1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/aer.h>
31#include <linux/init.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
35#include <linux/dma-mapping.h>
36#include <linux/bitops.h>
37#include <linux/irq.h>
38#include <linux/delay.h>
39#include <asm/byteorder.h>
40#include <linux/time.h>
41#include <linux/ethtool.h>
42#include <linux/mii.h>
43#include <linux/if_vlan.h>
44#include <linux/crash_dump.h>
45#include <net/ip.h>
46#include <net/ipv6.h>
47#include <net/tcp.h>
48#include <net/checksum.h>
49#include <net/ip6_checksum.h>
50#include <linux/workqueue.h>
51#include <linux/crc32.h>
52#include <linux/crc32c.h>
53#include <linux/prefetch.h>
54#include <linux/zlib.h>
55#include <linux/io.h>
56#include <linux/semaphore.h>
57#include <linux/stringify.h>
58#include <linux/vmalloc.h>
59
60#include "bnx2x.h"
61#include "bnx2x_init.h"
62#include "bnx2x_init_ops.h"
63#include "bnx2x_cmn.h"
64#include "bnx2x_vfpf.h"
65#include "bnx2x_dcb.h"
66#include "bnx2x_sp.h"
67#include <linux/firmware.h>
68#include "bnx2x_fw_file_hdr.h"
69/* FW files */
70#define FW_FILE_VERSION					\
71	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
72	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
73	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
74	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
75#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79/* Time in jiffies before concluding the transmitter is hung */
80#define TX_TIMEOUT		(5*HZ)
81
82static char version[] =
83	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86MODULE_AUTHOR("Eliezer Tamir");
87MODULE_DESCRIPTION("Broadcom NetXtreme II "
88		   "BCM57710/57711/57711E/"
89		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90		   "57840/57840_MF Driver");
91MODULE_LICENSE("GPL");
92MODULE_VERSION(DRV_MODULE_VERSION);
93MODULE_FIRMWARE(FW_FILE_NAME_E1);
94MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97int bnx2x_num_queues;
98module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99MODULE_PARM_DESC(num_queues,
100		 " Set number of queues (default is as a number of CPUs)");
101
102static int disable_tpa;
103module_param(disable_tpa, int, S_IRUGO);
104MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106static int int_mode;
107module_param(int_mode, int, S_IRUGO);
108MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109				"(1 INT#x; 2 MSI)");
110
111static int dropless_fc;
112module_param(dropless_fc, int, S_IRUGO);
113MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115static int mrrs = -1;
116module_param(mrrs, int, S_IRUGO);
117MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119static int debug;
120module_param(debug, int, S_IRUGO);
121MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123static struct workqueue_struct *bnx2x_wq;
124struct workqueue_struct *bnx2x_iov_wq;
125
126struct bnx2x_mac_vals {
127	u32 xmac_addr;
128	u32 xmac_val;
129	u32 emac_addr;
130	u32 emac_val;
131	u32 umac_addr;
132	u32 umac_val;
133	u32 bmac_addr;
134	u32 bmac_val[2];
135};
136
137enum bnx2x_board_type {
138	BCM57710 = 0,
139	BCM57711,
140	BCM57711E,
141	BCM57712,
142	BCM57712_MF,
143	BCM57712_VF,
144	BCM57800,
145	BCM57800_MF,
146	BCM57800_VF,
147	BCM57810,
148	BCM57810_MF,
149	BCM57810_VF,
150	BCM57840_4_10,
151	BCM57840_2_20,
152	BCM57840_MF,
153	BCM57840_VF,
154	BCM57811,
155	BCM57811_MF,
156	BCM57840_O,
157	BCM57840_MFO,
158	BCM57811_VF
159};
160
161/* indexed by board_type, above */
162static struct {
163	char *name;
164} board_info[] = {
165	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186};
187
188#ifndef PCI_DEVICE_ID_NX2_57710
189#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
190#endif
191#ifndef PCI_DEVICE_ID_NX2_57711
192#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
193#endif
194#ifndef PCI_DEVICE_ID_NX2_57711E
195#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
196#endif
197#ifndef PCI_DEVICE_ID_NX2_57712
198#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
199#endif
200#ifndef PCI_DEVICE_ID_NX2_57712_MF
201#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
202#endif
203#ifndef PCI_DEVICE_ID_NX2_57712_VF
204#define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
205#endif
206#ifndef PCI_DEVICE_ID_NX2_57800
207#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
208#endif
209#ifndef PCI_DEVICE_ID_NX2_57800_MF
210#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
211#endif
212#ifndef PCI_DEVICE_ID_NX2_57800_VF
213#define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
214#endif
215#ifndef PCI_DEVICE_ID_NX2_57810
216#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
217#endif
218#ifndef PCI_DEVICE_ID_NX2_57810_MF
219#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
220#endif
221#ifndef PCI_DEVICE_ID_NX2_57840_O
222#define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
223#endif
224#ifndef PCI_DEVICE_ID_NX2_57810_VF
225#define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
226#endif
227#ifndef PCI_DEVICE_ID_NX2_57840_4_10
228#define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
229#endif
230#ifndef PCI_DEVICE_ID_NX2_57840_2_20
231#define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
232#endif
233#ifndef PCI_DEVICE_ID_NX2_57840_MFO
234#define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
235#endif
236#ifndef PCI_DEVICE_ID_NX2_57840_MF
237#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
238#endif
239#ifndef PCI_DEVICE_ID_NX2_57840_VF
240#define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
241#endif
242#ifndef PCI_DEVICE_ID_NX2_57811
243#define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
244#endif
245#ifndef PCI_DEVICE_ID_NX2_57811_MF
246#define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
247#endif
248#ifndef PCI_DEVICE_ID_NX2_57811_VF
249#define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
250#endif
251
252static const struct pci_device_id bnx2x_pci_tbl[] = {
253	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274	{ 0 }
275};
276
277MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278
279/* Global resources for unloading a previously loaded device */
280#define BNX2X_PREV_WAIT_NEEDED 1
281static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282static LIST_HEAD(bnx2x_prev_list);
283
284/* Forward declaration */
285static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288
289/****************************************************************************
290* General service functions
291****************************************************************************/
292
293static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
294
295static void __storm_memset_dma_mapping(struct bnx2x *bp,
296				       u32 addr, dma_addr_t mapping)
297{
298	REG_WR(bp,  addr, U64_LO(mapping));
299	REG_WR(bp,  addr + 4, U64_HI(mapping));
300}
301
302static void storm_memset_spq_addr(struct bnx2x *bp,
303				  dma_addr_t mapping, u16 abs_fid)
304{
305	u32 addr = XSEM_REG_FAST_MEMORY +
306			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
307
308	__storm_memset_dma_mapping(bp, addr, mapping);
309}
310
311static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
312				  u16 pf_id)
313{
314	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
315		pf_id);
316	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
317		pf_id);
318	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
319		pf_id);
320	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
321		pf_id);
322}
323
324static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
325				 u8 enable)
326{
327	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
328		enable);
329	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
330		enable);
331	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
332		enable);
333	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
334		enable);
335}
336
337static void storm_memset_eq_data(struct bnx2x *bp,
338				 struct event_ring_data *eq_data,
339				u16 pfid)
340{
341	size_t size = sizeof(struct event_ring_data);
342
343	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
344
345	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
346}
347
348static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
349				 u16 pfid)
350{
351	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
352	REG_WR16(bp, addr, eq_prod);
353}
354
355/* used only at init
356 * locking is done by mcp
357 */
358static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
359{
360	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
362	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363			       PCICFG_VENDOR_ID_OFFSET);
364}
365
366static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
367{
368	u32 val;
369
370	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
371	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
372	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
373			       PCICFG_VENDOR_ID_OFFSET);
374
375	return val;
376}
377
378#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
379#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
380#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
381#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
382#define DMAE_DP_DST_NONE	"dst_addr [none]"
383
384static void bnx2x_dp_dmae(struct bnx2x *bp,
385			  struct dmae_command *dmae, int msglvl)
386{
387	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
388	int i;
389
390	switch (dmae->opcode & DMAE_COMMAND_DST) {
391	case DMAE_CMD_DST_PCI:
392		if (src_type == DMAE_CMD_SRC_PCI)
393			DP(msglvl, "DMAE: opcode 0x%08x\n"
394			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
395			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
396			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
397			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
398			   dmae->comp_addr_hi, dmae->comp_addr_lo,
399			   dmae->comp_val);
400		else
401			DP(msglvl, "DMAE: opcode 0x%08x\n"
402			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
403			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404			   dmae->opcode, dmae->src_addr_lo >> 2,
405			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
406			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407			   dmae->comp_val);
408		break;
409	case DMAE_CMD_DST_GRC:
410		if (src_type == DMAE_CMD_SRC_PCI)
411			DP(msglvl, "DMAE: opcode 0x%08x\n"
412			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
413			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
414			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
415			   dmae->len, dmae->dst_addr_lo >> 2,
416			   dmae->comp_addr_hi, dmae->comp_addr_lo,
417			   dmae->comp_val);
418		else
419			DP(msglvl, "DMAE: opcode 0x%08x\n"
420			   "src [%08x], len [%d*4], dst [%08x]\n"
421			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
422			   dmae->opcode, dmae->src_addr_lo >> 2,
423			   dmae->len, dmae->dst_addr_lo >> 2,
424			   dmae->comp_addr_hi, dmae->comp_addr_lo,
425			   dmae->comp_val);
426		break;
427	default:
428		if (src_type == DMAE_CMD_SRC_PCI)
429			DP(msglvl, "DMAE: opcode 0x%08x\n"
430			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
431			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
432			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
433			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
434			   dmae->comp_val);
435		else
436			DP(msglvl, "DMAE: opcode 0x%08x\n"
437			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
438			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
439			   dmae->opcode, dmae->src_addr_lo >> 2,
440			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
441			   dmae->comp_val);
442		break;
443	}
444
445	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
446		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
447		   i, *(((u32 *)dmae) + i));
448}
449
450/* copy command into DMAE command memory and set DMAE command go */
451void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
452{
453	u32 cmd_offset;
454	int i;
455
456	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
457	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
458		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
459	}
460	REG_WR(bp, dmae_reg_go_c[idx], 1);
461}
462
463u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
464{
465	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
466			   DMAE_CMD_C_ENABLE);
467}
468
469u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
470{
471	return opcode & ~DMAE_CMD_SRC_RESET;
472}
473
474u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
475			     bool with_comp, u8 comp_type)
476{
477	u32 opcode = 0;
478
479	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
480		   (dst_type << DMAE_COMMAND_DST_SHIFT));
481
482	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
483
484	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
485	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
486		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
487	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
488
489#ifdef __BIG_ENDIAN
490	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
491#else
492	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
493#endif
494	if (with_comp)
495		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
496	return opcode;
497}
498
499void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
500				      struct dmae_command *dmae,
501				      u8 src_type, u8 dst_type)
502{
503	memset(dmae, 0, sizeof(struct dmae_command));
504
505	/* set the opcode */
506	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
507					 true, DMAE_COMP_PCI);
508
509	/* fill in the completion parameters */
510	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
511	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
512	dmae->comp_val = DMAE_COMP_VAL;
513}
514
515/* issue a dmae command over the init-channel and wait for completion */
516int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
517			       u32 *comp)
518{
519	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
520	int rc = 0;
521
522	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
523
524	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
525	 * as long as this code is called both from syscall context and
526	 * from ndo_set_rx_mode() flow that may be called from BH.
527	 */
528
529	spin_lock_bh(&bp->dmae_lock);
530
531	/* reset completion */
532	*comp = 0;
533
534	/* post the command on the channel used for initializations */
535	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
536
537	/* wait for completion */
538	udelay(5);
539	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
540
541		if (!cnt ||
542		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
543		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
544			BNX2X_ERR("DMAE timeout!\n");
545			rc = DMAE_TIMEOUT;
546			goto unlock;
547		}
548		cnt--;
549		udelay(50);
550	}
551	if (*comp & DMAE_PCI_ERR_FLAG) {
552		BNX2X_ERR("DMAE PCI error!\n");
553		rc = DMAE_PCI_ERROR;
554	}
555
556unlock:
557
558	spin_unlock_bh(&bp->dmae_lock);
559
560	return rc;
561}
562
563void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
564		      u32 len32)
565{
566	int rc;
567	struct dmae_command dmae;
568
569	if (!bp->dmae_ready) {
570		u32 *data = bnx2x_sp(bp, wb_data[0]);
571
572		if (CHIP_IS_E1(bp))
573			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
574		else
575			bnx2x_init_str_wr(bp, dst_addr, data, len32);
576		return;
577	}
578
579	/* set opcode and fixed command fields */
580	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
581
582	/* fill in addresses and len */
583	dmae.src_addr_lo = U64_LO(dma_addr);
584	dmae.src_addr_hi = U64_HI(dma_addr);
585	dmae.dst_addr_lo = dst_addr >> 2;
586	dmae.dst_addr_hi = 0;
587	dmae.len = len32;
588
589	/* issue the command and wait for completion */
590	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
591	if (rc) {
592		BNX2X_ERR("DMAE returned failure %d\n", rc);
593#ifdef BNX2X_STOP_ON_ERROR
594		bnx2x_panic();
595#endif
596	}
597}
598
599void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
600{
601	int rc;
602	struct dmae_command dmae;
603
604	if (!bp->dmae_ready) {
605		u32 *data = bnx2x_sp(bp, wb_data[0]);
606		int i;
607
608		if (CHIP_IS_E1(bp))
609			for (i = 0; i < len32; i++)
610				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
611		else
612			for (i = 0; i < len32; i++)
613				data[i] = REG_RD(bp, src_addr + i*4);
614
615		return;
616	}
617
618	/* set opcode and fixed command fields */
619	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
620
621	/* fill in addresses and len */
622	dmae.src_addr_lo = src_addr >> 2;
623	dmae.src_addr_hi = 0;
624	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
625	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
626	dmae.len = len32;
627
628	/* issue the command and wait for completion */
629	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
630	if (rc) {
631		BNX2X_ERR("DMAE returned failure %d\n", rc);
632#ifdef BNX2X_STOP_ON_ERROR
633		bnx2x_panic();
634#endif
635	}
636}
637
638static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
639				      u32 addr, u32 len)
640{
641	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
642	int offset = 0;
643
644	while (len > dmae_wr_max) {
645		bnx2x_write_dmae(bp, phys_addr + offset,
646				 addr + offset, dmae_wr_max);
647		offset += dmae_wr_max * 4;
648		len -= dmae_wr_max;
649	}
650
651	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
652}
653
654enum storms {
655	   XSTORM,
656	   TSTORM,
657	   CSTORM,
658	   USTORM,
659	   MAX_STORMS
660};
661
662#define STORMS_NUM 4
663#define REGS_IN_ENTRY 4
664
665static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
666					      enum storms storm,
667					      int entry)
668{
669	switch (storm) {
670	case XSTORM:
671		return XSTORM_ASSERT_LIST_OFFSET(entry);
672	case TSTORM:
673		return TSTORM_ASSERT_LIST_OFFSET(entry);
674	case CSTORM:
675		return CSTORM_ASSERT_LIST_OFFSET(entry);
676	case USTORM:
677		return USTORM_ASSERT_LIST_OFFSET(entry);
678	case MAX_STORMS:
679	default:
680		BNX2X_ERR("unknown storm\n");
681	}
682	return -EINVAL;
683}
684
685static int bnx2x_mc_assert(struct bnx2x *bp)
686{
687	char last_idx;
688	int i, j, rc = 0;
689	enum storms storm;
690	u32 regs[REGS_IN_ENTRY];
691	u32 bar_storm_intmem[STORMS_NUM] = {
692		BAR_XSTRORM_INTMEM,
693		BAR_TSTRORM_INTMEM,
694		BAR_CSTRORM_INTMEM,
695		BAR_USTRORM_INTMEM
696	};
697	u32 storm_assert_list_index[STORMS_NUM] = {
698		XSTORM_ASSERT_LIST_INDEX_OFFSET,
699		TSTORM_ASSERT_LIST_INDEX_OFFSET,
700		CSTORM_ASSERT_LIST_INDEX_OFFSET,
701		USTORM_ASSERT_LIST_INDEX_OFFSET
702	};
703	char *storms_string[STORMS_NUM] = {
704		"XSTORM",
705		"TSTORM",
706		"CSTORM",
707		"USTORM"
708	};
709
710	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
711		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
712				   storm_assert_list_index[storm]);
713		if (last_idx)
714			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
715				  storms_string[storm], last_idx);
716
717		/* print the asserts */
718		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
719			/* read a single assert entry */
720			for (j = 0; j < REGS_IN_ENTRY; j++)
721				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
722					  bnx2x_get_assert_list_entry(bp,
723								      storm,
724								      i) +
725					  sizeof(u32) * j);
726
727			/* log entry if it contains a valid assert */
728			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
729				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
730					  storms_string[storm], i, regs[3],
731					  regs[2], regs[1], regs[0]);
732				rc++;
733			} else {
734				break;
735			}
736		}
737	}
738
739	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
740		  CHIP_IS_E1(bp) ? "everest1" :
741		  CHIP_IS_E1H(bp) ? "everest1h" :
742		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
743		  BCM_5710_FW_MAJOR_VERSION,
744		  BCM_5710_FW_MINOR_VERSION,
745		  BCM_5710_FW_REVISION_VERSION);
746
747	return rc;
748}
749
750#define MCPR_TRACE_BUFFER_SIZE	(0x800)
751#define SCRATCH_BUFFER_SIZE(bp)	\
752	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
753
754void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755{
756	u32 addr, val;
757	u32 mark, offset;
758	__be32 data[9];
759	int word;
760	u32 trace_shmem_base;
761	if (BP_NOMCP(bp)) {
762		BNX2X_ERR("NO MCP - can not dump\n");
763		return;
764	}
765	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766		(bp->common.bc_ver & 0xff0000) >> 16,
767		(bp->common.bc_ver & 0xff00) >> 8,
768		(bp->common.bc_ver & 0xff));
769
770	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774	if (BP_PATH(bp) == 0)
775		trace_shmem_base = bp->common.shmem_base;
776	else
777		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778
779	/* sanity */
780	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
781	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
782				SCRATCH_BUFFER_SIZE(bp)) {
783		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
784			  trace_shmem_base);
785		return;
786	}
787
788	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
789
790	/* validate TRCB signature */
791	mark = REG_RD(bp, addr);
792	if (mark != MFW_TRACE_SIGNATURE) {
793		BNX2X_ERR("Trace buffer signature is missing.");
794		return ;
795	}
796
797	/* read cyclic buffer pointer */
798	addr += 4;
799	mark = REG_RD(bp, addr);
800	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
801	if (mark >= trace_shmem_base || mark < addr + 4) {
802		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
803		return;
804	}
805	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
806
807	printk("%s", lvl);
808
809	/* dump buffer after the mark */
810	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
811		for (word = 0; word < 8; word++)
812			data[word] = htonl(REG_RD(bp, offset + 4*word));
813		data[8] = 0x0;
814		pr_cont("%s", (char *)data);
815	}
816
817	/* dump buffer before the mark */
818	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
819		for (word = 0; word < 8; word++)
820			data[word] = htonl(REG_RD(bp, offset + 4*word));
821		data[8] = 0x0;
822		pr_cont("%s", (char *)data);
823	}
824	printk("%s" "end of fw dump\n", lvl);
825}
826
827static void bnx2x_fw_dump(struct bnx2x *bp)
828{
829	bnx2x_fw_dump_lvl(bp, KERN_ERR);
830}
831
832static void bnx2x_hc_int_disable(struct bnx2x *bp)
833{
834	int port = BP_PORT(bp);
835	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
836	u32 val = REG_RD(bp, addr);
837
838	/* in E1 we must use only PCI configuration space to disable
839	 * MSI/MSIX capability
840	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
841	 */
842	if (CHIP_IS_E1(bp)) {
843		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
844		 * Use mask register to prevent from HC sending interrupts
845		 * after we exit the function
846		 */
847		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
848
849		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
850			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
851			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
852	} else
853		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
854			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
855			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
856			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
857
858	DP(NETIF_MSG_IFDOWN,
859	   "write %x to HC %d (addr 0x%x)\n",
860	   val, port, addr);
861
862	/* flush all outstanding writes */
863	mmiowb();
864
865	REG_WR(bp, addr, val);
866	if (REG_RD(bp, addr) != val)
867		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
868}
869
870static void bnx2x_igu_int_disable(struct bnx2x *bp)
871{
872	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
873
874	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
875		 IGU_PF_CONF_INT_LINE_EN |
876		 IGU_PF_CONF_ATTN_BIT_EN);
877
878	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
879
880	/* flush all outstanding writes */
881	mmiowb();
882
883	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
884	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
885		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
886}
887
888static void bnx2x_int_disable(struct bnx2x *bp)
889{
890	if (bp->common.int_block == INT_BLOCK_HC)
891		bnx2x_hc_int_disable(bp);
892	else
893		bnx2x_igu_int_disable(bp);
894}
895
896void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
897{
898	int i;
899	u16 j;
900	struct hc_sp_status_block_data sp_sb_data;
901	int func = BP_FUNC(bp);
902#ifdef BNX2X_STOP_ON_ERROR
903	u16 start = 0, end = 0;
904	u8 cos;
905#endif
906	if (IS_PF(bp) && disable_int)
907		bnx2x_int_disable(bp);
908
909	bp->stats_state = STATS_STATE_DISABLED;
910	bp->eth_stats.unrecoverable_error++;
911	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
912
913	BNX2X_ERR("begin crash dump -----------------\n");
914
915	/* Indices */
916	/* Common */
917	if (IS_PF(bp)) {
918		struct host_sp_status_block *def_sb = bp->def_status_blk;
919		int data_size, cstorm_offset;
920
921		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
922			  bp->def_idx, bp->def_att_idx, bp->attn_state,
923			  bp->spq_prod_idx, bp->stats_counter);
924		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
925			  def_sb->atten_status_block.attn_bits,
926			  def_sb->atten_status_block.attn_bits_ack,
927			  def_sb->atten_status_block.status_block_id,
928			  def_sb->atten_status_block.attn_bits_index);
929		BNX2X_ERR("     def (");
930		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
931			pr_cont("0x%x%s",
932				def_sb->sp_sb.index_values[i],
933				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
934
935		data_size = sizeof(struct hc_sp_status_block_data) /
936			    sizeof(u32);
937		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
938		for (i = 0; i < data_size; i++)
939			*((u32 *)&sp_sb_data + i) =
940				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
941					   i * sizeof(u32));
942
943		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
944			sp_sb_data.igu_sb_id,
945			sp_sb_data.igu_seg_id,
946			sp_sb_data.p_func.pf_id,
947			sp_sb_data.p_func.vnic_id,
948			sp_sb_data.p_func.vf_id,
949			sp_sb_data.p_func.vf_valid,
950			sp_sb_data.state);
951	}
952
953	for_each_eth_queue(bp, i) {
954		struct bnx2x_fastpath *fp = &bp->fp[i];
955		int loop;
956		struct hc_status_block_data_e2 sb_data_e2;
957		struct hc_status_block_data_e1x sb_data_e1x;
958		struct hc_status_block_sm  *hc_sm_p =
959			CHIP_IS_E1x(bp) ?
960			sb_data_e1x.common.state_machine :
961			sb_data_e2.common.state_machine;
962		struct hc_index_data *hc_index_p =
963			CHIP_IS_E1x(bp) ?
964			sb_data_e1x.index_data :
965			sb_data_e2.index_data;
966		u8 data_size, cos;
967		u32 *sb_data_p;
968		struct bnx2x_fp_txdata txdata;
969
970		if (!bp->fp)
971			break;
972
973		if (!fp->rx_cons_sb)
974			continue;
975
976		/* Rx */
977		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
978			  i, fp->rx_bd_prod, fp->rx_bd_cons,
979			  fp->rx_comp_prod,
980			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
981		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
982			  fp->rx_sge_prod, fp->last_max_sge,
983			  le16_to_cpu(fp->fp_hc_idx));
984
985		/* Tx */
986		for_each_cos_in_tx_queue(fp, cos)
987		{
988			if (!fp->txdata_ptr[cos])
989				break;
990
991			txdata = *fp->txdata_ptr[cos];
992
993			if (!txdata.tx_cons_sb)
994				continue;
995
996			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
997				  i, txdata.tx_pkt_prod,
998				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
999				  txdata.tx_bd_cons,
1000				  le16_to_cpu(*txdata.tx_cons_sb));
1001		}
1002
1003		loop = CHIP_IS_E1x(bp) ?
1004			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1005
1006		/* host sb data */
1007
1008		if (IS_FCOE_FP(fp))
1009			continue;
1010
1011		BNX2X_ERR("     run indexes (");
1012		for (j = 0; j < HC_SB_MAX_SM; j++)
1013			pr_cont("0x%x%s",
1014			       fp->sb_running_index[j],
1015			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1016
1017		BNX2X_ERR("     indexes (");
1018		for (j = 0; j < loop; j++)
1019			pr_cont("0x%x%s",
1020			       fp->sb_index_values[j],
1021			       (j == loop - 1) ? ")" : " ");
1022
1023		/* VF cannot access FW refelection for status block */
1024		if (IS_VF(bp))
1025			continue;
1026
1027		/* fw sb data */
1028		data_size = CHIP_IS_E1x(bp) ?
1029			sizeof(struct hc_status_block_data_e1x) :
1030			sizeof(struct hc_status_block_data_e2);
1031		data_size /= sizeof(u32);
1032		sb_data_p = CHIP_IS_E1x(bp) ?
1033			(u32 *)&sb_data_e1x :
1034			(u32 *)&sb_data_e2;
1035		/* copy sb data in here */
1036		for (j = 0; j < data_size; j++)
1037			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1038				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1039				j * sizeof(u32));
1040
1041		if (!CHIP_IS_E1x(bp)) {
1042			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1043				sb_data_e2.common.p_func.pf_id,
1044				sb_data_e2.common.p_func.vf_id,
1045				sb_data_e2.common.p_func.vf_valid,
1046				sb_data_e2.common.p_func.vnic_id,
1047				sb_data_e2.common.same_igu_sb_1b,
1048				sb_data_e2.common.state);
1049		} else {
1050			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1051				sb_data_e1x.common.p_func.pf_id,
1052				sb_data_e1x.common.p_func.vf_id,
1053				sb_data_e1x.common.p_func.vf_valid,
1054				sb_data_e1x.common.p_func.vnic_id,
1055				sb_data_e1x.common.same_igu_sb_1b,
1056				sb_data_e1x.common.state);
1057		}
1058
1059		/* SB_SMs data */
1060		for (j = 0; j < HC_SB_MAX_SM; j++) {
1061			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1062				j, hc_sm_p[j].__flags,
1063				hc_sm_p[j].igu_sb_id,
1064				hc_sm_p[j].igu_seg_id,
1065				hc_sm_p[j].time_to_expire,
1066				hc_sm_p[j].timer_value);
1067		}
1068
1069		/* Indices data */
1070		for (j = 0; j < loop; j++) {
1071			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1072			       hc_index_p[j].flags,
1073			       hc_index_p[j].timeout);
1074		}
1075	}
1076
1077#ifdef BNX2X_STOP_ON_ERROR
1078	if (IS_PF(bp)) {
1079		/* event queue */
1080		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1081		for (i = 0; i < NUM_EQ_DESC; i++) {
1082			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1083
1084			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1085				  i, bp->eq_ring[i].message.opcode,
1086				  bp->eq_ring[i].message.error);
1087			BNX2X_ERR("data: %x %x %x\n",
1088				  data[0], data[1], data[2]);
1089		}
1090	}
1091
1092	/* Rings */
1093	/* Rx */
1094	for_each_valid_rx_queue(bp, i) {
1095		struct bnx2x_fastpath *fp = &bp->fp[i];
1096
1097		if (!bp->fp)
1098			break;
1099
1100		if (!fp->rx_cons_sb)
1101			continue;
1102
1103		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1104		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1105		for (j = start; j != end; j = RX_BD(j + 1)) {
1106			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1107			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1108
1109			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1110				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1111		}
1112
1113		start = RX_SGE(fp->rx_sge_prod);
1114		end = RX_SGE(fp->last_max_sge);
1115		for (j = start; j != end; j = RX_SGE(j + 1)) {
1116			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1117			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1118
1119			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1120				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1121		}
1122
1123		start = RCQ_BD(fp->rx_comp_cons - 10);
1124		end = RCQ_BD(fp->rx_comp_cons + 503);
1125		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1126			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1127
1128			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1129				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1130		}
1131	}
1132
1133	/* Tx */
1134	for_each_valid_tx_queue(bp, i) {
1135		struct bnx2x_fastpath *fp = &bp->fp[i];
1136
1137		if (!bp->fp)
1138			break;
1139
1140		for_each_cos_in_tx_queue(fp, cos) {
1141			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1142
1143			if (!fp->txdata_ptr[cos])
1144				break;
1145
1146			if (!txdata->tx_cons_sb)
1147				continue;
1148
1149			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1150			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1151			for (j = start; j != end; j = TX_BD(j + 1)) {
1152				struct sw_tx_bd *sw_bd =
1153					&txdata->tx_buf_ring[j];
1154
1155				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1156					  i, cos, j, sw_bd->skb,
1157					  sw_bd->first_bd);
1158			}
1159
1160			start = TX_BD(txdata->tx_bd_cons - 10);
1161			end = TX_BD(txdata->tx_bd_cons + 254);
1162			for (j = start; j != end; j = TX_BD(j + 1)) {
1163				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1164
1165				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1166					  i, cos, j, tx_bd[0], tx_bd[1],
1167					  tx_bd[2], tx_bd[3]);
1168			}
1169		}
1170	}
1171#endif
1172	if (IS_PF(bp)) {
1173		bnx2x_fw_dump(bp);
1174		bnx2x_mc_assert(bp);
1175	}
1176	BNX2X_ERR("end crash dump -----------------\n");
1177}
1178
1179/*
1180 * FLR Support for E2
1181 *
1182 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1183 * initialization.
1184 */
1185#define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1186#define FLR_WAIT_INTERVAL	50	/* usec */
1187#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1188
1189struct pbf_pN_buf_regs {
1190	int pN;
1191	u32 init_crd;
1192	u32 crd;
1193	u32 crd_freed;
1194};
1195
1196struct pbf_pN_cmd_regs {
1197	int pN;
1198	u32 lines_occup;
1199	u32 lines_freed;
1200};
1201
1202static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1203				     struct pbf_pN_buf_regs *regs,
1204				     u32 poll_count)
1205{
1206	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1207	u32 cur_cnt = poll_count;
1208
1209	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1210	crd = crd_start = REG_RD(bp, regs->crd);
1211	init_crd = REG_RD(bp, regs->init_crd);
1212
1213	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1214	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1215	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1216
1217	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1218	       (init_crd - crd_start))) {
1219		if (cur_cnt--) {
1220			udelay(FLR_WAIT_INTERVAL);
1221			crd = REG_RD(bp, regs->crd);
1222			crd_freed = REG_RD(bp, regs->crd_freed);
1223		} else {
1224			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1225			   regs->pN);
1226			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1227			   regs->pN, crd);
1228			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1229			   regs->pN, crd_freed);
1230			break;
1231		}
1232	}
1233	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1234	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1235}
1236
1237static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1238				     struct pbf_pN_cmd_regs *regs,
1239				     u32 poll_count)
1240{
1241	u32 occup, to_free, freed, freed_start;
1242	u32 cur_cnt = poll_count;
1243
1244	occup = to_free = REG_RD(bp, regs->lines_occup);
1245	freed = freed_start = REG_RD(bp, regs->lines_freed);
1246
1247	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1248	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1249
1250	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1251		if (cur_cnt--) {
1252			udelay(FLR_WAIT_INTERVAL);
1253			occup = REG_RD(bp, regs->lines_occup);
1254			freed = REG_RD(bp, regs->lines_freed);
1255		} else {
1256			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1257			   regs->pN);
1258			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1259			   regs->pN, occup);
1260			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1261			   regs->pN, freed);
1262			break;
1263		}
1264	}
1265	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1266	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1267}
1268
1269static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1270				    u32 expected, u32 poll_count)
1271{
1272	u32 cur_cnt = poll_count;
1273	u32 val;
1274
1275	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1276		udelay(FLR_WAIT_INTERVAL);
1277
1278	return val;
1279}
1280
1281int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1282				    char *msg, u32 poll_cnt)
1283{
1284	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1285	if (val != 0) {
1286		BNX2X_ERR("%s usage count=%d\n", msg, val);
1287		return 1;
1288	}
1289	return 0;
1290}
1291
1292/* Common routines with VF FLR cleanup */
1293u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1294{
1295	/* adjust polling timeout */
1296	if (CHIP_REV_IS_EMUL(bp))
1297		return FLR_POLL_CNT * 2000;
1298
1299	if (CHIP_REV_IS_FPGA(bp))
1300		return FLR_POLL_CNT * 120;
1301
1302	return FLR_POLL_CNT;
1303}
1304
1305void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1306{
1307	struct pbf_pN_cmd_regs cmd_regs[] = {
1308		{0, (CHIP_IS_E3B0(bp)) ?
1309			PBF_REG_TQ_OCCUPANCY_Q0 :
1310			PBF_REG_P0_TQ_OCCUPANCY,
1311		    (CHIP_IS_E3B0(bp)) ?
1312			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1313			PBF_REG_P0_TQ_LINES_FREED_CNT},
1314		{1, (CHIP_IS_E3B0(bp)) ?
1315			PBF_REG_TQ_OCCUPANCY_Q1 :
1316			PBF_REG_P1_TQ_OCCUPANCY,
1317		    (CHIP_IS_E3B0(bp)) ?
1318			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1319			PBF_REG_P1_TQ_LINES_FREED_CNT},
1320		{4, (CHIP_IS_E3B0(bp)) ?
1321			PBF_REG_TQ_OCCUPANCY_LB_Q :
1322			PBF_REG_P4_TQ_OCCUPANCY,
1323		    (CHIP_IS_E3B0(bp)) ?
1324			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1325			PBF_REG_P4_TQ_LINES_FREED_CNT}
1326	};
1327
1328	struct pbf_pN_buf_regs buf_regs[] = {
1329		{0, (CHIP_IS_E3B0(bp)) ?
1330			PBF_REG_INIT_CRD_Q0 :
1331			PBF_REG_P0_INIT_CRD ,
1332		    (CHIP_IS_E3B0(bp)) ?
1333			PBF_REG_CREDIT_Q0 :
1334			PBF_REG_P0_CREDIT,
1335		    (CHIP_IS_E3B0(bp)) ?
1336			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1337			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1338		{1, (CHIP_IS_E3B0(bp)) ?
1339			PBF_REG_INIT_CRD_Q1 :
1340			PBF_REG_P1_INIT_CRD,
1341		    (CHIP_IS_E3B0(bp)) ?
1342			PBF_REG_CREDIT_Q1 :
1343			PBF_REG_P1_CREDIT,
1344		    (CHIP_IS_E3B0(bp)) ?
1345			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1346			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1347		{4, (CHIP_IS_E3B0(bp)) ?
1348			PBF_REG_INIT_CRD_LB_Q :
1349			PBF_REG_P4_INIT_CRD,
1350		    (CHIP_IS_E3B0(bp)) ?
1351			PBF_REG_CREDIT_LB_Q :
1352			PBF_REG_P4_CREDIT,
1353		    (CHIP_IS_E3B0(bp)) ?
1354			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1355			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1356	};
1357
1358	int i;
1359
1360	/* Verify the command queues are flushed P0, P1, P4 */
1361	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1362		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1363
1364	/* Verify the transmission buffers are flushed P0, P1, P4 */
1365	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1366		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1367}
1368
1369#define OP_GEN_PARAM(param) \
1370	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1371
1372#define OP_GEN_TYPE(type) \
1373	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1374
1375#define OP_GEN_AGG_VECT(index) \
1376	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1377
1378int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1379{
1380	u32 op_gen_command = 0;
1381	u32 comp_addr = BAR_CSTRORM_INTMEM +
1382			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1383	int ret = 0;
1384
1385	if (REG_RD(bp, comp_addr)) {
1386		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1387		return 1;
1388	}
1389
1390	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1391	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1392	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1393	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1394
1395	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1396	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1397
1398	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1399		BNX2X_ERR("FW final cleanup did not succeed\n");
1400		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1401		   (REG_RD(bp, comp_addr)));
1402		bnx2x_panic();
1403		return 1;
1404	}
1405	/* Zero completion for next FLR */
1406	REG_WR(bp, comp_addr, 0);
1407
1408	return ret;
1409}
1410
1411u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1412{
1413	u16 status;
1414
1415	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1416	return status & PCI_EXP_DEVSTA_TRPND;
1417}
1418
1419/* PF FLR specific routines
1420*/
1421static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1422{
1423	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1424	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1425			CFC_REG_NUM_LCIDS_INSIDE_PF,
1426			"CFC PF usage counter timed out",
1427			poll_cnt))
1428		return 1;
1429
1430	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1431	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1432			DORQ_REG_PF_USAGE_CNT,
1433			"DQ PF usage counter timed out",
1434			poll_cnt))
1435		return 1;
1436
1437	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1438	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1439			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1440			"QM PF usage counter timed out",
1441			poll_cnt))
1442		return 1;
1443
1444	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1445	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1446			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1447			"Timers VNIC usage counter timed out",
1448			poll_cnt))
1449		return 1;
1450	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1452			"Timers NUM_SCANS usage counter timed out",
1453			poll_cnt))
1454		return 1;
1455
1456	/* Wait DMAE PF usage counter to zero */
1457	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1458			dmae_reg_go_c[INIT_DMAE_C(bp)],
1459			"DMAE command register timed out",
1460			poll_cnt))
1461		return 1;
1462
1463	return 0;
1464}
1465
1466static void bnx2x_hw_enable_status(struct bnx2x *bp)
1467{
1468	u32 val;
1469
1470	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1471	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1472
1473	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1474	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1475
1476	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1477	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1478
1479	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1480	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1481
1482	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1483	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1484
1485	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1486	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1487
1488	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1489	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1490
1491	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1492	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1493	   val);
1494}
1495
1496static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1497{
1498	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1499
1500	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1501
1502	/* Re-enable PF target read access */
1503	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1504
1505	/* Poll HW usage counters */
1506	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1507	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1508		return -EBUSY;
1509
1510	/* Zero the igu 'trailing edge' and 'leading edge' */
1511
1512	/* Send the FW cleanup command */
1513	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1514		return -EBUSY;
1515
1516	/* ATC cleanup */
1517
1518	/* Verify TX hw is flushed */
1519	bnx2x_tx_hw_flushed(bp, poll_cnt);
1520
1521	/* Wait 100ms (not adjusted according to platform) */
1522	msleep(100);
1523
1524	/* Verify no pending pci transactions */
1525	if (bnx2x_is_pcie_pending(bp->pdev))
1526		BNX2X_ERR("PCIE Transactions still pending\n");
1527
1528	/* Debug */
1529	bnx2x_hw_enable_status(bp);
1530
1531	/*
1532	 * Master enable - Due to WB DMAE writes performed before this
1533	 * register is re-initialized as part of the regular function init
1534	 */
1535	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1536
1537	return 0;
1538}
1539
1540static void bnx2x_hc_int_enable(struct bnx2x *bp)
1541{
1542	int port = BP_PORT(bp);
1543	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1544	u32 val = REG_RD(bp, addr);
1545	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1546	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1547	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1548
1549	if (msix) {
1550		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1551			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1552		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1553			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1554		if (single_msix)
1555			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1556	} else if (msi) {
1557		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1558		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1559			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1560			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1561	} else {
1562		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1563			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1564			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1565			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1566
1567		if (!CHIP_IS_E1(bp)) {
1568			DP(NETIF_MSG_IFUP,
1569			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1570
1571			REG_WR(bp, addr, val);
1572
1573			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1574		}
1575	}
1576
1577	if (CHIP_IS_E1(bp))
1578		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1579
1580	DP(NETIF_MSG_IFUP,
1581	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1582	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1583
1584	REG_WR(bp, addr, val);
1585	/*
1586	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1587	 */
1588	mmiowb();
1589	barrier();
1590
1591	if (!CHIP_IS_E1(bp)) {
1592		/* init leading/trailing edge */
1593		if (IS_MF(bp)) {
1594			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1595			if (bp->port.pmf)
1596				/* enable nig and gpio3 attention */
1597				val |= 0x1100;
1598		} else
1599			val = 0xffff;
1600
1601		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1602		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1603	}
1604
1605	/* Make sure that interrupts are indeed enabled from here on */
1606	mmiowb();
1607}
1608
1609static void bnx2x_igu_int_enable(struct bnx2x *bp)
1610{
1611	u32 val;
1612	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1613	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1614	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1615
1616	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1617
1618	if (msix) {
1619		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1620			 IGU_PF_CONF_SINGLE_ISR_EN);
1621		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1622			IGU_PF_CONF_ATTN_BIT_EN);
1623
1624		if (single_msix)
1625			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1626	} else if (msi) {
1627		val &= ~IGU_PF_CONF_INT_LINE_EN;
1628		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1629			IGU_PF_CONF_ATTN_BIT_EN |
1630			IGU_PF_CONF_SINGLE_ISR_EN);
1631	} else {
1632		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1633		val |= (IGU_PF_CONF_INT_LINE_EN |
1634			IGU_PF_CONF_ATTN_BIT_EN |
1635			IGU_PF_CONF_SINGLE_ISR_EN);
1636	}
1637
1638	/* Clean previous status - need to configure igu prior to ack*/
1639	if ((!msix) || single_msix) {
1640		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1641		bnx2x_ack_int(bp);
1642	}
1643
1644	val |= IGU_PF_CONF_FUNC_EN;
1645
1646	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1647	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1648
1649	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1650
1651	if (val & IGU_PF_CONF_INT_LINE_EN)
1652		pci_intx(bp->pdev, true);
1653
1654	barrier();
1655
1656	/* init leading/trailing edge */
1657	if (IS_MF(bp)) {
1658		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1659		if (bp->port.pmf)
1660			/* enable nig and gpio3 attention */
1661			val |= 0x1100;
1662	} else
1663		val = 0xffff;
1664
1665	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1666	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1667
1668	/* Make sure that interrupts are indeed enabled from here on */
1669	mmiowb();
1670}
1671
1672void bnx2x_int_enable(struct bnx2x *bp)
1673{
1674	if (bp->common.int_block == INT_BLOCK_HC)
1675		bnx2x_hc_int_enable(bp);
1676	else
1677		bnx2x_igu_int_enable(bp);
1678}
1679
1680void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1681{
1682	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1683	int i, offset;
1684
1685	if (disable_hw)
1686		/* prevent the HW from sending interrupts */
1687		bnx2x_int_disable(bp);
1688
1689	/* make sure all ISRs are done */
1690	if (msix) {
1691		synchronize_irq(bp->msix_table[0].vector);
1692		offset = 1;
1693		if (CNIC_SUPPORT(bp))
1694			offset++;
1695		for_each_eth_queue(bp, i)
1696			synchronize_irq(bp->msix_table[offset++].vector);
1697	} else
1698		synchronize_irq(bp->pdev->irq);
1699
1700	/* make sure sp_task is not running */
1701	cancel_delayed_work(&bp->sp_task);
1702	cancel_delayed_work(&bp->period_task);
1703	flush_workqueue(bnx2x_wq);
1704}
1705
1706/* fast path */
1707
1708/*
1709 * General service functions
1710 */
1711
1712/* Return true if succeeded to acquire the lock */
1713static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1714{
1715	u32 lock_status;
1716	u32 resource_bit = (1 << resource);
1717	int func = BP_FUNC(bp);
1718	u32 hw_lock_control_reg;
1719
1720	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1721	   "Trying to take a lock on resource %d\n", resource);
1722
1723	/* Validating that the resource is within range */
1724	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1725		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1726		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1727		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1728		return false;
1729	}
1730
1731	if (func <= 5)
1732		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1733	else
1734		hw_lock_control_reg =
1735				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1736
1737	/* Try to acquire the lock */
1738	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1739	lock_status = REG_RD(bp, hw_lock_control_reg);
1740	if (lock_status & resource_bit)
1741		return true;
1742
1743	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1744	   "Failed to get a lock on resource %d\n", resource);
1745	return false;
1746}
1747
1748/**
1749 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1750 *
1751 * @bp:	driver handle
1752 *
1753 * Returns the recovery leader resource id according to the engine this function
1754 * belongs to. Currently only only 2 engines is supported.
1755 */
1756static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1757{
1758	if (BP_PATH(bp))
1759		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1760	else
1761		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1762}
1763
1764/**
1765 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1766 *
1767 * @bp: driver handle
1768 *
1769 * Tries to acquire a leader lock for current engine.
1770 */
1771static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1772{
1773	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1774}
1775
1776static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1777
1778/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1779static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1780{
1781	/* Set the interrupt occurred bit for the sp-task to recognize it
1782	 * must ack the interrupt and transition according to the IGU
1783	 * state machine.
1784	 */
1785	atomic_set(&bp->interrupt_occurred, 1);
1786
1787	/* The sp_task must execute only after this bit
1788	 * is set, otherwise we will get out of sync and miss all
1789	 * further interrupts. Hence, the barrier.
1790	 */
1791	smp_wmb();
1792
1793	/* schedule sp_task to workqueue */
1794	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795}
1796
1797void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1798{
1799	struct bnx2x *bp = fp->bp;
1800	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1801	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1803	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1804
1805	DP(BNX2X_MSG_SP,
1806	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1807	   fp->index, cid, command, bp->state,
1808	   rr_cqe->ramrod_cqe.ramrod_type);
1809
1810	/* If cid is within VF range, replace the slowpath object with the
1811	 * one corresponding to this VF
1812	 */
1813	if (cid >= BNX2X_FIRST_VF_CID  &&
1814	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1815		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1816
1817	switch (command) {
1818	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1819		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1820		drv_cmd = BNX2X_Q_CMD_UPDATE;
1821		break;
1822
1823	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1824		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1825		drv_cmd = BNX2X_Q_CMD_SETUP;
1826		break;
1827
1828	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1829		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1830		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1831		break;
1832
1833	case (RAMROD_CMD_ID_ETH_HALT):
1834		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1835		drv_cmd = BNX2X_Q_CMD_HALT;
1836		break;
1837
1838	case (RAMROD_CMD_ID_ETH_TERMINATE):
1839		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1840		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1841		break;
1842
1843	case (RAMROD_CMD_ID_ETH_EMPTY):
1844		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1845		drv_cmd = BNX2X_Q_CMD_EMPTY;
1846		break;
1847
1848	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1849		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1850		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1851		break;
1852
1853	default:
1854		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1855			  command, fp->index);
1856		return;
1857	}
1858
1859	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1860	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1861		/* q_obj->complete_cmd() failure means that this was
1862		 * an unexpected completion.
1863		 *
1864		 * In this case we don't want to increase the bp->spq_left
1865		 * because apparently we haven't sent this command the first
1866		 * place.
1867		 */
1868#ifdef BNX2X_STOP_ON_ERROR
1869		bnx2x_panic();
1870#else
1871		return;
1872#endif
1873
1874	smp_mb__before_atomic();
1875	atomic_inc(&bp->cq_spq_left);
1876	/* push the change in bp->spq_left and towards the memory */
1877	smp_mb__after_atomic();
1878
1879	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1880
1881	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1882	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1883		/* if Q update ramrod is completed for last Q in AFEX vif set
1884		 * flow, then ACK MCP at the end
1885		 *
1886		 * mark pending ACK to MCP bit.
1887		 * prevent case that both bits are cleared.
1888		 * At the end of load/unload driver checks that
1889		 * sp_state is cleared, and this order prevents
1890		 * races
1891		 */
1892		smp_mb__before_atomic();
1893		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1894		wmb();
1895		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1896		smp_mb__after_atomic();
1897
1898		/* schedule the sp task as mcp ack is required */
1899		bnx2x_schedule_sp_task(bp);
1900	}
1901
1902	return;
1903}
1904
1905irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1906{
1907	struct bnx2x *bp = netdev_priv(dev_instance);
1908	u16 status = bnx2x_ack_int(bp);
1909	u16 mask;
1910	int i;
1911	u8 cos;
1912
1913	/* Return here if interrupt is shared and it's not for us */
1914	if (unlikely(status == 0)) {
1915		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1916		return IRQ_NONE;
1917	}
1918	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1919
1920#ifdef BNX2X_STOP_ON_ERROR
1921	if (unlikely(bp->panic))
1922		return IRQ_HANDLED;
1923#endif
1924
1925	for_each_eth_queue(bp, i) {
1926		struct bnx2x_fastpath *fp = &bp->fp[i];
1927
1928		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1929		if (status & mask) {
1930			/* Handle Rx or Tx according to SB id */
1931			for_each_cos_in_tx_queue(fp, cos)
1932				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1933			prefetch(&fp->sb_running_index[SM_RX_ID]);
1934			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1935			status &= ~mask;
1936		}
1937	}
1938
1939	if (CNIC_SUPPORT(bp)) {
1940		mask = 0x2;
1941		if (status & (mask | 0x1)) {
1942			struct cnic_ops *c_ops = NULL;
1943
1944			rcu_read_lock();
1945			c_ops = rcu_dereference(bp->cnic_ops);
1946			if (c_ops && (bp->cnic_eth_dev.drv_state &
1947				      CNIC_DRV_STATE_HANDLES_IRQ))
1948				c_ops->cnic_handler(bp->cnic_data, NULL);
1949			rcu_read_unlock();
1950
1951			status &= ~mask;
1952		}
1953	}
1954
1955	if (unlikely(status & 0x1)) {
1956
1957		/* schedule sp task to perform default status block work, ack
1958		 * attentions and enable interrupts.
1959		 */
1960		bnx2x_schedule_sp_task(bp);
1961
1962		status &= ~0x1;
1963		if (!status)
1964			return IRQ_HANDLED;
1965	}
1966
1967	if (unlikely(status))
1968		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1969		   status);
1970
1971	return IRQ_HANDLED;
1972}
1973
1974/* Link */
1975
1976/*
1977 * General service functions
1978 */
1979
1980int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1981{
1982	u32 lock_status;
1983	u32 resource_bit = (1 << resource);
1984	int func = BP_FUNC(bp);
1985	u32 hw_lock_control_reg;
1986	int cnt;
1987
1988	/* Validating that the resource is within range */
1989	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1990		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1991		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1992		return -EINVAL;
1993	}
1994
1995	if (func <= 5) {
1996		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1997	} else {
1998		hw_lock_control_reg =
1999				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2000	}
2001
2002	/* Validating that the resource is not already taken */
2003	lock_status = REG_RD(bp, hw_lock_control_reg);
2004	if (lock_status & resource_bit) {
2005		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2006		   lock_status, resource_bit);
2007		return -EEXIST;
2008	}
2009
2010	/* Try for 5 second every 5ms */
2011	for (cnt = 0; cnt < 1000; cnt++) {
2012		/* Try to acquire the lock */
2013		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2014		lock_status = REG_RD(bp, hw_lock_control_reg);
2015		if (lock_status & resource_bit)
2016			return 0;
2017
2018		usleep_range(5000, 10000);
2019	}
2020	BNX2X_ERR("Timeout\n");
2021	return -EAGAIN;
2022}
2023
2024int bnx2x_release_leader_lock(struct bnx2x *bp)
2025{
2026	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2027}
2028
2029int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2030{
2031	u32 lock_status;
2032	u32 resource_bit = (1 << resource);
2033	int func = BP_FUNC(bp);
2034	u32 hw_lock_control_reg;
2035
2036	/* Validating that the resource is within range */
2037	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2038		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2039		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2040		return -EINVAL;
2041	}
2042
2043	if (func <= 5) {
2044		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2045	} else {
2046		hw_lock_control_reg =
2047				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2048	}
2049
2050	/* Validating that the resource is currently taken */
2051	lock_status = REG_RD(bp, hw_lock_control_reg);
2052	if (!(lock_status & resource_bit)) {
2053		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2054			  lock_status, resource_bit);
2055		return -EFAULT;
2056	}
2057
2058	REG_WR(bp, hw_lock_control_reg, resource_bit);
2059	return 0;
2060}
2061
2062int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2063{
2064	/* The GPIO should be swapped if swap register is set and active */
2065	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2066			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2067	int gpio_shift = gpio_num +
2068			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2069	u32 gpio_mask = (1 << gpio_shift);
2070	u32 gpio_reg;
2071	int value;
2072
2073	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2074		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2075		return -EINVAL;
2076	}
2077
2078	/* read GPIO value */
2079	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2080
2081	/* get the requested pin value */
2082	if ((gpio_reg & gpio_mask) == gpio_mask)
2083		value = 1;
2084	else
2085		value = 0;
2086
2087	return value;
2088}
2089
2090int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2091{
2092	/* The GPIO should be swapped if swap register is set and active */
2093	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2094			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2095	int gpio_shift = gpio_num +
2096			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2097	u32 gpio_mask = (1 << gpio_shift);
2098	u32 gpio_reg;
2099
2100	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2101		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2102		return -EINVAL;
2103	}
2104
2105	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2106	/* read GPIO and mask except the float bits */
2107	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2108
2109	switch (mode) {
2110	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2111		DP(NETIF_MSG_LINK,
2112		   "Set GPIO %d (shift %d) -> output low\n",
2113		   gpio_num, gpio_shift);
2114		/* clear FLOAT and set CLR */
2115		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2116		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2117		break;
2118
2119	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2120		DP(NETIF_MSG_LINK,
2121		   "Set GPIO %d (shift %d) -> output high\n",
2122		   gpio_num, gpio_shift);
2123		/* clear FLOAT and set SET */
2124		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2125		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2126		break;
2127
2128	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2129		DP(NETIF_MSG_LINK,
2130		   "Set GPIO %d (shift %d) -> input\n",
2131		   gpio_num, gpio_shift);
2132		/* set FLOAT */
2133		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2134		break;
2135
2136	default:
2137		break;
2138	}
2139
2140	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2141	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2142
2143	return 0;
2144}
2145
2146int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2147{
2148	u32 gpio_reg = 0;
2149	int rc = 0;
2150
2151	/* Any port swapping should be handled by caller. */
2152
2153	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2154	/* read GPIO and mask except the float bits */
2155	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2156	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2157	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2158	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2159
2160	switch (mode) {
2161	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2162		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2163		/* set CLR */
2164		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2165		break;
2166
2167	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2168		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2169		/* set SET */
2170		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2171		break;
2172
2173	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2174		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2175		/* set FLOAT */
2176		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2177		break;
2178
2179	default:
2180		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2181		rc = -EINVAL;
2182		break;
2183	}
2184
2185	if (rc == 0)
2186		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2187
2188	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2189
2190	return rc;
2191}
2192
2193int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2194{
2195	/* The GPIO should be swapped if swap register is set and active */
2196	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2197			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2198	int gpio_shift = gpio_num +
2199			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2200	u32 gpio_mask = (1 << gpio_shift);
2201	u32 gpio_reg;
2202
2203	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2204		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2205		return -EINVAL;
2206	}
2207
2208	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2209	/* read GPIO int */
2210	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2211
2212	switch (mode) {
2213	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2214		DP(NETIF_MSG_LINK,
2215		   "Clear GPIO INT %d (shift %d) -> output low\n",
2216		   gpio_num, gpio_shift);
2217		/* clear SET and set CLR */
2218		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2219		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2220		break;
2221
2222	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2223		DP(NETIF_MSG_LINK,
2224		   "Set GPIO INT %d (shift %d) -> output high\n",
2225		   gpio_num, gpio_shift);
2226		/* clear CLR and set SET */
2227		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229		break;
2230
2231	default:
2232		break;
2233	}
2234
2235	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2236	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2237
2238	return 0;
2239}
2240
2241static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2242{
2243	u32 spio_reg;
2244
2245	/* Only 2 SPIOs are configurable */
2246	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2247		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2248		return -EINVAL;
2249	}
2250
2251	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2252	/* read SPIO and mask except the float bits */
2253	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2254
2255	switch (mode) {
2256	case MISC_SPIO_OUTPUT_LOW:
2257		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2258		/* clear FLOAT and set CLR */
2259		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2260		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2261		break;
2262
2263	case MISC_SPIO_OUTPUT_HIGH:
2264		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2265		/* clear FLOAT and set SET */
2266		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2267		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2268		break;
2269
2270	case MISC_SPIO_INPUT_HI_Z:
2271		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2272		/* set FLOAT */
2273		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2274		break;
2275
2276	default:
2277		break;
2278	}
2279
2280	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2281	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2282
2283	return 0;
2284}
2285
2286void bnx2x_calc_fc_adv(struct bnx2x *bp)
2287{
2288	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2289	switch (bp->link_vars.ieee_fc &
2290		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2291	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2292		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2293						   ADVERTISED_Pause);
2294		break;
2295
2296	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2297		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2298						  ADVERTISED_Pause);
2299		break;
2300
2301	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2302		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2303		break;
2304
2305	default:
2306		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2307						   ADVERTISED_Pause);
2308		break;
2309	}
2310}
2311
2312static void bnx2x_set_requested_fc(struct bnx2x *bp)
2313{
2314	/* Initialize link parameters structure variables
2315	 * It is recommended to turn off RX FC for jumbo frames
2316	 *  for better performance
2317	 */
2318	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2319		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2320	else
2321		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2322}
2323
2324static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2325{
2326	u32 pause_enabled = 0;
2327
2328	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2329		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2330			pause_enabled = 1;
2331
2332		REG_WR(bp, BAR_USTRORM_INTMEM +
2333			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2334		       pause_enabled);
2335	}
2336
2337	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2338	   pause_enabled ? "enabled" : "disabled");
2339}
2340
2341int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2342{
2343	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2344	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2345
2346	if (!BP_NOMCP(bp)) {
2347		bnx2x_set_requested_fc(bp);
2348		bnx2x_acquire_phy_lock(bp);
2349
2350		if (load_mode == LOAD_DIAG) {
2351			struct link_params *lp = &bp->link_params;
2352			lp->loopback_mode = LOOPBACK_XGXS;
2353			/* do PHY loopback at 10G speed, if possible */
2354			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2355				if (lp->speed_cap_mask[cfx_idx] &
2356				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2357					lp->req_line_speed[cfx_idx] =
2358					SPEED_10000;
2359				else
2360					lp->req_line_speed[cfx_idx] =
2361					SPEED_1000;
2362			}
2363		}
2364
2365		if (load_mode == LOAD_LOOPBACK_EXT) {
2366			struct link_params *lp = &bp->link_params;
2367			lp->loopback_mode = LOOPBACK_EXT;
2368		}
2369
2370		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2371
2372		bnx2x_release_phy_lock(bp);
2373
2374		bnx2x_init_dropless_fc(bp);
2375
2376		bnx2x_calc_fc_adv(bp);
2377
2378		if (bp->link_vars.link_up) {
2379			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2380			bnx2x_link_report(bp);
2381		}
2382		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2383		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2384		return rc;
2385	}
2386	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2387	return -EINVAL;
2388}
2389
2390void bnx2x_link_set(struct bnx2x *bp)
2391{
2392	if (!BP_NOMCP(bp)) {
2393		bnx2x_acquire_phy_lock(bp);
2394		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2395		bnx2x_release_phy_lock(bp);
2396
2397		bnx2x_init_dropless_fc(bp);
2398
2399		bnx2x_calc_fc_adv(bp);
2400	} else
2401		BNX2X_ERR("Bootcode is missing - can not set link\n");
2402}
2403
2404static void bnx2x__link_reset(struct bnx2x *bp)
2405{
2406	if (!BP_NOMCP(bp)) {
2407		bnx2x_acquire_phy_lock(bp);
2408		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2409		bnx2x_release_phy_lock(bp);
2410	} else
2411		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2412}
2413
2414void bnx2x_force_link_reset(struct bnx2x *bp)
2415{
2416	bnx2x_acquire_phy_lock(bp);
2417	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2418	bnx2x_release_phy_lock(bp);
2419}
2420
2421u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2422{
2423	u8 rc = 0;
2424
2425	if (!BP_NOMCP(bp)) {
2426		bnx2x_acquire_phy_lock(bp);
2427		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2428				     is_serdes);
2429		bnx2x_release_phy_lock(bp);
2430	} else
2431		BNX2X_ERR("Bootcode is missing - can not test link\n");
2432
2433	return rc;
2434}
2435
2436/* Calculates the sum of vn_min_rates.
2437   It's needed for further normalizing of the min_rates.
2438   Returns:
2439     sum of vn_min_rates.
2440       or
2441     0 - if all the min_rates are 0.
2442     In the later case fairness algorithm should be deactivated.
2443     If not all min_rates are zero then those that are zeroes will be set to 1.
2444 */
2445static void bnx2x_calc_vn_min(struct bnx2x *bp,
2446				      struct cmng_init_input *input)
2447{
2448	int all_zero = 1;
2449	int vn;
2450
2451	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2452		u32 vn_cfg = bp->mf_config[vn];
2453		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2454				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2455
2456		/* Skip hidden vns */
2457		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458			vn_min_rate = 0;
2459		/* If min rate is zero - set it to 1 */
2460		else if (!vn_min_rate)
2461			vn_min_rate = DEF_MIN_RATE;
2462		else
2463			all_zero = 0;
2464
2465		input->vnic_min_rate[vn] = vn_min_rate;
2466	}
2467
2468	/* if ETS or all min rates are zeros - disable fairness */
2469	if (BNX2X_IS_ETS_ENABLED(bp)) {
2470		input->flags.cmng_enables &=
2471					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2472		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2473	} else if (all_zero) {
2474		input->flags.cmng_enables &=
2475					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2476		DP(NETIF_MSG_IFUP,
2477		   "All MIN values are zeroes fairness will be disabled\n");
2478	} else
2479		input->flags.cmng_enables |=
2480					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2481}
2482
2483static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2484				    struct cmng_init_input *input)
2485{
2486	u16 vn_max_rate;
2487	u32 vn_cfg = bp->mf_config[vn];
2488
2489	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2490		vn_max_rate = 0;
2491	else {
2492		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2493
2494		if (IS_MF_SI(bp)) {
2495			/* maxCfg in percents of linkspeed */
2496			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2497		} else /* SD modes */
2498			/* maxCfg is absolute in 100Mb units */
2499			vn_max_rate = maxCfg * 100;
2500	}
2501
2502	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2503
2504	input->vnic_max_rate[vn] = vn_max_rate;
2505}
2506
2507static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2508{
2509	if (CHIP_REV_IS_SLOW(bp))
2510		return CMNG_FNS_NONE;
2511	if (IS_MF(bp))
2512		return CMNG_FNS_MINMAX;
2513
2514	return CMNG_FNS_NONE;
2515}
2516
2517void bnx2x_read_mf_cfg(struct bnx2x *bp)
2518{
2519	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2520
2521	if (BP_NOMCP(bp))
2522		return; /* what should be the default value in this case */
2523
2524	/* For 2 port configuration the absolute function number formula
2525	 * is:
2526	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2527	 *
2528	 *      and there are 4 functions per port
2529	 *
2530	 * For 4 port configuration it is
2531	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2532	 *
2533	 *      and there are 2 functions per port
2534	 */
2535	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2536		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2537
2538		if (func >= E1H_FUNC_MAX)
2539			break;
2540
2541		bp->mf_config[vn] =
2542			MF_CFG_RD(bp, func_mf_config[func].config);
2543	}
2544	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2545		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2546		bp->flags |= MF_FUNC_DIS;
2547	} else {
2548		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2549		bp->flags &= ~MF_FUNC_DIS;
2550	}
2551}
2552
2553static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2554{
2555	struct cmng_init_input input;
2556	memset(&input, 0, sizeof(struct cmng_init_input));
2557
2558	input.port_rate = bp->link_vars.line_speed;
2559
2560	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2561		int vn;
2562
2563		/* read mf conf from shmem */
2564		if (read_cfg)
2565			bnx2x_read_mf_cfg(bp);
2566
2567		/* vn_weight_sum and enable fairness if not 0 */
2568		bnx2x_calc_vn_min(bp, &input);
2569
2570		/* calculate and set min-max rate for each vn */
2571		if (bp->port.pmf)
2572			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2573				bnx2x_calc_vn_max(bp, vn, &input);
2574
2575		/* always enable rate shaping and fairness */
2576		input.flags.cmng_enables |=
2577					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2578
2579		bnx2x_init_cmng(&input, &bp->cmng);
2580		return;
2581	}
2582
2583	/* rate shaping and fairness are disabled */
2584	DP(NETIF_MSG_IFUP,
2585	   "rate shaping and fairness are disabled\n");
2586}
2587
2588static void storm_memset_cmng(struct bnx2x *bp,
2589			      struct cmng_init *cmng,
2590			      u8 port)
2591{
2592	int vn;
2593	size_t size = sizeof(struct cmng_struct_per_port);
2594
2595	u32 addr = BAR_XSTRORM_INTMEM +
2596			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2597
2598	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2599
2600	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2601		int func = func_by_vn(bp, vn);
2602
2603		addr = BAR_XSTRORM_INTMEM +
2604		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2605		size = sizeof(struct rate_shaping_vars_per_vn);
2606		__storm_memset_struct(bp, addr, size,
2607				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2608
2609		addr = BAR_XSTRORM_INTMEM +
2610		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2611		size = sizeof(struct fairness_vars_per_vn);
2612		__storm_memset_struct(bp, addr, size,
2613				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2614	}
2615}
2616
2617/* init cmng mode in HW according to local configuration */
2618void bnx2x_set_local_cmng(struct bnx2x *bp)
2619{
2620	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2621
2622	if (cmng_fns != CMNG_FNS_NONE) {
2623		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2624		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2625	} else {
2626		/* rate shaping and fairness are disabled */
2627		DP(NETIF_MSG_IFUP,
2628		   "single function mode without fairness\n");
2629	}
2630}
2631
2632/* This function is called upon link interrupt */
2633static void bnx2x_link_attn(struct bnx2x *bp)
2634{
2635	/* Make sure that we are synced with the current statistics */
2636	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2637
2638	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2639
2640	bnx2x_init_dropless_fc(bp);
2641
2642	if (bp->link_vars.link_up) {
2643
2644		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2645			struct host_port_stats *pstats;
2646
2647			pstats = bnx2x_sp(bp, port_stats);
2648			/* reset old mac stats */
2649			memset(&(pstats->mac_stx[0]), 0,
2650			       sizeof(struct mac_stx));
2651		}
2652		if (bp->state == BNX2X_STATE_OPEN)
2653			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2654	}
2655
2656	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2657		bnx2x_set_local_cmng(bp);
2658
2659	__bnx2x_link_report(bp);
2660
2661	if (IS_MF(bp))
2662		bnx2x_link_sync_notify(bp);
2663}
2664
2665void bnx2x__link_status_update(struct bnx2x *bp)
2666{
2667	if (bp->state != BNX2X_STATE_OPEN)
2668		return;
2669
2670	/* read updated dcb configuration */
2671	if (IS_PF(bp)) {
2672		bnx2x_dcbx_pmf_update(bp);
2673		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2674		if (bp->link_vars.link_up)
2675			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2676		else
2677			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2678			/* indicate link status */
2679		bnx2x_link_report(bp);
2680
2681	} else { /* VF */
2682		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2683					  SUPPORTED_10baseT_Full |
2684					  SUPPORTED_100baseT_Half |
2685					  SUPPORTED_100baseT_Full |
2686					  SUPPORTED_1000baseT_Full |
2687					  SUPPORTED_2500baseX_Full |
2688					  SUPPORTED_10000baseT_Full |
2689					  SUPPORTED_TP |
2690					  SUPPORTED_FIBRE |
2691					  SUPPORTED_Autoneg |
2692					  SUPPORTED_Pause |
2693					  SUPPORTED_Asym_Pause);
2694		bp->port.advertising[0] = bp->port.supported[0];
2695
2696		bp->link_params.bp = bp;
2697		bp->link_params.port = BP_PORT(bp);
2698		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2699		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2700		bp->link_params.req_line_speed[0] = SPEED_10000;
2701		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2702		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2703		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2704		bp->link_vars.line_speed = SPEED_10000;
2705		bp->link_vars.link_status =
2706			(LINK_STATUS_LINK_UP |
2707			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2708		bp->link_vars.link_up = 1;
2709		bp->link_vars.duplex = DUPLEX_FULL;
2710		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2711		__bnx2x_link_report(bp);
2712
2713		bnx2x_sample_bulletin(bp);
2714
2715		/* if bulletin board did not have an update for link status
2716		 * __bnx2x_link_report will report current status
2717		 * but it will NOT duplicate report in case of already reported
2718		 * during sampling bulletin board.
2719		 */
2720		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2721	}
2722}
2723
2724static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2725				  u16 vlan_val, u8 allowed_prio)
2726{
2727	struct bnx2x_func_state_params func_params = {NULL};
2728	struct bnx2x_func_afex_update_params *f_update_params =
2729		&func_params.params.afex_update;
2730
2731	func_params.f_obj = &bp->func_obj;
2732	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2733
2734	/* no need to wait for RAMROD completion, so don't
2735	 * set RAMROD_COMP_WAIT flag
2736	 */
2737
2738	f_update_params->vif_id = vifid;
2739	f_update_params->afex_default_vlan = vlan_val;
2740	f_update_params->allowed_priorities = allowed_prio;
2741
2742	/* if ramrod can not be sent, response to MCP immediately */
2743	if (bnx2x_func_state_change(bp, &func_params) < 0)
2744		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2745
2746	return 0;
2747}
2748
2749static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2750					  u16 vif_index, u8 func_bit_map)
2751{
2752	struct bnx2x_func_state_params func_params = {NULL};
2753	struct bnx2x_func_afex_viflists_params *update_params =
2754		&func_params.params.afex_viflists;
2755	int rc;
2756	u32 drv_msg_code;
2757
2758	/* validate only LIST_SET and LIST_GET are received from switch */
2759	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2760		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2761			  cmd_type);
2762
2763	func_params.f_obj = &bp->func_obj;
2764	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2765
2766	/* set parameters according to cmd_type */
2767	update_params->afex_vif_list_command = cmd_type;
2768	update_params->vif_list_index = vif_index;
2769	update_params->func_bit_map =
2770		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2771	update_params->func_to_clear = 0;
2772	drv_msg_code =
2773		(cmd_type == VIF_LIST_RULE_GET) ?
2774		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2775		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2776
2777	/* if ramrod can not be sent, respond to MCP immediately for
2778	 * SET and GET requests (other are not triggered from MCP)
2779	 */
2780	rc = bnx2x_func_state_change(bp, &func_params);
2781	if (rc < 0)
2782		bnx2x_fw_command(bp, drv_msg_code, 0);
2783
2784	return 0;
2785}
2786
2787static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2788{
2789	struct afex_stats afex_stats;
2790	u32 func = BP_ABS_FUNC(bp);
2791	u32 mf_config;
2792	u16 vlan_val;
2793	u32 vlan_prio;
2794	u16 vif_id;
2795	u8 allowed_prio;
2796	u8 vlan_mode;
2797	u32 addr_to_write, vifid, addrs, stats_type, i;
2798
2799	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2800		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2801		DP(BNX2X_MSG_MCP,
2802		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2803		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2804	}
2805
2806	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2807		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2808		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2809		DP(BNX2X_MSG_MCP,
2810		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2811		   vifid, addrs);
2812		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2813					       addrs);
2814	}
2815
2816	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2817		addr_to_write = SHMEM2_RD(bp,
2818			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2819		stats_type = SHMEM2_RD(bp,
2820			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2821
2822		DP(BNX2X_MSG_MCP,
2823		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2824		   addr_to_write);
2825
2826		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2827
2828		/* write response to scratchpad, for MCP */
2829		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2830			REG_WR(bp, addr_to_write + i*sizeof(u32),
2831			       *(((u32 *)(&afex_stats))+i));
2832
2833		/* send ack message to MCP */
2834		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2835	}
2836
2837	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2838		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2839		bp->mf_config[BP_VN(bp)] = mf_config;
2840		DP(BNX2X_MSG_MCP,
2841		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2842		   mf_config);
2843
2844		/* if VIF_SET is "enabled" */
2845		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2846			/* set rate limit directly to internal RAM */
2847			struct cmng_init_input cmng_input;
2848			struct rate_shaping_vars_per_vn m_rs_vn;
2849			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2850			u32 addr = BAR_XSTRORM_INTMEM +
2851			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2852
2853			bp->mf_config[BP_VN(bp)] = mf_config;
2854
2855			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2856			m_rs_vn.vn_counter.rate =
2857				cmng_input.vnic_max_rate[BP_VN(bp)];
2858			m_rs_vn.vn_counter.quota =
2859				(m_rs_vn.vn_counter.rate *
2860				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2861
2862			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2863
2864			/* read relevant values from mf_cfg struct in shmem */
2865			vif_id =
2866				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2867				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2868				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2869			vlan_val =
2870				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2871				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2872				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2873			vlan_prio = (mf_config &
2874				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2875				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2876			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2877			vlan_mode =
2878				(MF_CFG_RD(bp,
2879					   func_mf_config[func].afex_config) &
2880				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2881				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2882			allowed_prio =
2883				(MF_CFG_RD(bp,
2884					   func_mf_config[func].afex_config) &
2885				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2886				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2887
2888			/* send ramrod to FW, return in case of failure */
2889			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2890						   allowed_prio))
2891				return;
2892
2893			bp->afex_def_vlan_tag = vlan_val;
2894			bp->afex_vlan_mode = vlan_mode;
2895		} else {
2896			/* notify link down because BP->flags is disabled */
2897			bnx2x_link_report(bp);
2898
2899			/* send INVALID VIF ramrod to FW */
2900			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2901
2902			/* Reset the default afex VLAN */
2903			bp->afex_def_vlan_tag = -1;
2904		}
2905	}
2906}
2907
2908static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2909{
2910	struct bnx2x_func_switch_update_params *switch_update_params;
2911	struct bnx2x_func_state_params func_params;
2912
2913	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2914	switch_update_params = &func_params.params.switch_update;
2915	func_params.f_obj = &bp->func_obj;
2916	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2917
2918	if (IS_MF_UFP(bp)) {
2919		int func = BP_ABS_FUNC(bp);
2920		u32 val;
2921
2922		/* Re-learn the S-tag from shmem */
2923		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2924				FUNC_MF_CFG_E1HOV_TAG_MASK;
2925		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2926			bp->mf_ov = val;
2927		} else {
2928			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2929			goto fail;
2930		}
2931
2932		/* Configure new S-tag in LLH */
2933		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2934		       bp->mf_ov);
2935
2936		/* Send Ramrod to update FW of change */
2937		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2938			  &switch_update_params->changes);
2939		switch_update_params->vlan = bp->mf_ov;
2940
2941		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2942			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2943				  bp->mf_ov);
2944			goto fail;
2945		}
2946
2947		DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2948
2949		bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2950
2951		return;
2952	}
2953
2954	/* not supported by SW yet */
2955fail:
2956	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2957}
2958
2959static void bnx2x_pmf_update(struct bnx2x *bp)
2960{
2961	int port = BP_PORT(bp);
2962	u32 val;
2963
2964	bp->port.pmf = 1;
2965	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2966
2967	/*
2968	 * We need the mb() to ensure the ordering between the writing to
2969	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2970	 */
2971	smp_mb();
2972
2973	/* queue a periodic task */
2974	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2975
2976	bnx2x_dcbx_pmf_update(bp);
2977
2978	/* enable nig attention */
2979	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2980	if (bp->common.int_block == INT_BLOCK_HC) {
2981		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2982		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2983	} else if (!CHIP_IS_E1x(bp)) {
2984		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2985		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2986	}
2987
2988	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2989}
2990
2991/* end of Link */
2992
2993/* slow path */
2994
2995/*
2996 * General service functions
2997 */
2998
2999/* send the MCP a request, block until there is a reply */
3000u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3001{
3002	int mb_idx = BP_FW_MB_IDX(bp);
3003	u32 seq;
3004	u32 rc = 0;
3005	u32 cnt = 1;
3006	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3007
3008	mutex_lock(&bp->fw_mb_mutex);
3009	seq = ++bp->fw_seq;
3010	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3011	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3012
3013	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3014			(command | seq), param);
3015
3016	do {
3017		/* let the FW do it's magic ... */
3018		msleep(delay);
3019
3020		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3021
3022		/* Give the FW up to 5 second (500*10ms) */
3023	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3024
3025	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3026	   cnt*delay, rc, seq);
3027
3028	/* is this a reply to our command? */
3029	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3030		rc &= FW_MSG_CODE_MASK;
3031	else {
3032		/* FW BUG! */
3033		BNX2X_ERR("FW failed to respond!\n");
3034		bnx2x_fw_dump(bp);
3035		rc = 0;
3036	}
3037	mutex_unlock(&bp->fw_mb_mutex);
3038
3039	return rc;
3040}
3041
3042static void storm_memset_func_cfg(struct bnx2x *bp,
3043				 struct tstorm_eth_function_common_config *tcfg,
3044				 u16 abs_fid)
3045{
3046	size_t size = sizeof(struct tstorm_eth_function_common_config);
3047
3048	u32 addr = BAR_TSTRORM_INTMEM +
3049			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3050
3051	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3052}
3053
3054void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3055{
3056	if (CHIP_IS_E1x(bp)) {
3057		struct tstorm_eth_function_common_config tcfg = {0};
3058
3059		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3060	}
3061
3062	/* Enable the function in the FW */
3063	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3064	storm_memset_func_en(bp, p->func_id, 1);
3065
3066	/* spq */
3067	if (p->func_flgs & FUNC_FLG_SPQ) {
3068		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3069		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3070		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3071	}
3072}
3073
3074/**
3075 * bnx2x_get_common_flags - Return common flags
3076 *
3077 * @bp		device handle
3078 * @fp		queue handle
3079 * @zero_stats	TRUE if statistics zeroing is needed
3080 *
3081 * Return the flags that are common for the Tx-only and not normal connections.
3082 */
3083static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3084					    struct bnx2x_fastpath *fp,
3085					    bool zero_stats)
3086{
3087	unsigned long flags = 0;
3088
3089	/* PF driver will always initialize the Queue to an ACTIVE state */
3090	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3091
3092	/* tx only connections collect statistics (on the same index as the
3093	 * parent connection). The statistics are zeroed when the parent
3094	 * connection is initialized.
3095	 */
3096
3097	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3098	if (zero_stats)
3099		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3100
3101	if (bp->flags & TX_SWITCHING)
3102		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3103
3104	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3105	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3106
3107#ifdef BNX2X_STOP_ON_ERROR
3108	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3109#endif
3110
3111	return flags;
3112}
3113
3114static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3115				       struct bnx2x_fastpath *fp,
3116				       bool leading)
3117{
3118	unsigned long flags = 0;
3119
3120	/* calculate other queue flags */
3121	if (IS_MF_SD(bp))
3122		__set_bit(BNX2X_Q_FLG_OV, &flags);
3123
3124	if (IS_FCOE_FP(fp)) {
3125		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3126		/* For FCoE - force usage of default priority (for afex) */
3127		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3128	}
3129
3130	if (!fp->disable_tpa) {
3131		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3132		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3133		if (fp->mode == TPA_MODE_GRO)
3134			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3135	}
3136
3137	if (leading) {
3138		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3139		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3140	}
3141
3142	/* Always set HW VLAN stripping */
3143	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3144
3145	/* configure silent vlan removal */
3146	if (IS_MF_AFEX(bp))
3147		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3148
3149	return flags | bnx2x_get_common_flags(bp, fp, true);
3150}
3151
3152static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3153	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3154	u8 cos)
3155{
3156	gen_init->stat_id = bnx2x_stats_id(fp);
3157	gen_init->spcl_id = fp->cl_id;
3158
3159	/* Always use mini-jumbo MTU for FCoE L2 ring */
3160	if (IS_FCOE_FP(fp))
3161		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3162	else
3163		gen_init->mtu = bp->dev->mtu;
3164
3165	gen_init->cos = cos;
3166}
3167
3168static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3169	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3170	struct bnx2x_rxq_setup_params *rxq_init)
3171{
3172	u8 max_sge = 0;
3173	u16 sge_sz = 0;
3174	u16 tpa_agg_size = 0;
3175
3176	if (!fp->disable_tpa) {
3177		pause->sge_th_lo = SGE_TH_LO(bp);
3178		pause->sge_th_hi = SGE_TH_HI(bp);
3179
3180		/* validate SGE ring has enough to cross high threshold */
3181		WARN_ON(bp->dropless_fc &&
3182				pause->sge_th_hi + FW_PREFETCH_CNT >
3183				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3184
3185		tpa_agg_size = TPA_AGG_SIZE;
3186		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3187			SGE_PAGE_SHIFT;
3188		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3189			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3190		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3191	}
3192
3193	/* pause - not for e1 */
3194	if (!CHIP_IS_E1(bp)) {
3195		pause->bd_th_lo = BD_TH_LO(bp);
3196		pause->bd_th_hi = BD_TH_HI(bp);
3197
3198		pause->rcq_th_lo = RCQ_TH_LO(bp);
3199		pause->rcq_th_hi = RCQ_TH_HI(bp);
3200		/*
3201		 * validate that rings have enough entries to cross
3202		 * high thresholds
3203		 */
3204		WARN_ON(bp->dropless_fc &&
3205				pause->bd_th_hi + FW_PREFETCH_CNT >
3206				bp->rx_ring_size);
3207		WARN_ON(bp->dropless_fc &&
3208				pause->rcq_th_hi + FW_PREFETCH_CNT >
3209				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3210
3211		pause->pri_map = 1;
3212	}
3213
3214	/* rxq setup */
3215	rxq_init->dscr_map = fp->rx_desc_mapping;
3216	rxq_init->sge_map = fp->rx_sge_mapping;
3217	rxq_init->rcq_map = fp->rx_comp_mapping;
3218	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3219
3220	/* This should be a maximum number of data bytes that may be
3221	 * placed on the BD (not including paddings).
3222	 */
3223	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3224			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3225
3226	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3227	rxq_init->tpa_agg_sz = tpa_agg_size;
3228	rxq_init->sge_buf_sz = sge_sz;
3229	rxq_init->max_sges_pkt = max_sge;
3230	rxq_init->rss_engine_id = BP_FUNC(bp);
3231	rxq_init->mcast_engine_id = BP_FUNC(bp);
3232
3233	/* Maximum number or simultaneous TPA aggregation for this Queue.
3234	 *
3235	 * For PF Clients it should be the maximum available number.
3236	 * VF driver(s) may want to define it to a smaller value.
3237	 */
3238	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3239
3240	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3241	rxq_init->fw_sb_id = fp->fw_sb_id;
3242
3243	if (IS_FCOE_FP(fp))
3244		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3245	else
3246		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3247	/* configure silent vlan removal
3248	 * if multi function mode is afex, then mask default vlan
3249	 */
3250	if (IS_MF_AFEX(bp)) {
3251		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3252		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3253	}
3254}
3255
3256static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3257	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3258	u8 cos)
3259{
3260	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3261	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3262	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3263	txq_init->fw_sb_id = fp->fw_sb_id;
3264
3265	/*
3266	 * set the tss leading client id for TX classification ==
3267	 * leading RSS client id
3268	 */
3269	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3270
3271	if (IS_FCOE_FP(fp)) {
3272		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3273		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3274	}
3275}
3276
3277static void bnx2x_pf_init(struct bnx2x *bp)
3278{
3279	struct bnx2x_func_init_params func_init = {0};
3280	struct event_ring_data eq_data = { {0} };
3281	u16 flags;
3282
3283	if (!CHIP_IS_E1x(bp)) {
3284		/* reset IGU PF statistics: MSIX + ATTN */
3285		/* PF */
3286		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3287			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3288			   (CHIP_MODE_IS_4_PORT(bp) ?
3289				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3290		/* ATTN */
3291		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3292			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3293			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3294			   (CHIP_MODE_IS_4_PORT(bp) ?
3295				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3296	}
3297
3298	/* function setup flags */
3299	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3300
3301	/* This flag is relevant for E1x only.
3302	 * E2 doesn't have a TPA configuration in a function level.
3303	 */
3304	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3305
3306	func_init.func_flgs = flags;
3307	func_init.pf_id = BP_FUNC(bp);
3308	func_init.func_id = BP_FUNC(bp);
3309	func_init.spq_map = bp->spq_mapping;
3310	func_init.spq_prod = bp->spq_prod_idx;
3311
3312	bnx2x_func_init(bp, &func_init);
3313
3314	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3315
3316	/*
3317	 * Congestion management values depend on the link rate
3318	 * There is no active link so initial link rate is set to 10 Gbps.
3319	 * When the link comes up The congestion management values are
3320	 * re-calculated according to the actual link rate.
3321	 */
3322	bp->link_vars.line_speed = SPEED_10000;
3323	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3324
3325	/* Only the PMF sets the HW */
3326	if (bp->port.pmf)
3327		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3328
3329	/* init Event Queue - PCI bus guarantees correct endianity*/
3330	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3331	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3332	eq_data.producer = bp->eq_prod;
3333	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3334	eq_data.sb_id = DEF_SB_ID;
3335	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3336}
3337
3338static void bnx2x_e1h_disable(struct bnx2x *bp)
3339{
3340	int port = BP_PORT(bp);
3341
3342	bnx2x_tx_disable(bp);
3343
3344	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3345}
3346
3347static void bnx2x_e1h_enable(struct bnx2x *bp)
3348{
3349	int port = BP_PORT(bp);
3350
3351	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3352		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3353
3354	/* Tx queue should be only re-enabled */
3355	netif_tx_wake_all_queues(bp->dev);
3356
3357	/*
3358	 * Should not call netif_carrier_on since it will be called if the link
3359	 * is up when checking for link state
3360	 */
3361}
3362
3363#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3364
3365static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3366{
3367	struct eth_stats_info *ether_stat =
3368		&bp->slowpath->drv_info_to_mcp.ether_stat;
3369	struct bnx2x_vlan_mac_obj *mac_obj =
3370		&bp->sp_objs->mac_obj;
3371	int i;
3372
3373	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3374		ETH_STAT_INFO_VERSION_LEN);
3375
3376	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3377	 * mac_local field in ether_stat struct. The base address is offset by 2
3378	 * bytes to account for the field being 8 bytes but a mac address is
3379	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3380	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3381	 * allocated by the ether_stat struct, so the macs will land in their
3382	 * proper positions.
3383	 */
3384	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3385		memset(ether_stat->mac_local + i, 0,
3386		       sizeof(ether_stat->mac_local[0]));
3387	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3388				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3389				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3390				ETH_ALEN);
3391	ether_stat->mtu_size = bp->dev->mtu;
3392	if (bp->dev->features & NETIF_F_RXCSUM)
3393		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3394	if (bp->dev->features & NETIF_F_TSO)
3395		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3396	ether_stat->feature_flags |= bp->common.boot_mode;
3397
3398	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3399
3400	ether_stat->txq_size = bp->tx_ring_size;
3401	ether_stat->rxq_size = bp->rx_ring_size;
3402
3403#ifdef CONFIG_BNX2X_SRIOV
3404	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3405#endif
3406}
3407
3408static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3409{
3410	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3411	struct fcoe_stats_info *fcoe_stat =
3412		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3413
3414	if (!CNIC_LOADED(bp))
3415		return;
3416
3417	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3418
3419	fcoe_stat->qos_priority =
3420		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3421
3422	/* insert FCoE stats from ramrod response */
3423	if (!NO_FCOE(bp)) {
3424		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3425			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3426			tstorm_queue_statistics;
3427
3428		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3429			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3430			xstorm_queue_statistics;
3431
3432		struct fcoe_statistics_params *fw_fcoe_stat =
3433			&bp->fw_stats_data->fcoe;
3434
3435		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3436			  fcoe_stat->rx_bytes_lo,
3437			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3438
3439		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3440			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3441			  fcoe_stat->rx_bytes_lo,
3442			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3443
3444		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3445			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3446			  fcoe_stat->rx_bytes_lo,
3447			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3448
3449		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3450			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3451			  fcoe_stat->rx_bytes_lo,
3452			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3453
3454		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3455			  fcoe_stat->rx_frames_lo,
3456			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3457
3458		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3459			  fcoe_stat->rx_frames_lo,
3460			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3461
3462		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3463			  fcoe_stat->rx_frames_lo,
3464			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3465
3466		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3467			  fcoe_stat->rx_frames_lo,
3468			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3469
3470		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3471			  fcoe_stat->tx_bytes_lo,
3472			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3473
3474		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3475			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3476			  fcoe_stat->tx_bytes_lo,
3477			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3478
3479		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3480			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3481			  fcoe_stat->tx_bytes_lo,
3482			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3483
3484		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3485			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3486			  fcoe_stat->tx_bytes_lo,
3487			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3488
3489		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3490			  fcoe_stat->tx_frames_lo,
3491			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3492
3493		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3494			  fcoe_stat->tx_frames_lo,
3495			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3496
3497		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3498			  fcoe_stat->tx_frames_lo,
3499			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3500
3501		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3502			  fcoe_stat->tx_frames_lo,
3503			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3504	}
3505
3506	/* ask L5 driver to add data to the struct */
3507	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3508}
3509
3510static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3511{
3512	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3513	struct iscsi_stats_info *iscsi_stat =
3514		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3515
3516	if (!CNIC_LOADED(bp))
3517		return;
3518
3519	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3520	       ETH_ALEN);
3521
3522	iscsi_stat->qos_priority =
3523		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3524
3525	/* ask L5 driver to add data to the struct */
3526	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3527}
3528
3529/* called due to MCP event (on pmf):
3530 *	reread new bandwidth configuration
3531 *	configure FW
3532 *	notify others function about the change
3533 */
3534static void bnx2x_config_mf_bw(struct bnx2x *bp)
3535{
3536	if (bp->link_vars.link_up) {
3537		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3538		bnx2x_link_sync_notify(bp);
3539	}
3540	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3541}
3542
3543static void bnx2x_set_mf_bw(struct bnx2x *bp)
3544{
3545	bnx2x_config_mf_bw(bp);
3546	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3547}
3548
3549static void bnx2x_handle_eee_event(struct bnx2x *bp)
3550{
3551	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3552	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3553}
3554
3555#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3556#define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3557
3558static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3559{
3560	enum drv_info_opcode op_code;
3561	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3562	bool release = false;
3563	int wait;
3564
3565	/* if drv_info version supported by MFW doesn't match - send NACK */
3566	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3567		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3568		return;
3569	}
3570
3571	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3572		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3573
3574	/* Must prevent other flows from accessing drv_info_to_mcp */
3575	mutex_lock(&bp->drv_info_mutex);
3576
3577	memset(&bp->slowpath->drv_info_to_mcp, 0,
3578	       sizeof(union drv_info_to_mcp));
3579
3580	switch (op_code) {
3581	case ETH_STATS_OPCODE:
3582		bnx2x_drv_info_ether_stat(bp);
3583		break;
3584	case FCOE_STATS_OPCODE:
3585		bnx2x_drv_info_fcoe_stat(bp);
3586		break;
3587	case ISCSI_STATS_OPCODE:
3588		bnx2x_drv_info_iscsi_stat(bp);
3589		break;
3590	default:
3591		/* if op code isn't supported - send NACK */
3592		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3593		goto out;
3594	}
3595
3596	/* if we got drv_info attn from MFW then these fields are defined in
3597	 * shmem2 for sure
3598	 */
3599	SHMEM2_WR(bp, drv_info_host_addr_lo,
3600		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3601	SHMEM2_WR(bp, drv_info_host_addr_hi,
3602		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3603
3604	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3605
3606	/* Since possible management wants both this and get_driver_version
3607	 * need to wait until management notifies us it finished utilizing
3608	 * the buffer.
3609	 */
3610	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3611		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3612	} else if (!bp->drv_info_mng_owner) {
3613		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3614
3615		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3616			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3617
3618			/* Management is done; need to clear indication */
3619			if (indication & bit) {
3620				SHMEM2_WR(bp, mfw_drv_indication,
3621					  indication & ~bit);
3622				release = true;
3623				break;
3624			}
3625
3626			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3627		}
3628	}
3629	if (!release) {
3630		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3631		bp->drv_info_mng_owner = true;
3632	}
3633
3634out:
3635	mutex_unlock(&bp->drv_info_mutex);
3636}
3637
3638static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3639{
3640	u8 vals[4];
3641	int i = 0;
3642
3643	if (bnx2x_format) {
3644		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3645			   &vals[0], &vals[1], &vals[2], &vals[3]);
3646		if (i > 0)
3647			vals[0] -= '0';
3648	} else {
3649		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3650			   &vals[0], &vals[1], &vals[2], &vals[3]);
3651	}
3652
3653	while (i < 4)
3654		vals[i++] = 0;
3655
3656	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3657}
3658
3659void bnx2x_update_mng_version(struct bnx2x *bp)
3660{
3661	u32 iscsiver = DRV_VER_NOT_LOADED;
3662	u32 fcoever = DRV_VER_NOT_LOADED;
3663	u32 ethver = DRV_VER_NOT_LOADED;
3664	int idx = BP_FW_MB_IDX(bp);
3665	u8 *version;
3666
3667	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3668		return;
3669
3670	mutex_lock(&bp->drv_info_mutex);
3671	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3672	if (bp->drv_info_mng_owner)
3673		goto out;
3674
3675	if (bp->state != BNX2X_STATE_OPEN)
3676		goto out;
3677
3678	/* Parse ethernet driver version */
3679	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3680	if (!CNIC_LOADED(bp))
3681		goto out;
3682
3683	/* Try getting storage driver version via cnic */
3684	memset(&bp->slowpath->drv_info_to_mcp, 0,
3685	       sizeof(union drv_info_to_mcp));
3686	bnx2x_drv_info_iscsi_stat(bp);
3687	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3688	iscsiver = bnx2x_update_mng_version_utility(version, false);
3689
3690	memset(&bp->slowpath->drv_info_to_mcp, 0,
3691	       sizeof(union drv_info_to_mcp));
3692	bnx2x_drv_info_fcoe_stat(bp);
3693	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3694	fcoever = bnx2x_update_mng_version_utility(version, false);
3695
3696out:
3697	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3698	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3699	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3700
3701	mutex_unlock(&bp->drv_info_mutex);
3702
3703	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3704	   ethver, iscsiver, fcoever);
3705}
3706
3707static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3708{
3709	u32 cmd_ok, cmd_fail;
3710
3711	/* sanity */
3712	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3713	    event & DRV_STATUS_OEM_EVENT_MASK) {
3714		BNX2X_ERR("Received simultaneous events %08x\n", event);
3715		return;
3716	}
3717
3718	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3719		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3720		cmd_ok = DRV_MSG_CODE_DCC_OK;
3721	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3722		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3723		cmd_ok = DRV_MSG_CODE_OEM_OK;
3724	}
3725
3726	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3727
3728	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3729		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3730		/* This is the only place besides the function initialization
3731		 * where the bp->flags can change so it is done without any
3732		 * locks
3733		 */
3734		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3735			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3736			bp->flags |= MF_FUNC_DIS;
3737
3738			bnx2x_e1h_disable(bp);
3739		} else {
3740			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3741			bp->flags &= ~MF_FUNC_DIS;
3742
3743			bnx2x_e1h_enable(bp);
3744		}
3745		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3746			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3747	}
3748
3749	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3750		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3751		bnx2x_config_mf_bw(bp);
3752		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3754	}
3755
3756	/* Report results to MCP */
3757	if (event)
3758		bnx2x_fw_command(bp, cmd_fail, 0);
3759	else
3760		bnx2x_fw_command(bp, cmd_ok, 0);
3761}
3762
3763/* must be called under the spq lock */
3764static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3765{
3766	struct eth_spe *next_spe = bp->spq_prod_bd;
3767
3768	if (bp->spq_prod_bd == bp->spq_last_bd) {
3769		bp->spq_prod_bd = bp->spq;
3770		bp->spq_prod_idx = 0;
3771		DP(BNX2X_MSG_SP, "end of spq\n");
3772	} else {
3773		bp->spq_prod_bd++;
3774		bp->spq_prod_idx++;
3775	}
3776	return next_spe;
3777}
3778
3779/* must be called under the spq lock */
3780static void bnx2x_sp_prod_update(struct bnx2x *bp)
3781{
3782	int func = BP_FUNC(bp);
3783
3784	/*
3785	 * Make sure that BD data is updated before writing the producer:
3786	 * BD data is written to the memory, the producer is read from the
3787	 * memory, thus we need a full memory barrier to ensure the ordering.
3788	 */
3789	mb();
3790
3791	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3792		 bp->spq_prod_idx);
3793	mmiowb();
3794}
3795
3796/**
3797 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3798 *
3799 * @cmd:	command to check
3800 * @cmd_type:	command type
3801 */
3802static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3803{
3804	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3805	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3806	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3807	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3808	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3809	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3810	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3811		return true;
3812	else
3813		return false;
3814}
3815
3816/**
3817 * bnx2x_sp_post - place a single command on an SP ring
3818 *
3819 * @bp:		driver handle
3820 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3821 * @cid:	SW CID the command is related to
3822 * @data_hi:	command private data address (high 32 bits)
3823 * @data_lo:	command private data address (low 32 bits)
3824 * @cmd_type:	command type (e.g. NONE, ETH)
3825 *
3826 * SP data is handled as if it's always an address pair, thus data fields are
3827 * not swapped to little endian in upper functions. Instead this function swaps
3828 * data as if it's two u32 fields.
3829 */
3830int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3831		  u32 data_hi, u32 data_lo, int cmd_type)
3832{
3833	struct eth_spe *spe;
3834	u16 type;
3835	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3836
3837#ifdef BNX2X_STOP_ON_ERROR
3838	if (unlikely(bp->panic)) {
3839		BNX2X_ERR("Can't post SP when there is panic\n");
3840		return -EIO;
3841	}
3842#endif
3843
3844	spin_lock_bh(&bp->spq_lock);
3845
3846	if (common) {
3847		if (!atomic_read(&bp->eq_spq_left)) {
3848			BNX2X_ERR("BUG! EQ ring full!\n");
3849			spin_unlock_bh(&bp->spq_lock);
3850			bnx2x_panic();
3851			return -EBUSY;
3852		}
3853	} else if (!atomic_read(&bp->cq_spq_left)) {
3854			BNX2X_ERR("BUG! SPQ ring full!\n");
3855			spin_unlock_bh(&bp->spq_lock);
3856			bnx2x_panic();
3857			return -EBUSY;
3858	}
3859
3860	spe = bnx2x_sp_get_next(bp);
3861
3862	/* CID needs port number to be encoded int it */
3863	spe->hdr.conn_and_cmd_data =
3864			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3865				    HW_CID(bp, cid));
3866
3867	/* In some cases, type may already contain the func-id
3868	 * mainly in SRIOV related use cases, so we add it here only
3869	 * if it's not already set.
3870	 */
3871	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3872		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3873			SPE_HDR_CONN_TYPE;
3874		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3875			 SPE_HDR_FUNCTION_ID);
3876	} else {
3877		type = cmd_type;
3878	}
3879
3880	spe->hdr.type = cpu_to_le16(type);
3881
3882	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3883	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3884
3885	/*
3886	 * It's ok if the actual decrement is issued towards the memory
3887	 * somewhere between the spin_lock and spin_unlock. Thus no
3888	 * more explicit memory barrier is needed.
3889	 */
3890	if (common)
3891		atomic_dec(&bp->eq_spq_left);
3892	else
3893		atomic_dec(&bp->cq_spq_left);
3894
3895	DP(BNX2X_MSG_SP,
3896	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3897	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3898	   (u32)(U64_LO(bp->spq_mapping) +
3899	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3900	   HW_CID(bp, cid), data_hi, data_lo, type,
3901	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3902
3903	bnx2x_sp_prod_update(bp);
3904	spin_unlock_bh(&bp->spq_lock);
3905	return 0;
3906}
3907
3908/* acquire split MCP access lock register */
3909static int bnx2x_acquire_alr(struct bnx2x *bp)
3910{
3911	u32 j, val;
3912	int rc = 0;
3913
3914	might_sleep();
3915	for (j = 0; j < 1000; j++) {
3916		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3917		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3918		if (val & MCPR_ACCESS_LOCK_LOCK)
3919			break;
3920
3921		usleep_range(5000, 10000);
3922	}
3923	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3924		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3925		rc = -EBUSY;
3926	}
3927
3928	return rc;
3929}
3930
3931/* release split MCP access lock register */
3932static void bnx2x_release_alr(struct bnx2x *bp)
3933{
3934	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3935}
3936
3937#define BNX2X_DEF_SB_ATT_IDX	0x0001
3938#define BNX2X_DEF_SB_IDX	0x0002
3939
3940static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3941{
3942	struct host_sp_status_block *def_sb = bp->def_status_blk;
3943	u16 rc = 0;
3944
3945	barrier(); /* status block is written to by the chip */
3946	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3947		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3948		rc |= BNX2X_DEF_SB_ATT_IDX;
3949	}
3950
3951	if (bp->def_idx != def_sb->sp_sb.running_index) {
3952		bp->def_idx = def_sb->sp_sb.running_index;
3953		rc |= BNX2X_DEF_SB_IDX;
3954	}
3955
3956	/* Do not reorder: indices reading should complete before handling */
3957	barrier();
3958	return rc;
3959}
3960
3961/*
3962 * slow path service functions
3963 */
3964
3965static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3966{
3967	int port = BP_PORT(bp);
3968	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3969			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3970	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3971				       NIG_REG_MASK_INTERRUPT_PORT0;
3972	u32 aeu_mask;
3973	u32 nig_mask = 0;
3974	u32 reg_addr;
3975
3976	if (bp->attn_state & asserted)
3977		BNX2X_ERR("IGU ERROR\n");
3978
3979	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3980	aeu_mask = REG_RD(bp, aeu_addr);
3981
3982	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3983	   aeu_mask, asserted);
3984	aeu_mask &= ~(asserted & 0x3ff);
3985	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3986
3987	REG_WR(bp, aeu_addr, aeu_mask);
3988	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3989
3990	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3991	bp->attn_state |= asserted;
3992	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3993
3994	if (asserted & ATTN_HARD_WIRED_MASK) {
3995		if (asserted & ATTN_NIG_FOR_FUNC) {
3996
3997			bnx2x_acquire_phy_lock(bp);
3998
3999			/* save nig interrupt mask */
4000			nig_mask = REG_RD(bp, nig_int_mask_addr);
4001
4002			/* If nig_mask is not set, no need to call the update
4003			 * function.
4004			 */
4005			if (nig_mask) {
4006				REG_WR(bp, nig_int_mask_addr, 0);
4007
4008				bnx2x_link_attn(bp);
4009			}
4010
4011			/* handle unicore attn? */
4012		}
4013		if (asserted & ATTN_SW_TIMER_4_FUNC)
4014			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4015
4016		if (asserted & GPIO_2_FUNC)
4017			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4018
4019		if (asserted & GPIO_3_FUNC)
4020			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4021
4022		if (asserted & GPIO_4_FUNC)
4023			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4024
4025		if (port == 0) {
4026			if (asserted & ATTN_GENERAL_ATTN_1) {
4027				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4028				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4029			}
4030			if (asserted & ATTN_GENERAL_ATTN_2) {
4031				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4032				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4033			}
4034			if (asserted & ATTN_GENERAL_ATTN_3) {
4035				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4036				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4037			}
4038		} else {
4039			if (asserted & ATTN_GENERAL_ATTN_4) {
4040				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4041				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4042			}
4043			if (asserted & ATTN_GENERAL_ATTN_5) {
4044				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4045				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4046			}
4047			if (asserted & ATTN_GENERAL_ATTN_6) {
4048				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4049				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4050			}
4051		}
4052
4053	} /* if hardwired */
4054
4055	if (bp->common.int_block == INT_BLOCK_HC)
4056		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4057			    COMMAND_REG_ATTN_BITS_SET);
4058	else
4059		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4060
4061	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4062	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4063	REG_WR(bp, reg_addr, asserted);
4064
4065	/* now set back the mask */
4066	if (asserted & ATTN_NIG_FOR_FUNC) {
4067		/* Verify that IGU ack through BAR was written before restoring
4068		 * NIG mask. This loop should exit after 2-3 iterations max.
4069		 */
4070		if (bp->common.int_block != INT_BLOCK_HC) {
4071			u32 cnt = 0, igu_acked;
4072			do {
4073				igu_acked = REG_RD(bp,
4074						   IGU_REG_ATTENTION_ACK_BITS);
4075			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4076				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4077			if (!igu_acked)
4078				DP(NETIF_MSG_HW,
4079				   "Failed to verify IGU ack on time\n");
4080			barrier();
4081		}
4082		REG_WR(bp, nig_int_mask_addr, nig_mask);
4083		bnx2x_release_phy_lock(bp);
4084	}
4085}
4086
4087static void bnx2x_fan_failure(struct bnx2x *bp)
4088{
4089	int port = BP_PORT(bp);
4090	u32 ext_phy_config;
4091	/* mark the failure */
4092	ext_phy_config =
4093		SHMEM_RD(bp,
4094			 dev_info.port_hw_config[port].external_phy_config);
4095
4096	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4097	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4098	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4099		 ext_phy_config);
4100
4101	/* log the failure */
4102	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4103			    "Please contact OEM Support for assistance\n");
4104
4105	/* Schedule device reset (unload)
4106	 * This is due to some boards consuming sufficient power when driver is
4107	 * up to overheat if fan fails.
4108	 */
4109	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4110}
4111
4112static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4113{
4114	int port = BP_PORT(bp);
4115	int reg_offset;
4116	u32 val;
4117
4118	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4119			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4120
4121	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4122
4123		val = REG_RD(bp, reg_offset);
4124		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4125		REG_WR(bp, reg_offset, val);
4126
4127		BNX2X_ERR("SPIO5 hw attention\n");
4128
4129		/* Fan failure attention */
4130		bnx2x_hw_reset_phy(&bp->link_params);
4131		bnx2x_fan_failure(bp);
4132	}
4133
4134	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4135		bnx2x_acquire_phy_lock(bp);
4136		bnx2x_handle_module_detect_int(&bp->link_params);
4137		bnx2x_release_phy_lock(bp);
4138	}
4139
4140	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4141
4142		val = REG_RD(bp, reg_offset);
4143		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4144		REG_WR(bp, reg_offset, val);
4145
4146		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4147			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4148		bnx2x_panic();
4149	}
4150}
4151
4152static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4153{
4154	u32 val;
4155
4156	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4157
4158		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4159		BNX2X_ERR("DB hw attention 0x%x\n", val);
4160		/* DORQ discard attention */
4161		if (val & 0x2)
4162			BNX2X_ERR("FATAL error from DORQ\n");
4163	}
4164
4165	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4166
4167		int port = BP_PORT(bp);
4168		int reg_offset;
4169
4170		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4171				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4172
4173		val = REG_RD(bp, reg_offset);
4174		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4175		REG_WR(bp, reg_offset, val);
4176
4177		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4178			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4179		bnx2x_panic();
4180	}
4181}
4182
4183static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4184{
4185	u32 val;
4186
4187	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4188
4189		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4190		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4191		/* CFC error attention */
4192		if (val & 0x2)
4193			BNX2X_ERR("FATAL error from CFC\n");
4194	}
4195
4196	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4197		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4198		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4199		/* RQ_USDMDP_FIFO_OVERFLOW */
4200		if (val & 0x18000)
4201			BNX2X_ERR("FATAL error from PXP\n");
4202
4203		if (!CHIP_IS_E1x(bp)) {
4204			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4205			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4206		}
4207	}
4208
4209	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4210
4211		int port = BP_PORT(bp);
4212		int reg_offset;
4213
4214		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4215				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4216
4217		val = REG_RD(bp, reg_offset);
4218		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4219		REG_WR(bp, reg_offset, val);
4220
4221		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4222			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4223		bnx2x_panic();
4224	}
4225}
4226
4227static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4228{
4229	u32 val;
4230
4231	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4232
4233		if (attn & BNX2X_PMF_LINK_ASSERT) {
4234			int func = BP_FUNC(bp);
4235
4236			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4237			bnx2x_read_mf_cfg(bp);
4238			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4239					func_mf_config[BP_ABS_FUNC(bp)].config);
4240			val = SHMEM_RD(bp,
4241				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4242
4243			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4244				   DRV_STATUS_OEM_EVENT_MASK))
4245				bnx2x_oem_event(bp,
4246					(val & (DRV_STATUS_DCC_EVENT_MASK |
4247						DRV_STATUS_OEM_EVENT_MASK)));
4248
4249			if (val & DRV_STATUS_SET_MF_BW)
4250				bnx2x_set_mf_bw(bp);
4251
4252			if (val & DRV_STATUS_DRV_INFO_REQ)
4253				bnx2x_handle_drv_info_req(bp);
4254
4255			if (val & DRV_STATUS_VF_DISABLED)
4256				bnx2x_schedule_iov_task(bp,
4257							BNX2X_IOV_HANDLE_FLR);
4258
4259			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4260				bnx2x_pmf_update(bp);
4261
4262			if (bp->port.pmf &&
4263			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4264				bp->dcbx_enabled > 0)
4265				/* start dcbx state machine */
4266				bnx2x_dcbx_set_params(bp,
4267					BNX2X_DCBX_STATE_NEG_RECEIVED);
4268			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4269				bnx2x_handle_afex_cmd(bp,
4270					val & DRV_STATUS_AFEX_EVENT_MASK);
4271			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4272				bnx2x_handle_eee_event(bp);
4273
4274			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4275				bnx2x_handle_update_svid_cmd(bp);
4276
4277			if (bp->link_vars.periodic_flags &
4278			    PERIODIC_FLAGS_LINK_EVENT) {
4279				/*  sync with link */
4280				bnx2x_acquire_phy_lock(bp);
4281				bp->link_vars.periodic_flags &=
4282					~PERIODIC_FLAGS_LINK_EVENT;
4283				bnx2x_release_phy_lock(bp);
4284				if (IS_MF(bp))
4285					bnx2x_link_sync_notify(bp);
4286				bnx2x_link_report(bp);
4287			}
4288			/* Always call it here: bnx2x_link_report() will
4289			 * prevent the link indication duplication.
4290			 */
4291			bnx2x__link_status_update(bp);
4292		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4293
4294			BNX2X_ERR("MC assert!\n");
4295			bnx2x_mc_assert(bp);
4296			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4297			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4298			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4299			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4300			bnx2x_panic();
4301
4302		} else if (attn & BNX2X_MCP_ASSERT) {
4303
4304			BNX2X_ERR("MCP assert!\n");
4305			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4306			bnx2x_fw_dump(bp);
4307
4308		} else
4309			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4310	}
4311
4312	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4313		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4314		if (attn & BNX2X_GRC_TIMEOUT) {
4315			val = CHIP_IS_E1(bp) ? 0 :
4316					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4317			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4318		}
4319		if (attn & BNX2X_GRC_RSV) {
4320			val = CHIP_IS_E1(bp) ? 0 :
4321					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4322			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4323		}
4324		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4325	}
4326}
4327
4328/*
4329 * Bits map:
4330 * 0-7   - Engine0 load counter.
4331 * 8-15  - Engine1 load counter.
4332 * 16    - Engine0 RESET_IN_PROGRESS bit.
4333 * 17    - Engine1 RESET_IN_PROGRESS bit.
4334 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4335 *         on the engine
4336 * 19    - Engine1 ONE_IS_LOADED.
4337 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4338 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4339 *         just the one belonging to its engine).
4340 *
4341 */
4342#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4343
4344#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4345#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4346#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4347#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4348#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4349#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4350#define BNX2X_GLOBAL_RESET_BIT		0x00040000
4351
4352/*
4353 * Set the GLOBAL_RESET bit.
4354 *
4355 * Should be run under rtnl lock
4356 */
4357void bnx2x_set_reset_global(struct bnx2x *bp)
4358{
4359	u32 val;
4360	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4361	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4362	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4363	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364}
4365
4366/*
4367 * Clear the GLOBAL_RESET bit.
4368 *
4369 * Should be run under rtnl lock
4370 */
4371static void bnx2x_clear_reset_global(struct bnx2x *bp)
4372{
4373	u32 val;
4374	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4375	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4376	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4377	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378}
4379
4380/*
4381 * Checks the GLOBAL_RESET bit.
4382 *
4383 * should be run under rtnl lock
4384 */
4385static bool bnx2x_reset_is_global(struct bnx2x *bp)
4386{
4387	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4388
4389	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4390	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4391}
4392
4393/*
4394 * Clear RESET_IN_PROGRESS bit for the current engine.
4395 *
4396 * Should be run under rtnl lock
4397 */
4398static void bnx2x_set_reset_done(struct bnx2x *bp)
4399{
4400	u32 val;
4401	u32 bit = BP_PATH(bp) ?
4402		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4403	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4405
4406	/* Clear the bit */
4407	val &= ~bit;
4408	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4409
4410	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4411}
4412
4413/*
4414 * Set RESET_IN_PROGRESS for the current engine.
4415 *
4416 * should be run under rtnl lock
4417 */
4418void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4419{
4420	u32 val;
4421	u32 bit = BP_PATH(bp) ?
4422		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4423	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4424	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4425
4426	/* Set the bit */
4427	val |= bit;
4428	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4429	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4430}
4431
4432/*
4433 * Checks the RESET_IN_PROGRESS bit for the given engine.
4434 * should be run under rtnl lock
4435 */
4436bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4437{
4438	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439	u32 bit = engine ?
4440		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4441
4442	/* return false if bit is set */
4443	return (val & bit) ? false : true;
4444}
4445
4446/*
4447 * set pf load for the current pf.
4448 *
4449 * should be run under rtnl lock
4450 */
4451void bnx2x_set_pf_load(struct bnx2x *bp)
4452{
4453	u32 val1, val;
4454	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4455			     BNX2X_PATH0_LOAD_CNT_MASK;
4456	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4457			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4458
4459	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4461
4462	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4463
4464	/* get the current counter value */
4465	val1 = (val & mask) >> shift;
4466
4467	/* set bit of that PF */
4468	val1 |= (1 << bp->pf_num);
4469
4470	/* clear the old value */
4471	val &= ~mask;
4472
4473	/* set the new one */
4474	val |= ((val1 << shift) & mask);
4475
4476	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4477	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4478}
4479
4480/**
4481 * bnx2x_clear_pf_load - clear pf load mark
4482 *
4483 * @bp:		driver handle
4484 *
4485 * Should be run under rtnl lock.
4486 * Decrements the load counter for the current engine. Returns
4487 * whether other functions are still loaded
4488 */
4489bool bnx2x_clear_pf_load(struct bnx2x *bp)
4490{
4491	u32 val1, val;
4492	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4493			     BNX2X_PATH0_LOAD_CNT_MASK;
4494	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4495			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4496
4497	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4498	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4499	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4500
4501	/* get the current counter value */
4502	val1 = (val & mask) >> shift;
4503
4504	/* clear bit of that PF */
4505	val1 &= ~(1 << bp->pf_num);
4506
4507	/* clear the old value */
4508	val &= ~mask;
4509
4510	/* set the new one */
4511	val |= ((val1 << shift) & mask);
4512
4513	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4514	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4515	return val1 != 0;
4516}
4517
4518/*
4519 * Read the load status for the current engine.
4520 *
4521 * should be run under rtnl lock
4522 */
4523static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4524{
4525	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4526			     BNX2X_PATH0_LOAD_CNT_MASK);
4527	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4528			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4529	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4530
4531	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4532
4533	val = (val & mask) >> shift;
4534
4535	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4536	   engine, val);
4537
4538	return val != 0;
4539}
4540
4541static void _print_parity(struct bnx2x *bp, u32 reg)
4542{
4543	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4544}
4545
4546static void _print_next_block(int idx, const char *blk)
4547{
4548	pr_cont("%s%s", idx ? ", " : "", blk);
4549}
4550
4551static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4552					    int *par_num, bool print)
4553{
4554	u32 cur_bit;
4555	bool res;
4556	int i;
4557
4558	res = false;
4559
4560	for (i = 0; sig; i++) {
4561		cur_bit = (0x1UL << i);
4562		if (sig & cur_bit) {
4563			res |= true; /* Each bit is real error! */
4564
4565			if (print) {
4566				switch (cur_bit) {
4567				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4568					_print_next_block((*par_num)++, "BRB");
4569					_print_parity(bp,
4570						      BRB1_REG_BRB1_PRTY_STS);
4571					break;
4572				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4573					_print_next_block((*par_num)++,
4574							  "PARSER");
4575					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4576					break;
4577				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4578					_print_next_block((*par_num)++, "TSDM");
4579					_print_parity(bp,
4580						      TSDM_REG_TSDM_PRTY_STS);
4581					break;
4582				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4583					_print_next_block((*par_num)++,
4584							  "SEARCHER");
4585					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4586					break;
4587				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4588					_print_next_block((*par_num)++, "TCM");
4589					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4590					break;
4591				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4592					_print_next_block((*par_num)++,
4593							  "TSEMI");
4594					_print_parity(bp,
4595						      TSEM_REG_TSEM_PRTY_STS_0);
4596					_print_parity(bp,
4597						      TSEM_REG_TSEM_PRTY_STS_1);
4598					break;
4599				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4600					_print_next_block((*par_num)++, "XPB");
4601					_print_parity(bp, GRCBASE_XPB +
4602							  PB_REG_PB_PRTY_STS);
4603					break;
4604				}
4605			}
4606
4607			/* Clear the bit */
4608			sig &= ~cur_bit;
4609		}
4610	}
4611
4612	return res;
4613}
4614
4615static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4616					    int *par_num, bool *global,
4617					    bool print)
4618{
4619	u32 cur_bit;
4620	bool res;
4621	int i;
4622
4623	res = false;
4624
4625	for (i = 0; sig; i++) {
4626		cur_bit = (0x1UL << i);
4627		if (sig & cur_bit) {
4628			res |= true; /* Each bit is real error! */
4629			switch (cur_bit) {
4630			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4631				if (print) {
4632					_print_next_block((*par_num)++, "PBF");
4633					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4634				}
4635				break;
4636			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4637				if (print) {
4638					_print_next_block((*par_num)++, "QM");
4639					_print_parity(bp, QM_REG_QM_PRTY_STS);
4640				}
4641				break;
4642			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4643				if (print) {
4644					_print_next_block((*par_num)++, "TM");
4645					_print_parity(bp, TM_REG_TM_PRTY_STS);
4646				}
4647				break;
4648			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4649				if (print) {
4650					_print_next_block((*par_num)++, "XSDM");
4651					_print_parity(bp,
4652						      XSDM_REG_XSDM_PRTY_STS);
4653				}
4654				break;
4655			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4656				if (print) {
4657					_print_next_block((*par_num)++, "XCM");
4658					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4659				}
4660				break;
4661			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4662				if (print) {
4663					_print_next_block((*par_num)++,
4664							  "XSEMI");
4665					_print_parity(bp,
4666						      XSEM_REG_XSEM_PRTY_STS_0);
4667					_print_parity(bp,
4668						      XSEM_REG_XSEM_PRTY_STS_1);
4669				}
4670				break;
4671			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4672				if (print) {
4673					_print_next_block((*par_num)++,
4674							  "DOORBELLQ");
4675					_print_parity(bp,
4676						      DORQ_REG_DORQ_PRTY_STS);
4677				}
4678				break;
4679			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4680				if (print) {
4681					_print_next_block((*par_num)++, "NIG");
4682					if (CHIP_IS_E1x(bp)) {
4683						_print_parity(bp,
4684							NIG_REG_NIG_PRTY_STS);
4685					} else {
4686						_print_parity(bp,
4687							NIG_REG_NIG_PRTY_STS_0);
4688						_print_parity(bp,
4689							NIG_REG_NIG_PRTY_STS_1);
4690					}
4691				}
4692				break;
4693			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4694				if (print)
4695					_print_next_block((*par_num)++,
4696							  "VAUX PCI CORE");
4697				*global = true;
4698				break;
4699			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4700				if (print) {
4701					_print_next_block((*par_num)++,
4702							  "DEBUG");
4703					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4704				}
4705				break;
4706			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4707				if (print) {
4708					_print_next_block((*par_num)++, "USDM");
4709					_print_parity(bp,
4710						      USDM_REG_USDM_PRTY_STS);
4711				}
4712				break;
4713			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4714				if (print) {
4715					_print_next_block((*par_num)++, "UCM");
4716					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4717				}
4718				break;
4719			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4720				if (print) {
4721					_print_next_block((*par_num)++,
4722							  "USEMI");
4723					_print_parity(bp,
4724						      USEM_REG_USEM_PRTY_STS_0);
4725					_print_parity(bp,
4726						      USEM_REG_USEM_PRTY_STS_1);
4727				}
4728				break;
4729			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4730				if (print) {
4731					_print_next_block((*par_num)++, "UPB");
4732					_print_parity(bp, GRCBASE_UPB +
4733							  PB_REG_PB_PRTY_STS);
4734				}
4735				break;
4736			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4737				if (print) {
4738					_print_next_block((*par_num)++, "CSDM");
4739					_print_parity(bp,
4740						      CSDM_REG_CSDM_PRTY_STS);
4741				}
4742				break;
4743			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4744				if (print) {
4745					_print_next_block((*par_num)++, "CCM");
4746					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4747				}
4748				break;
4749			}
4750
4751			/* Clear the bit */
4752			sig &= ~cur_bit;
4753		}
4754	}
4755
4756	return res;
4757}
4758
4759static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4760					    int *par_num, bool print)
4761{
4762	u32 cur_bit;
4763	bool res;
4764	int i;
4765
4766	res = false;
4767
4768	for (i = 0; sig; i++) {
4769		cur_bit = (0x1UL << i);
4770		if (sig & cur_bit) {
4771			res = true; /* Each bit is real error! */
4772			if (print) {
4773				switch (cur_bit) {
4774				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4775					_print_next_block((*par_num)++,
4776							  "CSEMI");
4777					_print_parity(bp,
4778						      CSEM_REG_CSEM_PRTY_STS_0);
4779					_print_parity(bp,
4780						      CSEM_REG_CSEM_PRTY_STS_1);
4781					break;
4782				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4783					_print_next_block((*par_num)++, "PXP");
4784					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4785					_print_parity(bp,
4786						      PXP2_REG_PXP2_PRTY_STS_0);
4787					_print_parity(bp,
4788						      PXP2_REG_PXP2_PRTY_STS_1);
4789					break;
4790				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4791					_print_next_block((*par_num)++,
4792							  "PXPPCICLOCKCLIENT");
4793					break;
4794				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4795					_print_next_block((*par_num)++, "CFC");
4796					_print_parity(bp,
4797						      CFC_REG_CFC_PRTY_STS);
4798					break;
4799				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4800					_print_next_block((*par_num)++, "CDU");
4801					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4802					break;
4803				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4804					_print_next_block((*par_num)++, "DMAE");
4805					_print_parity(bp,
4806						      DMAE_REG_DMAE_PRTY_STS);
4807					break;
4808				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4809					_print_next_block((*par_num)++, "IGU");
4810					if (CHIP_IS_E1x(bp))
4811						_print_parity(bp,
4812							HC_REG_HC_PRTY_STS);
4813					else
4814						_print_parity(bp,
4815							IGU_REG_IGU_PRTY_STS);
4816					break;
4817				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4818					_print_next_block((*par_num)++, "MISC");
4819					_print_parity(bp,
4820						      MISC_REG_MISC_PRTY_STS);
4821					break;
4822				}
4823			}
4824
4825			/* Clear the bit */
4826			sig &= ~cur_bit;
4827		}
4828	}
4829
4830	return res;
4831}
4832
4833static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4834					    int *par_num, bool *global,
4835					    bool print)
4836{
4837	bool res = false;
4838	u32 cur_bit;
4839	int i;
4840
4841	for (i = 0; sig; i++) {
4842		cur_bit = (0x1UL << i);
4843		if (sig & cur_bit) {
4844			switch (cur_bit) {
4845			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4846				if (print)
4847					_print_next_block((*par_num)++,
4848							  "MCP ROM");
4849				*global = true;
4850				res = true;
4851				break;
4852			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4853				if (print)
4854					_print_next_block((*par_num)++,
4855							  "MCP UMP RX");
4856				*global = true;
4857				res = true;
4858				break;
4859			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4860				if (print)
4861					_print_next_block((*par_num)++,
4862							  "MCP UMP TX");
4863				*global = true;
4864				res = true;
4865				break;
4866			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4867				if (print)
4868					_print_next_block((*par_num)++,
4869							  "MCP SCPAD");
4870				/* clear latched SCPAD PATIRY from MCP */
4871				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4872				       1UL << 10);
4873				break;
4874			}
4875
4876			/* Clear the bit */
4877			sig &= ~cur_bit;
4878		}
4879	}
4880
4881	return res;
4882}
4883
4884static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4885					    int *par_num, bool print)
4886{
4887	u32 cur_bit;
4888	bool res;
4889	int i;
4890
4891	res = false;
4892
4893	for (i = 0; sig; i++) {
4894		cur_bit = (0x1UL << i);
4895		if (sig & cur_bit) {
4896			res = true; /* Each bit is real error! */
4897			if (print) {
4898				switch (cur_bit) {
4899				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4900					_print_next_block((*par_num)++,
4901							  "PGLUE_B");
4902					_print_parity(bp,
4903						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4904					break;
4905				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4906					_print_next_block((*par_num)++, "ATC");
4907					_print_parity(bp,
4908						      ATC_REG_ATC_PRTY_STS);
4909					break;
4910				}
4911			}
4912			/* Clear the bit */
4913			sig &= ~cur_bit;
4914		}
4915	}
4916
4917	return res;
4918}
4919
4920static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4921			      u32 *sig)
4922{
4923	bool res = false;
4924
4925	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4926	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4927	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4928	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4929	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4930		int par_num = 0;
4931		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4932				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4933			  sig[0] & HW_PRTY_ASSERT_SET_0,
4934			  sig[1] & HW_PRTY_ASSERT_SET_1,
4935			  sig[2] & HW_PRTY_ASSERT_SET_2,
4936			  sig[3] & HW_PRTY_ASSERT_SET_3,
4937			  sig[4] & HW_PRTY_ASSERT_SET_4);
4938		if (print)
4939			netdev_err(bp->dev,
4940				   "Parity errors detected in blocks: ");
4941		res |= bnx2x_check_blocks_with_parity0(bp,
4942			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4943		res |= bnx2x_check_blocks_with_parity1(bp,
4944			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4945		res |= bnx2x_check_blocks_with_parity2(bp,
4946			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4947		res |= bnx2x_check_blocks_with_parity3(bp,
4948			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4949		res |= bnx2x_check_blocks_with_parity4(bp,
4950			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4951
4952		if (print)
4953			pr_cont("\n");
4954	}
4955
4956	return res;
4957}
4958
4959/**
4960 * bnx2x_chk_parity_attn - checks for parity attentions.
4961 *
4962 * @bp:		driver handle
4963 * @global:	true if there was a global attention
4964 * @print:	show parity attention in syslog
4965 */
4966bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4967{
4968	struct attn_route attn = { {0} };
4969	int port = BP_PORT(bp);
4970
4971	attn.sig[0] = REG_RD(bp,
4972		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4973			     port*4);
4974	attn.sig[1] = REG_RD(bp,
4975		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4976			     port*4);
4977	attn.sig[2] = REG_RD(bp,
4978		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4979			     port*4);
4980	attn.sig[3] = REG_RD(bp,
4981		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4982			     port*4);
4983	/* Since MCP attentions can't be disabled inside the block, we need to
4984	 * read AEU registers to see whether they're currently disabled
4985	 */
4986	attn.sig[3] &= ((REG_RD(bp,
4987				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4988				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4989			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4990			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4991
4992	if (!CHIP_IS_E1x(bp))
4993		attn.sig[4] = REG_RD(bp,
4994			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4995				     port*4);
4996
4997	return bnx2x_parity_attn(bp, global, print, attn.sig);
4998}
4999
5000static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5001{
5002	u32 val;
5003	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5004
5005		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5006		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5007		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5008			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5009		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5010			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5011		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5012			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5013		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5014			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5015		if (val &
5016		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5017			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5018		if (val &
5019		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5020			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5021		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5022			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5023		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5024			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5025		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5026			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5027	}
5028	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5029		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5030		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5031		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5032			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5033		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5034			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5035		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5036			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5037		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5038			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5039		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5040			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5041		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5042			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5043	}
5044
5045	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5046		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5047		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5048		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5049		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5050	}
5051}
5052
5053static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5054{
5055	struct attn_route attn, *group_mask;
5056	int port = BP_PORT(bp);
5057	int index;
5058	u32 reg_addr;
5059	u32 val;
5060	u32 aeu_mask;
5061	bool global = false;
5062
5063	/* need to take HW lock because MCP or other port might also
5064	   try to handle this event */
5065	bnx2x_acquire_alr(bp);
5066
5067	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5068#ifndef BNX2X_STOP_ON_ERROR
5069		bp->recovery_state = BNX2X_RECOVERY_INIT;
5070		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5071		/* Disable HW interrupts */
5072		bnx2x_int_disable(bp);
5073		/* In case of parity errors don't handle attentions so that
5074		 * other function would "see" parity errors.
5075		 */
5076#else
5077		bnx2x_panic();
5078#endif
5079		bnx2x_release_alr(bp);
5080		return;
5081	}
5082
5083	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5084	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5085	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5086	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5087	if (!CHIP_IS_E1x(bp))
5088		attn.sig[4] =
5089		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5090	else
5091		attn.sig[4] = 0;
5092
5093	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5094	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5095
5096	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5097		if (deasserted & (1 << index)) {
5098			group_mask = &bp->attn_group[index];
5099
5100			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5101			   index,
5102			   group_mask->sig[0], group_mask->sig[1],
5103			   group_mask->sig[2], group_mask->sig[3],
5104			   group_mask->sig[4]);
5105
5106			bnx2x_attn_int_deasserted4(bp,
5107					attn.sig[4] & group_mask->sig[4]);
5108			bnx2x_attn_int_deasserted3(bp,
5109					attn.sig[3] & group_mask->sig[3]);
5110			bnx2x_attn_int_deasserted1(bp,
5111					attn.sig[1] & group_mask->sig[1]);
5112			bnx2x_attn_int_deasserted2(bp,
5113					attn.sig[2] & group_mask->sig[2]);
5114			bnx2x_attn_int_deasserted0(bp,
5115					attn.sig[0] & group_mask->sig[0]);
5116		}
5117	}
5118
5119	bnx2x_release_alr(bp);
5120
5121	if (bp->common.int_block == INT_BLOCK_HC)
5122		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5123			    COMMAND_REG_ATTN_BITS_CLR);
5124	else
5125		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5126
5127	val = ~deasserted;
5128	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5129	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5130	REG_WR(bp, reg_addr, val);
5131
5132	if (~bp->attn_state & deasserted)
5133		BNX2X_ERR("IGU ERROR\n");
5134
5135	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5136			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5137
5138	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5139	aeu_mask = REG_RD(bp, reg_addr);
5140
5141	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5142	   aeu_mask, deasserted);
5143	aeu_mask |= (deasserted & 0x3ff);
5144	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5145
5146	REG_WR(bp, reg_addr, aeu_mask);
5147	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5148
5149	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5150	bp->attn_state &= ~deasserted;
5151	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5152}
5153
5154static void bnx2x_attn_int(struct bnx2x *bp)
5155{
5156	/* read local copy of bits */
5157	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5158								attn_bits);
5159	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5160								attn_bits_ack);
5161	u32 attn_state = bp->attn_state;
5162
5163	/* look for changed bits */
5164	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5165	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5166
5167	DP(NETIF_MSG_HW,
5168	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5169	   attn_bits, attn_ack, asserted, deasserted);
5170
5171	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5172		BNX2X_ERR("BAD attention state\n");
5173
5174	/* handle bits that were raised */
5175	if (asserted)
5176		bnx2x_attn_int_asserted(bp, asserted);
5177
5178	if (deasserted)
5179		bnx2x_attn_int_deasserted(bp, deasserted);
5180}
5181
5182void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5183		      u16 index, u8 op, u8 update)
5184{
5185	u32 igu_addr = bp->igu_base_addr;
5186	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5187	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5188			     igu_addr);
5189}
5190
5191static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5192{
5193	/* No memory barriers */
5194	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5195	mmiowb(); /* keep prod updates ordered */
5196}
5197
5198static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5199				      union event_ring_elem *elem)
5200{
5201	u8 err = elem->message.error;
5202
5203	if (!bp->cnic_eth_dev.starting_cid  ||
5204	    (cid < bp->cnic_eth_dev.starting_cid &&
5205	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5206		return 1;
5207
5208	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5209
5210	if (unlikely(err)) {
5211
5212		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5213			  cid);
5214		bnx2x_panic_dump(bp, false);
5215	}
5216	bnx2x_cnic_cfc_comp(bp, cid, err);
5217	return 0;
5218}
5219
5220static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5221{
5222	struct bnx2x_mcast_ramrod_params rparam;
5223	int rc;
5224
5225	memset(&rparam, 0, sizeof(rparam));
5226
5227	rparam.mcast_obj = &bp->mcast_obj;
5228
5229	netif_addr_lock_bh(bp->dev);
5230
5231	/* Clear pending state for the last command */
5232	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5233
5234	/* If there are pending mcast commands - send them */
5235	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5236		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5237		if (rc < 0)
5238			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5239				  rc);
5240	}
5241
5242	netif_addr_unlock_bh(bp->dev);
5243}
5244
5245static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5246					    union event_ring_elem *elem)
5247{
5248	unsigned long ramrod_flags = 0;
5249	int rc = 0;
5250	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5251	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5252
5253	/* Always push next commands out, don't wait here */
5254	__set_bit(RAMROD_CONT, &ramrod_flags);
5255
5256	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5257			    >> BNX2X_SWCID_SHIFT) {
5258	case BNX2X_FILTER_MAC_PENDING:
5259		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5260		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5261			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5262		else
5263			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5264
5265		break;
5266	case BNX2X_FILTER_MCAST_PENDING:
5267		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5268		/* This is only relevant for 57710 where multicast MACs are
5269		 * configured as unicast MACs using the same ramrod.
5270		 */
5271		bnx2x_handle_mcast_eqe(bp);
5272		return;
5273	default:
5274		BNX2X_ERR("Unsupported classification command: %d\n",
5275			  elem->message.data.eth_event.echo);
5276		return;
5277	}
5278
5279	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5280
5281	if (rc < 0)
5282		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5283	else if (rc > 0)
5284		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5285}
5286
5287static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5288
5289static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5290{
5291	netif_addr_lock_bh(bp->dev);
5292
5293	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5294
5295	/* Send rx_mode command again if was requested */
5296	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5297		bnx2x_set_storm_rx_mode(bp);
5298	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5299				    &bp->sp_state))
5300		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5301	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5302				    &bp->sp_state))
5303		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5304
5305	netif_addr_unlock_bh(bp->dev);
5306}
5307
5308static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5309					      union event_ring_elem *elem)
5310{
5311	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5312		DP(BNX2X_MSG_SP,
5313		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5314		   elem->message.data.vif_list_event.func_bit_map);
5315		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5316			elem->message.data.vif_list_event.func_bit_map);
5317	} else if (elem->message.data.vif_list_event.echo ==
5318		   VIF_LIST_RULE_SET) {
5319		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5320		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5321	}
5322}
5323
5324/* called with rtnl_lock */
5325static void bnx2x_after_function_update(struct bnx2x *bp)
5326{
5327	int q, rc;
5328	struct bnx2x_fastpath *fp;
5329	struct bnx2x_queue_state_params queue_params = {NULL};
5330	struct bnx2x_queue_update_params *q_update_params =
5331		&queue_params.params.update;
5332
5333	/* Send Q update command with afex vlan removal values for all Qs */
5334	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5335
5336	/* set silent vlan removal values according to vlan mode */
5337	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5338		  &q_update_params->update_flags);
5339	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5340		  &q_update_params->update_flags);
5341	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5342
5343	/* in access mode mark mask and value are 0 to strip all vlans */
5344	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5345		q_update_params->silent_removal_value = 0;
5346		q_update_params->silent_removal_mask = 0;
5347	} else {
5348		q_update_params->silent_removal_value =
5349			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5350		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5351	}
5352
5353	for_each_eth_queue(bp, q) {
5354		/* Set the appropriate Queue object */
5355		fp = &bp->fp[q];
5356		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5357
5358		/* send the ramrod */
5359		rc = bnx2x_queue_state_change(bp, &queue_params);
5360		if (rc < 0)
5361			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5362				  q);
5363	}
5364
5365	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5366		fp = &bp->fp[FCOE_IDX(bp)];
5367		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5368
5369		/* clear pending completion bit */
5370		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5371
5372		/* mark latest Q bit */
5373		smp_mb__before_atomic();
5374		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5375		smp_mb__after_atomic();
5376
5377		/* send Q update ramrod for FCoE Q */
5378		rc = bnx2x_queue_state_change(bp, &queue_params);
5379		if (rc < 0)
5380			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5381				  q);
5382	} else {
5383		/* If no FCoE ring - ACK MCP now */
5384		bnx2x_link_report(bp);
5385		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5386	}
5387}
5388
5389static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5390	struct bnx2x *bp, u32 cid)
5391{
5392	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5393
5394	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5395		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5396	else
5397		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5398}
5399
5400static void bnx2x_eq_int(struct bnx2x *bp)
5401{
5402	u16 hw_cons, sw_cons, sw_prod;
5403	union event_ring_elem *elem;
5404	u8 echo;
5405	u32 cid;
5406	u8 opcode;
5407	int rc, spqe_cnt = 0;
5408	struct bnx2x_queue_sp_obj *q_obj;
5409	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5410	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5411
5412	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5413
5414	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5415	 * when we get the next-page we need to adjust so the loop
5416	 * condition below will be met. The next element is the size of a
5417	 * regular element and hence incrementing by 1
5418	 */
5419	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5420		hw_cons++;
5421
5422	/* This function may never run in parallel with itself for a
5423	 * specific bp, thus there is no need in "paired" read memory
5424	 * barrier here.
5425	 */
5426	sw_cons = bp->eq_cons;
5427	sw_prod = bp->eq_prod;
5428
5429	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5430			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5431
5432	for (; sw_cons != hw_cons;
5433	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5434
5435		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5436
5437		rc = bnx2x_iov_eq_sp_event(bp, elem);
5438		if (!rc) {
5439			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5440			   rc);
5441			goto next_spqe;
5442		}
5443
5444		/* elem CID originates from FW; actually LE */
5445		cid = SW_CID((__force __le32)
5446			     elem->message.data.cfc_del_event.cid);
5447		opcode = elem->message.opcode;
5448
5449		/* handle eq element */
5450		switch (opcode) {
5451		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5452			bnx2x_vf_mbx_schedule(bp,
5453					      &elem->message.data.vf_pf_event);
5454			continue;
5455
5456		case EVENT_RING_OPCODE_STAT_QUERY:
5457			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5458			       "got statistics comp event %d\n",
5459			       bp->stats_comp++);
5460			/* nothing to do with stats comp */
5461			goto next_spqe;
5462
5463		case EVENT_RING_OPCODE_CFC_DEL:
5464			/* handle according to cid range */
5465			/*
5466			 * we may want to verify here that the bp state is
5467			 * HALTING
5468			 */
5469			DP(BNX2X_MSG_SP,
5470			   "got delete ramrod for MULTI[%d]\n", cid);
5471
5472			if (CNIC_LOADED(bp) &&
5473			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5474				goto next_spqe;
5475
5476			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5477
5478			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5479				break;
5480
5481			goto next_spqe;
5482
5483		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5484			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5485			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5486			if (f_obj->complete_cmd(bp, f_obj,
5487						BNX2X_F_CMD_TX_STOP))
5488				break;
5489			goto next_spqe;
5490
5491		case EVENT_RING_OPCODE_START_TRAFFIC:
5492			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5493			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5494			if (f_obj->complete_cmd(bp, f_obj,
5495						BNX2X_F_CMD_TX_START))
5496				break;
5497			goto next_spqe;
5498
5499		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5500			echo = elem->message.data.function_update_event.echo;
5501			if (echo == SWITCH_UPDATE) {
5502				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5503				   "got FUNC_SWITCH_UPDATE ramrod\n");
5504				if (f_obj->complete_cmd(
5505					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5506					break;
5507
5508			} else {
5509				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5510
5511				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5512				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5513				f_obj->complete_cmd(bp, f_obj,
5514						    BNX2X_F_CMD_AFEX_UPDATE);
5515
5516				/* We will perform the Queues update from
5517				 * sp_rtnl task as all Queue SP operations
5518				 * should run under rtnl_lock.
5519				 */
5520				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5521			}
5522
5523			goto next_spqe;
5524
5525		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5526			f_obj->complete_cmd(bp, f_obj,
5527					    BNX2X_F_CMD_AFEX_VIFLISTS);
5528			bnx2x_after_afex_vif_lists(bp, elem);
5529			goto next_spqe;
5530		case EVENT_RING_OPCODE_FUNCTION_START:
5531			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5532			   "got FUNC_START ramrod\n");
5533			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5534				break;
5535
5536			goto next_spqe;
5537
5538		case EVENT_RING_OPCODE_FUNCTION_STOP:
5539			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5540			   "got FUNC_STOP ramrod\n");
5541			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5542				break;
5543
5544			goto next_spqe;
5545
5546		case EVENT_RING_OPCODE_SET_TIMESYNC:
5547			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5548			   "got set_timesync ramrod completion\n");
5549			if (f_obj->complete_cmd(bp, f_obj,
5550						BNX2X_F_CMD_SET_TIMESYNC))
5551				break;
5552			goto next_spqe;
5553		}
5554
5555		switch (opcode | bp->state) {
5556		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5557		      BNX2X_STATE_OPEN):
5558		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5559		      BNX2X_STATE_OPENING_WAIT4_PORT):
5560			cid = elem->message.data.eth_event.echo &
5561				BNX2X_SWCID_MASK;
5562			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5563			   cid);
5564			rss_raw->clear_pending(rss_raw);
5565			break;
5566
5567		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5568		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5569		case (EVENT_RING_OPCODE_SET_MAC |
5570		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5571		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5572		      BNX2X_STATE_OPEN):
5573		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5574		      BNX2X_STATE_DIAG):
5575		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5576		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5577			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5578			bnx2x_handle_classification_eqe(bp, elem);
5579			break;
5580
5581		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5582		      BNX2X_STATE_OPEN):
5583		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5584		      BNX2X_STATE_DIAG):
5585		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5586		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5587			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5588			bnx2x_handle_mcast_eqe(bp);
5589			break;
5590
5591		case (EVENT_RING_OPCODE_FILTERS_RULES |
5592		      BNX2X_STATE_OPEN):
5593		case (EVENT_RING_OPCODE_FILTERS_RULES |
5594		      BNX2X_STATE_DIAG):
5595		case (EVENT_RING_OPCODE_FILTERS_RULES |
5596		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5597			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5598			bnx2x_handle_rx_mode_eqe(bp);
5599			break;
5600		default:
5601			/* unknown event log error and continue */
5602			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5603				  elem->message.opcode, bp->state);
5604		}
5605next_spqe:
5606		spqe_cnt++;
5607	} /* for */
5608
5609	smp_mb__before_atomic();
5610	atomic_add(spqe_cnt, &bp->eq_spq_left);
5611
5612	bp->eq_cons = sw_cons;
5613	bp->eq_prod = sw_prod;
5614	/* Make sure that above mem writes were issued towards the memory */
5615	smp_wmb();
5616
5617	/* update producer */
5618	bnx2x_update_eq_prod(bp, bp->eq_prod);
5619}
5620
5621static void bnx2x_sp_task(struct work_struct *work)
5622{
5623	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5624
5625	DP(BNX2X_MSG_SP, "sp task invoked\n");
5626
5627	/* make sure the atomic interrupt_occurred has been written */
5628	smp_rmb();
5629	if (atomic_read(&bp->interrupt_occurred)) {
5630
5631		/* what work needs to be performed? */
5632		u16 status = bnx2x_update_dsb_idx(bp);
5633
5634		DP(BNX2X_MSG_SP, "status %x\n", status);
5635		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5636		atomic_set(&bp->interrupt_occurred, 0);
5637
5638		/* HW attentions */
5639		if (status & BNX2X_DEF_SB_ATT_IDX) {
5640			bnx2x_attn_int(bp);
5641			status &= ~BNX2X_DEF_SB_ATT_IDX;
5642		}
5643
5644		/* SP events: STAT_QUERY and others */
5645		if (status & BNX2X_DEF_SB_IDX) {
5646			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5647
5648		if (FCOE_INIT(bp) &&
5649			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5650				/* Prevent local bottom-halves from running as
5651				 * we are going to change the local NAPI list.
5652				 */
5653				local_bh_disable();
5654				napi_schedule(&bnx2x_fcoe(bp, napi));
5655				local_bh_enable();
5656			}
5657
5658			/* Handle EQ completions */
5659			bnx2x_eq_int(bp);
5660			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5661				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5662
5663			status &= ~BNX2X_DEF_SB_IDX;
5664		}
5665
5666		/* if status is non zero then perhaps something went wrong */
5667		if (unlikely(status))
5668			DP(BNX2X_MSG_SP,
5669			   "got an unknown interrupt! (status 0x%x)\n", status);
5670
5671		/* ack status block only if something was actually handled */
5672		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5673			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5674	}
5675
5676	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5677	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5678			       &bp->sp_state)) {
5679		bnx2x_link_report(bp);
5680		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5681	}
5682}
5683
5684irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5685{
5686	struct net_device *dev = dev_instance;
5687	struct bnx2x *bp = netdev_priv(dev);
5688
5689	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5690		     IGU_INT_DISABLE, 0);
5691
5692#ifdef BNX2X_STOP_ON_ERROR
5693	if (unlikely(bp->panic))
5694		return IRQ_HANDLED;
5695#endif
5696
5697	if (CNIC_LOADED(bp)) {
5698		struct cnic_ops *c_ops;
5699
5700		rcu_read_lock();
5701		c_ops = rcu_dereference(bp->cnic_ops);
5702		if (c_ops)
5703			c_ops->cnic_handler(bp->cnic_data, NULL);
5704		rcu_read_unlock();
5705	}
5706
5707	/* schedule sp task to perform default status block work, ack
5708	 * attentions and enable interrupts.
5709	 */
5710	bnx2x_schedule_sp_task(bp);
5711
5712	return IRQ_HANDLED;
5713}
5714
5715/* end of slow path */
5716
5717void bnx2x_drv_pulse(struct bnx2x *bp)
5718{
5719	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5720		 bp->fw_drv_pulse_wr_seq);
5721}
5722
5723static void bnx2x_timer(unsigned long data)
5724{
5725	struct bnx2x *bp = (struct bnx2x *) data;
5726
5727	if (!netif_running(bp->dev))
5728		return;
5729
5730	if (IS_PF(bp) &&
5731	    !BP_NOMCP(bp)) {
5732		int mb_idx = BP_FW_MB_IDX(bp);
5733		u16 drv_pulse;
5734		u16 mcp_pulse;
5735
5736		++bp->fw_drv_pulse_wr_seq;
5737		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5738		drv_pulse = bp->fw_drv_pulse_wr_seq;
5739		bnx2x_drv_pulse(bp);
5740
5741		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5742			     MCP_PULSE_SEQ_MASK);
5743		/* The delta between driver pulse and mcp response
5744		 * should not get too big. If the MFW is more than 5 pulses
5745		 * behind, we should worry about it enough to generate an error
5746		 * log.
5747		 */
5748		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5749			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5750				  drv_pulse, mcp_pulse);
5751	}
5752
5753	if (bp->state == BNX2X_STATE_OPEN)
5754		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5755
5756	/* sample pf vf bulletin board for new posts from pf */
5757	if (IS_VF(bp))
5758		bnx2x_timer_sriov(bp);
5759
5760	mod_timer(&bp->timer, jiffies + bp->current_interval);
5761}
5762
5763/* end of Statistics */
5764
5765/* nic init */
5766
5767/*
5768 * nic init service functions
5769 */
5770
5771static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5772{
5773	u32 i;
5774	if (!(len%4) && !(addr%4))
5775		for (i = 0; i < len; i += 4)
5776			REG_WR(bp, addr + i, fill);
5777	else
5778		for (i = 0; i < len; i++)
5779			REG_WR8(bp, addr + i, fill);
5780}
5781
5782/* helper: writes FP SP data to FW - data_size in dwords */
5783static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5784				int fw_sb_id,
5785				u32 *sb_data_p,
5786				u32 data_size)
5787{
5788	int index;
5789	for (index = 0; index < data_size; index++)
5790		REG_WR(bp, BAR_CSTRORM_INTMEM +
5791			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5792			sizeof(u32)*index,
5793			*(sb_data_p + index));
5794}
5795
5796static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5797{
5798	u32 *sb_data_p;
5799	u32 data_size = 0;
5800	struct hc_status_block_data_e2 sb_data_e2;
5801	struct hc_status_block_data_e1x sb_data_e1x;
5802
5803	/* disable the function first */
5804	if (!CHIP_IS_E1x(bp)) {
5805		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5806		sb_data_e2.common.state = SB_DISABLED;
5807		sb_data_e2.common.p_func.vf_valid = false;
5808		sb_data_p = (u32 *)&sb_data_e2;
5809		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5810	} else {
5811		memset(&sb_data_e1x, 0,
5812		       sizeof(struct hc_status_block_data_e1x));
5813		sb_data_e1x.common.state = SB_DISABLED;
5814		sb_data_e1x.common.p_func.vf_valid = false;
5815		sb_data_p = (u32 *)&sb_data_e1x;
5816		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5817	}
5818	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5819
5820	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5821			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5822			CSTORM_STATUS_BLOCK_SIZE);
5823	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5824			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5825			CSTORM_SYNC_BLOCK_SIZE);
5826}
5827
5828/* helper:  writes SP SB data to FW */
5829static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5830		struct hc_sp_status_block_data *sp_sb_data)
5831{
5832	int func = BP_FUNC(bp);
5833	int i;
5834	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5835		REG_WR(bp, BAR_CSTRORM_INTMEM +
5836			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5837			i*sizeof(u32),
5838			*((u32 *)sp_sb_data + i));
5839}
5840
5841static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5842{
5843	int func = BP_FUNC(bp);
5844	struct hc_sp_status_block_data sp_sb_data;
5845	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5846
5847	sp_sb_data.state = SB_DISABLED;
5848	sp_sb_data.p_func.vf_valid = false;
5849
5850	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5851
5852	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5853			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5854			CSTORM_SP_STATUS_BLOCK_SIZE);
5855	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5856			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5857			CSTORM_SP_SYNC_BLOCK_SIZE);
5858}
5859
5860static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5861					   int igu_sb_id, int igu_seg_id)
5862{
5863	hc_sm->igu_sb_id = igu_sb_id;
5864	hc_sm->igu_seg_id = igu_seg_id;
5865	hc_sm->timer_value = 0xFF;
5866	hc_sm->time_to_expire = 0xFFFFFFFF;
5867}
5868
5869/* allocates state machine ids. */
5870static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5871{
5872	/* zero out state machine indices */
5873	/* rx indices */
5874	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5875
5876	/* tx indices */
5877	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5878	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5879	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5880	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5881
5882	/* map indices */
5883	/* rx indices */
5884	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5885		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5886
5887	/* tx indices */
5888	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5889		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5890	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5891		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5892	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5893		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5894	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5895		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5896}
5897
5898void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5899			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5900{
5901	int igu_seg_id;
5902
5903	struct hc_status_block_data_e2 sb_data_e2;
5904	struct hc_status_block_data_e1x sb_data_e1x;
5905	struct hc_status_block_sm  *hc_sm_p;
5906	int data_size;
5907	u32 *sb_data_p;
5908
5909	if (CHIP_INT_MODE_IS_BC(bp))
5910		igu_seg_id = HC_SEG_ACCESS_NORM;
5911	else
5912		igu_seg_id = IGU_SEG_ACCESS_NORM;
5913
5914	bnx2x_zero_fp_sb(bp, fw_sb_id);
5915
5916	if (!CHIP_IS_E1x(bp)) {
5917		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5918		sb_data_e2.common.state = SB_ENABLED;
5919		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5920		sb_data_e2.common.p_func.vf_id = vfid;
5921		sb_data_e2.common.p_func.vf_valid = vf_valid;
5922		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5923		sb_data_e2.common.same_igu_sb_1b = true;
5924		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5925		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5926		hc_sm_p = sb_data_e2.common.state_machine;
5927		sb_data_p = (u32 *)&sb_data_e2;
5928		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5929		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5930	} else {
5931		memset(&sb_data_e1x, 0,
5932		       sizeof(struct hc_status_block_data_e1x));
5933		sb_data_e1x.common.state = SB_ENABLED;
5934		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5935		sb_data_e1x.common.p_func.vf_id = 0xff;
5936		sb_data_e1x.common.p_func.vf_valid = false;
5937		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5938		sb_data_e1x.common.same_igu_sb_1b = true;
5939		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5940		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5941		hc_sm_p = sb_data_e1x.common.state_machine;
5942		sb_data_p = (u32 *)&sb_data_e1x;
5943		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5944		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5945	}
5946
5947	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5948				       igu_sb_id, igu_seg_id);
5949	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5950				       igu_sb_id, igu_seg_id);
5951
5952	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5953
5954	/* write indices to HW - PCI guarantees endianity of regpairs */
5955	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5956}
5957
5958static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5959				     u16 tx_usec, u16 rx_usec)
5960{
5961	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5962				    false, rx_usec);
5963	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5964				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5965				       tx_usec);
5966	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5967				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5968				       tx_usec);
5969	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5970				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5971				       tx_usec);
5972}
5973
5974static void bnx2x_init_def_sb(struct bnx2x *bp)
5975{
5976	struct host_sp_status_block *def_sb = bp->def_status_blk;
5977	dma_addr_t mapping = bp->def_status_blk_mapping;
5978	int igu_sp_sb_index;
5979	int igu_seg_id;
5980	int port = BP_PORT(bp);
5981	int func = BP_FUNC(bp);
5982	int reg_offset, reg_offset_en5;
5983	u64 section;
5984	int index;
5985	struct hc_sp_status_block_data sp_sb_data;
5986	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5987
5988	if (CHIP_INT_MODE_IS_BC(bp)) {
5989		igu_sp_sb_index = DEF_SB_IGU_ID;
5990		igu_seg_id = HC_SEG_ACCESS_DEF;
5991	} else {
5992		igu_sp_sb_index = bp->igu_dsb_id;
5993		igu_seg_id = IGU_SEG_ACCESS_DEF;
5994	}
5995
5996	/* ATTN */
5997	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5998					    atten_status_block);
5999	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6000
6001	bp->attn_state = 0;
6002
6003	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6004			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6005	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6006				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6007	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6008		int sindex;
6009		/* take care of sig[0]..sig[4] */
6010		for (sindex = 0; sindex < 4; sindex++)
6011			bp->attn_group[index].sig[sindex] =
6012			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6013
6014		if (!CHIP_IS_E1x(bp))
6015			/*
6016			 * enable5 is separate from the rest of the registers,
6017			 * and therefore the address skip is 4
6018			 * and not 16 between the different groups
6019			 */
6020			bp->attn_group[index].sig[4] = REG_RD(bp,
6021					reg_offset_en5 + 0x4*index);
6022		else
6023			bp->attn_group[index].sig[4] = 0;
6024	}
6025
6026	if (bp->common.int_block == INT_BLOCK_HC) {
6027		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6028				     HC_REG_ATTN_MSG0_ADDR_L);
6029
6030		REG_WR(bp, reg_offset, U64_LO(section));
6031		REG_WR(bp, reg_offset + 4, U64_HI(section));
6032	} else if (!CHIP_IS_E1x(bp)) {
6033		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6034		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6035	}
6036
6037	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6038					    sp_sb);
6039
6040	bnx2x_zero_sp_sb(bp);
6041
6042	/* PCI guarantees endianity of regpairs */
6043	sp_sb_data.state		= SB_ENABLED;
6044	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6045	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6046	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6047	sp_sb_data.igu_seg_id		= igu_seg_id;
6048	sp_sb_data.p_func.pf_id		= func;
6049	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6050	sp_sb_data.p_func.vf_id		= 0xff;
6051
6052	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6053
6054	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6055}
6056
6057void bnx2x_update_coalesce(struct bnx2x *bp)
6058{
6059	int i;
6060
6061	for_each_eth_queue(bp, i)
6062		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6063					 bp->tx_ticks, bp->rx_ticks);
6064}
6065
6066static void bnx2x_init_sp_ring(struct bnx2x *bp)
6067{
6068	spin_lock_init(&bp->spq_lock);
6069	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6070
6071	bp->spq_prod_idx = 0;
6072	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6073	bp->spq_prod_bd = bp->spq;
6074	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6075}
6076
6077static void bnx2x_init_eq_ring(struct bnx2x *bp)
6078{
6079	int i;
6080	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6081		union event_ring_elem *elem =
6082			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6083
6084		elem->next_page.addr.hi =
6085			cpu_to_le32(U64_HI(bp->eq_mapping +
6086				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6087		elem->next_page.addr.lo =
6088			cpu_to_le32(U64_LO(bp->eq_mapping +
6089				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6090	}
6091	bp->eq_cons = 0;
6092	bp->eq_prod = NUM_EQ_DESC;
6093	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6094	/* we want a warning message before it gets wrought... */
6095	atomic_set(&bp->eq_spq_left,
6096		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6097}
6098
6099/* called with netif_addr_lock_bh() */
6100static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6101			       unsigned long rx_mode_flags,
6102			       unsigned long rx_accept_flags,
6103			       unsigned long tx_accept_flags,
6104			       unsigned long ramrod_flags)
6105{
6106	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6107	int rc;
6108
6109	memset(&ramrod_param, 0, sizeof(ramrod_param));
6110
6111	/* Prepare ramrod parameters */
6112	ramrod_param.cid = 0;
6113	ramrod_param.cl_id = cl_id;
6114	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6115	ramrod_param.func_id = BP_FUNC(bp);
6116
6117	ramrod_param.pstate = &bp->sp_state;
6118	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6119
6120	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6121	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6122
6123	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6124
6125	ramrod_param.ramrod_flags = ramrod_flags;
6126	ramrod_param.rx_mode_flags = rx_mode_flags;
6127
6128	ramrod_param.rx_accept_flags = rx_accept_flags;
6129	ramrod_param.tx_accept_flags = tx_accept_flags;
6130
6131	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6132	if (rc < 0) {
6133		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6134		return rc;
6135	}
6136
6137	return 0;
6138}
6139
6140static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6141				   unsigned long *rx_accept_flags,
6142				   unsigned long *tx_accept_flags)
6143{
6144	/* Clear the flags first */
6145	*rx_accept_flags = 0;
6146	*tx_accept_flags = 0;
6147
6148	switch (rx_mode) {
6149	case BNX2X_RX_MODE_NONE:
6150		/*
6151		 * 'drop all' supersedes any accept flags that may have been
6152		 * passed to the function.
6153		 */
6154		break;
6155	case BNX2X_RX_MODE_NORMAL:
6156		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6157		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6158		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6159
6160		/* internal switching mode */
6161		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6162		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6163		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6164
6165		break;
6166	case BNX2X_RX_MODE_ALLMULTI:
6167		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6168		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6169		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6170
6171		/* internal switching mode */
6172		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6173		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6174		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6175
6176		break;
6177	case BNX2X_RX_MODE_PROMISC:
6178		/* According to definition of SI mode, iface in promisc mode
6179		 * should receive matched and unmatched (in resolution of port)
6180		 * unicast packets.
6181		 */
6182		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6183		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6184		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6185		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6186
6187		/* internal switching mode */
6188		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6189		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6190
6191		if (IS_MF_SI(bp))
6192			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6193		else
6194			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6195
6196		break;
6197	default:
6198		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6199		return -EINVAL;
6200	}
6201
6202	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6203	if (rx_mode != BNX2X_RX_MODE_NONE) {
6204		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6205		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6206	}
6207
6208	return 0;
6209}
6210
6211/* called with netif_addr_lock_bh() */
6212static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6213{
6214	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6215	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6216	int rc;
6217
6218	if (!NO_FCOE(bp))
6219		/* Configure rx_mode of FCoE Queue */
6220		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6221
6222	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6223				     &tx_accept_flags);
6224	if (rc)
6225		return rc;
6226
6227	__set_bit(RAMROD_RX, &ramrod_flags);
6228	__set_bit(RAMROD_TX, &ramrod_flags);
6229
6230	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6231				   rx_accept_flags, tx_accept_flags,
6232				   ramrod_flags);
6233}
6234
6235static void bnx2x_init_internal_common(struct bnx2x *bp)
6236{
6237	int i;
6238
6239	/* Zero this manually as its initialization is
6240	   currently missing in the initTool */
6241	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6242		REG_WR(bp, BAR_USTRORM_INTMEM +
6243		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6244	if (!CHIP_IS_E1x(bp)) {
6245		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6246			CHIP_INT_MODE_IS_BC(bp) ?
6247			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6248	}
6249}
6250
6251static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6252{
6253	switch (load_code) {
6254	case FW_MSG_CODE_DRV_LOAD_COMMON:
6255	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6256		bnx2x_init_internal_common(bp);
6257		/* no break */
6258
6259	case FW_MSG_CODE_DRV_LOAD_PORT:
6260		/* nothing to do */
6261		/* no break */
6262
6263	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6264		/* internal memory per function is
6265		   initialized inside bnx2x_pf_init */
6266		break;
6267
6268	default:
6269		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6270		break;
6271	}
6272}
6273
6274static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6275{
6276	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6277}
6278
6279static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6280{
6281	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6282}
6283
6284static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6285{
6286	if (CHIP_IS_E1x(fp->bp))
6287		return BP_L_ID(fp->bp) + fp->index;
6288	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6289		return bnx2x_fp_igu_sb_id(fp);
6290}
6291
6292static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6293{
6294	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6295	u8 cos;
6296	unsigned long q_type = 0;
6297	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6298	fp->rx_queue = fp_idx;
6299	fp->cid = fp_idx;
6300	fp->cl_id = bnx2x_fp_cl_id(fp);
6301	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6302	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6303	/* qZone id equals to FW (per path) client id */
6304	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6305
6306	/* init shortcut */
6307	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6308
6309	/* Setup SB indices */
6310	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6311
6312	/* Configure Queue State object */
6313	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6314	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6315
6316	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6317
6318	/* init tx data */
6319	for_each_cos_in_tx_queue(fp, cos) {
6320		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6321				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6322				  FP_COS_TO_TXQ(fp, cos, bp),
6323				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6324		cids[cos] = fp->txdata_ptr[cos]->cid;
6325	}
6326
6327	/* nothing more for vf to do here */
6328	if (IS_VF(bp))
6329		return;
6330
6331	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6332		      fp->fw_sb_id, fp->igu_sb_id);
6333	bnx2x_update_fpsb_idx(fp);
6334	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6335			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6336			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6337
6338	/**
6339	 * Configure classification DBs: Always enable Tx switching
6340	 */
6341	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6342
6343	DP(NETIF_MSG_IFUP,
6344	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6345	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6346	   fp->igu_sb_id);
6347}
6348
6349static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6350{
6351	int i;
6352
6353	for (i = 1; i <= NUM_TX_RINGS; i++) {
6354		struct eth_tx_next_bd *tx_next_bd =
6355			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6356
6357		tx_next_bd->addr_hi =
6358			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6359				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6360		tx_next_bd->addr_lo =
6361			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6362				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6363	}
6364
6365	*txdata->tx_cons_sb = cpu_to_le16(0);
6366
6367	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6368	txdata->tx_db.data.zero_fill1 = 0;
6369	txdata->tx_db.data.prod = 0;
6370
6371	txdata->tx_pkt_prod = 0;
6372	txdata->tx_pkt_cons = 0;
6373	txdata->tx_bd_prod = 0;
6374	txdata->tx_bd_cons = 0;
6375	txdata->tx_pkt = 0;
6376}
6377
6378static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6379{
6380	int i;
6381
6382	for_each_tx_queue_cnic(bp, i)
6383		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6384}
6385
6386static void bnx2x_init_tx_rings(struct bnx2x *bp)
6387{
6388	int i;
6389	u8 cos;
6390
6391	for_each_eth_queue(bp, i)
6392		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6393			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6394}
6395
6396static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6397{
6398	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6399	unsigned long q_type = 0;
6400
6401	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6402	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6403						     BNX2X_FCOE_ETH_CL_ID_IDX);
6404	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6405	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6406	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6407	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6408	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6409			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6410			  fp);
6411
6412	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6413
6414	/* qZone id equals to FW (per path) client id */
6415	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6416	/* init shortcut */
6417	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6418		bnx2x_rx_ustorm_prods_offset(fp);
6419
6420	/* Configure Queue State object */
6421	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6422	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6423
6424	/* No multi-CoS for FCoE L2 client */
6425	BUG_ON(fp->max_cos != 1);
6426
6427	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6428			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6429			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6430
6431	DP(NETIF_MSG_IFUP,
6432	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6433	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6434	   fp->igu_sb_id);
6435}
6436
6437void bnx2x_nic_init_cnic(struct bnx2x *bp)
6438{
6439	if (!NO_FCOE(bp))
6440		bnx2x_init_fcoe_fp(bp);
6441
6442	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6443		      BNX2X_VF_ID_INVALID, false,
6444		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6445
6446	/* ensure status block indices were read */
6447	rmb();
6448	bnx2x_init_rx_rings_cnic(bp);
6449	bnx2x_init_tx_rings_cnic(bp);
6450
6451	/* flush all */
6452	mb();
6453	mmiowb();
6454}
6455
6456void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6457{
6458	int i;
6459
6460	/* Setup NIC internals and enable interrupts */
6461	for_each_eth_queue(bp, i)
6462		bnx2x_init_eth_fp(bp, i);
6463
6464	/* ensure status block indices were read */
6465	rmb();
6466	bnx2x_init_rx_rings(bp);
6467	bnx2x_init_tx_rings(bp);
6468
6469	if (IS_PF(bp)) {
6470		/* Initialize MOD_ABS interrupts */
6471		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6472				       bp->common.shmem_base,
6473				       bp->common.shmem2_base, BP_PORT(bp));
6474
6475		/* initialize the default status block and sp ring */
6476		bnx2x_init_def_sb(bp);
6477		bnx2x_update_dsb_idx(bp);
6478		bnx2x_init_sp_ring(bp);
6479	} else {
6480		bnx2x_memset_stats(bp);
6481	}
6482}
6483
6484void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6485{
6486	bnx2x_init_eq_ring(bp);
6487	bnx2x_init_internal(bp, load_code);
6488	bnx2x_pf_init(bp);
6489	bnx2x_stats_init(bp);
6490
6491	/* flush all before enabling interrupts */
6492	mb();
6493	mmiowb();
6494
6495	bnx2x_int_enable(bp);
6496
6497	/* Check for SPIO5 */
6498	bnx2x_attn_int_deasserted0(bp,
6499		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6500				   AEU_INPUTS_ATTN_BITS_SPIO5);
6501}
6502
6503/* gzip service functions */
6504static int bnx2x_gunzip_init(struct bnx2x *bp)
6505{
6506	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6507					    &bp->gunzip_mapping, GFP_KERNEL);
6508	if (bp->gunzip_buf  == NULL)
6509		goto gunzip_nomem1;
6510
6511	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6512	if (bp->strm  == NULL)
6513		goto gunzip_nomem2;
6514
6515	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6516	if (bp->strm->workspace == NULL)
6517		goto gunzip_nomem3;
6518
6519	return 0;
6520
6521gunzip_nomem3:
6522	kfree(bp->strm);
6523	bp->strm = NULL;
6524
6525gunzip_nomem2:
6526	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6527			  bp->gunzip_mapping);
6528	bp->gunzip_buf = NULL;
6529
6530gunzip_nomem1:
6531	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6532	return -ENOMEM;
6533}
6534
6535static void bnx2x_gunzip_end(struct bnx2x *bp)
6536{
6537	if (bp->strm) {
6538		vfree(bp->strm->workspace);
6539		kfree(bp->strm);
6540		bp->strm = NULL;
6541	}
6542
6543	if (bp->gunzip_buf) {
6544		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6545				  bp->gunzip_mapping);
6546		bp->gunzip_buf = NULL;
6547	}
6548}
6549
6550static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6551{
6552	int n, rc;
6553
6554	/* check gzip header */
6555	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6556		BNX2X_ERR("Bad gzip header\n");
6557		return -EINVAL;
6558	}
6559
6560	n = 10;
6561
6562#define FNAME				0x8
6563
6564	if (zbuf[3] & FNAME)
6565		while ((zbuf[n++] != 0) && (n < len));
6566
6567	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6568	bp->strm->avail_in = len - n;
6569	bp->strm->next_out = bp->gunzip_buf;
6570	bp->strm->avail_out = FW_BUF_SIZE;
6571
6572	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6573	if (rc != Z_OK)
6574		return rc;
6575
6576	rc = zlib_inflate(bp->strm, Z_FINISH);
6577	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6578		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6579			   bp->strm->msg);
6580
6581	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6582	if (bp->gunzip_outlen & 0x3)
6583		netdev_err(bp->dev,
6584			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6585				bp->gunzip_outlen);
6586	bp->gunzip_outlen >>= 2;
6587
6588	zlib_inflateEnd(bp->strm);
6589
6590	if (rc == Z_STREAM_END)
6591		return 0;
6592
6593	return rc;
6594}
6595
6596/* nic load/unload */
6597
6598/*
6599 * General service functions
6600 */
6601
6602/* send a NIG loopback debug packet */
6603static void bnx2x_lb_pckt(struct bnx2x *bp)
6604{
6605	u32 wb_write[3];
6606
6607	/* Ethernet source and destination addresses */
6608	wb_write[0] = 0x55555555;
6609	wb_write[1] = 0x55555555;
6610	wb_write[2] = 0x20;		/* SOP */
6611	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6612
6613	/* NON-IP protocol */
6614	wb_write[0] = 0x09000000;
6615	wb_write[1] = 0x55555555;
6616	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6617	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6618}
6619
6620/* some of the internal memories
6621 * are not directly readable from the driver
6622 * to test them we send debug packets
6623 */
6624static int bnx2x_int_mem_test(struct bnx2x *bp)
6625{
6626	int factor;
6627	int count, i;
6628	u32 val = 0;
6629
6630	if (CHIP_REV_IS_FPGA(bp))
6631		factor = 120;
6632	else if (CHIP_REV_IS_EMUL(bp))
6633		factor = 200;
6634	else
6635		factor = 1;
6636
6637	/* Disable inputs of parser neighbor blocks */
6638	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6639	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6640	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6641	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6642
6643	/*  Write 0 to parser credits for CFC search request */
6644	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6645
6646	/* send Ethernet packet */
6647	bnx2x_lb_pckt(bp);
6648
6649	/* TODO do i reset NIG statistic? */
6650	/* Wait until NIG register shows 1 packet of size 0x10 */
6651	count = 1000 * factor;
6652	while (count) {
6653
6654		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6655		val = *bnx2x_sp(bp, wb_data[0]);
6656		if (val == 0x10)
6657			break;
6658
6659		usleep_range(10000, 20000);
6660		count--;
6661	}
6662	if (val != 0x10) {
6663		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6664		return -1;
6665	}
6666
6667	/* Wait until PRS register shows 1 packet */
6668	count = 1000 * factor;
6669	while (count) {
6670		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6671		if (val == 1)
6672			break;
6673
6674		usleep_range(10000, 20000);
6675		count--;
6676	}
6677	if (val != 0x1) {
6678		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6679		return -2;
6680	}
6681
6682	/* Reset and init BRB, PRS */
6683	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6684	msleep(50);
6685	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6686	msleep(50);
6687	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6688	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6689
6690	DP(NETIF_MSG_HW, "part2\n");
6691
6692	/* Disable inputs of parser neighbor blocks */
6693	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6694	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6695	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6696	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6697
6698	/* Write 0 to parser credits for CFC search request */
6699	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6700
6701	/* send 10 Ethernet packets */
6702	for (i = 0; i < 10; i++)
6703		bnx2x_lb_pckt(bp);
6704
6705	/* Wait until NIG register shows 10 + 1
6706	   packets of size 11*0x10 = 0xb0 */
6707	count = 1000 * factor;
6708	while (count) {
6709
6710		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6711		val = *bnx2x_sp(bp, wb_data[0]);
6712		if (val == 0xb0)
6713			break;
6714
6715		usleep_range(10000, 20000);
6716		count--;
6717	}
6718	if (val != 0xb0) {
6719		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6720		return -3;
6721	}
6722
6723	/* Wait until PRS register shows 2 packets */
6724	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6725	if (val != 2)
6726		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6727
6728	/* Write 1 to parser credits for CFC search request */
6729	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6730
6731	/* Wait until PRS register shows 3 packets */
6732	msleep(10 * factor);
6733	/* Wait until NIG register shows 1 packet of size 0x10 */
6734	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6735	if (val != 3)
6736		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6737
6738	/* clear NIG EOP FIFO */
6739	for (i = 0; i < 11; i++)
6740		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6741	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6742	if (val != 1) {
6743		BNX2X_ERR("clear of NIG failed\n");
6744		return -4;
6745	}
6746
6747	/* Reset and init BRB, PRS, NIG */
6748	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6749	msleep(50);
6750	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6751	msleep(50);
6752	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6753	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6754	if (!CNIC_SUPPORT(bp))
6755		/* set NIC mode */
6756		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6757
6758	/* Enable inputs of parser neighbor blocks */
6759	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6760	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6761	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6762	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6763
6764	DP(NETIF_MSG_HW, "done\n");
6765
6766	return 0; /* OK */
6767}
6768
6769static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6770{
6771	u32 val;
6772
6773	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6774	if (!CHIP_IS_E1x(bp))
6775		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6776	else
6777		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6778	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6779	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6780	/*
6781	 * mask read length error interrupts in brb for parser
6782	 * (parsing unit and 'checksum and crc' unit)
6783	 * these errors are legal (PU reads fixed length and CAC can cause
6784	 * read length error on truncated packets)
6785	 */
6786	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6787	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6788	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6789	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6790	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6791	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6792/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6793/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6794	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6795	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6796	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6797/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6798/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6799	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6800	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6801	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6802	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6803/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6804/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6805
6806	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6807		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6808		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6809	if (!CHIP_IS_E1x(bp))
6810		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6811			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6812	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6813
6814	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6815	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6816	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6817/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6818
6819	if (!CHIP_IS_E1x(bp))
6820		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6821		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6822
6823	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6824	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6825/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6826	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6827}
6828
6829static void bnx2x_reset_common(struct bnx2x *bp)
6830{
6831	u32 val = 0x1400;
6832
6833	/* reset_common */
6834	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6835	       0xd3ffff7f);
6836
6837	if (CHIP_IS_E3(bp)) {
6838		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6839		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6840	}
6841
6842	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6843}
6844
6845static void bnx2x_setup_dmae(struct bnx2x *bp)
6846{
6847	bp->dmae_ready = 0;
6848	spin_lock_init(&bp->dmae_lock);
6849}
6850
6851static void bnx2x_init_pxp(struct bnx2x *bp)
6852{
6853	u16 devctl;
6854	int r_order, w_order;
6855
6856	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6857	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6858	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6859	if (bp->mrrs == -1)
6860		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6861	else {
6862		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6863		r_order = bp->mrrs;
6864	}
6865
6866	bnx2x_init_pxp_arb(bp, r_order, w_order);
6867}
6868
6869static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6870{
6871	int is_required;
6872	u32 val;
6873	int port;
6874
6875	if (BP_NOMCP(bp))
6876		return;
6877
6878	is_required = 0;
6879	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6880	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6881
6882	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6883		is_required = 1;
6884
6885	/*
6886	 * The fan failure mechanism is usually related to the PHY type since
6887	 * the power consumption of the board is affected by the PHY. Currently,
6888	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6889	 */
6890	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6891		for (port = PORT_0; port < PORT_MAX; port++) {
6892			is_required |=
6893				bnx2x_fan_failure_det_req(
6894					bp,
6895					bp->common.shmem_base,
6896					bp->common.shmem2_base,
6897					port);
6898		}
6899
6900	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6901
6902	if (is_required == 0)
6903		return;
6904
6905	/* Fan failure is indicated by SPIO 5 */
6906	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6907
6908	/* set to active low mode */
6909	val = REG_RD(bp, MISC_REG_SPIO_INT);
6910	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6911	REG_WR(bp, MISC_REG_SPIO_INT, val);
6912
6913	/* enable interrupt to signal the IGU */
6914	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6915	val |= MISC_SPIO_SPIO5;
6916	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6917}
6918
6919void bnx2x_pf_disable(struct bnx2x *bp)
6920{
6921	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6922	val &= ~IGU_PF_CONF_FUNC_EN;
6923
6924	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6925	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6926	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6927}
6928
6929static void bnx2x__common_init_phy(struct bnx2x *bp)
6930{
6931	u32 shmem_base[2], shmem2_base[2];
6932	/* Avoid common init in case MFW supports LFA */
6933	if (SHMEM2_RD(bp, size) >
6934	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6935		return;
6936	shmem_base[0] =  bp->common.shmem_base;
6937	shmem2_base[0] = bp->common.shmem2_base;
6938	if (!CHIP_IS_E1x(bp)) {
6939		shmem_base[1] =
6940			SHMEM2_RD(bp, other_shmem_base_addr);
6941		shmem2_base[1] =
6942			SHMEM2_RD(bp, other_shmem2_base_addr);
6943	}
6944	bnx2x_acquire_phy_lock(bp);
6945	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6946			      bp->common.chip_id);
6947	bnx2x_release_phy_lock(bp);
6948}
6949
6950static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6951{
6952	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6953	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6954	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6955	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6956	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6957
6958	/* make sure this value is 0 */
6959	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6960
6961	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6962	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6963	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6964	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6965}
6966
6967static void bnx2x_set_endianity(struct bnx2x *bp)
6968{
6969#ifdef __BIG_ENDIAN
6970	bnx2x_config_endianity(bp, 1);
6971#else
6972	bnx2x_config_endianity(bp, 0);
6973#endif
6974}
6975
6976static void bnx2x_reset_endianity(struct bnx2x *bp)
6977{
6978	bnx2x_config_endianity(bp, 0);
6979}
6980
6981/**
6982 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6983 *
6984 * @bp:		driver handle
6985 */
6986static int bnx2x_init_hw_common(struct bnx2x *bp)
6987{
6988	u32 val;
6989
6990	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6991
6992	/*
6993	 * take the RESET lock to protect undi_unload flow from accessing
6994	 * registers while we're resetting the chip
6995	 */
6996	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6997
6998	bnx2x_reset_common(bp);
6999	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7000
7001	val = 0xfffc;
7002	if (CHIP_IS_E3(bp)) {
7003		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7004		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7005	}
7006	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7007
7008	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7009
7010	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7011
7012	if (!CHIP_IS_E1x(bp)) {
7013		u8 abs_func_id;
7014
7015		/**
7016		 * 4-port mode or 2-port mode we need to turn of master-enable
7017		 * for everyone, after that, turn it back on for self.
7018		 * so, we disregard multi-function or not, and always disable
7019		 * for all functions on the given path, this means 0,2,4,6 for
7020		 * path 0 and 1,3,5,7 for path 1
7021		 */
7022		for (abs_func_id = BP_PATH(bp);
7023		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7024			if (abs_func_id == BP_ABS_FUNC(bp)) {
7025				REG_WR(bp,
7026				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7027				    1);
7028				continue;
7029			}
7030
7031			bnx2x_pretend_func(bp, abs_func_id);
7032			/* clear pf enable */
7033			bnx2x_pf_disable(bp);
7034			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7035		}
7036	}
7037
7038	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7039	if (CHIP_IS_E1(bp)) {
7040		/* enable HW interrupt from PXP on USDM overflow
7041		   bit 16 on INT_MASK_0 */
7042		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7043	}
7044
7045	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7046	bnx2x_init_pxp(bp);
7047	bnx2x_set_endianity(bp);
7048	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7049
7050	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7051		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7052
7053	/* let the HW do it's magic ... */
7054	msleep(100);
7055	/* finish PXP init */
7056	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7057	if (val != 1) {
7058		BNX2X_ERR("PXP2 CFG failed\n");
7059		return -EBUSY;
7060	}
7061	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7062	if (val != 1) {
7063		BNX2X_ERR("PXP2 RD_INIT failed\n");
7064		return -EBUSY;
7065	}
7066
7067	/* Timers bug workaround E2 only. We need to set the entire ILT to
7068	 * have entries with value "0" and valid bit on.
7069	 * This needs to be done by the first PF that is loaded in a path
7070	 * (i.e. common phase)
7071	 */
7072	if (!CHIP_IS_E1x(bp)) {
7073/* In E2 there is a bug in the timers block that can cause function 6 / 7
7074 * (i.e. vnic3) to start even if it is marked as "scan-off".
7075 * This occurs when a different function (func2,3) is being marked
7076 * as "scan-off". Real-life scenario for example: if a driver is being
7077 * load-unloaded while func6,7 are down. This will cause the timer to access
7078 * the ilt, translate to a logical address and send a request to read/write.
7079 * Since the ilt for the function that is down is not valid, this will cause
7080 * a translation error which is unrecoverable.
7081 * The Workaround is intended to make sure that when this happens nothing fatal
7082 * will occur. The workaround:
7083 *	1.  First PF driver which loads on a path will:
7084 *		a.  After taking the chip out of reset, by using pretend,
7085 *		    it will write "0" to the following registers of
7086 *		    the other vnics.
7087 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7088 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7089 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7090 *		    And for itself it will write '1' to
7091 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7092 *		    dmae-operations (writing to pram for example.)
7093 *		    note: can be done for only function 6,7 but cleaner this
7094 *			  way.
7095 *		b.  Write zero+valid to the entire ILT.
7096 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7097 *		    VNIC3 (of that port). The range allocated will be the
7098 *		    entire ILT. This is needed to prevent  ILT range error.
7099 *	2.  Any PF driver load flow:
7100 *		a.  ILT update with the physical addresses of the allocated
7101 *		    logical pages.
7102 *		b.  Wait 20msec. - note that this timeout is needed to make
7103 *		    sure there are no requests in one of the PXP internal
7104 *		    queues with "old" ILT addresses.
7105 *		c.  PF enable in the PGLC.
7106 *		d.  Clear the was_error of the PF in the PGLC. (could have
7107 *		    occurred while driver was down)
7108 *		e.  PF enable in the CFC (WEAK + STRONG)
7109 *		f.  Timers scan enable
7110 *	3.  PF driver unload flow:
7111 *		a.  Clear the Timers scan_en.
7112 *		b.  Polling for scan_on=0 for that PF.
7113 *		c.  Clear the PF enable bit in the PXP.
7114 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7115 *		e.  Write zero+valid to all ILT entries (The valid bit must
7116 *		    stay set)
7117 *		f.  If this is VNIC 3 of a port then also init
7118 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7119 *		    to the last entry in the ILT.
7120 *
7121 *	Notes:
7122 *	Currently the PF error in the PGLC is non recoverable.
7123 *	In the future the there will be a recovery routine for this error.
7124 *	Currently attention is masked.
7125 *	Having an MCP lock on the load/unload process does not guarantee that
7126 *	there is no Timer disable during Func6/7 enable. This is because the
7127 *	Timers scan is currently being cleared by the MCP on FLR.
7128 *	Step 2.d can be done only for PF6/7 and the driver can also check if
7129 *	there is error before clearing it. But the flow above is simpler and
7130 *	more general.
7131 *	All ILT entries are written by zero+valid and not just PF6/7
7132 *	ILT entries since in the future the ILT entries allocation for
7133 *	PF-s might be dynamic.
7134 */
7135		struct ilt_client_info ilt_cli;
7136		struct bnx2x_ilt ilt;
7137		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7138		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7139
7140		/* initialize dummy TM client */
7141		ilt_cli.start = 0;
7142		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7143		ilt_cli.client_num = ILT_CLIENT_TM;
7144
7145		/* Step 1: set zeroes to all ilt page entries with valid bit on
7146		 * Step 2: set the timers first/last ilt entry to point
7147		 * to the entire range to prevent ILT range error for 3rd/4th
7148		 * vnic	(this code assumes existence of the vnic)
7149		 *
7150		 * both steps performed by call to bnx2x_ilt_client_init_op()
7151		 * with dummy TM client
7152		 *
7153		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7154		 * and his brother are split registers
7155		 */
7156		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7157		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7158		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7159
7160		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7161		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7162		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7163	}
7164
7165	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7166	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7167
7168	if (!CHIP_IS_E1x(bp)) {
7169		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7170				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7171		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7172
7173		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7174
7175		/* let the HW do it's magic ... */
7176		do {
7177			msleep(200);
7178			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7179		} while (factor-- && (val != 1));
7180
7181		if (val != 1) {
7182			BNX2X_ERR("ATC_INIT failed\n");
7183			return -EBUSY;
7184		}
7185	}
7186
7187	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7188
7189	bnx2x_iov_init_dmae(bp);
7190
7191	/* clean the DMAE memory */
7192	bp->dmae_ready = 1;
7193	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7194
7195	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7196
7197	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7198
7199	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7200
7201	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7202
7203	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7204	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7205	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7206	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7207
7208	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7209
7210	/* QM queues pointers table */
7211	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7212
7213	/* soft reset pulse */
7214	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7215	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7216
7217	if (CNIC_SUPPORT(bp))
7218		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7219
7220	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7221
7222	if (!CHIP_REV_IS_SLOW(bp))
7223		/* enable hw interrupt from doorbell Q */
7224		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7225
7226	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7227
7228	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7229	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7230
7231	if (!CHIP_IS_E1(bp))
7232		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7233
7234	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7235		if (IS_MF_AFEX(bp)) {
7236			/* configure that VNTag and VLAN headers must be
7237			 * received in afex mode
7238			 */
7239			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7240			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7241			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7242			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7243			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7244		} else {
7245			/* Bit-map indicating which L2 hdrs may appear
7246			 * after the basic Ethernet header
7247			 */
7248			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7249			       bp->path_has_ovlan ? 7 : 6);
7250		}
7251	}
7252
7253	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7254	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7255	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7256	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7257
7258	if (!CHIP_IS_E1x(bp)) {
7259		/* reset VFC memories */
7260		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7261			   VFC_MEMORIES_RST_REG_CAM_RST |
7262			   VFC_MEMORIES_RST_REG_RAM_RST);
7263		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7264			   VFC_MEMORIES_RST_REG_CAM_RST |
7265			   VFC_MEMORIES_RST_REG_RAM_RST);
7266
7267		msleep(20);
7268	}
7269
7270	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7271	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7272	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7273	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7274
7275	/* sync semi rtc */
7276	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7277	       0x80000000);
7278	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7279	       0x80000000);
7280
7281	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7282	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7283	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7284
7285	if (!CHIP_IS_E1x(bp)) {
7286		if (IS_MF_AFEX(bp)) {
7287			/* configure that VNTag and VLAN headers must be
7288			 * sent in afex mode
7289			 */
7290			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7291			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7292			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7293			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7294			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7295		} else {
7296			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7297			       bp->path_has_ovlan ? 7 : 6);
7298		}
7299	}
7300
7301	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7302
7303	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7304
7305	if (CNIC_SUPPORT(bp)) {
7306		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7307		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7308		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7309		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7310		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7311		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7312		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7313		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7314		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7315		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7316	}
7317	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7318
7319	if (sizeof(union cdu_context) != 1024)
7320		/* we currently assume that a context is 1024 bytes */
7321		dev_alert(&bp->pdev->dev,
7322			  "please adjust the size of cdu_context(%ld)\n",
7323			  (long)sizeof(union cdu_context));
7324
7325	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7326	val = (4 << 24) + (0 << 12) + 1024;
7327	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7328
7329	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7330	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7331	/* enable context validation interrupt from CFC */
7332	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7333
7334	/* set the thresholds to prevent CFC/CDU race */
7335	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7336
7337	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7338
7339	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7340		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7341
7342	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7343	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7344
7345	/* Reset PCIE errors for debug */
7346	REG_WR(bp, 0x2814, 0xffffffff);
7347	REG_WR(bp, 0x3820, 0xffffffff);
7348
7349	if (!CHIP_IS_E1x(bp)) {
7350		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7351			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7352				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7353		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7354			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7355				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7356				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7357		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7358			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7359				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7360				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7361	}
7362
7363	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7364	if (!CHIP_IS_E1(bp)) {
7365		/* in E3 this done in per-port section */
7366		if (!CHIP_IS_E3(bp))
7367			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7368	}
7369	if (CHIP_IS_E1H(bp))
7370		/* not applicable for E2 (and above ...) */
7371		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7372
7373	if (CHIP_REV_IS_SLOW(bp))
7374		msleep(200);
7375
7376	/* finish CFC init */
7377	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7378	if (val != 1) {
7379		BNX2X_ERR("CFC LL_INIT failed\n");
7380		return -EBUSY;
7381	}
7382	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7383	if (val != 1) {
7384		BNX2X_ERR("CFC AC_INIT failed\n");
7385		return -EBUSY;
7386	}
7387	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7388	if (val != 1) {
7389		BNX2X_ERR("CFC CAM_INIT failed\n");
7390		return -EBUSY;
7391	}
7392	REG_WR(bp, CFC_REG_DEBUG0, 0);
7393
7394	if (CHIP_IS_E1(bp)) {
7395		/* read NIG statistic
7396		   to see if this is our first up since powerup */
7397		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7398		val = *bnx2x_sp(bp, wb_data[0]);
7399
7400		/* do internal memory self test */
7401		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7402			BNX2X_ERR("internal mem self test failed\n");
7403			return -EBUSY;
7404		}
7405	}
7406
7407	bnx2x_setup_fan_failure_detection(bp);
7408
7409	/* clear PXP2 attentions */
7410	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7411
7412	bnx2x_enable_blocks_attention(bp);
7413	bnx2x_enable_blocks_parity(bp);
7414
7415	if (!BP_NOMCP(bp)) {
7416		if (CHIP_IS_E1x(bp))
7417			bnx2x__common_init_phy(bp);
7418	} else
7419		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7420
7421	return 0;
7422}
7423
7424/**
7425 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7426 *
7427 * @bp:		driver handle
7428 */
7429static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7430{
7431	int rc = bnx2x_init_hw_common(bp);
7432
7433	if (rc)
7434		return rc;
7435
7436	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7437	if (!BP_NOMCP(bp))
7438		bnx2x__common_init_phy(bp);
7439
7440	return 0;
7441}
7442
7443static int bnx2x_init_hw_port(struct bnx2x *bp)
7444{
7445	int port = BP_PORT(bp);
7446	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7447	u32 low, high;
7448	u32 val, reg;
7449
7450	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7451
7452	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7453
7454	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7455	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7456	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7457
7458	/* Timers bug workaround: disables the pf_master bit in pglue at
7459	 * common phase, we need to enable it here before any dmae access are
7460	 * attempted. Therefore we manually added the enable-master to the
7461	 * port phase (it also happens in the function phase)
7462	 */
7463	if (!CHIP_IS_E1x(bp))
7464		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7465
7466	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7467	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7468	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7469	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7470
7471	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7472	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7473	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7474	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7475
7476	/* QM cid (connection) count */
7477	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7478
7479	if (CNIC_SUPPORT(bp)) {
7480		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7481		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7482		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7483	}
7484
7485	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7486
7487	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7488
7489	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7490
7491		if (IS_MF(bp))
7492			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7493		else if (bp->dev->mtu > 4096) {
7494			if (bp->flags & ONE_PORT_FLAG)
7495				low = 160;
7496			else {
7497				val = bp->dev->mtu;
7498				/* (24*1024 + val*4)/256 */
7499				low = 96 + (val/64) +
7500						((val % 64) ? 1 : 0);
7501			}
7502		} else
7503			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7504		high = low + 56;	/* 14*1024/256 */
7505		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7506		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7507	}
7508
7509	if (CHIP_MODE_IS_4_PORT(bp))
7510		REG_WR(bp, (BP_PORT(bp) ?
7511			    BRB1_REG_MAC_GUARANTIED_1 :
7512			    BRB1_REG_MAC_GUARANTIED_0), 40);
7513
7514	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7515	if (CHIP_IS_E3B0(bp)) {
7516		if (IS_MF_AFEX(bp)) {
7517			/* configure headers for AFEX mode */
7518			REG_WR(bp, BP_PORT(bp) ?
7519			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7520			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7521			REG_WR(bp, BP_PORT(bp) ?
7522			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7523			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7524			REG_WR(bp, BP_PORT(bp) ?
7525			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7526			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7527		} else {
7528			/* Ovlan exists only if we are in multi-function +
7529			 * switch-dependent mode, in switch-independent there
7530			 * is no ovlan headers
7531			 */
7532			REG_WR(bp, BP_PORT(bp) ?
7533			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7534			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7535			       (bp->path_has_ovlan ? 7 : 6));
7536		}
7537	}
7538
7539	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7540	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7541	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7542	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7543
7544	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7545	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7546	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7547	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7548
7549	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7550	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7551
7552	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7553
7554	if (CHIP_IS_E1x(bp)) {
7555		/* configure PBF to work without PAUSE mtu 9000 */
7556		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7557
7558		/* update threshold */
7559		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7560		/* update init credit */
7561		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7562
7563		/* probe changes */
7564		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7565		udelay(50);
7566		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7567	}
7568
7569	if (CNIC_SUPPORT(bp))
7570		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7571
7572	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7573	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7574
7575	if (CHIP_IS_E1(bp)) {
7576		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7577		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7578	}
7579	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7580
7581	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7582
7583	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7584	/* init aeu_mask_attn_func_0/1:
7585	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7586	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7587	 *             bits 4-7 are used for "per vn group attention" */
7588	val = IS_MF(bp) ? 0xF7 : 0x7;
7589	/* Enable DCBX attention for all but E1 */
7590	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7591	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7592
7593	/* SCPAD_PARITY should NOT trigger close the gates */
7594	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7595	REG_WR(bp, reg,
7596	       REG_RD(bp, reg) &
7597	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7598
7599	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7600	REG_WR(bp, reg,
7601	       REG_RD(bp, reg) &
7602	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7603
7604	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7605
7606	if (!CHIP_IS_E1x(bp)) {
7607		/* Bit-map indicating which L2 hdrs may appear after the
7608		 * basic Ethernet header
7609		 */
7610		if (IS_MF_AFEX(bp))
7611			REG_WR(bp, BP_PORT(bp) ?
7612			       NIG_REG_P1_HDRS_AFTER_BASIC :
7613			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7614		else
7615			REG_WR(bp, BP_PORT(bp) ?
7616			       NIG_REG_P1_HDRS_AFTER_BASIC :
7617			       NIG_REG_P0_HDRS_AFTER_BASIC,
7618			       IS_MF_SD(bp) ? 7 : 6);
7619
7620		if (CHIP_IS_E3(bp))
7621			REG_WR(bp, BP_PORT(bp) ?
7622				   NIG_REG_LLH1_MF_MODE :
7623				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7624	}
7625	if (!CHIP_IS_E3(bp))
7626		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7627
7628	if (!CHIP_IS_E1(bp)) {
7629		/* 0x2 disable mf_ov, 0x1 enable */
7630		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7631		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7632
7633		if (!CHIP_IS_E1x(bp)) {
7634			val = 0;
7635			switch (bp->mf_mode) {
7636			case MULTI_FUNCTION_SD:
7637				val = 1;
7638				break;
7639			case MULTI_FUNCTION_SI:
7640			case MULTI_FUNCTION_AFEX:
7641				val = 2;
7642				break;
7643			}
7644
7645			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7646						  NIG_REG_LLH0_CLS_TYPE), val);
7647		}
7648		{
7649			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7650			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7651			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7652		}
7653	}
7654
7655	/* If SPIO5 is set to generate interrupts, enable it for this port */
7656	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7657	if (val & MISC_SPIO_SPIO5) {
7658		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7659				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7660		val = REG_RD(bp, reg_addr);
7661		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7662		REG_WR(bp, reg_addr, val);
7663	}
7664
7665	return 0;
7666}
7667
7668static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7669{
7670	int reg;
7671	u32 wb_write[2];
7672
7673	if (CHIP_IS_E1(bp))
7674		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7675	else
7676		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7677
7678	wb_write[0] = ONCHIP_ADDR1(addr);
7679	wb_write[1] = ONCHIP_ADDR2(addr);
7680	REG_WR_DMAE(bp, reg, wb_write, 2);
7681}
7682
7683void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7684{
7685	u32 data, ctl, cnt = 100;
7686	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7687	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7688	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7689	u32 sb_bit =  1 << (idu_sb_id%32);
7690	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7691	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7692
7693	/* Not supported in BC mode */
7694	if (CHIP_INT_MODE_IS_BC(bp))
7695		return;
7696
7697	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7698			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7699		IGU_REGULAR_CLEANUP_SET				|
7700		IGU_REGULAR_BCLEANUP;
7701
7702	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7703	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7704	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7705
7706	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7707			 data, igu_addr_data);
7708	REG_WR(bp, igu_addr_data, data);
7709	mmiowb();
7710	barrier();
7711	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7712			  ctl, igu_addr_ctl);
7713	REG_WR(bp, igu_addr_ctl, ctl);
7714	mmiowb();
7715	barrier();
7716
7717	/* wait for clean up to finish */
7718	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7719		msleep(20);
7720
7721	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7722		DP(NETIF_MSG_HW,
7723		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7724			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7725	}
7726}
7727
7728static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7729{
7730	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7731}
7732
7733static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7734{
7735	u32 i, base = FUNC_ILT_BASE(func);
7736	for (i = base; i < base + ILT_PER_FUNC; i++)
7737		bnx2x_ilt_wr(bp, i, 0);
7738}
7739
7740static void bnx2x_init_searcher(struct bnx2x *bp)
7741{
7742	int port = BP_PORT(bp);
7743	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7744	/* T1 hash bits value determines the T1 number of entries */
7745	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7746}
7747
7748static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7749{
7750	int rc;
7751	struct bnx2x_func_state_params func_params = {NULL};
7752	struct bnx2x_func_switch_update_params *switch_update_params =
7753		&func_params.params.switch_update;
7754
7755	/* Prepare parameters for function state transitions */
7756	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7757	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7758
7759	func_params.f_obj = &bp->func_obj;
7760	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7761
7762	/* Function parameters */
7763	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7764		  &switch_update_params->changes);
7765	if (suspend)
7766		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7767			  &switch_update_params->changes);
7768
7769	rc = bnx2x_func_state_change(bp, &func_params);
7770
7771	return rc;
7772}
7773
7774static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7775{
7776	int rc, i, port = BP_PORT(bp);
7777	int vlan_en = 0, mac_en[NUM_MACS];
7778
7779	/* Close input from network */
7780	if (bp->mf_mode == SINGLE_FUNCTION) {
7781		bnx2x_set_rx_filter(&bp->link_params, 0);
7782	} else {
7783		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7784				   NIG_REG_LLH0_FUNC_EN);
7785		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7786			  NIG_REG_LLH0_FUNC_EN, 0);
7787		for (i = 0; i < NUM_MACS; i++) {
7788			mac_en[i] = REG_RD(bp, port ?
7789					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7790					      4 * i) :
7791					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7792					      4 * i));
7793			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7794					      4 * i) :
7795				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7796		}
7797	}
7798
7799	/* Close BMC to host */
7800	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7801	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7802
7803	/* Suspend Tx switching to the PF. Completion of this ramrod
7804	 * further guarantees that all the packets of that PF / child
7805	 * VFs in BRB were processed by the Parser, so it is safe to
7806	 * change the NIC_MODE register.
7807	 */
7808	rc = bnx2x_func_switch_update(bp, 1);
7809	if (rc) {
7810		BNX2X_ERR("Can't suspend tx-switching!\n");
7811		return rc;
7812	}
7813
7814	/* Change NIC_MODE register */
7815	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7816
7817	/* Open input from network */
7818	if (bp->mf_mode == SINGLE_FUNCTION) {
7819		bnx2x_set_rx_filter(&bp->link_params, 1);
7820	} else {
7821		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7822			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7823		for (i = 0; i < NUM_MACS; i++) {
7824			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7825					      4 * i) :
7826				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7827				  mac_en[i]);
7828		}
7829	}
7830
7831	/* Enable BMC to host */
7832	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7833	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7834
7835	/* Resume Tx switching to the PF */
7836	rc = bnx2x_func_switch_update(bp, 0);
7837	if (rc) {
7838		BNX2X_ERR("Can't resume tx-switching!\n");
7839		return rc;
7840	}
7841
7842	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7843	return 0;
7844}
7845
7846int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7847{
7848	int rc;
7849
7850	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7851
7852	if (CONFIGURE_NIC_MODE(bp)) {
7853		/* Configure searcher as part of function hw init */
7854		bnx2x_init_searcher(bp);
7855
7856		/* Reset NIC mode */
7857		rc = bnx2x_reset_nic_mode(bp);
7858		if (rc)
7859			BNX2X_ERR("Can't change NIC mode!\n");
7860		return rc;
7861	}
7862
7863	return 0;
7864}
7865
7866static int bnx2x_init_hw_func(struct bnx2x *bp)
7867{
7868	int port = BP_PORT(bp);
7869	int func = BP_FUNC(bp);
7870	int init_phase = PHASE_PF0 + func;
7871	struct bnx2x_ilt *ilt = BP_ILT(bp);
7872	u16 cdu_ilt_start;
7873	u32 addr, val;
7874	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7875	int i, main_mem_width, rc;
7876
7877	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7878
7879	/* FLR cleanup - hmmm */
7880	if (!CHIP_IS_E1x(bp)) {
7881		rc = bnx2x_pf_flr_clnup(bp);
7882		if (rc) {
7883			bnx2x_fw_dump(bp);
7884			return rc;
7885		}
7886	}
7887
7888	/* set MSI reconfigure capability */
7889	if (bp->common.int_block == INT_BLOCK_HC) {
7890		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7891		val = REG_RD(bp, addr);
7892		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7893		REG_WR(bp, addr, val);
7894	}
7895
7896	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7897	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7898
7899	ilt = BP_ILT(bp);
7900	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7901
7902	if (IS_SRIOV(bp))
7903		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7904	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7905
7906	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7907	 * those of the VFs, so start line should be reset
7908	 */
7909	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7910	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7911		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7912		ilt->lines[cdu_ilt_start + i].page_mapping =
7913			bp->context[i].cxt_mapping;
7914		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7915	}
7916
7917	bnx2x_ilt_init_op(bp, INITOP_SET);
7918
7919	if (!CONFIGURE_NIC_MODE(bp)) {
7920		bnx2x_init_searcher(bp);
7921		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7922		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7923	} else {
7924		/* Set NIC mode */
7925		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7926		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7927	}
7928
7929	if (!CHIP_IS_E1x(bp)) {
7930		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7931
7932		/* Turn on a single ISR mode in IGU if driver is going to use
7933		 * INT#x or MSI
7934		 */
7935		if (!(bp->flags & USING_MSIX_FLAG))
7936			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7937		/*
7938		 * Timers workaround bug: function init part.
7939		 * Need to wait 20msec after initializing ILT,
7940		 * needed to make sure there are no requests in
7941		 * one of the PXP internal queues with "old" ILT addresses
7942		 */
7943		msleep(20);
7944		/*
7945		 * Master enable - Due to WB DMAE writes performed before this
7946		 * register is re-initialized as part of the regular function
7947		 * init
7948		 */
7949		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7950		/* Enable the function in IGU */
7951		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7952	}
7953
7954	bp->dmae_ready = 1;
7955
7956	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7957
7958	if (!CHIP_IS_E1x(bp))
7959		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7960
7961	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7962	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7963	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7964	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7965	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7966	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7967	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7968	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7969	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7970	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7971	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7972	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7973	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7974
7975	if (!CHIP_IS_E1x(bp))
7976		REG_WR(bp, QM_REG_PF_EN, 1);
7977
7978	if (!CHIP_IS_E1x(bp)) {
7979		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7980		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7981		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7982		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7983	}
7984	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7985
7986	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7987	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7988	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7989
7990	bnx2x_iov_init_dq(bp);
7991
7992	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7993	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7994	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7995	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7996	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7997	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7998	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7999	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8000	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8001	if (!CHIP_IS_E1x(bp))
8002		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8003
8004	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8005
8006	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8007
8008	if (!CHIP_IS_E1x(bp))
8009		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8010
8011	if (IS_MF(bp)) {
8012		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8013			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8014			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8015			       bp->mf_ov);
8016		}
8017	}
8018
8019	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8020
8021	/* HC init per function */
8022	if (bp->common.int_block == INT_BLOCK_HC) {
8023		if (CHIP_IS_E1H(bp)) {
8024			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8025
8026			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8027			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8028		}
8029		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8030
8031	} else {
8032		int num_segs, sb_idx, prod_offset;
8033
8034		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8035
8036		if (!CHIP_IS_E1x(bp)) {
8037			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8038			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8039		}
8040
8041		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8042
8043		if (!CHIP_IS_E1x(bp)) {
8044			int dsb_idx = 0;
8045			/**
8046			 * Producer memory:
8047			 * E2 mode: address 0-135 match to the mapping memory;
8048			 * 136 - PF0 default prod; 137 - PF1 default prod;
8049			 * 138 - PF2 default prod; 139 - PF3 default prod;
8050			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8051			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8052			 * 144-147 reserved.
8053			 *
8054			 * E1.5 mode - In backward compatible mode;
8055			 * for non default SB; each even line in the memory
8056			 * holds the U producer and each odd line hold
8057			 * the C producer. The first 128 producers are for
8058			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8059			 * producers are for the DSB for each PF.
8060			 * Each PF has five segments: (the order inside each
8061			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8062			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8063			 * 144-147 attn prods;
8064			 */
8065			/* non-default-status-blocks */
8066			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8067				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8068			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8069				prod_offset = (bp->igu_base_sb + sb_idx) *
8070					num_segs;
8071
8072				for (i = 0; i < num_segs; i++) {
8073					addr = IGU_REG_PROD_CONS_MEMORY +
8074							(prod_offset + i) * 4;
8075					REG_WR(bp, addr, 0);
8076				}
8077				/* send consumer update with value 0 */
8078				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8079					     USTORM_ID, 0, IGU_INT_NOP, 1);
8080				bnx2x_igu_clear_sb(bp,
8081						   bp->igu_base_sb + sb_idx);
8082			}
8083
8084			/* default-status-blocks */
8085			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8086				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8087
8088			if (CHIP_MODE_IS_4_PORT(bp))
8089				dsb_idx = BP_FUNC(bp);
8090			else
8091				dsb_idx = BP_VN(bp);
8092
8093			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8094				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8095				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8096
8097			/*
8098			 * igu prods come in chunks of E1HVN_MAX (4) -
8099			 * does not matters what is the current chip mode
8100			 */
8101			for (i = 0; i < (num_segs * E1HVN_MAX);
8102			     i += E1HVN_MAX) {
8103				addr = IGU_REG_PROD_CONS_MEMORY +
8104							(prod_offset + i)*4;
8105				REG_WR(bp, addr, 0);
8106			}
8107			/* send consumer update with 0 */
8108			if (CHIP_INT_MODE_IS_BC(bp)) {
8109				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8110					     USTORM_ID, 0, IGU_INT_NOP, 1);
8111				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8112					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8113				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8114					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8115				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8116					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8117				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8118					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8119			} else {
8120				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8121					     USTORM_ID, 0, IGU_INT_NOP, 1);
8122				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8123					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8124			}
8125			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8126
8127			/* !!! These should become driver const once
8128			   rf-tool supports split-68 const */
8129			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8130			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8131			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8132			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8133			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8134			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8135		}
8136	}
8137
8138	/* Reset PCIE errors for debug */
8139	REG_WR(bp, 0x2114, 0xffffffff);
8140	REG_WR(bp, 0x2120, 0xffffffff);
8141
8142	if (CHIP_IS_E1x(bp)) {
8143		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8144		main_mem_base = HC_REG_MAIN_MEMORY +
8145				BP_PORT(bp) * (main_mem_size * 4);
8146		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8147		main_mem_width = 8;
8148
8149		val = REG_RD(bp, main_mem_prty_clr);
8150		if (val)
8151			DP(NETIF_MSG_HW,
8152			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8153			   val);
8154
8155		/* Clear "false" parity errors in MSI-X table */
8156		for (i = main_mem_base;
8157		     i < main_mem_base + main_mem_size * 4;
8158		     i += main_mem_width) {
8159			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8160			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8161					 i, main_mem_width / 4);
8162		}
8163		/* Clear HC parity attention */
8164		REG_RD(bp, main_mem_prty_clr);
8165	}
8166
8167#ifdef BNX2X_STOP_ON_ERROR
8168	/* Enable STORMs SP logging */
8169	REG_WR8(bp, BAR_USTRORM_INTMEM +
8170	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8171	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8172	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8173	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8174	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8175	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8176	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8177#endif
8178
8179	bnx2x_phy_probe(&bp->link_params);
8180
8181	return 0;
8182}
8183
8184void bnx2x_free_mem_cnic(struct bnx2x *bp)
8185{
8186	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8187
8188	if (!CHIP_IS_E1x(bp))
8189		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8190			       sizeof(struct host_hc_status_block_e2));
8191	else
8192		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8193			       sizeof(struct host_hc_status_block_e1x));
8194
8195	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8196}
8197
8198void bnx2x_free_mem(struct bnx2x *bp)
8199{
8200	int i;
8201
8202	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8203		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8204
8205	if (IS_VF(bp))
8206		return;
8207
8208	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8209		       sizeof(struct host_sp_status_block));
8210
8211	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8212		       sizeof(struct bnx2x_slowpath));
8213
8214	for (i = 0; i < L2_ILT_LINES(bp); i++)
8215		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8216			       bp->context[i].size);
8217	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8218
8219	BNX2X_FREE(bp->ilt->lines);
8220
8221	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8222
8223	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8224		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8225
8226	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8227
8228	bnx2x_iov_free_mem(bp);
8229}
8230
8231int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8232{
8233	if (!CHIP_IS_E1x(bp)) {
8234		/* size = the status block + ramrod buffers */
8235		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8236						    sizeof(struct host_hc_status_block_e2));
8237		if (!bp->cnic_sb.e2_sb)
8238			goto alloc_mem_err;
8239	} else {
8240		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8241						     sizeof(struct host_hc_status_block_e1x));
8242		if (!bp->cnic_sb.e1x_sb)
8243			goto alloc_mem_err;
8244	}
8245
8246	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8247		/* allocate searcher T2 table, as it wasn't allocated before */
8248		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8249		if (!bp->t2)
8250			goto alloc_mem_err;
8251	}
8252
8253	/* write address to which L5 should insert its values */
8254	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8255		&bp->slowpath->drv_info_to_mcp;
8256
8257	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8258		goto alloc_mem_err;
8259
8260	return 0;
8261
8262alloc_mem_err:
8263	bnx2x_free_mem_cnic(bp);
8264	BNX2X_ERR("Can't allocate memory\n");
8265	return -ENOMEM;
8266}
8267
8268int bnx2x_alloc_mem(struct bnx2x *bp)
8269{
8270	int i, allocated, context_size;
8271
8272	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8273		/* allocate searcher T2 table */
8274		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8275		if (!bp->t2)
8276			goto alloc_mem_err;
8277	}
8278
8279	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8280					     sizeof(struct host_sp_status_block));
8281	if (!bp->def_status_blk)
8282		goto alloc_mem_err;
8283
8284	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8285				       sizeof(struct bnx2x_slowpath));
8286	if (!bp->slowpath)
8287		goto alloc_mem_err;
8288
8289	/* Allocate memory for CDU context:
8290	 * This memory is allocated separately and not in the generic ILT
8291	 * functions because CDU differs in few aspects:
8292	 * 1. There are multiple entities allocating memory for context -
8293	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8294	 * its own ILT lines.
8295	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8296	 * for the other ILT clients), to be efficient we want to support
8297	 * allocation of sub-page-size in the last entry.
8298	 * 3. Context pointers are used by the driver to pass to FW / update
8299	 * the context (for the other ILT clients the pointers are used just to
8300	 * free the memory during unload).
8301	 */
8302	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8303
8304	for (i = 0, allocated = 0; allocated < context_size; i++) {
8305		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8306					  (context_size - allocated));
8307		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8308						      bp->context[i].size);
8309		if (!bp->context[i].vcxt)
8310			goto alloc_mem_err;
8311		allocated += bp->context[i].size;
8312	}
8313	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8314				 GFP_KERNEL);
8315	if (!bp->ilt->lines)
8316		goto alloc_mem_err;
8317
8318	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8319		goto alloc_mem_err;
8320
8321	if (bnx2x_iov_alloc_mem(bp))
8322		goto alloc_mem_err;
8323
8324	/* Slow path ring */
8325	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8326	if (!bp->spq)
8327		goto alloc_mem_err;
8328
8329	/* EQ */
8330	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8331				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8332	if (!bp->eq_ring)
8333		goto alloc_mem_err;
8334
8335	return 0;
8336
8337alloc_mem_err:
8338	bnx2x_free_mem(bp);
8339	BNX2X_ERR("Can't allocate memory\n");
8340	return -ENOMEM;
8341}
8342
8343/*
8344 * Init service functions
8345 */
8346
8347int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8348		      struct bnx2x_vlan_mac_obj *obj, bool set,
8349		      int mac_type, unsigned long *ramrod_flags)
8350{
8351	int rc;
8352	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8353
8354	memset(&ramrod_param, 0, sizeof(ramrod_param));
8355
8356	/* Fill general parameters */
8357	ramrod_param.vlan_mac_obj = obj;
8358	ramrod_param.ramrod_flags = *ramrod_flags;
8359
8360	/* Fill a user request section if needed */
8361	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8362		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8363
8364		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8365
8366		/* Set the command: ADD or DEL */
8367		if (set)
8368			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8369		else
8370			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8371	}
8372
8373	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8374
8375	if (rc == -EEXIST) {
8376		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8377		/* do not treat adding same MAC as error */
8378		rc = 0;
8379	} else if (rc < 0)
8380		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8381
8382	return rc;
8383}
8384
8385int bnx2x_del_all_macs(struct bnx2x *bp,
8386		       struct bnx2x_vlan_mac_obj *mac_obj,
8387		       int mac_type, bool wait_for_comp)
8388{
8389	int rc;
8390	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8391
8392	/* Wait for completion of requested */
8393	if (wait_for_comp)
8394		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8395
8396	/* Set the mac type of addresses we want to clear */
8397	__set_bit(mac_type, &vlan_mac_flags);
8398
8399	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8400	if (rc < 0)
8401		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8402
8403	return rc;
8404}
8405
8406int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8407{
8408	if (IS_PF(bp)) {
8409		unsigned long ramrod_flags = 0;
8410
8411		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8412		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8413		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8414					 &bp->sp_objs->mac_obj, set,
8415					 BNX2X_ETH_MAC, &ramrod_flags);
8416	} else { /* vf */
8417		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8418					     bp->fp->index, true);
8419	}
8420}
8421
8422int bnx2x_setup_leading(struct bnx2x *bp)
8423{
8424	if (IS_PF(bp))
8425		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8426	else /* VF */
8427		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8428}
8429
8430/**
8431 * bnx2x_set_int_mode - configure interrupt mode
8432 *
8433 * @bp:		driver handle
8434 *
8435 * In case of MSI-X it will also try to enable MSI-X.
8436 */
8437int bnx2x_set_int_mode(struct bnx2x *bp)
8438{
8439	int rc = 0;
8440
8441	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8442		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8443		return -EINVAL;
8444	}
8445
8446	switch (int_mode) {
8447	case BNX2X_INT_MODE_MSIX:
8448		/* attempt to enable msix */
8449		rc = bnx2x_enable_msix(bp);
8450
8451		/* msix attained */
8452		if (!rc)
8453			return 0;
8454
8455		/* vfs use only msix */
8456		if (rc && IS_VF(bp))
8457			return rc;
8458
8459		/* failed to enable multiple MSI-X */
8460		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8461			       bp->num_queues,
8462			       1 + bp->num_cnic_queues);
8463
8464		/* falling through... */
8465	case BNX2X_INT_MODE_MSI:
8466		bnx2x_enable_msi(bp);
8467
8468		/* falling through... */
8469	case BNX2X_INT_MODE_INTX:
8470		bp->num_ethernet_queues = 1;
8471		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8472		BNX2X_DEV_INFO("set number of queues to 1\n");
8473		break;
8474	default:
8475		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8476		return -EINVAL;
8477	}
8478	return 0;
8479}
8480
8481/* must be called prior to any HW initializations */
8482static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8483{
8484	if (IS_SRIOV(bp))
8485		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8486	return L2_ILT_LINES(bp);
8487}
8488
8489void bnx2x_ilt_set_info(struct bnx2x *bp)
8490{
8491	struct ilt_client_info *ilt_client;
8492	struct bnx2x_ilt *ilt = BP_ILT(bp);
8493	u16 line = 0;
8494
8495	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8496	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8497
8498	/* CDU */
8499	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8500	ilt_client->client_num = ILT_CLIENT_CDU;
8501	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8502	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8503	ilt_client->start = line;
8504	line += bnx2x_cid_ilt_lines(bp);
8505
8506	if (CNIC_SUPPORT(bp))
8507		line += CNIC_ILT_LINES;
8508	ilt_client->end = line - 1;
8509
8510	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8511	   ilt_client->start,
8512	   ilt_client->end,
8513	   ilt_client->page_size,
8514	   ilt_client->flags,
8515	   ilog2(ilt_client->page_size >> 12));
8516
8517	/* QM */
8518	if (QM_INIT(bp->qm_cid_count)) {
8519		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8520		ilt_client->client_num = ILT_CLIENT_QM;
8521		ilt_client->page_size = QM_ILT_PAGE_SZ;
8522		ilt_client->flags = 0;
8523		ilt_client->start = line;
8524
8525		/* 4 bytes for each cid */
8526		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8527							 QM_ILT_PAGE_SZ);
8528
8529		ilt_client->end = line - 1;
8530
8531		DP(NETIF_MSG_IFUP,
8532		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8533		   ilt_client->start,
8534		   ilt_client->end,
8535		   ilt_client->page_size,
8536		   ilt_client->flags,
8537		   ilog2(ilt_client->page_size >> 12));
8538	}
8539
8540	if (CNIC_SUPPORT(bp)) {
8541		/* SRC */
8542		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8543		ilt_client->client_num = ILT_CLIENT_SRC;
8544		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8545		ilt_client->flags = 0;
8546		ilt_client->start = line;
8547		line += SRC_ILT_LINES;
8548		ilt_client->end = line - 1;
8549
8550		DP(NETIF_MSG_IFUP,
8551		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8552		   ilt_client->start,
8553		   ilt_client->end,
8554		   ilt_client->page_size,
8555		   ilt_client->flags,
8556		   ilog2(ilt_client->page_size >> 12));
8557
8558		/* TM */
8559		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8560		ilt_client->client_num = ILT_CLIENT_TM;
8561		ilt_client->page_size = TM_ILT_PAGE_SZ;
8562		ilt_client->flags = 0;
8563		ilt_client->start = line;
8564		line += TM_ILT_LINES;
8565		ilt_client->end = line - 1;
8566
8567		DP(NETIF_MSG_IFUP,
8568		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8569		   ilt_client->start,
8570		   ilt_client->end,
8571		   ilt_client->page_size,
8572		   ilt_client->flags,
8573		   ilog2(ilt_client->page_size >> 12));
8574	}
8575
8576	BUG_ON(line > ILT_MAX_LINES);
8577}
8578
8579/**
8580 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8581 *
8582 * @bp:			driver handle
8583 * @fp:			pointer to fastpath
8584 * @init_params:	pointer to parameters structure
8585 *
8586 * parameters configured:
8587 *      - HC configuration
8588 *      - Queue's CDU context
8589 */
8590static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8591	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8592{
8593	u8 cos;
8594	int cxt_index, cxt_offset;
8595
8596	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8597	if (!IS_FCOE_FP(fp)) {
8598		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8599		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8600
8601		/* If HC is supported, enable host coalescing in the transition
8602		 * to INIT state.
8603		 */
8604		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8605		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8606
8607		/* HC rate */
8608		init_params->rx.hc_rate = bp->rx_ticks ?
8609			(1000000 / bp->rx_ticks) : 0;
8610		init_params->tx.hc_rate = bp->tx_ticks ?
8611			(1000000 / bp->tx_ticks) : 0;
8612
8613		/* FW SB ID */
8614		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8615			fp->fw_sb_id;
8616
8617		/*
8618		 * CQ index among the SB indices: FCoE clients uses the default
8619		 * SB, therefore it's different.
8620		 */
8621		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8622		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8623	}
8624
8625	/* set maximum number of COSs supported by this queue */
8626	init_params->max_cos = fp->max_cos;
8627
8628	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8629	    fp->index, init_params->max_cos);
8630
8631	/* set the context pointers queue object */
8632	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8633		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8634		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8635				ILT_PAGE_CIDS);
8636		init_params->cxts[cos] =
8637			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8638	}
8639}
8640
8641static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8642			struct bnx2x_queue_state_params *q_params,
8643			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8644			int tx_index, bool leading)
8645{
8646	memset(tx_only_params, 0, sizeof(*tx_only_params));
8647
8648	/* Set the command */
8649	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8650
8651	/* Set tx-only QUEUE flags: don't zero statistics */
8652	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8653
8654	/* choose the index of the cid to send the slow path on */
8655	tx_only_params->cid_index = tx_index;
8656
8657	/* Set general TX_ONLY_SETUP parameters */
8658	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8659
8660	/* Set Tx TX_ONLY_SETUP parameters */
8661	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8662
8663	DP(NETIF_MSG_IFUP,
8664	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8665	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8666	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8667	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8668
8669	/* send the ramrod */
8670	return bnx2x_queue_state_change(bp, q_params);
8671}
8672
8673/**
8674 * bnx2x_setup_queue - setup queue
8675 *
8676 * @bp:		driver handle
8677 * @fp:		pointer to fastpath
8678 * @leading:	is leading
8679 *
8680 * This function performs 2 steps in a Queue state machine
8681 *      actually: 1) RESET->INIT 2) INIT->SETUP
8682 */
8683
8684int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8685		       bool leading)
8686{
8687	struct bnx2x_queue_state_params q_params = {NULL};
8688	struct bnx2x_queue_setup_params *setup_params =
8689						&q_params.params.setup;
8690	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8691						&q_params.params.tx_only;
8692	int rc;
8693	u8 tx_index;
8694
8695	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8696
8697	/* reset IGU state skip FCoE L2 queue */
8698	if (!IS_FCOE_FP(fp))
8699		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8700			     IGU_INT_ENABLE, 0);
8701
8702	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8703	/* We want to wait for completion in this context */
8704	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8705
8706	/* Prepare the INIT parameters */
8707	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8708
8709	/* Set the command */
8710	q_params.cmd = BNX2X_Q_CMD_INIT;
8711
8712	/* Change the state to INIT */
8713	rc = bnx2x_queue_state_change(bp, &q_params);
8714	if (rc) {
8715		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8716		return rc;
8717	}
8718
8719	DP(NETIF_MSG_IFUP, "init complete\n");
8720
8721	/* Now move the Queue to the SETUP state... */
8722	memset(setup_params, 0, sizeof(*setup_params));
8723
8724	/* Set QUEUE flags */
8725	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8726
8727	/* Set general SETUP parameters */
8728	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8729				FIRST_TX_COS_INDEX);
8730
8731	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8732			    &setup_params->rxq_params);
8733
8734	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8735			   FIRST_TX_COS_INDEX);
8736
8737	/* Set the command */
8738	q_params.cmd = BNX2X_Q_CMD_SETUP;
8739
8740	if (IS_FCOE_FP(fp))
8741		bp->fcoe_init = true;
8742
8743	/* Change the state to SETUP */
8744	rc = bnx2x_queue_state_change(bp, &q_params);
8745	if (rc) {
8746		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8747		return rc;
8748	}
8749
8750	/* loop through the relevant tx-only indices */
8751	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8752	      tx_index < fp->max_cos;
8753	      tx_index++) {
8754
8755		/* prepare and send tx-only ramrod*/
8756		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8757					  tx_only_params, tx_index, leading);
8758		if (rc) {
8759			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8760				  fp->index, tx_index);
8761			return rc;
8762		}
8763	}
8764
8765	return rc;
8766}
8767
8768static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8769{
8770	struct bnx2x_fastpath *fp = &bp->fp[index];
8771	struct bnx2x_fp_txdata *txdata;
8772	struct bnx2x_queue_state_params q_params = {NULL};
8773	int rc, tx_index;
8774
8775	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8776
8777	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8778	/* We want to wait for completion in this context */
8779	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8780
8781	/* close tx-only connections */
8782	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8783	     tx_index < fp->max_cos;
8784	     tx_index++){
8785
8786		/* ascertain this is a normal queue*/
8787		txdata = fp->txdata_ptr[tx_index];
8788
8789		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8790							txdata->txq_index);
8791
8792		/* send halt terminate on tx-only connection */
8793		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8794		memset(&q_params.params.terminate, 0,
8795		       sizeof(q_params.params.terminate));
8796		q_params.params.terminate.cid_index = tx_index;
8797
8798		rc = bnx2x_queue_state_change(bp, &q_params);
8799		if (rc)
8800			return rc;
8801
8802		/* send halt terminate on tx-only connection */
8803		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8804		memset(&q_params.params.cfc_del, 0,
8805		       sizeof(q_params.params.cfc_del));
8806		q_params.params.cfc_del.cid_index = tx_index;
8807		rc = bnx2x_queue_state_change(bp, &q_params);
8808		if (rc)
8809			return rc;
8810	}
8811	/* Stop the primary connection: */
8812	/* ...halt the connection */
8813	q_params.cmd = BNX2X_Q_CMD_HALT;
8814	rc = bnx2x_queue_state_change(bp, &q_params);
8815	if (rc)
8816		return rc;
8817
8818	/* ...terminate the connection */
8819	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8820	memset(&q_params.params.terminate, 0,
8821	       sizeof(q_params.params.terminate));
8822	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8823	rc = bnx2x_queue_state_change(bp, &q_params);
8824	if (rc)
8825		return rc;
8826	/* ...delete cfc entry */
8827	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8828	memset(&q_params.params.cfc_del, 0,
8829	       sizeof(q_params.params.cfc_del));
8830	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8831	return bnx2x_queue_state_change(bp, &q_params);
8832}
8833
8834static void bnx2x_reset_func(struct bnx2x *bp)
8835{
8836	int port = BP_PORT(bp);
8837	int func = BP_FUNC(bp);
8838	int i;
8839
8840	/* Disable the function in the FW */
8841	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8842	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8843	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8844	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8845
8846	/* FP SBs */
8847	for_each_eth_queue(bp, i) {
8848		struct bnx2x_fastpath *fp = &bp->fp[i];
8849		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8850			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8851			   SB_DISABLED);
8852	}
8853
8854	if (CNIC_LOADED(bp))
8855		/* CNIC SB */
8856		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8857			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8858			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8859
8860	/* SP SB */
8861	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8862		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8863		SB_DISABLED);
8864
8865	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8866		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8867		       0);
8868
8869	/* Configure IGU */
8870	if (bp->common.int_block == INT_BLOCK_HC) {
8871		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8872		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8873	} else {
8874		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8875		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8876	}
8877
8878	if (CNIC_LOADED(bp)) {
8879		/* Disable Timer scan */
8880		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8881		/*
8882		 * Wait for at least 10ms and up to 2 second for the timers
8883		 * scan to complete
8884		 */
8885		for (i = 0; i < 200; i++) {
8886			usleep_range(10000, 20000);
8887			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8888				break;
8889		}
8890	}
8891	/* Clear ILT */
8892	bnx2x_clear_func_ilt(bp, func);
8893
8894	/* Timers workaround bug for E2: if this is vnic-3,
8895	 * we need to set the entire ilt range for this timers.
8896	 */
8897	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8898		struct ilt_client_info ilt_cli;
8899		/* use dummy TM client */
8900		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8901		ilt_cli.start = 0;
8902		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8903		ilt_cli.client_num = ILT_CLIENT_TM;
8904
8905		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8906	}
8907
8908	/* this assumes that reset_port() called before reset_func()*/
8909	if (!CHIP_IS_E1x(bp))
8910		bnx2x_pf_disable(bp);
8911
8912	bp->dmae_ready = 0;
8913}
8914
8915static void bnx2x_reset_port(struct bnx2x *bp)
8916{
8917	int port = BP_PORT(bp);
8918	u32 val;
8919
8920	/* Reset physical Link */
8921	bnx2x__link_reset(bp);
8922
8923	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8924
8925	/* Do not rcv packets to BRB */
8926	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8927	/* Do not direct rcv packets that are not for MCP to the BRB */
8928	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8929			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8930
8931	/* Configure AEU */
8932	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8933
8934	msleep(100);
8935	/* Check for BRB port occupancy */
8936	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8937	if (val)
8938		DP(NETIF_MSG_IFDOWN,
8939		   "BRB1 is not empty  %d blocks are occupied\n", val);
8940
8941	/* TODO: Close Doorbell port? */
8942}
8943
8944static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8945{
8946	struct bnx2x_func_state_params func_params = {NULL};
8947
8948	/* Prepare parameters for function state transitions */
8949	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8950
8951	func_params.f_obj = &bp->func_obj;
8952	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8953
8954	func_params.params.hw_init.load_phase = load_code;
8955
8956	return bnx2x_func_state_change(bp, &func_params);
8957}
8958
8959static int bnx2x_func_stop(struct bnx2x *bp)
8960{
8961	struct bnx2x_func_state_params func_params = {NULL};
8962	int rc;
8963
8964	/* Prepare parameters for function state transitions */
8965	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8966	func_params.f_obj = &bp->func_obj;
8967	func_params.cmd = BNX2X_F_CMD_STOP;
8968
8969	/*
8970	 * Try to stop the function the 'good way'. If fails (in case
8971	 * of a parity error during bnx2x_chip_cleanup()) and we are
8972	 * not in a debug mode, perform a state transaction in order to
8973	 * enable further HW_RESET transaction.
8974	 */
8975	rc = bnx2x_func_state_change(bp, &func_params);
8976	if (rc) {
8977#ifdef BNX2X_STOP_ON_ERROR
8978		return rc;
8979#else
8980		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8981		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8982		return bnx2x_func_state_change(bp, &func_params);
8983#endif
8984	}
8985
8986	return 0;
8987}
8988
8989/**
8990 * bnx2x_send_unload_req - request unload mode from the MCP.
8991 *
8992 * @bp:			driver handle
8993 * @unload_mode:	requested function's unload mode
8994 *
8995 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8996 */
8997u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8998{
8999	u32 reset_code = 0;
9000	int port = BP_PORT(bp);
9001
9002	/* Select the UNLOAD request mode */
9003	if (unload_mode == UNLOAD_NORMAL)
9004		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9005
9006	else if (bp->flags & NO_WOL_FLAG)
9007		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9008
9009	else if (bp->wol) {
9010		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9011		u8 *mac_addr = bp->dev->dev_addr;
9012		struct pci_dev *pdev = bp->pdev;
9013		u32 val;
9014		u16 pmc;
9015
9016		/* The mac address is written to entries 1-4 to
9017		 * preserve entry 0 which is used by the PMF
9018		 */
9019		u8 entry = (BP_VN(bp) + 1)*8;
9020
9021		val = (mac_addr[0] << 8) | mac_addr[1];
9022		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9023
9024		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9025		      (mac_addr[4] << 8) | mac_addr[5];
9026		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9027
9028		/* Enable the PME and clear the status */
9029		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9030		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9031		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9032
9033		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9034
9035	} else
9036		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9037
9038	/* Send the request to the MCP */
9039	if (!BP_NOMCP(bp))
9040		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9041	else {
9042		int path = BP_PATH(bp);
9043
9044		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9045		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9046		   bnx2x_load_count[path][2]);
9047		bnx2x_load_count[path][0]--;
9048		bnx2x_load_count[path][1 + port]--;
9049		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9050		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9051		   bnx2x_load_count[path][2]);
9052		if (bnx2x_load_count[path][0] == 0)
9053			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9054		else if (bnx2x_load_count[path][1 + port] == 0)
9055			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9056		else
9057			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9058	}
9059
9060	return reset_code;
9061}
9062
9063/**
9064 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9065 *
9066 * @bp:		driver handle
9067 * @keep_link:		true iff link should be kept up
9068 */
9069void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9070{
9071	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9072
9073	/* Report UNLOAD_DONE to MCP */
9074	if (!BP_NOMCP(bp))
9075		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9076}
9077
9078static int bnx2x_func_wait_started(struct bnx2x *bp)
9079{
9080	int tout = 50;
9081	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9082
9083	if (!bp->port.pmf)
9084		return 0;
9085
9086	/*
9087	 * (assumption: No Attention from MCP at this stage)
9088	 * PMF probably in the middle of TX disable/enable transaction
9089	 * 1. Sync IRS for default SB
9090	 * 2. Sync SP queue - this guarantees us that attention handling started
9091	 * 3. Wait, that TX disable/enable transaction completes
9092	 *
9093	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9094	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9095	 * received completion for the transaction the state is TX_STOPPED.
9096	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9097	 * transaction.
9098	 */
9099
9100	/* make sure default SB ISR is done */
9101	if (msix)
9102		synchronize_irq(bp->msix_table[0].vector);
9103	else
9104		synchronize_irq(bp->pdev->irq);
9105
9106	flush_workqueue(bnx2x_wq);
9107	flush_workqueue(bnx2x_iov_wq);
9108
9109	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9110				BNX2X_F_STATE_STARTED && tout--)
9111		msleep(20);
9112
9113	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9114						BNX2X_F_STATE_STARTED) {
9115#ifdef BNX2X_STOP_ON_ERROR
9116		BNX2X_ERR("Wrong function state\n");
9117		return -EBUSY;
9118#else
9119		/*
9120		 * Failed to complete the transaction in a "good way"
9121		 * Force both transactions with CLR bit
9122		 */
9123		struct bnx2x_func_state_params func_params = {NULL};
9124
9125		DP(NETIF_MSG_IFDOWN,
9126		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9127
9128		func_params.f_obj = &bp->func_obj;
9129		__set_bit(RAMROD_DRV_CLR_ONLY,
9130					&func_params.ramrod_flags);
9131
9132		/* STARTED-->TX_ST0PPED */
9133		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9134		bnx2x_func_state_change(bp, &func_params);
9135
9136		/* TX_ST0PPED-->STARTED */
9137		func_params.cmd = BNX2X_F_CMD_TX_START;
9138		return bnx2x_func_state_change(bp, &func_params);
9139#endif
9140	}
9141
9142	return 0;
9143}
9144
9145static void bnx2x_disable_ptp(struct bnx2x *bp)
9146{
9147	int port = BP_PORT(bp);
9148
9149	/* Disable sending PTP packets to host */
9150	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9151	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9152
9153	/* Reset PTP event detection rules */
9154	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9155	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9156	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9157	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9158	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9159	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9160	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9161	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9162
9163	/* Disable the PTP feature */
9164	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9165	       NIG_REG_P0_PTP_EN, 0x0);
9166}
9167
9168/* Called during unload, to stop PTP-related stuff */
9169void bnx2x_stop_ptp(struct bnx2x *bp)
9170{
9171	/* Cancel PTP work queue. Should be done after the Tx queues are
9172	 * drained to prevent additional scheduling.
9173	 */
9174	cancel_work_sync(&bp->ptp_task);
9175
9176	if (bp->ptp_tx_skb) {
9177		dev_kfree_skb_any(bp->ptp_tx_skb);
9178		bp->ptp_tx_skb = NULL;
9179	}
9180
9181	/* Disable PTP in HW */
9182	bnx2x_disable_ptp(bp);
9183
9184	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9185}
9186
9187void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9188{
9189	int port = BP_PORT(bp);
9190	int i, rc = 0;
9191	u8 cos;
9192	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9193	u32 reset_code;
9194
9195	/* Wait until tx fastpath tasks complete */
9196	for_each_tx_queue(bp, i) {
9197		struct bnx2x_fastpath *fp = &bp->fp[i];
9198
9199		for_each_cos_in_tx_queue(fp, cos)
9200			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9201#ifdef BNX2X_STOP_ON_ERROR
9202		if (rc)
9203			return;
9204#endif
9205	}
9206
9207	/* Give HW time to discard old tx messages */
9208	usleep_range(1000, 2000);
9209
9210	/* Clean all ETH MACs */
9211	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9212				false);
9213	if (rc < 0)
9214		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9215
9216	/* Clean up UC list  */
9217	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9218				true);
9219	if (rc < 0)
9220		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9221			  rc);
9222
9223	/* Disable LLH */
9224	if (!CHIP_IS_E1(bp))
9225		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9226
9227	/* Set "drop all" (stop Rx).
9228	 * We need to take a netif_addr_lock() here in order to prevent
9229	 * a race between the completion code and this code.
9230	 */
9231	netif_addr_lock_bh(bp->dev);
9232	/* Schedule the rx_mode command */
9233	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9234		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9235	else
9236		bnx2x_set_storm_rx_mode(bp);
9237
9238	/* Cleanup multicast configuration */
9239	rparam.mcast_obj = &bp->mcast_obj;
9240	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9241	if (rc < 0)
9242		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9243
9244	netif_addr_unlock_bh(bp->dev);
9245
9246	bnx2x_iov_chip_cleanup(bp);
9247
9248	/*
9249	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9250	 * this function should perform FUNC, PORT or COMMON HW
9251	 * reset.
9252	 */
9253	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9254
9255	/*
9256	 * (assumption: No Attention from MCP at this stage)
9257	 * PMF probably in the middle of TX disable/enable transaction
9258	 */
9259	rc = bnx2x_func_wait_started(bp);
9260	if (rc) {
9261		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9262#ifdef BNX2X_STOP_ON_ERROR
9263		return;
9264#endif
9265	}
9266
9267	/* Close multi and leading connections
9268	 * Completions for ramrods are collected in a synchronous way
9269	 */
9270	for_each_eth_queue(bp, i)
9271		if (bnx2x_stop_queue(bp, i))
9272#ifdef BNX2X_STOP_ON_ERROR
9273			return;
9274#else
9275			goto unload_error;
9276#endif
9277
9278	if (CNIC_LOADED(bp)) {
9279		for_each_cnic_queue(bp, i)
9280			if (bnx2x_stop_queue(bp, i))
9281#ifdef BNX2X_STOP_ON_ERROR
9282				return;
9283#else
9284				goto unload_error;
9285#endif
9286	}
9287
9288	/* If SP settings didn't get completed so far - something
9289	 * very wrong has happen.
9290	 */
9291	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9292		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9293
9294#ifndef BNX2X_STOP_ON_ERROR
9295unload_error:
9296#endif
9297	rc = bnx2x_func_stop(bp);
9298	if (rc) {
9299		BNX2X_ERR("Function stop failed!\n");
9300#ifdef BNX2X_STOP_ON_ERROR
9301		return;
9302#endif
9303	}
9304
9305	/* stop_ptp should be after the Tx queues are drained to prevent
9306	 * scheduling to the cancelled PTP work queue. It should also be after
9307	 * function stop ramrod is sent, since as part of this ramrod FW access
9308	 * PTP registers.
9309	 */
9310	bnx2x_stop_ptp(bp);
9311
9312	/* Disable HW interrupts, NAPI */
9313	bnx2x_netif_stop(bp, 1);
9314	/* Delete all NAPI objects */
9315	bnx2x_del_all_napi(bp);
9316	if (CNIC_LOADED(bp))
9317		bnx2x_del_all_napi_cnic(bp);
9318
9319	/* Release IRQs */
9320	bnx2x_free_irq(bp);
9321
9322	/* Reset the chip */
9323	rc = bnx2x_reset_hw(bp, reset_code);
9324	if (rc)
9325		BNX2X_ERR("HW_RESET failed\n");
9326
9327	/* Report UNLOAD_DONE to MCP */
9328	bnx2x_send_unload_done(bp, keep_link);
9329}
9330
9331void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9332{
9333	u32 val;
9334
9335	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9336
9337	if (CHIP_IS_E1(bp)) {
9338		int port = BP_PORT(bp);
9339		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9340			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9341
9342		val = REG_RD(bp, addr);
9343		val &= ~(0x300);
9344		REG_WR(bp, addr, val);
9345	} else {
9346		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9347		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9348			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9349		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9350	}
9351}
9352
9353/* Close gates #2, #3 and #4: */
9354static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9355{
9356	u32 val;
9357
9358	/* Gates #2 and #4a are closed/opened for "not E1" only */
9359	if (!CHIP_IS_E1(bp)) {
9360		/* #4 */
9361		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9362		/* #2 */
9363		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9364	}
9365
9366	/* #3 */
9367	if (CHIP_IS_E1x(bp)) {
9368		/* Prevent interrupts from HC on both ports */
9369		val = REG_RD(bp, HC_REG_CONFIG_1);
9370		REG_WR(bp, HC_REG_CONFIG_1,
9371		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9372		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9373
9374		val = REG_RD(bp, HC_REG_CONFIG_0);
9375		REG_WR(bp, HC_REG_CONFIG_0,
9376		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9377		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9378	} else {
9379		/* Prevent incoming interrupts in IGU */
9380		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9381
9382		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9383		       (!close) ?
9384		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9385		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9386	}
9387
9388	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9389		close ? "closing" : "opening");
9390	mmiowb();
9391}
9392
9393#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9394
9395static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9396{
9397	/* Do some magic... */
9398	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9399	*magic_val = val & SHARED_MF_CLP_MAGIC;
9400	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9401}
9402
9403/**
9404 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9405 *
9406 * @bp:		driver handle
9407 * @magic_val:	old value of the `magic' bit.
9408 */
9409static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9410{
9411	/* Restore the `magic' bit value... */
9412	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9413	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9414		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9415}
9416
9417/**
9418 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9419 *
9420 * @bp:		driver handle
9421 * @magic_val:	old value of 'magic' bit.
9422 *
9423 * Takes care of CLP configurations.
9424 */
9425static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9426{
9427	u32 shmem;
9428	u32 validity_offset;
9429
9430	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9431
9432	/* Set `magic' bit in order to save MF config */
9433	if (!CHIP_IS_E1(bp))
9434		bnx2x_clp_reset_prep(bp, magic_val);
9435
9436	/* Get shmem offset */
9437	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9438	validity_offset =
9439		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9440
9441	/* Clear validity map flags */
9442	if (shmem > 0)
9443		REG_WR(bp, shmem + validity_offset, 0);
9444}
9445
9446#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9447#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9448
9449/**
9450 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9451 *
9452 * @bp:	driver handle
9453 */
9454static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9455{
9456	/* special handling for emulation and FPGA,
9457	   wait 10 times longer */
9458	if (CHIP_REV_IS_SLOW(bp))
9459		msleep(MCP_ONE_TIMEOUT*10);
9460	else
9461		msleep(MCP_ONE_TIMEOUT);
9462}
9463
9464/*
9465 * initializes bp->common.shmem_base and waits for validity signature to appear
9466 */
9467static int bnx2x_init_shmem(struct bnx2x *bp)
9468{
9469	int cnt = 0;
9470	u32 val = 0;
9471
9472	do {
9473		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9474		if (bp->common.shmem_base) {
9475			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9476			if (val & SHR_MEM_VALIDITY_MB)
9477				return 0;
9478		}
9479
9480		bnx2x_mcp_wait_one(bp);
9481
9482	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9483
9484	BNX2X_ERR("BAD MCP validity signature\n");
9485
9486	return -ENODEV;
9487}
9488
9489static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9490{
9491	int rc = bnx2x_init_shmem(bp);
9492
9493	/* Restore the `magic' bit value */
9494	if (!CHIP_IS_E1(bp))
9495		bnx2x_clp_reset_done(bp, magic_val);
9496
9497	return rc;
9498}
9499
9500static void bnx2x_pxp_prep(struct bnx2x *bp)
9501{
9502	if (!CHIP_IS_E1(bp)) {
9503		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9504		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9505		mmiowb();
9506	}
9507}
9508
9509/*
9510 * Reset the whole chip except for:
9511 *      - PCIE core
9512 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9513 *              one reset bit)
9514 *      - IGU
9515 *      - MISC (including AEU)
9516 *      - GRC
9517 *      - RBCN, RBCP
9518 */
9519static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9520{
9521	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9522	u32 global_bits2, stay_reset2;
9523
9524	/*
9525	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9526	 * (per chip) blocks.
9527	 */
9528	global_bits2 =
9529		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9530		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9531
9532	/* Don't reset the following blocks.
9533	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9534	 *            reset, as in 4 port device they might still be owned
9535	 *            by the MCP (there is only one leader per path).
9536	 */
9537	not_reset_mask1 =
9538		MISC_REGISTERS_RESET_REG_1_RST_HC |
9539		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9540		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9541
9542	not_reset_mask2 =
9543		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9544		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9545		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9546		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9547		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9548		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9549		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9550		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9551		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9552		MISC_REGISTERS_RESET_REG_2_PGLC |
9553		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9554		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9555		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9556		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9557		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9558		MISC_REGISTERS_RESET_REG_2_UMAC1;
9559
9560	/*
9561	 * Keep the following blocks in reset:
9562	 *  - all xxMACs are handled by the bnx2x_link code.
9563	 */
9564	stay_reset2 =
9565		MISC_REGISTERS_RESET_REG_2_XMAC |
9566		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9567
9568	/* Full reset masks according to the chip */
9569	reset_mask1 = 0xffffffff;
9570
9571	if (CHIP_IS_E1(bp))
9572		reset_mask2 = 0xffff;
9573	else if (CHIP_IS_E1H(bp))
9574		reset_mask2 = 0x1ffff;
9575	else if (CHIP_IS_E2(bp))
9576		reset_mask2 = 0xfffff;
9577	else /* CHIP_IS_E3 */
9578		reset_mask2 = 0x3ffffff;
9579
9580	/* Don't reset global blocks unless we need to */
9581	if (!global)
9582		reset_mask2 &= ~global_bits2;
9583
9584	/*
9585	 * In case of attention in the QM, we need to reset PXP
9586	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9587	 * because otherwise QM reset would release 'close the gates' shortly
9588	 * before resetting the PXP, then the PSWRQ would send a write
9589	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9590	 * read the payload data from PSWWR, but PSWWR would not
9591	 * respond. The write queue in PGLUE would stuck, dmae commands
9592	 * would not return. Therefore it's important to reset the second
9593	 * reset register (containing the
9594	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9595	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9596	 * bit).
9597	 */
9598	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9599	       reset_mask2 & (~not_reset_mask2));
9600
9601	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9602	       reset_mask1 & (~not_reset_mask1));
9603
9604	barrier();
9605	mmiowb();
9606
9607	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9608	       reset_mask2 & (~stay_reset2));
9609
9610	barrier();
9611	mmiowb();
9612
9613	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9614	mmiowb();
9615}
9616
9617/**
9618 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9619 * It should get cleared in no more than 1s.
9620 *
9621 * @bp:	driver handle
9622 *
9623 * It should get cleared in no more than 1s. Returns 0 if
9624 * pending writes bit gets cleared.
9625 */
9626static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9627{
9628	u32 cnt = 1000;
9629	u32 pend_bits = 0;
9630
9631	do {
9632		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9633
9634		if (pend_bits == 0)
9635			break;
9636
9637		usleep_range(1000, 2000);
9638	} while (cnt-- > 0);
9639
9640	if (cnt <= 0) {
9641		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9642			  pend_bits);
9643		return -EBUSY;
9644	}
9645
9646	return 0;
9647}
9648
9649static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9650{
9651	int cnt = 1000;
9652	u32 val = 0;
9653	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9654	u32 tags_63_32 = 0;
9655
9656	/* Empty the Tetris buffer, wait for 1s */
9657	do {
9658		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9659		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9660		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9661		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9662		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9663		if (CHIP_IS_E3(bp))
9664			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9665
9666		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9667		    ((port_is_idle_0 & 0x1) == 0x1) &&
9668		    ((port_is_idle_1 & 0x1) == 0x1) &&
9669		    (pgl_exp_rom2 == 0xffffffff) &&
9670		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9671			break;
9672		usleep_range(1000, 2000);
9673	} while (cnt-- > 0);
9674
9675	if (cnt <= 0) {
9676		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9677		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9678			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9679			  pgl_exp_rom2);
9680		return -EAGAIN;
9681	}
9682
9683	barrier();
9684
9685	/* Close gates #2, #3 and #4 */
9686	bnx2x_set_234_gates(bp, true);
9687
9688	/* Poll for IGU VQs for 57712 and newer chips */
9689	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9690		return -EAGAIN;
9691
9692	/* TBD: Indicate that "process kill" is in progress to MCP */
9693
9694	/* Clear "unprepared" bit */
9695	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9696	barrier();
9697
9698	/* Make sure all is written to the chip before the reset */
9699	mmiowb();
9700
9701	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9702	 * PSWHST, GRC and PSWRD Tetris buffer.
9703	 */
9704	usleep_range(1000, 2000);
9705
9706	/* Prepare to chip reset: */
9707	/* MCP */
9708	if (global)
9709		bnx2x_reset_mcp_prep(bp, &val);
9710
9711	/* PXP */
9712	bnx2x_pxp_prep(bp);
9713	barrier();
9714
9715	/* reset the chip */
9716	bnx2x_process_kill_chip_reset(bp, global);
9717	barrier();
9718
9719	/* clear errors in PGB */
9720	if (!CHIP_IS_E1x(bp))
9721		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9722
9723	/* Recover after reset: */
9724	/* MCP */
9725	if (global && bnx2x_reset_mcp_comp(bp, val))
9726		return -EAGAIN;
9727
9728	/* TBD: Add resetting the NO_MCP mode DB here */
9729
9730	/* Open the gates #2, #3 and #4 */
9731	bnx2x_set_234_gates(bp, false);
9732
9733	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9734	 * reset state, re-enable attentions. */
9735
9736	return 0;
9737}
9738
9739static int bnx2x_leader_reset(struct bnx2x *bp)
9740{
9741	int rc = 0;
9742	bool global = bnx2x_reset_is_global(bp);
9743	u32 load_code;
9744
9745	/* if not going to reset MCP - load "fake" driver to reset HW while
9746	 * driver is owner of the HW
9747	 */
9748	if (!global && !BP_NOMCP(bp)) {
9749		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9750					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9751		if (!load_code) {
9752			BNX2X_ERR("MCP response failure, aborting\n");
9753			rc = -EAGAIN;
9754			goto exit_leader_reset;
9755		}
9756		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9757		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9758			BNX2X_ERR("MCP unexpected resp, aborting\n");
9759			rc = -EAGAIN;
9760			goto exit_leader_reset2;
9761		}
9762		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9763		if (!load_code) {
9764			BNX2X_ERR("MCP response failure, aborting\n");
9765			rc = -EAGAIN;
9766			goto exit_leader_reset2;
9767		}
9768	}
9769
9770	/* Try to recover after the failure */
9771	if (bnx2x_process_kill(bp, global)) {
9772		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9773			  BP_PATH(bp));
9774		rc = -EAGAIN;
9775		goto exit_leader_reset2;
9776	}
9777
9778	/*
9779	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9780	 * state.
9781	 */
9782	bnx2x_set_reset_done(bp);
9783	if (global)
9784		bnx2x_clear_reset_global(bp);
9785
9786exit_leader_reset2:
9787	/* unload "fake driver" if it was loaded */
9788	if (!global && !BP_NOMCP(bp)) {
9789		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9790		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9791	}
9792exit_leader_reset:
9793	bp->is_leader = 0;
9794	bnx2x_release_leader_lock(bp);
9795	smp_mb();
9796	return rc;
9797}
9798
9799static void bnx2x_recovery_failed(struct bnx2x *bp)
9800{
9801	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9802
9803	/* Disconnect this device */
9804	netif_device_detach(bp->dev);
9805
9806	/*
9807	 * Block ifup for all function on this engine until "process kill"
9808	 * or power cycle.
9809	 */
9810	bnx2x_set_reset_in_progress(bp);
9811
9812	/* Shut down the power */
9813	bnx2x_set_power_state(bp, PCI_D3hot);
9814
9815	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9816
9817	smp_mb();
9818}
9819
9820/*
9821 * Assumption: runs under rtnl lock. This together with the fact
9822 * that it's called only from bnx2x_sp_rtnl() ensure that it
9823 * will never be called when netif_running(bp->dev) is false.
9824 */
9825static void bnx2x_parity_recover(struct bnx2x *bp)
9826{
9827	bool global = false;
9828	u32 error_recovered, error_unrecovered;
9829	bool is_parity;
9830
9831	DP(NETIF_MSG_HW, "Handling parity\n");
9832	while (1) {
9833		switch (bp->recovery_state) {
9834		case BNX2X_RECOVERY_INIT:
9835			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9836			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9837			WARN_ON(!is_parity);
9838
9839			/* Try to get a LEADER_LOCK HW lock */
9840			if (bnx2x_trylock_leader_lock(bp)) {
9841				bnx2x_set_reset_in_progress(bp);
9842				/*
9843				 * Check if there is a global attention and if
9844				 * there was a global attention, set the global
9845				 * reset bit.
9846				 */
9847
9848				if (global)
9849					bnx2x_set_reset_global(bp);
9850
9851				bp->is_leader = 1;
9852			}
9853
9854			/* Stop the driver */
9855			/* If interface has been removed - break */
9856			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9857				return;
9858
9859			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9860
9861			/* Ensure "is_leader", MCP command sequence and
9862			 * "recovery_state" update values are seen on other
9863			 * CPUs.
9864			 */
9865			smp_mb();
9866			break;
9867
9868		case BNX2X_RECOVERY_WAIT:
9869			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9870			if (bp->is_leader) {
9871				int other_engine = BP_PATH(bp) ? 0 : 1;
9872				bool other_load_status =
9873					bnx2x_get_load_status(bp, other_engine);
9874				bool load_status =
9875					bnx2x_get_load_status(bp, BP_PATH(bp));
9876				global = bnx2x_reset_is_global(bp);
9877
9878				/*
9879				 * In case of a parity in a global block, let
9880				 * the first leader that performs a
9881				 * leader_reset() reset the global blocks in
9882				 * order to clear global attentions. Otherwise
9883				 * the gates will remain closed for that
9884				 * engine.
9885				 */
9886				if (load_status ||
9887				    (global && other_load_status)) {
9888					/* Wait until all other functions get
9889					 * down.
9890					 */
9891					schedule_delayed_work(&bp->sp_rtnl_task,
9892								HZ/10);
9893					return;
9894				} else {
9895					/* If all other functions got down -
9896					 * try to bring the chip back to
9897					 * normal. In any case it's an exit
9898					 * point for a leader.
9899					 */
9900					if (bnx2x_leader_reset(bp)) {
9901						bnx2x_recovery_failed(bp);
9902						return;
9903					}
9904
9905					/* If we are here, means that the
9906					 * leader has succeeded and doesn't
9907					 * want to be a leader any more. Try
9908					 * to continue as a none-leader.
9909					 */
9910					break;
9911				}
9912			} else { /* non-leader */
9913				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9914					/* Try to get a LEADER_LOCK HW lock as
9915					 * long as a former leader may have
9916					 * been unloaded by the user or
9917					 * released a leadership by another
9918					 * reason.
9919					 */
9920					if (bnx2x_trylock_leader_lock(bp)) {
9921						/* I'm a leader now! Restart a
9922						 * switch case.
9923						 */
9924						bp->is_leader = 1;
9925						break;
9926					}
9927
9928					schedule_delayed_work(&bp->sp_rtnl_task,
9929								HZ/10);
9930					return;
9931
9932				} else {
9933					/*
9934					 * If there was a global attention, wait
9935					 * for it to be cleared.
9936					 */
9937					if (bnx2x_reset_is_global(bp)) {
9938						schedule_delayed_work(
9939							&bp->sp_rtnl_task,
9940							HZ/10);
9941						return;
9942					}
9943
9944					error_recovered =
9945					  bp->eth_stats.recoverable_error;
9946					error_unrecovered =
9947					  bp->eth_stats.unrecoverable_error;
9948					bp->recovery_state =
9949						BNX2X_RECOVERY_NIC_LOADING;
9950					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9951						error_unrecovered++;
9952						netdev_err(bp->dev,
9953							   "Recovery failed. Power cycle needed\n");
9954						/* Disconnect this device */
9955						netif_device_detach(bp->dev);
9956						/* Shut down the power */
9957						bnx2x_set_power_state(
9958							bp, PCI_D3hot);
9959						smp_mb();
9960					} else {
9961						bp->recovery_state =
9962							BNX2X_RECOVERY_DONE;
9963						error_recovered++;
9964						smp_mb();
9965					}
9966					bp->eth_stats.recoverable_error =
9967						error_recovered;
9968					bp->eth_stats.unrecoverable_error =
9969						error_unrecovered;
9970
9971					return;
9972				}
9973			}
9974		default:
9975			return;
9976		}
9977	}
9978}
9979
9980static int bnx2x_close(struct net_device *dev);
9981
9982/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9983 * scheduled on a general queue in order to prevent a dead lock.
9984 */
9985static void bnx2x_sp_rtnl_task(struct work_struct *work)
9986{
9987	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9988
9989	rtnl_lock();
9990
9991	if (!netif_running(bp->dev)) {
9992		rtnl_unlock();
9993		return;
9994	}
9995
9996	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9997#ifdef BNX2X_STOP_ON_ERROR
9998		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9999			  "you will need to reboot when done\n");
10000		goto sp_rtnl_not_reset;
10001#endif
10002		/*
10003		 * Clear all pending SP commands as we are going to reset the
10004		 * function anyway.
10005		 */
10006		bp->sp_rtnl_state = 0;
10007		smp_mb();
10008
10009		bnx2x_parity_recover(bp);
10010
10011		rtnl_unlock();
10012		return;
10013	}
10014
10015	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10016#ifdef BNX2X_STOP_ON_ERROR
10017		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10018			  "you will need to reboot when done\n");
10019		goto sp_rtnl_not_reset;
10020#endif
10021
10022		/*
10023		 * Clear all pending SP commands as we are going to reset the
10024		 * function anyway.
10025		 */
10026		bp->sp_rtnl_state = 0;
10027		smp_mb();
10028
10029		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10030		bnx2x_nic_load(bp, LOAD_NORMAL);
10031
10032		rtnl_unlock();
10033		return;
10034	}
10035#ifdef BNX2X_STOP_ON_ERROR
10036sp_rtnl_not_reset:
10037#endif
10038	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10039		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10040	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10041		bnx2x_after_function_update(bp);
10042	/*
10043	 * in case of fan failure we need to reset id if the "stop on error"
10044	 * debug flag is set, since we trying to prevent permanent overheating
10045	 * damage
10046	 */
10047	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10048		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10049		netif_device_detach(bp->dev);
10050		bnx2x_close(bp->dev);
10051		rtnl_unlock();
10052		return;
10053	}
10054
10055	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10056		DP(BNX2X_MSG_SP,
10057		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10058		bnx2x_vfpf_set_mcast(bp->dev);
10059	}
10060	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10061			       &bp->sp_rtnl_state)){
10062		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10063			bnx2x_tx_disable(bp);
10064			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10065		}
10066	}
10067
10068	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10069		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10070		bnx2x_set_rx_mode_inner(bp);
10071	}
10072
10073	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10074			       &bp->sp_rtnl_state))
10075		bnx2x_pf_set_vfs_vlan(bp);
10076
10077	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10078		bnx2x_dcbx_stop_hw_tx(bp);
10079		bnx2x_dcbx_resume_hw_tx(bp);
10080	}
10081
10082	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10083			       &bp->sp_rtnl_state))
10084		bnx2x_update_mng_version(bp);
10085
10086	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10087	 * can be called from other contexts as well)
10088	 */
10089	rtnl_unlock();
10090
10091	/* enable SR-IOV if applicable */
10092	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10093					       &bp->sp_rtnl_state)) {
10094		bnx2x_disable_sriov(bp);
10095		bnx2x_enable_sriov(bp);
10096	}
10097}
10098
10099static void bnx2x_period_task(struct work_struct *work)
10100{
10101	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10102
10103	if (!netif_running(bp->dev))
10104		goto period_task_exit;
10105
10106	if (CHIP_REV_IS_SLOW(bp)) {
10107		BNX2X_ERR("period task called on emulation, ignoring\n");
10108		goto period_task_exit;
10109	}
10110
10111	bnx2x_acquire_phy_lock(bp);
10112	/*
10113	 * The barrier is needed to ensure the ordering between the writing to
10114	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10115	 * the reading here.
10116	 */
10117	smp_mb();
10118	if (bp->port.pmf) {
10119		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10120
10121		/* Re-queue task in 1 sec */
10122		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10123	}
10124
10125	bnx2x_release_phy_lock(bp);
10126period_task_exit:
10127	return;
10128}
10129
10130/*
10131 * Init service functions
10132 */
10133
10134static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10135{
10136	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10137	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10138	return base + (BP_ABS_FUNC(bp)) * stride;
10139}
10140
10141static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10142					struct bnx2x_mac_vals *vals)
10143{
10144	u32 val, base_addr, offset, mask, reset_reg;
10145	bool mac_stopped = false;
10146	u8 port = BP_PORT(bp);
10147
10148	/* reset addresses as they also mark which values were changed */
10149	vals->bmac_addr = 0;
10150	vals->umac_addr = 0;
10151	vals->xmac_addr = 0;
10152	vals->emac_addr = 0;
10153
10154	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10155
10156	if (!CHIP_IS_E3(bp)) {
10157		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10158		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10159		if ((mask & reset_reg) && val) {
10160			u32 wb_data[2];
10161			BNX2X_DEV_INFO("Disable bmac Rx\n");
10162			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10163						: NIG_REG_INGRESS_BMAC0_MEM;
10164			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10165						: BIGMAC_REGISTER_BMAC_CONTROL;
10166
10167			/*
10168			 * use rd/wr since we cannot use dmae. This is safe
10169			 * since MCP won't access the bus due to the request
10170			 * to unload, and no function on the path can be
10171			 * loaded at this time.
10172			 */
10173			wb_data[0] = REG_RD(bp, base_addr + offset);
10174			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10175			vals->bmac_addr = base_addr + offset;
10176			vals->bmac_val[0] = wb_data[0];
10177			vals->bmac_val[1] = wb_data[1];
10178			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10179			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10180			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10181		}
10182		BNX2X_DEV_INFO("Disable emac Rx\n");
10183		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10184		vals->emac_val = REG_RD(bp, vals->emac_addr);
10185		REG_WR(bp, vals->emac_addr, 0);
10186		mac_stopped = true;
10187	} else {
10188		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10189			BNX2X_DEV_INFO("Disable xmac Rx\n");
10190			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10191			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10192			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10193			       val & ~(1 << 1));
10194			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10195			       val | (1 << 1));
10196			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10197			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10198			REG_WR(bp, vals->xmac_addr, 0);
10199			mac_stopped = true;
10200		}
10201		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10202		if (mask & reset_reg) {
10203			BNX2X_DEV_INFO("Disable umac Rx\n");
10204			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10205			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10206			vals->umac_val = REG_RD(bp, vals->umac_addr);
10207			REG_WR(bp, vals->umac_addr, 0);
10208			mac_stopped = true;
10209		}
10210	}
10211
10212	if (mac_stopped)
10213		msleep(20);
10214}
10215
10216#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10217#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10218					0x1848 + ((f) << 4))
10219#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10220#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10221#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10222
10223#define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10224#define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10225#define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10226
10227static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10228{
10229	/* UNDI marks its presence in DORQ -
10230	 * it initializes CID offset for normal bell to 0x7
10231	 */
10232	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10233	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10234		return false;
10235
10236	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10237		BNX2X_DEV_INFO("UNDI previously loaded\n");
10238		return true;
10239	}
10240
10241	return false;
10242}
10243
10244static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10245{
10246	u16 rcq, bd;
10247	u32 addr, tmp_reg;
10248
10249	if (BP_FUNC(bp) < 2)
10250		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10251	else
10252		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10253
10254	tmp_reg = REG_RD(bp, addr);
10255	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10256	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10257
10258	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10259	REG_WR(bp, addr, tmp_reg);
10260
10261	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10262		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10263}
10264
10265static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10266{
10267	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10268				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10269	if (!rc) {
10270		BNX2X_ERR("MCP response failure, aborting\n");
10271		return -EBUSY;
10272	}
10273
10274	return 0;
10275}
10276
10277static struct bnx2x_prev_path_list *
10278		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10279{
10280	struct bnx2x_prev_path_list *tmp_list;
10281
10282	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10283		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10284		    bp->pdev->bus->number == tmp_list->bus &&
10285		    BP_PATH(bp) == tmp_list->path)
10286			return tmp_list;
10287
10288	return NULL;
10289}
10290
10291static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10292{
10293	struct bnx2x_prev_path_list *tmp_list;
10294	int rc;
10295
10296	rc = down_interruptible(&bnx2x_prev_sem);
10297	if (rc) {
10298		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10299		return rc;
10300	}
10301
10302	tmp_list = bnx2x_prev_path_get_entry(bp);
10303	if (tmp_list) {
10304		tmp_list->aer = 1;
10305		rc = 0;
10306	} else {
10307		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10308			  BP_PATH(bp));
10309	}
10310
10311	up(&bnx2x_prev_sem);
10312
10313	return rc;
10314}
10315
10316static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10317{
10318	struct bnx2x_prev_path_list *tmp_list;
10319	bool rc = false;
10320
10321	if (down_trylock(&bnx2x_prev_sem))
10322		return false;
10323
10324	tmp_list = bnx2x_prev_path_get_entry(bp);
10325	if (tmp_list) {
10326		if (tmp_list->aer) {
10327			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10328			   BP_PATH(bp));
10329		} else {
10330			rc = true;
10331			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10332				       BP_PATH(bp));
10333		}
10334	}
10335
10336	up(&bnx2x_prev_sem);
10337
10338	return rc;
10339}
10340
10341bool bnx2x_port_after_undi(struct bnx2x *bp)
10342{
10343	struct bnx2x_prev_path_list *entry;
10344	bool val;
10345
10346	down(&bnx2x_prev_sem);
10347
10348	entry = bnx2x_prev_path_get_entry(bp);
10349	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10350
10351	up(&bnx2x_prev_sem);
10352
10353	return val;
10354}
10355
10356static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10357{
10358	struct bnx2x_prev_path_list *tmp_list;
10359	int rc;
10360
10361	rc = down_interruptible(&bnx2x_prev_sem);
10362	if (rc) {
10363		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10364		return rc;
10365	}
10366
10367	/* Check whether the entry for this path already exists */
10368	tmp_list = bnx2x_prev_path_get_entry(bp);
10369	if (tmp_list) {
10370		if (!tmp_list->aer) {
10371			BNX2X_ERR("Re-Marking the path.\n");
10372		} else {
10373			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10374			   BP_PATH(bp));
10375			tmp_list->aer = 0;
10376		}
10377		up(&bnx2x_prev_sem);
10378		return 0;
10379	}
10380	up(&bnx2x_prev_sem);
10381
10382	/* Create an entry for this path and add it */
10383	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10384	if (!tmp_list) {
10385		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10386		return -ENOMEM;
10387	}
10388
10389	tmp_list->bus = bp->pdev->bus->number;
10390	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10391	tmp_list->path = BP_PATH(bp);
10392	tmp_list->aer = 0;
10393	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10394
10395	rc = down_interruptible(&bnx2x_prev_sem);
10396	if (rc) {
10397		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10398		kfree(tmp_list);
10399	} else {
10400		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10401		   BP_PATH(bp));
10402		list_add(&tmp_list->list, &bnx2x_prev_list);
10403		up(&bnx2x_prev_sem);
10404	}
10405
10406	return rc;
10407}
10408
10409static int bnx2x_do_flr(struct bnx2x *bp)
10410{
10411	struct pci_dev *dev = bp->pdev;
10412
10413	if (CHIP_IS_E1x(bp)) {
10414		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10415		return -EINVAL;
10416	}
10417
10418	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10419	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10420		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10421			  bp->common.bc_ver);
10422		return -EINVAL;
10423	}
10424
10425	if (!pci_wait_for_pending_transaction(dev))
10426		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10427
10428	BNX2X_DEV_INFO("Initiating FLR\n");
10429	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10430
10431	return 0;
10432}
10433
10434static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10435{
10436	int rc;
10437
10438	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10439
10440	/* Test if previous unload process was already finished for this path */
10441	if (bnx2x_prev_is_path_marked(bp))
10442		return bnx2x_prev_mcp_done(bp);
10443
10444	BNX2X_DEV_INFO("Path is unmarked\n");
10445
10446	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10447	if (bnx2x_prev_is_after_undi(bp))
10448		goto out;
10449
10450	/* If function has FLR capabilities, and existing FW version matches
10451	 * the one required, then FLR will be sufficient to clean any residue
10452	 * left by previous driver
10453	 */
10454	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10455
10456	if (!rc) {
10457		/* fw version is good */
10458		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10459		rc = bnx2x_do_flr(bp);
10460	}
10461
10462	if (!rc) {
10463		/* FLR was performed */
10464		BNX2X_DEV_INFO("FLR successful\n");
10465		return 0;
10466	}
10467
10468	BNX2X_DEV_INFO("Could not FLR\n");
10469
10470out:
10471	/* Close the MCP request, return failure*/
10472	rc = bnx2x_prev_mcp_done(bp);
10473	if (!rc)
10474		rc = BNX2X_PREV_WAIT_NEEDED;
10475
10476	return rc;
10477}
10478
10479static int bnx2x_prev_unload_common(struct bnx2x *bp)
10480{
10481	u32 reset_reg, tmp_reg = 0, rc;
10482	bool prev_undi = false;
10483	struct bnx2x_mac_vals mac_vals;
10484
10485	/* It is possible a previous function received 'common' answer,
10486	 * but hasn't loaded yet, therefore creating a scenario of
10487	 * multiple functions receiving 'common' on the same path.
10488	 */
10489	BNX2X_DEV_INFO("Common unload Flow\n");
10490
10491	memset(&mac_vals, 0, sizeof(mac_vals));
10492
10493	if (bnx2x_prev_is_path_marked(bp))
10494		return bnx2x_prev_mcp_done(bp);
10495
10496	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10497
10498	/* Reset should be performed after BRB is emptied */
10499	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10500		u32 timer_count = 1000;
10501
10502		/* Close the MAC Rx to prevent BRB from filling up */
10503		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10504
10505		/* close LLH filters towards the BRB */
10506		bnx2x_set_rx_filter(&bp->link_params, 0);
10507
10508		/* Check if the UNDI driver was previously loaded */
10509		if (bnx2x_prev_is_after_undi(bp)) {
10510			prev_undi = true;
10511			/* clear the UNDI indication */
10512			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10513			/* clear possible idle check errors */
10514			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10515		}
10516		if (!CHIP_IS_E1x(bp))
10517			/* block FW from writing to host */
10518			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10519
10520		/* wait until BRB is empty */
10521		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10522		while (timer_count) {
10523			u32 prev_brb = tmp_reg;
10524
10525			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10526			if (!tmp_reg)
10527				break;
10528
10529			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10530
10531			/* reset timer as long as BRB actually gets emptied */
10532			if (prev_brb > tmp_reg)
10533				timer_count = 1000;
10534			else
10535				timer_count--;
10536
10537			/* If UNDI resides in memory, manually increment it */
10538			if (prev_undi)
10539				bnx2x_prev_unload_undi_inc(bp, 1);
10540
10541			udelay(10);
10542		}
10543
10544		if (!timer_count)
10545			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10546	}
10547
10548	/* No packets are in the pipeline, path is ready for reset */
10549	bnx2x_reset_common(bp);
10550
10551	if (mac_vals.xmac_addr)
10552		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10553	if (mac_vals.umac_addr)
10554		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10555	if (mac_vals.emac_addr)
10556		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10557	if (mac_vals.bmac_addr) {
10558		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10559		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10560	}
10561
10562	rc = bnx2x_prev_mark_path(bp, prev_undi);
10563	if (rc) {
10564		bnx2x_prev_mcp_done(bp);
10565		return rc;
10566	}
10567
10568	return bnx2x_prev_mcp_done(bp);
10569}
10570
10571/* previous driver DMAE transaction may have occurred when pre-boot stage ended
10572 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10573 * the addresses of the transaction, resulting in was-error bit set in the pci
10574 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10575 * to clear the interrupt which detected this from the pglueb and the was done
10576 * bit
10577 */
10578static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10579{
10580	if (!CHIP_IS_E1x(bp)) {
10581		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10582		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10583			DP(BNX2X_MSG_SP,
10584			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10585			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10586			       1 << BP_FUNC(bp));
10587		}
10588	}
10589}
10590
10591static int bnx2x_prev_unload(struct bnx2x *bp)
10592{
10593	int time_counter = 10;
10594	u32 rc, fw, hw_lock_reg, hw_lock_val;
10595	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10596
10597	/* clear hw from errors which may have resulted from an interrupted
10598	 * dmae transaction.
10599	 */
10600	bnx2x_prev_interrupted_dmae(bp);
10601
10602	/* Release previously held locks */
10603	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10604		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10605		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10606
10607	hw_lock_val = REG_RD(bp, hw_lock_reg);
10608	if (hw_lock_val) {
10609		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10610			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10611			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10612			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10613		}
10614
10615		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10616		REG_WR(bp, hw_lock_reg, 0xffffffff);
10617	} else
10618		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10619
10620	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10621		BNX2X_DEV_INFO("Release previously held alr\n");
10622		bnx2x_release_alr(bp);
10623	}
10624
10625	do {
10626		int aer = 0;
10627		/* Lock MCP using an unload request */
10628		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10629		if (!fw) {
10630			BNX2X_ERR("MCP response failure, aborting\n");
10631			rc = -EBUSY;
10632			break;
10633		}
10634
10635		rc = down_interruptible(&bnx2x_prev_sem);
10636		if (rc) {
10637			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10638				  rc);
10639		} else {
10640			/* If Path is marked by EEH, ignore unload status */
10641			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10642				 bnx2x_prev_path_get_entry(bp)->aer);
10643			up(&bnx2x_prev_sem);
10644		}
10645
10646		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10647			rc = bnx2x_prev_unload_common(bp);
10648			break;
10649		}
10650
10651		/* non-common reply from MCP might require looping */
10652		rc = bnx2x_prev_unload_uncommon(bp);
10653		if (rc != BNX2X_PREV_WAIT_NEEDED)
10654			break;
10655
10656		msleep(20);
10657	} while (--time_counter);
10658
10659	if (!time_counter || rc) {
10660		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10661		rc = -EPROBE_DEFER;
10662	}
10663
10664	/* Mark function if its port was used to boot from SAN */
10665	if (bnx2x_port_after_undi(bp))
10666		bp->link_params.feature_config_flags |=
10667			FEATURE_CONFIG_BOOT_FROM_SAN;
10668
10669	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10670
10671	return rc;
10672}
10673
10674static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10675{
10676	u32 val, val2, val3, val4, id, boot_mode;
10677	u16 pmc;
10678
10679	/* Get the chip revision id and number. */
10680	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10681	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10682	id = ((val & 0xffff) << 16);
10683	val = REG_RD(bp, MISC_REG_CHIP_REV);
10684	id |= ((val & 0xf) << 12);
10685
10686	/* Metal is read from PCI regs, but we can't access >=0x400 from
10687	 * the configuration space (so we need to reg_rd)
10688	 */
10689	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10690	id |= (((val >> 24) & 0xf) << 4);
10691	val = REG_RD(bp, MISC_REG_BOND_ID);
10692	id |= (val & 0xf);
10693	bp->common.chip_id = id;
10694
10695	/* force 57811 according to MISC register */
10696	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10697		if (CHIP_IS_57810(bp))
10698			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10699				(bp->common.chip_id & 0x0000FFFF);
10700		else if (CHIP_IS_57810_MF(bp))
10701			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10702				(bp->common.chip_id & 0x0000FFFF);
10703		bp->common.chip_id |= 0x1;
10704	}
10705
10706	/* Set doorbell size */
10707	bp->db_size = (1 << BNX2X_DB_SHIFT);
10708
10709	if (!CHIP_IS_E1x(bp)) {
10710		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10711		if ((val & 1) == 0)
10712			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10713		else
10714			val = (val >> 1) & 1;
10715		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10716						       "2_PORT_MODE");
10717		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10718						 CHIP_2_PORT_MODE;
10719
10720		if (CHIP_MODE_IS_4_PORT(bp))
10721			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10722		else
10723			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10724	} else {
10725		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10726		bp->pfid = bp->pf_num;			/* 0..7 */
10727	}
10728
10729	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10730
10731	bp->link_params.chip_id = bp->common.chip_id;
10732	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10733
10734	val = (REG_RD(bp, 0x2874) & 0x55);
10735	if ((bp->common.chip_id & 0x1) ||
10736	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10737		bp->flags |= ONE_PORT_FLAG;
10738		BNX2X_DEV_INFO("single port device\n");
10739	}
10740
10741	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10742	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10743				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10744	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10745		       bp->common.flash_size, bp->common.flash_size);
10746
10747	bnx2x_init_shmem(bp);
10748
10749	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10750					MISC_REG_GENERIC_CR_1 :
10751					MISC_REG_GENERIC_CR_0));
10752
10753	bp->link_params.shmem_base = bp->common.shmem_base;
10754	bp->link_params.shmem2_base = bp->common.shmem2_base;
10755	if (SHMEM2_RD(bp, size) >
10756	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10757		bp->link_params.lfa_base =
10758		REG_RD(bp, bp->common.shmem2_base +
10759		       (u32)offsetof(struct shmem2_region,
10760				     lfa_host_addr[BP_PORT(bp)]));
10761	else
10762		bp->link_params.lfa_base = 0;
10763	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10764		       bp->common.shmem_base, bp->common.shmem2_base);
10765
10766	if (!bp->common.shmem_base) {
10767		BNX2X_DEV_INFO("MCP not active\n");
10768		bp->flags |= NO_MCP_FLAG;
10769		return;
10770	}
10771
10772	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10773	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10774
10775	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10776					SHARED_HW_CFG_LED_MODE_MASK) >>
10777				       SHARED_HW_CFG_LED_MODE_SHIFT);
10778
10779	bp->link_params.feature_config_flags = 0;
10780	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10781	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10782		bp->link_params.feature_config_flags |=
10783				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10784	else
10785		bp->link_params.feature_config_flags &=
10786				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10787
10788	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10789	bp->common.bc_ver = val;
10790	BNX2X_DEV_INFO("bc_ver %X\n", val);
10791	if (val < BNX2X_BC_VER) {
10792		/* for now only warn
10793		 * later we might need to enforce this */
10794		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10795			  BNX2X_BC_VER, val);
10796	}
10797	bp->link_params.feature_config_flags |=
10798				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10799				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10800
10801	bp->link_params.feature_config_flags |=
10802		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10803		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10804	bp->link_params.feature_config_flags |=
10805		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10806		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10807	bp->link_params.feature_config_flags |=
10808		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10809		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10810
10811	bp->link_params.feature_config_flags |=
10812		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10813		FEATURE_CONFIG_MT_SUPPORT : 0;
10814
10815	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10816			BC_SUPPORTS_PFC_STATS : 0;
10817
10818	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10819			BC_SUPPORTS_FCOE_FEATURES : 0;
10820
10821	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10822			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10823
10824	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10825			BC_SUPPORTS_RMMOD_CMD : 0;
10826
10827	boot_mode = SHMEM_RD(bp,
10828			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10829			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10830	switch (boot_mode) {
10831	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10832		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10833		break;
10834	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10835		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10836		break;
10837	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10838		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10839		break;
10840	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10841		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10842		break;
10843	}
10844
10845	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10846	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10847
10848	BNX2X_DEV_INFO("%sWoL capable\n",
10849		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10850
10851	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10852	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10853	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10854	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10855
10856	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10857		 val, val2, val3, val4);
10858}
10859
10860#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10861#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10862
10863static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10864{
10865	int pfid = BP_FUNC(bp);
10866	int igu_sb_id;
10867	u32 val;
10868	u8 fid, igu_sb_cnt = 0;
10869
10870	bp->igu_base_sb = 0xff;
10871	if (CHIP_INT_MODE_IS_BC(bp)) {
10872		int vn = BP_VN(bp);
10873		igu_sb_cnt = bp->igu_sb_cnt;
10874		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10875			FP_SB_MAX_E1x;
10876
10877		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10878			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10879
10880		return 0;
10881	}
10882
10883	/* IGU in normal mode - read CAM */
10884	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10885	     igu_sb_id++) {
10886		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10887		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10888			continue;
10889		fid = IGU_FID(val);
10890		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10891			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10892				continue;
10893			if (IGU_VEC(val) == 0)
10894				/* default status block */
10895				bp->igu_dsb_id = igu_sb_id;
10896			else {
10897				if (bp->igu_base_sb == 0xff)
10898					bp->igu_base_sb = igu_sb_id;
10899				igu_sb_cnt++;
10900			}
10901		}
10902	}
10903
10904#ifdef CONFIG_PCI_MSI
10905	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10906	 * optional that number of CAM entries will not be equal to the value
10907	 * advertised in PCI.
10908	 * Driver should use the minimal value of both as the actual status
10909	 * block count
10910	 */
10911	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10912#endif
10913
10914	if (igu_sb_cnt == 0) {
10915		BNX2X_ERR("CAM configuration error\n");
10916		return -EINVAL;
10917	}
10918
10919	return 0;
10920}
10921
10922static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10923{
10924	int cfg_size = 0, idx, port = BP_PORT(bp);
10925
10926	/* Aggregation of supported attributes of all external phys */
10927	bp->port.supported[0] = 0;
10928	bp->port.supported[1] = 0;
10929	switch (bp->link_params.num_phys) {
10930	case 1:
10931		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10932		cfg_size = 1;
10933		break;
10934	case 2:
10935		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10936		cfg_size = 1;
10937		break;
10938	case 3:
10939		if (bp->link_params.multi_phy_config &
10940		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10941			bp->port.supported[1] =
10942				bp->link_params.phy[EXT_PHY1].supported;
10943			bp->port.supported[0] =
10944				bp->link_params.phy[EXT_PHY2].supported;
10945		} else {
10946			bp->port.supported[0] =
10947				bp->link_params.phy[EXT_PHY1].supported;
10948			bp->port.supported[1] =
10949				bp->link_params.phy[EXT_PHY2].supported;
10950		}
10951		cfg_size = 2;
10952		break;
10953	}
10954
10955	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10956		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10957			   SHMEM_RD(bp,
10958			   dev_info.port_hw_config[port].external_phy_config),
10959			   SHMEM_RD(bp,
10960			   dev_info.port_hw_config[port].external_phy_config2));
10961			return;
10962	}
10963
10964	if (CHIP_IS_E3(bp))
10965		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10966	else {
10967		switch (switch_cfg) {
10968		case SWITCH_CFG_1G:
10969			bp->port.phy_addr = REG_RD(
10970				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10971			break;
10972		case SWITCH_CFG_10G:
10973			bp->port.phy_addr = REG_RD(
10974				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10975			break;
10976		default:
10977			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10978				  bp->port.link_config[0]);
10979			return;
10980		}
10981	}
10982	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10983	/* mask what we support according to speed_cap_mask per configuration */
10984	for (idx = 0; idx < cfg_size; idx++) {
10985		if (!(bp->link_params.speed_cap_mask[idx] &
10986				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10987			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10988
10989		if (!(bp->link_params.speed_cap_mask[idx] &
10990				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10991			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10992
10993		if (!(bp->link_params.speed_cap_mask[idx] &
10994				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10995			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10996
10997		if (!(bp->link_params.speed_cap_mask[idx] &
10998				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10999			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11000
11001		if (!(bp->link_params.speed_cap_mask[idx] &
11002					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11003			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11004						     SUPPORTED_1000baseT_Full);
11005
11006		if (!(bp->link_params.speed_cap_mask[idx] &
11007					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11008			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11009
11010		if (!(bp->link_params.speed_cap_mask[idx] &
11011					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11012			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11013
11014		if (!(bp->link_params.speed_cap_mask[idx] &
11015					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11016			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11017	}
11018
11019	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11020		       bp->port.supported[1]);
11021}
11022
11023static void bnx2x_link_settings_requested(struct bnx2x *bp)
11024{
11025	u32 link_config, idx, cfg_size = 0;
11026	bp->port.advertising[0] = 0;
11027	bp->port.advertising[1] = 0;
11028	switch (bp->link_params.num_phys) {
11029	case 1:
11030	case 2:
11031		cfg_size = 1;
11032		break;
11033	case 3:
11034		cfg_size = 2;
11035		break;
11036	}
11037	for (idx = 0; idx < cfg_size; idx++) {
11038		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11039		link_config = bp->port.link_config[idx];
11040		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11041		case PORT_FEATURE_LINK_SPEED_AUTO:
11042			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11043				bp->link_params.req_line_speed[idx] =
11044					SPEED_AUTO_NEG;
11045				bp->port.advertising[idx] |=
11046					bp->port.supported[idx];
11047				if (bp->link_params.phy[EXT_PHY1].type ==
11048				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11049					bp->port.advertising[idx] |=
11050					(SUPPORTED_100baseT_Half |
11051					 SUPPORTED_100baseT_Full);
11052			} else {
11053				/* force 10G, no AN */
11054				bp->link_params.req_line_speed[idx] =
11055					SPEED_10000;
11056				bp->port.advertising[idx] |=
11057					(ADVERTISED_10000baseT_Full |
11058					 ADVERTISED_FIBRE);
11059				continue;
11060			}
11061			break;
11062
11063		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11064			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11065				bp->link_params.req_line_speed[idx] =
11066					SPEED_10;
11067				bp->port.advertising[idx] |=
11068					(ADVERTISED_10baseT_Full |
11069					 ADVERTISED_TP);
11070			} else {
11071				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11072					    link_config,
11073				    bp->link_params.speed_cap_mask[idx]);
11074				return;
11075			}
11076			break;
11077
11078		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11079			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11080				bp->link_params.req_line_speed[idx] =
11081					SPEED_10;
11082				bp->link_params.req_duplex[idx] =
11083					DUPLEX_HALF;
11084				bp->port.advertising[idx] |=
11085					(ADVERTISED_10baseT_Half |
11086					 ADVERTISED_TP);
11087			} else {
11088				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11089					    link_config,
11090					  bp->link_params.speed_cap_mask[idx]);
11091				return;
11092			}
11093			break;
11094
11095		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11096			if (bp->port.supported[idx] &
11097			    SUPPORTED_100baseT_Full) {
11098				bp->link_params.req_line_speed[idx] =
11099					SPEED_100;
11100				bp->port.advertising[idx] |=
11101					(ADVERTISED_100baseT_Full |
11102					 ADVERTISED_TP);
11103			} else {
11104				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11105					    link_config,
11106					  bp->link_params.speed_cap_mask[idx]);
11107				return;
11108			}
11109			break;
11110
11111		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11112			if (bp->port.supported[idx] &
11113			    SUPPORTED_100baseT_Half) {
11114				bp->link_params.req_line_speed[idx] =
11115								SPEED_100;
11116				bp->link_params.req_duplex[idx] =
11117								DUPLEX_HALF;
11118				bp->port.advertising[idx] |=
11119					(ADVERTISED_100baseT_Half |
11120					 ADVERTISED_TP);
11121			} else {
11122				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11123				    link_config,
11124				    bp->link_params.speed_cap_mask[idx]);
11125				return;
11126			}
11127			break;
11128
11129		case PORT_FEATURE_LINK_SPEED_1G:
11130			if (bp->port.supported[idx] &
11131			    SUPPORTED_1000baseT_Full) {
11132				bp->link_params.req_line_speed[idx] =
11133					SPEED_1000;
11134				bp->port.advertising[idx] |=
11135					(ADVERTISED_1000baseT_Full |
11136					 ADVERTISED_TP);
11137			} else {
11138				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11139				    link_config,
11140				    bp->link_params.speed_cap_mask[idx]);
11141				return;
11142			}
11143			break;
11144
11145		case PORT_FEATURE_LINK_SPEED_2_5G:
11146			if (bp->port.supported[idx] &
11147			    SUPPORTED_2500baseX_Full) {
11148				bp->link_params.req_line_speed[idx] =
11149					SPEED_2500;
11150				bp->port.advertising[idx] |=
11151					(ADVERTISED_2500baseX_Full |
11152						ADVERTISED_TP);
11153			} else {
11154				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11155				    link_config,
11156				    bp->link_params.speed_cap_mask[idx]);
11157				return;
11158			}
11159			break;
11160
11161		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11162			if (bp->port.supported[idx] &
11163			    SUPPORTED_10000baseT_Full) {
11164				bp->link_params.req_line_speed[idx] =
11165					SPEED_10000;
11166				bp->port.advertising[idx] |=
11167					(ADVERTISED_10000baseT_Full |
11168						ADVERTISED_FIBRE);
11169			} else {
11170				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11171				    link_config,
11172				    bp->link_params.speed_cap_mask[idx]);
11173				return;
11174			}
11175			break;
11176		case PORT_FEATURE_LINK_SPEED_20G:
11177			bp->link_params.req_line_speed[idx] = SPEED_20000;
11178
11179			break;
11180		default:
11181			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11182				  link_config);
11183				bp->link_params.req_line_speed[idx] =
11184							SPEED_AUTO_NEG;
11185				bp->port.advertising[idx] =
11186						bp->port.supported[idx];
11187			break;
11188		}
11189
11190		bp->link_params.req_flow_ctrl[idx] = (link_config &
11191					 PORT_FEATURE_FLOW_CONTROL_MASK);
11192		if (bp->link_params.req_flow_ctrl[idx] ==
11193		    BNX2X_FLOW_CTRL_AUTO) {
11194			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11195				bp->link_params.req_flow_ctrl[idx] =
11196							BNX2X_FLOW_CTRL_NONE;
11197			else
11198				bnx2x_set_requested_fc(bp);
11199		}
11200
11201		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11202			       bp->link_params.req_line_speed[idx],
11203			       bp->link_params.req_duplex[idx],
11204			       bp->link_params.req_flow_ctrl[idx],
11205			       bp->port.advertising[idx]);
11206	}
11207}
11208
11209static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11210{
11211	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11212	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11213	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11214	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11215}
11216
11217static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11218{
11219	int port = BP_PORT(bp);
11220	u32 config;
11221	u32 ext_phy_type, ext_phy_config, eee_mode;
11222
11223	bp->link_params.bp = bp;
11224	bp->link_params.port = port;
11225
11226	bp->link_params.lane_config =
11227		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11228
11229	bp->link_params.speed_cap_mask[0] =
11230		SHMEM_RD(bp,
11231			 dev_info.port_hw_config[port].speed_capability_mask) &
11232		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11233	bp->link_params.speed_cap_mask[1] =
11234		SHMEM_RD(bp,
11235			 dev_info.port_hw_config[port].speed_capability_mask2) &
11236		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11237	bp->port.link_config[0] =
11238		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11239
11240	bp->port.link_config[1] =
11241		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11242
11243	bp->link_params.multi_phy_config =
11244		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11245	/* If the device is capable of WoL, set the default state according
11246	 * to the HW
11247	 */
11248	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11249	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11250		   (config & PORT_FEATURE_WOL_ENABLED));
11251
11252	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11253	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11254		bp->flags |= NO_ISCSI_FLAG;
11255	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11256	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11257		bp->flags |= NO_FCOE_FLAG;
11258
11259	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11260		       bp->link_params.lane_config,
11261		       bp->link_params.speed_cap_mask[0],
11262		       bp->port.link_config[0]);
11263
11264	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11265				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11266	bnx2x_phy_probe(&bp->link_params);
11267	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11268
11269	bnx2x_link_settings_requested(bp);
11270
11271	/*
11272	 * If connected directly, work with the internal PHY, otherwise, work
11273	 * with the external PHY
11274	 */
11275	ext_phy_config =
11276		SHMEM_RD(bp,
11277			 dev_info.port_hw_config[port].external_phy_config);
11278	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11279	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11280		bp->mdio.prtad = bp->port.phy_addr;
11281
11282	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11283		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11284		bp->mdio.prtad =
11285			XGXS_EXT_PHY_ADDR(ext_phy_config);
11286
11287	/* Configure link feature according to nvram value */
11288	eee_mode = (((SHMEM_RD(bp, dev_info.
11289		      port_feature_config[port].eee_power_mode)) &
11290		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11291		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11292	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11293		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11294					   EEE_MODE_ENABLE_LPI |
11295					   EEE_MODE_OUTPUT_TIME;
11296	} else {
11297		bp->link_params.eee_mode = 0;
11298	}
11299}
11300
11301void bnx2x_get_iscsi_info(struct bnx2x *bp)
11302{
11303	u32 no_flags = NO_ISCSI_FLAG;
11304	int port = BP_PORT(bp);
11305	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11306				drv_lic_key[port].max_iscsi_conn);
11307
11308	if (!CNIC_SUPPORT(bp)) {
11309		bp->flags |= no_flags;
11310		return;
11311	}
11312
11313	/* Get the number of maximum allowed iSCSI connections */
11314	bp->cnic_eth_dev.max_iscsi_conn =
11315		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11316		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11317
11318	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11319		       bp->cnic_eth_dev.max_iscsi_conn);
11320
11321	/*
11322	 * If maximum allowed number of connections is zero -
11323	 * disable the feature.
11324	 */
11325	if (!bp->cnic_eth_dev.max_iscsi_conn)
11326		bp->flags |= no_flags;
11327}
11328
11329static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11330{
11331	/* Port info */
11332	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11333		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11334	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11335		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11336
11337	/* Node info */
11338	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11339		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11340	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11341		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11342}
11343
11344static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11345{
11346	u8 count = 0;
11347
11348	if (IS_MF(bp)) {
11349		u8 fid;
11350
11351		/* iterate over absolute function ids for this path: */
11352		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11353			if (IS_MF_SD(bp)) {
11354				u32 cfg = MF_CFG_RD(bp,
11355						    func_mf_config[fid].config);
11356
11357				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11358				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11359					    FUNC_MF_CFG_PROTOCOL_FCOE))
11360					count++;
11361			} else {
11362				u32 cfg = MF_CFG_RD(bp,
11363						    func_ext_config[fid].
11364								      func_cfg);
11365
11366				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11367				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11368					count++;
11369			}
11370		}
11371	} else { /* SF */
11372		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11373
11374		for (port = 0; port < port_cnt; port++) {
11375			u32 lic = SHMEM_RD(bp,
11376					   drv_lic_key[port].max_fcoe_conn) ^
11377				  FW_ENCODE_32BIT_PATTERN;
11378			if (lic)
11379				count++;
11380		}
11381	}
11382
11383	return count;
11384}
11385
11386static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11387{
11388	int port = BP_PORT(bp);
11389	int func = BP_ABS_FUNC(bp);
11390	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11391				drv_lic_key[port].max_fcoe_conn);
11392	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11393
11394	if (!CNIC_SUPPORT(bp)) {
11395		bp->flags |= NO_FCOE_FLAG;
11396		return;
11397	}
11398
11399	/* Get the number of maximum allowed FCoE connections */
11400	bp->cnic_eth_dev.max_fcoe_conn =
11401		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11402		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11403
11404	/* Calculate the number of maximum allowed FCoE tasks */
11405	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11406
11407	/* check if FCoE resources must be shared between different functions */
11408	if (num_fcoe_func)
11409		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11410
11411	/* Read the WWN: */
11412	if (!IS_MF(bp)) {
11413		/* Port info */
11414		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11415			SHMEM_RD(bp,
11416				 dev_info.port_hw_config[port].
11417				 fcoe_wwn_port_name_upper);
11418		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11419			SHMEM_RD(bp,
11420				 dev_info.port_hw_config[port].
11421				 fcoe_wwn_port_name_lower);
11422
11423		/* Node info */
11424		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11425			SHMEM_RD(bp,
11426				 dev_info.port_hw_config[port].
11427				 fcoe_wwn_node_name_upper);
11428		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11429			SHMEM_RD(bp,
11430				 dev_info.port_hw_config[port].
11431				 fcoe_wwn_node_name_lower);
11432	} else if (!IS_MF_SD(bp)) {
11433		/* Read the WWN info only if the FCoE feature is enabled for
11434		 * this function.
11435		 */
11436		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11437			bnx2x_get_ext_wwn_info(bp, func);
11438	} else {
11439		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11440			bnx2x_get_ext_wwn_info(bp, func);
11441	}
11442
11443	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11444
11445	/*
11446	 * If maximum allowed number of connections is zero -
11447	 * disable the feature.
11448	 */
11449	if (!bp->cnic_eth_dev.max_fcoe_conn)
11450		bp->flags |= NO_FCOE_FLAG;
11451}
11452
11453static void bnx2x_get_cnic_info(struct bnx2x *bp)
11454{
11455	/*
11456	 * iSCSI may be dynamically disabled but reading
11457	 * info here we will decrease memory usage by driver
11458	 * if the feature is disabled for good
11459	 */
11460	bnx2x_get_iscsi_info(bp);
11461	bnx2x_get_fcoe_info(bp);
11462}
11463
11464static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11465{
11466	u32 val, val2;
11467	int func = BP_ABS_FUNC(bp);
11468	int port = BP_PORT(bp);
11469	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11470	u8 *fip_mac = bp->fip_mac;
11471
11472	if (IS_MF(bp)) {
11473		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11474		 * FCoE MAC then the appropriate feature should be disabled.
11475		 * In non SD mode features configuration comes from struct
11476		 * func_ext_config.
11477		 */
11478		if (!IS_MF_SD(bp)) {
11479			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11480			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11481				val2 = MF_CFG_RD(bp, func_ext_config[func].
11482						 iscsi_mac_addr_upper);
11483				val = MF_CFG_RD(bp, func_ext_config[func].
11484						iscsi_mac_addr_lower);
11485				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11486				BNX2X_DEV_INFO
11487					("Read iSCSI MAC: %pM\n", iscsi_mac);
11488			} else {
11489				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11490			}
11491
11492			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11493				val2 = MF_CFG_RD(bp, func_ext_config[func].
11494						 fcoe_mac_addr_upper);
11495				val = MF_CFG_RD(bp, func_ext_config[func].
11496						fcoe_mac_addr_lower);
11497				bnx2x_set_mac_buf(fip_mac, val, val2);
11498				BNX2X_DEV_INFO
11499					("Read FCoE L2 MAC: %pM\n", fip_mac);
11500			} else {
11501				bp->flags |= NO_FCOE_FLAG;
11502			}
11503
11504			bp->mf_ext_config = cfg;
11505
11506		} else { /* SD MODE */
11507			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11508				/* use primary mac as iscsi mac */
11509				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11510
11511				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11512				BNX2X_DEV_INFO
11513					("Read iSCSI MAC: %pM\n", iscsi_mac);
11514			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11515				/* use primary mac as fip mac */
11516				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11517				BNX2X_DEV_INFO("SD FCoE MODE\n");
11518				BNX2X_DEV_INFO
11519					("Read FIP MAC: %pM\n", fip_mac);
11520			}
11521		}
11522
11523		/* If this is a storage-only interface, use SAN mac as
11524		 * primary MAC. Notice that for SD this is already the case,
11525		 * as the SAN mac was copied from the primary MAC.
11526		 */
11527		if (IS_MF_FCOE_AFEX(bp))
11528			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11529	} else {
11530		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11531				iscsi_mac_upper);
11532		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11533			       iscsi_mac_lower);
11534		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11535
11536		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11537				fcoe_fip_mac_upper);
11538		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11539			       fcoe_fip_mac_lower);
11540		bnx2x_set_mac_buf(fip_mac, val, val2);
11541	}
11542
11543	/* Disable iSCSI OOO if MAC configuration is invalid. */
11544	if (!is_valid_ether_addr(iscsi_mac)) {
11545		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11546		memset(iscsi_mac, 0, ETH_ALEN);
11547	}
11548
11549	/* Disable FCoE if MAC configuration is invalid. */
11550	if (!is_valid_ether_addr(fip_mac)) {
11551		bp->flags |= NO_FCOE_FLAG;
11552		memset(bp->fip_mac, 0, ETH_ALEN);
11553	}
11554}
11555
11556static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11557{
11558	u32 val, val2;
11559	int func = BP_ABS_FUNC(bp);
11560	int port = BP_PORT(bp);
11561
11562	/* Zero primary MAC configuration */
11563	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11564
11565	if (BP_NOMCP(bp)) {
11566		BNX2X_ERROR("warning: random MAC workaround active\n");
11567		eth_hw_addr_random(bp->dev);
11568	} else if (IS_MF(bp)) {
11569		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11570		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11571		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11572		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11573			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11574
11575		if (CNIC_SUPPORT(bp))
11576			bnx2x_get_cnic_mac_hwinfo(bp);
11577	} else {
11578		/* in SF read MACs from port configuration */
11579		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11580		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11581		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11582
11583		if (CNIC_SUPPORT(bp))
11584			bnx2x_get_cnic_mac_hwinfo(bp);
11585	}
11586
11587	if (!BP_NOMCP(bp)) {
11588		/* Read physical port identifier from shmem */
11589		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11590		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11591		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11592		bp->flags |= HAS_PHYS_PORT_ID;
11593	}
11594
11595	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11596
11597	if (!is_valid_ether_addr(bp->dev->dev_addr))
11598		dev_err(&bp->pdev->dev,
11599			"bad Ethernet MAC address configuration: %pM\n"
11600			"change it manually before bringing up the appropriate network interface\n",
11601			bp->dev->dev_addr);
11602}
11603
11604static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11605{
11606	int tmp;
11607	u32 cfg;
11608
11609	if (IS_VF(bp))
11610		return 0;
11611
11612	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11613		/* Take function: tmp = func */
11614		tmp = BP_ABS_FUNC(bp);
11615		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11616		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11617	} else {
11618		/* Take port: tmp = port */
11619		tmp = BP_PORT(bp);
11620		cfg = SHMEM_RD(bp,
11621			       dev_info.port_hw_config[tmp].generic_features);
11622		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11623	}
11624	return cfg;
11625}
11626
11627static void validate_set_si_mode(struct bnx2x *bp)
11628{
11629	u8 func = BP_ABS_FUNC(bp);
11630	u32 val;
11631
11632	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11633
11634	/* check for legal mac (upper bytes) */
11635	if (val != 0xffff) {
11636		bp->mf_mode = MULTI_FUNCTION_SI;
11637		bp->mf_config[BP_VN(bp)] =
11638			MF_CFG_RD(bp, func_mf_config[func].config);
11639	} else
11640		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11641}
11642
11643static int bnx2x_get_hwinfo(struct bnx2x *bp)
11644{
11645	int /*abs*/func = BP_ABS_FUNC(bp);
11646	int vn;
11647	u32 val = 0, val2 = 0;
11648	int rc = 0;
11649
11650	bnx2x_get_common_hwinfo(bp);
11651
11652	/*
11653	 * initialize IGU parameters
11654	 */
11655	if (CHIP_IS_E1x(bp)) {
11656		bp->common.int_block = INT_BLOCK_HC;
11657
11658		bp->igu_dsb_id = DEF_SB_IGU_ID;
11659		bp->igu_base_sb = 0;
11660	} else {
11661		bp->common.int_block = INT_BLOCK_IGU;
11662
11663		/* do not allow device reset during IGU info processing */
11664		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11665
11666		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11667
11668		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11669			int tout = 5000;
11670
11671			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11672
11673			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11674			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11675			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11676
11677			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11678				tout--;
11679				usleep_range(1000, 2000);
11680			}
11681
11682			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11683				dev_err(&bp->pdev->dev,
11684					"FORCING Normal Mode failed!!!\n");
11685				bnx2x_release_hw_lock(bp,
11686						      HW_LOCK_RESOURCE_RESET);
11687				return -EPERM;
11688			}
11689		}
11690
11691		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11692			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11693			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11694		} else
11695			BNX2X_DEV_INFO("IGU Normal Mode\n");
11696
11697		rc = bnx2x_get_igu_cam_info(bp);
11698		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11699		if (rc)
11700			return rc;
11701	}
11702
11703	/*
11704	 * set base FW non-default (fast path) status block id, this value is
11705	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11706	 * determine the id used by the FW.
11707	 */
11708	if (CHIP_IS_E1x(bp))
11709		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11710	else /*
11711	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11712	      * the same queue are indicated on the same IGU SB). So we prefer
11713	      * FW and IGU SBs to be the same value.
11714	      */
11715		bp->base_fw_ndsb = bp->igu_base_sb;
11716
11717	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11718		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11719		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11720
11721	/*
11722	 * Initialize MF configuration
11723	 */
11724
11725	bp->mf_ov = 0;
11726	bp->mf_mode = 0;
11727	bp->mf_sub_mode = 0;
11728	vn = BP_VN(bp);
11729
11730	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11731		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11732			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11733			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11734
11735		if (SHMEM2_HAS(bp, mf_cfg_addr))
11736			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11737		else
11738			bp->common.mf_cfg_base = bp->common.shmem_base +
11739				offsetof(struct shmem_region, func_mb) +
11740				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11741		/*
11742		 * get mf configuration:
11743		 * 1. Existence of MF configuration
11744		 * 2. MAC address must be legal (check only upper bytes)
11745		 *    for  Switch-Independent mode;
11746		 *    OVLAN must be legal for Switch-Dependent mode
11747		 * 3. SF_MODE configures specific MF mode
11748		 */
11749		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11750			/* get mf configuration */
11751			val = SHMEM_RD(bp,
11752				       dev_info.shared_feature_config.config);
11753			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11754
11755			switch (val) {
11756			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11757				validate_set_si_mode(bp);
11758				break;
11759			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11760				if ((!CHIP_IS_E1x(bp)) &&
11761				    (MF_CFG_RD(bp, func_mf_config[func].
11762					       mac_upper) != 0xffff) &&
11763				    (SHMEM2_HAS(bp,
11764						afex_driver_support))) {
11765					bp->mf_mode = MULTI_FUNCTION_AFEX;
11766					bp->mf_config[vn] = MF_CFG_RD(bp,
11767						func_mf_config[func].config);
11768				} else {
11769					BNX2X_DEV_INFO("can not configure afex mode\n");
11770				}
11771				break;
11772			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11773				/* get OV configuration */
11774				val = MF_CFG_RD(bp,
11775					func_mf_config[FUNC_0].e1hov_tag);
11776				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11777
11778				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11779					bp->mf_mode = MULTI_FUNCTION_SD;
11780					bp->mf_config[vn] = MF_CFG_RD(bp,
11781						func_mf_config[func].config);
11782				} else
11783					BNX2X_DEV_INFO("illegal OV for SD\n");
11784				break;
11785			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11786				bp->mf_mode = MULTI_FUNCTION_SD;
11787				bp->mf_sub_mode = SUB_MF_MODE_UFP;
11788				bp->mf_config[vn] =
11789					MF_CFG_RD(bp,
11790						  func_mf_config[func].config);
11791				break;
11792			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11793				bp->mf_config[vn] = 0;
11794				break;
11795			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11796				val2 = SHMEM_RD(bp,
11797					dev_info.shared_hw_config.config_3);
11798				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11799				switch (val2) {
11800				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11801					validate_set_si_mode(bp);
11802					bp->mf_sub_mode =
11803							SUB_MF_MODE_NPAR1_DOT_5;
11804					break;
11805				default:
11806					/* Unknown configuration */
11807					bp->mf_config[vn] = 0;
11808					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11809						       val);
11810				}
11811				break;
11812			default:
11813				/* Unknown configuration: reset mf_config */
11814				bp->mf_config[vn] = 0;
11815				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11816			}
11817		}
11818
11819		BNX2X_DEV_INFO("%s function mode\n",
11820			       IS_MF(bp) ? "multi" : "single");
11821
11822		switch (bp->mf_mode) {
11823		case MULTI_FUNCTION_SD:
11824			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11825			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11826			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11827				bp->mf_ov = val;
11828				bp->path_has_ovlan = true;
11829
11830				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11831					       func, bp->mf_ov, bp->mf_ov);
11832			} else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11833				dev_err(&bp->pdev->dev,
11834					"Unexpected - no valid MF OV for func %d in UFP mode\n",
11835					func);
11836				bp->path_has_ovlan = true;
11837			} else {
11838				dev_err(&bp->pdev->dev,
11839					"No valid MF OV for func %d, aborting\n",
11840					func);
11841				return -EPERM;
11842			}
11843			break;
11844		case MULTI_FUNCTION_AFEX:
11845			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11846			break;
11847		case MULTI_FUNCTION_SI:
11848			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11849				       func);
11850			break;
11851		default:
11852			if (vn) {
11853				dev_err(&bp->pdev->dev,
11854					"VN %d is in a single function mode, aborting\n",
11855					vn);
11856				return -EPERM;
11857			}
11858			break;
11859		}
11860
11861		/* check if other port on the path needs ovlan:
11862		 * Since MF configuration is shared between ports
11863		 * Possible mixed modes are only
11864		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11865		 */
11866		if (CHIP_MODE_IS_4_PORT(bp) &&
11867		    !bp->path_has_ovlan &&
11868		    !IS_MF(bp) &&
11869		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11870			u8 other_port = !BP_PORT(bp);
11871			u8 other_func = BP_PATH(bp) + 2*other_port;
11872			val = MF_CFG_RD(bp,
11873					func_mf_config[other_func].e1hov_tag);
11874			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11875				bp->path_has_ovlan = true;
11876		}
11877	}
11878
11879	/* adjust igu_sb_cnt to MF for E1H */
11880	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11881		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11882
11883	/* port info */
11884	bnx2x_get_port_hwinfo(bp);
11885
11886	/* Get MAC addresses */
11887	bnx2x_get_mac_hwinfo(bp);
11888
11889	bnx2x_get_cnic_info(bp);
11890
11891	return rc;
11892}
11893
11894static void bnx2x_read_fwinfo(struct bnx2x *bp)
11895{
11896	int cnt, i, block_end, rodi;
11897	char vpd_start[BNX2X_VPD_LEN+1];
11898	char str_id_reg[VENDOR_ID_LEN+1];
11899	char str_id_cap[VENDOR_ID_LEN+1];
11900	char *vpd_data;
11901	char *vpd_extended_data = NULL;
11902	u8 len;
11903
11904	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11905	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11906
11907	if (cnt < BNX2X_VPD_LEN)
11908		goto out_not_found;
11909
11910	/* VPD RO tag should be first tag after identifier string, hence
11911	 * we should be able to find it in first BNX2X_VPD_LEN chars
11912	 */
11913	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11914			     PCI_VPD_LRDT_RO_DATA);
11915	if (i < 0)
11916		goto out_not_found;
11917
11918	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11919		    pci_vpd_lrdt_size(&vpd_start[i]);
11920
11921	i += PCI_VPD_LRDT_TAG_SIZE;
11922
11923	if (block_end > BNX2X_VPD_LEN) {
11924		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11925		if (vpd_extended_data  == NULL)
11926			goto out_not_found;
11927
11928		/* read rest of vpd image into vpd_extended_data */
11929		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11930		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11931				   block_end - BNX2X_VPD_LEN,
11932				   vpd_extended_data + BNX2X_VPD_LEN);
11933		if (cnt < (block_end - BNX2X_VPD_LEN))
11934			goto out_not_found;
11935		vpd_data = vpd_extended_data;
11936	} else
11937		vpd_data = vpd_start;
11938
11939	/* now vpd_data holds full vpd content in both cases */
11940
11941	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11942				   PCI_VPD_RO_KEYWORD_MFR_ID);
11943	if (rodi < 0)
11944		goto out_not_found;
11945
11946	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11947
11948	if (len != VENDOR_ID_LEN)
11949		goto out_not_found;
11950
11951	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11952
11953	/* vendor specific info */
11954	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11955	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11956	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11957	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11958
11959		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11960						PCI_VPD_RO_KEYWORD_VENDOR0);
11961		if (rodi >= 0) {
11962			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11963
11964			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11965
11966			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11967				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11968				bp->fw_ver[len] = ' ';
11969			}
11970		}
11971		kfree(vpd_extended_data);
11972		return;
11973	}
11974out_not_found:
11975	kfree(vpd_extended_data);
11976	return;
11977}
11978
11979static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11980{
11981	u32 flags = 0;
11982
11983	if (CHIP_REV_IS_FPGA(bp))
11984		SET_FLAGS(flags, MODE_FPGA);
11985	else if (CHIP_REV_IS_EMUL(bp))
11986		SET_FLAGS(flags, MODE_EMUL);
11987	else
11988		SET_FLAGS(flags, MODE_ASIC);
11989
11990	if (CHIP_MODE_IS_4_PORT(bp))
11991		SET_FLAGS(flags, MODE_PORT4);
11992	else
11993		SET_FLAGS(flags, MODE_PORT2);
11994
11995	if (CHIP_IS_E2(bp))
11996		SET_FLAGS(flags, MODE_E2);
11997	else if (CHIP_IS_E3(bp)) {
11998		SET_FLAGS(flags, MODE_E3);
11999		if (CHIP_REV(bp) == CHIP_REV_Ax)
12000			SET_FLAGS(flags, MODE_E3_A0);
12001		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12002			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12003	}
12004
12005	if (IS_MF(bp)) {
12006		SET_FLAGS(flags, MODE_MF);
12007		switch (bp->mf_mode) {
12008		case MULTI_FUNCTION_SD:
12009			SET_FLAGS(flags, MODE_MF_SD);
12010			break;
12011		case MULTI_FUNCTION_SI:
12012			SET_FLAGS(flags, MODE_MF_SI);
12013			break;
12014		case MULTI_FUNCTION_AFEX:
12015			SET_FLAGS(flags, MODE_MF_AFEX);
12016			break;
12017		}
12018	} else
12019		SET_FLAGS(flags, MODE_SF);
12020
12021#if defined(__LITTLE_ENDIAN)
12022	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12023#else /*(__BIG_ENDIAN)*/
12024	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12025#endif
12026	INIT_MODE_FLAGS(bp) = flags;
12027}
12028
12029static int bnx2x_init_bp(struct bnx2x *bp)
12030{
12031	int func;
12032	int rc;
12033
12034	mutex_init(&bp->port.phy_mutex);
12035	mutex_init(&bp->fw_mb_mutex);
12036	mutex_init(&bp->drv_info_mutex);
12037	bp->drv_info_mng_owner = false;
12038	spin_lock_init(&bp->stats_lock);
12039	sema_init(&bp->stats_sema, 1);
12040
12041	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12042	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12043	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12044	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12045	if (IS_PF(bp)) {
12046		rc = bnx2x_get_hwinfo(bp);
12047		if (rc)
12048			return rc;
12049	} else {
12050		eth_zero_addr(bp->dev->dev_addr);
12051	}
12052
12053	bnx2x_set_modes_bitmap(bp);
12054
12055	rc = bnx2x_alloc_mem_bp(bp);
12056	if (rc)
12057		return rc;
12058
12059	bnx2x_read_fwinfo(bp);
12060
12061	func = BP_FUNC(bp);
12062
12063	/* need to reset chip if undi was active */
12064	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12065		/* init fw_seq */
12066		bp->fw_seq =
12067			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12068							DRV_MSG_SEQ_NUMBER_MASK;
12069		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12070
12071		rc = bnx2x_prev_unload(bp);
12072		if (rc) {
12073			bnx2x_free_mem_bp(bp);
12074			return rc;
12075		}
12076	}
12077
12078	if (CHIP_REV_IS_FPGA(bp))
12079		dev_err(&bp->pdev->dev, "FPGA detected\n");
12080
12081	if (BP_NOMCP(bp) && (func == 0))
12082		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12083
12084	bp->disable_tpa = disable_tpa;
12085	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12086	/* Reduce memory usage in kdump environment by disabling TPA */
12087	bp->disable_tpa |= is_kdump_kernel();
12088
12089	/* Set TPA flags */
12090	if (bp->disable_tpa) {
12091		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12092		bp->dev->features &= ~NETIF_F_LRO;
12093	} else {
12094		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12095		bp->dev->features |= NETIF_F_LRO;
12096	}
12097
12098	if (CHIP_IS_E1(bp))
12099		bp->dropless_fc = 0;
12100	else
12101		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12102
12103	bp->mrrs = mrrs;
12104
12105	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12106	if (IS_VF(bp))
12107		bp->rx_ring_size = MAX_RX_AVAIL;
12108
12109	/* make sure that the numbers are in the right granularity */
12110	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12111	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12112
12113	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12114
12115	init_timer(&bp->timer);
12116	bp->timer.expires = jiffies + bp->current_interval;
12117	bp->timer.data = (unsigned long) bp;
12118	bp->timer.function = bnx2x_timer;
12119
12120	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12121	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12122	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12123	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12124		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12125		bnx2x_dcbx_init_params(bp);
12126	} else {
12127		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12128	}
12129
12130	if (CHIP_IS_E1x(bp))
12131		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12132	else
12133		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12134
12135	/* multiple tx priority */
12136	if (IS_VF(bp))
12137		bp->max_cos = 1;
12138	else if (CHIP_IS_E1x(bp))
12139		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12140	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12141		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12142	else if (CHIP_IS_E3B0(bp))
12143		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12144	else
12145		BNX2X_ERR("unknown chip %x revision %x\n",
12146			  CHIP_NUM(bp), CHIP_REV(bp));
12147	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12148
12149	/* We need at least one default status block for slow-path events,
12150	 * second status block for the L2 queue, and a third status block for
12151	 * CNIC if supported.
12152	 */
12153	if (IS_VF(bp))
12154		bp->min_msix_vec_cnt = 1;
12155	else if (CNIC_SUPPORT(bp))
12156		bp->min_msix_vec_cnt = 3;
12157	else /* PF w/o cnic */
12158		bp->min_msix_vec_cnt = 2;
12159	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12160
12161	bp->dump_preset_idx = 1;
12162
12163	if (CHIP_IS_E3B0(bp))
12164		bp->flags |= PTP_SUPPORTED;
12165
12166	return rc;
12167}
12168
12169/****************************************************************************
12170* General service functions
12171****************************************************************************/
12172
12173/*
12174 * net_device service functions
12175 */
12176
12177/* called with rtnl_lock */
12178static int bnx2x_open(struct net_device *dev)
12179{
12180	struct bnx2x *bp = netdev_priv(dev);
12181	int rc;
12182
12183	bp->stats_init = true;
12184
12185	netif_carrier_off(dev);
12186
12187	bnx2x_set_power_state(bp, PCI_D0);
12188
12189	/* If parity had happen during the unload, then attentions
12190	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12191	 * want the first function loaded on the current engine to
12192	 * complete the recovery.
12193	 * Parity recovery is only relevant for PF driver.
12194	 */
12195	if (IS_PF(bp)) {
12196		int other_engine = BP_PATH(bp) ? 0 : 1;
12197		bool other_load_status, load_status;
12198		bool global = false;
12199
12200		other_load_status = bnx2x_get_load_status(bp, other_engine);
12201		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12202		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12203		    bnx2x_chk_parity_attn(bp, &global, true)) {
12204			do {
12205				/* If there are attentions and they are in a
12206				 * global blocks, set the GLOBAL_RESET bit
12207				 * regardless whether it will be this function
12208				 * that will complete the recovery or not.
12209				 */
12210				if (global)
12211					bnx2x_set_reset_global(bp);
12212
12213				/* Only the first function on the current
12214				 * engine should try to recover in open. In case
12215				 * of attentions in global blocks only the first
12216				 * in the chip should try to recover.
12217				 */
12218				if ((!load_status &&
12219				     (!global || !other_load_status)) &&
12220				      bnx2x_trylock_leader_lock(bp) &&
12221				      !bnx2x_leader_reset(bp)) {
12222					netdev_info(bp->dev,
12223						    "Recovered in open\n");
12224					break;
12225				}
12226
12227				/* recovery has failed... */
12228				bnx2x_set_power_state(bp, PCI_D3hot);
12229				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12230
12231				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12232					  "If you still see this message after a few retries then power cycle is required.\n");
12233
12234				return -EAGAIN;
12235			} while (0);
12236		}
12237	}
12238
12239	bp->recovery_state = BNX2X_RECOVERY_DONE;
12240	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12241	if (rc)
12242		return rc;
12243	return 0;
12244}
12245
12246/* called with rtnl_lock */
12247static int bnx2x_close(struct net_device *dev)
12248{
12249	struct bnx2x *bp = netdev_priv(dev);
12250
12251	/* Unload the driver, release IRQs */
12252	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12253
12254	return 0;
12255}
12256
12257static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12258				      struct bnx2x_mcast_ramrod_params *p)
12259{
12260	int mc_count = netdev_mc_count(bp->dev);
12261	struct bnx2x_mcast_list_elem *mc_mac =
12262		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12263	struct netdev_hw_addr *ha;
12264
12265	if (!mc_mac)
12266		return -ENOMEM;
12267
12268	INIT_LIST_HEAD(&p->mcast_list);
12269
12270	netdev_for_each_mc_addr(ha, bp->dev) {
12271		mc_mac->mac = bnx2x_mc_addr(ha);
12272		list_add_tail(&mc_mac->link, &p->mcast_list);
12273		mc_mac++;
12274	}
12275
12276	p->mcast_list_len = mc_count;
12277
12278	return 0;
12279}
12280
12281static void bnx2x_free_mcast_macs_list(
12282	struct bnx2x_mcast_ramrod_params *p)
12283{
12284	struct bnx2x_mcast_list_elem *mc_mac =
12285		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12286				 link);
12287
12288	WARN_ON(!mc_mac);
12289	kfree(mc_mac);
12290}
12291
12292/**
12293 * bnx2x_set_uc_list - configure a new unicast MACs list.
12294 *
12295 * @bp: driver handle
12296 *
12297 * We will use zero (0) as a MAC type for these MACs.
12298 */
12299static int bnx2x_set_uc_list(struct bnx2x *bp)
12300{
12301	int rc;
12302	struct net_device *dev = bp->dev;
12303	struct netdev_hw_addr *ha;
12304	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12305	unsigned long ramrod_flags = 0;
12306
12307	/* First schedule a cleanup up of old configuration */
12308	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12309	if (rc < 0) {
12310		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12311		return rc;
12312	}
12313
12314	netdev_for_each_uc_addr(ha, dev) {
12315		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12316				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12317		if (rc == -EEXIST) {
12318			DP(BNX2X_MSG_SP,
12319			   "Failed to schedule ADD operations: %d\n", rc);
12320			/* do not treat adding same MAC as error */
12321			rc = 0;
12322
12323		} else if (rc < 0) {
12324
12325			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12326				  rc);
12327			return rc;
12328		}
12329	}
12330
12331	/* Execute the pending commands */
12332	__set_bit(RAMROD_CONT, &ramrod_flags);
12333	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12334				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12335}
12336
12337static int bnx2x_set_mc_list(struct bnx2x *bp)
12338{
12339	struct net_device *dev = bp->dev;
12340	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12341	int rc = 0;
12342
12343	rparam.mcast_obj = &bp->mcast_obj;
12344
12345	/* first, clear all configured multicast MACs */
12346	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12347	if (rc < 0) {
12348		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12349		return rc;
12350	}
12351
12352	/* then, configure a new MACs list */
12353	if (netdev_mc_count(dev)) {
12354		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12355		if (rc) {
12356			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12357				  rc);
12358			return rc;
12359		}
12360
12361		/* Now add the new MACs */
12362		rc = bnx2x_config_mcast(bp, &rparam,
12363					BNX2X_MCAST_CMD_ADD);
12364		if (rc < 0)
12365			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12366				  rc);
12367
12368		bnx2x_free_mcast_macs_list(&rparam);
12369	}
12370
12371	return rc;
12372}
12373
12374/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12375static void bnx2x_set_rx_mode(struct net_device *dev)
12376{
12377	struct bnx2x *bp = netdev_priv(dev);
12378
12379	if (bp->state != BNX2X_STATE_OPEN) {
12380		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12381		return;
12382	} else {
12383		/* Schedule an SP task to handle rest of change */
12384		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12385				       NETIF_MSG_IFUP);
12386	}
12387}
12388
12389void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12390{
12391	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12392
12393	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12394
12395	netif_addr_lock_bh(bp->dev);
12396
12397	if (bp->dev->flags & IFF_PROMISC) {
12398		rx_mode = BNX2X_RX_MODE_PROMISC;
12399	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12400		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12401		    CHIP_IS_E1(bp))) {
12402		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12403	} else {
12404		if (IS_PF(bp)) {
12405			/* some multicasts */
12406			if (bnx2x_set_mc_list(bp) < 0)
12407				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12408
12409			/* release bh lock, as bnx2x_set_uc_list might sleep */
12410			netif_addr_unlock_bh(bp->dev);
12411			if (bnx2x_set_uc_list(bp) < 0)
12412				rx_mode = BNX2X_RX_MODE_PROMISC;
12413			netif_addr_lock_bh(bp->dev);
12414		} else {
12415			/* configuring mcast to a vf involves sleeping (when we
12416			 * wait for the pf's response).
12417			 */
12418			bnx2x_schedule_sp_rtnl(bp,
12419					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12420		}
12421	}
12422
12423	bp->rx_mode = rx_mode;
12424	/* handle ISCSI SD mode */
12425	if (IS_MF_ISCSI_ONLY(bp))
12426		bp->rx_mode = BNX2X_RX_MODE_NONE;
12427
12428	/* Schedule the rx_mode command */
12429	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12430		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12431		netif_addr_unlock_bh(bp->dev);
12432		return;
12433	}
12434
12435	if (IS_PF(bp)) {
12436		bnx2x_set_storm_rx_mode(bp);
12437		netif_addr_unlock_bh(bp->dev);
12438	} else {
12439		/* VF will need to request the PF to make this change, and so
12440		 * the VF needs to release the bottom-half lock prior to the
12441		 * request (as it will likely require sleep on the VF side)
12442		 */
12443		netif_addr_unlock_bh(bp->dev);
12444		bnx2x_vfpf_storm_rx_mode(bp);
12445	}
12446}
12447
12448/* called with rtnl_lock */
12449static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12450			   int devad, u16 addr)
12451{
12452	struct bnx2x *bp = netdev_priv(netdev);
12453	u16 value;
12454	int rc;
12455
12456	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12457	   prtad, devad, addr);
12458
12459	/* The HW expects different devad if CL22 is used */
12460	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12461
12462	bnx2x_acquire_phy_lock(bp);
12463	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12464	bnx2x_release_phy_lock(bp);
12465	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12466
12467	if (!rc)
12468		rc = value;
12469	return rc;
12470}
12471
12472/* called with rtnl_lock */
12473static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12474			    u16 addr, u16 value)
12475{
12476	struct bnx2x *bp = netdev_priv(netdev);
12477	int rc;
12478
12479	DP(NETIF_MSG_LINK,
12480	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12481	   prtad, devad, addr, value);
12482
12483	/* The HW expects different devad if CL22 is used */
12484	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12485
12486	bnx2x_acquire_phy_lock(bp);
12487	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12488	bnx2x_release_phy_lock(bp);
12489	return rc;
12490}
12491
12492/* called with rtnl_lock */
12493static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12494{
12495	struct bnx2x *bp = netdev_priv(dev);
12496	struct mii_ioctl_data *mdio = if_mii(ifr);
12497
12498	if (!netif_running(dev))
12499		return -EAGAIN;
12500
12501	switch (cmd) {
12502	case SIOCSHWTSTAMP:
12503		return bnx2x_hwtstamp_ioctl(bp, ifr);
12504	default:
12505		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12506		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12507		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12508	}
12509}
12510
12511#ifdef CONFIG_NET_POLL_CONTROLLER
12512static void poll_bnx2x(struct net_device *dev)
12513{
12514	struct bnx2x *bp = netdev_priv(dev);
12515	int i;
12516
12517	for_each_eth_queue(bp, i) {
12518		struct bnx2x_fastpath *fp = &bp->fp[i];
12519		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12520	}
12521}
12522#endif
12523
12524static int bnx2x_validate_addr(struct net_device *dev)
12525{
12526	struct bnx2x *bp = netdev_priv(dev);
12527
12528	/* query the bulletin board for mac address configured by the PF */
12529	if (IS_VF(bp))
12530		bnx2x_sample_bulletin(bp);
12531
12532	if (!is_valid_ether_addr(dev->dev_addr)) {
12533		BNX2X_ERR("Non-valid Ethernet address\n");
12534		return -EADDRNOTAVAIL;
12535	}
12536	return 0;
12537}
12538
12539static int bnx2x_get_phys_port_id(struct net_device *netdev,
12540				  struct netdev_phys_port_id *ppid)
12541{
12542	struct bnx2x *bp = netdev_priv(netdev);
12543
12544	if (!(bp->flags & HAS_PHYS_PORT_ID))
12545		return -EOPNOTSUPP;
12546
12547	ppid->id_len = sizeof(bp->phys_port_id);
12548	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12549
12550	return 0;
12551}
12552
12553static const struct net_device_ops bnx2x_netdev_ops = {
12554	.ndo_open		= bnx2x_open,
12555	.ndo_stop		= bnx2x_close,
12556	.ndo_start_xmit		= bnx2x_start_xmit,
12557	.ndo_select_queue	= bnx2x_select_queue,
12558	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12559	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12560	.ndo_validate_addr	= bnx2x_validate_addr,
12561	.ndo_do_ioctl		= bnx2x_ioctl,
12562	.ndo_change_mtu		= bnx2x_change_mtu,
12563	.ndo_fix_features	= bnx2x_fix_features,
12564	.ndo_set_features	= bnx2x_set_features,
12565	.ndo_tx_timeout		= bnx2x_tx_timeout,
12566#ifdef CONFIG_NET_POLL_CONTROLLER
12567	.ndo_poll_controller	= poll_bnx2x,
12568#endif
12569	.ndo_setup_tc		= bnx2x_setup_tc,
12570#ifdef CONFIG_BNX2X_SRIOV
12571	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12572	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12573	.ndo_get_vf_config	= bnx2x_get_vf_config,
12574#endif
12575#ifdef NETDEV_FCOE_WWNN
12576	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12577#endif
12578
12579#ifdef CONFIG_NET_RX_BUSY_POLL
12580	.ndo_busy_poll		= bnx2x_low_latency_recv,
12581#endif
12582	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12583	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
12584};
12585
12586static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12587{
12588	struct device *dev = &bp->pdev->dev;
12589
12590	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12591	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12592		dev_err(dev, "System does not support DMA, aborting\n");
12593		return -EIO;
12594	}
12595
12596	return 0;
12597}
12598
12599static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12600{
12601	if (bp->flags & AER_ENABLED) {
12602		pci_disable_pcie_error_reporting(bp->pdev);
12603		bp->flags &= ~AER_ENABLED;
12604	}
12605}
12606
12607static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12608			  struct net_device *dev, unsigned long board_type)
12609{
12610	int rc;
12611	u32 pci_cfg_dword;
12612	bool chip_is_e1x = (board_type == BCM57710 ||
12613			    board_type == BCM57711 ||
12614			    board_type == BCM57711E);
12615
12616	SET_NETDEV_DEV(dev, &pdev->dev);
12617
12618	bp->dev = dev;
12619	bp->pdev = pdev;
12620
12621	rc = pci_enable_device(pdev);
12622	if (rc) {
12623		dev_err(&bp->pdev->dev,
12624			"Cannot enable PCI device, aborting\n");
12625		goto err_out;
12626	}
12627
12628	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12629		dev_err(&bp->pdev->dev,
12630			"Cannot find PCI device base address, aborting\n");
12631		rc = -ENODEV;
12632		goto err_out_disable;
12633	}
12634
12635	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12636		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12637		rc = -ENODEV;
12638		goto err_out_disable;
12639	}
12640
12641	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12642	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12643	    PCICFG_REVESION_ID_ERROR_VAL) {
12644		pr_err("PCI device error, probably due to fan failure, aborting\n");
12645		rc = -ENODEV;
12646		goto err_out_disable;
12647	}
12648
12649	if (atomic_read(&pdev->enable_cnt) == 1) {
12650		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12651		if (rc) {
12652			dev_err(&bp->pdev->dev,
12653				"Cannot obtain PCI resources, aborting\n");
12654			goto err_out_disable;
12655		}
12656
12657		pci_set_master(pdev);
12658		pci_save_state(pdev);
12659	}
12660
12661	if (IS_PF(bp)) {
12662		if (!pdev->pm_cap) {
12663			dev_err(&bp->pdev->dev,
12664				"Cannot find power management capability, aborting\n");
12665			rc = -EIO;
12666			goto err_out_release;
12667		}
12668	}
12669
12670	if (!pci_is_pcie(pdev)) {
12671		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12672		rc = -EIO;
12673		goto err_out_release;
12674	}
12675
12676	rc = bnx2x_set_coherency_mask(bp);
12677	if (rc)
12678		goto err_out_release;
12679
12680	dev->mem_start = pci_resource_start(pdev, 0);
12681	dev->base_addr = dev->mem_start;
12682	dev->mem_end = pci_resource_end(pdev, 0);
12683
12684	dev->irq = pdev->irq;
12685
12686	bp->regview = pci_ioremap_bar(pdev, 0);
12687	if (!bp->regview) {
12688		dev_err(&bp->pdev->dev,
12689			"Cannot map register space, aborting\n");
12690		rc = -ENOMEM;
12691		goto err_out_release;
12692	}
12693
12694	/* In E1/E1H use pci device function given by kernel.
12695	 * In E2/E3 read physical function from ME register since these chips
12696	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12697	 * (depending on hypervisor).
12698	 */
12699	if (chip_is_e1x) {
12700		bp->pf_num = PCI_FUNC(pdev->devfn);
12701	} else {
12702		/* chip is E2/3*/
12703		pci_read_config_dword(bp->pdev,
12704				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12705		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12706				  ME_REG_ABS_PF_NUM_SHIFT);
12707	}
12708	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12709
12710	/* clean indirect addresses */
12711	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12712			       PCICFG_VENDOR_ID_OFFSET);
12713
12714	/* AER (Advanced Error reporting) configuration */
12715	rc = pci_enable_pcie_error_reporting(pdev);
12716	if (!rc)
12717		bp->flags |= AER_ENABLED;
12718	else
12719		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12720
12721	/*
12722	 * Clean the following indirect addresses for all functions since it
12723	 * is not used by the driver.
12724	 */
12725	if (IS_PF(bp)) {
12726		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12727		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12728		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12729		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12730
12731		if (chip_is_e1x) {
12732			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12733			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12734			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12735			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12736		}
12737
12738		/* Enable internal target-read (in case we are probed after PF
12739		 * FLR). Must be done prior to any BAR read access. Only for
12740		 * 57712 and up
12741		 */
12742		if (!chip_is_e1x)
12743			REG_WR(bp,
12744			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12745	}
12746
12747	dev->watchdog_timeo = TX_TIMEOUT;
12748
12749	dev->netdev_ops = &bnx2x_netdev_ops;
12750	bnx2x_set_ethtool_ops(bp, dev);
12751
12752	dev->priv_flags |= IFF_UNICAST_FLT;
12753
12754	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12755		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12756		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12757		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12758	if (!CHIP_IS_E1x(bp)) {
12759		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12760				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12761		dev->hw_enc_features =
12762			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12763			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12764			NETIF_F_GSO_IPIP |
12765			NETIF_F_GSO_SIT |
12766			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12767	}
12768
12769	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12770		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12771
12772	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12773	dev->features |= NETIF_F_HIGHDMA;
12774
12775	/* Add Loopback capability to the device */
12776	dev->hw_features |= NETIF_F_LOOPBACK;
12777
12778#ifdef BCM_DCBNL
12779	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12780#endif
12781
12782	/* get_port_hwinfo() will set prtad and mmds properly */
12783	bp->mdio.prtad = MDIO_PRTAD_NONE;
12784	bp->mdio.mmds = 0;
12785	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12786	bp->mdio.dev = dev;
12787	bp->mdio.mdio_read = bnx2x_mdio_read;
12788	bp->mdio.mdio_write = bnx2x_mdio_write;
12789
12790	return 0;
12791
12792err_out_release:
12793	if (atomic_read(&pdev->enable_cnt) == 1)
12794		pci_release_regions(pdev);
12795
12796err_out_disable:
12797	pci_disable_device(pdev);
12798
12799err_out:
12800	return rc;
12801}
12802
12803static int bnx2x_check_firmware(struct bnx2x *bp)
12804{
12805	const struct firmware *firmware = bp->firmware;
12806	struct bnx2x_fw_file_hdr *fw_hdr;
12807	struct bnx2x_fw_file_section *sections;
12808	u32 offset, len, num_ops;
12809	__be16 *ops_offsets;
12810	int i;
12811	const u8 *fw_ver;
12812
12813	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12814		BNX2X_ERR("Wrong FW size\n");
12815		return -EINVAL;
12816	}
12817
12818	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12819	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12820
12821	/* Make sure none of the offsets and sizes make us read beyond
12822	 * the end of the firmware data */
12823	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12824		offset = be32_to_cpu(sections[i].offset);
12825		len = be32_to_cpu(sections[i].len);
12826		if (offset + len > firmware->size) {
12827			BNX2X_ERR("Section %d length is out of bounds\n", i);
12828			return -EINVAL;
12829		}
12830	}
12831
12832	/* Likewise for the init_ops offsets */
12833	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12834	ops_offsets = (__force __be16 *)(firmware->data + offset);
12835	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12836
12837	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12838		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12839			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12840			return -EINVAL;
12841		}
12842	}
12843
12844	/* Check FW version */
12845	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12846	fw_ver = firmware->data + offset;
12847	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12848	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12849	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12850	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12851		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12852		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12853		       BCM_5710_FW_MAJOR_VERSION,
12854		       BCM_5710_FW_MINOR_VERSION,
12855		       BCM_5710_FW_REVISION_VERSION,
12856		       BCM_5710_FW_ENGINEERING_VERSION);
12857		return -EINVAL;
12858	}
12859
12860	return 0;
12861}
12862
12863static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12864{
12865	const __be32 *source = (const __be32 *)_source;
12866	u32 *target = (u32 *)_target;
12867	u32 i;
12868
12869	for (i = 0; i < n/4; i++)
12870		target[i] = be32_to_cpu(source[i]);
12871}
12872
12873/*
12874   Ops array is stored in the following format:
12875   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12876 */
12877static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12878{
12879	const __be32 *source = (const __be32 *)_source;
12880	struct raw_op *target = (struct raw_op *)_target;
12881	u32 i, j, tmp;
12882
12883	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12884		tmp = be32_to_cpu(source[j]);
12885		target[i].op = (tmp >> 24) & 0xff;
12886		target[i].offset = tmp & 0xffffff;
12887		target[i].raw_data = be32_to_cpu(source[j + 1]);
12888	}
12889}
12890
12891/* IRO array is stored in the following format:
12892 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12893 */
12894static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12895{
12896	const __be32 *source = (const __be32 *)_source;
12897	struct iro *target = (struct iro *)_target;
12898	u32 i, j, tmp;
12899
12900	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12901		target[i].base = be32_to_cpu(source[j]);
12902		j++;
12903		tmp = be32_to_cpu(source[j]);
12904		target[i].m1 = (tmp >> 16) & 0xffff;
12905		target[i].m2 = tmp & 0xffff;
12906		j++;
12907		tmp = be32_to_cpu(source[j]);
12908		target[i].m3 = (tmp >> 16) & 0xffff;
12909		target[i].size = tmp & 0xffff;
12910		j++;
12911	}
12912}
12913
12914static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12915{
12916	const __be16 *source = (const __be16 *)_source;
12917	u16 *target = (u16 *)_target;
12918	u32 i;
12919
12920	for (i = 0; i < n/2; i++)
12921		target[i] = be16_to_cpu(source[i]);
12922}
12923
12924#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12925do {									\
12926	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12927	bp->arr = kmalloc(len, GFP_KERNEL);				\
12928	if (!bp->arr)							\
12929		goto lbl;						\
12930	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12931	     (u8 *)bp->arr, len);					\
12932} while (0)
12933
12934static int bnx2x_init_firmware(struct bnx2x *bp)
12935{
12936	const char *fw_file_name;
12937	struct bnx2x_fw_file_hdr *fw_hdr;
12938	int rc;
12939
12940	if (bp->firmware)
12941		return 0;
12942
12943	if (CHIP_IS_E1(bp))
12944		fw_file_name = FW_FILE_NAME_E1;
12945	else if (CHIP_IS_E1H(bp))
12946		fw_file_name = FW_FILE_NAME_E1H;
12947	else if (!CHIP_IS_E1x(bp))
12948		fw_file_name = FW_FILE_NAME_E2;
12949	else {
12950		BNX2X_ERR("Unsupported chip revision\n");
12951		return -EINVAL;
12952	}
12953	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12954
12955	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12956	if (rc) {
12957		BNX2X_ERR("Can't load firmware file %s\n",
12958			  fw_file_name);
12959		goto request_firmware_exit;
12960	}
12961
12962	rc = bnx2x_check_firmware(bp);
12963	if (rc) {
12964		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12965		goto request_firmware_exit;
12966	}
12967
12968	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12969
12970	/* Initialize the pointers to the init arrays */
12971	/* Blob */
12972	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12973
12974	/* Opcodes */
12975	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12976
12977	/* Offsets */
12978	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12979			    be16_to_cpu_n);
12980
12981	/* STORMs firmware */
12982	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12983			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12984	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12985			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12986	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12987			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12988	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12989			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12990	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12991			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12992	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12993			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12994	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12995			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12996	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12997			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12998	/* IRO */
12999	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13000
13001	return 0;
13002
13003iro_alloc_err:
13004	kfree(bp->init_ops_offsets);
13005init_offsets_alloc_err:
13006	kfree(bp->init_ops);
13007init_ops_alloc_err:
13008	kfree(bp->init_data);
13009request_firmware_exit:
13010	release_firmware(bp->firmware);
13011	bp->firmware = NULL;
13012
13013	return rc;
13014}
13015
13016static void bnx2x_release_firmware(struct bnx2x *bp)
13017{
13018	kfree(bp->init_ops_offsets);
13019	kfree(bp->init_ops);
13020	kfree(bp->init_data);
13021	release_firmware(bp->firmware);
13022	bp->firmware = NULL;
13023}
13024
13025static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13026	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13027	.init_hw_cmn      = bnx2x_init_hw_common,
13028	.init_hw_port     = bnx2x_init_hw_port,
13029	.init_hw_func     = bnx2x_init_hw_func,
13030
13031	.reset_hw_cmn     = bnx2x_reset_common,
13032	.reset_hw_port    = bnx2x_reset_port,
13033	.reset_hw_func    = bnx2x_reset_func,
13034
13035	.gunzip_init      = bnx2x_gunzip_init,
13036	.gunzip_end       = bnx2x_gunzip_end,
13037
13038	.init_fw          = bnx2x_init_firmware,
13039	.release_fw       = bnx2x_release_firmware,
13040};
13041
13042void bnx2x__init_func_obj(struct bnx2x *bp)
13043{
13044	/* Prepare DMAE related driver resources */
13045	bnx2x_setup_dmae(bp);
13046
13047	bnx2x_init_func_obj(bp, &bp->func_obj,
13048			    bnx2x_sp(bp, func_rdata),
13049			    bnx2x_sp_mapping(bp, func_rdata),
13050			    bnx2x_sp(bp, func_afex_rdata),
13051			    bnx2x_sp_mapping(bp, func_afex_rdata),
13052			    &bnx2x_func_sp_drv);
13053}
13054
13055/* must be called after sriov-enable */
13056static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13057{
13058	int cid_count = BNX2X_L2_MAX_CID(bp);
13059
13060	if (IS_SRIOV(bp))
13061		cid_count += BNX2X_VF_CIDS;
13062
13063	if (CNIC_SUPPORT(bp))
13064		cid_count += CNIC_CID_MAX;
13065
13066	return roundup(cid_count, QM_CID_ROUND);
13067}
13068
13069/**
13070 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13071 *
13072 * @dev:	pci device
13073 *
13074 */
13075static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13076{
13077	int index;
13078	u16 control = 0;
13079
13080	/*
13081	 * If MSI-X is not supported - return number of SBs needed to support
13082	 * one fast path queue: one FP queue + SB for CNIC
13083	 */
13084	if (!pdev->msix_cap) {
13085		dev_info(&pdev->dev, "no msix capability found\n");
13086		return 1 + cnic_cnt;
13087	}
13088	dev_info(&pdev->dev, "msix capability found\n");
13089
13090	/*
13091	 * The value in the PCI configuration space is the index of the last
13092	 * entry, namely one less than the actual size of the table, which is
13093	 * exactly what we want to return from this function: number of all SBs
13094	 * without the default SB.
13095	 * For VFs there is no default SB, then we return (index+1).
13096	 */
13097	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13098
13099	index = control & PCI_MSIX_FLAGS_QSIZE;
13100
13101	return index;
13102}
13103
13104static int set_max_cos_est(int chip_id)
13105{
13106	switch (chip_id) {
13107	case BCM57710:
13108	case BCM57711:
13109	case BCM57711E:
13110		return BNX2X_MULTI_TX_COS_E1X;
13111	case BCM57712:
13112	case BCM57712_MF:
13113		return BNX2X_MULTI_TX_COS_E2_E3A0;
13114	case BCM57800:
13115	case BCM57800_MF:
13116	case BCM57810:
13117	case BCM57810_MF:
13118	case BCM57840_4_10:
13119	case BCM57840_2_20:
13120	case BCM57840_O:
13121	case BCM57840_MFO:
13122	case BCM57840_MF:
13123	case BCM57811:
13124	case BCM57811_MF:
13125		return BNX2X_MULTI_TX_COS_E3B0;
13126	case BCM57712_VF:
13127	case BCM57800_VF:
13128	case BCM57810_VF:
13129	case BCM57840_VF:
13130	case BCM57811_VF:
13131		return 1;
13132	default:
13133		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13134		return -ENODEV;
13135	}
13136}
13137
13138static int set_is_vf(int chip_id)
13139{
13140	switch (chip_id) {
13141	case BCM57712_VF:
13142	case BCM57800_VF:
13143	case BCM57810_VF:
13144	case BCM57840_VF:
13145	case BCM57811_VF:
13146		return true;
13147	default:
13148		return false;
13149	}
13150}
13151
13152/* nig_tsgen registers relative address */
13153#define tsgen_ctrl 0x0
13154#define tsgen_freecount 0x10
13155#define tsgen_synctime_t0 0x20
13156#define tsgen_offset_t0 0x28
13157#define tsgen_drift_t0 0x30
13158#define tsgen_synctime_t1 0x58
13159#define tsgen_offset_t1 0x60
13160#define tsgen_drift_t1 0x68
13161
13162/* FW workaround for setting drift */
13163static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13164					  int best_val, int best_period)
13165{
13166	struct bnx2x_func_state_params func_params = {NULL};
13167	struct bnx2x_func_set_timesync_params *set_timesync_params =
13168		&func_params.params.set_timesync;
13169
13170	/* Prepare parameters for function state transitions */
13171	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13172	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13173
13174	func_params.f_obj = &bp->func_obj;
13175	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13176
13177	/* Function parameters */
13178	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13179	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13180	set_timesync_params->add_sub_drift_adjust_value =
13181		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13182	set_timesync_params->drift_adjust_value = best_val;
13183	set_timesync_params->drift_adjust_period = best_period;
13184
13185	return bnx2x_func_state_change(bp, &func_params);
13186}
13187
13188static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13189{
13190	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13191	int rc;
13192	int drift_dir = 1;
13193	int val, period, period1, period2, dif, dif1, dif2;
13194	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13195
13196	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13197
13198	if (!netif_running(bp->dev)) {
13199		DP(BNX2X_MSG_PTP,
13200		   "PTP adjfreq called while the interface is down\n");
13201		return -EFAULT;
13202	}
13203
13204	if (ppb < 0) {
13205		ppb = -ppb;
13206		drift_dir = 0;
13207	}
13208
13209	if (ppb == 0) {
13210		best_val = 1;
13211		best_period = 0x1FFFFFF;
13212	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13213		best_val = 31;
13214		best_period = 1;
13215	} else {
13216		/* Changed not to allow val = 8, 16, 24 as these values
13217		 * are not supported in workaround.
13218		 */
13219		for (val = 0; val <= 31; val++) {
13220			if ((val & 0x7) == 0)
13221				continue;
13222			period1 = val * 1000000 / ppb;
13223			period2 = period1 + 1;
13224			if (period1 != 0)
13225				dif1 = ppb - (val * 1000000 / period1);
13226			else
13227				dif1 = BNX2X_MAX_PHC_DRIFT;
13228			if (dif1 < 0)
13229				dif1 = -dif1;
13230			dif2 = ppb - (val * 1000000 / period2);
13231			if (dif2 < 0)
13232				dif2 = -dif2;
13233			dif = (dif1 < dif2) ? dif1 : dif2;
13234			period = (dif1 < dif2) ? period1 : period2;
13235			if (dif < best_dif) {
13236				best_dif = dif;
13237				best_val = val;
13238				best_period = period;
13239			}
13240		}
13241	}
13242
13243	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13244					    best_period);
13245	if (rc) {
13246		BNX2X_ERR("Failed to set drift\n");
13247		return -EFAULT;
13248	}
13249
13250	DP(BNX2X_MSG_PTP, "Configrued val = %d, period = %d\n", best_val,
13251	   best_period);
13252
13253	return 0;
13254}
13255
13256static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13257{
13258	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13259	u64 now;
13260
13261	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13262
13263	now = timecounter_read(&bp->timecounter);
13264	now += delta;
13265	/* Re-init the timecounter */
13266	timecounter_init(&bp->timecounter, &bp->cyclecounter, now);
13267
13268	return 0;
13269}
13270
13271static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
13272{
13273	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13274	u64 ns;
13275	u32 remainder;
13276
13277	ns = timecounter_read(&bp->timecounter);
13278
13279	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13280
13281	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
13282	ts->tv_nsec = remainder;
13283
13284	return 0;
13285}
13286
13287static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13288			     const struct timespec *ts)
13289{
13290	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13291	u64 ns;
13292
13293	ns = ts->tv_sec * 1000000000ULL;
13294	ns += ts->tv_nsec;
13295
13296	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13297
13298	/* Re-init the timecounter */
13299	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13300
13301	return 0;
13302}
13303
13304/* Enable (or disable) ancillary features of the phc subsystem */
13305static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13306			    struct ptp_clock_request *rq, int on)
13307{
13308	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13309
13310	BNX2X_ERR("PHC ancillary features are not supported\n");
13311	return -ENOTSUPP;
13312}
13313
13314void bnx2x_register_phc(struct bnx2x *bp)
13315{
13316	/* Fill the ptp_clock_info struct and register PTP clock*/
13317	bp->ptp_clock_info.owner = THIS_MODULE;
13318	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13319	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13320	bp->ptp_clock_info.n_alarm = 0;
13321	bp->ptp_clock_info.n_ext_ts = 0;
13322	bp->ptp_clock_info.n_per_out = 0;
13323	bp->ptp_clock_info.pps = 0;
13324	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13325	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13326	bp->ptp_clock_info.gettime = bnx2x_ptp_gettime;
13327	bp->ptp_clock_info.settime = bnx2x_ptp_settime;
13328	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13329
13330	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13331	if (IS_ERR(bp->ptp_clock)) {
13332		bp->ptp_clock = NULL;
13333		BNX2X_ERR("PTP clock registeration failed\n");
13334	}
13335}
13336
13337static int bnx2x_init_one(struct pci_dev *pdev,
13338				    const struct pci_device_id *ent)
13339{
13340	struct net_device *dev = NULL;
13341	struct bnx2x *bp;
13342	enum pcie_link_width pcie_width;
13343	enum pci_bus_speed pcie_speed;
13344	int rc, max_non_def_sbs;
13345	int rx_count, tx_count, rss_count, doorbell_size;
13346	int max_cos_est;
13347	bool is_vf;
13348	int cnic_cnt;
13349
13350	/* An estimated maximum supported CoS number according to the chip
13351	 * version.
13352	 * We will try to roughly estimate the maximum number of CoSes this chip
13353	 * may support in order to minimize the memory allocated for Tx
13354	 * netdev_queue's. This number will be accurately calculated during the
13355	 * initialization of bp->max_cos based on the chip versions AND chip
13356	 * revision in the bnx2x_init_bp().
13357	 */
13358	max_cos_est = set_max_cos_est(ent->driver_data);
13359	if (max_cos_est < 0)
13360		return max_cos_est;
13361	is_vf = set_is_vf(ent->driver_data);
13362	cnic_cnt = is_vf ? 0 : 1;
13363
13364	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13365
13366	/* add another SB for VF as it has no default SB */
13367	max_non_def_sbs += is_vf ? 1 : 0;
13368
13369	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13370	rss_count = max_non_def_sbs - cnic_cnt;
13371
13372	if (rss_count < 1)
13373		return -EINVAL;
13374
13375	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13376	rx_count = rss_count + cnic_cnt;
13377
13378	/* Maximum number of netdev Tx queues:
13379	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13380	 */
13381	tx_count = rss_count * max_cos_est + cnic_cnt;
13382
13383	/* dev zeroed in init_etherdev */
13384	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13385	if (!dev)
13386		return -ENOMEM;
13387
13388	bp = netdev_priv(dev);
13389
13390	bp->flags = 0;
13391	if (is_vf)
13392		bp->flags |= IS_VF_FLAG;
13393
13394	bp->igu_sb_cnt = max_non_def_sbs;
13395	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13396	bp->msg_enable = debug;
13397	bp->cnic_support = cnic_cnt;
13398	bp->cnic_probe = bnx2x_cnic_probe;
13399
13400	pci_set_drvdata(pdev, dev);
13401
13402	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13403	if (rc < 0) {
13404		free_netdev(dev);
13405		return rc;
13406	}
13407
13408	BNX2X_DEV_INFO("This is a %s function\n",
13409		       IS_PF(bp) ? "physical" : "virtual");
13410	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13411	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13412	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13413		       tx_count, rx_count);
13414
13415	rc = bnx2x_init_bp(bp);
13416	if (rc)
13417		goto init_one_exit;
13418
13419	/* Map doorbells here as we need the real value of bp->max_cos which
13420	 * is initialized in bnx2x_init_bp() to determine the number of
13421	 * l2 connections.
13422	 */
13423	if (IS_VF(bp)) {
13424		bp->doorbells = bnx2x_vf_doorbells(bp);
13425		rc = bnx2x_vf_pci_alloc(bp);
13426		if (rc)
13427			goto init_one_exit;
13428	} else {
13429		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13430		if (doorbell_size > pci_resource_len(pdev, 2)) {
13431			dev_err(&bp->pdev->dev,
13432				"Cannot map doorbells, bar size too small, aborting\n");
13433			rc = -ENOMEM;
13434			goto init_one_exit;
13435		}
13436		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13437						doorbell_size);
13438	}
13439	if (!bp->doorbells) {
13440		dev_err(&bp->pdev->dev,
13441			"Cannot map doorbell space, aborting\n");
13442		rc = -ENOMEM;
13443		goto init_one_exit;
13444	}
13445
13446	if (IS_VF(bp)) {
13447		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13448		if (rc)
13449			goto init_one_exit;
13450	}
13451
13452	/* Enable SRIOV if capability found in configuration space */
13453	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13454	if (rc)
13455		goto init_one_exit;
13456
13457	/* calc qm_cid_count */
13458	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13459	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13460
13461	/* disable FCOE L2 queue for E1x*/
13462	if (CHIP_IS_E1x(bp))
13463		bp->flags |= NO_FCOE_FLAG;
13464
13465	/* Set bp->num_queues for MSI-X mode*/
13466	bnx2x_set_num_queues(bp);
13467
13468	/* Configure interrupt mode: try to enable MSI-X/MSI if
13469	 * needed.
13470	 */
13471	rc = bnx2x_set_int_mode(bp);
13472	if (rc) {
13473		dev_err(&pdev->dev, "Cannot set interrupts\n");
13474		goto init_one_exit;
13475	}
13476	BNX2X_DEV_INFO("set interrupts successfully\n");
13477
13478	/* register the net device */
13479	rc = register_netdev(dev);
13480	if (rc) {
13481		dev_err(&pdev->dev, "Cannot register net device\n");
13482		goto init_one_exit;
13483	}
13484	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13485
13486	if (!NO_FCOE(bp)) {
13487		/* Add storage MAC address */
13488		rtnl_lock();
13489		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13490		rtnl_unlock();
13491	}
13492	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13493	    pcie_speed == PCI_SPEED_UNKNOWN ||
13494	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13495		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13496	else
13497		BNX2X_DEV_INFO(
13498		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13499		       board_info[ent->driver_data].name,
13500		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13501		       pcie_width,
13502		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13503		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13504		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13505		       "Unknown",
13506		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13507
13508	bnx2x_register_phc(bp);
13509
13510	return 0;
13511
13512init_one_exit:
13513	bnx2x_disable_pcie_error_reporting(bp);
13514
13515	if (bp->regview)
13516		iounmap(bp->regview);
13517
13518	if (IS_PF(bp) && bp->doorbells)
13519		iounmap(bp->doorbells);
13520
13521	free_netdev(dev);
13522
13523	if (atomic_read(&pdev->enable_cnt) == 1)
13524		pci_release_regions(pdev);
13525
13526	pci_disable_device(pdev);
13527
13528	return rc;
13529}
13530
13531static void __bnx2x_remove(struct pci_dev *pdev,
13532			   struct net_device *dev,
13533			   struct bnx2x *bp,
13534			   bool remove_netdev)
13535{
13536	if (bp->ptp_clock) {
13537		ptp_clock_unregister(bp->ptp_clock);
13538		bp->ptp_clock = NULL;
13539	}
13540
13541	/* Delete storage MAC address */
13542	if (!NO_FCOE(bp)) {
13543		rtnl_lock();
13544		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13545		rtnl_unlock();
13546	}
13547
13548#ifdef BCM_DCBNL
13549	/* Delete app tlvs from dcbnl */
13550	bnx2x_dcbnl_update_applist(bp, true);
13551#endif
13552
13553	if (IS_PF(bp) &&
13554	    !BP_NOMCP(bp) &&
13555	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13556		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13557
13558	/* Close the interface - either directly or implicitly */
13559	if (remove_netdev) {
13560		unregister_netdev(dev);
13561	} else {
13562		rtnl_lock();
13563		dev_close(dev);
13564		rtnl_unlock();
13565	}
13566
13567	bnx2x_iov_remove_one(bp);
13568
13569	/* Power on: we can't let PCI layer write to us while we are in D3 */
13570	if (IS_PF(bp)) {
13571		bnx2x_set_power_state(bp, PCI_D0);
13572
13573		/* Set endianity registers to reset values in case next driver
13574		 * boots in different endianty environment.
13575		 */
13576		bnx2x_reset_endianity(bp);
13577	}
13578
13579	/* Disable MSI/MSI-X */
13580	bnx2x_disable_msi(bp);
13581
13582	/* Power off */
13583	if (IS_PF(bp))
13584		bnx2x_set_power_state(bp, PCI_D3hot);
13585
13586	/* Make sure RESET task is not scheduled before continuing */
13587	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13588
13589	/* send message via vfpf channel to release the resources of this vf */
13590	if (IS_VF(bp))
13591		bnx2x_vfpf_release(bp);
13592
13593	/* Assumes no further PCIe PM changes will occur */
13594	if (system_state == SYSTEM_POWER_OFF) {
13595		pci_wake_from_d3(pdev, bp->wol);
13596		pci_set_power_state(pdev, PCI_D3hot);
13597	}
13598
13599	bnx2x_disable_pcie_error_reporting(bp);
13600	if (remove_netdev) {
13601		if (bp->regview)
13602			iounmap(bp->regview);
13603
13604		/* For vfs, doorbells are part of the regview and were unmapped
13605		 * along with it. FW is only loaded by PF.
13606		 */
13607		if (IS_PF(bp)) {
13608			if (bp->doorbells)
13609				iounmap(bp->doorbells);
13610
13611			bnx2x_release_firmware(bp);
13612		} else {
13613			bnx2x_vf_pci_dealloc(bp);
13614		}
13615		bnx2x_free_mem_bp(bp);
13616
13617		free_netdev(dev);
13618
13619		if (atomic_read(&pdev->enable_cnt) == 1)
13620			pci_release_regions(pdev);
13621
13622		pci_disable_device(pdev);
13623	}
13624}
13625
13626static void bnx2x_remove_one(struct pci_dev *pdev)
13627{
13628	struct net_device *dev = pci_get_drvdata(pdev);
13629	struct bnx2x *bp;
13630
13631	if (!dev) {
13632		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13633		return;
13634	}
13635	bp = netdev_priv(dev);
13636
13637	__bnx2x_remove(pdev, dev, bp, true);
13638}
13639
13640static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13641{
13642	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13643
13644	bp->rx_mode = BNX2X_RX_MODE_NONE;
13645
13646	if (CNIC_LOADED(bp))
13647		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13648
13649	/* Stop Tx */
13650	bnx2x_tx_disable(bp);
13651	/* Delete all NAPI objects */
13652	bnx2x_del_all_napi(bp);
13653	if (CNIC_LOADED(bp))
13654		bnx2x_del_all_napi_cnic(bp);
13655	netdev_reset_tc(bp->dev);
13656
13657	del_timer_sync(&bp->timer);
13658	cancel_delayed_work_sync(&bp->sp_task);
13659	cancel_delayed_work_sync(&bp->period_task);
13660
13661	spin_lock_bh(&bp->stats_lock);
13662	bp->stats_state = STATS_STATE_DISABLED;
13663	spin_unlock_bh(&bp->stats_lock);
13664
13665	bnx2x_save_statistics(bp);
13666
13667	netif_carrier_off(bp->dev);
13668
13669	return 0;
13670}
13671
13672/**
13673 * bnx2x_io_error_detected - called when PCI error is detected
13674 * @pdev: Pointer to PCI device
13675 * @state: The current pci connection state
13676 *
13677 * This function is called after a PCI bus error affecting
13678 * this device has been detected.
13679 */
13680static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13681						pci_channel_state_t state)
13682{
13683	struct net_device *dev = pci_get_drvdata(pdev);
13684	struct bnx2x *bp = netdev_priv(dev);
13685
13686	rtnl_lock();
13687
13688	BNX2X_ERR("IO error detected\n");
13689
13690	netif_device_detach(dev);
13691
13692	if (state == pci_channel_io_perm_failure) {
13693		rtnl_unlock();
13694		return PCI_ERS_RESULT_DISCONNECT;
13695	}
13696
13697	if (netif_running(dev))
13698		bnx2x_eeh_nic_unload(bp);
13699
13700	bnx2x_prev_path_mark_eeh(bp);
13701
13702	pci_disable_device(pdev);
13703
13704	rtnl_unlock();
13705
13706	/* Request a slot reset */
13707	return PCI_ERS_RESULT_NEED_RESET;
13708}
13709
13710/**
13711 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13712 * @pdev: Pointer to PCI device
13713 *
13714 * Restart the card from scratch, as if from a cold-boot.
13715 */
13716static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13717{
13718	struct net_device *dev = pci_get_drvdata(pdev);
13719	struct bnx2x *bp = netdev_priv(dev);
13720	int i;
13721
13722	rtnl_lock();
13723	BNX2X_ERR("IO slot reset initializing...\n");
13724	if (pci_enable_device(pdev)) {
13725		dev_err(&pdev->dev,
13726			"Cannot re-enable PCI device after reset\n");
13727		rtnl_unlock();
13728		return PCI_ERS_RESULT_DISCONNECT;
13729	}
13730
13731	pci_set_master(pdev);
13732	pci_restore_state(pdev);
13733	pci_save_state(pdev);
13734
13735	if (netif_running(dev))
13736		bnx2x_set_power_state(bp, PCI_D0);
13737
13738	if (netif_running(dev)) {
13739		BNX2X_ERR("IO slot reset --> driver unload\n");
13740
13741		/* MCP should have been reset; Need to wait for validity */
13742		bnx2x_init_shmem(bp);
13743
13744		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13745			u32 v;
13746
13747			v = SHMEM2_RD(bp,
13748				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13749			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13750				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13751		}
13752		bnx2x_drain_tx_queues(bp);
13753		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13754		bnx2x_netif_stop(bp, 1);
13755		bnx2x_free_irq(bp);
13756
13757		/* Report UNLOAD_DONE to MCP */
13758		bnx2x_send_unload_done(bp, true);
13759
13760		bp->sp_state = 0;
13761		bp->port.pmf = 0;
13762
13763		bnx2x_prev_unload(bp);
13764
13765		/* We should have reseted the engine, so It's fair to
13766		 * assume the FW will no longer write to the bnx2x driver.
13767		 */
13768		bnx2x_squeeze_objects(bp);
13769		bnx2x_free_skbs(bp);
13770		for_each_rx_queue(bp, i)
13771			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13772		bnx2x_free_fp_mem(bp);
13773		bnx2x_free_mem(bp);
13774
13775		bp->state = BNX2X_STATE_CLOSED;
13776	}
13777
13778	rtnl_unlock();
13779
13780	/* If AER, perform cleanup of the PCIe registers */
13781	if (bp->flags & AER_ENABLED) {
13782		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13783			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13784		else
13785			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13786	}
13787
13788	return PCI_ERS_RESULT_RECOVERED;
13789}
13790
13791/**
13792 * bnx2x_io_resume - called when traffic can start flowing again
13793 * @pdev: Pointer to PCI device
13794 *
13795 * This callback is called when the error recovery driver tells us that
13796 * its OK to resume normal operation.
13797 */
13798static void bnx2x_io_resume(struct pci_dev *pdev)
13799{
13800	struct net_device *dev = pci_get_drvdata(pdev);
13801	struct bnx2x *bp = netdev_priv(dev);
13802
13803	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13804		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13805		return;
13806	}
13807
13808	rtnl_lock();
13809
13810	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13811							DRV_MSG_SEQ_NUMBER_MASK;
13812
13813	if (netif_running(dev))
13814		bnx2x_nic_load(bp, LOAD_NORMAL);
13815
13816	netif_device_attach(dev);
13817
13818	rtnl_unlock();
13819}
13820
13821static const struct pci_error_handlers bnx2x_err_handler = {
13822	.error_detected = bnx2x_io_error_detected,
13823	.slot_reset     = bnx2x_io_slot_reset,
13824	.resume         = bnx2x_io_resume,
13825};
13826
13827static void bnx2x_shutdown(struct pci_dev *pdev)
13828{
13829	struct net_device *dev = pci_get_drvdata(pdev);
13830	struct bnx2x *bp;
13831
13832	if (!dev)
13833		return;
13834
13835	bp = netdev_priv(dev);
13836	if (!bp)
13837		return;
13838
13839	rtnl_lock();
13840	netif_device_detach(dev);
13841	rtnl_unlock();
13842
13843	/* Don't remove the netdevice, as there are scenarios which will cause
13844	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13845	 * rootfs is mounted from SAN.
13846	 */
13847	__bnx2x_remove(pdev, dev, bp, false);
13848}
13849
13850static struct pci_driver bnx2x_pci_driver = {
13851	.name        = DRV_MODULE_NAME,
13852	.id_table    = bnx2x_pci_tbl,
13853	.probe       = bnx2x_init_one,
13854	.remove      = bnx2x_remove_one,
13855	.suspend     = bnx2x_suspend,
13856	.resume      = bnx2x_resume,
13857	.err_handler = &bnx2x_err_handler,
13858#ifdef CONFIG_BNX2X_SRIOV
13859	.sriov_configure = bnx2x_sriov_configure,
13860#endif
13861	.shutdown    = bnx2x_shutdown,
13862};
13863
13864static int __init bnx2x_init(void)
13865{
13866	int ret;
13867
13868	pr_info("%s", version);
13869
13870	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13871	if (bnx2x_wq == NULL) {
13872		pr_err("Cannot create workqueue\n");
13873		return -ENOMEM;
13874	}
13875	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13876	if (!bnx2x_iov_wq) {
13877		pr_err("Cannot create iov workqueue\n");
13878		destroy_workqueue(bnx2x_wq);
13879		return -ENOMEM;
13880	}
13881
13882	ret = pci_register_driver(&bnx2x_pci_driver);
13883	if (ret) {
13884		pr_err("Cannot register driver\n");
13885		destroy_workqueue(bnx2x_wq);
13886		destroy_workqueue(bnx2x_iov_wq);
13887	}
13888	return ret;
13889}
13890
13891static void __exit bnx2x_cleanup(void)
13892{
13893	struct list_head *pos, *q;
13894
13895	pci_unregister_driver(&bnx2x_pci_driver);
13896
13897	destroy_workqueue(bnx2x_wq);
13898	destroy_workqueue(bnx2x_iov_wq);
13899
13900	/* Free globally allocated resources */
13901	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13902		struct bnx2x_prev_path_list *tmp =
13903			list_entry(pos, struct bnx2x_prev_path_list, list);
13904		list_del(pos);
13905		kfree(tmp);
13906	}
13907}
13908
13909void bnx2x_notify_link_changed(struct bnx2x *bp)
13910{
13911	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13912}
13913
13914module_init(bnx2x_init);
13915module_exit(bnx2x_cleanup);
13916
13917/**
13918 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13919 *
13920 * @bp:		driver handle
13921 * @set:	set or clear the CAM entry
13922 *
13923 * This function will wait until the ramrod completion returns.
13924 * Return 0 if success, -ENODEV if ramrod doesn't return.
13925 */
13926static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13927{
13928	unsigned long ramrod_flags = 0;
13929
13930	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13931	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13932				 &bp->iscsi_l2_mac_obj, true,
13933				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13934}
13935
13936/* count denotes the number of new completions we have seen */
13937static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13938{
13939	struct eth_spe *spe;
13940	int cxt_index, cxt_offset;
13941
13942#ifdef BNX2X_STOP_ON_ERROR
13943	if (unlikely(bp->panic))
13944		return;
13945#endif
13946
13947	spin_lock_bh(&bp->spq_lock);
13948	BUG_ON(bp->cnic_spq_pending < count);
13949	bp->cnic_spq_pending -= count;
13950
13951	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13952		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13953				& SPE_HDR_CONN_TYPE) >>
13954				SPE_HDR_CONN_TYPE_SHIFT;
13955		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13956				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13957
13958		/* Set validation for iSCSI L2 client before sending SETUP
13959		 *  ramrod
13960		 */
13961		if (type == ETH_CONNECTION_TYPE) {
13962			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13963				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13964					ILT_PAGE_CIDS;
13965				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13966					(cxt_index * ILT_PAGE_CIDS);
13967				bnx2x_set_ctx_validation(bp,
13968					&bp->context[cxt_index].
13969							 vcxt[cxt_offset].eth,
13970					BNX2X_ISCSI_ETH_CID(bp));
13971			}
13972		}
13973
13974		/*
13975		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13976		 * and in the air. We also check that number of outstanding
13977		 * COMMON ramrods is not more than the EQ and SPQ can
13978		 * accommodate.
13979		 */
13980		if (type == ETH_CONNECTION_TYPE) {
13981			if (!atomic_read(&bp->cq_spq_left))
13982				break;
13983			else
13984				atomic_dec(&bp->cq_spq_left);
13985		} else if (type == NONE_CONNECTION_TYPE) {
13986			if (!atomic_read(&bp->eq_spq_left))
13987				break;
13988			else
13989				atomic_dec(&bp->eq_spq_left);
13990		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13991			   (type == FCOE_CONNECTION_TYPE)) {
13992			if (bp->cnic_spq_pending >=
13993			    bp->cnic_eth_dev.max_kwqe_pending)
13994				break;
13995			else
13996				bp->cnic_spq_pending++;
13997		} else {
13998			BNX2X_ERR("Unknown SPE type: %d\n", type);
13999			bnx2x_panic();
14000			break;
14001		}
14002
14003		spe = bnx2x_sp_get_next(bp);
14004		*spe = *bp->cnic_kwq_cons;
14005
14006		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14007		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14008
14009		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14010			bp->cnic_kwq_cons = bp->cnic_kwq;
14011		else
14012			bp->cnic_kwq_cons++;
14013	}
14014	bnx2x_sp_prod_update(bp);
14015	spin_unlock_bh(&bp->spq_lock);
14016}
14017
14018static int bnx2x_cnic_sp_queue(struct net_device *dev,
14019			       struct kwqe_16 *kwqes[], u32 count)
14020{
14021	struct bnx2x *bp = netdev_priv(dev);
14022	int i;
14023
14024#ifdef BNX2X_STOP_ON_ERROR
14025	if (unlikely(bp->panic)) {
14026		BNX2X_ERR("Can't post to SP queue while panic\n");
14027		return -EIO;
14028	}
14029#endif
14030
14031	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14032	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14033		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14034		return -EAGAIN;
14035	}
14036
14037	spin_lock_bh(&bp->spq_lock);
14038
14039	for (i = 0; i < count; i++) {
14040		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14041
14042		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14043			break;
14044
14045		*bp->cnic_kwq_prod = *spe;
14046
14047		bp->cnic_kwq_pending++;
14048
14049		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14050		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14051		   spe->data.update_data_addr.hi,
14052		   spe->data.update_data_addr.lo,
14053		   bp->cnic_kwq_pending);
14054
14055		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14056			bp->cnic_kwq_prod = bp->cnic_kwq;
14057		else
14058			bp->cnic_kwq_prod++;
14059	}
14060
14061	spin_unlock_bh(&bp->spq_lock);
14062
14063	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14064		bnx2x_cnic_sp_post(bp, 0);
14065
14066	return i;
14067}
14068
14069static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14070{
14071	struct cnic_ops *c_ops;
14072	int rc = 0;
14073
14074	mutex_lock(&bp->cnic_mutex);
14075	c_ops = rcu_dereference_protected(bp->cnic_ops,
14076					  lockdep_is_held(&bp->cnic_mutex));
14077	if (c_ops)
14078		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14079	mutex_unlock(&bp->cnic_mutex);
14080
14081	return rc;
14082}
14083
14084static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14085{
14086	struct cnic_ops *c_ops;
14087	int rc = 0;
14088
14089	rcu_read_lock();
14090	c_ops = rcu_dereference(bp->cnic_ops);
14091	if (c_ops)
14092		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14093	rcu_read_unlock();
14094
14095	return rc;
14096}
14097
14098/*
14099 * for commands that have no data
14100 */
14101int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14102{
14103	struct cnic_ctl_info ctl = {0};
14104
14105	ctl.cmd = cmd;
14106
14107	return bnx2x_cnic_ctl_send(bp, &ctl);
14108}
14109
14110static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14111{
14112	struct cnic_ctl_info ctl = {0};
14113
14114	/* first we tell CNIC and only then we count this as a completion */
14115	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14116	ctl.data.comp.cid = cid;
14117	ctl.data.comp.error = err;
14118
14119	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14120	bnx2x_cnic_sp_post(bp, 0);
14121}
14122
14123/* Called with netif_addr_lock_bh() taken.
14124 * Sets an rx_mode config for an iSCSI ETH client.
14125 * Doesn't block.
14126 * Completion should be checked outside.
14127 */
14128static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14129{
14130	unsigned long accept_flags = 0, ramrod_flags = 0;
14131	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14132	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14133
14134	if (start) {
14135		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14136		 * because it's the only way for UIO Queue to accept
14137		 * multicasts (in non-promiscuous mode only one Queue per
14138		 * function will receive multicast packets (leading in our
14139		 * case).
14140		 */
14141		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14142		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14143		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14144		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14145
14146		/* Clear STOP_PENDING bit if START is requested */
14147		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14148
14149		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14150	} else
14151		/* Clear START_PENDING bit if STOP is requested */
14152		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14153
14154	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14155		set_bit(sched_state, &bp->sp_state);
14156	else {
14157		__set_bit(RAMROD_RX, &ramrod_flags);
14158		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14159				    ramrod_flags);
14160	}
14161}
14162
14163static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14164{
14165	struct bnx2x *bp = netdev_priv(dev);
14166	int rc = 0;
14167
14168	switch (ctl->cmd) {
14169	case DRV_CTL_CTXTBL_WR_CMD: {
14170		u32 index = ctl->data.io.offset;
14171		dma_addr_t addr = ctl->data.io.dma_addr;
14172
14173		bnx2x_ilt_wr(bp, index, addr);
14174		break;
14175	}
14176
14177	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14178		int count = ctl->data.credit.credit_count;
14179
14180		bnx2x_cnic_sp_post(bp, count);
14181		break;
14182	}
14183
14184	/* rtnl_lock is held.  */
14185	case DRV_CTL_START_L2_CMD: {
14186		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14187		unsigned long sp_bits = 0;
14188
14189		/* Configure the iSCSI classification object */
14190		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14191				   cp->iscsi_l2_client_id,
14192				   cp->iscsi_l2_cid, BP_FUNC(bp),
14193				   bnx2x_sp(bp, mac_rdata),
14194				   bnx2x_sp_mapping(bp, mac_rdata),
14195				   BNX2X_FILTER_MAC_PENDING,
14196				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14197				   &bp->macs_pool);
14198
14199		/* Set iSCSI MAC address */
14200		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14201		if (rc)
14202			break;
14203
14204		mmiowb();
14205		barrier();
14206
14207		/* Start accepting on iSCSI L2 ring */
14208
14209		netif_addr_lock_bh(dev);
14210		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14211		netif_addr_unlock_bh(dev);
14212
14213		/* bits to wait on */
14214		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14215		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14216
14217		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14218			BNX2X_ERR("rx_mode completion timed out!\n");
14219
14220		break;
14221	}
14222
14223	/* rtnl_lock is held.  */
14224	case DRV_CTL_STOP_L2_CMD: {
14225		unsigned long sp_bits = 0;
14226
14227		/* Stop accepting on iSCSI L2 ring */
14228		netif_addr_lock_bh(dev);
14229		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14230		netif_addr_unlock_bh(dev);
14231
14232		/* bits to wait on */
14233		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14234		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14235
14236		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14237			BNX2X_ERR("rx_mode completion timed out!\n");
14238
14239		mmiowb();
14240		barrier();
14241
14242		/* Unset iSCSI L2 MAC */
14243		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14244					BNX2X_ISCSI_ETH_MAC, true);
14245		break;
14246	}
14247	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14248		int count = ctl->data.credit.credit_count;
14249
14250		smp_mb__before_atomic();
14251		atomic_add(count, &bp->cq_spq_left);
14252		smp_mb__after_atomic();
14253		break;
14254	}
14255	case DRV_CTL_ULP_REGISTER_CMD: {
14256		int ulp_type = ctl->data.register_data.ulp_type;
14257
14258		if (CHIP_IS_E3(bp)) {
14259			int idx = BP_FW_MB_IDX(bp);
14260			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14261			int path = BP_PATH(bp);
14262			int port = BP_PORT(bp);
14263			int i;
14264			u32 scratch_offset;
14265			u32 *host_addr;
14266
14267			/* first write capability to shmem2 */
14268			if (ulp_type == CNIC_ULP_ISCSI)
14269				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14270			else if (ulp_type == CNIC_ULP_FCOE)
14271				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14272			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14273
14274			if ((ulp_type != CNIC_ULP_FCOE) ||
14275			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14276			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14277				break;
14278
14279			/* if reached here - should write fcoe capabilities */
14280			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14281			if (!scratch_offset)
14282				break;
14283			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14284						   fcoe_features[path][port]);
14285			host_addr = (u32 *) &(ctl->data.register_data.
14286					      fcoe_features);
14287			for (i = 0; i < sizeof(struct fcoe_capabilities);
14288			     i += 4)
14289				REG_WR(bp, scratch_offset + i,
14290				       *(host_addr + i/4));
14291		}
14292		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14293		break;
14294	}
14295
14296	case DRV_CTL_ULP_UNREGISTER_CMD: {
14297		int ulp_type = ctl->data.ulp_type;
14298
14299		if (CHIP_IS_E3(bp)) {
14300			int idx = BP_FW_MB_IDX(bp);
14301			u32 cap;
14302
14303			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14304			if (ulp_type == CNIC_ULP_ISCSI)
14305				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14306			else if (ulp_type == CNIC_ULP_FCOE)
14307				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14308			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14309		}
14310		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14311		break;
14312	}
14313
14314	default:
14315		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14316		rc = -EINVAL;
14317	}
14318
14319	return rc;
14320}
14321
14322void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14323{
14324	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14325
14326	if (bp->flags & USING_MSIX_FLAG) {
14327		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14328		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14329		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14330	} else {
14331		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14332		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14333	}
14334	if (!CHIP_IS_E1x(bp))
14335		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14336	else
14337		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14338
14339	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14340	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14341	cp->irq_arr[1].status_blk = bp->def_status_blk;
14342	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14343	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14344
14345	cp->num_irq = 2;
14346}
14347
14348void bnx2x_setup_cnic_info(struct bnx2x *bp)
14349{
14350	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14351
14352	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14353			     bnx2x_cid_ilt_lines(bp);
14354	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14355	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14356	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14357
14358	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14359	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14360	   cp->iscsi_l2_cid);
14361
14362	if (NO_ISCSI_OOO(bp))
14363		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14364}
14365
14366static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14367			       void *data)
14368{
14369	struct bnx2x *bp = netdev_priv(dev);
14370	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14371	int rc;
14372
14373	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14374
14375	if (ops == NULL) {
14376		BNX2X_ERR("NULL ops received\n");
14377		return -EINVAL;
14378	}
14379
14380	if (!CNIC_SUPPORT(bp)) {
14381		BNX2X_ERR("Can't register CNIC when not supported\n");
14382		return -EOPNOTSUPP;
14383	}
14384
14385	if (!CNIC_LOADED(bp)) {
14386		rc = bnx2x_load_cnic(bp);
14387		if (rc) {
14388			BNX2X_ERR("CNIC-related load failed\n");
14389			return rc;
14390		}
14391	}
14392
14393	bp->cnic_enabled = true;
14394
14395	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14396	if (!bp->cnic_kwq)
14397		return -ENOMEM;
14398
14399	bp->cnic_kwq_cons = bp->cnic_kwq;
14400	bp->cnic_kwq_prod = bp->cnic_kwq;
14401	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14402
14403	bp->cnic_spq_pending = 0;
14404	bp->cnic_kwq_pending = 0;
14405
14406	bp->cnic_data = data;
14407
14408	cp->num_irq = 0;
14409	cp->drv_state |= CNIC_DRV_STATE_REGD;
14410	cp->iro_arr = bp->iro_arr;
14411
14412	bnx2x_setup_cnic_irq_info(bp);
14413
14414	rcu_assign_pointer(bp->cnic_ops, ops);
14415
14416	/* Schedule driver to read CNIC driver versions */
14417	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14418
14419	return 0;
14420}
14421
14422static int bnx2x_unregister_cnic(struct net_device *dev)
14423{
14424	struct bnx2x *bp = netdev_priv(dev);
14425	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14426
14427	mutex_lock(&bp->cnic_mutex);
14428	cp->drv_state = 0;
14429	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14430	mutex_unlock(&bp->cnic_mutex);
14431	synchronize_rcu();
14432	bp->cnic_enabled = false;
14433	kfree(bp->cnic_kwq);
14434	bp->cnic_kwq = NULL;
14435
14436	return 0;
14437}
14438
14439static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14440{
14441	struct bnx2x *bp = netdev_priv(dev);
14442	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14443
14444	/* If both iSCSI and FCoE are disabled - return NULL in
14445	 * order to indicate CNIC that it should not try to work
14446	 * with this device.
14447	 */
14448	if (NO_ISCSI(bp) && NO_FCOE(bp))
14449		return NULL;
14450
14451	cp->drv_owner = THIS_MODULE;
14452	cp->chip_id = CHIP_ID(bp);
14453	cp->pdev = bp->pdev;
14454	cp->io_base = bp->regview;
14455	cp->io_base2 = bp->doorbells;
14456	cp->max_kwqe_pending = 8;
14457	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14458	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14459			     bnx2x_cid_ilt_lines(bp);
14460	cp->ctx_tbl_len = CNIC_ILT_LINES;
14461	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14462	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14463	cp->drv_ctl = bnx2x_drv_ctl;
14464	cp->drv_register_cnic = bnx2x_register_cnic;
14465	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14466	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14467	cp->iscsi_l2_client_id =
14468		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14469	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14470
14471	if (NO_ISCSI_OOO(bp))
14472		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14473
14474	if (NO_ISCSI(bp))
14475		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14476
14477	if (NO_FCOE(bp))
14478		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14479
14480	BNX2X_DEV_INFO(
14481		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14482	   cp->ctx_blk_size,
14483	   cp->ctx_tbl_offset,
14484	   cp->ctx_tbl_len,
14485	   cp->starting_cid);
14486	return cp;
14487}
14488
14489static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14490{
14491	struct bnx2x *bp = fp->bp;
14492	u32 offset = BAR_USTRORM_INTMEM;
14493
14494	if (IS_VF(bp))
14495		return bnx2x_vf_ustorm_prods_offset(bp, fp);
14496	else if (!CHIP_IS_E1x(bp))
14497		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14498	else
14499		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14500
14501	return offset;
14502}
14503
14504/* called only on E1H or E2.
14505 * When pretending to be PF, the pretend value is the function number 0...7
14506 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14507 * combination
14508 */
14509int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14510{
14511	u32 pretend_reg;
14512
14513	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14514		return -1;
14515
14516	/* get my own pretend register */
14517	pretend_reg = bnx2x_get_pretend_reg(bp);
14518	REG_WR(bp, pretend_reg, pretend_func_val);
14519	REG_RD(bp, pretend_reg);
14520	return 0;
14521}
14522
14523static void bnx2x_ptp_task(struct work_struct *work)
14524{
14525	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14526	int port = BP_PORT(bp);
14527	u32 val_seq;
14528	u64 timestamp, ns;
14529	struct skb_shared_hwtstamps shhwtstamps;
14530
14531	/* Read Tx timestamp registers */
14532	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14533			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14534	if (val_seq & 0x10000) {
14535		/* There is a valid timestamp value */
14536		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14537				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14538		timestamp <<= 32;
14539		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14540				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14541		/* Reset timestamp register to allow new timestamp */
14542		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14543		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14544		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14545
14546		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14547		shhwtstamps.hwtstamp = ns_to_ktime(ns);
14548		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14549		dev_kfree_skb_any(bp->ptp_tx_skb);
14550		bp->ptp_tx_skb = NULL;
14551
14552		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14553		   timestamp, ns);
14554	} else {
14555		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14556		/* Reschedule to keep checking for a valid timestamp value */
14557		schedule_work(&bp->ptp_task);
14558	}
14559}
14560
14561void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14562{
14563	int port = BP_PORT(bp);
14564	u64 timestamp, ns;
14565
14566	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14567			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14568	timestamp <<= 32;
14569	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14570			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14571
14572	/* Reset timestamp register to allow new timestamp */
14573	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14574	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14575
14576	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14577
14578	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14579
14580	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14581	   timestamp, ns);
14582}
14583
14584/* Read the PHC */
14585static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14586{
14587	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14588	int port = BP_PORT(bp);
14589	u32 wb_data[2];
14590	u64 phc_cycles;
14591
14592	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14593		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14594	phc_cycles = wb_data[1];
14595	phc_cycles = (phc_cycles << 32) + wb_data[0];
14596
14597	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14598
14599	return phc_cycles;
14600}
14601
14602static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14603{
14604	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14605	bp->cyclecounter.read = bnx2x_cyclecounter_read;
14606	bp->cyclecounter.mask = CLOCKSOURCE_MASK(64);
14607	bp->cyclecounter.shift = 1;
14608	bp->cyclecounter.mult = 1;
14609}
14610
14611static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14612{
14613	struct bnx2x_func_state_params func_params = {NULL};
14614	struct bnx2x_func_set_timesync_params *set_timesync_params =
14615		&func_params.params.set_timesync;
14616
14617	/* Prepare parameters for function state transitions */
14618	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14619	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14620
14621	func_params.f_obj = &bp->func_obj;
14622	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14623
14624	/* Function parameters */
14625	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14626	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14627
14628	return bnx2x_func_state_change(bp, &func_params);
14629}
14630
14631int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14632{
14633	struct bnx2x_queue_state_params q_params;
14634	int rc, i;
14635
14636	/* send queue update ramrod to enable PTP packets */
14637	memset(&q_params, 0, sizeof(q_params));
14638	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14639	q_params.cmd = BNX2X_Q_CMD_UPDATE;
14640	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14641		  &q_params.params.update.update_flags);
14642	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14643		  &q_params.params.update.update_flags);
14644
14645	/* send the ramrod on all the queues of the PF */
14646	for_each_eth_queue(bp, i) {
14647		struct bnx2x_fastpath *fp = &bp->fp[i];
14648
14649		/* Set the appropriate Queue object */
14650		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14651
14652		/* Update the Queue state */
14653		rc = bnx2x_queue_state_change(bp, &q_params);
14654		if (rc) {
14655			BNX2X_ERR("Failed to enable PTP packets\n");
14656			return rc;
14657		}
14658	}
14659
14660	return 0;
14661}
14662
14663int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14664{
14665	int port = BP_PORT(bp);
14666	int rc;
14667
14668	if (!bp->hwtstamp_ioctl_called)
14669		return 0;
14670
14671	switch (bp->tx_type) {
14672	case HWTSTAMP_TX_ON:
14673		bp->flags |= TX_TIMESTAMPING_EN;
14674		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14675		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14676		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14677		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14678		break;
14679	case HWTSTAMP_TX_ONESTEP_SYNC:
14680		BNX2X_ERR("One-step timestamping is not supported\n");
14681		return -ERANGE;
14682	}
14683
14684	switch (bp->rx_filter) {
14685	case HWTSTAMP_FILTER_NONE:
14686		break;
14687	case HWTSTAMP_FILTER_ALL:
14688	case HWTSTAMP_FILTER_SOME:
14689		bp->rx_filter = HWTSTAMP_FILTER_NONE;
14690		break;
14691	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14692	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14693	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14694		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14695		/* Initialize PTP detection for UDP/IPv4 events */
14696		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14697		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14698		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14699		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14700		break;
14701	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14702	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14703	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14704		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14705		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14706		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14707		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14708		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14709		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14710		break;
14711	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14712	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14713	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14714		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14715		/* Initialize PTP detection L2 events */
14716		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14717		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14718		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14719		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14720
14721		break;
14722	case HWTSTAMP_FILTER_PTP_V2_EVENT:
14723	case HWTSTAMP_FILTER_PTP_V2_SYNC:
14724	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14725		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14726		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14727		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14728		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14729		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14730		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14731		break;
14732	}
14733
14734	/* Indicate to FW that this PF expects recorded PTP packets */
14735	rc = bnx2x_enable_ptp_packets(bp);
14736	if (rc)
14737		return rc;
14738
14739	/* Enable sending PTP packets to host */
14740	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14741	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14742
14743	return 0;
14744}
14745
14746static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14747{
14748	struct hwtstamp_config config;
14749	int rc;
14750
14751	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14752
14753	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14754		return -EFAULT;
14755
14756	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14757	   config.tx_type, config.rx_filter);
14758
14759	if (config.flags) {
14760		BNX2X_ERR("config.flags is reserved for future use\n");
14761		return -EINVAL;
14762	}
14763
14764	bp->hwtstamp_ioctl_called = 1;
14765	bp->tx_type = config.tx_type;
14766	bp->rx_filter = config.rx_filter;
14767
14768	rc = bnx2x_configure_ptp_filters(bp);
14769	if (rc)
14770		return rc;
14771
14772	config.rx_filter = bp->rx_filter;
14773
14774	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14775		-EFAULT : 0;
14776}
14777
14778/* Configrues HW for PTP */
14779static int bnx2x_configure_ptp(struct bnx2x *bp)
14780{
14781	int rc, port = BP_PORT(bp);
14782	u32 wb_data[2];
14783
14784	/* Reset PTP event detection rules - will be configured in the IOCTL */
14785	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14786	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14787	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14788	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14789	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14790	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14791	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14792	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14793
14794	/* Disable PTP packets to host - will be configured in the IOCTL*/
14795	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14796	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14797
14798	/* Enable the PTP feature */
14799	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14800	       NIG_REG_P0_PTP_EN, 0x3F);
14801
14802	/* Enable the free-running counter */
14803	wb_data[0] = 0;
14804	wb_data[1] = 0;
14805	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14806
14807	/* Reset drift register (offset register is not reset) */
14808	rc = bnx2x_send_reset_timesync_ramrod(bp);
14809	if (rc) {
14810		BNX2X_ERR("Failed to reset PHC drift register\n");
14811		return -EFAULT;
14812	}
14813
14814	/* Reset possibly old timestamps */
14815	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14816	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14817	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14818	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14819
14820	return 0;
14821}
14822
14823/* Called during load, to initialize PTP-related stuff */
14824void bnx2x_init_ptp(struct bnx2x *bp)
14825{
14826	int rc;
14827
14828	/* Configure PTP in HW */
14829	rc = bnx2x_configure_ptp(bp);
14830	if (rc) {
14831		BNX2X_ERR("Stopping PTP initialization\n");
14832		return;
14833	}
14834
14835	/* Init work queue for Tx timestamping */
14836	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14837
14838	/* Init cyclecounter and timecounter. This is done only in the first
14839	 * load. If done in every load, PTP application will fail when doing
14840	 * unload / load (e.g. MTU change) while it is running.
14841	 */
14842	if (!bp->timecounter_init_done) {
14843		bnx2x_init_cyclecounter(bp);
14844		timecounter_init(&bp->timecounter, &bp->cyclecounter,
14845				 ktime_to_ns(ktime_get_real()));
14846		bp->timecounter_init_done = 1;
14847	}
14848
14849	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14850}
14851