the
565	 * attaching information.
566	 */
567
568	err = validate_vid_hdr(vid_hdr, av, pnum);
569	if (err)
570		return err;
571
572	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
573	if (!aeb)
574		return -ENOMEM;
575
576	aeb->ec = ec;
577	aeb->pnum = pnum;
578	aeb->vol_id = vol_id;
579	aeb->lnum = lnum;
580	aeb->scrub = bitflips;
581	aeb->copy_flag = vid_hdr->copy_flag;
582	aeb->sqnum = sqnum;
583
584	if (av->highest_lnum <= lnum) {
585		av->highest_lnum = lnum;
586		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
587	}
588
589	av->leb_count += 1;
590	rb_link_node(&aeb->u.rb, parent, p);
591	rb_insert_color(&aeb->u.rb, &av->root);
592	return 0;
593}
594
595/**
596 * ubi_find_av - find volume in the attaching information.
597 * @ai: attaching information
598 * @vol_id: the requested volume ID
599 *
600 * This function returns a pointer to the volume description or %NULL if there
601 * are no data about this volume in the attaching information.
602 */
603struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
604				    int vol_id)
605{
606	struct ubi_ainf_volume *av;
607	struct rb_node *p = ai->volumes.rb_node;
608
609	while (p) {
610		av = rb_entry(p, struct ubi_ainf_volume, rb);
611
612		if (vol_id == av->vol_id)
613			return av;
614
615		if (vol_id > av->vol_id)
616			p = p->rb_left;
617		else
618			p = p->rb_right;
619	}
620
621	return NULL;
622}
623
624/**
625 * ubi_remove_av - delete attaching information about a volume.
626 * @ai: attaching information
627 * @av: the volume attaching information to delete
628 */
629void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
630{
631	struct rb_node *rb;
632	struct ubi_ainf_peb *aeb;
633
634	dbg_bld("remove attaching information about volume %d", av->vol_id);
635
636	while ((rb = rb_first(&av->root))) {
637		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
638		rb_erase(&aeb->u.rb, &av->root);
639		list_add_tail(&aeb->u.list, &ai->erase);
640	}
641
642	rb_erase(&av->rb, &ai->volumes);
643	kfree(av);
644	ai->vols_found -= 1;
645}
646
647/**
648 * early_erase_peb - erase a physical eraseblock.
649 * @ubi: UBI device description object
650 * @ai: attaching information
651 * @pnum: physical eraseblock number to erase;
652 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
653 *
654 * This function erases physical eraseblock 'pnum', and writes the erase
655 * counter header to it. This function should only be used on UBI device
656 * initialization stages, when the EBA sub-system had not been yet initialized.
657 * This function returns zero in case of success and a negative error code in
658 * case of failure.
659 */
660static int early_erase_peb(struct ubi_device *ubi,
661			   const struct ubi_attach_info *ai, int pnum, int ec)
662{
663	int err;
664	struct ubi_ec_hdr *ec_hdr;
665
666	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
667		/*
668		 * Erase counter overflow. Upgrade UBI and use 64-bit
669		 * erase counters internally.
670		 */
671		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
672		return -EINVAL;
673	}
674
675	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
676	if (!ec_hdr)
677		return -ENOMEM;
678
679	ec_hdr->ec = cpu_to_be64(ec);
680
681	err = ubi_io_sync_erase(ubi, pnum, 0);
682	if (err < 0)
683		goto out_free;
684
685	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
686
687out_free:
688	kfree(ec_hdr);
689	return err;
690}
691
692/**
693 * ubi_early_get_peb - get a free physical eraseblock.
694 * @ubi: UBI device description object
695 * @ai: attaching information
696 *
697 * This function returns a free physical eraseblock. It is supposed to be
698 * called on the UBI initialization stages when the wear-leveling sub-system is
699 * not initialized yet. This function picks a physical eraseblocks from one of
700 * the lists, writes the EC header if it is needed, and removes it from the
701 * list.
702 *
703 * This function returns a pointer to the "aeb" of the found free PEB in case
704 * of success and an error code in case of failure.
705 */
706struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
707				       struct ubi_attach_info *ai)
708{
709	int err = 0;
710	struct ubi_ainf_peb *aeb, *tmp_aeb;
711
712	if (!list_empty(&ai->free)) {
713		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
714		list_del(&aeb->u.list);
715		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
716		return aeb;
717	}
718
719	/*
720	 * We try to erase the first physical eraseblock from the erase list
721	 * and pick it if we succeed, or try to erase the next one if not. And
722	 * so forth. We don't want to take care about bad eraseblocks here -
723	 * they'll be handled later.
724	 */
725	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
726		if (aeb->ec == UBI_UNKNOWN)
727			aeb->ec = ai->mean_ec;
728
729		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
730		if (err)
731			continue;
732
733		aeb->ec += 1;
734		list_del(&aeb->u.list);
735		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
736		return aeb;
737	}
738
739	ubi_err("no free eraseblocks");
740	return ERR_PTR(-ENOSPC);
741}
742
743/**
744 * check_corruption - check the data area of PEB.
745 * @ubi: UBI device description object
746 * @vid_hdr: the (corrupted) VID header of this PEB
747 * @pnum: the physical eraseblock number to check
748 *
749 * This is a helper function which is used to distinguish between VID header
750 * corruptions caused by power cuts and other reasons. If the PEB contains only
751 * 0xFF bytes in the data area, the VID header is most probably corrupted
752 * because of a power cut (%0 is returned in this case). Otherwise, it was
753 * probably corrupted for some other reasons (%1 is returned in this case). A
754 * negative error code is returned if a read error occurred.
755 *
756 * If the corruption reason was a power cut, UBI can safely erase this PEB.
757 * Otherwise, it should preserve it to avoid possibly destroying important
758 * information.
759 */
760static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
761			    int pnum)
762{
763	int err;
764
765	mutex_lock(&ubi->buf_mutex);
766	memset(ubi->peb_buf, 0x00, ubi->leb_size);
767
768	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
769			  ubi->leb_size);
770	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
771		/*
772		 * Bit-flips or integrity errors while reading the data area.
773		 * It is difficult to say for sure what type of corruption is
774		 * this, but presumably a power cut happened while this PEB was
775		 * erased, so it became unstable and corrupted, and should be
776		 * erased.
777		 */
778		err = 0;
779		goto out_unlock;
780	}
781
782	if (err)
783		goto out_unlock;
784
785	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
786		goto out_unlock;
787
788	ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
789		pnum);
790	ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
791	ubi_dump_vid_hdr(vid_hdr);
792	pr_err("hexdump of PEB %d offset %d, length %d",
793	       pnum, ubi->leb_start, ubi->leb_size);
794	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
795			       ubi->peb_buf, ubi->leb_size, 1);
796	err = 1;
797
798out_unlock:
799	mutex_unlock(&ubi->buf_mutex);
800	return err;
801}
802
803/**
804 * scan_peb - scan and process UBI headers of a PEB.
805 * @ubi: UBI device description object
806 * @ai: attaching information
807 * @pnum: the physical eraseblock number
808 * @vid: The volume ID of the found volume will be stored in this pointer
809 * @sqnum: The sqnum of the found volume will be stored in this pointer
810 *
811 * This function reads UBI headers of PEB @pnum, checks them, and adds
812 * information about this PEB to the corresponding list or RB-tree in the
813 * "attaching info" structure. Returns zero if the physical eraseblock was
814 * successfully handled and a negative error code in case of failure.
815 */
816static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
817		    int pnum, int *vid, unsigned long long *sqnum)
818{
819	long long uninitialized_var(ec);
820	int err, bitflips = 0, vol_id = -1, ec_err = 0;
821
822	dbg_bld("scan PEB %d", pnum);
823
824	/* Skip bad physical eraseblocks */
825	err = ubi_io_is_bad(ubi, pnum);
826	if (err < 0)
827		return err;
828	else if (err) {
829		ai->bad_peb_count += 1;
830		return 0;
831	}
832
833	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
834	if (err < 0)
835		return err;
836	switch (err) {
837	case 0:
838		break;
839	case UBI_IO_BITFLIPS:
840		bitflips = 1;
841		break;
842	case UBI_IO_FF:
843		ai->empty_peb_count += 1;
844		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
845				   UBI_UNKNOWN, 0, &ai->erase);
846	case UBI_IO_FF_BITFLIPS:
847		ai->empty_peb_count += 1;
848		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
849				   UBI_UNKNOWN, 1, &ai->erase);
850	case UBI_IO_BAD_HDR_EBADMSG:
851	case UBI_IO_BAD_HDR:
852		/*
853		 * We have to also look at the VID header, possibly it is not
854		 * corrupted. Set %bitflips flag in order to make this PEB be
855		 * moved and EC be re-created.
856		 */
857		ec_err = err;
858		ec = UBI_UNKNOWN;
859		bitflips = 1;
860		break;
861	default:
862		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
863		return -EINVAL;
864	}
865
866	if (!ec_err) {
867		int image_seq;
868
869		/* Make sure UBI version is OK */
870		if (ech->version != UBI_VERSION) {
871			ubi_err("this UBI version is %d, image version is %d",
872				UBI_VERSION, (int)ech->version);
873			return -EINVAL;
874		}
875
876		ec = be64_to_cpu(ech->ec);
877		if (ec > UBI_MAX_ERASECOUNTER) {
878			/*
879			 * Erase counter overflow. The EC headers have 64 bits
880			 * reserved, but we anyway make use of only 31 bit
881			 * values, as this seems to be enough for any existing
882			 * flash. Upgrade UBI and use 64-bit erase counters
883			 * internally.
884			 */
885			ubi_err("erase counter overflow, max is %d",
886				UBI_MAX_ERASECOUNTER);
887			ubi_dump_ec_hdr(ech);
888			return -EINVAL;
889		}
890
891		/*
892		 * Make sure that all PEBs have the same image sequence number.
893		 * This allows us to detect situations when users flash UBI
894		 * images incorrectly, so that the flash has the new UBI image
895		 * and leftovers from the old one. This feature was added
896		 * relatively recently, and the sequence number was always
897		 * zero, because old UBI implementations always set it to zero.
898		 * For this reasons, we do not panic if some PEBs have zero
899		 * sequence number, while other PEBs have non-zero sequence
900		 * number.
901		 */
902		image_seq = be32_to_cpu(ech->image_seq);
903		if (!ubi->image_seq)
904			ubi->image_seq = image_seq;
905		if (image_seq && ubi->image_seq != image_seq) {
906			ubi_err("bad image sequence number %d in PEB %d, expected %d",
907				image_seq, pnum, ubi->image_seq);
908			ubi_dump_ec_hdr(ech);
909			return -EINVAL;
910		}
911	}
912
913	/* OK, we've done with the EC header, let's look at the VID header */
914
915	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
916	if (err < 0)
917		return err;
918	switch (err) {
919	case 0:
920		break;
921	case UBI_IO_BITFLIPS:
922		bitflips = 1;
923		break;
924	case UBI_IO_BAD_HDR_EBADMSG:
925		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
926			/*
927			 * Both EC and VID headers are corrupted and were read
928			 * with data integrity error, probably this is a bad
929			 * PEB, bit it is not marked as bad yet. This may also
930			 * be a result of power cut during erasure.
931			 */
932			ai->maybe_bad_peb_count += 1;
933	case UBI_IO_BAD_HDR:
934		if (ec_err)
935			/*
936			 * Both headers are corrupted. There is a possibility
937			 * that this a valid UBI PEB which has corresponding
938			 * LEB, but the headers are corrupted. However, it is
939			 * impossible to distinguish it from a PEB which just
940			 * contains garbage because of a power cut during erase
941			 * operation. So we just schedule this PEB for erasure.
942			 *
943			 * Besides, in case of NOR flash, we deliberately
944			 * corrupt both headers because NOR flash erasure is
945			 * slow and can start from the end.
946			 */
947			err = 0;
948		else
949			/*
950			 * The EC was OK, but the VID header is corrupted. We
951			 * have to check what is in the data area.
952			 */
953			err = check_corruption(ubi, vidh, pnum);
954
955		if (err < 0)
956			return err;
957		else if (!err)
958			/* This corruption is caused by a power cut */
959			err = add_to_list(ai, pnum, UBI_UNKNOWN,
960					  UBI_UNKNOWN, ec, 1, &ai->erase);
961		else
962			/* This is an unexpected corruption */
963			err = add_corrupted(ai, pnum, ec);
964		if (err)
965			return err;
966		goto adjust_mean_ec;
967	case UBI_IO_FF_BITFLIPS:
968		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
969				  ec, 1, &ai->erase);
970		if (err)
971			return err;
972		goto adjust_mean_ec;
973	case UBI_IO_FF:
974		if (ec_err || bitflips)
975			err = add_to_list(ai, pnum, UBI_UNKNOWN,
976					  UBI_UNKNOWN, ec, 1, &ai->erase);
977		else
978			err = add_to_list(ai, pnum, UBI_UNKNOWN,
979					  UBI_UNKNOWN, ec, 0, &ai->free);
980		if (err)
981			return err;
982		goto adjust_mean_ec;
983	default:
984		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
985			err);
986		return -EINVAL;
987	}
988
989	vol_id = be32_to_cpu(vidh->vol_id);
990	if (vid)
991		*vid = vol_id;
992	if (sqnum)
993		*sqnum = be64_to_cpu(vidh->sqnum);
994	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
995		int lnum = be32_to_cpu(vidh->lnum);
996
997		/* Unsupported internal volume */
998		switch (vidh->compat) {
999		case UBI_COMPAT_DELETE:
1000			if (vol_id != UBI_FM_SB_VOLUME_ID
1001			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1002				ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1003					vol_id, lnum);
1004			}
1005			err = add_to_list(ai, pnum, vol_id, lnum,
1006					  ec, 1, &ai->erase);
1007			if (err)
1008				return err;
1009			return 0;
1010
1011		case UBI_COMPAT_RO:
1012			ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1013				vol_id, lnum);
1014			ubi->ro_mode = 1;
1015			break;
1016
1017		case UBI_COMPAT_PRESERVE:
1018			ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1019				vol_id, lnum);
1020			err = add_to_list(ai, pnum, vol_id, lnum,
1021					  ec, 0, &ai->alien);
1022			if (err)
1023				return err;
1024			return 0;
1025
1026		case UBI_COMPAT_REJECT:
1027			ubi_err("incompatible internal volume %d:%d found",
1028				vol_id, lnum);
1029			return -EINVAL;
1030		}
1031	}
1032
1033	if (ec_err)
1034		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1035			 pnum);
1036	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1037	if (err)
1038		return err;
1039
1040adjust_mean_ec:
1041	if (!ec_err) {
1042		ai->ec_sum += ec;
1043		ai->ec_count += 1;
1044		if (ec > ai->max_ec)
1045			ai->max_ec = ec;
1046		if (ec < ai->min_ec)
1047			ai->min_ec = ec;
1048	}
1049
1050	return 0;
1051}
1052
1053/**
1054 * late_analysis - analyze the overall situation with PEB.
1055 * @ubi: UBI device description object
1056 * @ai: attaching information
1057 *
1058 * This is a helper function which takes a look what PEBs we have after we
1059 * gather information about all of them ("ai" is compete). It decides whether
1060 * the flash is empty and should be formatted of whether there are too many
1061 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1062 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1063 */
1064static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1065{
1066	struct ubi_ainf_peb *aeb;
1067	int max_corr, peb_count;
1068
1069	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1070	max_corr = peb_count / 20 ?: 8;
1071
1072	/*
1073	 * Few corrupted PEBs is not a problem and may be just a result of
1074	 * unclean reboots. However, many of them may indicate some problems
1075	 * with the flash HW or driver.
1076	 */
1077	if (ai->corr_peb_count) {
1078		ubi_err("%d PEBs are corrupted and preserved",
1079			ai->corr_peb_count);
1080		pr_err("Corrupted PEBs are:");
1081		list_for_each_entry(aeb, &ai->corr, u.list)
1082			pr_cont(" %d", aeb->pnum);
1083		pr_cont("\n");
1084
1085		/*
1086		 * If too many PEBs are corrupted, we refuse attaching,
1087		 * otherwise, only print a warning.
1088		 */
1089		if (ai->corr_peb_count >= max_corr) {
1090			ubi_err("too many corrupted PEBs, refusing");
1091			return -EINVAL;
1092		}
1093	}
1094
1095	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1096		/*
1097		 * All PEBs are empty, or almost all - a couple PEBs look like
1098		 * they may be bad PEBs which were not marked as bad yet.
1099		 *
1100		 * This piece of code basically tries to distinguish between
1101		 * the following situations:
1102		 *
1103		 * 1. Flash is empty, but there are few bad PEBs, which are not
1104		 *    marked as bad so far, and which were read with error. We
1105		 *    want to go ahead and format this flash. While formatting,
1106		 *    the faulty PEBs will probably be marked as bad.
1107		 *
1108		 * 2. Flash contains non-UBI data and we do not want to format
1109		 *    it and destroy possibly important information.
1110		 */
1111		if (ai->maybe_bad_peb_count <= 2) {
1112			ai->is_empty = 1;
1113			ubi_msg("empty MTD device detected");
1114			get_random_bytes(&ubi->image_seq,
1115					 sizeof(ubi->image_seq));
1116		} else {
1117			ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1118			return -EINVAL;
1119		}
1120
1121	}
1122
1123	return 0;
1124}
1125
1126/**
1127 * destroy_av - free volume attaching information.
1128 * @av: volume attaching information
1129 * @ai: attaching information
1130 *
1131 * This function destroys the volume attaching information.
1132 */
1133static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1134{
1135	struct ubi_ainf_peb *aeb;
1136	struct rb_node *this = av->root.rb_node;
1137
1138	while (this) {
1139		if (this->rb_left)
1140			this = this->rb_left;
1141		else if (this->rb_right)
1142			this = this->rb_right;
1143		else {
1144			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1145			this = rb_parent(this);
1146			if (this) {
1147				if (this->rb_left == &aeb->u.rb)
1148					this->rb_left = NULL;
1149				else
1150					this->rb_right = NULL;
1151			}
1152
1153			kmem_cache_free(ai->aeb_slab_cache, aeb);
1154		}
1155	}
1156	kfree(av);
1157}
1158
1159/**
1160 * destroy_ai - destroy attaching information.
1161 * @ai: attaching information
1162 */
1163static void destroy_ai(struct ubi_attach_info *ai)
1164{
1165	struct ubi_ainf_peb *aeb, *aeb_tmp;
1166	struct ubi_ainf_volume *av;
1167	struct rb_node *rb;
1168
1169	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1170		list_del(&aeb->u.list);
1171		kmem_cache_free(ai->aeb_slab_cache, aeb);
1172	}
1173	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1174		list_del(&aeb->u.list);
1175		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176	}
1177	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1178		list_del(&aeb->u.list);
1179		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180	}
1181	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1182		list_del(&aeb->u.list);
1183		kmem_cache_free(ai->aeb_slab_cache, aeb);
1184	}
1185
1186	/* Destroy the volume RB-tree */
1187	rb = ai->volumes.rb_node;
1188	while (rb) {
1189		if (rb->rb_left)
1190			rb = rb->rb_left;
1191		else if (rb->rb_right)
1192			rb = rb->rb_right;
1193		else {
1194			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1195
1196			rb = rb_parent(rb);
1197			if (rb) {
1198				if (rb->rb_left == &av->rb)
1199					rb->rb_left = NULL;
1200				else
1201					rb->rb_right = NULL;
1202			}
1203
1204			destroy_av(ai, av);
1205		}
1206	}
1207
1208	if (ai->aeb_slab_cache)
1209		kmem_cache_destroy(ai->aeb_slab_cache);
1210
1211	kfree(ai);
1212}
1213
1214/**
1215 * scan_all - scan entire MTD device.
1216 * @ubi: UBI device description object
1217 * @ai: attach info object
1218 * @start: start scanning at this PEB
1219 *
1220 * This function does full scanning of an MTD device and returns complete
1221 * information about it in form of a "struct ubi_attach_info" object. In case
1222 * of failure, an error code is returned.
1223 */
1224static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1225		    int start)
1226{
1227	int err, pnum;
1228	struct rb_node *rb1, *rb2;
1229	struct ubi_ainf_volume *av;
1230	struct ubi_ainf_peb *aeb;
1231
1232	err = -ENOMEM;
1233
1234	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1235	if (!ech)
1236		return err;
1237
1238	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1239	if (!vidh)
1240		goto out_ech;
1241
1242	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1243		cond_resched();
1244
1245		dbg_gen("process PEB %d", pnum);
1246		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1247		if (err < 0)
1248			goto out_vidh;
1249	}
1250
1251	ubi_msg("scanning is finished");
1252
1253	/* Calculate mean erase counter */
1254	if (ai->ec_count)
1255		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1256
1257	err = late_analysis(ubi, ai);
1258	if (err)
1259		goto out_vidh;
1260
1261	/*
1262	 * In case of unknown erase counter we use the mean erase counter
1263	 * value.
1264	 */
1265	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1266		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1267			if (aeb->ec == UBI_UNKNOWN)
1268				aeb->ec = ai->mean_ec;
1269	}
1270
1271	list_for_each_entry(aeb, &ai->free, u.list) {
1272		if (aeb->ec == UBI_UNKNOWN)
1273			aeb->ec = ai->mean_ec;
1274	}
1275
1276	list_for_each_entry(aeb, &ai->corr, u.list)
1277		if (aeb->ec == UBI_UNKNOWN)
1278			aeb->ec = ai->mean_ec;
1279
1280	list_for_each_entry(aeb, &ai->erase, u.list)
1281		if (aeb->ec == UBI_UNKNOWN)
1282			aeb->ec = ai->mean_ec;
1283
1284	err = self_check_ai(ubi, ai);
1285	if (err)
1286		goto out_vidh;
1287
1288	ubi_free_vid_hdr(ubi, vidh);
1289	kfree(ech);
1290
1291	return 0;
1292
1293out_vidh:
1294	ubi_free_vid_hdr(ubi, vidh);
1295out_ech:
1296	kfree(ech);
1297	return err;
1298}
1299
1300#ifdef CONFIG_MTD_UBI_FASTMAP
1301
1302/**
1303 * scan_fastmap - try to find a fastmap and attach from it.
1304 * @ubi: UBI device description object
1305 * @ai: attach info object
1306 *
1307 * Returns 0 on success, negative return values indicate an internal
1308 * error.
1309 * UBI_NO_FASTMAP denotes that no fastmap was found.
1310 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1311 */
1312static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1313{
1314	int err, pnum, fm_anchor = -1;
1315	unsigned long long max_sqnum = 0;
1316
1317	err = -ENOMEM;
1318
1319	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1320	if (!ech)
1321		goto out;
1322
1323	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1324	if (!vidh)
1325		goto out_ech;
1326
1327	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1328		int vol_id = -1;
1329		unsigned long long sqnum = -1;
1330		cond_resched();
1331
1332		dbg_gen("process PEB %d", pnum);
1333		err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1334		if (err < 0)
1335			goto out_vidh;
1336
1337		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1338			max_sqnum = sqnum;
1339			fm_anchor = pnum;
1340		}
1341	}
1342
1343	ubi_free_vid_hdr(ubi, vidh);
1344	kfree(ech);
1345
1346	if (fm_anchor < 0)
1347		return UBI_NO_FASTMAP;
1348
1349	return ubi_scan_fastmap(ubi, ai, fm_anchor);
1350
1351out_vidh:
1352	ubi_free_vid_hdr(ubi, vidh);
1353out_ech:
1354	kfree(ech);
1355out:
1356	return err;
1357}
1358
1359#endif
1360
1361static struct ubi_attach_info *alloc_ai(const char *slab_name)
1362{
1363	struct ubi_attach_info *ai;
1364
1365	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1366	if (!ai)
1367		return ai;
1368
1369	INIT_LIST_HEAD(&ai->corr);
1370	INIT_LIST_HEAD(&ai->free);
1371	INIT_LIST_HEAD(&ai->erase);
1372	INIT_LIST_HEAD(&ai->alien);
1373	ai->volumes = RB_ROOT;
1374	ai->aeb_slab_cache = kmem_cache_create(slab_name,
1375					       sizeof(struct ubi_ainf_peb),
1376					       0, 0, NULL);
1377	if (!ai->aeb_slab_cache) {
1378		kfree(ai);
1379		ai = NULL;
1380	}
1381
1382	return ai;
1383}
1384
1385/**
1386 * ubi_attach - attach an MTD device.
1387 * @ubi: UBI device descriptor
1388 * @force_scan: if set to non-zero attach by scanning
1389 *
1390 * This function returns zero in case of success and a negative error code in
1391 * case of failure.
1392 */
1393int ubi_attach(struct ubi_device *ubi, int force_scan)
1394{
1395	int err;
1396	struct ubi_attach_info *ai;
1397
1398	ai = alloc_ai("ubi_aeb_slab_cache");
1399	if (!ai)
1400		return -ENOMEM;
1401
1402#ifdef CONFIG_MTD_UBI_FASTMAP
1403	/* On small flash devices we disable fastmap in any case. */
1404	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1405		ubi->fm_disabled = 1;
1406		force_scan = 1;
1407	}
1408
1409	if (force_scan)
1410		err = scan_all(ubi, ai, 0);
1411	else {
1412		err = scan_fast(ubi, ai);
1413		if (err > 0) {
1414			if (err != UBI_NO_FASTMAP) {
1415				destroy_ai(ai);
1416				ai = alloc_ai("ubi_aeb_slab_cache2");
1417				if (!ai)
1418					return -ENOMEM;
1419
1420				err = scan_all(ubi, ai, 0);
1421			} else {
1422				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1423			}
1424		}
1425	}
1426#else
1427	err = scan_all(ubi, ai, 0);
1428#endif
1429	if (err)
1430		goto out_ai;
1431
1432	ubi->bad_peb_count = ai->bad_peb_count;
1433	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1434	ubi->corr_peb_count = ai->corr_peb_count;
1435	ubi->max_ec = ai->max_ec;
1436	ubi->mean_ec = ai->mean_ec;
1437	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1438
1439	err = ubi_read_volume_table(ubi, ai);
1440	if (err)
1441		goto out_ai;
1442
1443	err = ubi_wl_init(ubi, ai);
1444	if (err)
1445		goto out_vtbl;
1446
1447	err = ubi_eba_init(ubi, ai);
1448	if (err)
1449		goto out_wl;
1450
1451#ifdef CONFIG_MTD_UBI_FASTMAP
1452	if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1453		struct ubi_attach_info *scan_ai;
1454
1455		scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1456		if (!scan_ai) {
1457			err = -ENOMEM;
1458			goto out_wl;
1459		}
1460
1461		err = scan_all(ubi, scan_ai, 0);
1462		if (err) {
1463			destroy_ai(scan_ai);
1464			goto out_wl;
1465		}
1466
1467		err = self_check_eba(ubi, ai, scan_ai);
1468		destroy_ai(scan_ai);
1469
1470		if (err)
1471			goto out_wl;
1472	}
1473#endif
1474
1475	destroy_ai(ai);
1476	return 0;
1477
1478out_wl:
1479	ubi_wl_close(ubi);
1480out_vtbl:
1481	ubi_free_internal_volumes(ubi);
1482	vfree(ubi->vtbl);
1483out_ai:
1484	destroy_ai(ai);
1485	return err;
1486}
1487
1488/**
1489 * self_check_ai - check the attaching information.
1490 * @ubi: UBI device description object
1491 * @ai: attaching information
1492 *
1493 * This function returns zero if the attaching information is all right, and a
1494 * negative error code if not or if an error occurred.
1495 */
1496static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1497{
1498	int pnum, err, vols_found = 0;
1499	struct rb_node *rb1, *rb2;
1500	struct ubi_ainf_volume *av;
1501	struct ubi_ainf_peb *aeb, *last_aeb;
1502	uint8_t *buf;
1503
1504	if (!ubi_dbg_chk_gen(ubi))
1505		return 0;
1506
1507	/*
1508	 * At first, check that attaching information is OK.
1509	 */
1510	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1511		int leb_count = 0;
1512
1513		cond_resched();
1514
1515		vols_found += 1;
1516
1517		if (ai->is_empty) {
1518			ubi_err("bad is_empty flag");
1519			goto bad_av;
1520		}
1521
1522		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1523		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1524		    av->data_pad < 0 || av->last_data_size < 0) {
1525			ubi_err("negative values");
1526			goto bad_av;
1527		}
1528
1529		if (av->vol_id >= UBI_MAX_VOLUMES &&
1530		    av->vol_id < UBI_INTERNAL_VOL_START) {
1531			ubi_err("bad vol_id");
1532			goto bad_av;
1533		}
1534
1535		if (av->vol_id > ai->highest_vol_id) {
1536			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1537				ai->highest_vol_id, av->vol_id);
1538			goto out;
1539		}
1540
1541		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1542		    av->vol_type != UBI_STATIC_VOLUME) {
1543			ubi_err("bad vol_type");
1544			goto bad_av;
1545		}
1546
1547		if (av->data_pad > ubi->leb_size / 2) {
1548			ubi_err("bad data_pad");
1549			goto bad_av;
1550		}
1551
1552		last_aeb = NULL;
1553		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1554			cond_resched();
1555
1556			last_aeb = aeb;
1557			leb_count += 1;
1558
1559			if (aeb->pnum < 0 || aeb->ec < 0) {
1560				ubi_err("negative values");
1561				goto bad_aeb;
1562			}
1563
1564			if (aeb->ec < ai->min_ec) {
1565				ubi_err("bad ai->min_ec (%d), %d found",
1566					ai->min_ec, aeb->ec);
1567				goto bad_aeb;
1568			}
1569
1570			if (aeb->ec > ai->max_ec) {
1571				ubi_err("bad ai->max_ec (%d), %d found",
1572					ai->max_ec, aeb->ec);
1573				goto bad_aeb;
1574			}
1575
1576			if (aeb->pnum >= ubi->peb_count) {
1577				ubi_err("too high PEB number %d, total PEBs %d",
1578					aeb->pnum, ubi->peb_count);
1579				goto bad_aeb;
1580			}
1581
1582			if (av->vol_type == UBI_STATIC_VOLUME) {
1583				if (aeb->lnum >= av->used_ebs) {
1584					ubi_err("bad lnum or used_ebs");
1585					goto bad_aeb;
1586				}
1587			} else {
1588				if (av->used_ebs != 0) {
1589					ubi_err("non-zero used_ebs");
1590					goto bad_aeb;
1591				}
1592			}
1593
1594			if (aeb->lnum > av->highest_lnum) {
1595				ubi_err("incorrect highest_lnum or lnum");
1596				goto bad_aeb;
1597			}
1598		}
1599
1600		if (av->leb_count != leb_count) {
1601			ubi_err("bad leb_count, %d objects in the tree",
1602				leb_count);
1603			goto bad_av;
1604		}
1605
1606		if (!last_aeb)
1607			continue;
1608
1609		aeb = last_aeb;
1610
1611		if (aeb->lnum != av->highest_lnum) {
1612			ubi_err("bad highest_lnum");
1613			goto bad_aeb;
1614		}
1615	}
1616
1617	if (vols_found != ai->vols_found) {
1618		ubi_err("bad ai->vols_found %d, should be %d",
1619			ai->vols_found, vols_found);
1620		goto out;
1621	}
1622
1623	/* Check that attaching information is correct */
1624	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1625		last_aeb = NULL;
1626		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1627			int vol_type;
1628
1629			cond_resched();
1630
1631			last_aeb = aeb;
1632
1633			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1634			if (err && err != UBI_IO_BITFLIPS) {
1635				ubi_err("VID header is not OK (%d)", err);
1636				if (err > 0)
1637					err = -EIO;
1638				return err;
1639			}
1640
1641			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1642				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1643			if (av->vol_type != vol_type) {
1644				ubi_err("bad vol_type");
1645				goto bad_vid_hdr;
1646			}
1647
1648			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1649				ubi_err("bad sqnum %llu", aeb->sqnum);
1650				goto bad_vid_hdr;
1651			}
1652
1653			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1654				ubi_err("bad vol_id %d", av->vol_id);
1655				goto bad_vid_hdr;
1656			}
1657
1658			if (av->compat != vidh->compat) {
1659				ubi_err("bad compat %d", vidh->compat);
1660				goto bad_vid_hdr;
1661			}
1662
1663			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1664				ubi_err("bad lnum %d", aeb->lnum);
1665				goto bad_vid_hdr;
1666			}
1667
1668			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1669				ubi_err("bad used_ebs %d", av->used_ebs);
1670				goto bad_vid_hdr;
1671			}
1672
1673			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1674				ubi_err("bad data_pad %d", av->data_pad);
1675				goto bad_vid_hdr;
1676			}
1677		}
1678
1679		if (!last_aeb)
1680			continue;
1681
1682		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1683			ubi_err("bad highest_lnum %d", av->highest_lnum);
1684			goto bad_vid_hdr;
1685		}
1686
1687		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1688			ubi_err("bad last_data_size %d", av->last_data_size);
1689			goto bad_vid_hdr;
1690		}
1691	}
1692
1693	/*
1694	 * Make sure that all the physical eraseblocks are in one of the lists
1695	 * or trees.
1696	 */
1697	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1698	if (!buf)
1699		return -ENOMEM;
1700
1701	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1702		err = ubi_io_is_bad(ubi, pnum);
1703		if (err < 0) {
1704			kfree(buf);
1705			return err;
1706		} else if (err)
1707			buf[pnum] = 1;
1708	}
1709
1710	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1711		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1712			buf[aeb->pnum] = 1;
1713
1714	list_for_each_entry(aeb, &ai->free, u.list)
1715		buf[aeb->pnum] = 1;
1716
1717	list_for_each_entry(aeb, &ai->corr, u.list)
1718		buf[aeb->pnum] = 1;
1719
1720	list_for_each_entry(aeb, &ai->erase, u.list)
1721		buf[aeb->pnum] = 1;
1722
1723	list_for_each_entry(aeb, &ai->alien, u.list)
1724		buf[aeb->pnum] = 1;
1725
1726	err = 0;
1727	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1728		if (!buf[pnum]) {
1729			ubi_err("PEB %d is not referred", pnum);
1730			err = 1;
1731		}
1732
1733	kfree(buf);
1734	if (err)
1735		goto out;
1736	return 0;
1737
1738bad_aeb:
1739	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1740	ubi_dump_aeb(aeb, 0);
1741	ubi_dump_av(av);
1742	goto out;
1743
1744bad_av:
1745	ubi_err("bad attaching information about volume %d", av->vol_id);
1746	ubi_dump_av(av);
1747	goto out;
1748
1749bad_vid_hdr:
1750	ubi_err("bad attaching information about volume %d", av->vol_id);
1751	ubi_dump_av(av);
1752	ubi_dump_vid_hdr(vidh);
1753
1754out:
1755	dump_stack();
1756	return -EINVAL;
1757}
1758