bnx2x_main.c revision 127a425e8f05b9813879e8ca909ef4338ec8ec04
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/dma-mapping.h>
35#include <linux/bitops.h>
36#include <linux/irq.h>
37#include <linux/delay.h>
38#include <asm/byteorder.h>
39#include <linux/time.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/stringify.h>
56#include <linux/vmalloc.h>
57
58#include "bnx2x.h"
59#include "bnx2x_init.h"
60#include "bnx2x_init_ops.h"
61#include "bnx2x_cmn.h"
62#include "bnx2x_dcb.h"
63#include "bnx2x_sp.h"
64
65#include <linux/firmware.h>
66#include "bnx2x_fw_file_hdr.h"
67/* FW files */
68#define FW_FILE_VERSION					\
69	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77/* Time in jiffies before concluding the transmitter is hung */
78#define TX_TIMEOUT		(5*HZ)
79
80static char version[] __devinitdata =
81	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84MODULE_AUTHOR("Eliezer Tamir");
85MODULE_DESCRIPTION("Broadcom NetXtreme II "
86		   "BCM57710/57711/57711E/"
87		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88		   "57840/57840_MF Driver");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_MODULE_VERSION);
91MODULE_FIRMWARE(FW_FILE_NAME_E1);
92MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95static int multi_mode = 1;
96module_param(multi_mode, int, 0);
97MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98			     "(0 Disable; 1 Enable (default))");
99
100int num_queues;
101module_param(num_queues, int, 0);
102MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103				" (default is as a number of CPUs)");
104
105static int disable_tpa;
106module_param(disable_tpa, int, 0);
107MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109#define INT_MODE_INTx			1
110#define INT_MODE_MSI			2
111static int int_mode;
112module_param(int_mode, int, 0);
113MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114				"(1 INT#x; 2 MSI)");
115
116static int dropless_fc;
117module_param(dropless_fc, int, 0);
118MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120static int poll;
121module_param(poll, int, 0);
122MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124static int mrrs = -1;
125module_param(mrrs, int, 0);
126MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128static int debug;
129module_param(debug, int, 0);
130MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134struct workqueue_struct *bnx2x_wq;
135
136enum bnx2x_board_type {
137	BCM57710 = 0,
138	BCM57711,
139	BCM57711E,
140	BCM57712,
141	BCM57712_MF,
142	BCM57800,
143	BCM57800_MF,
144	BCM57810,
145	BCM57810_MF,
146	BCM57840,
147	BCM57840_MF
148};
149
150/* indexed by board_type, above */
151static struct {
152	char *name;
153} board_info[] __devinitdata = {
154	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165						"Ethernet Multi Function"}
166};
167
168#ifndef PCI_DEVICE_ID_NX2_57710
169#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
170#endif
171#ifndef PCI_DEVICE_ID_NX2_57711
172#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
173#endif
174#ifndef PCI_DEVICE_ID_NX2_57711E
175#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
176#endif
177#ifndef PCI_DEVICE_ID_NX2_57712
178#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
179#endif
180#ifndef PCI_DEVICE_ID_NX2_57712_MF
181#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
182#endif
183#ifndef PCI_DEVICE_ID_NX2_57800
184#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
185#endif
186#ifndef PCI_DEVICE_ID_NX2_57800_MF
187#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
188#endif
189#ifndef PCI_DEVICE_ID_NX2_57810
190#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
191#endif
192#ifndef PCI_DEVICE_ID_NX2_57810_MF
193#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
194#endif
195#ifndef PCI_DEVICE_ID_NX2_57840
196#define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
197#endif
198#ifndef PCI_DEVICE_ID_NX2_57840_MF
199#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
200#endif
201static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213	{ 0 }
214};
215
216MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218/****************************************************************************
219* General service functions
220****************************************************************************/
221
222static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223				       u32 addr, dma_addr_t mapping)
224{
225	REG_WR(bp,  addr, U64_LO(mapping));
226	REG_WR(bp,  addr + 4, U64_HI(mapping));
227}
228
229static inline void storm_memset_spq_addr(struct bnx2x *bp,
230					 dma_addr_t mapping, u16 abs_fid)
231{
232	u32 addr = XSEM_REG_FAST_MEMORY +
233			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235	__storm_memset_dma_mapping(bp, addr, mapping);
236}
237
238static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239					 u16 pf_id)
240{
241	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242		pf_id);
243	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244		pf_id);
245	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246		pf_id);
247	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248		pf_id);
249}
250
251static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252					u8 enable)
253{
254	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255		enable);
256	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257		enable);
258	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259		enable);
260	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261		enable);
262}
263
264static inline void storm_memset_eq_data(struct bnx2x *bp,
265				struct event_ring_data *eq_data,
266				u16 pfid)
267{
268	size_t size = sizeof(struct event_ring_data);
269
270	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273}
274
275static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276					u16 pfid)
277{
278	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279	REG_WR16(bp, addr, eq_prod);
280}
281
282/* used only at init
283 * locking is done by mcp
284 */
285static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286{
287	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290			       PCICFG_VENDOR_ID_OFFSET);
291}
292
293static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294{
295	u32 val;
296
297	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300			       PCICFG_VENDOR_ID_OFFSET);
301
302	return val;
303}
304
305#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
306#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
307#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
308#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
309#define DMAE_DP_DST_NONE	"dst_addr [none]"
310
311static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312			  int msglvl)
313{
314	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316	switch (dmae->opcode & DMAE_COMMAND_DST) {
317	case DMAE_CMD_DST_PCI:
318		if (src_type == DMAE_CMD_SRC_PCI)
319			DP(msglvl, "DMAE: opcode 0x%08x\n"
320			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
322			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324			   dmae->comp_addr_hi, dmae->comp_addr_lo,
325			   dmae->comp_val);
326		else
327			DP(msglvl, "DMAE: opcode 0x%08x\n"
328			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
329			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
330			   dmae->opcode, dmae->src_addr_lo >> 2,
331			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332			   dmae->comp_addr_hi, dmae->comp_addr_lo,
333			   dmae->comp_val);
334		break;
335	case DMAE_CMD_DST_GRC:
336		if (src_type == DMAE_CMD_SRC_PCI)
337			DP(msglvl, "DMAE: opcode 0x%08x\n"
338			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
340			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341			   dmae->len, dmae->dst_addr_lo >> 2,
342			   dmae->comp_addr_hi, dmae->comp_addr_lo,
343			   dmae->comp_val);
344		else
345			DP(msglvl, "DMAE: opcode 0x%08x\n"
346			   "src [%08x], len [%d*4], dst [%08x]\n"
347			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
348			   dmae->opcode, dmae->src_addr_lo >> 2,
349			   dmae->len, dmae->dst_addr_lo >> 2,
350			   dmae->comp_addr_hi, dmae->comp_addr_lo,
351			   dmae->comp_val);
352		break;
353	default:
354		if (src_type == DMAE_CMD_SRC_PCI)
355			DP(msglvl, "DMAE: opcode 0x%08x\n"
356			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
357			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
358			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360			   dmae->comp_val);
361		else
362			DP(msglvl, "DMAE: opcode 0x%08x\n"
363			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
364			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
365			   dmae->opcode, dmae->src_addr_lo >> 2,
366			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367			   dmae->comp_val);
368		break;
369	}
370
371}
372
373/* copy command into DMAE command memory and set DMAE command go */
374void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375{
376	u32 cmd_offset;
377	int i;
378
379	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385	}
386	REG_WR(bp, dmae_reg_go_c[idx], 1);
387}
388
389u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390{
391	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392			   DMAE_CMD_C_ENABLE);
393}
394
395u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396{
397	return opcode & ~DMAE_CMD_SRC_RESET;
398}
399
400u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401			     bool with_comp, u8 comp_type)
402{
403	u32 opcode = 0;
404
405	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406		   (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415#ifdef __BIG_ENDIAN
416	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417#else
418	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419#endif
420	if (with_comp)
421		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422	return opcode;
423}
424
425static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426				      struct dmae_command *dmae,
427				      u8 src_type, u8 dst_type)
428{
429	memset(dmae, 0, sizeof(struct dmae_command));
430
431	/* set the opcode */
432	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433					 true, DMAE_COMP_PCI);
434
435	/* fill in the completion parameters */
436	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438	dmae->comp_val = DMAE_COMP_VAL;
439}
440
441/* issue a dmae command over the init-channel and wailt for completion */
442static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443				      struct dmae_command *dmae)
444{
445	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447	int rc = 0;
448
449	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453	/*
454	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455	 * as long as this code is called both from syscall context and
456	 * from ndo_set_rx_mode() flow that may be called from BH.
457	 */
458	spin_lock_bh(&bp->dmae_lock);
459
460	/* reset completion */
461	*wb_comp = 0;
462
463	/* post the command on the channel used for initializations */
464	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466	/* wait for completion */
467	udelay(5);
468	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471		if (!cnt) {
472			BNX2X_ERR("DMAE timeout!\n");
473			rc = DMAE_TIMEOUT;
474			goto unlock;
475		}
476		cnt--;
477		udelay(50);
478	}
479	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480		BNX2X_ERR("DMAE PCI error!\n");
481		rc = DMAE_PCI_ERROR;
482	}
483
484	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487
488unlock:
489	spin_unlock_bh(&bp->dmae_lock);
490	return rc;
491}
492
493void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494		      u32 len32)
495{
496	struct dmae_command dmae;
497
498	if (!bp->dmae_ready) {
499		u32 *data = bnx2x_sp(bp, wb_data[0]);
500
501		DP(BNX2X_MSG_OFF,
502		   "DMAE is not ready (dst_addr %08x len32 %d) using indirect\n",
503		   dst_addr, len32);
504		if (CHIP_IS_E1(bp))
505			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
506		else
507			bnx2x_init_str_wr(bp, dst_addr, data, len32);
508		return;
509	}
510
511	/* set opcode and fixed command fields */
512	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
513
514	/* fill in addresses and len */
515	dmae.src_addr_lo = U64_LO(dma_addr);
516	dmae.src_addr_hi = U64_HI(dma_addr);
517	dmae.dst_addr_lo = dst_addr >> 2;
518	dmae.dst_addr_hi = 0;
519	dmae.len = len32;
520
521	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
522
523	/* issue the command and wait for completion */
524	bnx2x_issue_dmae_with_comp(bp, &dmae);
525}
526
527void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
528{
529	struct dmae_command dmae;
530
531	if (!bp->dmae_ready) {
532		u32 *data = bnx2x_sp(bp, wb_data[0]);
533		int i;
534
535		if (CHIP_IS_E1(bp)) {
536			DP(BNX2X_MSG_OFF,
537			   "DMAE is not ready (src_addr %08x len32 %d) using indirect\n",
538			   src_addr, len32);
539			for (i = 0; i < len32; i++)
540				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
541		} else
542			for (i = 0; i < len32; i++)
543				data[i] = REG_RD(bp, src_addr + i*4);
544
545		return;
546	}
547
548	/* set opcode and fixed command fields */
549	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
550
551	/* fill in addresses and len */
552	dmae.src_addr_lo = src_addr >> 2;
553	dmae.src_addr_hi = 0;
554	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
555	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
556	dmae.len = len32;
557
558	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
559
560	/* issue the command and wait for completion */
561	bnx2x_issue_dmae_with_comp(bp, &dmae);
562}
563
564static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
565				      u32 addr, u32 len)
566{
567	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
568	int offset = 0;
569
570	while (len > dmae_wr_max) {
571		bnx2x_write_dmae(bp, phys_addr + offset,
572				 addr + offset, dmae_wr_max);
573		offset += dmae_wr_max * 4;
574		len -= dmae_wr_max;
575	}
576
577	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
578}
579
580/* used only for slowpath so not inlined */
581static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
582{
583	u32 wb_write[2];
584
585	wb_write[0] = val_hi;
586	wb_write[1] = val_lo;
587	REG_WR_DMAE(bp, reg, wb_write, 2);
588}
589
590#ifdef USE_WB_RD
591static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
592{
593	u32 wb_data[2];
594
595	REG_RD_DMAE(bp, reg, wb_data, 2);
596
597	return HILO_U64(wb_data[0], wb_data[1]);
598}
599#endif
600
601static int bnx2x_mc_assert(struct bnx2x *bp)
602{
603	char last_idx;
604	int i, rc = 0;
605	u32 row0, row1, row2, row3;
606
607	/* XSTORM */
608	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
609			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
610	if (last_idx)
611		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
612
613	/* print the asserts */
614	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
615
616		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
617			      XSTORM_ASSERT_LIST_OFFSET(i));
618		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
619			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
620		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
621			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
622		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
623			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
624
625		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
626			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
627				  " 0x%08x 0x%08x 0x%08x\n",
628				  i, row3, row2, row1, row0);
629			rc++;
630		} else {
631			break;
632		}
633	}
634
635	/* TSTORM */
636	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
637			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
638	if (last_idx)
639		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
640
641	/* print the asserts */
642	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
643
644		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
645			      TSTORM_ASSERT_LIST_OFFSET(i));
646		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
647			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
648		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
649			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
650		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
651			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
652
653		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
654			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
655				  " 0x%08x 0x%08x 0x%08x\n",
656				  i, row3, row2, row1, row0);
657			rc++;
658		} else {
659			break;
660		}
661	}
662
663	/* CSTORM */
664	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
665			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
666	if (last_idx)
667		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
668
669	/* print the asserts */
670	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
671
672		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
673			      CSTORM_ASSERT_LIST_OFFSET(i));
674		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
675			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
676		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
677			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
678		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
679			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
680
681		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
682			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
683				  " 0x%08x 0x%08x 0x%08x\n",
684				  i, row3, row2, row1, row0);
685			rc++;
686		} else {
687			break;
688		}
689	}
690
691	/* USTORM */
692	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
693			   USTORM_ASSERT_LIST_INDEX_OFFSET);
694	if (last_idx)
695		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
696
697	/* print the asserts */
698	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
699
700		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
701			      USTORM_ASSERT_LIST_OFFSET(i));
702		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
703			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
704		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
705			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
706		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
707			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
708
709		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
710			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
711				  " 0x%08x 0x%08x 0x%08x\n",
712				  i, row3, row2, row1, row0);
713			rc++;
714		} else {
715			break;
716		}
717	}
718
719	return rc;
720}
721
722void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
723{
724	u32 addr, val;
725	u32 mark, offset;
726	__be32 data[9];
727	int word;
728	u32 trace_shmem_base;
729	if (BP_NOMCP(bp)) {
730		BNX2X_ERR("NO MCP - can not dump\n");
731		return;
732	}
733	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
734		(bp->common.bc_ver & 0xff0000) >> 16,
735		(bp->common.bc_ver & 0xff00) >> 8,
736		(bp->common.bc_ver & 0xff));
737
738	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
739	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
740		printk("%s" "MCP PC at 0x%x\n", lvl, val);
741
742	if (BP_PATH(bp) == 0)
743		trace_shmem_base = bp->common.shmem_base;
744	else
745		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
746	addr = trace_shmem_base - 0x0800 + 4;
747	mark = REG_RD(bp, addr);
748	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
749			+ ((mark + 0x3) & ~0x3) - 0x08000000;
750	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
751
752	printk("%s", lvl);
753	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
754		for (word = 0; word < 8; word++)
755			data[word] = htonl(REG_RD(bp, offset + 4*word));
756		data[8] = 0x0;
757		pr_cont("%s", (char *)data);
758	}
759	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
760		for (word = 0; word < 8; word++)
761			data[word] = htonl(REG_RD(bp, offset + 4*word));
762		data[8] = 0x0;
763		pr_cont("%s", (char *)data);
764	}
765	printk("%s" "end of fw dump\n", lvl);
766}
767
768static inline void bnx2x_fw_dump(struct bnx2x *bp)
769{
770	bnx2x_fw_dump_lvl(bp, KERN_ERR);
771}
772
773void bnx2x_panic_dump(struct bnx2x *bp)
774{
775	int i;
776	u16 j;
777	struct hc_sp_status_block_data sp_sb_data;
778	int func = BP_FUNC(bp);
779#ifdef BNX2X_STOP_ON_ERROR
780	u16 start = 0, end = 0;
781	u8 cos;
782#endif
783
784	bp->stats_state = STATS_STATE_DISABLED;
785	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
786
787	BNX2X_ERR("begin crash dump -----------------\n");
788
789	/* Indices */
790	/* Common */
791	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
792		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
793		  bp->def_idx, bp->def_att_idx, bp->attn_state,
794		  bp->spq_prod_idx, bp->stats_counter);
795	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
796		  bp->def_status_blk->atten_status_block.attn_bits,
797		  bp->def_status_blk->atten_status_block.attn_bits_ack,
798		  bp->def_status_blk->atten_status_block.status_block_id,
799		  bp->def_status_blk->atten_status_block.attn_bits_index);
800	BNX2X_ERR("     def (");
801	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
802		pr_cont("0x%x%s",
803			bp->def_status_blk->sp_sb.index_values[i],
804			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
805
806	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
807		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
808			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
809			i*sizeof(u32));
810
811	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
812	       sp_sb_data.igu_sb_id,
813	       sp_sb_data.igu_seg_id,
814	       sp_sb_data.p_func.pf_id,
815	       sp_sb_data.p_func.vnic_id,
816	       sp_sb_data.p_func.vf_id,
817	       sp_sb_data.p_func.vf_valid,
818	       sp_sb_data.state);
819
820
821	for_each_eth_queue(bp, i) {
822		struct bnx2x_fastpath *fp = &bp->fp[i];
823		int loop;
824		struct hc_status_block_data_e2 sb_data_e2;
825		struct hc_status_block_data_e1x sb_data_e1x;
826		struct hc_status_block_sm  *hc_sm_p =
827			CHIP_IS_E1x(bp) ?
828			sb_data_e1x.common.state_machine :
829			sb_data_e2.common.state_machine;
830		struct hc_index_data *hc_index_p =
831			CHIP_IS_E1x(bp) ?
832			sb_data_e1x.index_data :
833			sb_data_e2.index_data;
834		u8 data_size, cos;
835		u32 *sb_data_p;
836		struct bnx2x_fp_txdata txdata;
837
838		/* Rx */
839		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
840			  "  rx_comp_prod(0x%x)"
841			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
842			  i, fp->rx_bd_prod, fp->rx_bd_cons,
843			  fp->rx_comp_prod,
844			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
845		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
846			  "  fp_hc_idx(0x%x)\n",
847			  fp->rx_sge_prod, fp->last_max_sge,
848			  le16_to_cpu(fp->fp_hc_idx));
849
850		/* Tx */
851		for_each_cos_in_tx_queue(fp, cos)
852		{
853			txdata = fp->txdata[cos];
854			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
855				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
856				  "  *tx_cons_sb(0x%x)\n",
857				  i, txdata.tx_pkt_prod,
858				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
859				  txdata.tx_bd_cons,
860				  le16_to_cpu(*txdata.tx_cons_sb));
861		}
862
863		loop = CHIP_IS_E1x(bp) ?
864			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
865
866		/* host sb data */
867
868#ifdef BCM_CNIC
869		if (IS_FCOE_FP(fp))
870			continue;
871#endif
872		BNX2X_ERR("     run indexes (");
873		for (j = 0; j < HC_SB_MAX_SM; j++)
874			pr_cont("0x%x%s",
875			       fp->sb_running_index[j],
876			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
877
878		BNX2X_ERR("     indexes (");
879		for (j = 0; j < loop; j++)
880			pr_cont("0x%x%s",
881			       fp->sb_index_values[j],
882			       (j == loop - 1) ? ")" : " ");
883		/* fw sb data */
884		data_size = CHIP_IS_E1x(bp) ?
885			sizeof(struct hc_status_block_data_e1x) :
886			sizeof(struct hc_status_block_data_e2);
887		data_size /= sizeof(u32);
888		sb_data_p = CHIP_IS_E1x(bp) ?
889			(u32 *)&sb_data_e1x :
890			(u32 *)&sb_data_e2;
891		/* copy sb data in here */
892		for (j = 0; j < data_size; j++)
893			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
894				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
895				j * sizeof(u32));
896
897		if (!CHIP_IS_E1x(bp)) {
898			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
899				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
900				"state(0x%x)\n",
901				sb_data_e2.common.p_func.pf_id,
902				sb_data_e2.common.p_func.vf_id,
903				sb_data_e2.common.p_func.vf_valid,
904				sb_data_e2.common.p_func.vnic_id,
905				sb_data_e2.common.same_igu_sb_1b,
906				sb_data_e2.common.state);
907		} else {
908			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
909				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
910				"state(0x%x)\n",
911				sb_data_e1x.common.p_func.pf_id,
912				sb_data_e1x.common.p_func.vf_id,
913				sb_data_e1x.common.p_func.vf_valid,
914				sb_data_e1x.common.p_func.vnic_id,
915				sb_data_e1x.common.same_igu_sb_1b,
916				sb_data_e1x.common.state);
917		}
918
919		/* SB_SMs data */
920		for (j = 0; j < HC_SB_MAX_SM; j++) {
921			pr_cont("SM[%d] __flags (0x%x) "
922			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
923			       "time_to_expire (0x%x) "
924			       "timer_value(0x%x)\n", j,
925			       hc_sm_p[j].__flags,
926			       hc_sm_p[j].igu_sb_id,
927			       hc_sm_p[j].igu_seg_id,
928			       hc_sm_p[j].time_to_expire,
929			       hc_sm_p[j].timer_value);
930		}
931
932		/* Indecies data */
933		for (j = 0; j < loop; j++) {
934			pr_cont("INDEX[%d] flags (0x%x) "
935					 "timeout (0x%x)\n", j,
936			       hc_index_p[j].flags,
937			       hc_index_p[j].timeout);
938		}
939	}
940
941#ifdef BNX2X_STOP_ON_ERROR
942	/* Rings */
943	/* Rx */
944	for_each_rx_queue(bp, i) {
945		struct bnx2x_fastpath *fp = &bp->fp[i];
946
947		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
948		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
949		for (j = start; j != end; j = RX_BD(j + 1)) {
950			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
951			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
952
953			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
954				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
955		}
956
957		start = RX_SGE(fp->rx_sge_prod);
958		end = RX_SGE(fp->last_max_sge);
959		for (j = start; j != end; j = RX_SGE(j + 1)) {
960			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
961			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
962
963			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
964				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
965		}
966
967		start = RCQ_BD(fp->rx_comp_cons - 10);
968		end = RCQ_BD(fp->rx_comp_cons + 503);
969		for (j = start; j != end; j = RCQ_BD(j + 1)) {
970			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
971
972			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
973				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
974		}
975	}
976
977	/* Tx */
978	for_each_tx_queue(bp, i) {
979		struct bnx2x_fastpath *fp = &bp->fp[i];
980		for_each_cos_in_tx_queue(fp, cos) {
981			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
982
983			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
984			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
985			for (j = start; j != end; j = TX_BD(j + 1)) {
986				struct sw_tx_bd *sw_bd =
987					&txdata->tx_buf_ring[j];
988
989				BNX2X_ERR("fp%d: txdata %d, "
990					  "packet[%x]=[%p,%x]\n",
991					  i, cos, j, sw_bd->skb,
992					  sw_bd->first_bd);
993			}
994
995			start = TX_BD(txdata->tx_bd_cons - 10);
996			end = TX_BD(txdata->tx_bd_cons + 254);
997			for (j = start; j != end; j = TX_BD(j + 1)) {
998				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
999
1000				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
1001					  "[%x:%x:%x:%x]\n",
1002					  i, cos, j, tx_bd[0], tx_bd[1],
1003					  tx_bd[2], tx_bd[3]);
1004			}
1005		}
1006	}
1007#endif
1008	bnx2x_fw_dump(bp);
1009	bnx2x_mc_assert(bp);
1010	BNX2X_ERR("end crash dump -----------------\n");
1011}
1012
1013/*
1014 * FLR Support for E2
1015 *
1016 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1017 * initialization.
1018 */
1019#define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1020#define FLR_WAIT_INTERAVAL	50	/* usec */
1021#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1022
1023struct pbf_pN_buf_regs {
1024	int pN;
1025	u32 init_crd;
1026	u32 crd;
1027	u32 crd_freed;
1028};
1029
1030struct pbf_pN_cmd_regs {
1031	int pN;
1032	u32 lines_occup;
1033	u32 lines_freed;
1034};
1035
1036static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1037				     struct pbf_pN_buf_regs *regs,
1038				     u32 poll_count)
1039{
1040	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1041	u32 cur_cnt = poll_count;
1042
1043	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1044	crd = crd_start = REG_RD(bp, regs->crd);
1045	init_crd = REG_RD(bp, regs->init_crd);
1046
1047	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1048	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1049	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1050
1051	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1052	       (init_crd - crd_start))) {
1053		if (cur_cnt--) {
1054			udelay(FLR_WAIT_INTERAVAL);
1055			crd = REG_RD(bp, regs->crd);
1056			crd_freed = REG_RD(bp, regs->crd_freed);
1057		} else {
1058			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1059			   regs->pN);
1060			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1061			   regs->pN, crd);
1062			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1063			   regs->pN, crd_freed);
1064			break;
1065		}
1066	}
1067	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1068	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1069}
1070
1071static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1072				     struct pbf_pN_cmd_regs *regs,
1073				     u32 poll_count)
1074{
1075	u32 occup, to_free, freed, freed_start;
1076	u32 cur_cnt = poll_count;
1077
1078	occup = to_free = REG_RD(bp, regs->lines_occup);
1079	freed = freed_start = REG_RD(bp, regs->lines_freed);
1080
1081	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1082	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1083
1084	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1085		if (cur_cnt--) {
1086			udelay(FLR_WAIT_INTERAVAL);
1087			occup = REG_RD(bp, regs->lines_occup);
1088			freed = REG_RD(bp, regs->lines_freed);
1089		} else {
1090			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1091			   regs->pN);
1092			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1093			   regs->pN, occup);
1094			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1095			   regs->pN, freed);
1096			break;
1097		}
1098	}
1099	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1100	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1101}
1102
1103static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1104				     u32 expected, u32 poll_count)
1105{
1106	u32 cur_cnt = poll_count;
1107	u32 val;
1108
1109	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1110		udelay(FLR_WAIT_INTERAVAL);
1111
1112	return val;
1113}
1114
1115static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1116						  char *msg, u32 poll_cnt)
1117{
1118	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1119	if (val != 0) {
1120		BNX2X_ERR("%s usage count=%d\n", msg, val);
1121		return 1;
1122	}
1123	return 0;
1124}
1125
1126static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1127{
1128	/* adjust polling timeout */
1129	if (CHIP_REV_IS_EMUL(bp))
1130		return FLR_POLL_CNT * 2000;
1131
1132	if (CHIP_REV_IS_FPGA(bp))
1133		return FLR_POLL_CNT * 120;
1134
1135	return FLR_POLL_CNT;
1136}
1137
1138static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1139{
1140	struct pbf_pN_cmd_regs cmd_regs[] = {
1141		{0, (CHIP_IS_E3B0(bp)) ?
1142			PBF_REG_TQ_OCCUPANCY_Q0 :
1143			PBF_REG_P0_TQ_OCCUPANCY,
1144		    (CHIP_IS_E3B0(bp)) ?
1145			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1146			PBF_REG_P0_TQ_LINES_FREED_CNT},
1147		{1, (CHIP_IS_E3B0(bp)) ?
1148			PBF_REG_TQ_OCCUPANCY_Q1 :
1149			PBF_REG_P1_TQ_OCCUPANCY,
1150		    (CHIP_IS_E3B0(bp)) ?
1151			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1152			PBF_REG_P1_TQ_LINES_FREED_CNT},
1153		{4, (CHIP_IS_E3B0(bp)) ?
1154			PBF_REG_TQ_OCCUPANCY_LB_Q :
1155			PBF_REG_P4_TQ_OCCUPANCY,
1156		    (CHIP_IS_E3B0(bp)) ?
1157			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1158			PBF_REG_P4_TQ_LINES_FREED_CNT}
1159	};
1160
1161	struct pbf_pN_buf_regs buf_regs[] = {
1162		{0, (CHIP_IS_E3B0(bp)) ?
1163			PBF_REG_INIT_CRD_Q0 :
1164			PBF_REG_P0_INIT_CRD ,
1165		    (CHIP_IS_E3B0(bp)) ?
1166			PBF_REG_CREDIT_Q0 :
1167			PBF_REG_P0_CREDIT,
1168		    (CHIP_IS_E3B0(bp)) ?
1169			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1170			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1171		{1, (CHIP_IS_E3B0(bp)) ?
1172			PBF_REG_INIT_CRD_Q1 :
1173			PBF_REG_P1_INIT_CRD,
1174		    (CHIP_IS_E3B0(bp)) ?
1175			PBF_REG_CREDIT_Q1 :
1176			PBF_REG_P1_CREDIT,
1177		    (CHIP_IS_E3B0(bp)) ?
1178			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1179			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1180		{4, (CHIP_IS_E3B0(bp)) ?
1181			PBF_REG_INIT_CRD_LB_Q :
1182			PBF_REG_P4_INIT_CRD,
1183		    (CHIP_IS_E3B0(bp)) ?
1184			PBF_REG_CREDIT_LB_Q :
1185			PBF_REG_P4_CREDIT,
1186		    (CHIP_IS_E3B0(bp)) ?
1187			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1188			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1189	};
1190
1191	int i;
1192
1193	/* Verify the command queues are flushed P0, P1, P4 */
1194	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1195		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1196
1197
1198	/* Verify the transmission buffers are flushed P0, P1, P4 */
1199	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1200		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1201}
1202
1203#define OP_GEN_PARAM(param) \
1204	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1205
1206#define OP_GEN_TYPE(type) \
1207	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1208
1209#define OP_GEN_AGG_VECT(index) \
1210	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1211
1212
1213static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1214					 u32 poll_cnt)
1215{
1216	struct sdm_op_gen op_gen = {0};
1217
1218	u32 comp_addr = BAR_CSTRORM_INTMEM +
1219			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1220	int ret = 0;
1221
1222	if (REG_RD(bp, comp_addr)) {
1223		BNX2X_ERR("Cleanup complete is not 0\n");
1224		return 1;
1225	}
1226
1227	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1228	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1229	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1230	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1231
1232	DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1233	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1234
1235	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1236		BNX2X_ERR("FW final cleanup did not succeed\n");
1237		ret = 1;
1238	}
1239	/* Zero completion for nxt FLR */
1240	REG_WR(bp, comp_addr, 0);
1241
1242	return ret;
1243}
1244
1245static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1246{
1247	int pos;
1248	u16 status;
1249
1250	pos = pci_pcie_cap(dev);
1251	if (!pos)
1252		return false;
1253
1254	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1255	return status & PCI_EXP_DEVSTA_TRPND;
1256}
1257
1258/* PF FLR specific routines
1259*/
1260static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1261{
1262
1263	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1264	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265			CFC_REG_NUM_LCIDS_INSIDE_PF,
1266			"CFC PF usage counter timed out",
1267			poll_cnt))
1268		return 1;
1269
1270
1271	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1272	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1273			DORQ_REG_PF_USAGE_CNT,
1274			"DQ PF usage counter timed out",
1275			poll_cnt))
1276		return 1;
1277
1278	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1279	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1280			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1281			"QM PF usage counter timed out",
1282			poll_cnt))
1283		return 1;
1284
1285	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1286	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1287			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1288			"Timers VNIC usage counter timed out",
1289			poll_cnt))
1290		return 1;
1291	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1292			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1293			"Timers NUM_SCANS usage counter timed out",
1294			poll_cnt))
1295		return 1;
1296
1297	/* Wait DMAE PF usage counter to zero */
1298	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1299			dmae_reg_go_c[INIT_DMAE_C(bp)],
1300			"DMAE dommand register timed out",
1301			poll_cnt))
1302		return 1;
1303
1304	return 0;
1305}
1306
1307static void bnx2x_hw_enable_status(struct bnx2x *bp)
1308{
1309	u32 val;
1310
1311	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1312	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1313
1314	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1315	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1316
1317	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1318	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1319
1320	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1321	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1322
1323	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1324	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1325
1326	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1327	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1328
1329	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1330	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1331
1332	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1333	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1334	   val);
1335}
1336
1337static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1338{
1339	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1340
1341	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1342
1343	/* Re-enable PF target read access */
1344	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1345
1346	/* Poll HW usage counters */
1347	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1348		return -EBUSY;
1349
1350	/* Zero the igu 'trailing edge' and 'leading edge' */
1351
1352	/* Send the FW cleanup command */
1353	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1354		return -EBUSY;
1355
1356	/* ATC cleanup */
1357
1358	/* Verify TX hw is flushed */
1359	bnx2x_tx_hw_flushed(bp, poll_cnt);
1360
1361	/* Wait 100ms (not adjusted according to platform) */
1362	msleep(100);
1363
1364	/* Verify no pending pci transactions */
1365	if (bnx2x_is_pcie_pending(bp->pdev))
1366		BNX2X_ERR("PCIE Transactions still pending\n");
1367
1368	/* Debug */
1369	bnx2x_hw_enable_status(bp);
1370
1371	/*
1372	 * Master enable - Due to WB DMAE writes performed before this
1373	 * register is re-initialized as part of the regular function init
1374	 */
1375	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1376
1377	return 0;
1378}
1379
1380static void bnx2x_hc_int_enable(struct bnx2x *bp)
1381{
1382	int port = BP_PORT(bp);
1383	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1384	u32 val = REG_RD(bp, addr);
1385	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1386	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1387
1388	if (msix) {
1389		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1391		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1392			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1393	} else if (msi) {
1394		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1395		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1396			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1397			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1398	} else {
1399		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1400			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1401			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1402			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1403
1404		if (!CHIP_IS_E1(bp)) {
1405			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1406			   val, port, addr);
1407
1408			REG_WR(bp, addr, val);
1409
1410			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1411		}
1412	}
1413
1414	if (CHIP_IS_E1(bp))
1415		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1416
1417	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1418	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1419
1420	REG_WR(bp, addr, val);
1421	/*
1422	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1423	 */
1424	mmiowb();
1425	barrier();
1426
1427	if (!CHIP_IS_E1(bp)) {
1428		/* init leading/trailing edge */
1429		if (IS_MF(bp)) {
1430			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1431			if (bp->port.pmf)
1432				/* enable nig and gpio3 attention */
1433				val |= 0x1100;
1434		} else
1435			val = 0xffff;
1436
1437		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1438		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1439	}
1440
1441	/* Make sure that interrupts are indeed enabled from here on */
1442	mmiowb();
1443}
1444
1445static void bnx2x_igu_int_enable(struct bnx2x *bp)
1446{
1447	u32 val;
1448	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1449	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1450
1451	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1452
1453	if (msix) {
1454		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1455			 IGU_PF_CONF_SINGLE_ISR_EN);
1456		val |= (IGU_PF_CONF_FUNC_EN |
1457			IGU_PF_CONF_MSI_MSIX_EN |
1458			IGU_PF_CONF_ATTN_BIT_EN);
1459	} else if (msi) {
1460		val &= ~IGU_PF_CONF_INT_LINE_EN;
1461		val |= (IGU_PF_CONF_FUNC_EN |
1462			IGU_PF_CONF_MSI_MSIX_EN |
1463			IGU_PF_CONF_ATTN_BIT_EN |
1464			IGU_PF_CONF_SINGLE_ISR_EN);
1465	} else {
1466		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1467		val |= (IGU_PF_CONF_FUNC_EN |
1468			IGU_PF_CONF_INT_LINE_EN |
1469			IGU_PF_CONF_ATTN_BIT_EN |
1470			IGU_PF_CONF_SINGLE_ISR_EN);
1471	}
1472
1473	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1474	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1475
1476	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1477
1478	barrier();
1479
1480	/* init leading/trailing edge */
1481	if (IS_MF(bp)) {
1482		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1483		if (bp->port.pmf)
1484			/* enable nig and gpio3 attention */
1485			val |= 0x1100;
1486	} else
1487		val = 0xffff;
1488
1489	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1490	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1491
1492	/* Make sure that interrupts are indeed enabled from here on */
1493	mmiowb();
1494}
1495
1496void bnx2x_int_enable(struct bnx2x *bp)
1497{
1498	if (bp->common.int_block == INT_BLOCK_HC)
1499		bnx2x_hc_int_enable(bp);
1500	else
1501		bnx2x_igu_int_enable(bp);
1502}
1503
1504static void bnx2x_hc_int_disable(struct bnx2x *bp)
1505{
1506	int port = BP_PORT(bp);
1507	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1508	u32 val = REG_RD(bp, addr);
1509
1510	/*
1511	 * in E1 we must use only PCI configuration space to disable
1512	 * MSI/MSIX capablility
1513	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1514	 */
1515	if (CHIP_IS_E1(bp)) {
1516		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1517		 *  Use mask register to prevent from HC sending interrupts
1518		 *  after we exit the function
1519		 */
1520		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1521
1522		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1523			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1524			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1525	} else
1526		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1527			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1528			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1529			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1530
1531	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1532	   val, port, addr);
1533
1534	/* flush all outstanding writes */
1535	mmiowb();
1536
1537	REG_WR(bp, addr, val);
1538	if (REG_RD(bp, addr) != val)
1539		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1540}
1541
1542static void bnx2x_igu_int_disable(struct bnx2x *bp)
1543{
1544	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1545
1546	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1547		 IGU_PF_CONF_INT_LINE_EN |
1548		 IGU_PF_CONF_ATTN_BIT_EN);
1549
1550	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1551
1552	/* flush all outstanding writes */
1553	mmiowb();
1554
1555	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1556	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1557		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1558}
1559
1560void bnx2x_int_disable(struct bnx2x *bp)
1561{
1562	if (bp->common.int_block == INT_BLOCK_HC)
1563		bnx2x_hc_int_disable(bp);
1564	else
1565		bnx2x_igu_int_disable(bp);
1566}
1567
1568void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1569{
1570	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1571	int i, offset;
1572
1573	if (disable_hw)
1574		/* prevent the HW from sending interrupts */
1575		bnx2x_int_disable(bp);
1576
1577	/* make sure all ISRs are done */
1578	if (msix) {
1579		synchronize_irq(bp->msix_table[0].vector);
1580		offset = 1;
1581#ifdef BCM_CNIC
1582		offset++;
1583#endif
1584		for_each_eth_queue(bp, i)
1585			synchronize_irq(bp->msix_table[offset++].vector);
1586	} else
1587		synchronize_irq(bp->pdev->irq);
1588
1589	/* make sure sp_task is not running */
1590	cancel_delayed_work(&bp->sp_task);
1591	cancel_delayed_work(&bp->period_task);
1592	flush_workqueue(bnx2x_wq);
1593}
1594
1595/* fast path */
1596
1597/*
1598 * General service functions
1599 */
1600
1601/* Return true if succeeded to acquire the lock */
1602static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1603{
1604	u32 lock_status;
1605	u32 resource_bit = (1 << resource);
1606	int func = BP_FUNC(bp);
1607	u32 hw_lock_control_reg;
1608
1609	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1610
1611	/* Validating that the resource is within range */
1612	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1613		DP(NETIF_MSG_HW,
1614		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1615		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1616		return false;
1617	}
1618
1619	if (func <= 5)
1620		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1621	else
1622		hw_lock_control_reg =
1623				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1624
1625	/* Try to acquire the lock */
1626	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1627	lock_status = REG_RD(bp, hw_lock_control_reg);
1628	if (lock_status & resource_bit)
1629		return true;
1630
1631	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1632	return false;
1633}
1634
1635/**
1636 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1637 *
1638 * @bp:	driver handle
1639 *
1640 * Returns the recovery leader resource id according to the engine this function
1641 * belongs to. Currently only only 2 engines is supported.
1642 */
1643static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1644{
1645	if (BP_PATH(bp))
1646		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1647	else
1648		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1649}
1650
1651/**
1652 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1653 *
1654 * @bp: driver handle
1655 *
1656 * Tries to aquire a leader lock for cuurent engine.
1657 */
1658static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1659{
1660	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1661}
1662
1663#ifdef BCM_CNIC
1664static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1665#endif
1666
1667void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1668{
1669	struct bnx2x *bp = fp->bp;
1670	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1671	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1672	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1673	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1674
1675	DP(BNX2X_MSG_SP,
1676	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1677	   fp->index, cid, command, bp->state,
1678	   rr_cqe->ramrod_cqe.ramrod_type);
1679
1680	switch (command) {
1681	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1682		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1683		drv_cmd = BNX2X_Q_CMD_UPDATE;
1684		break;
1685
1686	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1687		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1688		drv_cmd = BNX2X_Q_CMD_SETUP;
1689		break;
1690
1691	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1692		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1693		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1694		break;
1695
1696	case (RAMROD_CMD_ID_ETH_HALT):
1697		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1698		drv_cmd = BNX2X_Q_CMD_HALT;
1699		break;
1700
1701	case (RAMROD_CMD_ID_ETH_TERMINATE):
1702		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1703		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1704		break;
1705
1706	case (RAMROD_CMD_ID_ETH_EMPTY):
1707		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1708		drv_cmd = BNX2X_Q_CMD_EMPTY;
1709		break;
1710
1711	default:
1712		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1713			  command, fp->index);
1714		return;
1715	}
1716
1717	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1718	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1719		/* q_obj->complete_cmd() failure means that this was
1720		 * an unexpected completion.
1721		 *
1722		 * In this case we don't want to increase the bp->spq_left
1723		 * because apparently we haven't sent this command the first
1724		 * place.
1725		 */
1726#ifdef BNX2X_STOP_ON_ERROR
1727		bnx2x_panic();
1728#else
1729		return;
1730#endif
1731
1732	smp_mb__before_atomic_inc();
1733	atomic_inc(&bp->cq_spq_left);
1734	/* push the change in bp->spq_left and towards the memory */
1735	smp_mb__after_atomic_inc();
1736
1737	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1738
1739	return;
1740}
1741
1742void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1743			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1744{
1745	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1746
1747	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1748				 start);
1749}
1750
1751irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1752{
1753	struct bnx2x *bp = netdev_priv(dev_instance);
1754	u16 status = bnx2x_ack_int(bp);
1755	u16 mask;
1756	int i;
1757	u8 cos;
1758
1759	/* Return here if interrupt is shared and it's not for us */
1760	if (unlikely(status == 0)) {
1761		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1762		return IRQ_NONE;
1763	}
1764	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1765
1766#ifdef BNX2X_STOP_ON_ERROR
1767	if (unlikely(bp->panic))
1768		return IRQ_HANDLED;
1769#endif
1770
1771	for_each_eth_queue(bp, i) {
1772		struct bnx2x_fastpath *fp = &bp->fp[i];
1773
1774		mask = 0x2 << (fp->index + CNIC_PRESENT);
1775		if (status & mask) {
1776			/* Handle Rx or Tx according to SB id */
1777			prefetch(fp->rx_cons_sb);
1778			for_each_cos_in_tx_queue(fp, cos)
1779				prefetch(fp->txdata[cos].tx_cons_sb);
1780			prefetch(&fp->sb_running_index[SM_RX_ID]);
1781			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1782			status &= ~mask;
1783		}
1784	}
1785
1786#ifdef BCM_CNIC
1787	mask = 0x2;
1788	if (status & (mask | 0x1)) {
1789		struct cnic_ops *c_ops = NULL;
1790
1791		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1792			rcu_read_lock();
1793			c_ops = rcu_dereference(bp->cnic_ops);
1794			if (c_ops)
1795				c_ops->cnic_handler(bp->cnic_data, NULL);
1796			rcu_read_unlock();
1797		}
1798
1799		status &= ~mask;
1800	}
1801#endif
1802
1803	if (unlikely(status & 0x1)) {
1804		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805
1806		status &= ~0x1;
1807		if (!status)
1808			return IRQ_HANDLED;
1809	}
1810
1811	if (unlikely(status))
1812		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1813		   status);
1814
1815	return IRQ_HANDLED;
1816}
1817
1818/* Link */
1819
1820/*
1821 * General service functions
1822 */
1823
1824int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1825{
1826	u32 lock_status;
1827	u32 resource_bit = (1 << resource);
1828	int func = BP_FUNC(bp);
1829	u32 hw_lock_control_reg;
1830	int cnt;
1831
1832	/* Validating that the resource is within range */
1833	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1834		DP(NETIF_MSG_HW,
1835		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1836		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1837		return -EINVAL;
1838	}
1839
1840	if (func <= 5) {
1841		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1842	} else {
1843		hw_lock_control_reg =
1844				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1845	}
1846
1847	/* Validating that the resource is not already taken */
1848	lock_status = REG_RD(bp, hw_lock_control_reg);
1849	if (lock_status & resource_bit) {
1850		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1851		   lock_status, resource_bit);
1852		return -EEXIST;
1853	}
1854
1855	/* Try for 5 second every 5ms */
1856	for (cnt = 0; cnt < 1000; cnt++) {
1857		/* Try to acquire the lock */
1858		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1859		lock_status = REG_RD(bp, hw_lock_control_reg);
1860		if (lock_status & resource_bit)
1861			return 0;
1862
1863		msleep(5);
1864	}
1865	DP(NETIF_MSG_HW, "Timeout\n");
1866	return -EAGAIN;
1867}
1868
1869int bnx2x_release_leader_lock(struct bnx2x *bp)
1870{
1871	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1872}
1873
1874int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1875{
1876	u32 lock_status;
1877	u32 resource_bit = (1 << resource);
1878	int func = BP_FUNC(bp);
1879	u32 hw_lock_control_reg;
1880
1881	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1882
1883	/* Validating that the resource is within range */
1884	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1885		DP(NETIF_MSG_HW,
1886		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1887		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1888		return -EINVAL;
1889	}
1890
1891	if (func <= 5) {
1892		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1893	} else {
1894		hw_lock_control_reg =
1895				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1896	}
1897
1898	/* Validating that the resource is currently taken */
1899	lock_status = REG_RD(bp, hw_lock_control_reg);
1900	if (!(lock_status & resource_bit)) {
1901		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1902		   lock_status, resource_bit);
1903		return -EFAULT;
1904	}
1905
1906	REG_WR(bp, hw_lock_control_reg, resource_bit);
1907	return 0;
1908}
1909
1910
1911int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1912{
1913	/* The GPIO should be swapped if swap register is set and active */
1914	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1915			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1916	int gpio_shift = gpio_num +
1917			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1918	u32 gpio_mask = (1 << gpio_shift);
1919	u32 gpio_reg;
1920	int value;
1921
1922	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1923		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1924		return -EINVAL;
1925	}
1926
1927	/* read GPIO value */
1928	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1929
1930	/* get the requested pin value */
1931	if ((gpio_reg & gpio_mask) == gpio_mask)
1932		value = 1;
1933	else
1934		value = 0;
1935
1936	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1937
1938	return value;
1939}
1940
1941int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1942{
1943	/* The GPIO should be swapped if swap register is set and active */
1944	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1945			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1946	int gpio_shift = gpio_num +
1947			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1948	u32 gpio_mask = (1 << gpio_shift);
1949	u32 gpio_reg;
1950
1951	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1952		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1953		return -EINVAL;
1954	}
1955
1956	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1957	/* read GPIO and mask except the float bits */
1958	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1959
1960	switch (mode) {
1961	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1962		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1963		   gpio_num, gpio_shift);
1964		/* clear FLOAT and set CLR */
1965		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1966		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1967		break;
1968
1969	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1970		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1971		   gpio_num, gpio_shift);
1972		/* clear FLOAT and set SET */
1973		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1974		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1975		break;
1976
1977	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1978		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1979		   gpio_num, gpio_shift);
1980		/* set FLOAT */
1981		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1982		break;
1983
1984	default:
1985		break;
1986	}
1987
1988	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1989	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1990
1991	return 0;
1992}
1993
1994int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1995{
1996	u32 gpio_reg = 0;
1997	int rc = 0;
1998
1999	/* Any port swapping should be handled by caller. */
2000
2001	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2002	/* read GPIO and mask except the float bits */
2003	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2004	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2005	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2006	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2007
2008	switch (mode) {
2009	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2010		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2011		/* set CLR */
2012		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2013		break;
2014
2015	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2016		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2017		/* set SET */
2018		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2019		break;
2020
2021	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2022		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2023		/* set FLOAT */
2024		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2025		break;
2026
2027	default:
2028		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2029		rc = -EINVAL;
2030		break;
2031	}
2032
2033	if (rc == 0)
2034		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2035
2036	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2037
2038	return rc;
2039}
2040
2041int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2042{
2043	/* The GPIO should be swapped if swap register is set and active */
2044	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2045			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2046	int gpio_shift = gpio_num +
2047			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2048	u32 gpio_mask = (1 << gpio_shift);
2049	u32 gpio_reg;
2050
2051	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2052		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2053		return -EINVAL;
2054	}
2055
2056	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2057	/* read GPIO int */
2058	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2059
2060	switch (mode) {
2061	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2062		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2063				   "output low\n", gpio_num, gpio_shift);
2064		/* clear SET and set CLR */
2065		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2066		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2067		break;
2068
2069	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2070		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2071				   "output high\n", gpio_num, gpio_shift);
2072		/* clear CLR and set SET */
2073		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2074		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2075		break;
2076
2077	default:
2078		break;
2079	}
2080
2081	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2082	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2083
2084	return 0;
2085}
2086
2087static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2088{
2089	u32 spio_mask = (1 << spio_num);
2090	u32 spio_reg;
2091
2092	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2093	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2094		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2095		return -EINVAL;
2096	}
2097
2098	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2099	/* read SPIO and mask except the float bits */
2100	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2101
2102	switch (mode) {
2103	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2104		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2105		/* clear FLOAT and set CLR */
2106		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2107		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2108		break;
2109
2110	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2111		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2112		/* clear FLOAT and set SET */
2113		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2114		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2115		break;
2116
2117	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2118		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2119		/* set FLOAT */
2120		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2121		break;
2122
2123	default:
2124		break;
2125	}
2126
2127	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2128	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2129
2130	return 0;
2131}
2132
2133void bnx2x_calc_fc_adv(struct bnx2x *bp)
2134{
2135	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2136	switch (bp->link_vars.ieee_fc &
2137		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2138	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2139		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2140						   ADVERTISED_Pause);
2141		break;
2142
2143	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2144		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2145						  ADVERTISED_Pause);
2146		break;
2147
2148	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2149		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2150		break;
2151
2152	default:
2153		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2154						   ADVERTISED_Pause);
2155		break;
2156	}
2157}
2158
2159u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2160{
2161	if (!BP_NOMCP(bp)) {
2162		u8 rc;
2163		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2164		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2165		/*
2166		 * Initialize link parameters structure variables
2167		 * It is recommended to turn off RX FC for jumbo frames
2168		 * for better performance
2169		 */
2170		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2171			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2172		else
2173			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2174
2175		bnx2x_acquire_phy_lock(bp);
2176
2177		if (load_mode == LOAD_DIAG) {
2178			struct link_params *lp = &bp->link_params;
2179			lp->loopback_mode = LOOPBACK_XGXS;
2180			/* do PHY loopback at 10G speed, if possible */
2181			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2182				if (lp->speed_cap_mask[cfx_idx] &
2183				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2184					lp->req_line_speed[cfx_idx] =
2185					SPEED_10000;
2186				else
2187					lp->req_line_speed[cfx_idx] =
2188					SPEED_1000;
2189			}
2190		}
2191
2192		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2193
2194		bnx2x_release_phy_lock(bp);
2195
2196		bnx2x_calc_fc_adv(bp);
2197
2198		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2199			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2200			bnx2x_link_report(bp);
2201		} else
2202			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2203		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2204		return rc;
2205	}
2206	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2207	return -EINVAL;
2208}
2209
2210void bnx2x_link_set(struct bnx2x *bp)
2211{
2212	if (!BP_NOMCP(bp)) {
2213		bnx2x_acquire_phy_lock(bp);
2214		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2215		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2216		bnx2x_release_phy_lock(bp);
2217
2218		bnx2x_calc_fc_adv(bp);
2219	} else
2220		BNX2X_ERR("Bootcode is missing - can not set link\n");
2221}
2222
2223static void bnx2x__link_reset(struct bnx2x *bp)
2224{
2225	if (!BP_NOMCP(bp)) {
2226		bnx2x_acquire_phy_lock(bp);
2227		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2228		bnx2x_release_phy_lock(bp);
2229	} else
2230		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2231}
2232
2233u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2234{
2235	u8 rc = 0;
2236
2237	if (!BP_NOMCP(bp)) {
2238		bnx2x_acquire_phy_lock(bp);
2239		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2240				     is_serdes);
2241		bnx2x_release_phy_lock(bp);
2242	} else
2243		BNX2X_ERR("Bootcode is missing - can not test link\n");
2244
2245	return rc;
2246}
2247
2248static void bnx2x_init_port_minmax(struct bnx2x *bp)
2249{
2250	u32 r_param = bp->link_vars.line_speed / 8;
2251	u32 fair_periodic_timeout_usec;
2252	u32 t_fair;
2253
2254	memset(&(bp->cmng.rs_vars), 0,
2255	       sizeof(struct rate_shaping_vars_per_port));
2256	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2257
2258	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2259	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2260
2261	/* this is the threshold below which no timer arming will occur
2262	   1.25 coefficient is for the threshold to be a little bigger
2263	   than the real time, to compensate for timer in-accuracy */
2264	bp->cmng.rs_vars.rs_threshold =
2265				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2266
2267	/* resolution of fairness timer */
2268	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2269	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2270	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2271
2272	/* this is the threshold below which we won't arm the timer anymore */
2273	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2274
2275	/* we multiply by 1e3/8 to get bytes/msec.
2276	   We don't want the credits to pass a credit
2277	   of the t_fair*FAIR_MEM (algorithm resolution) */
2278	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2279	/* since each tick is 4 usec */
2280	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2281}
2282
2283/* Calculates the sum of vn_min_rates.
2284   It's needed for further normalizing of the min_rates.
2285   Returns:
2286     sum of vn_min_rates.
2287       or
2288     0 - if all the min_rates are 0.
2289     In the later case fainess algorithm should be deactivated.
2290     If not all min_rates are zero then those that are zeroes will be set to 1.
2291 */
2292static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2293{
2294	int all_zero = 1;
2295	int vn;
2296
2297	bp->vn_weight_sum = 0;
2298	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2299		u32 vn_cfg = bp->mf_config[vn];
2300		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2301				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2302
2303		/* Skip hidden vns */
2304		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2305			continue;
2306
2307		/* If min rate is zero - set it to 1 */
2308		if (!vn_min_rate)
2309			vn_min_rate = DEF_MIN_RATE;
2310		else
2311			all_zero = 0;
2312
2313		bp->vn_weight_sum += vn_min_rate;
2314	}
2315
2316	/* if ETS or all min rates are zeros - disable fairness */
2317	if (BNX2X_IS_ETS_ENABLED(bp)) {
2318		bp->cmng.flags.cmng_enables &=
2319					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2320		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2321	} else if (all_zero) {
2322		bp->cmng.flags.cmng_enables &=
2323					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2324		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2325		   "  fairness will be disabled\n");
2326	} else
2327		bp->cmng.flags.cmng_enables |=
2328					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2329}
2330
2331static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2332{
2333	struct rate_shaping_vars_per_vn m_rs_vn;
2334	struct fairness_vars_per_vn m_fair_vn;
2335	u32 vn_cfg = bp->mf_config[vn];
2336	int func = func_by_vn(bp, vn);
2337	u16 vn_min_rate, vn_max_rate;
2338	int i;
2339
2340	/* If function is hidden - set min and max to zeroes */
2341	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2342		vn_min_rate = 0;
2343		vn_max_rate = 0;
2344
2345	} else {
2346		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2347
2348		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2349				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2350		/* If fairness is enabled (not all min rates are zeroes) and
2351		   if current min rate is zero - set it to 1.
2352		   This is a requirement of the algorithm. */
2353		if (bp->vn_weight_sum && (vn_min_rate == 0))
2354			vn_min_rate = DEF_MIN_RATE;
2355
2356		if (IS_MF_SI(bp))
2357			/* maxCfg in percents of linkspeed */
2358			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2359		else
2360			/* maxCfg is absolute in 100Mb units */
2361			vn_max_rate = maxCfg * 100;
2362	}
2363
2364	DP(NETIF_MSG_IFUP,
2365	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2366	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2367
2368	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2369	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2370
2371	/* global vn counter - maximal Mbps for this vn */
2372	m_rs_vn.vn_counter.rate = vn_max_rate;
2373
2374	/* quota - number of bytes transmitted in this period */
2375	m_rs_vn.vn_counter.quota =
2376				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2377
2378	if (bp->vn_weight_sum) {
2379		/* credit for each period of the fairness algorithm:
2380		   number of bytes in T_FAIR (the vn share the port rate).
2381		   vn_weight_sum should not be larger than 10000, thus
2382		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2383		   than zero */
2384		m_fair_vn.vn_credit_delta =
2385			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2386						   (8 * bp->vn_weight_sum))),
2387			      (bp->cmng.fair_vars.fair_threshold +
2388							MIN_ABOVE_THRESH));
2389		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2390		   m_fair_vn.vn_credit_delta);
2391	}
2392
2393	/* Store it to internal memory */
2394	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2395		REG_WR(bp, BAR_XSTRORM_INTMEM +
2396		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2397		       ((u32 *)(&m_rs_vn))[i]);
2398
2399	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2400		REG_WR(bp, BAR_XSTRORM_INTMEM +
2401		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2402		       ((u32 *)(&m_fair_vn))[i]);
2403}
2404
2405static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2406{
2407	if (CHIP_REV_IS_SLOW(bp))
2408		return CMNG_FNS_NONE;
2409	if (IS_MF(bp))
2410		return CMNG_FNS_MINMAX;
2411
2412	return CMNG_FNS_NONE;
2413}
2414
2415void bnx2x_read_mf_cfg(struct bnx2x *bp)
2416{
2417	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2418
2419	if (BP_NOMCP(bp))
2420		return; /* what should be the default bvalue in this case */
2421
2422	/* For 2 port configuration the absolute function number formula
2423	 * is:
2424	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2425	 *
2426	 *      and there are 4 functions per port
2427	 *
2428	 * For 4 port configuration it is
2429	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2430	 *
2431	 *      and there are 2 functions per port
2432	 */
2433	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2434		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2435
2436		if (func >= E1H_FUNC_MAX)
2437			break;
2438
2439		bp->mf_config[vn] =
2440			MF_CFG_RD(bp, func_mf_config[func].config);
2441	}
2442}
2443
2444static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2445{
2446
2447	if (cmng_type == CMNG_FNS_MINMAX) {
2448		int vn;
2449
2450		/* clear cmng_enables */
2451		bp->cmng.flags.cmng_enables = 0;
2452
2453		/* read mf conf from shmem */
2454		if (read_cfg)
2455			bnx2x_read_mf_cfg(bp);
2456
2457		/* Init rate shaping and fairness contexts */
2458		bnx2x_init_port_minmax(bp);
2459
2460		/* vn_weight_sum and enable fairness if not 0 */
2461		bnx2x_calc_vn_weight_sum(bp);
2462
2463		/* calculate and set min-max rate for each vn */
2464		if (bp->port.pmf)
2465			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2466				bnx2x_init_vn_minmax(bp, vn);
2467
2468		/* always enable rate shaping and fairness */
2469		bp->cmng.flags.cmng_enables |=
2470					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2471		if (!bp->vn_weight_sum)
2472			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2473				   "  fairness will be disabled\n");
2474		return;
2475	}
2476
2477	/* rate shaping and fairness are disabled */
2478	DP(NETIF_MSG_IFUP,
2479	   "rate shaping and fairness are disabled\n");
2480}
2481
2482/* This function is called upon link interrupt */
2483static void bnx2x_link_attn(struct bnx2x *bp)
2484{
2485	/* Make sure that we are synced with the current statistics */
2486	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2487
2488	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2489
2490	if (bp->link_vars.link_up) {
2491
2492		/* dropless flow control */
2493		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2494			int port = BP_PORT(bp);
2495			u32 pause_enabled = 0;
2496
2497			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2498				pause_enabled = 1;
2499
2500			REG_WR(bp, BAR_USTRORM_INTMEM +
2501			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2502			       pause_enabled);
2503		}
2504
2505		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2506			struct host_port_stats *pstats;
2507
2508			pstats = bnx2x_sp(bp, port_stats);
2509			/* reset old mac stats */
2510			memset(&(pstats->mac_stx[0]), 0,
2511			       sizeof(struct mac_stx));
2512		}
2513		if (bp->state == BNX2X_STATE_OPEN)
2514			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2515	}
2516
2517	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2518		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2519
2520		if (cmng_fns != CMNG_FNS_NONE) {
2521			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2522			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2523		} else
2524			/* rate shaping and fairness are disabled */
2525			DP(NETIF_MSG_IFUP,
2526			   "single function mode without fairness\n");
2527	}
2528
2529	__bnx2x_link_report(bp);
2530
2531	if (IS_MF(bp))
2532		bnx2x_link_sync_notify(bp);
2533}
2534
2535void bnx2x__link_status_update(struct bnx2x *bp)
2536{
2537	if (bp->state != BNX2X_STATE_OPEN)
2538		return;
2539
2540	/* read updated dcb configuration */
2541	bnx2x_dcbx_pmf_update(bp);
2542
2543	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2544
2545	if (bp->link_vars.link_up)
2546		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2547	else
2548		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2549
2550	/* indicate link status */
2551	bnx2x_link_report(bp);
2552}
2553
2554static void bnx2x_pmf_update(struct bnx2x *bp)
2555{
2556	int port = BP_PORT(bp);
2557	u32 val;
2558
2559	bp->port.pmf = 1;
2560	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2561
2562	/*
2563	 * We need the mb() to ensure the ordering between the writing to
2564	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2565	 */
2566	smp_mb();
2567
2568	/* queue a periodic task */
2569	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2570
2571	bnx2x_dcbx_pmf_update(bp);
2572
2573	/* enable nig attention */
2574	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2575	if (bp->common.int_block == INT_BLOCK_HC) {
2576		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2577		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2578	} else if (!CHIP_IS_E1x(bp)) {
2579		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2580		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2581	}
2582
2583	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2584}
2585
2586/* end of Link */
2587
2588/* slow path */
2589
2590/*
2591 * General service functions
2592 */
2593
2594/* send the MCP a request, block until there is a reply */
2595u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2596{
2597	int mb_idx = BP_FW_MB_IDX(bp);
2598	u32 seq;
2599	u32 rc = 0;
2600	u32 cnt = 1;
2601	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2602
2603	mutex_lock(&bp->fw_mb_mutex);
2604	seq = ++bp->fw_seq;
2605	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2606	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2607
2608	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2609			(command | seq), param);
2610
2611	do {
2612		/* let the FW do it's magic ... */
2613		msleep(delay);
2614
2615		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2616
2617		/* Give the FW up to 5 second (500*10ms) */
2618	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2619
2620	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2621	   cnt*delay, rc, seq);
2622
2623	/* is this a reply to our command? */
2624	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2625		rc &= FW_MSG_CODE_MASK;
2626	else {
2627		/* FW BUG! */
2628		BNX2X_ERR("FW failed to respond!\n");
2629		bnx2x_fw_dump(bp);
2630		rc = 0;
2631	}
2632	mutex_unlock(&bp->fw_mb_mutex);
2633
2634	return rc;
2635}
2636
2637
2638void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2639{
2640	if (CHIP_IS_E1x(bp)) {
2641		struct tstorm_eth_function_common_config tcfg = {0};
2642
2643		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2644	}
2645
2646	/* Enable the function in the FW */
2647	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2648	storm_memset_func_en(bp, p->func_id, 1);
2649
2650	/* spq */
2651	if (p->func_flgs & FUNC_FLG_SPQ) {
2652		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2653		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2654		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2655	}
2656}
2657
2658/**
2659 * bnx2x_get_tx_only_flags - Return common flags
2660 *
2661 * @bp		device handle
2662 * @fp		queue handle
2663 * @zero_stats	TRUE if statistics zeroing is needed
2664 *
2665 * Return the flags that are common for the Tx-only and not normal connections.
2666 */
2667static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2668						   struct bnx2x_fastpath *fp,
2669						   bool zero_stats)
2670{
2671	unsigned long flags = 0;
2672
2673	/* PF driver will always initialize the Queue to an ACTIVE state */
2674	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2675
2676	/* tx only connections collect statistics (on the same index as the
2677	 *  parent connection). The statistics are zeroed when the parent
2678	 *  connection is initialized.
2679	 */
2680
2681	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2682	if (zero_stats)
2683		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2684
2685
2686	return flags;
2687}
2688
2689static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2690					      struct bnx2x_fastpath *fp,
2691					      bool leading)
2692{
2693	unsigned long flags = 0;
2694
2695	/* calculate other queue flags */
2696	if (IS_MF_SD(bp))
2697		__set_bit(BNX2X_Q_FLG_OV, &flags);
2698
2699	if (IS_FCOE_FP(fp))
2700		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2701
2702	if (!fp->disable_tpa) {
2703		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2704		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2705	}
2706
2707	if (leading) {
2708		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2709		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2710	}
2711
2712	/* Always set HW VLAN stripping */
2713	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2714
2715
2716	return flags | bnx2x_get_common_flags(bp, fp, true);
2717}
2718
2719static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2720	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2721	u8 cos)
2722{
2723	gen_init->stat_id = bnx2x_stats_id(fp);
2724	gen_init->spcl_id = fp->cl_id;
2725
2726	/* Always use mini-jumbo MTU for FCoE L2 ring */
2727	if (IS_FCOE_FP(fp))
2728		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2729	else
2730		gen_init->mtu = bp->dev->mtu;
2731
2732	gen_init->cos = cos;
2733}
2734
2735static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2736	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2737	struct bnx2x_rxq_setup_params *rxq_init)
2738{
2739	u8 max_sge = 0;
2740	u16 sge_sz = 0;
2741	u16 tpa_agg_size = 0;
2742
2743	if (!fp->disable_tpa) {
2744		pause->sge_th_lo = SGE_TH_LO(bp);
2745		pause->sge_th_hi = SGE_TH_HI(bp);
2746
2747		/* validate SGE ring has enough to cross high threshold */
2748		WARN_ON(bp->dropless_fc &&
2749				pause->sge_th_hi + FW_PREFETCH_CNT >
2750				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2751
2752		tpa_agg_size = min_t(u32,
2753			(min_t(u32, 8, MAX_SKB_FRAGS) *
2754			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2755		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2756			SGE_PAGE_SHIFT;
2757		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2758			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2759		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2760				    0xffff);
2761	}
2762
2763	/* pause - not for e1 */
2764	if (!CHIP_IS_E1(bp)) {
2765		pause->bd_th_lo = BD_TH_LO(bp);
2766		pause->bd_th_hi = BD_TH_HI(bp);
2767
2768		pause->rcq_th_lo = RCQ_TH_LO(bp);
2769		pause->rcq_th_hi = RCQ_TH_HI(bp);
2770		/*
2771		 * validate that rings have enough entries to cross
2772		 * high thresholds
2773		 */
2774		WARN_ON(bp->dropless_fc &&
2775				pause->bd_th_hi + FW_PREFETCH_CNT >
2776				bp->rx_ring_size);
2777		WARN_ON(bp->dropless_fc &&
2778				pause->rcq_th_hi + FW_PREFETCH_CNT >
2779				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2780
2781		pause->pri_map = 1;
2782	}
2783
2784	/* rxq setup */
2785	rxq_init->dscr_map = fp->rx_desc_mapping;
2786	rxq_init->sge_map = fp->rx_sge_mapping;
2787	rxq_init->rcq_map = fp->rx_comp_mapping;
2788	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2789
2790	/* This should be a maximum number of data bytes that may be
2791	 * placed on the BD (not including paddings).
2792	 */
2793	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2794		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2795
2796	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2797	rxq_init->tpa_agg_sz = tpa_agg_size;
2798	rxq_init->sge_buf_sz = sge_sz;
2799	rxq_init->max_sges_pkt = max_sge;
2800	rxq_init->rss_engine_id = BP_FUNC(bp);
2801
2802	/* Maximum number or simultaneous TPA aggregation for this Queue.
2803	 *
2804	 * For PF Clients it should be the maximum avaliable number.
2805	 * VF driver(s) may want to define it to a smaller value.
2806	 */
2807	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2808
2809	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2810	rxq_init->fw_sb_id = fp->fw_sb_id;
2811
2812	if (IS_FCOE_FP(fp))
2813		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2814	else
2815		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2816}
2817
2818static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2819	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2820	u8 cos)
2821{
2822	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2823	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2824	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2825	txq_init->fw_sb_id = fp->fw_sb_id;
2826
2827	/*
2828	 * set the tss leading client id for TX classfication ==
2829	 * leading RSS client id
2830	 */
2831	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2832
2833	if (IS_FCOE_FP(fp)) {
2834		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2835		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2836	}
2837}
2838
2839static void bnx2x_pf_init(struct bnx2x *bp)
2840{
2841	struct bnx2x_func_init_params func_init = {0};
2842	struct event_ring_data eq_data = { {0} };
2843	u16 flags;
2844
2845	if (!CHIP_IS_E1x(bp)) {
2846		/* reset IGU PF statistics: MSIX + ATTN */
2847		/* PF */
2848		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2849			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2850			   (CHIP_MODE_IS_4_PORT(bp) ?
2851				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2852		/* ATTN */
2853		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2854			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2855			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2856			   (CHIP_MODE_IS_4_PORT(bp) ?
2857				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2858	}
2859
2860	/* function setup flags */
2861	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2862
2863	/* This flag is relevant for E1x only.
2864	 * E2 doesn't have a TPA configuration in a function level.
2865	 */
2866	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2867
2868	func_init.func_flgs = flags;
2869	func_init.pf_id = BP_FUNC(bp);
2870	func_init.func_id = BP_FUNC(bp);
2871	func_init.spq_map = bp->spq_mapping;
2872	func_init.spq_prod = bp->spq_prod_idx;
2873
2874	bnx2x_func_init(bp, &func_init);
2875
2876	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2877
2878	/*
2879	 * Congestion management values depend on the link rate
2880	 * There is no active link so initial link rate is set to 10 Gbps.
2881	 * When the link comes up The congestion management values are
2882	 * re-calculated according to the actual link rate.
2883	 */
2884	bp->link_vars.line_speed = SPEED_10000;
2885	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2886
2887	/* Only the PMF sets the HW */
2888	if (bp->port.pmf)
2889		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2890
2891	/* init Event Queue */
2892	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2893	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2894	eq_data.producer = bp->eq_prod;
2895	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2896	eq_data.sb_id = DEF_SB_ID;
2897	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2898}
2899
2900
2901static void bnx2x_e1h_disable(struct bnx2x *bp)
2902{
2903	int port = BP_PORT(bp);
2904
2905	bnx2x_tx_disable(bp);
2906
2907	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2908}
2909
2910static void bnx2x_e1h_enable(struct bnx2x *bp)
2911{
2912	int port = BP_PORT(bp);
2913
2914	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2915
2916	/* Tx queue should be only reenabled */
2917	netif_tx_wake_all_queues(bp->dev);
2918
2919	/*
2920	 * Should not call netif_carrier_on since it will be called if the link
2921	 * is up when checking for link state
2922	 */
2923}
2924
2925#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2926
2927static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2928{
2929	struct eth_stats_info *ether_stat =
2930		&bp->slowpath->drv_info_to_mcp.ether_stat;
2931
2932	/* leave last char as NULL */
2933	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2934	       ETH_STAT_INFO_VERSION_LEN - 1);
2935
2936	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2937					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2938					 ether_stat->mac_local);
2939
2940	ether_stat->mtu_size = bp->dev->mtu;
2941
2942	if (bp->dev->features & NETIF_F_RXCSUM)
2943		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2944	if (bp->dev->features & NETIF_F_TSO)
2945		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2946	ether_stat->feature_flags |= bp->common.boot_mode;
2947
2948	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2949
2950	ether_stat->txq_size = bp->tx_ring_size;
2951	ether_stat->rxq_size = bp->rx_ring_size;
2952}
2953
2954static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2955{
2956#ifdef BCM_CNIC
2957	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2958	struct fcoe_stats_info *fcoe_stat =
2959		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2960
2961	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2962
2963	fcoe_stat->qos_priority =
2964		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2965
2966	/* insert FCoE stats from ramrod response */
2967	if (!NO_FCOE(bp)) {
2968		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2969			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2970			tstorm_queue_statistics;
2971
2972		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2973			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2974			xstorm_queue_statistics;
2975
2976		struct fcoe_statistics_params *fw_fcoe_stat =
2977			&bp->fw_stats_data->fcoe;
2978
2979		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2980		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2981
2982		ADD_64(fcoe_stat->rx_bytes_hi,
2983		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2984		       fcoe_stat->rx_bytes_lo,
2985		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2986
2987		ADD_64(fcoe_stat->rx_bytes_hi,
2988		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2989		       fcoe_stat->rx_bytes_lo,
2990		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2991
2992		ADD_64(fcoe_stat->rx_bytes_hi,
2993		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2994		       fcoe_stat->rx_bytes_lo,
2995		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2996
2997		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2998		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2999
3000		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3001		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3002
3003		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3004		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3005
3006		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3007		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3008
3009		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3010		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3011
3012		ADD_64(fcoe_stat->tx_bytes_hi,
3013		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3014		       fcoe_stat->tx_bytes_lo,
3015		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3016
3017		ADD_64(fcoe_stat->tx_bytes_hi,
3018		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3019		       fcoe_stat->tx_bytes_lo,
3020		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3021
3022		ADD_64(fcoe_stat->tx_bytes_hi,
3023		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3024		       fcoe_stat->tx_bytes_lo,
3025		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3026
3027		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3028		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3029
3030		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3031		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3032
3033		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3034		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3035
3036		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3037		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3038	}
3039
3040	/* ask L5 driver to add data to the struct */
3041	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3042#endif
3043}
3044
3045static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3046{
3047#ifdef BCM_CNIC
3048	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3049	struct iscsi_stats_info *iscsi_stat =
3050		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3051
3052	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3053
3054	iscsi_stat->qos_priority =
3055		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3056
3057	/* ask L5 driver to add data to the struct */
3058	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3059#endif
3060}
3061
3062/* called due to MCP event (on pmf):
3063 *	reread new bandwidth configuration
3064 *	configure FW
3065 *	notify others function about the change
3066 */
3067static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3068{
3069	if (bp->link_vars.link_up) {
3070		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3071		bnx2x_link_sync_notify(bp);
3072	}
3073	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3074}
3075
3076static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3077{
3078	bnx2x_config_mf_bw(bp);
3079	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3080}
3081
3082static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3083{
3084	enum drv_info_opcode op_code;
3085	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3086
3087	/* if drv_info version supported by MFW doesn't match - send NACK */
3088	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3089		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3090		return;
3091	}
3092
3093	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3094		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3095
3096	memset(&bp->slowpath->drv_info_to_mcp, 0,
3097	       sizeof(union drv_info_to_mcp));
3098
3099	switch (op_code) {
3100	case ETH_STATS_OPCODE:
3101		bnx2x_drv_info_ether_stat(bp);
3102		break;
3103	case FCOE_STATS_OPCODE:
3104		bnx2x_drv_info_fcoe_stat(bp);
3105		break;
3106	case ISCSI_STATS_OPCODE:
3107		bnx2x_drv_info_iscsi_stat(bp);
3108		break;
3109	default:
3110		/* if op code isn't supported - send NACK */
3111		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3112		return;
3113	}
3114
3115	/* if we got drv_info attn from MFW then these fields are defined in
3116	 * shmem2 for sure
3117	 */
3118	SHMEM2_WR(bp, drv_info_host_addr_lo,
3119		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3120	SHMEM2_WR(bp, drv_info_host_addr_hi,
3121		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3122
3123	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3124}
3125
3126static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3127{
3128	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3129
3130	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3131
3132		/*
3133		 * This is the only place besides the function initialization
3134		 * where the bp->flags can change so it is done without any
3135		 * locks
3136		 */
3137		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3138			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3139			bp->flags |= MF_FUNC_DIS;
3140
3141			bnx2x_e1h_disable(bp);
3142		} else {
3143			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3144			bp->flags &= ~MF_FUNC_DIS;
3145
3146			bnx2x_e1h_enable(bp);
3147		}
3148		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3149	}
3150	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3151		bnx2x_config_mf_bw(bp);
3152		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3153	}
3154
3155	/* Report results to MCP */
3156	if (dcc_event)
3157		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3158	else
3159		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3160}
3161
3162/* must be called under the spq lock */
3163static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3164{
3165	struct eth_spe *next_spe = bp->spq_prod_bd;
3166
3167	if (bp->spq_prod_bd == bp->spq_last_bd) {
3168		bp->spq_prod_bd = bp->spq;
3169		bp->spq_prod_idx = 0;
3170		DP(NETIF_MSG_TIMER, "end of spq\n");
3171	} else {
3172		bp->spq_prod_bd++;
3173		bp->spq_prod_idx++;
3174	}
3175	return next_spe;
3176}
3177
3178/* must be called under the spq lock */
3179static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3180{
3181	int func = BP_FUNC(bp);
3182
3183	/*
3184	 * Make sure that BD data is updated before writing the producer:
3185	 * BD data is written to the memory, the producer is read from the
3186	 * memory, thus we need a full memory barrier to ensure the ordering.
3187	 */
3188	mb();
3189
3190	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3191		 bp->spq_prod_idx);
3192	mmiowb();
3193}
3194
3195/**
3196 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3197 *
3198 * @cmd:	command to check
3199 * @cmd_type:	command type
3200 */
3201static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3202{
3203	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3204	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3205	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3206	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3207	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3208	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3209	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3210		return true;
3211	else
3212		return false;
3213
3214}
3215
3216
3217/**
3218 * bnx2x_sp_post - place a single command on an SP ring
3219 *
3220 * @bp:		driver handle
3221 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3222 * @cid:	SW CID the command is related to
3223 * @data_hi:	command private data address (high 32 bits)
3224 * @data_lo:	command private data address (low 32 bits)
3225 * @cmd_type:	command type (e.g. NONE, ETH)
3226 *
3227 * SP data is handled as if it's always an address pair, thus data fields are
3228 * not swapped to little endian in upper functions. Instead this function swaps
3229 * data as if it's two u32 fields.
3230 */
3231int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3232		  u32 data_hi, u32 data_lo, int cmd_type)
3233{
3234	struct eth_spe *spe;
3235	u16 type;
3236	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3237
3238#ifdef BNX2X_STOP_ON_ERROR
3239	if (unlikely(bp->panic))
3240		return -EIO;
3241#endif
3242
3243	spin_lock_bh(&bp->spq_lock);
3244
3245	if (common) {
3246		if (!atomic_read(&bp->eq_spq_left)) {
3247			BNX2X_ERR("BUG! EQ ring full!\n");
3248			spin_unlock_bh(&bp->spq_lock);
3249			bnx2x_panic();
3250			return -EBUSY;
3251		}
3252	} else if (!atomic_read(&bp->cq_spq_left)) {
3253			BNX2X_ERR("BUG! SPQ ring full!\n");
3254			spin_unlock_bh(&bp->spq_lock);
3255			bnx2x_panic();
3256			return -EBUSY;
3257	}
3258
3259	spe = bnx2x_sp_get_next(bp);
3260
3261	/* CID needs port number to be encoded int it */
3262	spe->hdr.conn_and_cmd_data =
3263			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3264				    HW_CID(bp, cid));
3265
3266	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3267
3268	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3269		 SPE_HDR_FUNCTION_ID);
3270
3271	spe->hdr.type = cpu_to_le16(type);
3272
3273	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3274	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3275
3276	/*
3277	 * It's ok if the actual decrement is issued towards the memory
3278	 * somewhere between the spin_lock and spin_unlock. Thus no
3279	 * more explict memory barrier is needed.
3280	 */
3281	if (common)
3282		atomic_dec(&bp->eq_spq_left);
3283	else
3284		atomic_dec(&bp->cq_spq_left);
3285
3286
3287	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3288	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3289	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3290	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3291	   (u32)(U64_LO(bp->spq_mapping) +
3292	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3293	   HW_CID(bp, cid), data_hi, data_lo, type,
3294	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3295
3296	bnx2x_sp_prod_update(bp);
3297	spin_unlock_bh(&bp->spq_lock);
3298	return 0;
3299}
3300
3301/* acquire split MCP access lock register */
3302static int bnx2x_acquire_alr(struct bnx2x *bp)
3303{
3304	u32 j, val;
3305	int rc = 0;
3306
3307	might_sleep();
3308	for (j = 0; j < 1000; j++) {
3309		val = (1UL << 31);
3310		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3311		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3312		if (val & (1L << 31))
3313			break;
3314
3315		msleep(5);
3316	}
3317	if (!(val & (1L << 31))) {
3318		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3319		rc = -EBUSY;
3320	}
3321
3322	return rc;
3323}
3324
3325/* release split MCP access lock register */
3326static void bnx2x_release_alr(struct bnx2x *bp)
3327{
3328	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3329}
3330
3331#define BNX2X_DEF_SB_ATT_IDX	0x0001
3332#define BNX2X_DEF_SB_IDX	0x0002
3333
3334static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3335{
3336	struct host_sp_status_block *def_sb = bp->def_status_blk;
3337	u16 rc = 0;
3338
3339	barrier(); /* status block is written to by the chip */
3340	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3341		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3342		rc |= BNX2X_DEF_SB_ATT_IDX;
3343	}
3344
3345	if (bp->def_idx != def_sb->sp_sb.running_index) {
3346		bp->def_idx = def_sb->sp_sb.running_index;
3347		rc |= BNX2X_DEF_SB_IDX;
3348	}
3349
3350	/* Do not reorder: indecies reading should complete before handling */
3351	barrier();
3352	return rc;
3353}
3354
3355/*
3356 * slow path service functions
3357 */
3358
3359static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3360{
3361	int port = BP_PORT(bp);
3362	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3363			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3364	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3365				       NIG_REG_MASK_INTERRUPT_PORT0;
3366	u32 aeu_mask;
3367	u32 nig_mask = 0;
3368	u32 reg_addr;
3369
3370	if (bp->attn_state & asserted)
3371		BNX2X_ERR("IGU ERROR\n");
3372
3373	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3374	aeu_mask = REG_RD(bp, aeu_addr);
3375
3376	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3377	   aeu_mask, asserted);
3378	aeu_mask &= ~(asserted & 0x3ff);
3379	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3380
3381	REG_WR(bp, aeu_addr, aeu_mask);
3382	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3383
3384	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3385	bp->attn_state |= asserted;
3386	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3387
3388	if (asserted & ATTN_HARD_WIRED_MASK) {
3389		if (asserted & ATTN_NIG_FOR_FUNC) {
3390
3391			bnx2x_acquire_phy_lock(bp);
3392
3393			/* save nig interrupt mask */
3394			nig_mask = REG_RD(bp, nig_int_mask_addr);
3395
3396			/* If nig_mask is not set, no need to call the update
3397			 * function.
3398			 */
3399			if (nig_mask) {
3400				REG_WR(bp, nig_int_mask_addr, 0);
3401
3402				bnx2x_link_attn(bp);
3403			}
3404
3405			/* handle unicore attn? */
3406		}
3407		if (asserted & ATTN_SW_TIMER_4_FUNC)
3408			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3409
3410		if (asserted & GPIO_2_FUNC)
3411			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3412
3413		if (asserted & GPIO_3_FUNC)
3414			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3415
3416		if (asserted & GPIO_4_FUNC)
3417			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3418
3419		if (port == 0) {
3420			if (asserted & ATTN_GENERAL_ATTN_1) {
3421				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3422				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3423			}
3424			if (asserted & ATTN_GENERAL_ATTN_2) {
3425				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3426				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3427			}
3428			if (asserted & ATTN_GENERAL_ATTN_3) {
3429				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3430				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3431			}
3432		} else {
3433			if (asserted & ATTN_GENERAL_ATTN_4) {
3434				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3435				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3436			}
3437			if (asserted & ATTN_GENERAL_ATTN_5) {
3438				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3439				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3440			}
3441			if (asserted & ATTN_GENERAL_ATTN_6) {
3442				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3443				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3444			}
3445		}
3446
3447	} /* if hardwired */
3448
3449	if (bp->common.int_block == INT_BLOCK_HC)
3450		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3451			    COMMAND_REG_ATTN_BITS_SET);
3452	else
3453		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3454
3455	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3456	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3457	REG_WR(bp, reg_addr, asserted);
3458
3459	/* now set back the mask */
3460	if (asserted & ATTN_NIG_FOR_FUNC) {
3461		REG_WR(bp, nig_int_mask_addr, nig_mask);
3462		bnx2x_release_phy_lock(bp);
3463	}
3464}
3465
3466static inline void bnx2x_fan_failure(struct bnx2x *bp)
3467{
3468	int port = BP_PORT(bp);
3469	u32 ext_phy_config;
3470	/* mark the failure */
3471	ext_phy_config =
3472		SHMEM_RD(bp,
3473			 dev_info.port_hw_config[port].external_phy_config);
3474
3475	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3476	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3477	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3478		 ext_phy_config);
3479
3480	/* log the failure */
3481	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3482	       " the driver to shutdown the card to prevent permanent"
3483	       " damage.  Please contact OEM Support for assistance\n");
3484
3485	/*
3486	 * Scheudle device reset (unload)
3487	 * This is due to some boards consuming sufficient power when driver is
3488	 * up to overheat if fan fails.
3489	 */
3490	smp_mb__before_clear_bit();
3491	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3492	smp_mb__after_clear_bit();
3493	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3494
3495}
3496
3497static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3498{
3499	int port = BP_PORT(bp);
3500	int reg_offset;
3501	u32 val;
3502
3503	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3504			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3505
3506	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3507
3508		val = REG_RD(bp, reg_offset);
3509		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3510		REG_WR(bp, reg_offset, val);
3511
3512		BNX2X_ERR("SPIO5 hw attention\n");
3513
3514		/* Fan failure attention */
3515		bnx2x_hw_reset_phy(&bp->link_params);
3516		bnx2x_fan_failure(bp);
3517	}
3518
3519	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3520		bnx2x_acquire_phy_lock(bp);
3521		bnx2x_handle_module_detect_int(&bp->link_params);
3522		bnx2x_release_phy_lock(bp);
3523	}
3524
3525	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3526
3527		val = REG_RD(bp, reg_offset);
3528		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3529		REG_WR(bp, reg_offset, val);
3530
3531		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3532			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3533		bnx2x_panic();
3534	}
3535}
3536
3537static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3538{
3539	u32 val;
3540
3541	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3542
3543		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3544		BNX2X_ERR("DB hw attention 0x%x\n", val);
3545		/* DORQ discard attention */
3546		if (val & 0x2)
3547			BNX2X_ERR("FATAL error from DORQ\n");
3548	}
3549
3550	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3551
3552		int port = BP_PORT(bp);
3553		int reg_offset;
3554
3555		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3556				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3557
3558		val = REG_RD(bp, reg_offset);
3559		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3560		REG_WR(bp, reg_offset, val);
3561
3562		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3563			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3564		bnx2x_panic();
3565	}
3566}
3567
3568static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3569{
3570	u32 val;
3571
3572	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3573
3574		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3575		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3576		/* CFC error attention */
3577		if (val & 0x2)
3578			BNX2X_ERR("FATAL error from CFC\n");
3579	}
3580
3581	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3582		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3583		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3584		/* RQ_USDMDP_FIFO_OVERFLOW */
3585		if (val & 0x18000)
3586			BNX2X_ERR("FATAL error from PXP\n");
3587
3588		if (!CHIP_IS_E1x(bp)) {
3589			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3590			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3591		}
3592	}
3593
3594	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3595
3596		int port = BP_PORT(bp);
3597		int reg_offset;
3598
3599		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3600				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3601
3602		val = REG_RD(bp, reg_offset);
3603		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3604		REG_WR(bp, reg_offset, val);
3605
3606		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3607			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3608		bnx2x_panic();
3609	}
3610}
3611
3612static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3613{
3614	u32 val;
3615
3616	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3617
3618		if (attn & BNX2X_PMF_LINK_ASSERT) {
3619			int func = BP_FUNC(bp);
3620
3621			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3622			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3623					func_mf_config[BP_ABS_FUNC(bp)].config);
3624			val = SHMEM_RD(bp,
3625				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3626			if (val & DRV_STATUS_DCC_EVENT_MASK)
3627				bnx2x_dcc_event(bp,
3628					    (val & DRV_STATUS_DCC_EVENT_MASK));
3629
3630			if (val & DRV_STATUS_SET_MF_BW)
3631				bnx2x_set_mf_bw(bp);
3632
3633			if (val & DRV_STATUS_DRV_INFO_REQ)
3634				bnx2x_handle_drv_info_req(bp);
3635			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3636				bnx2x_pmf_update(bp);
3637
3638			if (bp->port.pmf &&
3639			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3640				bp->dcbx_enabled > 0)
3641				/* start dcbx state machine */
3642				bnx2x_dcbx_set_params(bp,
3643					BNX2X_DCBX_STATE_NEG_RECEIVED);
3644			if (bp->link_vars.periodic_flags &
3645			    PERIODIC_FLAGS_LINK_EVENT) {
3646				/*  sync with link */
3647				bnx2x_acquire_phy_lock(bp);
3648				bp->link_vars.periodic_flags &=
3649					~PERIODIC_FLAGS_LINK_EVENT;
3650				bnx2x_release_phy_lock(bp);
3651				if (IS_MF(bp))
3652					bnx2x_link_sync_notify(bp);
3653				bnx2x_link_report(bp);
3654			}
3655			/* Always call it here: bnx2x_link_report() will
3656			 * prevent the link indication duplication.
3657			 */
3658			bnx2x__link_status_update(bp);
3659		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3660
3661			BNX2X_ERR("MC assert!\n");
3662			bnx2x_mc_assert(bp);
3663			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3664			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3665			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3666			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3667			bnx2x_panic();
3668
3669		} else if (attn & BNX2X_MCP_ASSERT) {
3670
3671			BNX2X_ERR("MCP assert!\n");
3672			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3673			bnx2x_fw_dump(bp);
3674
3675		} else
3676			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3677	}
3678
3679	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3680		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3681		if (attn & BNX2X_GRC_TIMEOUT) {
3682			val = CHIP_IS_E1(bp) ? 0 :
3683					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3684			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3685		}
3686		if (attn & BNX2X_GRC_RSV) {
3687			val = CHIP_IS_E1(bp) ? 0 :
3688					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3689			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3690		}
3691		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3692	}
3693}
3694
3695/*
3696 * Bits map:
3697 * 0-7   - Engine0 load counter.
3698 * 8-15  - Engine1 load counter.
3699 * 16    - Engine0 RESET_IN_PROGRESS bit.
3700 * 17    - Engine1 RESET_IN_PROGRESS bit.
3701 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3702 *         on the engine
3703 * 19    - Engine1 ONE_IS_LOADED.
3704 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3705 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3706 *         just the one belonging to its engine).
3707 *
3708 */
3709#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3710
3711#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3712#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3713#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3714#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3715#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3716#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3717#define BNX2X_GLOBAL_RESET_BIT		0x00040000
3718
3719/*
3720 * Set the GLOBAL_RESET bit.
3721 *
3722 * Should be run under rtnl lock
3723 */
3724void bnx2x_set_reset_global(struct bnx2x *bp)
3725{
3726	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3727
3728	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3729	barrier();
3730	mmiowb();
3731}
3732
3733/*
3734 * Clear the GLOBAL_RESET bit.
3735 *
3736 * Should be run under rtnl lock
3737 */
3738static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3739{
3740	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3741
3742	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3743	barrier();
3744	mmiowb();
3745}
3746
3747/*
3748 * Checks the GLOBAL_RESET bit.
3749 *
3750 * should be run under rtnl lock
3751 */
3752static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3753{
3754	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3755
3756	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3757	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3758}
3759
3760/*
3761 * Clear RESET_IN_PROGRESS bit for the current engine.
3762 *
3763 * Should be run under rtnl lock
3764 */
3765static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3766{
3767	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3768	u32 bit = BP_PATH(bp) ?
3769		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3770
3771	/* Clear the bit */
3772	val &= ~bit;
3773	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3774	barrier();
3775	mmiowb();
3776}
3777
3778/*
3779 * Set RESET_IN_PROGRESS for the current engine.
3780 *
3781 * should be run under rtnl lock
3782 */
3783void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3784{
3785	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3786	u32 bit = BP_PATH(bp) ?
3787		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3788
3789	/* Set the bit */
3790	val |= bit;
3791	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3792	barrier();
3793	mmiowb();
3794}
3795
3796/*
3797 * Checks the RESET_IN_PROGRESS bit for the given engine.
3798 * should be run under rtnl lock
3799 */
3800bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3801{
3802	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3803	u32 bit = engine ?
3804		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3805
3806	/* return false if bit is set */
3807	return (val & bit) ? false : true;
3808}
3809
3810/*
3811 * Increment the load counter for the current engine.
3812 *
3813 * should be run under rtnl lock
3814 */
3815void bnx2x_inc_load_cnt(struct bnx2x *bp)
3816{
3817	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3818	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3819			     BNX2X_PATH0_LOAD_CNT_MASK;
3820	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3821			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3822
3823	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3824
3825	/* get the current counter value */
3826	val1 = (val & mask) >> shift;
3827
3828	/* increment... */
3829	val1++;
3830
3831	/* clear the old value */
3832	val &= ~mask;
3833
3834	/* set the new one */
3835	val |= ((val1 << shift) & mask);
3836
3837	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3838	barrier();
3839	mmiowb();
3840}
3841
3842/**
3843 * bnx2x_dec_load_cnt - decrement the load counter
3844 *
3845 * @bp:		driver handle
3846 *
3847 * Should be run under rtnl lock.
3848 * Decrements the load counter for the current engine. Returns
3849 * the new counter value.
3850 */
3851u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3852{
3853	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3854	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3855			     BNX2X_PATH0_LOAD_CNT_MASK;
3856	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3857			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3858
3859	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3860
3861	/* get the current counter value */
3862	val1 = (val & mask) >> shift;
3863
3864	/* decrement... */
3865	val1--;
3866
3867	/* clear the old value */
3868	val &= ~mask;
3869
3870	/* set the new one */
3871	val |= ((val1 << shift) & mask);
3872
3873	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3874	barrier();
3875	mmiowb();
3876
3877	return val1;
3878}
3879
3880/*
3881 * Read the load counter for the current engine.
3882 *
3883 * should be run under rtnl lock
3884 */
3885static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3886{
3887	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3888			     BNX2X_PATH0_LOAD_CNT_MASK);
3889	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3890			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3891	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3892
3893	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3894
3895	val = (val & mask) >> shift;
3896
3897	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3898
3899	return val;
3900}
3901
3902/*
3903 * Reset the load counter for the current engine.
3904 *
3905 * should be run under rtnl lock
3906 */
3907static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3908{
3909	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3910	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3911			     BNX2X_PATH0_LOAD_CNT_MASK);
3912
3913	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3914}
3915
3916static inline void _print_next_block(int idx, const char *blk)
3917{
3918	pr_cont("%s%s", idx ? ", " : "", blk);
3919}
3920
3921static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3922						  bool print)
3923{
3924	int i = 0;
3925	u32 cur_bit = 0;
3926	for (i = 0; sig; i++) {
3927		cur_bit = ((u32)0x1 << i);
3928		if (sig & cur_bit) {
3929			switch (cur_bit) {
3930			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3931				if (print)
3932					_print_next_block(par_num++, "BRB");
3933				break;
3934			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3935				if (print)
3936					_print_next_block(par_num++, "PARSER");
3937				break;
3938			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3939				if (print)
3940					_print_next_block(par_num++, "TSDM");
3941				break;
3942			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3943				if (print)
3944					_print_next_block(par_num++,
3945							  "SEARCHER");
3946				break;
3947			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3948				if (print)
3949					_print_next_block(par_num++, "TCM");
3950				break;
3951			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3952				if (print)
3953					_print_next_block(par_num++, "TSEMI");
3954				break;
3955			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3956				if (print)
3957					_print_next_block(par_num++, "XPB");
3958				break;
3959			}
3960
3961			/* Clear the bit */
3962			sig &= ~cur_bit;
3963		}
3964	}
3965
3966	return par_num;
3967}
3968
3969static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3970						  bool *global, bool print)
3971{
3972	int i = 0;
3973	u32 cur_bit = 0;
3974	for (i = 0; sig; i++) {
3975		cur_bit = ((u32)0x1 << i);
3976		if (sig & cur_bit) {
3977			switch (cur_bit) {
3978			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3979				if (print)
3980					_print_next_block(par_num++, "PBF");
3981				break;
3982			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3983				if (print)
3984					_print_next_block(par_num++, "QM");
3985				break;
3986			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3987				if (print)
3988					_print_next_block(par_num++, "TM");
3989				break;
3990			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3991				if (print)
3992					_print_next_block(par_num++, "XSDM");
3993				break;
3994			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3995				if (print)
3996					_print_next_block(par_num++, "XCM");
3997				break;
3998			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3999				if (print)
4000					_print_next_block(par_num++, "XSEMI");
4001				break;
4002			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4003				if (print)
4004					_print_next_block(par_num++,
4005							  "DOORBELLQ");
4006				break;
4007			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4008				if (print)
4009					_print_next_block(par_num++, "NIG");
4010				break;
4011			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4012				if (print)
4013					_print_next_block(par_num++,
4014							  "VAUX PCI CORE");
4015				*global = true;
4016				break;
4017			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4018				if (print)
4019					_print_next_block(par_num++, "DEBUG");
4020				break;
4021			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4022				if (print)
4023					_print_next_block(par_num++, "USDM");
4024				break;
4025			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4026				if (print)
4027					_print_next_block(par_num++, "UCM");
4028				break;
4029			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4030				if (print)
4031					_print_next_block(par_num++, "USEMI");
4032				break;
4033			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4034				if (print)
4035					_print_next_block(par_num++, "UPB");
4036				break;
4037			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4038				if (print)
4039					_print_next_block(par_num++, "CSDM");
4040				break;
4041			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4042				if (print)
4043					_print_next_block(par_num++, "CCM");
4044				break;
4045			}
4046
4047			/* Clear the bit */
4048			sig &= ~cur_bit;
4049		}
4050	}
4051
4052	return par_num;
4053}
4054
4055static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4056						  bool print)
4057{
4058	int i = 0;
4059	u32 cur_bit = 0;
4060	for (i = 0; sig; i++) {
4061		cur_bit = ((u32)0x1 << i);
4062		if (sig & cur_bit) {
4063			switch (cur_bit) {
4064			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4065				if (print)
4066					_print_next_block(par_num++, "CSEMI");
4067				break;
4068			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4069				if (print)
4070					_print_next_block(par_num++, "PXP");
4071				break;
4072			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4073				if (print)
4074					_print_next_block(par_num++,
4075					"PXPPCICLOCKCLIENT");
4076				break;
4077			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4078				if (print)
4079					_print_next_block(par_num++, "CFC");
4080				break;
4081			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4082				if (print)
4083					_print_next_block(par_num++, "CDU");
4084				break;
4085			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4086				if (print)
4087					_print_next_block(par_num++, "DMAE");
4088				break;
4089			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4090				if (print)
4091					_print_next_block(par_num++, "IGU");
4092				break;
4093			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4094				if (print)
4095					_print_next_block(par_num++, "MISC");
4096				break;
4097			}
4098
4099			/* Clear the bit */
4100			sig &= ~cur_bit;
4101		}
4102	}
4103
4104	return par_num;
4105}
4106
4107static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4108						  bool *global, bool print)
4109{
4110	int i = 0;
4111	u32 cur_bit = 0;
4112	for (i = 0; sig; i++) {
4113		cur_bit = ((u32)0x1 << i);
4114		if (sig & cur_bit) {
4115			switch (cur_bit) {
4116			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4117				if (print)
4118					_print_next_block(par_num++, "MCP ROM");
4119				*global = true;
4120				break;
4121			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4122				if (print)
4123					_print_next_block(par_num++,
4124							  "MCP UMP RX");
4125				*global = true;
4126				break;
4127			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4128				if (print)
4129					_print_next_block(par_num++,
4130							  "MCP UMP TX");
4131				*global = true;
4132				break;
4133			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4134				if (print)
4135					_print_next_block(par_num++,
4136							  "MCP SCPAD");
4137				*global = true;
4138				break;
4139			}
4140
4141			/* Clear the bit */
4142			sig &= ~cur_bit;
4143		}
4144	}
4145
4146	return par_num;
4147}
4148
4149static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4150						  bool print)
4151{
4152	int i = 0;
4153	u32 cur_bit = 0;
4154	for (i = 0; sig; i++) {
4155		cur_bit = ((u32)0x1 << i);
4156		if (sig & cur_bit) {
4157			switch (cur_bit) {
4158			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4159				if (print)
4160					_print_next_block(par_num++, "PGLUE_B");
4161				break;
4162			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4163				if (print)
4164					_print_next_block(par_num++, "ATC");
4165				break;
4166			}
4167
4168			/* Clear the bit */
4169			sig &= ~cur_bit;
4170		}
4171	}
4172
4173	return par_num;
4174}
4175
4176static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4177				     u32 *sig)
4178{
4179	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4180	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4181	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4182	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4183	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4184		int par_num = 0;
4185		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4186			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4187			"[4]:0x%08x\n",
4188			  sig[0] & HW_PRTY_ASSERT_SET_0,
4189			  sig[1] & HW_PRTY_ASSERT_SET_1,
4190			  sig[2] & HW_PRTY_ASSERT_SET_2,
4191			  sig[3] & HW_PRTY_ASSERT_SET_3,
4192			  sig[4] & HW_PRTY_ASSERT_SET_4);
4193		if (print)
4194			netdev_err(bp->dev,
4195				   "Parity errors detected in blocks: ");
4196		par_num = bnx2x_check_blocks_with_parity0(
4197			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4198		par_num = bnx2x_check_blocks_with_parity1(
4199			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4200		par_num = bnx2x_check_blocks_with_parity2(
4201			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4202		par_num = bnx2x_check_blocks_with_parity3(
4203			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4204		par_num = bnx2x_check_blocks_with_parity4(
4205			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4206
4207		if (print)
4208			pr_cont("\n");
4209
4210		return true;
4211	} else
4212		return false;
4213}
4214
4215/**
4216 * bnx2x_chk_parity_attn - checks for parity attentions.
4217 *
4218 * @bp:		driver handle
4219 * @global:	true if there was a global attention
4220 * @print:	show parity attention in syslog
4221 */
4222bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4223{
4224	struct attn_route attn = { {0} };
4225	int port = BP_PORT(bp);
4226
4227	attn.sig[0] = REG_RD(bp,
4228		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4229			     port*4);
4230	attn.sig[1] = REG_RD(bp,
4231		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4232			     port*4);
4233	attn.sig[2] = REG_RD(bp,
4234		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4235			     port*4);
4236	attn.sig[3] = REG_RD(bp,
4237		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4238			     port*4);
4239
4240	if (!CHIP_IS_E1x(bp))
4241		attn.sig[4] = REG_RD(bp,
4242			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4243				     port*4);
4244
4245	return bnx2x_parity_attn(bp, global, print, attn.sig);
4246}
4247
4248
4249static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4250{
4251	u32 val;
4252	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4253
4254		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4255		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4256		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4257			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4258				  "ADDRESS_ERROR\n");
4259		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4260			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4261				  "INCORRECT_RCV_BEHAVIOR\n");
4262		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4263			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4264				  "WAS_ERROR_ATTN\n");
4265		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4266			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4267				  "VF_LENGTH_VIOLATION_ATTN\n");
4268		if (val &
4269		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4270			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4271				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4272		if (val &
4273		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4274			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4275				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4276		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4277			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4278				  "TCPL_ERROR_ATTN\n");
4279		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4280			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4281				  "TCPL_IN_TWO_RCBS_ATTN\n");
4282		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4283			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4284				  "CSSNOOP_FIFO_OVERFLOW\n");
4285	}
4286	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4287		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4288		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4289		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4290			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4291		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4292			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4293				  "_ATC_TCPL_TO_NOT_PEND\n");
4294		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4295			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4296				  "ATC_GPA_MULTIPLE_HITS\n");
4297		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4298			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4299				  "ATC_RCPL_TO_EMPTY_CNT\n");
4300		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4301			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4302		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4303			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4304				  "ATC_IREQ_LESS_THAN_STU\n");
4305	}
4306
4307	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4308		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4309		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4310		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4311		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4312	}
4313
4314}
4315
4316static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4317{
4318	struct attn_route attn, *group_mask;
4319	int port = BP_PORT(bp);
4320	int index;
4321	u32 reg_addr;
4322	u32 val;
4323	u32 aeu_mask;
4324	bool global = false;
4325
4326	/* need to take HW lock because MCP or other port might also
4327	   try to handle this event */
4328	bnx2x_acquire_alr(bp);
4329
4330	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4331#ifndef BNX2X_STOP_ON_ERROR
4332		bp->recovery_state = BNX2X_RECOVERY_INIT;
4333		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4334		/* Disable HW interrupts */
4335		bnx2x_int_disable(bp);
4336		/* In case of parity errors don't handle attentions so that
4337		 * other function would "see" parity errors.
4338		 */
4339#else
4340		bnx2x_panic();
4341#endif
4342		bnx2x_release_alr(bp);
4343		return;
4344	}
4345
4346	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4347	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4348	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4349	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4350	if (!CHIP_IS_E1x(bp))
4351		attn.sig[4] =
4352		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4353	else
4354		attn.sig[4] = 0;
4355
4356	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4357	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4358
4359	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4360		if (deasserted & (1 << index)) {
4361			group_mask = &bp->attn_group[index];
4362
4363			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4364					 "%08x %08x %08x\n",
4365			   index,
4366			   group_mask->sig[0], group_mask->sig[1],
4367			   group_mask->sig[2], group_mask->sig[3],
4368			   group_mask->sig[4]);
4369
4370			bnx2x_attn_int_deasserted4(bp,
4371					attn.sig[4] & group_mask->sig[4]);
4372			bnx2x_attn_int_deasserted3(bp,
4373					attn.sig[3] & group_mask->sig[3]);
4374			bnx2x_attn_int_deasserted1(bp,
4375					attn.sig[1] & group_mask->sig[1]);
4376			bnx2x_attn_int_deasserted2(bp,
4377					attn.sig[2] & group_mask->sig[2]);
4378			bnx2x_attn_int_deasserted0(bp,
4379					attn.sig[0] & group_mask->sig[0]);
4380		}
4381	}
4382
4383	bnx2x_release_alr(bp);
4384
4385	if (bp->common.int_block == INT_BLOCK_HC)
4386		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4387			    COMMAND_REG_ATTN_BITS_CLR);
4388	else
4389		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4390
4391	val = ~deasserted;
4392	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4393	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4394	REG_WR(bp, reg_addr, val);
4395
4396	if (~bp->attn_state & deasserted)
4397		BNX2X_ERR("IGU ERROR\n");
4398
4399	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4400			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4401
4402	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4403	aeu_mask = REG_RD(bp, reg_addr);
4404
4405	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4406	   aeu_mask, deasserted);
4407	aeu_mask |= (deasserted & 0x3ff);
4408	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4409
4410	REG_WR(bp, reg_addr, aeu_mask);
4411	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4412
4413	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4414	bp->attn_state &= ~deasserted;
4415	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4416}
4417
4418static void bnx2x_attn_int(struct bnx2x *bp)
4419{
4420	/* read local copy of bits */
4421	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4422								attn_bits);
4423	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4424								attn_bits_ack);
4425	u32 attn_state = bp->attn_state;
4426
4427	/* look for changed bits */
4428	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4429	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4430
4431	DP(NETIF_MSG_HW,
4432	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4433	   attn_bits, attn_ack, asserted, deasserted);
4434
4435	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4436		BNX2X_ERR("BAD attention state\n");
4437
4438	/* handle bits that were raised */
4439	if (asserted)
4440		bnx2x_attn_int_asserted(bp, asserted);
4441
4442	if (deasserted)
4443		bnx2x_attn_int_deasserted(bp, deasserted);
4444}
4445
4446void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4447		      u16 index, u8 op, u8 update)
4448{
4449	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4450
4451	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4452			     igu_addr);
4453}
4454
4455static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4456{
4457	/* No memory barriers */
4458	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4459	mmiowb(); /* keep prod updates ordered */
4460}
4461
4462#ifdef BCM_CNIC
4463static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4464				      union event_ring_elem *elem)
4465{
4466	u8 err = elem->message.error;
4467
4468	if (!bp->cnic_eth_dev.starting_cid  ||
4469	    (cid < bp->cnic_eth_dev.starting_cid &&
4470	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4471		return 1;
4472
4473	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4474
4475	if (unlikely(err)) {
4476
4477		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4478			  cid);
4479		bnx2x_panic_dump(bp);
4480	}
4481	bnx2x_cnic_cfc_comp(bp, cid, err);
4482	return 0;
4483}
4484#endif
4485
4486static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4487{
4488	struct bnx2x_mcast_ramrod_params rparam;
4489	int rc;
4490
4491	memset(&rparam, 0, sizeof(rparam));
4492
4493	rparam.mcast_obj = &bp->mcast_obj;
4494
4495	netif_addr_lock_bh(bp->dev);
4496
4497	/* Clear pending state for the last command */
4498	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4499
4500	/* If there are pending mcast commands - send them */
4501	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4502		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4503		if (rc < 0)
4504			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4505				  rc);
4506	}
4507
4508	netif_addr_unlock_bh(bp->dev);
4509}
4510
4511static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4512						   union event_ring_elem *elem)
4513{
4514	unsigned long ramrod_flags = 0;
4515	int rc = 0;
4516	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4517	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4518
4519	/* Always push next commands out, don't wait here */
4520	__set_bit(RAMROD_CONT, &ramrod_flags);
4521
4522	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4523	case BNX2X_FILTER_MAC_PENDING:
4524#ifdef BCM_CNIC
4525		if (cid == BNX2X_ISCSI_ETH_CID)
4526			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4527		else
4528#endif
4529			vlan_mac_obj = &bp->fp[cid].mac_obj;
4530
4531		break;
4532	case BNX2X_FILTER_MCAST_PENDING:
4533		/* This is only relevant for 57710 where multicast MACs are
4534		 * configured as unicast MACs using the same ramrod.
4535		 */
4536		bnx2x_handle_mcast_eqe(bp);
4537		return;
4538	default:
4539		BNX2X_ERR("Unsupported classification command: %d\n",
4540			  elem->message.data.eth_event.echo);
4541		return;
4542	}
4543
4544	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4545
4546	if (rc < 0)
4547		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4548	else if (rc > 0)
4549		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4550
4551}
4552
4553#ifdef BCM_CNIC
4554static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4555#endif
4556
4557static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4558{
4559	netif_addr_lock_bh(bp->dev);
4560
4561	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4562
4563	/* Send rx_mode command again if was requested */
4564	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4565		bnx2x_set_storm_rx_mode(bp);
4566#ifdef BCM_CNIC
4567	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4568				    &bp->sp_state))
4569		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4570	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4571				    &bp->sp_state))
4572		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4573#endif
4574
4575	netif_addr_unlock_bh(bp->dev);
4576}
4577
4578static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4579	struct bnx2x *bp, u32 cid)
4580{
4581	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4582#ifdef BCM_CNIC
4583	if (cid == BNX2X_FCOE_ETH_CID)
4584		return &bnx2x_fcoe(bp, q_obj);
4585	else
4586#endif
4587		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4588}
4589
4590static void bnx2x_eq_int(struct bnx2x *bp)
4591{
4592	u16 hw_cons, sw_cons, sw_prod;
4593	union event_ring_elem *elem;
4594	u32 cid;
4595	u8 opcode;
4596	int spqe_cnt = 0;
4597	struct bnx2x_queue_sp_obj *q_obj;
4598	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4599	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4600
4601	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4602
4603	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4604	 * when we get the the next-page we nned to adjust so the loop
4605	 * condition below will be met. The next element is the size of a
4606	 * regular element and hence incrementing by 1
4607	 */
4608	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4609		hw_cons++;
4610
4611	/* This function may never run in parallel with itself for a
4612	 * specific bp, thus there is no need in "paired" read memory
4613	 * barrier here.
4614	 */
4615	sw_cons = bp->eq_cons;
4616	sw_prod = bp->eq_prod;
4617
4618	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4619			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4620
4621	for (; sw_cons != hw_cons;
4622	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4623
4624
4625		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4626
4627		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4628		opcode = elem->message.opcode;
4629
4630
4631		/* handle eq element */
4632		switch (opcode) {
4633		case EVENT_RING_OPCODE_STAT_QUERY:
4634			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4635			   bp->stats_comp++);
4636			/* nothing to do with stats comp */
4637			goto next_spqe;
4638
4639		case EVENT_RING_OPCODE_CFC_DEL:
4640			/* handle according to cid range */
4641			/*
4642			 * we may want to verify here that the bp state is
4643			 * HALTING
4644			 */
4645			DP(BNX2X_MSG_SP,
4646			   "got delete ramrod for MULTI[%d]\n", cid);
4647#ifdef BCM_CNIC
4648			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4649				goto next_spqe;
4650#endif
4651			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4652
4653			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4654				break;
4655
4656
4657
4658			goto next_spqe;
4659
4660		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4661			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4662			if (f_obj->complete_cmd(bp, f_obj,
4663						BNX2X_F_CMD_TX_STOP))
4664				break;
4665			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4666			goto next_spqe;
4667
4668		case EVENT_RING_OPCODE_START_TRAFFIC:
4669			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4670			if (f_obj->complete_cmd(bp, f_obj,
4671						BNX2X_F_CMD_TX_START))
4672				break;
4673			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4674			goto next_spqe;
4675		case EVENT_RING_OPCODE_FUNCTION_START:
4676			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4677			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4678				break;
4679
4680			goto next_spqe;
4681
4682		case EVENT_RING_OPCODE_FUNCTION_STOP:
4683			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4684			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4685				break;
4686
4687			goto next_spqe;
4688		}
4689
4690		switch (opcode | bp->state) {
4691		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4692		      BNX2X_STATE_OPEN):
4693		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4694		      BNX2X_STATE_OPENING_WAIT4_PORT):
4695			cid = elem->message.data.eth_event.echo &
4696				BNX2X_SWCID_MASK;
4697			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4698			   cid);
4699			rss_raw->clear_pending(rss_raw);
4700			break;
4701
4702		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4703		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4704		case (EVENT_RING_OPCODE_SET_MAC |
4705		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4706		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4707		      BNX2X_STATE_OPEN):
4708		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4709		      BNX2X_STATE_DIAG):
4710		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4711		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4712			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4713			bnx2x_handle_classification_eqe(bp, elem);
4714			break;
4715
4716		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4717		      BNX2X_STATE_OPEN):
4718		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4719		      BNX2X_STATE_DIAG):
4720		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4721		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4722			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4723			bnx2x_handle_mcast_eqe(bp);
4724			break;
4725
4726		case (EVENT_RING_OPCODE_FILTERS_RULES |
4727		      BNX2X_STATE_OPEN):
4728		case (EVENT_RING_OPCODE_FILTERS_RULES |
4729		      BNX2X_STATE_DIAG):
4730		case (EVENT_RING_OPCODE_FILTERS_RULES |
4731		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4732			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4733			bnx2x_handle_rx_mode_eqe(bp);
4734			break;
4735		default:
4736			/* unknown event log error and continue */
4737			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4738				  elem->message.opcode, bp->state);
4739		}
4740next_spqe:
4741		spqe_cnt++;
4742	} /* for */
4743
4744	smp_mb__before_atomic_inc();
4745	atomic_add(spqe_cnt, &bp->eq_spq_left);
4746
4747	bp->eq_cons = sw_cons;
4748	bp->eq_prod = sw_prod;
4749	/* Make sure that above mem writes were issued towards the memory */
4750	smp_wmb();
4751
4752	/* update producer */
4753	bnx2x_update_eq_prod(bp, bp->eq_prod);
4754}
4755
4756static void bnx2x_sp_task(struct work_struct *work)
4757{
4758	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4759	u16 status;
4760
4761	status = bnx2x_update_dsb_idx(bp);
4762/*	if (status == 0)				     */
4763/*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4764
4765	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4766
4767	/* HW attentions */
4768	if (status & BNX2X_DEF_SB_ATT_IDX) {
4769		bnx2x_attn_int(bp);
4770		status &= ~BNX2X_DEF_SB_ATT_IDX;
4771	}
4772
4773	/* SP events: STAT_QUERY and others */
4774	if (status & BNX2X_DEF_SB_IDX) {
4775#ifdef BCM_CNIC
4776		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4777
4778		if ((!NO_FCOE(bp)) &&
4779			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4780			/*
4781			 * Prevent local bottom-halves from running as
4782			 * we are going to change the local NAPI list.
4783			 */
4784			local_bh_disable();
4785			napi_schedule(&bnx2x_fcoe(bp, napi));
4786			local_bh_enable();
4787		}
4788#endif
4789		/* Handle EQ completions */
4790		bnx2x_eq_int(bp);
4791
4792		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4793			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4794
4795		status &= ~BNX2X_DEF_SB_IDX;
4796	}
4797
4798	if (unlikely(status))
4799		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4800		   status);
4801
4802	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4803	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4804}
4805
4806irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4807{
4808	struct net_device *dev = dev_instance;
4809	struct bnx2x *bp = netdev_priv(dev);
4810
4811	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4812		     IGU_INT_DISABLE, 0);
4813
4814#ifdef BNX2X_STOP_ON_ERROR
4815	if (unlikely(bp->panic))
4816		return IRQ_HANDLED;
4817#endif
4818
4819#ifdef BCM_CNIC
4820	{
4821		struct cnic_ops *c_ops;
4822
4823		rcu_read_lock();
4824		c_ops = rcu_dereference(bp->cnic_ops);
4825		if (c_ops)
4826			c_ops->cnic_handler(bp->cnic_data, NULL);
4827		rcu_read_unlock();
4828	}
4829#endif
4830	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4831
4832	return IRQ_HANDLED;
4833}
4834
4835/* end of slow path */
4836
4837
4838void bnx2x_drv_pulse(struct bnx2x *bp)
4839{
4840	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4841		 bp->fw_drv_pulse_wr_seq);
4842}
4843
4844
4845static void bnx2x_timer(unsigned long data)
4846{
4847	u8 cos;
4848	struct bnx2x *bp = (struct bnx2x *) data;
4849
4850	if (!netif_running(bp->dev))
4851		return;
4852
4853	if (poll) {
4854		struct bnx2x_fastpath *fp = &bp->fp[0];
4855
4856		for_each_cos_in_tx_queue(fp, cos)
4857			bnx2x_tx_int(bp, &fp->txdata[cos]);
4858		bnx2x_rx_int(fp, 1000);
4859	}
4860
4861	if (!BP_NOMCP(bp)) {
4862		int mb_idx = BP_FW_MB_IDX(bp);
4863		u32 drv_pulse;
4864		u32 mcp_pulse;
4865
4866		++bp->fw_drv_pulse_wr_seq;
4867		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4868		/* TBD - add SYSTEM_TIME */
4869		drv_pulse = bp->fw_drv_pulse_wr_seq;
4870		bnx2x_drv_pulse(bp);
4871
4872		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4873			     MCP_PULSE_SEQ_MASK);
4874		/* The delta between driver pulse and mcp response
4875		 * should be 1 (before mcp response) or 0 (after mcp response)
4876		 */
4877		if ((drv_pulse != mcp_pulse) &&
4878		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4879			/* someone lost a heartbeat... */
4880			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4881				  drv_pulse, mcp_pulse);
4882		}
4883	}
4884
4885	if (bp->state == BNX2X_STATE_OPEN)
4886		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4887
4888	mod_timer(&bp->timer, jiffies + bp->current_interval);
4889}
4890
4891/* end of Statistics */
4892
4893/* nic init */
4894
4895/*
4896 * nic init service functions
4897 */
4898
4899static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4900{
4901	u32 i;
4902	if (!(len%4) && !(addr%4))
4903		for (i = 0; i < len; i += 4)
4904			REG_WR(bp, addr + i, fill);
4905	else
4906		for (i = 0; i < len; i++)
4907			REG_WR8(bp, addr + i, fill);
4908
4909}
4910
4911/* helper: writes FP SP data to FW - data_size in dwords */
4912static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4913				       int fw_sb_id,
4914				       u32 *sb_data_p,
4915				       u32 data_size)
4916{
4917	int index;
4918	for (index = 0; index < data_size; index++)
4919		REG_WR(bp, BAR_CSTRORM_INTMEM +
4920			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4921			sizeof(u32)*index,
4922			*(sb_data_p + index));
4923}
4924
4925static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4926{
4927	u32 *sb_data_p;
4928	u32 data_size = 0;
4929	struct hc_status_block_data_e2 sb_data_e2;
4930	struct hc_status_block_data_e1x sb_data_e1x;
4931
4932	/* disable the function first */
4933	if (!CHIP_IS_E1x(bp)) {
4934		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4935		sb_data_e2.common.state = SB_DISABLED;
4936		sb_data_e2.common.p_func.vf_valid = false;
4937		sb_data_p = (u32 *)&sb_data_e2;
4938		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4939	} else {
4940		memset(&sb_data_e1x, 0,
4941		       sizeof(struct hc_status_block_data_e1x));
4942		sb_data_e1x.common.state = SB_DISABLED;
4943		sb_data_e1x.common.p_func.vf_valid = false;
4944		sb_data_p = (u32 *)&sb_data_e1x;
4945		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4946	}
4947	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4948
4949	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4950			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4951			CSTORM_STATUS_BLOCK_SIZE);
4952	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4953			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4954			CSTORM_SYNC_BLOCK_SIZE);
4955}
4956
4957/* helper:  writes SP SB data to FW */
4958static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4959		struct hc_sp_status_block_data *sp_sb_data)
4960{
4961	int func = BP_FUNC(bp);
4962	int i;
4963	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4964		REG_WR(bp, BAR_CSTRORM_INTMEM +
4965			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4966			i*sizeof(u32),
4967			*((u32 *)sp_sb_data + i));
4968}
4969
4970static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4971{
4972	int func = BP_FUNC(bp);
4973	struct hc_sp_status_block_data sp_sb_data;
4974	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4975
4976	sp_sb_data.state = SB_DISABLED;
4977	sp_sb_data.p_func.vf_valid = false;
4978
4979	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4980
4981	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4982			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4983			CSTORM_SP_STATUS_BLOCK_SIZE);
4984	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4985			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4986			CSTORM_SP_SYNC_BLOCK_SIZE);
4987
4988}
4989
4990
4991static inline
4992void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4993					   int igu_sb_id, int igu_seg_id)
4994{
4995	hc_sm->igu_sb_id = igu_sb_id;
4996	hc_sm->igu_seg_id = igu_seg_id;
4997	hc_sm->timer_value = 0xFF;
4998	hc_sm->time_to_expire = 0xFFFFFFFF;
4999}
5000
5001
5002/* allocates state machine ids. */
5003static inline
5004void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5005{
5006	/* zero out state machine indices */
5007	/* rx indices */
5008	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5009
5010	/* tx indices */
5011	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5012	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5013	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5014	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5015
5016	/* map indices */
5017	/* rx indices */
5018	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5019		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5020
5021	/* tx indices */
5022	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5023		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5024	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5025		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5026	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5027		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5028	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5029		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5030}
5031
5032static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5033			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5034{
5035	int igu_seg_id;
5036
5037	struct hc_status_block_data_e2 sb_data_e2;
5038	struct hc_status_block_data_e1x sb_data_e1x;
5039	struct hc_status_block_sm  *hc_sm_p;
5040	int data_size;
5041	u32 *sb_data_p;
5042
5043	if (CHIP_INT_MODE_IS_BC(bp))
5044		igu_seg_id = HC_SEG_ACCESS_NORM;
5045	else
5046		igu_seg_id = IGU_SEG_ACCESS_NORM;
5047
5048	bnx2x_zero_fp_sb(bp, fw_sb_id);
5049
5050	if (!CHIP_IS_E1x(bp)) {
5051		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5052		sb_data_e2.common.state = SB_ENABLED;
5053		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5054		sb_data_e2.common.p_func.vf_id = vfid;
5055		sb_data_e2.common.p_func.vf_valid = vf_valid;
5056		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5057		sb_data_e2.common.same_igu_sb_1b = true;
5058		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5059		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5060		hc_sm_p = sb_data_e2.common.state_machine;
5061		sb_data_p = (u32 *)&sb_data_e2;
5062		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5063		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5064	} else {
5065		memset(&sb_data_e1x, 0,
5066		       sizeof(struct hc_status_block_data_e1x));
5067		sb_data_e1x.common.state = SB_ENABLED;
5068		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5069		sb_data_e1x.common.p_func.vf_id = 0xff;
5070		sb_data_e1x.common.p_func.vf_valid = false;
5071		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5072		sb_data_e1x.common.same_igu_sb_1b = true;
5073		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5074		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5075		hc_sm_p = sb_data_e1x.common.state_machine;
5076		sb_data_p = (u32 *)&sb_data_e1x;
5077		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5078		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5079	}
5080
5081	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5082				       igu_sb_id, igu_seg_id);
5083	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5084				       igu_sb_id, igu_seg_id);
5085
5086	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5087
5088	/* write indecies to HW */
5089	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5090}
5091
5092static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5093				     u16 tx_usec, u16 rx_usec)
5094{
5095	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5096				    false, rx_usec);
5097	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5098				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5099				       tx_usec);
5100	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5101				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5102				       tx_usec);
5103	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5104				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5105				       tx_usec);
5106}
5107
5108static void bnx2x_init_def_sb(struct bnx2x *bp)
5109{
5110	struct host_sp_status_block *def_sb = bp->def_status_blk;
5111	dma_addr_t mapping = bp->def_status_blk_mapping;
5112	int igu_sp_sb_index;
5113	int igu_seg_id;
5114	int port = BP_PORT(bp);
5115	int func = BP_FUNC(bp);
5116	int reg_offset, reg_offset_en5;
5117	u64 section;
5118	int index;
5119	struct hc_sp_status_block_data sp_sb_data;
5120	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5121
5122	if (CHIP_INT_MODE_IS_BC(bp)) {
5123		igu_sp_sb_index = DEF_SB_IGU_ID;
5124		igu_seg_id = HC_SEG_ACCESS_DEF;
5125	} else {
5126		igu_sp_sb_index = bp->igu_dsb_id;
5127		igu_seg_id = IGU_SEG_ACCESS_DEF;
5128	}
5129
5130	/* ATTN */
5131	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5132					    atten_status_block);
5133	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5134
5135	bp->attn_state = 0;
5136
5137	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5138			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5139	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5140				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5141	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5142		int sindex;
5143		/* take care of sig[0]..sig[4] */
5144		for (sindex = 0; sindex < 4; sindex++)
5145			bp->attn_group[index].sig[sindex] =
5146			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5147
5148		if (!CHIP_IS_E1x(bp))
5149			/*
5150			 * enable5 is separate from the rest of the registers,
5151			 * and therefore the address skip is 4
5152			 * and not 16 between the different groups
5153			 */
5154			bp->attn_group[index].sig[4] = REG_RD(bp,
5155					reg_offset_en5 + 0x4*index);
5156		else
5157			bp->attn_group[index].sig[4] = 0;
5158	}
5159
5160	if (bp->common.int_block == INT_BLOCK_HC) {
5161		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5162				     HC_REG_ATTN_MSG0_ADDR_L);
5163
5164		REG_WR(bp, reg_offset, U64_LO(section));
5165		REG_WR(bp, reg_offset + 4, U64_HI(section));
5166	} else if (!CHIP_IS_E1x(bp)) {
5167		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5168		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5169	}
5170
5171	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5172					    sp_sb);
5173
5174	bnx2x_zero_sp_sb(bp);
5175
5176	sp_sb_data.state		= SB_ENABLED;
5177	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5178	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5179	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5180	sp_sb_data.igu_seg_id		= igu_seg_id;
5181	sp_sb_data.p_func.pf_id		= func;
5182	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5183	sp_sb_data.p_func.vf_id		= 0xff;
5184
5185	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5186
5187	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5188}
5189
5190void bnx2x_update_coalesce(struct bnx2x *bp)
5191{
5192	int i;
5193
5194	for_each_eth_queue(bp, i)
5195		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5196					 bp->tx_ticks, bp->rx_ticks);
5197}
5198
5199static void bnx2x_init_sp_ring(struct bnx2x *bp)
5200{
5201	spin_lock_init(&bp->spq_lock);
5202	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5203
5204	bp->spq_prod_idx = 0;
5205	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5206	bp->spq_prod_bd = bp->spq;
5207	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5208}
5209
5210static void bnx2x_init_eq_ring(struct bnx2x *bp)
5211{
5212	int i;
5213	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5214		union event_ring_elem *elem =
5215			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5216
5217		elem->next_page.addr.hi =
5218			cpu_to_le32(U64_HI(bp->eq_mapping +
5219				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5220		elem->next_page.addr.lo =
5221			cpu_to_le32(U64_LO(bp->eq_mapping +
5222				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5223	}
5224	bp->eq_cons = 0;
5225	bp->eq_prod = NUM_EQ_DESC;
5226	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5227	/* we want a warning message before it gets rought... */
5228	atomic_set(&bp->eq_spq_left,
5229		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5230}
5231
5232
5233/* called with netif_addr_lock_bh() */
5234void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5235			 unsigned long rx_mode_flags,
5236			 unsigned long rx_accept_flags,
5237			 unsigned long tx_accept_flags,
5238			 unsigned long ramrod_flags)
5239{
5240	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5241	int rc;
5242
5243	memset(&ramrod_param, 0, sizeof(ramrod_param));
5244
5245	/* Prepare ramrod parameters */
5246	ramrod_param.cid = 0;
5247	ramrod_param.cl_id = cl_id;
5248	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5249	ramrod_param.func_id = BP_FUNC(bp);
5250
5251	ramrod_param.pstate = &bp->sp_state;
5252	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5253
5254	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5255	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5256
5257	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5258
5259	ramrod_param.ramrod_flags = ramrod_flags;
5260	ramrod_param.rx_mode_flags = rx_mode_flags;
5261
5262	ramrod_param.rx_accept_flags = rx_accept_flags;
5263	ramrod_param.tx_accept_flags = tx_accept_flags;
5264
5265	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5266	if (rc < 0) {
5267		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5268		return;
5269	}
5270}
5271
5272/* called with netif_addr_lock_bh() */
5273void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5274{
5275	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5276	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5277
5278#ifdef BCM_CNIC
5279	if (!NO_FCOE(bp))
5280
5281		/* Configure rx_mode of FCoE Queue */
5282		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5283#endif
5284
5285	switch (bp->rx_mode) {
5286	case BNX2X_RX_MODE_NONE:
5287		/*
5288		 * 'drop all' supersedes any accept flags that may have been
5289		 * passed to the function.
5290		 */
5291		break;
5292	case BNX2X_RX_MODE_NORMAL:
5293		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5294		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5295		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5296
5297		/* internal switching mode */
5298		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5299		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5300		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5301
5302		break;
5303	case BNX2X_RX_MODE_ALLMULTI:
5304		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5305		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5306		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5307
5308		/* internal switching mode */
5309		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5310		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5311		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5312
5313		break;
5314	case BNX2X_RX_MODE_PROMISC:
5315		/* According to deffinition of SI mode, iface in promisc mode
5316		 * should receive matched and unmatched (in resolution of port)
5317		 * unicast packets.
5318		 */
5319		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5320		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5321		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5322		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5323
5324		/* internal switching mode */
5325		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5326		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5327
5328		if (IS_MF_SI(bp))
5329			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5330		else
5331			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5332
5333		break;
5334	default:
5335		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5336		return;
5337	}
5338
5339	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5340		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5341		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5342	}
5343
5344	__set_bit(RAMROD_RX, &ramrod_flags);
5345	__set_bit(RAMROD_TX, &ramrod_flags);
5346
5347	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5348			    tx_accept_flags, ramrod_flags);
5349}
5350
5351static void bnx2x_init_internal_common(struct bnx2x *bp)
5352{
5353	int i;
5354
5355	if (IS_MF_SI(bp))
5356		/*
5357		 * In switch independent mode, the TSTORM needs to accept
5358		 * packets that failed classification, since approximate match
5359		 * mac addresses aren't written to NIG LLH
5360		 */
5361		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5362			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5363	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5364		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5365			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5366
5367	/* Zero this manually as its initialization is
5368	   currently missing in the initTool */
5369	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5370		REG_WR(bp, BAR_USTRORM_INTMEM +
5371		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5372	if (!CHIP_IS_E1x(bp)) {
5373		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5374			CHIP_INT_MODE_IS_BC(bp) ?
5375			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5376	}
5377}
5378
5379static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5380{
5381	switch (load_code) {
5382	case FW_MSG_CODE_DRV_LOAD_COMMON:
5383	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5384		bnx2x_init_internal_common(bp);
5385		/* no break */
5386
5387	case FW_MSG_CODE_DRV_LOAD_PORT:
5388		/* nothing to do */
5389		/* no break */
5390
5391	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5392		/* internal memory per function is
5393		   initialized inside bnx2x_pf_init */
5394		break;
5395
5396	default:
5397		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5398		break;
5399	}
5400}
5401
5402static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5403{
5404	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5405}
5406
5407static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5408{
5409	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5410}
5411
5412static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5413{
5414	if (CHIP_IS_E1x(fp->bp))
5415		return BP_L_ID(fp->bp) + fp->index;
5416	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5417		return bnx2x_fp_igu_sb_id(fp);
5418}
5419
5420static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5421{
5422	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5423	u8 cos;
5424	unsigned long q_type = 0;
5425	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5426	fp->rx_queue = fp_idx;
5427	fp->cid = fp_idx;
5428	fp->cl_id = bnx2x_fp_cl_id(fp);
5429	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5430	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5431	/* qZone id equals to FW (per path) client id */
5432	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5433
5434	/* init shortcut */
5435	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5436	/* Setup SB indicies */
5437	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5438
5439	/* Configure Queue State object */
5440	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5441	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5442
5443	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5444
5445	/* init tx data */
5446	for_each_cos_in_tx_queue(fp, cos) {
5447		bnx2x_init_txdata(bp, &fp->txdata[cos],
5448				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5449				  FP_COS_TO_TXQ(fp, cos),
5450				  BNX2X_TX_SB_INDEX_BASE + cos);
5451		cids[cos] = fp->txdata[cos].cid;
5452	}
5453
5454	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5455			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5456			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5457
5458	/**
5459	 * Configure classification DBs: Always enable Tx switching
5460	 */
5461	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5462
5463	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5464				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5465		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5466		   fp->igu_sb_id);
5467	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5468		      fp->fw_sb_id, fp->igu_sb_id);
5469
5470	bnx2x_update_fpsb_idx(fp);
5471}
5472
5473void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5474{
5475	int i;
5476
5477	for_each_eth_queue(bp, i)
5478		bnx2x_init_eth_fp(bp, i);
5479#ifdef BCM_CNIC
5480	if (!NO_FCOE(bp))
5481		bnx2x_init_fcoe_fp(bp);
5482
5483	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5484		      BNX2X_VF_ID_INVALID, false,
5485		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5486
5487#endif
5488
5489	/* Initialize MOD_ABS interrupts */
5490	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5491			       bp->common.shmem_base, bp->common.shmem2_base,
5492			       BP_PORT(bp));
5493	/* ensure status block indices were read */
5494	rmb();
5495
5496	bnx2x_init_def_sb(bp);
5497	bnx2x_update_dsb_idx(bp);
5498	bnx2x_init_rx_rings(bp);
5499	bnx2x_init_tx_rings(bp);
5500	bnx2x_init_sp_ring(bp);
5501	bnx2x_init_eq_ring(bp);
5502	bnx2x_init_internal(bp, load_code);
5503	bnx2x_pf_init(bp);
5504	bnx2x_stats_init(bp);
5505
5506	/* flush all before enabling interrupts */
5507	mb();
5508	mmiowb();
5509
5510	bnx2x_int_enable(bp);
5511
5512	/* Check for SPIO5 */
5513	bnx2x_attn_int_deasserted0(bp,
5514		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5515				   AEU_INPUTS_ATTN_BITS_SPIO5);
5516}
5517
5518/* end of nic init */
5519
5520/*
5521 * gzip service functions
5522 */
5523
5524static int bnx2x_gunzip_init(struct bnx2x *bp)
5525{
5526	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5527					    &bp->gunzip_mapping, GFP_KERNEL);
5528	if (bp->gunzip_buf  == NULL)
5529		goto gunzip_nomem1;
5530
5531	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5532	if (bp->strm  == NULL)
5533		goto gunzip_nomem2;
5534
5535	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5536	if (bp->strm->workspace == NULL)
5537		goto gunzip_nomem3;
5538
5539	return 0;
5540
5541gunzip_nomem3:
5542	kfree(bp->strm);
5543	bp->strm = NULL;
5544
5545gunzip_nomem2:
5546	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5547			  bp->gunzip_mapping);
5548	bp->gunzip_buf = NULL;
5549
5550gunzip_nomem1:
5551	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5552	       " un-compression\n");
5553	return -ENOMEM;
5554}
5555
5556static void bnx2x_gunzip_end(struct bnx2x *bp)
5557{
5558	if (bp->strm) {
5559		vfree(bp->strm->workspace);
5560		kfree(bp->strm);
5561		bp->strm = NULL;
5562	}
5563
5564	if (bp->gunzip_buf) {
5565		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5566				  bp->gunzip_mapping);
5567		bp->gunzip_buf = NULL;
5568	}
5569}
5570
5571static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5572{
5573	int n, rc;
5574
5575	/* check gzip header */
5576	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5577		BNX2X_ERR("Bad gzip header\n");
5578		return -EINVAL;
5579	}
5580
5581	n = 10;
5582
5583#define FNAME				0x8
5584
5585	if (zbuf[3] & FNAME)
5586		while ((zbuf[n++] != 0) && (n < len));
5587
5588	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5589	bp->strm->avail_in = len - n;
5590	bp->strm->next_out = bp->gunzip_buf;
5591	bp->strm->avail_out = FW_BUF_SIZE;
5592
5593	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5594	if (rc != Z_OK)
5595		return rc;
5596
5597	rc = zlib_inflate(bp->strm, Z_FINISH);
5598	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5599		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5600			   bp->strm->msg);
5601
5602	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5603	if (bp->gunzip_outlen & 0x3)
5604		netdev_err(bp->dev, "Firmware decompression error:"
5605				    " gunzip_outlen (%d) not aligned\n",
5606				bp->gunzip_outlen);
5607	bp->gunzip_outlen >>= 2;
5608
5609	zlib_inflateEnd(bp->strm);
5610
5611	if (rc == Z_STREAM_END)
5612		return 0;
5613
5614	return rc;
5615}
5616
5617/* nic load/unload */
5618
5619/*
5620 * General service functions
5621 */
5622
5623/* send a NIG loopback debug packet */
5624static void bnx2x_lb_pckt(struct bnx2x *bp)
5625{
5626	u32 wb_write[3];
5627
5628	/* Ethernet source and destination addresses */
5629	wb_write[0] = 0x55555555;
5630	wb_write[1] = 0x55555555;
5631	wb_write[2] = 0x20;		/* SOP */
5632	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5633
5634	/* NON-IP protocol */
5635	wb_write[0] = 0x09000000;
5636	wb_write[1] = 0x55555555;
5637	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5638	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5639}
5640
5641/* some of the internal memories
5642 * are not directly readable from the driver
5643 * to test them we send debug packets
5644 */
5645static int bnx2x_int_mem_test(struct bnx2x *bp)
5646{
5647	int factor;
5648	int count, i;
5649	u32 val = 0;
5650
5651	if (CHIP_REV_IS_FPGA(bp))
5652		factor = 120;
5653	else if (CHIP_REV_IS_EMUL(bp))
5654		factor = 200;
5655	else
5656		factor = 1;
5657
5658	/* Disable inputs of parser neighbor blocks */
5659	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5660	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5661	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5662	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5663
5664	/*  Write 0 to parser credits for CFC search request */
5665	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5666
5667	/* send Ethernet packet */
5668	bnx2x_lb_pckt(bp);
5669
5670	/* TODO do i reset NIG statistic? */
5671	/* Wait until NIG register shows 1 packet of size 0x10 */
5672	count = 1000 * factor;
5673	while (count) {
5674
5675		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5676		val = *bnx2x_sp(bp, wb_data[0]);
5677		if (val == 0x10)
5678			break;
5679
5680		msleep(10);
5681		count--;
5682	}
5683	if (val != 0x10) {
5684		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5685		return -1;
5686	}
5687
5688	/* Wait until PRS register shows 1 packet */
5689	count = 1000 * factor;
5690	while (count) {
5691		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5692		if (val == 1)
5693			break;
5694
5695		msleep(10);
5696		count--;
5697	}
5698	if (val != 0x1) {
5699		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5700		return -2;
5701	}
5702
5703	/* Reset and init BRB, PRS */
5704	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5705	msleep(50);
5706	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5707	msleep(50);
5708	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5709	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5710
5711	DP(NETIF_MSG_HW, "part2\n");
5712
5713	/* Disable inputs of parser neighbor blocks */
5714	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5715	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5716	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5717	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5718
5719	/* Write 0 to parser credits for CFC search request */
5720	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5721
5722	/* send 10 Ethernet packets */
5723	for (i = 0; i < 10; i++)
5724		bnx2x_lb_pckt(bp);
5725
5726	/* Wait until NIG register shows 10 + 1
5727	   packets of size 11*0x10 = 0xb0 */
5728	count = 1000 * factor;
5729	while (count) {
5730
5731		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5732		val = *bnx2x_sp(bp, wb_data[0]);
5733		if (val == 0xb0)
5734			break;
5735
5736		msleep(10);
5737		count--;
5738	}
5739	if (val != 0xb0) {
5740		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5741		return -3;
5742	}
5743
5744	/* Wait until PRS register shows 2 packets */
5745	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5746	if (val != 2)
5747		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5748
5749	/* Write 1 to parser credits for CFC search request */
5750	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5751
5752	/* Wait until PRS register shows 3 packets */
5753	msleep(10 * factor);
5754	/* Wait until NIG register shows 1 packet of size 0x10 */
5755	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5756	if (val != 3)
5757		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5758
5759	/* clear NIG EOP FIFO */
5760	for (i = 0; i < 11; i++)
5761		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5762	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5763	if (val != 1) {
5764		BNX2X_ERR("clear of NIG failed\n");
5765		return -4;
5766	}
5767
5768	/* Reset and init BRB, PRS, NIG */
5769	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5770	msleep(50);
5771	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5772	msleep(50);
5773	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5774	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5775#ifndef BCM_CNIC
5776	/* set NIC mode */
5777	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5778#endif
5779
5780	/* Enable inputs of parser neighbor blocks */
5781	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5782	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5783	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5784	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5785
5786	DP(NETIF_MSG_HW, "done\n");
5787
5788	return 0; /* OK */
5789}
5790
5791static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5792{
5793	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5794	if (!CHIP_IS_E1x(bp))
5795		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5796	else
5797		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5798	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5799	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5800	/*
5801	 * mask read length error interrupts in brb for parser
5802	 * (parsing unit and 'checksum and crc' unit)
5803	 * these errors are legal (PU reads fixed length and CAC can cause
5804	 * read length error on truncated packets)
5805	 */
5806	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5807	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5808	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5809	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5810	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5811	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5812/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5813/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5814	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5815	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5816	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5817/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5818/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5819	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5820	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5821	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5822	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5823/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5824/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5825
5826	if (CHIP_REV_IS_FPGA(bp))
5827		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5828	else if (!CHIP_IS_E1x(bp))
5829		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5830			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5831				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5832				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5833				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5834				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5835	else
5836		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5837	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5838	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5839	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5840/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5841
5842	if (!CHIP_IS_E1x(bp))
5843		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5844		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5845
5846	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5847	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5848/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5849	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5850}
5851
5852static void bnx2x_reset_common(struct bnx2x *bp)
5853{
5854	u32 val = 0x1400;
5855
5856	/* reset_common */
5857	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5858	       0xd3ffff7f);
5859
5860	if (CHIP_IS_E3(bp)) {
5861		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5862		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5863	}
5864
5865	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5866}
5867
5868static void bnx2x_setup_dmae(struct bnx2x *bp)
5869{
5870	bp->dmae_ready = 0;
5871	spin_lock_init(&bp->dmae_lock);
5872}
5873
5874static void bnx2x_init_pxp(struct bnx2x *bp)
5875{
5876	u16 devctl;
5877	int r_order, w_order;
5878
5879	pci_read_config_word(bp->pdev,
5880			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5881	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5882	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5883	if (bp->mrrs == -1)
5884		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5885	else {
5886		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5887		r_order = bp->mrrs;
5888	}
5889
5890	bnx2x_init_pxp_arb(bp, r_order, w_order);
5891}
5892
5893static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5894{
5895	int is_required;
5896	u32 val;
5897	int port;
5898
5899	if (BP_NOMCP(bp))
5900		return;
5901
5902	is_required = 0;
5903	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5904	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5905
5906	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5907		is_required = 1;
5908
5909	/*
5910	 * The fan failure mechanism is usually related to the PHY type since
5911	 * the power consumption of the board is affected by the PHY. Currently,
5912	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5913	 */
5914	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5915		for (port = PORT_0; port < PORT_MAX; port++) {
5916			is_required |=
5917				bnx2x_fan_failure_det_req(
5918					bp,
5919					bp->common.shmem_base,
5920					bp->common.shmem2_base,
5921					port);
5922		}
5923
5924	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5925
5926	if (is_required == 0)
5927		return;
5928
5929	/* Fan failure is indicated by SPIO 5 */
5930	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5931		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5932
5933	/* set to active low mode */
5934	val = REG_RD(bp, MISC_REG_SPIO_INT);
5935	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5936					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5937	REG_WR(bp, MISC_REG_SPIO_INT, val);
5938
5939	/* enable interrupt to signal the IGU */
5940	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5941	val |= (1 << MISC_REGISTERS_SPIO_5);
5942	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5943}
5944
5945static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5946{
5947	u32 offset = 0;
5948
5949	if (CHIP_IS_E1(bp))
5950		return;
5951	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5952		return;
5953
5954	switch (BP_ABS_FUNC(bp)) {
5955	case 0:
5956		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5957		break;
5958	case 1:
5959		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5960		break;
5961	case 2:
5962		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5963		break;
5964	case 3:
5965		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5966		break;
5967	case 4:
5968		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5969		break;
5970	case 5:
5971		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5972		break;
5973	case 6:
5974		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5975		break;
5976	case 7:
5977		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5978		break;
5979	default:
5980		return;
5981	}
5982
5983	REG_WR(bp, offset, pretend_func_num);
5984	REG_RD(bp, offset);
5985	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5986}
5987
5988void bnx2x_pf_disable(struct bnx2x *bp)
5989{
5990	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5991	val &= ~IGU_PF_CONF_FUNC_EN;
5992
5993	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5994	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5995	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5996}
5997
5998static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5999{
6000	u32 shmem_base[2], shmem2_base[2];
6001	shmem_base[0] =  bp->common.shmem_base;
6002	shmem2_base[0] = bp->common.shmem2_base;
6003	if (!CHIP_IS_E1x(bp)) {
6004		shmem_base[1] =
6005			SHMEM2_RD(bp, other_shmem_base_addr);
6006		shmem2_base[1] =
6007			SHMEM2_RD(bp, other_shmem2_base_addr);
6008	}
6009	bnx2x_acquire_phy_lock(bp);
6010	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6011			      bp->common.chip_id);
6012	bnx2x_release_phy_lock(bp);
6013}
6014
6015/**
6016 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6017 *
6018 * @bp:		driver handle
6019 */
6020static int bnx2x_init_hw_common(struct bnx2x *bp)
6021{
6022	u32 val;
6023
6024	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6025
6026	/*
6027	 * take the UNDI lock to protect undi_unload flow from accessing
6028	 * registers while we're resetting the chip
6029	 */
6030	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6031
6032	bnx2x_reset_common(bp);
6033	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6034
6035	val = 0xfffc;
6036	if (CHIP_IS_E3(bp)) {
6037		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6038		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6039	}
6040	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6041
6042	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6043
6044	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6045
6046	if (!CHIP_IS_E1x(bp)) {
6047		u8 abs_func_id;
6048
6049		/**
6050		 * 4-port mode or 2-port mode we need to turn of master-enable
6051		 * for everyone, after that, turn it back on for self.
6052		 * so, we disregard multi-function or not, and always disable
6053		 * for all functions on the given path, this means 0,2,4,6 for
6054		 * path 0 and 1,3,5,7 for path 1
6055		 */
6056		for (abs_func_id = BP_PATH(bp);
6057		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6058			if (abs_func_id == BP_ABS_FUNC(bp)) {
6059				REG_WR(bp,
6060				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6061				    1);
6062				continue;
6063			}
6064
6065			bnx2x_pretend_func(bp, abs_func_id);
6066			/* clear pf enable */
6067			bnx2x_pf_disable(bp);
6068			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6069		}
6070	}
6071
6072	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6073	if (CHIP_IS_E1(bp)) {
6074		/* enable HW interrupt from PXP on USDM overflow
6075		   bit 16 on INT_MASK_0 */
6076		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6077	}
6078
6079	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6080	bnx2x_init_pxp(bp);
6081
6082#ifdef __BIG_ENDIAN
6083	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6084	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6085	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6086	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6087	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6088	/* make sure this value is 0 */
6089	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6090
6091/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6092	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6093	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6094	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6095	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6096#endif
6097
6098	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6099
6100	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6101		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6102
6103	/* let the HW do it's magic ... */
6104	msleep(100);
6105	/* finish PXP init */
6106	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6107	if (val != 1) {
6108		BNX2X_ERR("PXP2 CFG failed\n");
6109		return -EBUSY;
6110	}
6111	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6112	if (val != 1) {
6113		BNX2X_ERR("PXP2 RD_INIT failed\n");
6114		return -EBUSY;
6115	}
6116
6117	/* Timers bug workaround E2 only. We need to set the entire ILT to
6118	 * have entries with value "0" and valid bit on.
6119	 * This needs to be done by the first PF that is loaded in a path
6120	 * (i.e. common phase)
6121	 */
6122	if (!CHIP_IS_E1x(bp)) {
6123/* In E2 there is a bug in the timers block that can cause function 6 / 7
6124 * (i.e. vnic3) to start even if it is marked as "scan-off".
6125 * This occurs when a different function (func2,3) is being marked
6126 * as "scan-off". Real-life scenario for example: if a driver is being
6127 * load-unloaded while func6,7 are down. This will cause the timer to access
6128 * the ilt, translate to a logical address and send a request to read/write.
6129 * Since the ilt for the function that is down is not valid, this will cause
6130 * a translation error which is unrecoverable.
6131 * The Workaround is intended to make sure that when this happens nothing fatal
6132 * will occur. The workaround:
6133 *	1.  First PF driver which loads on a path will:
6134 *		a.  After taking the chip out of reset, by using pretend,
6135 *		    it will write "0" to the following registers of
6136 *		    the other vnics.
6137 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6138 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6139 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6140 *		    And for itself it will write '1' to
6141 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6142 *		    dmae-operations (writing to pram for example.)
6143 *		    note: can be done for only function 6,7 but cleaner this
6144 *			  way.
6145 *		b.  Write zero+valid to the entire ILT.
6146 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6147 *		    VNIC3 (of that port). The range allocated will be the
6148 *		    entire ILT. This is needed to prevent  ILT range error.
6149 *	2.  Any PF driver load flow:
6150 *		a.  ILT update with the physical addresses of the allocated
6151 *		    logical pages.
6152 *		b.  Wait 20msec. - note that this timeout is needed to make
6153 *		    sure there are no requests in one of the PXP internal
6154 *		    queues with "old" ILT addresses.
6155 *		c.  PF enable in the PGLC.
6156 *		d.  Clear the was_error of the PF in the PGLC. (could have
6157 *		    occured while driver was down)
6158 *		e.  PF enable in the CFC (WEAK + STRONG)
6159 *		f.  Timers scan enable
6160 *	3.  PF driver unload flow:
6161 *		a.  Clear the Timers scan_en.
6162 *		b.  Polling for scan_on=0 for that PF.
6163 *		c.  Clear the PF enable bit in the PXP.
6164 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6165 *		e.  Write zero+valid to all ILT entries (The valid bit must
6166 *		    stay set)
6167 *		f.  If this is VNIC 3 of a port then also init
6168 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6169 *		    to the last enrty in the ILT.
6170 *
6171 *	Notes:
6172 *	Currently the PF error in the PGLC is non recoverable.
6173 *	In the future the there will be a recovery routine for this error.
6174 *	Currently attention is masked.
6175 *	Having an MCP lock on the load/unload process does not guarantee that
6176 *	there is no Timer disable during Func6/7 enable. This is because the
6177 *	Timers scan is currently being cleared by the MCP on FLR.
6178 *	Step 2.d can be done only for PF6/7 and the driver can also check if
6179 *	there is error before clearing it. But the flow above is simpler and
6180 *	more general.
6181 *	All ILT entries are written by zero+valid and not just PF6/7
6182 *	ILT entries since in the future the ILT entries allocation for
6183 *	PF-s might be dynamic.
6184 */
6185		struct ilt_client_info ilt_cli;
6186		struct bnx2x_ilt ilt;
6187		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6188		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6189
6190		/* initialize dummy TM client */
6191		ilt_cli.start = 0;
6192		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6193		ilt_cli.client_num = ILT_CLIENT_TM;
6194
6195		/* Step 1: set zeroes to all ilt page entries with valid bit on
6196		 * Step 2: set the timers first/last ilt entry to point
6197		 * to the entire range to prevent ILT range error for 3rd/4th
6198		 * vnic	(this code assumes existance of the vnic)
6199		 *
6200		 * both steps performed by call to bnx2x_ilt_client_init_op()
6201		 * with dummy TM client
6202		 *
6203		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6204		 * and his brother are split registers
6205		 */
6206		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6207		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6208		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6209
6210		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6211		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6212		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6213	}
6214
6215
6216	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6217	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6218
6219	if (!CHIP_IS_E1x(bp)) {
6220		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6221				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6222		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6223
6224		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6225
6226		/* let the HW do it's magic ... */
6227		do {
6228			msleep(200);
6229			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6230		} while (factor-- && (val != 1));
6231
6232		if (val != 1) {
6233			BNX2X_ERR("ATC_INIT failed\n");
6234			return -EBUSY;
6235		}
6236	}
6237
6238	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6239
6240	/* clean the DMAE memory */
6241	bp->dmae_ready = 1;
6242	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6243
6244	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6245
6246	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6247
6248	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6249
6250	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6251
6252	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6253	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6254	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6255	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6256
6257	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6258
6259
6260	/* QM queues pointers table */
6261	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6262
6263	/* soft reset pulse */
6264	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6265	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6266
6267#ifdef BCM_CNIC
6268	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6269#endif
6270
6271	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6272	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6273	if (!CHIP_REV_IS_SLOW(bp))
6274		/* enable hw interrupt from doorbell Q */
6275		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6276
6277	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6278
6279	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6280	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6281
6282	if (!CHIP_IS_E1(bp))
6283		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6284
6285	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6286		/* Bit-map indicating which L2 hdrs may appear
6287		 * after the basic Ethernet header
6288		 */
6289		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6290		       bp->path_has_ovlan ? 7 : 6);
6291
6292	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6293	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6294	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6295	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6296
6297	if (!CHIP_IS_E1x(bp)) {
6298		/* reset VFC memories */
6299		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6300			   VFC_MEMORIES_RST_REG_CAM_RST |
6301			   VFC_MEMORIES_RST_REG_RAM_RST);
6302		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6303			   VFC_MEMORIES_RST_REG_CAM_RST |
6304			   VFC_MEMORIES_RST_REG_RAM_RST);
6305
6306		msleep(20);
6307	}
6308
6309	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6310	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6311	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6312	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6313
6314	/* sync semi rtc */
6315	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6316	       0x80000000);
6317	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6318	       0x80000000);
6319
6320	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6321	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6322	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6323
6324	if (!CHIP_IS_E1x(bp))
6325		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6326		       bp->path_has_ovlan ? 7 : 6);
6327
6328	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6329
6330	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6331
6332#ifdef BCM_CNIC
6333	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6334	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6335	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6336	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6337	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6338	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6339	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6340	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6341	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6342	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6343#endif
6344	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6345
6346	if (sizeof(union cdu_context) != 1024)
6347		/* we currently assume that a context is 1024 bytes */
6348		dev_alert(&bp->pdev->dev, "please adjust the size "
6349					  "of cdu_context(%ld)\n",
6350			 (long)sizeof(union cdu_context));
6351
6352	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6353	val = (4 << 24) + (0 << 12) + 1024;
6354	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6355
6356	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6357	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6358	/* enable context validation interrupt from CFC */
6359	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6360
6361	/* set the thresholds to prevent CFC/CDU race */
6362	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6363
6364	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6365
6366	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6367		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6368
6369	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6370	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6371
6372	/* Reset PCIE errors for debug */
6373	REG_WR(bp, 0x2814, 0xffffffff);
6374	REG_WR(bp, 0x3820, 0xffffffff);
6375
6376	if (!CHIP_IS_E1x(bp)) {
6377		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6378			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6379				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6380		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6381			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6382				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6383				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6384		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6385			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6386				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6387				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6388	}
6389
6390	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6391	if (!CHIP_IS_E1(bp)) {
6392		/* in E3 this done in per-port section */
6393		if (!CHIP_IS_E3(bp))
6394			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6395	}
6396	if (CHIP_IS_E1H(bp))
6397		/* not applicable for E2 (and above ...) */
6398		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6399
6400	if (CHIP_REV_IS_SLOW(bp))
6401		msleep(200);
6402
6403	/* finish CFC init */
6404	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6405	if (val != 1) {
6406		BNX2X_ERR("CFC LL_INIT failed\n");
6407		return -EBUSY;
6408	}
6409	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6410	if (val != 1) {
6411		BNX2X_ERR("CFC AC_INIT failed\n");
6412		return -EBUSY;
6413	}
6414	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6415	if (val != 1) {
6416		BNX2X_ERR("CFC CAM_INIT failed\n");
6417		return -EBUSY;
6418	}
6419	REG_WR(bp, CFC_REG_DEBUG0, 0);
6420
6421	if (CHIP_IS_E1(bp)) {
6422		/* read NIG statistic
6423		   to see if this is our first up since powerup */
6424		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6425		val = *bnx2x_sp(bp, wb_data[0]);
6426
6427		/* do internal memory self test */
6428		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6429			BNX2X_ERR("internal mem self test failed\n");
6430			return -EBUSY;
6431		}
6432	}
6433
6434	bnx2x_setup_fan_failure_detection(bp);
6435
6436	/* clear PXP2 attentions */
6437	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6438
6439	bnx2x_enable_blocks_attention(bp);
6440	bnx2x_enable_blocks_parity(bp);
6441
6442	if (!BP_NOMCP(bp)) {
6443		if (CHIP_IS_E1x(bp))
6444			bnx2x__common_init_phy(bp);
6445	} else
6446		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6447
6448	return 0;
6449}
6450
6451/**
6452 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6453 *
6454 * @bp:		driver handle
6455 */
6456static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6457{
6458	int rc = bnx2x_init_hw_common(bp);
6459
6460	if (rc)
6461		return rc;
6462
6463	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6464	if (!BP_NOMCP(bp))
6465		bnx2x__common_init_phy(bp);
6466
6467	return 0;
6468}
6469
6470static int bnx2x_init_hw_port(struct bnx2x *bp)
6471{
6472	int port = BP_PORT(bp);
6473	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6474	u32 low, high;
6475	u32 val;
6476
6477	bnx2x__link_reset(bp);
6478
6479	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6480
6481	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6482
6483	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6484	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6485	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6486
6487	/* Timers bug workaround: disables the pf_master bit in pglue at
6488	 * common phase, we need to enable it here before any dmae access are
6489	 * attempted. Therefore we manually added the enable-master to the
6490	 * port phase (it also happens in the function phase)
6491	 */
6492	if (!CHIP_IS_E1x(bp))
6493		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6494
6495	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6496	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6497	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6498	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6499
6500	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6501	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6502	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6503	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6504
6505	/* QM cid (connection) count */
6506	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6507
6508#ifdef BCM_CNIC
6509	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6510	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6511	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6512#endif
6513
6514	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6515
6516	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6517		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6518
6519		if (IS_MF(bp))
6520			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6521		else if (bp->dev->mtu > 4096) {
6522			if (bp->flags & ONE_PORT_FLAG)
6523				low = 160;
6524			else {
6525				val = bp->dev->mtu;
6526				/* (24*1024 + val*4)/256 */
6527				low = 96 + (val/64) +
6528						((val % 64) ? 1 : 0);
6529			}
6530		} else
6531			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6532		high = low + 56;	/* 14*1024/256 */
6533		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6534		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6535	}
6536
6537	if (CHIP_MODE_IS_4_PORT(bp))
6538		REG_WR(bp, (BP_PORT(bp) ?
6539			    BRB1_REG_MAC_GUARANTIED_1 :
6540			    BRB1_REG_MAC_GUARANTIED_0), 40);
6541
6542
6543	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6544	if (CHIP_IS_E3B0(bp))
6545		/* Ovlan exists only if we are in multi-function +
6546		 * switch-dependent mode, in switch-independent there
6547		 * is no ovlan headers
6548		 */
6549		REG_WR(bp, BP_PORT(bp) ?
6550		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6551		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6552		       (bp->path_has_ovlan ? 7 : 6));
6553
6554	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6555	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6556	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6557	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6558
6559	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6560	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6561	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6562	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6563
6564	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6565	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6566
6567	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6568
6569	if (CHIP_IS_E1x(bp)) {
6570		/* configure PBF to work without PAUSE mtu 9000 */
6571		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6572
6573		/* update threshold */
6574		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6575		/* update init credit */
6576		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6577
6578		/* probe changes */
6579		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6580		udelay(50);
6581		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6582	}
6583
6584#ifdef BCM_CNIC
6585	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6586#endif
6587	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6588	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6589
6590	if (CHIP_IS_E1(bp)) {
6591		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6592		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6593	}
6594	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6595
6596	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6597
6598	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6599	/* init aeu_mask_attn_func_0/1:
6600	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6601	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6602	 *             bits 4-7 are used for "per vn group attention" */
6603	val = IS_MF(bp) ? 0xF7 : 0x7;
6604	/* Enable DCBX attention for all but E1 */
6605	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6606	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6607
6608	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6609
6610	if (!CHIP_IS_E1x(bp)) {
6611		/* Bit-map indicating which L2 hdrs may appear after the
6612		 * basic Ethernet header
6613		 */
6614		REG_WR(bp, BP_PORT(bp) ?
6615			   NIG_REG_P1_HDRS_AFTER_BASIC :
6616			   NIG_REG_P0_HDRS_AFTER_BASIC,
6617			   IS_MF_SD(bp) ? 7 : 6);
6618
6619		if (CHIP_IS_E3(bp))
6620			REG_WR(bp, BP_PORT(bp) ?
6621				   NIG_REG_LLH1_MF_MODE :
6622				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6623	}
6624	if (!CHIP_IS_E3(bp))
6625		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6626
6627	if (!CHIP_IS_E1(bp)) {
6628		/* 0x2 disable mf_ov, 0x1 enable */
6629		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6630		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6631
6632		if (!CHIP_IS_E1x(bp)) {
6633			val = 0;
6634			switch (bp->mf_mode) {
6635			case MULTI_FUNCTION_SD:
6636				val = 1;
6637				break;
6638			case MULTI_FUNCTION_SI:
6639				val = 2;
6640				break;
6641			}
6642
6643			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6644						  NIG_REG_LLH0_CLS_TYPE), val);
6645		}
6646		{
6647			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6648			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6649			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6650		}
6651	}
6652
6653
6654	/* If SPIO5 is set to generate interrupts, enable it for this port */
6655	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6656	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6657		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6658				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6659		val = REG_RD(bp, reg_addr);
6660		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6661		REG_WR(bp, reg_addr, val);
6662	}
6663
6664	return 0;
6665}
6666
6667static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6668{
6669	int reg;
6670
6671	if (CHIP_IS_E1(bp))
6672		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6673	else
6674		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6675
6676	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6677}
6678
6679static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6680{
6681	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6682}
6683
6684static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6685{
6686	u32 i, base = FUNC_ILT_BASE(func);
6687	for (i = base; i < base + ILT_PER_FUNC; i++)
6688		bnx2x_ilt_wr(bp, i, 0);
6689}
6690
6691static int bnx2x_init_hw_func(struct bnx2x *bp)
6692{
6693	int port = BP_PORT(bp);
6694	int func = BP_FUNC(bp);
6695	int init_phase = PHASE_PF0 + func;
6696	struct bnx2x_ilt *ilt = BP_ILT(bp);
6697	u16 cdu_ilt_start;
6698	u32 addr, val;
6699	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6700	int i, main_mem_width;
6701
6702	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6703
6704	/* FLR cleanup - hmmm */
6705	if (!CHIP_IS_E1x(bp))
6706		bnx2x_pf_flr_clnup(bp);
6707
6708	/* set MSI reconfigure capability */
6709	if (bp->common.int_block == INT_BLOCK_HC) {
6710		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6711		val = REG_RD(bp, addr);
6712		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6713		REG_WR(bp, addr, val);
6714	}
6715
6716	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6717	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6718
6719	ilt = BP_ILT(bp);
6720	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6721
6722	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6723		ilt->lines[cdu_ilt_start + i].page =
6724			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6725		ilt->lines[cdu_ilt_start + i].page_mapping =
6726			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6727		/* cdu ilt pages are allocated manually so there's no need to
6728		set the size */
6729	}
6730	bnx2x_ilt_init_op(bp, INITOP_SET);
6731
6732#ifdef BCM_CNIC
6733	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6734
6735	/* T1 hash bits value determines the T1 number of entries */
6736	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6737#endif
6738
6739#ifndef BCM_CNIC
6740	/* set NIC mode */
6741	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6742#endif  /* BCM_CNIC */
6743
6744	if (!CHIP_IS_E1x(bp)) {
6745		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6746
6747		/* Turn on a single ISR mode in IGU if driver is going to use
6748		 * INT#x or MSI
6749		 */
6750		if (!(bp->flags & USING_MSIX_FLAG))
6751			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6752		/*
6753		 * Timers workaround bug: function init part.
6754		 * Need to wait 20msec after initializing ILT,
6755		 * needed to make sure there are no requests in
6756		 * one of the PXP internal queues with "old" ILT addresses
6757		 */
6758		msleep(20);
6759		/*
6760		 * Master enable - Due to WB DMAE writes performed before this
6761		 * register is re-initialized as part of the regular function
6762		 * init
6763		 */
6764		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6765		/* Enable the function in IGU */
6766		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6767	}
6768
6769	bp->dmae_ready = 1;
6770
6771	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6772
6773	if (!CHIP_IS_E1x(bp))
6774		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6775
6776	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6777	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6778	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6779	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6780	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6781	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6782	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6783	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6784	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6785	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6786	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6787	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6788	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6789
6790	if (!CHIP_IS_E1x(bp))
6791		REG_WR(bp, QM_REG_PF_EN, 1);
6792
6793	if (!CHIP_IS_E1x(bp)) {
6794		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6795		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6796		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6797		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6798	}
6799	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6800
6801	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6802	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6803	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6804	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6805	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6806	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6807	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6808	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6809	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6810	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6811	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6812	if (!CHIP_IS_E1x(bp))
6813		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6814
6815	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6816
6817	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6818
6819	if (!CHIP_IS_E1x(bp))
6820		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6821
6822	if (IS_MF(bp)) {
6823		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6824		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6825	}
6826
6827	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6828
6829	/* HC init per function */
6830	if (bp->common.int_block == INT_BLOCK_HC) {
6831		if (CHIP_IS_E1H(bp)) {
6832			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6833
6834			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6835			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6836		}
6837		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6838
6839	} else {
6840		int num_segs, sb_idx, prod_offset;
6841
6842		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6843
6844		if (!CHIP_IS_E1x(bp)) {
6845			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6846			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6847		}
6848
6849		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6850
6851		if (!CHIP_IS_E1x(bp)) {
6852			int dsb_idx = 0;
6853			/**
6854			 * Producer memory:
6855			 * E2 mode: address 0-135 match to the mapping memory;
6856			 * 136 - PF0 default prod; 137 - PF1 default prod;
6857			 * 138 - PF2 default prod; 139 - PF3 default prod;
6858			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6859			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6860			 * 144-147 reserved.
6861			 *
6862			 * E1.5 mode - In backward compatible mode;
6863			 * for non default SB; each even line in the memory
6864			 * holds the U producer and each odd line hold
6865			 * the C producer. The first 128 producers are for
6866			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6867			 * producers are for the DSB for each PF.
6868			 * Each PF has five segments: (the order inside each
6869			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6870			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6871			 * 144-147 attn prods;
6872			 */
6873			/* non-default-status-blocks */
6874			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6875				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6876			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6877				prod_offset = (bp->igu_base_sb + sb_idx) *
6878					num_segs;
6879
6880				for (i = 0; i < num_segs; i++) {
6881					addr = IGU_REG_PROD_CONS_MEMORY +
6882							(prod_offset + i) * 4;
6883					REG_WR(bp, addr, 0);
6884				}
6885				/* send consumer update with value 0 */
6886				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6887					     USTORM_ID, 0, IGU_INT_NOP, 1);
6888				bnx2x_igu_clear_sb(bp,
6889						   bp->igu_base_sb + sb_idx);
6890			}
6891
6892			/* default-status-blocks */
6893			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6894				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6895
6896			if (CHIP_MODE_IS_4_PORT(bp))
6897				dsb_idx = BP_FUNC(bp);
6898			else
6899				dsb_idx = BP_VN(bp);
6900
6901			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6902				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6903				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6904
6905			/*
6906			 * igu prods come in chunks of E1HVN_MAX (4) -
6907			 * does not matters what is the current chip mode
6908			 */
6909			for (i = 0; i < (num_segs * E1HVN_MAX);
6910			     i += E1HVN_MAX) {
6911				addr = IGU_REG_PROD_CONS_MEMORY +
6912							(prod_offset + i)*4;
6913				REG_WR(bp, addr, 0);
6914			}
6915			/* send consumer update with 0 */
6916			if (CHIP_INT_MODE_IS_BC(bp)) {
6917				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6918					     USTORM_ID, 0, IGU_INT_NOP, 1);
6919				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6920					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6921				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6922					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6923				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6924					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6925				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6926					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6927			} else {
6928				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6929					     USTORM_ID, 0, IGU_INT_NOP, 1);
6930				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6931					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6932			}
6933			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6934
6935			/* !!! these should become driver const once
6936			   rf-tool supports split-68 const */
6937			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6938			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6939			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6940			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6941			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6942			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6943		}
6944	}
6945
6946	/* Reset PCIE errors for debug */
6947	REG_WR(bp, 0x2114, 0xffffffff);
6948	REG_WR(bp, 0x2120, 0xffffffff);
6949
6950	if (CHIP_IS_E1x(bp)) {
6951		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6952		main_mem_base = HC_REG_MAIN_MEMORY +
6953				BP_PORT(bp) * (main_mem_size * 4);
6954		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6955		main_mem_width = 8;
6956
6957		val = REG_RD(bp, main_mem_prty_clr);
6958		if (val)
6959			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6960					  "block during "
6961					  "function init (0x%x)!\n", val);
6962
6963		/* Clear "false" parity errors in MSI-X table */
6964		for (i = main_mem_base;
6965		     i < main_mem_base + main_mem_size * 4;
6966		     i += main_mem_width) {
6967			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6968			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6969					 i, main_mem_width / 4);
6970		}
6971		/* Clear HC parity attention */
6972		REG_RD(bp, main_mem_prty_clr);
6973	}
6974
6975#ifdef BNX2X_STOP_ON_ERROR
6976	/* Enable STORMs SP logging */
6977	REG_WR8(bp, BAR_USTRORM_INTMEM +
6978	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6979	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6980	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6981	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6982	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6983	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6984	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6985#endif
6986
6987	bnx2x_phy_probe(&bp->link_params);
6988
6989	return 0;
6990}
6991
6992
6993void bnx2x_free_mem(struct bnx2x *bp)
6994{
6995	/* fastpath */
6996	bnx2x_free_fp_mem(bp);
6997	/* end of fastpath */
6998
6999	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7000		       sizeof(struct host_sp_status_block));
7001
7002	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7003		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7004
7005	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7006		       sizeof(struct bnx2x_slowpath));
7007
7008	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
7009		       bp->context.size);
7010
7011	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7012
7013	BNX2X_FREE(bp->ilt->lines);
7014
7015#ifdef BCM_CNIC
7016	if (!CHIP_IS_E1x(bp))
7017		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7018			       sizeof(struct host_hc_status_block_e2));
7019	else
7020		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7021			       sizeof(struct host_hc_status_block_e1x));
7022
7023	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7024#endif
7025
7026	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7027
7028	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7029		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7030}
7031
7032static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7033{
7034	int num_groups;
7035	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7036
7037	/* number of queues for statistics is number of eth queues + FCoE */
7038	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7039
7040	/* Total number of FW statistics requests =
7041	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7042	 * num of queues
7043	 */
7044	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7045
7046
7047	/* Request is built from stats_query_header and an array of
7048	 * stats_query_cmd_group each of which contains
7049	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7050	 * configured in the stats_query_header.
7051	 */
7052	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7053		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7054
7055	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7056			num_groups * sizeof(struct stats_query_cmd_group);
7057
7058	/* Data for statistics requests + stats_conter
7059	 *
7060	 * stats_counter holds per-STORM counters that are incremented
7061	 * when STORM has finished with the current request.
7062	 *
7063	 * memory for FCoE offloaded statistics are counted anyway,
7064	 * even if they will not be sent.
7065	 */
7066	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7067		sizeof(struct per_pf_stats) +
7068		sizeof(struct fcoe_statistics_params) +
7069		sizeof(struct per_queue_stats) * num_queue_stats +
7070		sizeof(struct stats_counter);
7071
7072	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7073			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7074
7075	/* Set shortcuts */
7076	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7077	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7078
7079	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7080		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7081
7082	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7083				   bp->fw_stats_req_sz;
7084	return 0;
7085
7086alloc_mem_err:
7087	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7088		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7089	return -ENOMEM;
7090}
7091
7092
7093int bnx2x_alloc_mem(struct bnx2x *bp)
7094{
7095#ifdef BCM_CNIC
7096	if (!CHIP_IS_E1x(bp))
7097		/* size = the status block + ramrod buffers */
7098		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7099				sizeof(struct host_hc_status_block_e2));
7100	else
7101		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7102				sizeof(struct host_hc_status_block_e1x));
7103
7104	/* allocate searcher T2 table */
7105	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7106#endif
7107
7108
7109	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7110			sizeof(struct host_sp_status_block));
7111
7112	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7113			sizeof(struct bnx2x_slowpath));
7114
7115	/* Allocated memory for FW statistics  */
7116	if (bnx2x_alloc_fw_stats_mem(bp))
7117		goto alloc_mem_err;
7118
7119	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7120
7121	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7122			bp->context.size);
7123
7124	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7125
7126	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7127		goto alloc_mem_err;
7128
7129	/* Slow path ring */
7130	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7131
7132	/* EQ */
7133	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7134			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7135
7136
7137	/* fastpath */
7138	/* need to be done at the end, since it's self adjusting to amount
7139	 * of memory available for RSS queues
7140	 */
7141	if (bnx2x_alloc_fp_mem(bp))
7142		goto alloc_mem_err;
7143	return 0;
7144
7145alloc_mem_err:
7146	bnx2x_free_mem(bp);
7147	return -ENOMEM;
7148}
7149
7150/*
7151 * Init service functions
7152 */
7153
7154int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7155		      struct bnx2x_vlan_mac_obj *obj, bool set,
7156		      int mac_type, unsigned long *ramrod_flags)
7157{
7158	int rc;
7159	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7160
7161	memset(&ramrod_param, 0, sizeof(ramrod_param));
7162
7163	/* Fill general parameters */
7164	ramrod_param.vlan_mac_obj = obj;
7165	ramrod_param.ramrod_flags = *ramrod_flags;
7166
7167	/* Fill a user request section if needed */
7168	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7169		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7170
7171		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7172
7173		/* Set the command: ADD or DEL */
7174		if (set)
7175			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7176		else
7177			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7178	}
7179
7180	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7181	if (rc < 0)
7182		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7183	return rc;
7184}
7185
7186int bnx2x_del_all_macs(struct bnx2x *bp,
7187		       struct bnx2x_vlan_mac_obj *mac_obj,
7188		       int mac_type, bool wait_for_comp)
7189{
7190	int rc;
7191	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7192
7193	/* Wait for completion of requested */
7194	if (wait_for_comp)
7195		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7196
7197	/* Set the mac type of addresses we want to clear */
7198	__set_bit(mac_type, &vlan_mac_flags);
7199
7200	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7201	if (rc < 0)
7202		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7203
7204	return rc;
7205}
7206
7207int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7208{
7209	unsigned long ramrod_flags = 0;
7210
7211#ifdef BCM_CNIC
7212	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7213		DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7214		return 0;
7215	}
7216#endif
7217
7218	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7219
7220	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7221	/* Eth MAC is set on RSS leading client (fp[0]) */
7222	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7223				 BNX2X_ETH_MAC, &ramrod_flags);
7224}
7225
7226int bnx2x_setup_leading(struct bnx2x *bp)
7227{
7228	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7229}
7230
7231/**
7232 * bnx2x_set_int_mode - configure interrupt mode
7233 *
7234 * @bp:		driver handle
7235 *
7236 * In case of MSI-X it will also try to enable MSI-X.
7237 */
7238static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7239{
7240	switch (int_mode) {
7241	case INT_MODE_MSI:
7242		bnx2x_enable_msi(bp);
7243		/* falling through... */
7244	case INT_MODE_INTx:
7245		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7246		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7247		break;
7248	default:
7249		/* Set number of queues according to bp->multi_mode value */
7250		bnx2x_set_num_queues(bp);
7251
7252		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7253		   bp->num_queues);
7254
7255		/* if we can't use MSI-X we only need one fp,
7256		 * so try to enable MSI-X with the requested number of fp's
7257		 * and fallback to MSI or legacy INTx with one fp
7258		 */
7259		if (bnx2x_enable_msix(bp)) {
7260			/* failed to enable MSI-X */
7261			if (bp->multi_mode)
7262				DP(NETIF_MSG_IFUP,
7263					  "Multi requested but failed to "
7264					  "enable MSI-X (%d), "
7265					  "set number of queues to %d\n",
7266				   bp->num_queues,
7267				   1 + NON_ETH_CONTEXT_USE);
7268			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7269
7270			/* Try to enable MSI */
7271			if (!(bp->flags & DISABLE_MSI_FLAG))
7272				bnx2x_enable_msi(bp);
7273		}
7274		break;
7275	}
7276}
7277
7278/* must be called prioir to any HW initializations */
7279static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7280{
7281	return L2_ILT_LINES(bp);
7282}
7283
7284void bnx2x_ilt_set_info(struct bnx2x *bp)
7285{
7286	struct ilt_client_info *ilt_client;
7287	struct bnx2x_ilt *ilt = BP_ILT(bp);
7288	u16 line = 0;
7289
7290	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7291	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7292
7293	/* CDU */
7294	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7295	ilt_client->client_num = ILT_CLIENT_CDU;
7296	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7297	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7298	ilt_client->start = line;
7299	line += bnx2x_cid_ilt_lines(bp);
7300#ifdef BCM_CNIC
7301	line += CNIC_ILT_LINES;
7302#endif
7303	ilt_client->end = line - 1;
7304
7305	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7306					 "flags 0x%x, hw psz %d\n",
7307	   ilt_client->start,
7308	   ilt_client->end,
7309	   ilt_client->page_size,
7310	   ilt_client->flags,
7311	   ilog2(ilt_client->page_size >> 12));
7312
7313	/* QM */
7314	if (QM_INIT(bp->qm_cid_count)) {
7315		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7316		ilt_client->client_num = ILT_CLIENT_QM;
7317		ilt_client->page_size = QM_ILT_PAGE_SZ;
7318		ilt_client->flags = 0;
7319		ilt_client->start = line;
7320
7321		/* 4 bytes for each cid */
7322		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7323							 QM_ILT_PAGE_SZ);
7324
7325		ilt_client->end = line - 1;
7326
7327		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7328						 "flags 0x%x, hw psz %d\n",
7329		   ilt_client->start,
7330		   ilt_client->end,
7331		   ilt_client->page_size,
7332		   ilt_client->flags,
7333		   ilog2(ilt_client->page_size >> 12));
7334
7335	}
7336	/* SRC */
7337	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7338#ifdef BCM_CNIC
7339	ilt_client->client_num = ILT_CLIENT_SRC;
7340	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7341	ilt_client->flags = 0;
7342	ilt_client->start = line;
7343	line += SRC_ILT_LINES;
7344	ilt_client->end = line - 1;
7345
7346	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7347					 "flags 0x%x, hw psz %d\n",
7348	   ilt_client->start,
7349	   ilt_client->end,
7350	   ilt_client->page_size,
7351	   ilt_client->flags,
7352	   ilog2(ilt_client->page_size >> 12));
7353
7354#else
7355	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7356#endif
7357
7358	/* TM */
7359	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7360#ifdef BCM_CNIC
7361	ilt_client->client_num = ILT_CLIENT_TM;
7362	ilt_client->page_size = TM_ILT_PAGE_SZ;
7363	ilt_client->flags = 0;
7364	ilt_client->start = line;
7365	line += TM_ILT_LINES;
7366	ilt_client->end = line - 1;
7367
7368	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7369					 "flags 0x%x, hw psz %d\n",
7370	   ilt_client->start,
7371	   ilt_client->end,
7372	   ilt_client->page_size,
7373	   ilt_client->flags,
7374	   ilog2(ilt_client->page_size >> 12));
7375
7376#else
7377	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7378#endif
7379	BUG_ON(line > ILT_MAX_LINES);
7380}
7381
7382/**
7383 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7384 *
7385 * @bp:			driver handle
7386 * @fp:			pointer to fastpath
7387 * @init_params:	pointer to parameters structure
7388 *
7389 * parameters configured:
7390 *      - HC configuration
7391 *      - Queue's CDU context
7392 */
7393static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7394	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7395{
7396
7397	u8 cos;
7398	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7399	if (!IS_FCOE_FP(fp)) {
7400		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7401		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7402
7403		/* If HC is supporterd, enable host coalescing in the transition
7404		 * to INIT state.
7405		 */
7406		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7407		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7408
7409		/* HC rate */
7410		init_params->rx.hc_rate = bp->rx_ticks ?
7411			(1000000 / bp->rx_ticks) : 0;
7412		init_params->tx.hc_rate = bp->tx_ticks ?
7413			(1000000 / bp->tx_ticks) : 0;
7414
7415		/* FW SB ID */
7416		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7417			fp->fw_sb_id;
7418
7419		/*
7420		 * CQ index among the SB indices: FCoE clients uses the default
7421		 * SB, therefore it's different.
7422		 */
7423		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7424		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7425	}
7426
7427	/* set maximum number of COSs supported by this queue */
7428	init_params->max_cos = fp->max_cos;
7429
7430	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7431	    fp->index, init_params->max_cos);
7432
7433	/* set the context pointers queue object */
7434	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7435		init_params->cxts[cos] =
7436			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7437}
7438
7439int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7440			struct bnx2x_queue_state_params *q_params,
7441			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7442			int tx_index, bool leading)
7443{
7444	memset(tx_only_params, 0, sizeof(*tx_only_params));
7445
7446	/* Set the command */
7447	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7448
7449	/* Set tx-only QUEUE flags: don't zero statistics */
7450	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7451
7452	/* choose the index of the cid to send the slow path on */
7453	tx_only_params->cid_index = tx_index;
7454
7455	/* Set general TX_ONLY_SETUP parameters */
7456	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7457
7458	/* Set Tx TX_ONLY_SETUP parameters */
7459	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7460
7461	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7462			 "cos %d, primary cid %d, cid %d, "
7463			 "client id %d, sp-client id %d, flags %lx\n",
7464	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7465	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7466	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7467
7468	/* send the ramrod */
7469	return bnx2x_queue_state_change(bp, q_params);
7470}
7471
7472
7473/**
7474 * bnx2x_setup_queue - setup queue
7475 *
7476 * @bp:		driver handle
7477 * @fp:		pointer to fastpath
7478 * @leading:	is leading
7479 *
7480 * This function performs 2 steps in a Queue state machine
7481 *      actually: 1) RESET->INIT 2) INIT->SETUP
7482 */
7483
7484int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7485		       bool leading)
7486{
7487	struct bnx2x_queue_state_params q_params = {0};
7488	struct bnx2x_queue_setup_params *setup_params =
7489						&q_params.params.setup;
7490	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7491						&q_params.params.tx_only;
7492	int rc;
7493	u8 tx_index;
7494
7495	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7496
7497	/* reset IGU state skip FCoE L2 queue */
7498	if (!IS_FCOE_FP(fp))
7499		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7500			     IGU_INT_ENABLE, 0);
7501
7502	q_params.q_obj = &fp->q_obj;
7503	/* We want to wait for completion in this context */
7504	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7505
7506	/* Prepare the INIT parameters */
7507	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7508
7509	/* Set the command */
7510	q_params.cmd = BNX2X_Q_CMD_INIT;
7511
7512	/* Change the state to INIT */
7513	rc = bnx2x_queue_state_change(bp, &q_params);
7514	if (rc) {
7515		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7516		return rc;
7517	}
7518
7519	DP(BNX2X_MSG_SP, "init complete\n");
7520
7521
7522	/* Now move the Queue to the SETUP state... */
7523	memset(setup_params, 0, sizeof(*setup_params));
7524
7525	/* Set QUEUE flags */
7526	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7527
7528	/* Set general SETUP parameters */
7529	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7530				FIRST_TX_COS_INDEX);
7531
7532	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7533			    &setup_params->rxq_params);
7534
7535	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7536			   FIRST_TX_COS_INDEX);
7537
7538	/* Set the command */
7539	q_params.cmd = BNX2X_Q_CMD_SETUP;
7540
7541	/* Change the state to SETUP */
7542	rc = bnx2x_queue_state_change(bp, &q_params);
7543	if (rc) {
7544		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7545		return rc;
7546	}
7547
7548	/* loop through the relevant tx-only indices */
7549	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7550	      tx_index < fp->max_cos;
7551	      tx_index++) {
7552
7553		/* prepare and send tx-only ramrod*/
7554		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7555					  tx_only_params, tx_index, leading);
7556		if (rc) {
7557			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7558				  fp->index, tx_index);
7559			return rc;
7560		}
7561	}
7562
7563	return rc;
7564}
7565
7566static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7567{
7568	struct bnx2x_fastpath *fp = &bp->fp[index];
7569	struct bnx2x_fp_txdata *txdata;
7570	struct bnx2x_queue_state_params q_params = {0};
7571	int rc, tx_index;
7572
7573	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7574
7575	q_params.q_obj = &fp->q_obj;
7576	/* We want to wait for completion in this context */
7577	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7578
7579
7580	/* close tx-only connections */
7581	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7582	     tx_index < fp->max_cos;
7583	     tx_index++){
7584
7585		/* ascertain this is a normal queue*/
7586		txdata = &fp->txdata[tx_index];
7587
7588		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7589							txdata->txq_index);
7590
7591		/* send halt terminate on tx-only connection */
7592		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7593		memset(&q_params.params.terminate, 0,
7594		       sizeof(q_params.params.terminate));
7595		q_params.params.terminate.cid_index = tx_index;
7596
7597		rc = bnx2x_queue_state_change(bp, &q_params);
7598		if (rc)
7599			return rc;
7600
7601		/* send halt terminate on tx-only connection */
7602		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7603		memset(&q_params.params.cfc_del, 0,
7604		       sizeof(q_params.params.cfc_del));
7605		q_params.params.cfc_del.cid_index = tx_index;
7606		rc = bnx2x_queue_state_change(bp, &q_params);
7607		if (rc)
7608			return rc;
7609	}
7610	/* Stop the primary connection: */
7611	/* ...halt the connection */
7612	q_params.cmd = BNX2X_Q_CMD_HALT;
7613	rc = bnx2x_queue_state_change(bp, &q_params);
7614	if (rc)
7615		return rc;
7616
7617	/* ...terminate the connection */
7618	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7619	memset(&q_params.params.terminate, 0,
7620	       sizeof(q_params.params.terminate));
7621	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7622	rc = bnx2x_queue_state_change(bp, &q_params);
7623	if (rc)
7624		return rc;
7625	/* ...delete cfc entry */
7626	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7627	memset(&q_params.params.cfc_del, 0,
7628	       sizeof(q_params.params.cfc_del));
7629	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7630	return bnx2x_queue_state_change(bp, &q_params);
7631}
7632
7633
7634static void bnx2x_reset_func(struct bnx2x *bp)
7635{
7636	int port = BP_PORT(bp);
7637	int func = BP_FUNC(bp);
7638	int i;
7639
7640	/* Disable the function in the FW */
7641	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7642	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7643	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7644	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7645
7646	/* FP SBs */
7647	for_each_eth_queue(bp, i) {
7648		struct bnx2x_fastpath *fp = &bp->fp[i];
7649		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7650			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7651			   SB_DISABLED);
7652	}
7653
7654#ifdef BCM_CNIC
7655	/* CNIC SB */
7656	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7657		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7658		SB_DISABLED);
7659#endif
7660	/* SP SB */
7661	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7662		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7663		   SB_DISABLED);
7664
7665	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7666		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7667		       0);
7668
7669	/* Configure IGU */
7670	if (bp->common.int_block == INT_BLOCK_HC) {
7671		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7672		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7673	} else {
7674		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7675		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7676	}
7677
7678#ifdef BCM_CNIC
7679	/* Disable Timer scan */
7680	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7681	/*
7682	 * Wait for at least 10ms and up to 2 second for the timers scan to
7683	 * complete
7684	 */
7685	for (i = 0; i < 200; i++) {
7686		msleep(10);
7687		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7688			break;
7689	}
7690#endif
7691	/* Clear ILT */
7692	bnx2x_clear_func_ilt(bp, func);
7693
7694	/* Timers workaround bug for E2: if this is vnic-3,
7695	 * we need to set the entire ilt range for this timers.
7696	 */
7697	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7698		struct ilt_client_info ilt_cli;
7699		/* use dummy TM client */
7700		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7701		ilt_cli.start = 0;
7702		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7703		ilt_cli.client_num = ILT_CLIENT_TM;
7704
7705		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7706	}
7707
7708	/* this assumes that reset_port() called before reset_func()*/
7709	if (!CHIP_IS_E1x(bp))
7710		bnx2x_pf_disable(bp);
7711
7712	bp->dmae_ready = 0;
7713}
7714
7715static void bnx2x_reset_port(struct bnx2x *bp)
7716{
7717	int port = BP_PORT(bp);
7718	u32 val;
7719
7720	/* Reset physical Link */
7721	bnx2x__link_reset(bp);
7722
7723	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7724
7725	/* Do not rcv packets to BRB */
7726	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7727	/* Do not direct rcv packets that are not for MCP to the BRB */
7728	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7729			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7730
7731	/* Configure AEU */
7732	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7733
7734	msleep(100);
7735	/* Check for BRB port occupancy */
7736	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7737	if (val)
7738		DP(NETIF_MSG_IFDOWN,
7739		   "BRB1 is not empty  %d blocks are occupied\n", val);
7740
7741	/* TODO: Close Doorbell port? */
7742}
7743
7744static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7745{
7746	struct bnx2x_func_state_params func_params = {0};
7747
7748	/* Prepare parameters for function state transitions */
7749	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7750
7751	func_params.f_obj = &bp->func_obj;
7752	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7753
7754	func_params.params.hw_init.load_phase = load_code;
7755
7756	return bnx2x_func_state_change(bp, &func_params);
7757}
7758
7759static inline int bnx2x_func_stop(struct bnx2x *bp)
7760{
7761	struct bnx2x_func_state_params func_params = {0};
7762	int rc;
7763
7764	/* Prepare parameters for function state transitions */
7765	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7766	func_params.f_obj = &bp->func_obj;
7767	func_params.cmd = BNX2X_F_CMD_STOP;
7768
7769	/*
7770	 * Try to stop the function the 'good way'. If fails (in case
7771	 * of a parity error during bnx2x_chip_cleanup()) and we are
7772	 * not in a debug mode, perform a state transaction in order to
7773	 * enable further HW_RESET transaction.
7774	 */
7775	rc = bnx2x_func_state_change(bp, &func_params);
7776	if (rc) {
7777#ifdef BNX2X_STOP_ON_ERROR
7778		return rc;
7779#else
7780		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7781			  "transaction\n");
7782		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7783		return bnx2x_func_state_change(bp, &func_params);
7784#endif
7785	}
7786
7787	return 0;
7788}
7789
7790/**
7791 * bnx2x_send_unload_req - request unload mode from the MCP.
7792 *
7793 * @bp:			driver handle
7794 * @unload_mode:	requested function's unload mode
7795 *
7796 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7797 */
7798u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7799{
7800	u32 reset_code = 0;
7801	int port = BP_PORT(bp);
7802
7803	/* Select the UNLOAD request mode */
7804	if (unload_mode == UNLOAD_NORMAL)
7805		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7806
7807	else if (bp->flags & NO_WOL_FLAG)
7808		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7809
7810	else if (bp->wol) {
7811		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7812		u8 *mac_addr = bp->dev->dev_addr;
7813		u32 val;
7814		u16 pmc;
7815
7816		/* The mac address is written to entries 1-4 to
7817		 * preserve entry 0 which is used by the PMF
7818		 */
7819		u8 entry = (BP_VN(bp) + 1)*8;
7820
7821		val = (mac_addr[0] << 8) | mac_addr[1];
7822		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7823
7824		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7825		      (mac_addr[4] << 8) | mac_addr[5];
7826		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7827
7828		/* Enable the PME and clear the status */
7829		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7830		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7831		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7832
7833		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7834
7835	} else
7836		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7837
7838	/* Send the request to the MCP */
7839	if (!BP_NOMCP(bp))
7840		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7841	else {
7842		int path = BP_PATH(bp);
7843
7844		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7845				     "%d, %d, %d\n",
7846		   path, load_count[path][0], load_count[path][1],
7847		   load_count[path][2]);
7848		load_count[path][0]--;
7849		load_count[path][1 + port]--;
7850		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7851				     "%d, %d, %d\n",
7852		   path, load_count[path][0], load_count[path][1],
7853		   load_count[path][2]);
7854		if (load_count[path][0] == 0)
7855			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7856		else if (load_count[path][1 + port] == 0)
7857			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7858		else
7859			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7860	}
7861
7862	return reset_code;
7863}
7864
7865/**
7866 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7867 *
7868 * @bp:		driver handle
7869 */
7870void bnx2x_send_unload_done(struct bnx2x *bp)
7871{
7872	/* Report UNLOAD_DONE to MCP */
7873	if (!BP_NOMCP(bp))
7874		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7875}
7876
7877static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7878{
7879	int tout = 50;
7880	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7881
7882	if (!bp->port.pmf)
7883		return 0;
7884
7885	/*
7886	 * (assumption: No Attention from MCP at this stage)
7887	 * PMF probably in the middle of TXdisable/enable transaction
7888	 * 1. Sync IRS for default SB
7889	 * 2. Sync SP queue - this guarantes us that attention handling started
7890	 * 3. Wait, that TXdisable/enable transaction completes
7891	 *
7892	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7893	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7894	 * received complettion for the transaction the state is TX_STOPPED.
7895	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7896	 * transaction.
7897	 */
7898
7899	/* make sure default SB ISR is done */
7900	if (msix)
7901		synchronize_irq(bp->msix_table[0].vector);
7902	else
7903		synchronize_irq(bp->pdev->irq);
7904
7905	flush_workqueue(bnx2x_wq);
7906
7907	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7908				BNX2X_F_STATE_STARTED && tout--)
7909		msleep(20);
7910
7911	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7912						BNX2X_F_STATE_STARTED) {
7913#ifdef BNX2X_STOP_ON_ERROR
7914		return -EBUSY;
7915#else
7916		/*
7917		 * Failed to complete the transaction in a "good way"
7918		 * Force both transactions with CLR bit
7919		 */
7920		struct bnx2x_func_state_params func_params = {0};
7921
7922		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7923			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7924
7925		func_params.f_obj = &bp->func_obj;
7926		__set_bit(RAMROD_DRV_CLR_ONLY,
7927					&func_params.ramrod_flags);
7928
7929		/* STARTED-->TX_ST0PPED */
7930		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7931		bnx2x_func_state_change(bp, &func_params);
7932
7933		/* TX_ST0PPED-->STARTED */
7934		func_params.cmd = BNX2X_F_CMD_TX_START;
7935		return bnx2x_func_state_change(bp, &func_params);
7936#endif
7937	}
7938
7939	return 0;
7940}
7941
7942void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7943{
7944	int port = BP_PORT(bp);
7945	int i, rc = 0;
7946	u8 cos;
7947	struct bnx2x_mcast_ramrod_params rparam = {0};
7948	u32 reset_code;
7949
7950	/* Wait until tx fastpath tasks complete */
7951	for_each_tx_queue(bp, i) {
7952		struct bnx2x_fastpath *fp = &bp->fp[i];
7953
7954		for_each_cos_in_tx_queue(fp, cos)
7955			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7956#ifdef BNX2X_STOP_ON_ERROR
7957		if (rc)
7958			return;
7959#endif
7960	}
7961
7962	/* Give HW time to discard old tx messages */
7963	usleep_range(1000, 1000);
7964
7965	/* Clean all ETH MACs */
7966	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7967	if (rc < 0)
7968		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7969
7970	/* Clean up UC list  */
7971	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7972				true);
7973	if (rc < 0)
7974		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7975			  "%d\n", rc);
7976
7977	/* Disable LLH */
7978	if (!CHIP_IS_E1(bp))
7979		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7980
7981	/* Set "drop all" (stop Rx).
7982	 * We need to take a netif_addr_lock() here in order to prevent
7983	 * a race between the completion code and this code.
7984	 */
7985	netif_addr_lock_bh(bp->dev);
7986	/* Schedule the rx_mode command */
7987	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7988		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7989	else
7990		bnx2x_set_storm_rx_mode(bp);
7991
7992	/* Cleanup multicast configuration */
7993	rparam.mcast_obj = &bp->mcast_obj;
7994	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7995	if (rc < 0)
7996		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7997
7998	netif_addr_unlock_bh(bp->dev);
7999
8000
8001
8002	/*
8003	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8004	 * this function should perform FUNC, PORT or COMMON HW
8005	 * reset.
8006	 */
8007	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8008
8009	/*
8010	 * (assumption: No Attention from MCP at this stage)
8011	 * PMF probably in the middle of TXdisable/enable transaction
8012	 */
8013	rc = bnx2x_func_wait_started(bp);
8014	if (rc) {
8015		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8016#ifdef BNX2X_STOP_ON_ERROR
8017		return;
8018#endif
8019	}
8020
8021	/* Close multi and leading connections
8022	 * Completions for ramrods are collected in a synchronous way
8023	 */
8024	for_each_queue(bp, i)
8025		if (bnx2x_stop_queue(bp, i))
8026#ifdef BNX2X_STOP_ON_ERROR
8027			return;
8028#else
8029			goto unload_error;
8030#endif
8031	/* If SP settings didn't get completed so far - something
8032	 * very wrong has happen.
8033	 */
8034	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8035		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8036
8037#ifndef BNX2X_STOP_ON_ERROR
8038unload_error:
8039#endif
8040	rc = bnx2x_func_stop(bp);
8041	if (rc) {
8042		BNX2X_ERR("Function stop failed!\n");
8043#ifdef BNX2X_STOP_ON_ERROR
8044		return;
8045#endif
8046	}
8047
8048	/* Disable HW interrupts, NAPI */
8049	bnx2x_netif_stop(bp, 1);
8050
8051	/* Release IRQs */
8052	bnx2x_free_irq(bp);
8053
8054	/* Reset the chip */
8055	rc = bnx2x_reset_hw(bp, reset_code);
8056	if (rc)
8057		BNX2X_ERR("HW_RESET failed\n");
8058
8059
8060	/* Report UNLOAD_DONE to MCP */
8061	bnx2x_send_unload_done(bp);
8062}
8063
8064void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8065{
8066	u32 val;
8067
8068	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8069
8070	if (CHIP_IS_E1(bp)) {
8071		int port = BP_PORT(bp);
8072		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8073			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8074
8075		val = REG_RD(bp, addr);
8076		val &= ~(0x300);
8077		REG_WR(bp, addr, val);
8078	} else {
8079		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8080		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8081			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8082		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8083	}
8084}
8085
8086/* Close gates #2, #3 and #4: */
8087static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8088{
8089	u32 val;
8090
8091	/* Gates #2 and #4a are closed/opened for "not E1" only */
8092	if (!CHIP_IS_E1(bp)) {
8093		/* #4 */
8094		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8095		/* #2 */
8096		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8097	}
8098
8099	/* #3 */
8100	if (CHIP_IS_E1x(bp)) {
8101		/* Prevent interrupts from HC on both ports */
8102		val = REG_RD(bp, HC_REG_CONFIG_1);
8103		REG_WR(bp, HC_REG_CONFIG_1,
8104		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8105		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8106
8107		val = REG_RD(bp, HC_REG_CONFIG_0);
8108		REG_WR(bp, HC_REG_CONFIG_0,
8109		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8110		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8111	} else {
8112		/* Prevent incomming interrupts in IGU */
8113		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8114
8115		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8116		       (!close) ?
8117		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8118		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8119	}
8120
8121	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8122		close ? "closing" : "opening");
8123	mmiowb();
8124}
8125
8126#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8127
8128static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8129{
8130	/* Do some magic... */
8131	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8132	*magic_val = val & SHARED_MF_CLP_MAGIC;
8133	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8134}
8135
8136/**
8137 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8138 *
8139 * @bp:		driver handle
8140 * @magic_val:	old value of the `magic' bit.
8141 */
8142static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8143{
8144	/* Restore the `magic' bit value... */
8145	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8146	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8147		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8148}
8149
8150/**
8151 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8152 *
8153 * @bp:		driver handle
8154 * @magic_val:	old value of 'magic' bit.
8155 *
8156 * Takes care of CLP configurations.
8157 */
8158static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8159{
8160	u32 shmem;
8161	u32 validity_offset;
8162
8163	DP(NETIF_MSG_HW, "Starting\n");
8164
8165	/* Set `magic' bit in order to save MF config */
8166	if (!CHIP_IS_E1(bp))
8167		bnx2x_clp_reset_prep(bp, magic_val);
8168
8169	/* Get shmem offset */
8170	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8171	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8172
8173	/* Clear validity map flags */
8174	if (shmem > 0)
8175		REG_WR(bp, shmem + validity_offset, 0);
8176}
8177
8178#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8179#define MCP_ONE_TIMEOUT  100    /* 100 ms */
8180
8181/**
8182 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8183 *
8184 * @bp:	driver handle
8185 */
8186static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8187{
8188	/* special handling for emulation and FPGA,
8189	   wait 10 times longer */
8190	if (CHIP_REV_IS_SLOW(bp))
8191		msleep(MCP_ONE_TIMEOUT*10);
8192	else
8193		msleep(MCP_ONE_TIMEOUT);
8194}
8195
8196/*
8197 * initializes bp->common.shmem_base and waits for validity signature to appear
8198 */
8199static int bnx2x_init_shmem(struct bnx2x *bp)
8200{
8201	int cnt = 0;
8202	u32 val = 0;
8203
8204	do {
8205		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8206		if (bp->common.shmem_base) {
8207			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8208			if (val & SHR_MEM_VALIDITY_MB)
8209				return 0;
8210		}
8211
8212		bnx2x_mcp_wait_one(bp);
8213
8214	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8215
8216	BNX2X_ERR("BAD MCP validity signature\n");
8217
8218	return -ENODEV;
8219}
8220
8221static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8222{
8223	int rc = bnx2x_init_shmem(bp);
8224
8225	/* Restore the `magic' bit value */
8226	if (!CHIP_IS_E1(bp))
8227		bnx2x_clp_reset_done(bp, magic_val);
8228
8229	return rc;
8230}
8231
8232static void bnx2x_pxp_prep(struct bnx2x *bp)
8233{
8234	if (!CHIP_IS_E1(bp)) {
8235		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8236		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8237		mmiowb();
8238	}
8239}
8240
8241/*
8242 * Reset the whole chip except for:
8243 *      - PCIE core
8244 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8245 *              one reset bit)
8246 *      - IGU
8247 *      - MISC (including AEU)
8248 *      - GRC
8249 *      - RBCN, RBCP
8250 */
8251static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8252{
8253	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8254	u32 global_bits2, stay_reset2;
8255
8256	/*
8257	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8258	 * (per chip) blocks.
8259	 */
8260	global_bits2 =
8261		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8262		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8263
8264	/* Don't reset the following blocks */
8265	not_reset_mask1 =
8266		MISC_REGISTERS_RESET_REG_1_RST_HC |
8267		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8268		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8269
8270	not_reset_mask2 =
8271		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8272		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8273		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8274		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8275		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8276		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8277		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8278		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8279		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8280		MISC_REGISTERS_RESET_REG_2_PGLC;
8281
8282	/*
8283	 * Keep the following blocks in reset:
8284	 *  - all xxMACs are handled by the bnx2x_link code.
8285	 */
8286	stay_reset2 =
8287		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8288		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8289		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8290		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8291		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8292		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8293		MISC_REGISTERS_RESET_REG_2_XMAC |
8294		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8295
8296	/* Full reset masks according to the chip */
8297	reset_mask1 = 0xffffffff;
8298
8299	if (CHIP_IS_E1(bp))
8300		reset_mask2 = 0xffff;
8301	else if (CHIP_IS_E1H(bp))
8302		reset_mask2 = 0x1ffff;
8303	else if (CHIP_IS_E2(bp))
8304		reset_mask2 = 0xfffff;
8305	else /* CHIP_IS_E3 */
8306		reset_mask2 = 0x3ffffff;
8307
8308	/* Don't reset global blocks unless we need to */
8309	if (!global)
8310		reset_mask2 &= ~global_bits2;
8311
8312	/*
8313	 * In case of attention in the QM, we need to reset PXP
8314	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8315	 * because otherwise QM reset would release 'close the gates' shortly
8316	 * before resetting the PXP, then the PSWRQ would send a write
8317	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8318	 * read the payload data from PSWWR, but PSWWR would not
8319	 * respond. The write queue in PGLUE would stuck, dmae commands
8320	 * would not return. Therefore it's important to reset the second
8321	 * reset register (containing the
8322	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8323	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8324	 * bit).
8325	 */
8326	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8327	       reset_mask2 & (~not_reset_mask2));
8328
8329	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8330	       reset_mask1 & (~not_reset_mask1));
8331
8332	barrier();
8333	mmiowb();
8334
8335	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8336	       reset_mask2 & (~stay_reset2));
8337
8338	barrier();
8339	mmiowb();
8340
8341	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8342	mmiowb();
8343}
8344
8345/**
8346 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8347 * It should get cleared in no more than 1s.
8348 *
8349 * @bp:	driver handle
8350 *
8351 * It should get cleared in no more than 1s. Returns 0 if
8352 * pending writes bit gets cleared.
8353 */
8354static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8355{
8356	u32 cnt = 1000;
8357	u32 pend_bits = 0;
8358
8359	do {
8360		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8361
8362		if (pend_bits == 0)
8363			break;
8364
8365		usleep_range(1000, 1000);
8366	} while (cnt-- > 0);
8367
8368	if (cnt <= 0) {
8369		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8370			  pend_bits);
8371		return -EBUSY;
8372	}
8373
8374	return 0;
8375}
8376
8377static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8378{
8379	int cnt = 1000;
8380	u32 val = 0;
8381	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8382
8383
8384	/* Empty the Tetris buffer, wait for 1s */
8385	do {
8386		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8387		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8388		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8389		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8390		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8391		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8392		    ((port_is_idle_0 & 0x1) == 0x1) &&
8393		    ((port_is_idle_1 & 0x1) == 0x1) &&
8394		    (pgl_exp_rom2 == 0xffffffff))
8395			break;
8396		usleep_range(1000, 1000);
8397	} while (cnt-- > 0);
8398
8399	if (cnt <= 0) {
8400		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8401			  " are still"
8402			  " outstanding read requests after 1s!\n");
8403		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8404			  " port_is_idle_0=0x%08x,"
8405			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8406			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8407			  pgl_exp_rom2);
8408		return -EAGAIN;
8409	}
8410
8411	barrier();
8412
8413	/* Close gates #2, #3 and #4 */
8414	bnx2x_set_234_gates(bp, true);
8415
8416	/* Poll for IGU VQs for 57712 and newer chips */
8417	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8418		return -EAGAIN;
8419
8420
8421	/* TBD: Indicate that "process kill" is in progress to MCP */
8422
8423	/* Clear "unprepared" bit */
8424	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8425	barrier();
8426
8427	/* Make sure all is written to the chip before the reset */
8428	mmiowb();
8429
8430	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8431	 * PSWHST, GRC and PSWRD Tetris buffer.
8432	 */
8433	usleep_range(1000, 1000);
8434
8435	/* Prepare to chip reset: */
8436	/* MCP */
8437	if (global)
8438		bnx2x_reset_mcp_prep(bp, &val);
8439
8440	/* PXP */
8441	bnx2x_pxp_prep(bp);
8442	barrier();
8443
8444	/* reset the chip */
8445	bnx2x_process_kill_chip_reset(bp, global);
8446	barrier();
8447
8448	/* Recover after reset: */
8449	/* MCP */
8450	if (global && bnx2x_reset_mcp_comp(bp, val))
8451		return -EAGAIN;
8452
8453	/* TBD: Add resetting the NO_MCP mode DB here */
8454
8455	/* PXP */
8456	bnx2x_pxp_prep(bp);
8457
8458	/* Open the gates #2, #3 and #4 */
8459	bnx2x_set_234_gates(bp, false);
8460
8461	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8462	 * reset state, re-enable attentions. */
8463
8464	return 0;
8465}
8466
8467int bnx2x_leader_reset(struct bnx2x *bp)
8468{
8469	int rc = 0;
8470	bool global = bnx2x_reset_is_global(bp);
8471
8472	/* Try to recover after the failure */
8473	if (bnx2x_process_kill(bp, global)) {
8474		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8475				    "Aii!\n", BP_PATH(bp));
8476		rc = -EAGAIN;
8477		goto exit_leader_reset;
8478	}
8479
8480	/*
8481	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8482	 * state.
8483	 */
8484	bnx2x_set_reset_done(bp);
8485	if (global)
8486		bnx2x_clear_reset_global(bp);
8487
8488exit_leader_reset:
8489	bp->is_leader = 0;
8490	bnx2x_release_leader_lock(bp);
8491	smp_mb();
8492	return rc;
8493}
8494
8495static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8496{
8497	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8498
8499	/* Disconnect this device */
8500	netif_device_detach(bp->dev);
8501
8502	/*
8503	 * Block ifup for all function on this engine until "process kill"
8504	 * or power cycle.
8505	 */
8506	bnx2x_set_reset_in_progress(bp);
8507
8508	/* Shut down the power */
8509	bnx2x_set_power_state(bp, PCI_D3hot);
8510
8511	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8512
8513	smp_mb();
8514}
8515
8516/*
8517 * Assumption: runs under rtnl lock. This together with the fact
8518 * that it's called only from bnx2x_sp_rtnl() ensure that it
8519 * will never be called when netif_running(bp->dev) is false.
8520 */
8521static void bnx2x_parity_recover(struct bnx2x *bp)
8522{
8523	bool global = false;
8524
8525	DP(NETIF_MSG_HW, "Handling parity\n");
8526	while (1) {
8527		switch (bp->recovery_state) {
8528		case BNX2X_RECOVERY_INIT:
8529			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8530			bnx2x_chk_parity_attn(bp, &global, false);
8531
8532			/* Try to get a LEADER_LOCK HW lock */
8533			if (bnx2x_trylock_leader_lock(bp)) {
8534				bnx2x_set_reset_in_progress(bp);
8535				/*
8536				 * Check if there is a global attention and if
8537				 * there was a global attention, set the global
8538				 * reset bit.
8539				 */
8540
8541				if (global)
8542					bnx2x_set_reset_global(bp);
8543
8544				bp->is_leader = 1;
8545			}
8546
8547			/* Stop the driver */
8548			/* If interface has been removed - break */
8549			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8550				return;
8551
8552			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8553
8554			/*
8555			 * Reset MCP command sequence number and MCP mail box
8556			 * sequence as we are going to reset the MCP.
8557			 */
8558			if (global) {
8559				bp->fw_seq = 0;
8560				bp->fw_drv_pulse_wr_seq = 0;
8561			}
8562
8563			/* Ensure "is_leader", MCP command sequence and
8564			 * "recovery_state" update values are seen on other
8565			 * CPUs.
8566			 */
8567			smp_mb();
8568			break;
8569
8570		case BNX2X_RECOVERY_WAIT:
8571			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8572			if (bp->is_leader) {
8573				int other_engine = BP_PATH(bp) ? 0 : 1;
8574				u32 other_load_counter =
8575					bnx2x_get_load_cnt(bp, other_engine);
8576				u32 load_counter =
8577					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8578				global = bnx2x_reset_is_global(bp);
8579
8580				/*
8581				 * In case of a parity in a global block, let
8582				 * the first leader that performs a
8583				 * leader_reset() reset the global blocks in
8584				 * order to clear global attentions. Otherwise
8585				 * the the gates will remain closed for that
8586				 * engine.
8587				 */
8588				if (load_counter ||
8589				    (global && other_load_counter)) {
8590					/* Wait until all other functions get
8591					 * down.
8592					 */
8593					schedule_delayed_work(&bp->sp_rtnl_task,
8594								HZ/10);
8595					return;
8596				} else {
8597					/* If all other functions got down -
8598					 * try to bring the chip back to
8599					 * normal. In any case it's an exit
8600					 * point for a leader.
8601					 */
8602					if (bnx2x_leader_reset(bp)) {
8603						bnx2x_recovery_failed(bp);
8604						return;
8605					}
8606
8607					/* If we are here, means that the
8608					 * leader has succeeded and doesn't
8609					 * want to be a leader any more. Try
8610					 * to continue as a none-leader.
8611					 */
8612					break;
8613				}
8614			} else { /* non-leader */
8615				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8616					/* Try to get a LEADER_LOCK HW lock as
8617					 * long as a former leader may have
8618					 * been unloaded by the user or
8619					 * released a leadership by another
8620					 * reason.
8621					 */
8622					if (bnx2x_trylock_leader_lock(bp)) {
8623						/* I'm a leader now! Restart a
8624						 * switch case.
8625						 */
8626						bp->is_leader = 1;
8627						break;
8628					}
8629
8630					schedule_delayed_work(&bp->sp_rtnl_task,
8631								HZ/10);
8632					return;
8633
8634				} else {
8635					/*
8636					 * If there was a global attention, wait
8637					 * for it to be cleared.
8638					 */
8639					if (bnx2x_reset_is_global(bp)) {
8640						schedule_delayed_work(
8641							&bp->sp_rtnl_task,
8642							HZ/10);
8643						return;
8644					}
8645
8646					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8647						bnx2x_recovery_failed(bp);
8648					else {
8649						bp->recovery_state =
8650							BNX2X_RECOVERY_DONE;
8651						smp_mb();
8652					}
8653
8654					return;
8655				}
8656			}
8657		default:
8658			return;
8659		}
8660	}
8661}
8662
8663/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8664 * scheduled on a general queue in order to prevent a dead lock.
8665 */
8666static void bnx2x_sp_rtnl_task(struct work_struct *work)
8667{
8668	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8669
8670	rtnl_lock();
8671
8672	if (!netif_running(bp->dev))
8673		goto sp_rtnl_exit;
8674
8675	/* if stop on error is defined no recovery flows should be executed */
8676#ifdef BNX2X_STOP_ON_ERROR
8677	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8678		  "so reset not done to allow debug dump,\n"
8679		  "you will need to reboot when done\n");
8680	goto sp_rtnl_not_reset;
8681#endif
8682
8683	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8684		/*
8685		 * Clear all pending SP commands as we are going to reset the
8686		 * function anyway.
8687		 */
8688		bp->sp_rtnl_state = 0;
8689		smp_mb();
8690
8691		bnx2x_parity_recover(bp);
8692
8693		goto sp_rtnl_exit;
8694	}
8695
8696	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8697		/*
8698		 * Clear all pending SP commands as we are going to reset the
8699		 * function anyway.
8700		 */
8701		bp->sp_rtnl_state = 0;
8702		smp_mb();
8703
8704		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8705		bnx2x_nic_load(bp, LOAD_NORMAL);
8706
8707		goto sp_rtnl_exit;
8708	}
8709#ifdef BNX2X_STOP_ON_ERROR
8710sp_rtnl_not_reset:
8711#endif
8712	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8713		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8714
8715	/*
8716	 * in case of fan failure we need to reset id if the "stop on error"
8717	 * debug flag is set, since we trying to prevent permanent overheating
8718	 * damage
8719	 */
8720	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8721		DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8722		netif_device_detach(bp->dev);
8723		bnx2x_close(bp->dev);
8724	}
8725
8726sp_rtnl_exit:
8727	rtnl_unlock();
8728}
8729
8730/* end of nic load/unload */
8731
8732static void bnx2x_period_task(struct work_struct *work)
8733{
8734	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8735
8736	if (!netif_running(bp->dev))
8737		goto period_task_exit;
8738
8739	if (CHIP_REV_IS_SLOW(bp)) {
8740		BNX2X_ERR("period task called on emulation, ignoring\n");
8741		goto period_task_exit;
8742	}
8743
8744	bnx2x_acquire_phy_lock(bp);
8745	/*
8746	 * The barrier is needed to ensure the ordering between the writing to
8747	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8748	 * the reading here.
8749	 */
8750	smp_mb();
8751	if (bp->port.pmf) {
8752		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8753
8754		/* Re-queue task in 1 sec */
8755		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8756	}
8757
8758	bnx2x_release_phy_lock(bp);
8759period_task_exit:
8760	return;
8761}
8762
8763/*
8764 * Init service functions
8765 */
8766
8767static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8768{
8769	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8770	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8771	return base + (BP_ABS_FUNC(bp)) * stride;
8772}
8773
8774static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8775{
8776	u32 reg = bnx2x_get_pretend_reg(bp);
8777
8778	/* Flush all outstanding writes */
8779	mmiowb();
8780
8781	/* Pretend to be function 0 */
8782	REG_WR(bp, reg, 0);
8783	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8784
8785	/* From now we are in the "like-E1" mode */
8786	bnx2x_int_disable(bp);
8787
8788	/* Flush all outstanding writes */
8789	mmiowb();
8790
8791	/* Restore the original function */
8792	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8793	REG_RD(bp, reg);
8794}
8795
8796static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8797{
8798	if (CHIP_IS_E1(bp))
8799		bnx2x_int_disable(bp);
8800	else
8801		bnx2x_undi_int_disable_e1h(bp);
8802}
8803
8804static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8805{
8806	u32 val;
8807
8808	/* Check if there is any driver already loaded */
8809	val = REG_RD(bp, MISC_REG_UNPREPARED);
8810	if (val == 0x1) {
8811
8812		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8813		/*
8814		 * Check if it is the UNDI driver
8815		 * UNDI driver initializes CID offset for normal bell to 0x7
8816		 */
8817		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8818		if (val == 0x7) {
8819			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8820			/* save our pf_num */
8821			int orig_pf_num = bp->pf_num;
8822			int port;
8823			u32 swap_en, swap_val, value;
8824
8825			/* clear the UNDI indication */
8826			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8827
8828			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8829
8830			/* try unload UNDI on port 0 */
8831			bp->pf_num = 0;
8832			bp->fw_seq =
8833			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8834				DRV_MSG_SEQ_NUMBER_MASK);
8835			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8836
8837			/* if UNDI is loaded on the other port */
8838			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8839
8840				/* send "DONE" for previous unload */
8841				bnx2x_fw_command(bp,
8842						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8843
8844				/* unload UNDI on port 1 */
8845				bp->pf_num = 1;
8846				bp->fw_seq =
8847			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8848					DRV_MSG_SEQ_NUMBER_MASK);
8849				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8850
8851				bnx2x_fw_command(bp, reset_code, 0);
8852			}
8853
8854			bnx2x_undi_int_disable(bp);
8855			port = BP_PORT(bp);
8856
8857			/* close input traffic and wait for it */
8858			/* Do not rcv packets to BRB */
8859			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8860					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8861			/* Do not direct rcv packets that are not for MCP to
8862			 * the BRB */
8863			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8864					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8865			/* clear AEU */
8866			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8867					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8868			msleep(10);
8869
8870			/* save NIG port swap info */
8871			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8872			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8873			/* reset device */
8874			REG_WR(bp,
8875			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8876			       0xd3ffffff);
8877
8878			value = 0x1400;
8879			if (CHIP_IS_E3(bp)) {
8880				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8881				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8882			}
8883
8884			REG_WR(bp,
8885			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8886			       value);
8887
8888			/* take the NIG out of reset and restore swap values */
8889			REG_WR(bp,
8890			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8891			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8892			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8893			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8894
8895			/* send unload done to the MCP */
8896			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8897
8898			/* restore our func and fw_seq */
8899			bp->pf_num = orig_pf_num;
8900			bp->fw_seq =
8901			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8902				DRV_MSG_SEQ_NUMBER_MASK);
8903		}
8904
8905		/* now it's safe to release the lock */
8906		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8907	}
8908}
8909
8910static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8911{
8912	u32 val, val2, val3, val4, id, boot_mode;
8913	u16 pmc;
8914
8915	/* Get the chip revision id and number. */
8916	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8917	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8918	id = ((val & 0xffff) << 16);
8919	val = REG_RD(bp, MISC_REG_CHIP_REV);
8920	id |= ((val & 0xf) << 12);
8921	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8922	id |= ((val & 0xff) << 4);
8923	val = REG_RD(bp, MISC_REG_BOND_ID);
8924	id |= (val & 0xf);
8925	bp->common.chip_id = id;
8926
8927	/* Set doorbell size */
8928	bp->db_size = (1 << BNX2X_DB_SHIFT);
8929
8930	if (!CHIP_IS_E1x(bp)) {
8931		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8932		if ((val & 1) == 0)
8933			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8934		else
8935			val = (val >> 1) & 1;
8936		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8937						       "2_PORT_MODE");
8938		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8939						 CHIP_2_PORT_MODE;
8940
8941		if (CHIP_MODE_IS_4_PORT(bp))
8942			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8943		else
8944			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8945	} else {
8946		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8947		bp->pfid = bp->pf_num;			/* 0..7 */
8948	}
8949
8950	bp->link_params.chip_id = bp->common.chip_id;
8951	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8952
8953	val = (REG_RD(bp, 0x2874) & 0x55);
8954	if ((bp->common.chip_id & 0x1) ||
8955	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8956		bp->flags |= ONE_PORT_FLAG;
8957		BNX2X_DEV_INFO("single port device\n");
8958	}
8959
8960	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8961	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8962				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8963	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8964		       bp->common.flash_size, bp->common.flash_size);
8965
8966	bnx2x_init_shmem(bp);
8967
8968
8969
8970	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8971					MISC_REG_GENERIC_CR_1 :
8972					MISC_REG_GENERIC_CR_0));
8973
8974	bp->link_params.shmem_base = bp->common.shmem_base;
8975	bp->link_params.shmem2_base = bp->common.shmem2_base;
8976	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8977		       bp->common.shmem_base, bp->common.shmem2_base);
8978
8979	if (!bp->common.shmem_base) {
8980		BNX2X_DEV_INFO("MCP not active\n");
8981		bp->flags |= NO_MCP_FLAG;
8982		return;
8983	}
8984
8985	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8986	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8987
8988	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8989					SHARED_HW_CFG_LED_MODE_MASK) >>
8990				       SHARED_HW_CFG_LED_MODE_SHIFT);
8991
8992	bp->link_params.feature_config_flags = 0;
8993	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8994	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8995		bp->link_params.feature_config_flags |=
8996				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8997	else
8998		bp->link_params.feature_config_flags &=
8999				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9000
9001	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9002	bp->common.bc_ver = val;
9003	BNX2X_DEV_INFO("bc_ver %X\n", val);
9004	if (val < BNX2X_BC_VER) {
9005		/* for now only warn
9006		 * later we might need to enforce this */
9007		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
9008			  "please upgrade BC\n", BNX2X_BC_VER, val);
9009	}
9010	bp->link_params.feature_config_flags |=
9011				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9012				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9013
9014	bp->link_params.feature_config_flags |=
9015		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9016		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9017
9018	bp->link_params.feature_config_flags |=
9019		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9020		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9021	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9022			BC_SUPPORTS_PFC_STATS : 0;
9023
9024	boot_mode = SHMEM_RD(bp,
9025			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9026			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9027	switch (boot_mode) {
9028	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9029		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9030		break;
9031	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9032		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9033		break;
9034	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9035		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9036		break;
9037	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9038		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9039		break;
9040	}
9041
9042	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9043	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9044
9045	BNX2X_DEV_INFO("%sWoL capable\n",
9046		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9047
9048	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9049	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9050	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9051	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9052
9053	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9054		 val, val2, val3, val4);
9055}
9056
9057#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9058#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9059
9060static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9061{
9062	int pfid = BP_FUNC(bp);
9063	int igu_sb_id;
9064	u32 val;
9065	u8 fid, igu_sb_cnt = 0;
9066
9067	bp->igu_base_sb = 0xff;
9068	if (CHIP_INT_MODE_IS_BC(bp)) {
9069		int vn = BP_VN(bp);
9070		igu_sb_cnt = bp->igu_sb_cnt;
9071		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9072			FP_SB_MAX_E1x;
9073
9074		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9075			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9076
9077		return;
9078	}
9079
9080	/* IGU in normal mode - read CAM */
9081	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9082	     igu_sb_id++) {
9083		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9084		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9085			continue;
9086		fid = IGU_FID(val);
9087		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9088			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9089				continue;
9090			if (IGU_VEC(val) == 0)
9091				/* default status block */
9092				bp->igu_dsb_id = igu_sb_id;
9093			else {
9094				if (bp->igu_base_sb == 0xff)
9095					bp->igu_base_sb = igu_sb_id;
9096				igu_sb_cnt++;
9097			}
9098		}
9099	}
9100
9101#ifdef CONFIG_PCI_MSI
9102	/*
9103	 * It's expected that number of CAM entries for this functions is equal
9104	 * to the number evaluated based on the MSI-X table size. We want a
9105	 * harsh warning if these values are different!
9106	 */
9107	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9108#endif
9109
9110	if (igu_sb_cnt == 0)
9111		BNX2X_ERR("CAM configuration error\n");
9112}
9113
9114static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9115						    u32 switch_cfg)
9116{
9117	int cfg_size = 0, idx, port = BP_PORT(bp);
9118
9119	/* Aggregation of supported attributes of all external phys */
9120	bp->port.supported[0] = 0;
9121	bp->port.supported[1] = 0;
9122	switch (bp->link_params.num_phys) {
9123	case 1:
9124		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9125		cfg_size = 1;
9126		break;
9127	case 2:
9128		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9129		cfg_size = 1;
9130		break;
9131	case 3:
9132		if (bp->link_params.multi_phy_config &
9133		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9134			bp->port.supported[1] =
9135				bp->link_params.phy[EXT_PHY1].supported;
9136			bp->port.supported[0] =
9137				bp->link_params.phy[EXT_PHY2].supported;
9138		} else {
9139			bp->port.supported[0] =
9140				bp->link_params.phy[EXT_PHY1].supported;
9141			bp->port.supported[1] =
9142				bp->link_params.phy[EXT_PHY2].supported;
9143		}
9144		cfg_size = 2;
9145		break;
9146	}
9147
9148	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9149		BNX2X_ERR("NVRAM config error. BAD phy config."
9150			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
9151			   SHMEM_RD(bp,
9152			   dev_info.port_hw_config[port].external_phy_config),
9153			   SHMEM_RD(bp,
9154			   dev_info.port_hw_config[port].external_phy_config2));
9155			return;
9156	}
9157
9158	if (CHIP_IS_E3(bp))
9159		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9160	else {
9161		switch (switch_cfg) {
9162		case SWITCH_CFG_1G:
9163			bp->port.phy_addr = REG_RD(
9164				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9165			break;
9166		case SWITCH_CFG_10G:
9167			bp->port.phy_addr = REG_RD(
9168				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9169			break;
9170		default:
9171			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9172				  bp->port.link_config[0]);
9173			return;
9174		}
9175	}
9176	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9177	/* mask what we support according to speed_cap_mask per configuration */
9178	for (idx = 0; idx < cfg_size; idx++) {
9179		if (!(bp->link_params.speed_cap_mask[idx] &
9180				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9181			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9182
9183		if (!(bp->link_params.speed_cap_mask[idx] &
9184				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9185			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9186
9187		if (!(bp->link_params.speed_cap_mask[idx] &
9188				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9189			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9190
9191		if (!(bp->link_params.speed_cap_mask[idx] &
9192				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9193			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9194
9195		if (!(bp->link_params.speed_cap_mask[idx] &
9196					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9197			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9198						     SUPPORTED_1000baseT_Full);
9199
9200		if (!(bp->link_params.speed_cap_mask[idx] &
9201					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9202			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9203
9204		if (!(bp->link_params.speed_cap_mask[idx] &
9205					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9206			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9207
9208	}
9209
9210	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9211		       bp->port.supported[1]);
9212}
9213
9214static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9215{
9216	u32 link_config, idx, cfg_size = 0;
9217	bp->port.advertising[0] = 0;
9218	bp->port.advertising[1] = 0;
9219	switch (bp->link_params.num_phys) {
9220	case 1:
9221	case 2:
9222		cfg_size = 1;
9223		break;
9224	case 3:
9225		cfg_size = 2;
9226		break;
9227	}
9228	for (idx = 0; idx < cfg_size; idx++) {
9229		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9230		link_config = bp->port.link_config[idx];
9231		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9232		case PORT_FEATURE_LINK_SPEED_AUTO:
9233			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9234				bp->link_params.req_line_speed[idx] =
9235					SPEED_AUTO_NEG;
9236				bp->port.advertising[idx] |=
9237					bp->port.supported[idx];
9238			} else {
9239				/* force 10G, no AN */
9240				bp->link_params.req_line_speed[idx] =
9241					SPEED_10000;
9242				bp->port.advertising[idx] |=
9243					(ADVERTISED_10000baseT_Full |
9244					 ADVERTISED_FIBRE);
9245				continue;
9246			}
9247			break;
9248
9249		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9250			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9251				bp->link_params.req_line_speed[idx] =
9252					SPEED_10;
9253				bp->port.advertising[idx] |=
9254					(ADVERTISED_10baseT_Full |
9255					 ADVERTISED_TP);
9256			} else {
9257				BNX2X_ERR("NVRAM config error. "
9258					    "Invalid link_config 0x%x"
9259					    "  speed_cap_mask 0x%x\n",
9260					    link_config,
9261				    bp->link_params.speed_cap_mask[idx]);
9262				return;
9263			}
9264			break;
9265
9266		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9267			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9268				bp->link_params.req_line_speed[idx] =
9269					SPEED_10;
9270				bp->link_params.req_duplex[idx] =
9271					DUPLEX_HALF;
9272				bp->port.advertising[idx] |=
9273					(ADVERTISED_10baseT_Half |
9274					 ADVERTISED_TP);
9275			} else {
9276				BNX2X_ERR("NVRAM config error. "
9277					    "Invalid link_config 0x%x"
9278					    "  speed_cap_mask 0x%x\n",
9279					    link_config,
9280					  bp->link_params.speed_cap_mask[idx]);
9281				return;
9282			}
9283			break;
9284
9285		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9286			if (bp->port.supported[idx] &
9287			    SUPPORTED_100baseT_Full) {
9288				bp->link_params.req_line_speed[idx] =
9289					SPEED_100;
9290				bp->port.advertising[idx] |=
9291					(ADVERTISED_100baseT_Full |
9292					 ADVERTISED_TP);
9293			} else {
9294				BNX2X_ERR("NVRAM config error. "
9295					    "Invalid link_config 0x%x"
9296					    "  speed_cap_mask 0x%x\n",
9297					    link_config,
9298					  bp->link_params.speed_cap_mask[idx]);
9299				return;
9300			}
9301			break;
9302
9303		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9304			if (bp->port.supported[idx] &
9305			    SUPPORTED_100baseT_Half) {
9306				bp->link_params.req_line_speed[idx] =
9307								SPEED_100;
9308				bp->link_params.req_duplex[idx] =
9309								DUPLEX_HALF;
9310				bp->port.advertising[idx] |=
9311					(ADVERTISED_100baseT_Half |
9312					 ADVERTISED_TP);
9313			} else {
9314				BNX2X_ERR("NVRAM config error. "
9315				    "Invalid link_config 0x%x"
9316				    "  speed_cap_mask 0x%x\n",
9317				    link_config,
9318				    bp->link_params.speed_cap_mask[idx]);
9319				return;
9320			}
9321			break;
9322
9323		case PORT_FEATURE_LINK_SPEED_1G:
9324			if (bp->port.supported[idx] &
9325			    SUPPORTED_1000baseT_Full) {
9326				bp->link_params.req_line_speed[idx] =
9327					SPEED_1000;
9328				bp->port.advertising[idx] |=
9329					(ADVERTISED_1000baseT_Full |
9330					 ADVERTISED_TP);
9331			} else {
9332				BNX2X_ERR("NVRAM config error. "
9333				    "Invalid link_config 0x%x"
9334				    "  speed_cap_mask 0x%x\n",
9335				    link_config,
9336				    bp->link_params.speed_cap_mask[idx]);
9337				return;
9338			}
9339			break;
9340
9341		case PORT_FEATURE_LINK_SPEED_2_5G:
9342			if (bp->port.supported[idx] &
9343			    SUPPORTED_2500baseX_Full) {
9344				bp->link_params.req_line_speed[idx] =
9345					SPEED_2500;
9346				bp->port.advertising[idx] |=
9347					(ADVERTISED_2500baseX_Full |
9348						ADVERTISED_TP);
9349			} else {
9350				BNX2X_ERR("NVRAM config error. "
9351				    "Invalid link_config 0x%x"
9352				    "  speed_cap_mask 0x%x\n",
9353				    link_config,
9354				    bp->link_params.speed_cap_mask[idx]);
9355				return;
9356			}
9357			break;
9358
9359		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9360			if (bp->port.supported[idx] &
9361			    SUPPORTED_10000baseT_Full) {
9362				bp->link_params.req_line_speed[idx] =
9363					SPEED_10000;
9364				bp->port.advertising[idx] |=
9365					(ADVERTISED_10000baseT_Full |
9366						ADVERTISED_FIBRE);
9367			} else {
9368				BNX2X_ERR("NVRAM config error. "
9369				    "Invalid link_config 0x%x"
9370				    "  speed_cap_mask 0x%x\n",
9371				    link_config,
9372				    bp->link_params.speed_cap_mask[idx]);
9373				return;
9374			}
9375			break;
9376		case PORT_FEATURE_LINK_SPEED_20G:
9377			bp->link_params.req_line_speed[idx] = SPEED_20000;
9378
9379			break;
9380		default:
9381			BNX2X_ERR("NVRAM config error. "
9382				  "BAD link speed link_config 0x%x\n",
9383				  link_config);
9384				bp->link_params.req_line_speed[idx] =
9385							SPEED_AUTO_NEG;
9386				bp->port.advertising[idx] =
9387						bp->port.supported[idx];
9388			break;
9389		}
9390
9391		bp->link_params.req_flow_ctrl[idx] = (link_config &
9392					 PORT_FEATURE_FLOW_CONTROL_MASK);
9393		if ((bp->link_params.req_flow_ctrl[idx] ==
9394		     BNX2X_FLOW_CTRL_AUTO) &&
9395		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9396			bp->link_params.req_flow_ctrl[idx] =
9397				BNX2X_FLOW_CTRL_NONE;
9398		}
9399
9400		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9401			       " 0x%x advertising 0x%x\n",
9402			       bp->link_params.req_line_speed[idx],
9403			       bp->link_params.req_duplex[idx],
9404			       bp->link_params.req_flow_ctrl[idx],
9405			       bp->port.advertising[idx]);
9406	}
9407}
9408
9409static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9410{
9411	mac_hi = cpu_to_be16(mac_hi);
9412	mac_lo = cpu_to_be32(mac_lo);
9413	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9414	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9415}
9416
9417static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9418{
9419	int port = BP_PORT(bp);
9420	u32 config;
9421	u32 ext_phy_type, ext_phy_config;
9422
9423	bp->link_params.bp = bp;
9424	bp->link_params.port = port;
9425
9426	bp->link_params.lane_config =
9427		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9428
9429	bp->link_params.speed_cap_mask[0] =
9430		SHMEM_RD(bp,
9431			 dev_info.port_hw_config[port].speed_capability_mask);
9432	bp->link_params.speed_cap_mask[1] =
9433		SHMEM_RD(bp,
9434			 dev_info.port_hw_config[port].speed_capability_mask2);
9435	bp->port.link_config[0] =
9436		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9437
9438	bp->port.link_config[1] =
9439		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9440
9441	bp->link_params.multi_phy_config =
9442		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9443	/* If the device is capable of WoL, set the default state according
9444	 * to the HW
9445	 */
9446	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9447	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9448		   (config & PORT_FEATURE_WOL_ENABLED));
9449
9450	BNX2X_DEV_INFO("lane_config 0x%08x  "
9451		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9452		       bp->link_params.lane_config,
9453		       bp->link_params.speed_cap_mask[0],
9454		       bp->port.link_config[0]);
9455
9456	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9457				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9458	bnx2x_phy_probe(&bp->link_params);
9459	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9460
9461	bnx2x_link_settings_requested(bp);
9462
9463	/*
9464	 * If connected directly, work with the internal PHY, otherwise, work
9465	 * with the external PHY
9466	 */
9467	ext_phy_config =
9468		SHMEM_RD(bp,
9469			 dev_info.port_hw_config[port].external_phy_config);
9470	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9471	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9472		bp->mdio.prtad = bp->port.phy_addr;
9473
9474	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9475		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9476		bp->mdio.prtad =
9477			XGXS_EXT_PHY_ADDR(ext_phy_config);
9478
9479	/*
9480	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9481	 * In MF mode, it is set to cover self test cases
9482	 */
9483	if (IS_MF(bp))
9484		bp->port.need_hw_lock = 1;
9485	else
9486		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9487							bp->common.shmem_base,
9488							bp->common.shmem2_base);
9489}
9490
9491void bnx2x_get_iscsi_info(struct bnx2x *bp)
9492{
9493#ifdef BCM_CNIC
9494	int port = BP_PORT(bp);
9495
9496	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9497				drv_lic_key[port].max_iscsi_conn);
9498
9499	/* Get the number of maximum allowed iSCSI connections */
9500	bp->cnic_eth_dev.max_iscsi_conn =
9501		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9502		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9503
9504	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9505		       bp->cnic_eth_dev.max_iscsi_conn);
9506
9507	/*
9508	 * If maximum allowed number of connections is zero -
9509	 * disable the feature.
9510	 */
9511	if (!bp->cnic_eth_dev.max_iscsi_conn)
9512		bp->flags |= NO_ISCSI_FLAG;
9513#else
9514	bp->flags |= NO_ISCSI_FLAG;
9515#endif
9516}
9517
9518static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9519{
9520#ifdef BCM_CNIC
9521	int port = BP_PORT(bp);
9522	int func = BP_ABS_FUNC(bp);
9523
9524	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9525				drv_lic_key[port].max_fcoe_conn);
9526
9527	/* Get the number of maximum allowed FCoE connections */
9528	bp->cnic_eth_dev.max_fcoe_conn =
9529		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9530		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9531
9532	/* Read the WWN: */
9533	if (!IS_MF(bp)) {
9534		/* Port info */
9535		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9536			SHMEM_RD(bp,
9537				dev_info.port_hw_config[port].
9538				 fcoe_wwn_port_name_upper);
9539		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9540			SHMEM_RD(bp,
9541				dev_info.port_hw_config[port].
9542				 fcoe_wwn_port_name_lower);
9543
9544		/* Node info */
9545		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9546			SHMEM_RD(bp,
9547				dev_info.port_hw_config[port].
9548				 fcoe_wwn_node_name_upper);
9549		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9550			SHMEM_RD(bp,
9551				dev_info.port_hw_config[port].
9552				 fcoe_wwn_node_name_lower);
9553	} else if (!IS_MF_SD(bp)) {
9554		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9555
9556		/*
9557		 * Read the WWN info only if the FCoE feature is enabled for
9558		 * this function.
9559		 */
9560		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9561			/* Port info */
9562			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9563				MF_CFG_RD(bp, func_ext_config[func].
9564						fcoe_wwn_port_name_upper);
9565			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9566				MF_CFG_RD(bp, func_ext_config[func].
9567						fcoe_wwn_port_name_lower);
9568
9569			/* Node info */
9570			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9571				MF_CFG_RD(bp, func_ext_config[func].
9572						fcoe_wwn_node_name_upper);
9573			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9574				MF_CFG_RD(bp, func_ext_config[func].
9575						fcoe_wwn_node_name_lower);
9576		}
9577	}
9578
9579	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9580
9581	/*
9582	 * If maximum allowed number of connections is zero -
9583	 * disable the feature.
9584	 */
9585	if (!bp->cnic_eth_dev.max_fcoe_conn)
9586		bp->flags |= NO_FCOE_FLAG;
9587#else
9588	bp->flags |= NO_FCOE_FLAG;
9589#endif
9590}
9591
9592static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9593{
9594	/*
9595	 * iSCSI may be dynamically disabled but reading
9596	 * info here we will decrease memory usage by driver
9597	 * if the feature is disabled for good
9598	 */
9599	bnx2x_get_iscsi_info(bp);
9600	bnx2x_get_fcoe_info(bp);
9601}
9602
9603static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9604{
9605	u32 val, val2;
9606	int func = BP_ABS_FUNC(bp);
9607	int port = BP_PORT(bp);
9608#ifdef BCM_CNIC
9609	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9610	u8 *fip_mac = bp->fip_mac;
9611#endif
9612
9613	/* Zero primary MAC configuration */
9614	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9615
9616	if (BP_NOMCP(bp)) {
9617		BNX2X_ERROR("warning: random MAC workaround active\n");
9618		random_ether_addr(bp->dev->dev_addr);
9619	} else if (IS_MF(bp)) {
9620		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9621		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9622		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9623		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9624			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9625
9626#ifdef BCM_CNIC
9627		/*
9628		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9629		 * FCoE MAC then the appropriate feature should be disabled.
9630		 */
9631		if (IS_MF_SI(bp)) {
9632			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9633			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9634				val2 = MF_CFG_RD(bp, func_ext_config[func].
9635						     iscsi_mac_addr_upper);
9636				val = MF_CFG_RD(bp, func_ext_config[func].
9637						    iscsi_mac_addr_lower);
9638				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9639				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9640					       iscsi_mac);
9641			} else
9642				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9643
9644			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9645				val2 = MF_CFG_RD(bp, func_ext_config[func].
9646						     fcoe_mac_addr_upper);
9647				val = MF_CFG_RD(bp, func_ext_config[func].
9648						    fcoe_mac_addr_lower);
9649				bnx2x_set_mac_buf(fip_mac, val, val2);
9650				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9651					       fip_mac);
9652
9653			} else
9654				bp->flags |= NO_FCOE_FLAG;
9655		} else { /* SD mode */
9656			if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9657				/* use primary mac as iscsi mac */
9658				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9659				/* Zero primary MAC configuration */
9660				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9661
9662				BNX2X_DEV_INFO("SD ISCSI MODE\n");
9663				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9664					       iscsi_mac);
9665			}
9666		}
9667#endif
9668	} else {
9669		/* in SF read MACs from port configuration */
9670		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9671		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9672		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9673
9674#ifdef BCM_CNIC
9675		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9676				    iscsi_mac_upper);
9677		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9678				   iscsi_mac_lower);
9679		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9680
9681		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9682				    fcoe_fip_mac_upper);
9683		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9684				   fcoe_fip_mac_lower);
9685		bnx2x_set_mac_buf(fip_mac, val, val2);
9686#endif
9687	}
9688
9689	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9690	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9691
9692#ifdef BCM_CNIC
9693	/* Set the FCoE MAC in MF_SD mode */
9694	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9695		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9696
9697	/* Disable iSCSI if MAC configuration is
9698	 * invalid.
9699	 */
9700	if (!is_valid_ether_addr(iscsi_mac)) {
9701		bp->flags |= NO_ISCSI_FLAG;
9702		memset(iscsi_mac, 0, ETH_ALEN);
9703	}
9704
9705	/* Disable FCoE if MAC configuration is
9706	 * invalid.
9707	 */
9708	if (!is_valid_ether_addr(fip_mac)) {
9709		bp->flags |= NO_FCOE_FLAG;
9710		memset(bp->fip_mac, 0, ETH_ALEN);
9711	}
9712#endif
9713
9714	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9715		dev_err(&bp->pdev->dev,
9716			"bad Ethernet MAC address configuration: "
9717			"%pM, change it manually before bringing up "
9718			"the appropriate network interface\n",
9719			bp->dev->dev_addr);
9720}
9721
9722static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9723{
9724	int /*abs*/func = BP_ABS_FUNC(bp);
9725	int vn;
9726	u32 val = 0;
9727	int rc = 0;
9728
9729	bnx2x_get_common_hwinfo(bp);
9730
9731	/*
9732	 * initialize IGU parameters
9733	 */
9734	if (CHIP_IS_E1x(bp)) {
9735		bp->common.int_block = INT_BLOCK_HC;
9736
9737		bp->igu_dsb_id = DEF_SB_IGU_ID;
9738		bp->igu_base_sb = 0;
9739	} else {
9740		bp->common.int_block = INT_BLOCK_IGU;
9741
9742		/* do not allow device reset during IGU info preocessing */
9743		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9744
9745		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9746
9747		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9748			int tout = 5000;
9749
9750			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9751
9752			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9753			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9754			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9755
9756			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9757				tout--;
9758				usleep_range(1000, 1000);
9759			}
9760
9761			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9762				dev_err(&bp->pdev->dev,
9763					"FORCING Normal Mode failed!!!\n");
9764				return -EPERM;
9765			}
9766		}
9767
9768		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9769			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9770			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9771		} else
9772			BNX2X_DEV_INFO("IGU Normal Mode\n");
9773
9774		bnx2x_get_igu_cam_info(bp);
9775
9776		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9777	}
9778
9779	/*
9780	 * set base FW non-default (fast path) status block id, this value is
9781	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9782	 * determine the id used by the FW.
9783	 */
9784	if (CHIP_IS_E1x(bp))
9785		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9786	else /*
9787	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9788	      * the same queue are indicated on the same IGU SB). So we prefer
9789	      * FW and IGU SBs to be the same value.
9790	      */
9791		bp->base_fw_ndsb = bp->igu_base_sb;
9792
9793	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9794		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9795		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9796
9797	/*
9798	 * Initialize MF configuration
9799	 */
9800
9801	bp->mf_ov = 0;
9802	bp->mf_mode = 0;
9803	vn = BP_VN(bp);
9804
9805	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9806		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9807			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9808			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9809
9810		if (SHMEM2_HAS(bp, mf_cfg_addr))
9811			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9812		else
9813			bp->common.mf_cfg_base = bp->common.shmem_base +
9814				offsetof(struct shmem_region, func_mb) +
9815				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9816		/*
9817		 * get mf configuration:
9818		 * 1. existence of MF configuration
9819		 * 2. MAC address must be legal (check only upper bytes)
9820		 *    for  Switch-Independent mode;
9821		 *    OVLAN must be legal for Switch-Dependent mode
9822		 * 3. SF_MODE configures specific MF mode
9823		 */
9824		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9825			/* get mf configuration */
9826			val = SHMEM_RD(bp,
9827				       dev_info.shared_feature_config.config);
9828			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9829
9830			switch (val) {
9831			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9832				val = MF_CFG_RD(bp, func_mf_config[func].
9833						mac_upper);
9834				/* check for legal mac (upper bytes)*/
9835				if (val != 0xffff) {
9836					bp->mf_mode = MULTI_FUNCTION_SI;
9837					bp->mf_config[vn] = MF_CFG_RD(bp,
9838						   func_mf_config[func].config);
9839				} else
9840					BNX2X_DEV_INFO("illegal MAC address "
9841						       "for SI\n");
9842				break;
9843			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9844				/* get OV configuration */
9845				val = MF_CFG_RD(bp,
9846					func_mf_config[FUNC_0].e1hov_tag);
9847				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9848
9849				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9850					bp->mf_mode = MULTI_FUNCTION_SD;
9851					bp->mf_config[vn] = MF_CFG_RD(bp,
9852						func_mf_config[func].config);
9853				} else
9854					BNX2X_DEV_INFO("illegal OV for SD\n");
9855				break;
9856			default:
9857				/* Unknown configuration: reset mf_config */
9858				bp->mf_config[vn] = 0;
9859				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9860			}
9861		}
9862
9863		BNX2X_DEV_INFO("%s function mode\n",
9864			       IS_MF(bp) ? "multi" : "single");
9865
9866		switch (bp->mf_mode) {
9867		case MULTI_FUNCTION_SD:
9868			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9869			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9870			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9871				bp->mf_ov = val;
9872				bp->path_has_ovlan = true;
9873
9874				BNX2X_DEV_INFO("MF OV for func %d is %d "
9875					       "(0x%04x)\n", func, bp->mf_ov,
9876					       bp->mf_ov);
9877			} else {
9878				dev_err(&bp->pdev->dev,
9879					"No valid MF OV for func %d, "
9880					"aborting\n", func);
9881				return -EPERM;
9882			}
9883			break;
9884		case MULTI_FUNCTION_SI:
9885			BNX2X_DEV_INFO("func %d is in MF "
9886				       "switch-independent mode\n", func);
9887			break;
9888		default:
9889			if (vn) {
9890				dev_err(&bp->pdev->dev,
9891					"VN %d is in a single function mode, "
9892					"aborting\n", vn);
9893				return -EPERM;
9894			}
9895			break;
9896		}
9897
9898		/* check if other port on the path needs ovlan:
9899		 * Since MF configuration is shared between ports
9900		 * Possible mixed modes are only
9901		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9902		 */
9903		if (CHIP_MODE_IS_4_PORT(bp) &&
9904		    !bp->path_has_ovlan &&
9905		    !IS_MF(bp) &&
9906		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9907			u8 other_port = !BP_PORT(bp);
9908			u8 other_func = BP_PATH(bp) + 2*other_port;
9909			val = MF_CFG_RD(bp,
9910					func_mf_config[other_func].e1hov_tag);
9911			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9912				bp->path_has_ovlan = true;
9913		}
9914	}
9915
9916	/* adjust igu_sb_cnt to MF for E1x */
9917	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9918		bp->igu_sb_cnt /= E1HVN_MAX;
9919
9920	/* port info */
9921	bnx2x_get_port_hwinfo(bp);
9922
9923	/* Get MAC addresses */
9924	bnx2x_get_mac_hwinfo(bp);
9925
9926	bnx2x_get_cnic_info(bp);
9927
9928	/* Get current FW pulse sequence */
9929	if (!BP_NOMCP(bp)) {
9930		int mb_idx = BP_FW_MB_IDX(bp);
9931
9932		bp->fw_drv_pulse_wr_seq =
9933				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9934				 DRV_PULSE_SEQ_MASK);
9935		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9936	}
9937
9938	return rc;
9939}
9940
9941static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9942{
9943	int cnt, i, block_end, rodi;
9944	char vpd_start[BNX2X_VPD_LEN+1];
9945	char str_id_reg[VENDOR_ID_LEN+1];
9946	char str_id_cap[VENDOR_ID_LEN+1];
9947	char *vpd_data;
9948	char *vpd_extended_data = NULL;
9949	u8 len;
9950
9951	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9952	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9953
9954	if (cnt < BNX2X_VPD_LEN)
9955		goto out_not_found;
9956
9957	/* VPD RO tag should be first tag after identifier string, hence
9958	 * we should be able to find it in first BNX2X_VPD_LEN chars
9959	 */
9960	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9961			     PCI_VPD_LRDT_RO_DATA);
9962	if (i < 0)
9963		goto out_not_found;
9964
9965	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9966		    pci_vpd_lrdt_size(&vpd_start[i]);
9967
9968	i += PCI_VPD_LRDT_TAG_SIZE;
9969
9970	if (block_end > BNX2X_VPD_LEN) {
9971		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9972		if (vpd_extended_data  == NULL)
9973			goto out_not_found;
9974
9975		/* read rest of vpd image into vpd_extended_data */
9976		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9977		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9978				   block_end - BNX2X_VPD_LEN,
9979				   vpd_extended_data + BNX2X_VPD_LEN);
9980		if (cnt < (block_end - BNX2X_VPD_LEN))
9981			goto out_not_found;
9982		vpd_data = vpd_extended_data;
9983	} else
9984		vpd_data = vpd_start;
9985
9986	/* now vpd_data holds full vpd content in both cases */
9987
9988	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9989				   PCI_VPD_RO_KEYWORD_MFR_ID);
9990	if (rodi < 0)
9991		goto out_not_found;
9992
9993	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9994
9995	if (len != VENDOR_ID_LEN)
9996		goto out_not_found;
9997
9998	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9999
10000	/* vendor specific info */
10001	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10002	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10003	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10004	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10005
10006		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10007						PCI_VPD_RO_KEYWORD_VENDOR0);
10008		if (rodi >= 0) {
10009			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10010
10011			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10012
10013			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10014				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10015				bp->fw_ver[len] = ' ';
10016			}
10017		}
10018		kfree(vpd_extended_data);
10019		return;
10020	}
10021out_not_found:
10022	kfree(vpd_extended_data);
10023	return;
10024}
10025
10026static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10027{
10028	u32 flags = 0;
10029
10030	if (CHIP_REV_IS_FPGA(bp))
10031		SET_FLAGS(flags, MODE_FPGA);
10032	else if (CHIP_REV_IS_EMUL(bp))
10033		SET_FLAGS(flags, MODE_EMUL);
10034	else
10035		SET_FLAGS(flags, MODE_ASIC);
10036
10037	if (CHIP_MODE_IS_4_PORT(bp))
10038		SET_FLAGS(flags, MODE_PORT4);
10039	else
10040		SET_FLAGS(flags, MODE_PORT2);
10041
10042	if (CHIP_IS_E2(bp))
10043		SET_FLAGS(flags, MODE_E2);
10044	else if (CHIP_IS_E3(bp)) {
10045		SET_FLAGS(flags, MODE_E3);
10046		if (CHIP_REV(bp) == CHIP_REV_Ax)
10047			SET_FLAGS(flags, MODE_E3_A0);
10048		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10049			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10050	}
10051
10052	if (IS_MF(bp)) {
10053		SET_FLAGS(flags, MODE_MF);
10054		switch (bp->mf_mode) {
10055		case MULTI_FUNCTION_SD:
10056			SET_FLAGS(flags, MODE_MF_SD);
10057			break;
10058		case MULTI_FUNCTION_SI:
10059			SET_FLAGS(flags, MODE_MF_SI);
10060			break;
10061		}
10062	} else
10063		SET_FLAGS(flags, MODE_SF);
10064
10065#if defined(__LITTLE_ENDIAN)
10066	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10067#else /*(__BIG_ENDIAN)*/
10068	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10069#endif
10070	INIT_MODE_FLAGS(bp) = flags;
10071}
10072
10073static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10074{
10075	int func;
10076	int timer_interval;
10077	int rc;
10078
10079	mutex_init(&bp->port.phy_mutex);
10080	mutex_init(&bp->fw_mb_mutex);
10081	spin_lock_init(&bp->stats_lock);
10082#ifdef BCM_CNIC
10083	mutex_init(&bp->cnic_mutex);
10084#endif
10085
10086	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10087	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10088	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10089	rc = bnx2x_get_hwinfo(bp);
10090	if (rc)
10091		return rc;
10092
10093	bnx2x_set_modes_bitmap(bp);
10094
10095	rc = bnx2x_alloc_mem_bp(bp);
10096	if (rc)
10097		return rc;
10098
10099	bnx2x_read_fwinfo(bp);
10100
10101	func = BP_FUNC(bp);
10102
10103	/* need to reset chip if undi was active */
10104	if (!BP_NOMCP(bp))
10105		bnx2x_undi_unload(bp);
10106
10107	/* init fw_seq after undi_unload! */
10108	if (!BP_NOMCP(bp)) {
10109		bp->fw_seq =
10110			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10111			 DRV_MSG_SEQ_NUMBER_MASK);
10112		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10113	}
10114
10115	if (CHIP_REV_IS_FPGA(bp))
10116		dev_err(&bp->pdev->dev, "FPGA detected\n");
10117
10118	if (BP_NOMCP(bp) && (func == 0))
10119		dev_err(&bp->pdev->dev, "MCP disabled, "
10120					"must load devices in order!\n");
10121
10122	bp->multi_mode = multi_mode;
10123
10124	bp->disable_tpa = disable_tpa;
10125
10126#ifdef BCM_CNIC
10127	bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10128#endif
10129
10130	/* Set TPA flags */
10131	if (bp->disable_tpa) {
10132		bp->flags &= ~TPA_ENABLE_FLAG;
10133		bp->dev->features &= ~NETIF_F_LRO;
10134	} else {
10135		bp->flags |= TPA_ENABLE_FLAG;
10136		bp->dev->features |= NETIF_F_LRO;
10137	}
10138
10139	if (CHIP_IS_E1(bp))
10140		bp->dropless_fc = 0;
10141	else
10142		bp->dropless_fc = dropless_fc;
10143
10144	bp->mrrs = mrrs;
10145
10146	bp->tx_ring_size = MAX_TX_AVAIL;
10147
10148	/* make sure that the numbers are in the right granularity */
10149	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10150	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10151
10152	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
10153	bp->current_interval = (poll ? poll : timer_interval);
10154
10155	init_timer(&bp->timer);
10156	bp->timer.expires = jiffies + bp->current_interval;
10157	bp->timer.data = (unsigned long) bp;
10158	bp->timer.function = bnx2x_timer;
10159
10160	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10161	bnx2x_dcbx_init_params(bp);
10162
10163#ifdef BCM_CNIC
10164	if (CHIP_IS_E1x(bp))
10165		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10166	else
10167		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10168#endif
10169
10170	/* multiple tx priority */
10171	if (CHIP_IS_E1x(bp))
10172		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10173	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10174		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10175	if (CHIP_IS_E3B0(bp))
10176		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10177
10178	return rc;
10179}
10180
10181
10182/****************************************************************************
10183* General service functions
10184****************************************************************************/
10185
10186/*
10187 * net_device service functions
10188 */
10189
10190/* called with rtnl_lock */
10191static int bnx2x_open(struct net_device *dev)
10192{
10193	struct bnx2x *bp = netdev_priv(dev);
10194	bool global = false;
10195	int other_engine = BP_PATH(bp) ? 0 : 1;
10196	u32 other_load_counter, load_counter;
10197
10198	netif_carrier_off(dev);
10199
10200	bnx2x_set_power_state(bp, PCI_D0);
10201
10202	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
10203	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
10204
10205	/*
10206	 * If parity had happen during the unload, then attentions
10207	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10208	 * want the first function loaded on the current engine to
10209	 * complete the recovery.
10210	 */
10211	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10212	    bnx2x_chk_parity_attn(bp, &global, true))
10213		do {
10214			/*
10215			 * If there are attentions and they are in a global
10216			 * blocks, set the GLOBAL_RESET bit regardless whether
10217			 * it will be this function that will complete the
10218			 * recovery or not.
10219			 */
10220			if (global)
10221				bnx2x_set_reset_global(bp);
10222
10223			/*
10224			 * Only the first function on the current engine should
10225			 * try to recover in open. In case of attentions in
10226			 * global blocks only the first in the chip should try
10227			 * to recover.
10228			 */
10229			if ((!load_counter &&
10230			     (!global || !other_load_counter)) &&
10231			    bnx2x_trylock_leader_lock(bp) &&
10232			    !bnx2x_leader_reset(bp)) {
10233				netdev_info(bp->dev, "Recovered in open\n");
10234				break;
10235			}
10236
10237			/* recovery has failed... */
10238			bnx2x_set_power_state(bp, PCI_D3hot);
10239			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10240
10241			netdev_err(bp->dev, "Recovery flow hasn't been properly"
10242			" completed yet. Try again later. If u still see this"
10243			" message after a few retries then power cycle is"
10244			" required.\n");
10245
10246			return -EAGAIN;
10247		} while (0);
10248
10249	bp->recovery_state = BNX2X_RECOVERY_DONE;
10250	return bnx2x_nic_load(bp, LOAD_OPEN);
10251}
10252
10253/* called with rtnl_lock */
10254int bnx2x_close(struct net_device *dev)
10255{
10256	struct bnx2x *bp = netdev_priv(dev);
10257
10258	/* Unload the driver, release IRQs */
10259	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10260
10261	/* Power off */
10262	bnx2x_set_power_state(bp, PCI_D3hot);
10263
10264	return 0;
10265}
10266
10267static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10268					 struct bnx2x_mcast_ramrod_params *p)
10269{
10270	int mc_count = netdev_mc_count(bp->dev);
10271	struct bnx2x_mcast_list_elem *mc_mac =
10272		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10273	struct netdev_hw_addr *ha;
10274
10275	if (!mc_mac)
10276		return -ENOMEM;
10277
10278	INIT_LIST_HEAD(&p->mcast_list);
10279
10280	netdev_for_each_mc_addr(ha, bp->dev) {
10281		mc_mac->mac = bnx2x_mc_addr(ha);
10282		list_add_tail(&mc_mac->link, &p->mcast_list);
10283		mc_mac++;
10284	}
10285
10286	p->mcast_list_len = mc_count;
10287
10288	return 0;
10289}
10290
10291static inline void bnx2x_free_mcast_macs_list(
10292	struct bnx2x_mcast_ramrod_params *p)
10293{
10294	struct bnx2x_mcast_list_elem *mc_mac =
10295		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10296				 link);
10297
10298	WARN_ON(!mc_mac);
10299	kfree(mc_mac);
10300}
10301
10302/**
10303 * bnx2x_set_uc_list - configure a new unicast MACs list.
10304 *
10305 * @bp: driver handle
10306 *
10307 * We will use zero (0) as a MAC type for these MACs.
10308 */
10309static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10310{
10311	int rc;
10312	struct net_device *dev = bp->dev;
10313	struct netdev_hw_addr *ha;
10314	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10315	unsigned long ramrod_flags = 0;
10316
10317	/* First schedule a cleanup up of old configuration */
10318	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10319	if (rc < 0) {
10320		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10321		return rc;
10322	}
10323
10324	netdev_for_each_uc_addr(ha, dev) {
10325		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10326				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10327		if (rc < 0) {
10328			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10329				  rc);
10330			return rc;
10331		}
10332	}
10333
10334	/* Execute the pending commands */
10335	__set_bit(RAMROD_CONT, &ramrod_flags);
10336	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10337				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10338}
10339
10340static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10341{
10342	struct net_device *dev = bp->dev;
10343	struct bnx2x_mcast_ramrod_params rparam = {0};
10344	int rc = 0;
10345
10346	rparam.mcast_obj = &bp->mcast_obj;
10347
10348	/* first, clear all configured multicast MACs */
10349	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10350	if (rc < 0) {
10351		BNX2X_ERR("Failed to clear multicast "
10352			  "configuration: %d\n", rc);
10353		return rc;
10354	}
10355
10356	/* then, configure a new MACs list */
10357	if (netdev_mc_count(dev)) {
10358		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10359		if (rc) {
10360			BNX2X_ERR("Failed to create multicast MACs "
10361				  "list: %d\n", rc);
10362			return rc;
10363		}
10364
10365		/* Now add the new MACs */
10366		rc = bnx2x_config_mcast(bp, &rparam,
10367					BNX2X_MCAST_CMD_ADD);
10368		if (rc < 0)
10369			BNX2X_ERR("Failed to set a new multicast "
10370				  "configuration: %d\n", rc);
10371
10372		bnx2x_free_mcast_macs_list(&rparam);
10373	}
10374
10375	return rc;
10376}
10377
10378
10379/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10380void bnx2x_set_rx_mode(struct net_device *dev)
10381{
10382	struct bnx2x *bp = netdev_priv(dev);
10383	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10384
10385	if (bp->state != BNX2X_STATE_OPEN) {
10386		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10387		return;
10388	}
10389
10390	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10391
10392	if (dev->flags & IFF_PROMISC)
10393		rx_mode = BNX2X_RX_MODE_PROMISC;
10394	else if ((dev->flags & IFF_ALLMULTI) ||
10395		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10396		  CHIP_IS_E1(bp)))
10397		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10398	else {
10399		/* some multicasts */
10400		if (bnx2x_set_mc_list(bp) < 0)
10401			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10402
10403		if (bnx2x_set_uc_list(bp) < 0)
10404			rx_mode = BNX2X_RX_MODE_PROMISC;
10405	}
10406
10407	bp->rx_mode = rx_mode;
10408#ifdef BCM_CNIC
10409	/* handle ISCSI SD mode */
10410	if (IS_MF_ISCSI_SD(bp))
10411		bp->rx_mode = BNX2X_RX_MODE_NONE;
10412#endif
10413
10414	/* Schedule the rx_mode command */
10415	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10416		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10417		return;
10418	}
10419
10420	bnx2x_set_storm_rx_mode(bp);
10421}
10422
10423/* called with rtnl_lock */
10424static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10425			   int devad, u16 addr)
10426{
10427	struct bnx2x *bp = netdev_priv(netdev);
10428	u16 value;
10429	int rc;
10430
10431	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10432	   prtad, devad, addr);
10433
10434	/* The HW expects different devad if CL22 is used */
10435	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10436
10437	bnx2x_acquire_phy_lock(bp);
10438	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10439	bnx2x_release_phy_lock(bp);
10440	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10441
10442	if (!rc)
10443		rc = value;
10444	return rc;
10445}
10446
10447/* called with rtnl_lock */
10448static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10449			    u16 addr, u16 value)
10450{
10451	struct bnx2x *bp = netdev_priv(netdev);
10452	int rc;
10453
10454	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10455			   " value 0x%x\n", prtad, devad, addr, value);
10456
10457	/* The HW expects different devad if CL22 is used */
10458	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10459
10460	bnx2x_acquire_phy_lock(bp);
10461	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10462	bnx2x_release_phy_lock(bp);
10463	return rc;
10464}
10465
10466/* called with rtnl_lock */
10467static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10468{
10469	struct bnx2x *bp = netdev_priv(dev);
10470	struct mii_ioctl_data *mdio = if_mii(ifr);
10471
10472	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10473	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10474
10475	if (!netif_running(dev))
10476		return -EAGAIN;
10477
10478	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10479}
10480
10481#ifdef CONFIG_NET_POLL_CONTROLLER
10482static void poll_bnx2x(struct net_device *dev)
10483{
10484	struct bnx2x *bp = netdev_priv(dev);
10485
10486	disable_irq(bp->pdev->irq);
10487	bnx2x_interrupt(bp->pdev->irq, dev);
10488	enable_irq(bp->pdev->irq);
10489}
10490#endif
10491
10492static int bnx2x_validate_addr(struct net_device *dev)
10493{
10494	struct bnx2x *bp = netdev_priv(dev);
10495
10496	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10497		return -EADDRNOTAVAIL;
10498	return 0;
10499}
10500
10501static const struct net_device_ops bnx2x_netdev_ops = {
10502	.ndo_open		= bnx2x_open,
10503	.ndo_stop		= bnx2x_close,
10504	.ndo_start_xmit		= bnx2x_start_xmit,
10505	.ndo_select_queue	= bnx2x_select_queue,
10506	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10507	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10508	.ndo_validate_addr	= bnx2x_validate_addr,
10509	.ndo_do_ioctl		= bnx2x_ioctl,
10510	.ndo_change_mtu		= bnx2x_change_mtu,
10511	.ndo_fix_features	= bnx2x_fix_features,
10512	.ndo_set_features	= bnx2x_set_features,
10513	.ndo_tx_timeout		= bnx2x_tx_timeout,
10514#ifdef CONFIG_NET_POLL_CONTROLLER
10515	.ndo_poll_controller	= poll_bnx2x,
10516#endif
10517	.ndo_setup_tc		= bnx2x_setup_tc,
10518
10519#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10520	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10521#endif
10522};
10523
10524static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10525{
10526	struct device *dev = &bp->pdev->dev;
10527
10528	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10529		bp->flags |= USING_DAC_FLAG;
10530		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10531			dev_err(dev, "dma_set_coherent_mask failed, "
10532				     "aborting\n");
10533			return -EIO;
10534		}
10535	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10536		dev_err(dev, "System does not support DMA, aborting\n");
10537		return -EIO;
10538	}
10539
10540	return 0;
10541}
10542
10543static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10544				    struct net_device *dev,
10545				    unsigned long board_type)
10546{
10547	struct bnx2x *bp;
10548	int rc;
10549	bool chip_is_e1x = (board_type == BCM57710 ||
10550			    board_type == BCM57711 ||
10551			    board_type == BCM57711E);
10552
10553	SET_NETDEV_DEV(dev, &pdev->dev);
10554	bp = netdev_priv(dev);
10555
10556	bp->dev = dev;
10557	bp->pdev = pdev;
10558	bp->flags = 0;
10559	bp->pf_num = PCI_FUNC(pdev->devfn);
10560
10561	rc = pci_enable_device(pdev);
10562	if (rc) {
10563		dev_err(&bp->pdev->dev,
10564			"Cannot enable PCI device, aborting\n");
10565		goto err_out;
10566	}
10567
10568	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10569		dev_err(&bp->pdev->dev,
10570			"Cannot find PCI device base address, aborting\n");
10571		rc = -ENODEV;
10572		goto err_out_disable;
10573	}
10574
10575	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10576		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10577		       " base address, aborting\n");
10578		rc = -ENODEV;
10579		goto err_out_disable;
10580	}
10581
10582	if (atomic_read(&pdev->enable_cnt) == 1) {
10583		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10584		if (rc) {
10585			dev_err(&bp->pdev->dev,
10586				"Cannot obtain PCI resources, aborting\n");
10587			goto err_out_disable;
10588		}
10589
10590		pci_set_master(pdev);
10591		pci_save_state(pdev);
10592	}
10593
10594	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10595	if (bp->pm_cap == 0) {
10596		dev_err(&bp->pdev->dev,
10597			"Cannot find power management capability, aborting\n");
10598		rc = -EIO;
10599		goto err_out_release;
10600	}
10601
10602	if (!pci_is_pcie(pdev)) {
10603		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10604		rc = -EIO;
10605		goto err_out_release;
10606	}
10607
10608	rc = bnx2x_set_coherency_mask(bp);
10609	if (rc)
10610		goto err_out_release;
10611
10612	dev->mem_start = pci_resource_start(pdev, 0);
10613	dev->base_addr = dev->mem_start;
10614	dev->mem_end = pci_resource_end(pdev, 0);
10615
10616	dev->irq = pdev->irq;
10617
10618	bp->regview = pci_ioremap_bar(pdev, 0);
10619	if (!bp->regview) {
10620		dev_err(&bp->pdev->dev,
10621			"Cannot map register space, aborting\n");
10622		rc = -ENOMEM;
10623		goto err_out_release;
10624	}
10625
10626	bnx2x_set_power_state(bp, PCI_D0);
10627
10628	/* clean indirect addresses */
10629	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10630			       PCICFG_VENDOR_ID_OFFSET);
10631	/*
10632	 * Clean the following indirect addresses for all functions since it
10633	 * is not used by the driver.
10634	 */
10635	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10636	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10637	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10638	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10639
10640	if (chip_is_e1x) {
10641		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10642		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10643		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10644		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10645	}
10646
10647	/*
10648	 * Enable internal target-read (in case we are probed after PF FLR).
10649	 * Must be done prior to any BAR read access. Only for 57712 and up
10650	 */
10651	if (!chip_is_e1x)
10652		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10653
10654	/* Reset the load counter */
10655	bnx2x_clear_load_cnt(bp);
10656
10657	dev->watchdog_timeo = TX_TIMEOUT;
10658
10659	dev->netdev_ops = &bnx2x_netdev_ops;
10660	bnx2x_set_ethtool_ops(dev);
10661
10662	dev->priv_flags |= IFF_UNICAST_FLT;
10663
10664	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10665		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10666		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10667
10668	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10669		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10670
10671	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10672	if (bp->flags & USING_DAC_FLAG)
10673		dev->features |= NETIF_F_HIGHDMA;
10674
10675	/* Add Loopback capability to the device */
10676	dev->hw_features |= NETIF_F_LOOPBACK;
10677
10678#ifdef BCM_DCBNL
10679	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10680#endif
10681
10682	/* get_port_hwinfo() will set prtad and mmds properly */
10683	bp->mdio.prtad = MDIO_PRTAD_NONE;
10684	bp->mdio.mmds = 0;
10685	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10686	bp->mdio.dev = dev;
10687	bp->mdio.mdio_read = bnx2x_mdio_read;
10688	bp->mdio.mdio_write = bnx2x_mdio_write;
10689
10690	return 0;
10691
10692err_out_release:
10693	if (atomic_read(&pdev->enable_cnt) == 1)
10694		pci_release_regions(pdev);
10695
10696err_out_disable:
10697	pci_disable_device(pdev);
10698	pci_set_drvdata(pdev, NULL);
10699
10700err_out:
10701	return rc;
10702}
10703
10704static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10705						 int *width, int *speed)
10706{
10707	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10708
10709	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10710
10711	/* return value of 1=2.5GHz 2=5GHz */
10712	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10713}
10714
10715static int bnx2x_check_firmware(struct bnx2x *bp)
10716{
10717	const struct firmware *firmware = bp->firmware;
10718	struct bnx2x_fw_file_hdr *fw_hdr;
10719	struct bnx2x_fw_file_section *sections;
10720	u32 offset, len, num_ops;
10721	u16 *ops_offsets;
10722	int i;
10723	const u8 *fw_ver;
10724
10725	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10726		return -EINVAL;
10727
10728	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10729	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10730
10731	/* Make sure none of the offsets and sizes make us read beyond
10732	 * the end of the firmware data */
10733	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10734		offset = be32_to_cpu(sections[i].offset);
10735		len = be32_to_cpu(sections[i].len);
10736		if (offset + len > firmware->size) {
10737			dev_err(&bp->pdev->dev,
10738				"Section %d length is out of bounds\n", i);
10739			return -EINVAL;
10740		}
10741	}
10742
10743	/* Likewise for the init_ops offsets */
10744	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10745	ops_offsets = (u16 *)(firmware->data + offset);
10746	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10747
10748	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10749		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10750			dev_err(&bp->pdev->dev,
10751				"Section offset %d is out of bounds\n", i);
10752			return -EINVAL;
10753		}
10754	}
10755
10756	/* Check FW version */
10757	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10758	fw_ver = firmware->data + offset;
10759	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10760	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10761	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10762	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10763		dev_err(&bp->pdev->dev,
10764			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10765		       fw_ver[0], fw_ver[1], fw_ver[2],
10766		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10767		       BCM_5710_FW_MINOR_VERSION,
10768		       BCM_5710_FW_REVISION_VERSION,
10769		       BCM_5710_FW_ENGINEERING_VERSION);
10770		return -EINVAL;
10771	}
10772
10773	return 0;
10774}
10775
10776static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10777{
10778	const __be32 *source = (const __be32 *)_source;
10779	u32 *target = (u32 *)_target;
10780	u32 i;
10781
10782	for (i = 0; i < n/4; i++)
10783		target[i] = be32_to_cpu(source[i]);
10784}
10785
10786/*
10787   Ops array is stored in the following format:
10788   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10789 */
10790static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10791{
10792	const __be32 *source = (const __be32 *)_source;
10793	struct raw_op *target = (struct raw_op *)_target;
10794	u32 i, j, tmp;
10795
10796	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10797		tmp = be32_to_cpu(source[j]);
10798		target[i].op = (tmp >> 24) & 0xff;
10799		target[i].offset = tmp & 0xffffff;
10800		target[i].raw_data = be32_to_cpu(source[j + 1]);
10801	}
10802}
10803
10804/**
10805 * IRO array is stored in the following format:
10806 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10807 */
10808static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10809{
10810	const __be32 *source = (const __be32 *)_source;
10811	struct iro *target = (struct iro *)_target;
10812	u32 i, j, tmp;
10813
10814	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10815		target[i].base = be32_to_cpu(source[j]);
10816		j++;
10817		tmp = be32_to_cpu(source[j]);
10818		target[i].m1 = (tmp >> 16) & 0xffff;
10819		target[i].m2 = tmp & 0xffff;
10820		j++;
10821		tmp = be32_to_cpu(source[j]);
10822		target[i].m3 = (tmp >> 16) & 0xffff;
10823		target[i].size = tmp & 0xffff;
10824		j++;
10825	}
10826}
10827
10828static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10829{
10830	const __be16 *source = (const __be16 *)_source;
10831	u16 *target = (u16 *)_target;
10832	u32 i;
10833
10834	for (i = 0; i < n/2; i++)
10835		target[i] = be16_to_cpu(source[i]);
10836}
10837
10838#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10839do {									\
10840	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10841	bp->arr = kmalloc(len, GFP_KERNEL);				\
10842	if (!bp->arr) {							\
10843		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10844		goto lbl;						\
10845	}								\
10846	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10847	     (u8 *)bp->arr, len);					\
10848} while (0)
10849
10850int bnx2x_init_firmware(struct bnx2x *bp)
10851{
10852	struct bnx2x_fw_file_hdr *fw_hdr;
10853	int rc;
10854
10855
10856	if (!bp->firmware) {
10857		const char *fw_file_name;
10858
10859		if (CHIP_IS_E1(bp))
10860			fw_file_name = FW_FILE_NAME_E1;
10861		else if (CHIP_IS_E1H(bp))
10862			fw_file_name = FW_FILE_NAME_E1H;
10863		else if (!CHIP_IS_E1x(bp))
10864			fw_file_name = FW_FILE_NAME_E2;
10865		else {
10866			BNX2X_ERR("Unsupported chip revision\n");
10867			return -EINVAL;
10868		}
10869		BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10870
10871		rc = request_firmware(&bp->firmware, fw_file_name,
10872				      &bp->pdev->dev);
10873		if (rc) {
10874			BNX2X_ERR("Can't load firmware file %s\n",
10875				  fw_file_name);
10876			goto request_firmware_exit;
10877		}
10878
10879		rc = bnx2x_check_firmware(bp);
10880		if (rc) {
10881			BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10882			goto request_firmware_exit;
10883		}
10884	}
10885
10886	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10887
10888	/* Initialize the pointers to the init arrays */
10889	/* Blob */
10890	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10891
10892	/* Opcodes */
10893	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10894
10895	/* Offsets */
10896	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10897			    be16_to_cpu_n);
10898
10899	/* STORMs firmware */
10900	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10901			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10902	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10903			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10904	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10905			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10906	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10907			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10908	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10909			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10910	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10911			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10912	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10913			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10914	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10915			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10916	/* IRO */
10917	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10918
10919	return 0;
10920
10921iro_alloc_err:
10922	kfree(bp->init_ops_offsets);
10923init_offsets_alloc_err:
10924	kfree(bp->init_ops);
10925init_ops_alloc_err:
10926	kfree(bp->init_data);
10927request_firmware_exit:
10928	release_firmware(bp->firmware);
10929
10930	return rc;
10931}
10932
10933static void bnx2x_release_firmware(struct bnx2x *bp)
10934{
10935	kfree(bp->init_ops_offsets);
10936	kfree(bp->init_ops);
10937	kfree(bp->init_data);
10938	release_firmware(bp->firmware);
10939	bp->firmware = NULL;
10940}
10941
10942
10943static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10944	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10945	.init_hw_cmn      = bnx2x_init_hw_common,
10946	.init_hw_port     = bnx2x_init_hw_port,
10947	.init_hw_func     = bnx2x_init_hw_func,
10948
10949	.reset_hw_cmn     = bnx2x_reset_common,
10950	.reset_hw_port    = bnx2x_reset_port,
10951	.reset_hw_func    = bnx2x_reset_func,
10952
10953	.gunzip_init      = bnx2x_gunzip_init,
10954	.gunzip_end       = bnx2x_gunzip_end,
10955
10956	.init_fw          = bnx2x_init_firmware,
10957	.release_fw       = bnx2x_release_firmware,
10958};
10959
10960void bnx2x__init_func_obj(struct bnx2x *bp)
10961{
10962	/* Prepare DMAE related driver resources */
10963	bnx2x_setup_dmae(bp);
10964
10965	bnx2x_init_func_obj(bp, &bp->func_obj,
10966			    bnx2x_sp(bp, func_rdata),
10967			    bnx2x_sp_mapping(bp, func_rdata),
10968			    &bnx2x_func_sp_drv);
10969}
10970
10971/* must be called after sriov-enable */
10972static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10973{
10974	int cid_count = BNX2X_L2_CID_COUNT(bp);
10975
10976#ifdef BCM_CNIC
10977	cid_count += CNIC_CID_MAX;
10978#endif
10979	return roundup(cid_count, QM_CID_ROUND);
10980}
10981
10982/**
10983 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10984 *
10985 * @dev:	pci device
10986 *
10987 */
10988static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10989{
10990	int pos;
10991	u16 control;
10992
10993	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10994
10995	/*
10996	 * If MSI-X is not supported - return number of SBs needed to support
10997	 * one fast path queue: one FP queue + SB for CNIC
10998	 */
10999	if (!pos)
11000		return 1 + CNIC_PRESENT;
11001
11002	/*
11003	 * The value in the PCI configuration space is the index of the last
11004	 * entry, namely one less than the actual size of the table, which is
11005	 * exactly what we want to return from this function: number of all SBs
11006	 * without the default SB.
11007	 */
11008	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11009	return control & PCI_MSIX_FLAGS_QSIZE;
11010}
11011
11012static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11013				    const struct pci_device_id *ent)
11014{
11015	struct net_device *dev = NULL;
11016	struct bnx2x *bp;
11017	int pcie_width, pcie_speed;
11018	int rc, max_non_def_sbs;
11019	int rx_count, tx_count, rss_count;
11020	/*
11021	 * An estimated maximum supported CoS number according to the chip
11022	 * version.
11023	 * We will try to roughly estimate the maximum number of CoSes this chip
11024	 * may support in order to minimize the memory allocated for Tx
11025	 * netdev_queue's. This number will be accurately calculated during the
11026	 * initialization of bp->max_cos based on the chip versions AND chip
11027	 * revision in the bnx2x_init_bp().
11028	 */
11029	u8 max_cos_est = 0;
11030
11031	switch (ent->driver_data) {
11032	case BCM57710:
11033	case BCM57711:
11034	case BCM57711E:
11035		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11036		break;
11037
11038	case BCM57712:
11039	case BCM57712_MF:
11040		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11041		break;
11042
11043	case BCM57800:
11044	case BCM57800_MF:
11045	case BCM57810:
11046	case BCM57810_MF:
11047	case BCM57840:
11048	case BCM57840_MF:
11049		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11050		break;
11051
11052	default:
11053		pr_err("Unknown board_type (%ld), aborting\n",
11054			   ent->driver_data);
11055		return -ENODEV;
11056	}
11057
11058	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11059
11060	/* !!! FIXME !!!
11061	 * Do not allow the maximum SB count to grow above 16
11062	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11063	 * We will use the FP_SB_MAX_E1x macro for this matter.
11064	 */
11065	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11066
11067	WARN_ON(!max_non_def_sbs);
11068
11069	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11070	rss_count = max_non_def_sbs - CNIC_PRESENT;
11071
11072	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11073	rx_count = rss_count + FCOE_PRESENT;
11074
11075	/*
11076	 * Maximum number of netdev Tx queues:
11077	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11078	 */
11079	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11080
11081	/* dev zeroed in init_etherdev */
11082	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11083	if (!dev) {
11084		dev_err(&pdev->dev, "Cannot allocate net device\n");
11085		return -ENOMEM;
11086	}
11087
11088	bp = netdev_priv(dev);
11089
11090	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11091			  tx_count, rx_count);
11092
11093	bp->igu_sb_cnt = max_non_def_sbs;
11094	bp->msg_enable = debug;
11095	pci_set_drvdata(pdev, dev);
11096
11097	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11098	if (rc < 0) {
11099		free_netdev(dev);
11100		return rc;
11101	}
11102
11103	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11104
11105	rc = bnx2x_init_bp(bp);
11106	if (rc)
11107		goto init_one_exit;
11108
11109	/*
11110	 * Map doorbels here as we need the real value of bp->max_cos which
11111	 * is initialized in bnx2x_init_bp().
11112	 */
11113	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11114					min_t(u64, BNX2X_DB_SIZE(bp),
11115					      pci_resource_len(pdev, 2)));
11116	if (!bp->doorbells) {
11117		dev_err(&bp->pdev->dev,
11118			"Cannot map doorbell space, aborting\n");
11119		rc = -ENOMEM;
11120		goto init_one_exit;
11121	}
11122
11123	/* calc qm_cid_count */
11124	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11125
11126#ifdef BCM_CNIC
11127	/* disable FCOE L2 queue for E1x */
11128	if (CHIP_IS_E1x(bp))
11129		bp->flags |= NO_FCOE_FLAG;
11130
11131#endif
11132
11133	/* Configure interrupt mode: try to enable MSI-X/MSI if
11134	 * needed, set bp->num_queues appropriately.
11135	 */
11136	bnx2x_set_int_mode(bp);
11137
11138	/* Add all NAPI objects */
11139	bnx2x_add_all_napi(bp);
11140
11141	rc = register_netdev(dev);
11142	if (rc) {
11143		dev_err(&pdev->dev, "Cannot register net device\n");
11144		goto init_one_exit;
11145	}
11146
11147#ifdef BCM_CNIC
11148	if (!NO_FCOE(bp)) {
11149		/* Add storage MAC address */
11150		rtnl_lock();
11151		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11152		rtnl_unlock();
11153	}
11154#endif
11155
11156	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11157
11158	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11159		    board_info[ent->driver_data].name,
11160		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11161		    pcie_width,
11162		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11163		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11164		    "5GHz (Gen2)" : "2.5GHz",
11165		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11166
11167	return 0;
11168
11169init_one_exit:
11170	if (bp->regview)
11171		iounmap(bp->regview);
11172
11173	if (bp->doorbells)
11174		iounmap(bp->doorbells);
11175
11176	free_netdev(dev);
11177
11178	if (atomic_read(&pdev->enable_cnt) == 1)
11179		pci_release_regions(pdev);
11180
11181	pci_disable_device(pdev);
11182	pci_set_drvdata(pdev, NULL);
11183
11184	return rc;
11185}
11186
11187static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11188{
11189	struct net_device *dev = pci_get_drvdata(pdev);
11190	struct bnx2x *bp;
11191
11192	if (!dev) {
11193		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11194		return;
11195	}
11196	bp = netdev_priv(dev);
11197
11198#ifdef BCM_CNIC
11199	/* Delete storage MAC address */
11200	if (!NO_FCOE(bp)) {
11201		rtnl_lock();
11202		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11203		rtnl_unlock();
11204	}
11205#endif
11206
11207#ifdef BCM_DCBNL
11208	/* Delete app tlvs from dcbnl */
11209	bnx2x_dcbnl_update_applist(bp, true);
11210#endif
11211
11212	unregister_netdev(dev);
11213
11214	/* Delete all NAPI objects */
11215	bnx2x_del_all_napi(bp);
11216
11217	/* Power on: we can't let PCI layer write to us while we are in D3 */
11218	bnx2x_set_power_state(bp, PCI_D0);
11219
11220	/* Disable MSI/MSI-X */
11221	bnx2x_disable_msi(bp);
11222
11223	/* Power off */
11224	bnx2x_set_power_state(bp, PCI_D3hot);
11225
11226	/* Make sure RESET task is not scheduled before continuing */
11227	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11228
11229	if (bp->regview)
11230		iounmap(bp->regview);
11231
11232	if (bp->doorbells)
11233		iounmap(bp->doorbells);
11234
11235	bnx2x_release_firmware(bp);
11236
11237	bnx2x_free_mem_bp(bp);
11238
11239	free_netdev(dev);
11240
11241	if (atomic_read(&pdev->enable_cnt) == 1)
11242		pci_release_regions(pdev);
11243
11244	pci_disable_device(pdev);
11245	pci_set_drvdata(pdev, NULL);
11246}
11247
11248static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11249{
11250	int i;
11251
11252	bp->state = BNX2X_STATE_ERROR;
11253
11254	bp->rx_mode = BNX2X_RX_MODE_NONE;
11255
11256#ifdef BCM_CNIC
11257	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11258#endif
11259	/* Stop Tx */
11260	bnx2x_tx_disable(bp);
11261
11262	bnx2x_netif_stop(bp, 0);
11263
11264	del_timer_sync(&bp->timer);
11265
11266	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11267
11268	/* Release IRQs */
11269	bnx2x_free_irq(bp);
11270
11271	/* Free SKBs, SGEs, TPA pool and driver internals */
11272	bnx2x_free_skbs(bp);
11273
11274	for_each_rx_queue(bp, i)
11275		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11276
11277	bnx2x_free_mem(bp);
11278
11279	bp->state = BNX2X_STATE_CLOSED;
11280
11281	netif_carrier_off(bp->dev);
11282
11283	return 0;
11284}
11285
11286static void bnx2x_eeh_recover(struct bnx2x *bp)
11287{
11288	u32 val;
11289
11290	mutex_init(&bp->port.phy_mutex);
11291
11292	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11293	bp->link_params.shmem_base = bp->common.shmem_base;
11294	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11295
11296	if (!bp->common.shmem_base ||
11297	    (bp->common.shmem_base < 0xA0000) ||
11298	    (bp->common.shmem_base >= 0xC0000)) {
11299		BNX2X_DEV_INFO("MCP not active\n");
11300		bp->flags |= NO_MCP_FLAG;
11301		return;
11302	}
11303
11304	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11305	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11306		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11307		BNX2X_ERR("BAD MCP validity signature\n");
11308
11309	if (!BP_NOMCP(bp)) {
11310		bp->fw_seq =
11311		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11312		    DRV_MSG_SEQ_NUMBER_MASK);
11313		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11314	}
11315}
11316
11317/**
11318 * bnx2x_io_error_detected - called when PCI error is detected
11319 * @pdev: Pointer to PCI device
11320 * @state: The current pci connection state
11321 *
11322 * This function is called after a PCI bus error affecting
11323 * this device has been detected.
11324 */
11325static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11326						pci_channel_state_t state)
11327{
11328	struct net_device *dev = pci_get_drvdata(pdev);
11329	struct bnx2x *bp = netdev_priv(dev);
11330
11331	rtnl_lock();
11332
11333	netif_device_detach(dev);
11334
11335	if (state == pci_channel_io_perm_failure) {
11336		rtnl_unlock();
11337		return PCI_ERS_RESULT_DISCONNECT;
11338	}
11339
11340	if (netif_running(dev))
11341		bnx2x_eeh_nic_unload(bp);
11342
11343	pci_disable_device(pdev);
11344
11345	rtnl_unlock();
11346
11347	/* Request a slot reset */
11348	return PCI_ERS_RESULT_NEED_RESET;
11349}
11350
11351/**
11352 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11353 * @pdev: Pointer to PCI device
11354 *
11355 * Restart the card from scratch, as if from a cold-boot.
11356 */
11357static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11358{
11359	struct net_device *dev = pci_get_drvdata(pdev);
11360	struct bnx2x *bp = netdev_priv(dev);
11361
11362	rtnl_lock();
11363
11364	if (pci_enable_device(pdev)) {
11365		dev_err(&pdev->dev,
11366			"Cannot re-enable PCI device after reset\n");
11367		rtnl_unlock();
11368		return PCI_ERS_RESULT_DISCONNECT;
11369	}
11370
11371	pci_set_master(pdev);
11372	pci_restore_state(pdev);
11373
11374	if (netif_running(dev))
11375		bnx2x_set_power_state(bp, PCI_D0);
11376
11377	rtnl_unlock();
11378
11379	return PCI_ERS_RESULT_RECOVERED;
11380}
11381
11382/**
11383 * bnx2x_io_resume - called when traffic can start flowing again
11384 * @pdev: Pointer to PCI device
11385 *
11386 * This callback is called when the error recovery driver tells us that
11387 * its OK to resume normal operation.
11388 */
11389static void bnx2x_io_resume(struct pci_dev *pdev)
11390{
11391	struct net_device *dev = pci_get_drvdata(pdev);
11392	struct bnx2x *bp = netdev_priv(dev);
11393
11394	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11395		netdev_err(bp->dev, "Handling parity error recovery. "
11396				    "Try again later\n");
11397		return;
11398	}
11399
11400	rtnl_lock();
11401
11402	bnx2x_eeh_recover(bp);
11403
11404	if (netif_running(dev))
11405		bnx2x_nic_load(bp, LOAD_NORMAL);
11406
11407	netif_device_attach(dev);
11408
11409	rtnl_unlock();
11410}
11411
11412static struct pci_error_handlers bnx2x_err_handler = {
11413	.error_detected = bnx2x_io_error_detected,
11414	.slot_reset     = bnx2x_io_slot_reset,
11415	.resume         = bnx2x_io_resume,
11416};
11417
11418static struct pci_driver bnx2x_pci_driver = {
11419	.name        = DRV_MODULE_NAME,
11420	.id_table    = bnx2x_pci_tbl,
11421	.probe       = bnx2x_init_one,
11422	.remove      = __devexit_p(bnx2x_remove_one),
11423	.suspend     = bnx2x_suspend,
11424	.resume      = bnx2x_resume,
11425	.err_handler = &bnx2x_err_handler,
11426};
11427
11428static int __init bnx2x_init(void)
11429{
11430	int ret;
11431
11432	pr_info("%s", version);
11433
11434	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11435	if (bnx2x_wq == NULL) {
11436		pr_err("Cannot create workqueue\n");
11437		return -ENOMEM;
11438	}
11439
11440	ret = pci_register_driver(&bnx2x_pci_driver);
11441	if (ret) {
11442		pr_err("Cannot register driver\n");
11443		destroy_workqueue(bnx2x_wq);
11444	}
11445	return ret;
11446}
11447
11448static void __exit bnx2x_cleanup(void)
11449{
11450	pci_unregister_driver(&bnx2x_pci_driver);
11451
11452	destroy_workqueue(bnx2x_wq);
11453}
11454
11455void bnx2x_notify_link_changed(struct bnx2x *bp)
11456{
11457	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11458}
11459
11460module_init(bnx2x_init);
11461module_exit(bnx2x_cleanup);
11462
11463#ifdef BCM_CNIC
11464/**
11465 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11466 *
11467 * @bp:		driver handle
11468 * @set:	set or clear the CAM entry
11469 *
11470 * This function will wait until the ramdord completion returns.
11471 * Return 0 if success, -ENODEV if ramrod doesn't return.
11472 */
11473static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11474{
11475	unsigned long ramrod_flags = 0;
11476
11477	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11478	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11479				 &bp->iscsi_l2_mac_obj, true,
11480				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11481}
11482
11483/* count denotes the number of new completions we have seen */
11484static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11485{
11486	struct eth_spe *spe;
11487
11488#ifdef BNX2X_STOP_ON_ERROR
11489	if (unlikely(bp->panic))
11490		return;
11491#endif
11492
11493	spin_lock_bh(&bp->spq_lock);
11494	BUG_ON(bp->cnic_spq_pending < count);
11495	bp->cnic_spq_pending -= count;
11496
11497
11498	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11499		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11500				& SPE_HDR_CONN_TYPE) >>
11501				SPE_HDR_CONN_TYPE_SHIFT;
11502		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11503				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11504
11505		/* Set validation for iSCSI L2 client before sending SETUP
11506		 *  ramrod
11507		 */
11508		if (type == ETH_CONNECTION_TYPE) {
11509			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11510				bnx2x_set_ctx_validation(bp, &bp->context.
11511					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11512					BNX2X_ISCSI_ETH_CID);
11513		}
11514
11515		/*
11516		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11517		 * and in the air. We also check that number of outstanding
11518		 * COMMON ramrods is not more than the EQ and SPQ can
11519		 * accommodate.
11520		 */
11521		if (type == ETH_CONNECTION_TYPE) {
11522			if (!atomic_read(&bp->cq_spq_left))
11523				break;
11524			else
11525				atomic_dec(&bp->cq_spq_left);
11526		} else if (type == NONE_CONNECTION_TYPE) {
11527			if (!atomic_read(&bp->eq_spq_left))
11528				break;
11529			else
11530				atomic_dec(&bp->eq_spq_left);
11531		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11532			   (type == FCOE_CONNECTION_TYPE)) {
11533			if (bp->cnic_spq_pending >=
11534			    bp->cnic_eth_dev.max_kwqe_pending)
11535				break;
11536			else
11537				bp->cnic_spq_pending++;
11538		} else {
11539			BNX2X_ERR("Unknown SPE type: %d\n", type);
11540			bnx2x_panic();
11541			break;
11542		}
11543
11544		spe = bnx2x_sp_get_next(bp);
11545		*spe = *bp->cnic_kwq_cons;
11546
11547		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11548		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11549
11550		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11551			bp->cnic_kwq_cons = bp->cnic_kwq;
11552		else
11553			bp->cnic_kwq_cons++;
11554	}
11555	bnx2x_sp_prod_update(bp);
11556	spin_unlock_bh(&bp->spq_lock);
11557}
11558
11559static int bnx2x_cnic_sp_queue(struct net_device *dev,
11560			       struct kwqe_16 *kwqes[], u32 count)
11561{
11562	struct bnx2x *bp = netdev_priv(dev);
11563	int i;
11564
11565#ifdef BNX2X_STOP_ON_ERROR
11566	if (unlikely(bp->panic))
11567		return -EIO;
11568#endif
11569
11570	spin_lock_bh(&bp->spq_lock);
11571
11572	for (i = 0; i < count; i++) {
11573		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11574
11575		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11576			break;
11577
11578		*bp->cnic_kwq_prod = *spe;
11579
11580		bp->cnic_kwq_pending++;
11581
11582		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11583		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11584		   spe->data.update_data_addr.hi,
11585		   spe->data.update_data_addr.lo,
11586		   bp->cnic_kwq_pending);
11587
11588		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11589			bp->cnic_kwq_prod = bp->cnic_kwq;
11590		else
11591			bp->cnic_kwq_prod++;
11592	}
11593
11594	spin_unlock_bh(&bp->spq_lock);
11595
11596	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11597		bnx2x_cnic_sp_post(bp, 0);
11598
11599	return i;
11600}
11601
11602static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11603{
11604	struct cnic_ops *c_ops;
11605	int rc = 0;
11606
11607	mutex_lock(&bp->cnic_mutex);
11608	c_ops = rcu_dereference_protected(bp->cnic_ops,
11609					  lockdep_is_held(&bp->cnic_mutex));
11610	if (c_ops)
11611		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11612	mutex_unlock(&bp->cnic_mutex);
11613
11614	return rc;
11615}
11616
11617static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11618{
11619	struct cnic_ops *c_ops;
11620	int rc = 0;
11621
11622	rcu_read_lock();
11623	c_ops = rcu_dereference(bp->cnic_ops);
11624	if (c_ops)
11625		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11626	rcu_read_unlock();
11627
11628	return rc;
11629}
11630
11631/*
11632 * for commands that have no data
11633 */
11634int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11635{
11636	struct cnic_ctl_info ctl = {0};
11637
11638	ctl.cmd = cmd;
11639
11640	return bnx2x_cnic_ctl_send(bp, &ctl);
11641}
11642
11643static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11644{
11645	struct cnic_ctl_info ctl = {0};
11646
11647	/* first we tell CNIC and only then we count this as a completion */
11648	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11649	ctl.data.comp.cid = cid;
11650	ctl.data.comp.error = err;
11651
11652	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11653	bnx2x_cnic_sp_post(bp, 0);
11654}
11655
11656
11657/* Called with netif_addr_lock_bh() taken.
11658 * Sets an rx_mode config for an iSCSI ETH client.
11659 * Doesn't block.
11660 * Completion should be checked outside.
11661 */
11662static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11663{
11664	unsigned long accept_flags = 0, ramrod_flags = 0;
11665	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11666	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11667
11668	if (start) {
11669		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11670		 * because it's the only way for UIO Queue to accept
11671		 * multicasts (in non-promiscuous mode only one Queue per
11672		 * function will receive multicast packets (leading in our
11673		 * case).
11674		 */
11675		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11676		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11677		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11678		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11679
11680		/* Clear STOP_PENDING bit if START is requested */
11681		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11682
11683		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11684	} else
11685		/* Clear START_PENDING bit if STOP is requested */
11686		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11687
11688	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11689		set_bit(sched_state, &bp->sp_state);
11690	else {
11691		__set_bit(RAMROD_RX, &ramrod_flags);
11692		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11693				    ramrod_flags);
11694	}
11695}
11696
11697
11698static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11699{
11700	struct bnx2x *bp = netdev_priv(dev);
11701	int rc = 0;
11702
11703	switch (ctl->cmd) {
11704	case DRV_CTL_CTXTBL_WR_CMD: {
11705		u32 index = ctl->data.io.offset;
11706		dma_addr_t addr = ctl->data.io.dma_addr;
11707
11708		bnx2x_ilt_wr(bp, index, addr);
11709		break;
11710	}
11711
11712	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11713		int count = ctl->data.credit.credit_count;
11714
11715		bnx2x_cnic_sp_post(bp, count);
11716		break;
11717	}
11718
11719	/* rtnl_lock is held.  */
11720	case DRV_CTL_START_L2_CMD: {
11721		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11722		unsigned long sp_bits = 0;
11723
11724		/* Configure the iSCSI classification object */
11725		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11726				   cp->iscsi_l2_client_id,
11727				   cp->iscsi_l2_cid, BP_FUNC(bp),
11728				   bnx2x_sp(bp, mac_rdata),
11729				   bnx2x_sp_mapping(bp, mac_rdata),
11730				   BNX2X_FILTER_MAC_PENDING,
11731				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11732				   &bp->macs_pool);
11733
11734		/* Set iSCSI MAC address */
11735		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11736		if (rc)
11737			break;
11738
11739		mmiowb();
11740		barrier();
11741
11742		/* Start accepting on iSCSI L2 ring */
11743
11744		netif_addr_lock_bh(dev);
11745		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11746		netif_addr_unlock_bh(dev);
11747
11748		/* bits to wait on */
11749		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11750		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11751
11752		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11753			BNX2X_ERR("rx_mode completion timed out!\n");
11754
11755		break;
11756	}
11757
11758	/* rtnl_lock is held.  */
11759	case DRV_CTL_STOP_L2_CMD: {
11760		unsigned long sp_bits = 0;
11761
11762		/* Stop accepting on iSCSI L2 ring */
11763		netif_addr_lock_bh(dev);
11764		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11765		netif_addr_unlock_bh(dev);
11766
11767		/* bits to wait on */
11768		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11769		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11770
11771		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11772			BNX2X_ERR("rx_mode completion timed out!\n");
11773
11774		mmiowb();
11775		barrier();
11776
11777		/* Unset iSCSI L2 MAC */
11778		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11779					BNX2X_ISCSI_ETH_MAC, true);
11780		break;
11781	}
11782	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11783		int count = ctl->data.credit.credit_count;
11784
11785		smp_mb__before_atomic_inc();
11786		atomic_add(count, &bp->cq_spq_left);
11787		smp_mb__after_atomic_inc();
11788		break;
11789	}
11790	case DRV_CTL_ULP_REGISTER_CMD: {
11791		int ulp_type = ctl->data.ulp_type;
11792
11793		if (CHIP_IS_E3(bp)) {
11794			int idx = BP_FW_MB_IDX(bp);
11795			u32 cap;
11796
11797			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11798			if (ulp_type == CNIC_ULP_ISCSI)
11799				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11800			else if (ulp_type == CNIC_ULP_FCOE)
11801				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11802			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11803		}
11804		break;
11805	}
11806	case DRV_CTL_ULP_UNREGISTER_CMD: {
11807		int ulp_type = ctl->data.ulp_type;
11808
11809		if (CHIP_IS_E3(bp)) {
11810			int idx = BP_FW_MB_IDX(bp);
11811			u32 cap;
11812
11813			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11814			if (ulp_type == CNIC_ULP_ISCSI)
11815				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11816			else if (ulp_type == CNIC_ULP_FCOE)
11817				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11818			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11819		}
11820		break;
11821	}
11822
11823	default:
11824		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11825		rc = -EINVAL;
11826	}
11827
11828	return rc;
11829}
11830
11831void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11832{
11833	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11834
11835	if (bp->flags & USING_MSIX_FLAG) {
11836		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11837		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11838		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11839	} else {
11840		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11841		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11842	}
11843	if (!CHIP_IS_E1x(bp))
11844		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11845	else
11846		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11847
11848	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11849	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11850	cp->irq_arr[1].status_blk = bp->def_status_blk;
11851	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11852	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11853
11854	cp->num_irq = 2;
11855}
11856
11857static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11858			       void *data)
11859{
11860	struct bnx2x *bp = netdev_priv(dev);
11861	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11862
11863	if (ops == NULL)
11864		return -EINVAL;
11865
11866	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11867	if (!bp->cnic_kwq)
11868		return -ENOMEM;
11869
11870	bp->cnic_kwq_cons = bp->cnic_kwq;
11871	bp->cnic_kwq_prod = bp->cnic_kwq;
11872	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11873
11874	bp->cnic_spq_pending = 0;
11875	bp->cnic_kwq_pending = 0;
11876
11877	bp->cnic_data = data;
11878
11879	cp->num_irq = 0;
11880	cp->drv_state |= CNIC_DRV_STATE_REGD;
11881	cp->iro_arr = bp->iro_arr;
11882
11883	bnx2x_setup_cnic_irq_info(bp);
11884
11885	rcu_assign_pointer(bp->cnic_ops, ops);
11886
11887	return 0;
11888}
11889
11890static int bnx2x_unregister_cnic(struct net_device *dev)
11891{
11892	struct bnx2x *bp = netdev_priv(dev);
11893	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11894
11895	mutex_lock(&bp->cnic_mutex);
11896	cp->drv_state = 0;
11897	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11898	mutex_unlock(&bp->cnic_mutex);
11899	synchronize_rcu();
11900	kfree(bp->cnic_kwq);
11901	bp->cnic_kwq = NULL;
11902
11903	return 0;
11904}
11905
11906struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11907{
11908	struct bnx2x *bp = netdev_priv(dev);
11909	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11910
11911	/* If both iSCSI and FCoE are disabled - return NULL in
11912	 * order to indicate CNIC that it should not try to work
11913	 * with this device.
11914	 */
11915	if (NO_ISCSI(bp) && NO_FCOE(bp))
11916		return NULL;
11917
11918	cp->drv_owner = THIS_MODULE;
11919	cp->chip_id = CHIP_ID(bp);
11920	cp->pdev = bp->pdev;
11921	cp->io_base = bp->regview;
11922	cp->io_base2 = bp->doorbells;
11923	cp->max_kwqe_pending = 8;
11924	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11925	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11926			     bnx2x_cid_ilt_lines(bp);
11927	cp->ctx_tbl_len = CNIC_ILT_LINES;
11928	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11929	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11930	cp->drv_ctl = bnx2x_drv_ctl;
11931	cp->drv_register_cnic = bnx2x_register_cnic;
11932	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11933	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11934	cp->iscsi_l2_client_id =
11935		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11936	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11937
11938	if (NO_ISCSI_OOO(bp))
11939		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11940
11941	if (NO_ISCSI(bp))
11942		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11943
11944	if (NO_FCOE(bp))
11945		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11946
11947	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11948			 "starting cid %d\n",
11949	   cp->ctx_blk_size,
11950	   cp->ctx_tbl_offset,
11951	   cp->ctx_tbl_len,
11952	   cp->starting_cid);
11953	return cp;
11954}
11955EXPORT_SYMBOL(bnx2x_cnic_probe);
11956
11957#endif /* BCM_CNIC */
11958
11959