bnx2x_main.c revision 5f6db130b5dab96eb1fe6b2c1d1131a74149f949
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/aer.h>
31#include <linux/init.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
35#include <linux/dma-mapping.h>
36#include <linux/bitops.h>
37#include <linux/irq.h>
38#include <linux/delay.h>
39#include <asm/byteorder.h>
40#include <linux/time.h>
41#include <linux/ethtool.h>
42#include <linux/mii.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/semaphore.h>
56#include <linux/stringify.h>
57#include <linux/vmalloc.h>
58
59#include "bnx2x.h"
60#include "bnx2x_init.h"
61#include "bnx2x_init_ops.h"
62#include "bnx2x_cmn.h"
63#include "bnx2x_vfpf.h"
64#include "bnx2x_dcb.h"
65#include "bnx2x_sp.h"
66
67#include <linux/firmware.h>
68#include "bnx2x_fw_file_hdr.h"
69/* FW files */
70#define FW_FILE_VERSION					\
71	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
72	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
73	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
74	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
75#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79/* Time in jiffies before concluding the transmitter is hung */
80#define TX_TIMEOUT		(5*HZ)
81
82static char version[] =
83	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86MODULE_AUTHOR("Eliezer Tamir");
87MODULE_DESCRIPTION("Broadcom NetXtreme II "
88		   "BCM57710/57711/57711E/"
89		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90		   "57840/57840_MF Driver");
91MODULE_LICENSE("GPL");
92MODULE_VERSION(DRV_MODULE_VERSION);
93MODULE_FIRMWARE(FW_FILE_NAME_E1);
94MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97int bnx2x_num_queues;
98module_param_named(num_queues, bnx2x_num_queues, int, 0);
99MODULE_PARM_DESC(num_queues,
100		 " Set number of queues (default is as a number of CPUs)");
101
102static int disable_tpa;
103module_param(disable_tpa, int, 0);
104MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106static int int_mode;
107module_param(int_mode, int, 0);
108MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109				"(1 INT#x; 2 MSI)");
110
111static int dropless_fc;
112module_param(dropless_fc, int, 0);
113MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115static int mrrs = -1;
116module_param(mrrs, int, 0);
117MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119static int debug;
120module_param(debug, int, 0);
121MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123struct workqueue_struct *bnx2x_wq;
124
125struct bnx2x_mac_vals {
126	u32 xmac_addr;
127	u32 xmac_val;
128	u32 emac_addr;
129	u32 emac_val;
130	u32 umac_addr;
131	u32 umac_val;
132	u32 bmac_addr;
133	u32 bmac_val[2];
134};
135
136enum bnx2x_board_type {
137	BCM57710 = 0,
138	BCM57711,
139	BCM57711E,
140	BCM57712,
141	BCM57712_MF,
142	BCM57712_VF,
143	BCM57800,
144	BCM57800_MF,
145	BCM57800_VF,
146	BCM57810,
147	BCM57810_MF,
148	BCM57810_VF,
149	BCM57840_4_10,
150	BCM57840_2_20,
151	BCM57840_MF,
152	BCM57840_VF,
153	BCM57811,
154	BCM57811_MF,
155	BCM57840_O,
156	BCM57840_MFO,
157	BCM57811_VF
158};
159
160/* indexed by board_type, above */
161static struct {
162	char *name;
163} board_info[] = {
164	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
165	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
166	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
167	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
168	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
169	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
170	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
171	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
172	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
173	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
174	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
175	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
176	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
177	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
178	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
179	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
180	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
181	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
182	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
183	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
184	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
185};
186
187#ifndef PCI_DEVICE_ID_NX2_57710
188#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
189#endif
190#ifndef PCI_DEVICE_ID_NX2_57711
191#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
192#endif
193#ifndef PCI_DEVICE_ID_NX2_57711E
194#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
195#endif
196#ifndef PCI_DEVICE_ID_NX2_57712
197#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
198#endif
199#ifndef PCI_DEVICE_ID_NX2_57712_MF
200#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
201#endif
202#ifndef PCI_DEVICE_ID_NX2_57712_VF
203#define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
204#endif
205#ifndef PCI_DEVICE_ID_NX2_57800
206#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
207#endif
208#ifndef PCI_DEVICE_ID_NX2_57800_MF
209#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
210#endif
211#ifndef PCI_DEVICE_ID_NX2_57800_VF
212#define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
213#endif
214#ifndef PCI_DEVICE_ID_NX2_57810
215#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
216#endif
217#ifndef PCI_DEVICE_ID_NX2_57810_MF
218#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
219#endif
220#ifndef PCI_DEVICE_ID_NX2_57840_O
221#define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
222#endif
223#ifndef PCI_DEVICE_ID_NX2_57810_VF
224#define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
225#endif
226#ifndef PCI_DEVICE_ID_NX2_57840_4_10
227#define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
228#endif
229#ifndef PCI_DEVICE_ID_NX2_57840_2_20
230#define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
231#endif
232#ifndef PCI_DEVICE_ID_NX2_57840_MFO
233#define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
234#endif
235#ifndef PCI_DEVICE_ID_NX2_57840_MF
236#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
237#endif
238#ifndef PCI_DEVICE_ID_NX2_57840_VF
239#define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
240#endif
241#ifndef PCI_DEVICE_ID_NX2_57811
242#define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
243#endif
244#ifndef PCI_DEVICE_ID_NX2_57811_MF
245#define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
246#endif
247#ifndef PCI_DEVICE_ID_NX2_57811_VF
248#define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
249#endif
250
251static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
252	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
253	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
254	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
255	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
256	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
257	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
258	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
259	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
260	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
261	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
262	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
263	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
264	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
265	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
266	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
267	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
268	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
271	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
272	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
273	{ 0 }
274};
275
276MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
277
278/* Global resources for unloading a previously loaded device */
279#define BNX2X_PREV_WAIT_NEEDED 1
280static DEFINE_SEMAPHORE(bnx2x_prev_sem);
281static LIST_HEAD(bnx2x_prev_list);
282
283/* Forward declaration */
284static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
285static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
286static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
287
288/****************************************************************************
289* General service functions
290****************************************************************************/
291
292static void __storm_memset_dma_mapping(struct bnx2x *bp,
293				       u32 addr, dma_addr_t mapping)
294{
295	REG_WR(bp,  addr, U64_LO(mapping));
296	REG_WR(bp,  addr + 4, U64_HI(mapping));
297}
298
299static void storm_memset_spq_addr(struct bnx2x *bp,
300				  dma_addr_t mapping, u16 abs_fid)
301{
302	u32 addr = XSEM_REG_FAST_MEMORY +
303			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
304
305	__storm_memset_dma_mapping(bp, addr, mapping);
306}
307
308static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
309				  u16 pf_id)
310{
311	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
312		pf_id);
313	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
314		pf_id);
315	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
316		pf_id);
317	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
318		pf_id);
319}
320
321static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
322				 u8 enable)
323{
324	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
325		enable);
326	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
327		enable);
328	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
329		enable);
330	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
331		enable);
332}
333
334static void storm_memset_eq_data(struct bnx2x *bp,
335				 struct event_ring_data *eq_data,
336				u16 pfid)
337{
338	size_t size = sizeof(struct event_ring_data);
339
340	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
341
342	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
343}
344
345static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
346				 u16 pfid)
347{
348	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
349	REG_WR16(bp, addr, eq_prod);
350}
351
352/* used only at init
353 * locking is done by mcp
354 */
355static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
356{
357	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
358	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
359	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
360			       PCICFG_VENDOR_ID_OFFSET);
361}
362
363static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
364{
365	u32 val;
366
367	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
369	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370			       PCICFG_VENDOR_ID_OFFSET);
371
372	return val;
373}
374
375#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
376#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
377#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
378#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
379#define DMAE_DP_DST_NONE	"dst_addr [none]"
380
381static void bnx2x_dp_dmae(struct bnx2x *bp,
382			  struct dmae_command *dmae, int msglvl)
383{
384	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
385	int i;
386
387	switch (dmae->opcode & DMAE_COMMAND_DST) {
388	case DMAE_CMD_DST_PCI:
389		if (src_type == DMAE_CMD_SRC_PCI)
390			DP(msglvl, "DMAE: opcode 0x%08x\n"
391			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
392			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
393			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
394			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
395			   dmae->comp_addr_hi, dmae->comp_addr_lo,
396			   dmae->comp_val);
397		else
398			DP(msglvl, "DMAE: opcode 0x%08x\n"
399			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
400			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401			   dmae->opcode, dmae->src_addr_lo >> 2,
402			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404			   dmae->comp_val);
405		break;
406	case DMAE_CMD_DST_GRC:
407		if (src_type == DMAE_CMD_SRC_PCI)
408			DP(msglvl, "DMAE: opcode 0x%08x\n"
409			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
410			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
411			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
412			   dmae->len, dmae->dst_addr_lo >> 2,
413			   dmae->comp_addr_hi, dmae->comp_addr_lo,
414			   dmae->comp_val);
415		else
416			DP(msglvl, "DMAE: opcode 0x%08x\n"
417			   "src [%08x], len [%d*4], dst [%08x]\n"
418			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419			   dmae->opcode, dmae->src_addr_lo >> 2,
420			   dmae->len, dmae->dst_addr_lo >> 2,
421			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422			   dmae->comp_val);
423		break;
424	default:
425		if (src_type == DMAE_CMD_SRC_PCI)
426			DP(msglvl, "DMAE: opcode 0x%08x\n"
427			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
428			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
430			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431			   dmae->comp_val);
432		else
433			DP(msglvl, "DMAE: opcode 0x%08x\n"
434			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
435			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
436			   dmae->opcode, dmae->src_addr_lo >> 2,
437			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
438			   dmae->comp_val);
439		break;
440	}
441
442	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
443		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
444		   i, *(((u32 *)dmae) + i));
445}
446
447/* copy command into DMAE command memory and set DMAE command go */
448void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
449{
450	u32 cmd_offset;
451	int i;
452
453	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
454	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
455		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
456	}
457	REG_WR(bp, dmae_reg_go_c[idx], 1);
458}
459
460u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
461{
462	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
463			   DMAE_CMD_C_ENABLE);
464}
465
466u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
467{
468	return opcode & ~DMAE_CMD_SRC_RESET;
469}
470
471u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
472			     bool with_comp, u8 comp_type)
473{
474	u32 opcode = 0;
475
476	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
477		   (dst_type << DMAE_COMMAND_DST_SHIFT));
478
479	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
480
481	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
482	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
483		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
484	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
485
486#ifdef __BIG_ENDIAN
487	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
488#else
489	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
490#endif
491	if (with_comp)
492		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
493	return opcode;
494}
495
496void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
497				      struct dmae_command *dmae,
498				      u8 src_type, u8 dst_type)
499{
500	memset(dmae, 0, sizeof(struct dmae_command));
501
502	/* set the opcode */
503	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
504					 true, DMAE_COMP_PCI);
505
506	/* fill in the completion parameters */
507	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
508	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
509	dmae->comp_val = DMAE_COMP_VAL;
510}
511
512/* issue a dmae command over the init-channel and wait for completion */
513int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
514			       u32 *comp)
515{
516	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
517	int rc = 0;
518
519	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
520
521	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
522	 * as long as this code is called both from syscall context and
523	 * from ndo_set_rx_mode() flow that may be called from BH.
524	 */
525	spin_lock_bh(&bp->dmae_lock);
526
527	/* reset completion */
528	*comp = 0;
529
530	/* post the command on the channel used for initializations */
531	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
532
533	/* wait for completion */
534	udelay(5);
535	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
536
537		if (!cnt ||
538		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
539		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
540			BNX2X_ERR("DMAE timeout!\n");
541			rc = DMAE_TIMEOUT;
542			goto unlock;
543		}
544		cnt--;
545		udelay(50);
546	}
547	if (*comp & DMAE_PCI_ERR_FLAG) {
548		BNX2X_ERR("DMAE PCI error!\n");
549		rc = DMAE_PCI_ERROR;
550	}
551
552unlock:
553	spin_unlock_bh(&bp->dmae_lock);
554	return rc;
555}
556
557void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
558		      u32 len32)
559{
560	int rc;
561	struct dmae_command dmae;
562
563	if (!bp->dmae_ready) {
564		u32 *data = bnx2x_sp(bp, wb_data[0]);
565
566		if (CHIP_IS_E1(bp))
567			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
568		else
569			bnx2x_init_str_wr(bp, dst_addr, data, len32);
570		return;
571	}
572
573	/* set opcode and fixed command fields */
574	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
575
576	/* fill in addresses and len */
577	dmae.src_addr_lo = U64_LO(dma_addr);
578	dmae.src_addr_hi = U64_HI(dma_addr);
579	dmae.dst_addr_lo = dst_addr >> 2;
580	dmae.dst_addr_hi = 0;
581	dmae.len = len32;
582
583	/* issue the command and wait for completion */
584	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
585	if (rc) {
586		BNX2X_ERR("DMAE returned failure %d\n", rc);
587#ifdef BNX2X_STOP_ON_ERROR
588		bnx2x_panic();
589#endif
590	}
591}
592
593void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
594{
595	int rc;
596	struct dmae_command dmae;
597
598	if (!bp->dmae_ready) {
599		u32 *data = bnx2x_sp(bp, wb_data[0]);
600		int i;
601
602		if (CHIP_IS_E1(bp))
603			for (i = 0; i < len32; i++)
604				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
605		else
606			for (i = 0; i < len32; i++)
607				data[i] = REG_RD(bp, src_addr + i*4);
608
609		return;
610	}
611
612	/* set opcode and fixed command fields */
613	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
614
615	/* fill in addresses and len */
616	dmae.src_addr_lo = src_addr >> 2;
617	dmae.src_addr_hi = 0;
618	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
619	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
620	dmae.len = len32;
621
622	/* issue the command and wait for completion */
623	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
624	if (rc) {
625		BNX2X_ERR("DMAE returned failure %d\n", rc);
626#ifdef BNX2X_STOP_ON_ERROR
627		bnx2x_panic();
628#endif
629	}
630}
631
632static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
633				      u32 addr, u32 len)
634{
635	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
636	int offset = 0;
637
638	while (len > dmae_wr_max) {
639		bnx2x_write_dmae(bp, phys_addr + offset,
640				 addr + offset, dmae_wr_max);
641		offset += dmae_wr_max * 4;
642		len -= dmae_wr_max;
643	}
644
645	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
646}
647
648static int bnx2x_mc_assert(struct bnx2x *bp)
649{
650	char last_idx;
651	int i, rc = 0;
652	u32 row0, row1, row2, row3;
653
654	/* XSTORM */
655	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
656			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
657	if (last_idx)
658		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
659
660	/* print the asserts */
661	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
662
663		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
664			      XSTORM_ASSERT_LIST_OFFSET(i));
665		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
666			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
667		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
668			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
669		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
670			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
671
672		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
673			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
674				  i, row3, row2, row1, row0);
675			rc++;
676		} else {
677			break;
678		}
679	}
680
681	/* TSTORM */
682	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
683			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
684	if (last_idx)
685		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686
687	/* print the asserts */
688	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689
690		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
691			      TSTORM_ASSERT_LIST_OFFSET(i));
692		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
693			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
694		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
695			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
696		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
697			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
698
699		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
701				  i, row3, row2, row1, row0);
702			rc++;
703		} else {
704			break;
705		}
706	}
707
708	/* CSTORM */
709	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
710			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
711	if (last_idx)
712		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
713
714	/* print the asserts */
715	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
716
717		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
718			      CSTORM_ASSERT_LIST_OFFSET(i));
719		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
720			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
721		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
722			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
723		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
724			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
725
726		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
727			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
728				  i, row3, row2, row1, row0);
729			rc++;
730		} else {
731			break;
732		}
733	}
734
735	/* USTORM */
736	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
737			   USTORM_ASSERT_LIST_INDEX_OFFSET);
738	if (last_idx)
739		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
740
741	/* print the asserts */
742	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
743
744		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
745			      USTORM_ASSERT_LIST_OFFSET(i));
746		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
747			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
748		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
749			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
750		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
751			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
752
753		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
754			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
755				  i, row3, row2, row1, row0);
756			rc++;
757		} else {
758			break;
759		}
760	}
761
762	return rc;
763}
764
765#define MCPR_TRACE_BUFFER_SIZE	(0x800)
766#define SCRATCH_BUFFER_SIZE(bp)	\
767	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
768
769void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
770{
771	u32 addr, val;
772	u32 mark, offset;
773	__be32 data[9];
774	int word;
775	u32 trace_shmem_base;
776	if (BP_NOMCP(bp)) {
777		BNX2X_ERR("NO MCP - can not dump\n");
778		return;
779	}
780	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
781		(bp->common.bc_ver & 0xff0000) >> 16,
782		(bp->common.bc_ver & 0xff00) >> 8,
783		(bp->common.bc_ver & 0xff));
784
785	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
786	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
787		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
788
789	if (BP_PATH(bp) == 0)
790		trace_shmem_base = bp->common.shmem_base;
791	else
792		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
793
794	/* sanity */
795	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
796	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
797				SCRATCH_BUFFER_SIZE(bp)) {
798		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
799			  trace_shmem_base);
800		return;
801	}
802
803	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
804
805	/* validate TRCB signature */
806	mark = REG_RD(bp, addr);
807	if (mark != MFW_TRACE_SIGNATURE) {
808		BNX2X_ERR("Trace buffer signature is missing.");
809		return ;
810	}
811
812	/* read cyclic buffer pointer */
813	addr += 4;
814	mark = REG_RD(bp, addr);
815	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
816	if (mark >= trace_shmem_base || mark < addr + 4) {
817		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
818		return;
819	}
820	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
821
822	printk("%s", lvl);
823
824	/* dump buffer after the mark */
825	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
826		for (word = 0; word < 8; word++)
827			data[word] = htonl(REG_RD(bp, offset + 4*word));
828		data[8] = 0x0;
829		pr_cont("%s", (char *)data);
830	}
831
832	/* dump buffer before the mark */
833	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
834		for (word = 0; word < 8; word++)
835			data[word] = htonl(REG_RD(bp, offset + 4*word));
836		data[8] = 0x0;
837		pr_cont("%s", (char *)data);
838	}
839	printk("%s" "end of fw dump\n", lvl);
840}
841
842static void bnx2x_fw_dump(struct bnx2x *bp)
843{
844	bnx2x_fw_dump_lvl(bp, KERN_ERR);
845}
846
847static void bnx2x_hc_int_disable(struct bnx2x *bp)
848{
849	int port = BP_PORT(bp);
850	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
851	u32 val = REG_RD(bp, addr);
852
853	/* in E1 we must use only PCI configuration space to disable
854	 * MSI/MSIX capability
855	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
856	 */
857	if (CHIP_IS_E1(bp)) {
858		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
859		 * Use mask register to prevent from HC sending interrupts
860		 * after we exit the function
861		 */
862		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
863
864		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
865			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867	} else
868		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
869			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
870			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
871			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
872
873	DP(NETIF_MSG_IFDOWN,
874	   "write %x to HC %d (addr 0x%x)\n",
875	   val, port, addr);
876
877	/* flush all outstanding writes */
878	mmiowb();
879
880	REG_WR(bp, addr, val);
881	if (REG_RD(bp, addr) != val)
882		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
883}
884
885static void bnx2x_igu_int_disable(struct bnx2x *bp)
886{
887	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
888
889	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
890		 IGU_PF_CONF_INT_LINE_EN |
891		 IGU_PF_CONF_ATTN_BIT_EN);
892
893	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
894
895	/* flush all outstanding writes */
896	mmiowb();
897
898	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
899	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
900		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
901}
902
903static void bnx2x_int_disable(struct bnx2x *bp)
904{
905	if (bp->common.int_block == INT_BLOCK_HC)
906		bnx2x_hc_int_disable(bp);
907	else
908		bnx2x_igu_int_disable(bp);
909}
910
911void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
912{
913	int i;
914	u16 j;
915	struct hc_sp_status_block_data sp_sb_data;
916	int func = BP_FUNC(bp);
917#ifdef BNX2X_STOP_ON_ERROR
918	u16 start = 0, end = 0;
919	u8 cos;
920#endif
921	if (disable_int)
922		bnx2x_int_disable(bp);
923
924	bp->stats_state = STATS_STATE_DISABLED;
925	bp->eth_stats.unrecoverable_error++;
926	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
927
928	BNX2X_ERR("begin crash dump -----------------\n");
929
930	/* Indices */
931	/* Common */
932	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
933		  bp->def_idx, bp->def_att_idx, bp->attn_state,
934		  bp->spq_prod_idx, bp->stats_counter);
935	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
936		  bp->def_status_blk->atten_status_block.attn_bits,
937		  bp->def_status_blk->atten_status_block.attn_bits_ack,
938		  bp->def_status_blk->atten_status_block.status_block_id,
939		  bp->def_status_blk->atten_status_block.attn_bits_index);
940	BNX2X_ERR("     def (");
941	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
942		pr_cont("0x%x%s",
943			bp->def_status_blk->sp_sb.index_values[i],
944			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
945
946	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
947		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
948			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
949			i*sizeof(u32));
950
951	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
952	       sp_sb_data.igu_sb_id,
953	       sp_sb_data.igu_seg_id,
954	       sp_sb_data.p_func.pf_id,
955	       sp_sb_data.p_func.vnic_id,
956	       sp_sb_data.p_func.vf_id,
957	       sp_sb_data.p_func.vf_valid,
958	       sp_sb_data.state);
959
960	for_each_eth_queue(bp, i) {
961		struct bnx2x_fastpath *fp = &bp->fp[i];
962		int loop;
963		struct hc_status_block_data_e2 sb_data_e2;
964		struct hc_status_block_data_e1x sb_data_e1x;
965		struct hc_status_block_sm  *hc_sm_p =
966			CHIP_IS_E1x(bp) ?
967			sb_data_e1x.common.state_machine :
968			sb_data_e2.common.state_machine;
969		struct hc_index_data *hc_index_p =
970			CHIP_IS_E1x(bp) ?
971			sb_data_e1x.index_data :
972			sb_data_e2.index_data;
973		u8 data_size, cos;
974		u32 *sb_data_p;
975		struct bnx2x_fp_txdata txdata;
976
977		/* Rx */
978		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
979			  i, fp->rx_bd_prod, fp->rx_bd_cons,
980			  fp->rx_comp_prod,
981			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
983			  fp->rx_sge_prod, fp->last_max_sge,
984			  le16_to_cpu(fp->fp_hc_idx));
985
986		/* Tx */
987		for_each_cos_in_tx_queue(fp, cos)
988		{
989			txdata = *fp->txdata_ptr[cos];
990			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
991				  i, txdata.tx_pkt_prod,
992				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
993				  txdata.tx_bd_cons,
994				  le16_to_cpu(*txdata.tx_cons_sb));
995		}
996
997		loop = CHIP_IS_E1x(bp) ?
998			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
999
1000		/* host sb data */
1001
1002		if (IS_FCOE_FP(fp))
1003			continue;
1004
1005		BNX2X_ERR("     run indexes (");
1006		for (j = 0; j < HC_SB_MAX_SM; j++)
1007			pr_cont("0x%x%s",
1008			       fp->sb_running_index[j],
1009			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1010
1011		BNX2X_ERR("     indexes (");
1012		for (j = 0; j < loop; j++)
1013			pr_cont("0x%x%s",
1014			       fp->sb_index_values[j],
1015			       (j == loop - 1) ? ")" : " ");
1016		/* fw sb data */
1017		data_size = CHIP_IS_E1x(bp) ?
1018			sizeof(struct hc_status_block_data_e1x) :
1019			sizeof(struct hc_status_block_data_e2);
1020		data_size /= sizeof(u32);
1021		sb_data_p = CHIP_IS_E1x(bp) ?
1022			(u32 *)&sb_data_e1x :
1023			(u32 *)&sb_data_e2;
1024		/* copy sb data in here */
1025		for (j = 0; j < data_size; j++)
1026			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1027				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1028				j * sizeof(u32));
1029
1030		if (!CHIP_IS_E1x(bp)) {
1031			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1032				sb_data_e2.common.p_func.pf_id,
1033				sb_data_e2.common.p_func.vf_id,
1034				sb_data_e2.common.p_func.vf_valid,
1035				sb_data_e2.common.p_func.vnic_id,
1036				sb_data_e2.common.same_igu_sb_1b,
1037				sb_data_e2.common.state);
1038		} else {
1039			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1040				sb_data_e1x.common.p_func.pf_id,
1041				sb_data_e1x.common.p_func.vf_id,
1042				sb_data_e1x.common.p_func.vf_valid,
1043				sb_data_e1x.common.p_func.vnic_id,
1044				sb_data_e1x.common.same_igu_sb_1b,
1045				sb_data_e1x.common.state);
1046		}
1047
1048		/* SB_SMs data */
1049		for (j = 0; j < HC_SB_MAX_SM; j++) {
1050			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1051				j, hc_sm_p[j].__flags,
1052				hc_sm_p[j].igu_sb_id,
1053				hc_sm_p[j].igu_seg_id,
1054				hc_sm_p[j].time_to_expire,
1055				hc_sm_p[j].timer_value);
1056		}
1057
1058		/* Indices data */
1059		for (j = 0; j < loop; j++) {
1060			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1061			       hc_index_p[j].flags,
1062			       hc_index_p[j].timeout);
1063		}
1064	}
1065
1066#ifdef BNX2X_STOP_ON_ERROR
1067
1068	/* event queue */
1069	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1070	for (i = 0; i < NUM_EQ_DESC; i++) {
1071		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1072
1073		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1074			  i, bp->eq_ring[i].message.opcode,
1075			  bp->eq_ring[i].message.error);
1076		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1077	}
1078
1079	/* Rings */
1080	/* Rx */
1081	for_each_valid_rx_queue(bp, i) {
1082		struct bnx2x_fastpath *fp = &bp->fp[i];
1083
1084		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1085		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1086		for (j = start; j != end; j = RX_BD(j + 1)) {
1087			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1088			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1089
1090			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1091				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1092		}
1093
1094		start = RX_SGE(fp->rx_sge_prod);
1095		end = RX_SGE(fp->last_max_sge);
1096		for (j = start; j != end; j = RX_SGE(j + 1)) {
1097			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1098			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1099
1100			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1101				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1102		}
1103
1104		start = RCQ_BD(fp->rx_comp_cons - 10);
1105		end = RCQ_BD(fp->rx_comp_cons + 503);
1106		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1107			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1108
1109			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1110				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1111		}
1112	}
1113
1114	/* Tx */
1115	for_each_valid_tx_queue(bp, i) {
1116		struct bnx2x_fastpath *fp = &bp->fp[i];
1117		for_each_cos_in_tx_queue(fp, cos) {
1118			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1119
1120			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1121			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1122			for (j = start; j != end; j = TX_BD(j + 1)) {
1123				struct sw_tx_bd *sw_bd =
1124					&txdata->tx_buf_ring[j];
1125
1126				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1127					  i, cos, j, sw_bd->skb,
1128					  sw_bd->first_bd);
1129			}
1130
1131			start = TX_BD(txdata->tx_bd_cons - 10);
1132			end = TX_BD(txdata->tx_bd_cons + 254);
1133			for (j = start; j != end; j = TX_BD(j + 1)) {
1134				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1135
1136				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1137					  i, cos, j, tx_bd[0], tx_bd[1],
1138					  tx_bd[2], tx_bd[3]);
1139			}
1140		}
1141	}
1142#endif
1143	bnx2x_fw_dump(bp);
1144	bnx2x_mc_assert(bp);
1145	BNX2X_ERR("end crash dump -----------------\n");
1146}
1147
1148/*
1149 * FLR Support for E2
1150 *
1151 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1152 * initialization.
1153 */
1154#define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1155#define FLR_WAIT_INTERVAL	50	/* usec */
1156#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1157
1158struct pbf_pN_buf_regs {
1159	int pN;
1160	u32 init_crd;
1161	u32 crd;
1162	u32 crd_freed;
1163};
1164
1165struct pbf_pN_cmd_regs {
1166	int pN;
1167	u32 lines_occup;
1168	u32 lines_freed;
1169};
1170
1171static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1172				     struct pbf_pN_buf_regs *regs,
1173				     u32 poll_count)
1174{
1175	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1176	u32 cur_cnt = poll_count;
1177
1178	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1179	crd = crd_start = REG_RD(bp, regs->crd);
1180	init_crd = REG_RD(bp, regs->init_crd);
1181
1182	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1183	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1184	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1185
1186	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1187	       (init_crd - crd_start))) {
1188		if (cur_cnt--) {
1189			udelay(FLR_WAIT_INTERVAL);
1190			crd = REG_RD(bp, regs->crd);
1191			crd_freed = REG_RD(bp, regs->crd_freed);
1192		} else {
1193			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1194			   regs->pN);
1195			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1196			   regs->pN, crd);
1197			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1198			   regs->pN, crd_freed);
1199			break;
1200		}
1201	}
1202	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1203	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1204}
1205
1206static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1207				     struct pbf_pN_cmd_regs *regs,
1208				     u32 poll_count)
1209{
1210	u32 occup, to_free, freed, freed_start;
1211	u32 cur_cnt = poll_count;
1212
1213	occup = to_free = REG_RD(bp, regs->lines_occup);
1214	freed = freed_start = REG_RD(bp, regs->lines_freed);
1215
1216	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1217	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1218
1219	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1220		if (cur_cnt--) {
1221			udelay(FLR_WAIT_INTERVAL);
1222			occup = REG_RD(bp, regs->lines_occup);
1223			freed = REG_RD(bp, regs->lines_freed);
1224		} else {
1225			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1226			   regs->pN);
1227			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1228			   regs->pN, occup);
1229			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1230			   regs->pN, freed);
1231			break;
1232		}
1233	}
1234	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1235	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236}
1237
1238static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1239				    u32 expected, u32 poll_count)
1240{
1241	u32 cur_cnt = poll_count;
1242	u32 val;
1243
1244	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1245		udelay(FLR_WAIT_INTERVAL);
1246
1247	return val;
1248}
1249
1250int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1251				    char *msg, u32 poll_cnt)
1252{
1253	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1254	if (val != 0) {
1255		BNX2X_ERR("%s usage count=%d\n", msg, val);
1256		return 1;
1257	}
1258	return 0;
1259}
1260
1261/* Common routines with VF FLR cleanup */
1262u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1263{
1264	/* adjust polling timeout */
1265	if (CHIP_REV_IS_EMUL(bp))
1266		return FLR_POLL_CNT * 2000;
1267
1268	if (CHIP_REV_IS_FPGA(bp))
1269		return FLR_POLL_CNT * 120;
1270
1271	return FLR_POLL_CNT;
1272}
1273
1274void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1275{
1276	struct pbf_pN_cmd_regs cmd_regs[] = {
1277		{0, (CHIP_IS_E3B0(bp)) ?
1278			PBF_REG_TQ_OCCUPANCY_Q0 :
1279			PBF_REG_P0_TQ_OCCUPANCY,
1280		    (CHIP_IS_E3B0(bp)) ?
1281			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1282			PBF_REG_P0_TQ_LINES_FREED_CNT},
1283		{1, (CHIP_IS_E3B0(bp)) ?
1284			PBF_REG_TQ_OCCUPANCY_Q1 :
1285			PBF_REG_P1_TQ_OCCUPANCY,
1286		    (CHIP_IS_E3B0(bp)) ?
1287			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1288			PBF_REG_P1_TQ_LINES_FREED_CNT},
1289		{4, (CHIP_IS_E3B0(bp)) ?
1290			PBF_REG_TQ_OCCUPANCY_LB_Q :
1291			PBF_REG_P4_TQ_OCCUPANCY,
1292		    (CHIP_IS_E3B0(bp)) ?
1293			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1294			PBF_REG_P4_TQ_LINES_FREED_CNT}
1295	};
1296
1297	struct pbf_pN_buf_regs buf_regs[] = {
1298		{0, (CHIP_IS_E3B0(bp)) ?
1299			PBF_REG_INIT_CRD_Q0 :
1300			PBF_REG_P0_INIT_CRD ,
1301		    (CHIP_IS_E3B0(bp)) ?
1302			PBF_REG_CREDIT_Q0 :
1303			PBF_REG_P0_CREDIT,
1304		    (CHIP_IS_E3B0(bp)) ?
1305			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1306			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1307		{1, (CHIP_IS_E3B0(bp)) ?
1308			PBF_REG_INIT_CRD_Q1 :
1309			PBF_REG_P1_INIT_CRD,
1310		    (CHIP_IS_E3B0(bp)) ?
1311			PBF_REG_CREDIT_Q1 :
1312			PBF_REG_P1_CREDIT,
1313		    (CHIP_IS_E3B0(bp)) ?
1314			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1315			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1316		{4, (CHIP_IS_E3B0(bp)) ?
1317			PBF_REG_INIT_CRD_LB_Q :
1318			PBF_REG_P4_INIT_CRD,
1319		    (CHIP_IS_E3B0(bp)) ?
1320			PBF_REG_CREDIT_LB_Q :
1321			PBF_REG_P4_CREDIT,
1322		    (CHIP_IS_E3B0(bp)) ?
1323			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1324			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1325	};
1326
1327	int i;
1328
1329	/* Verify the command queues are flushed P0, P1, P4 */
1330	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1331		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1332
1333	/* Verify the transmission buffers are flushed P0, P1, P4 */
1334	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1335		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1336}
1337
1338#define OP_GEN_PARAM(param) \
1339	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1340
1341#define OP_GEN_TYPE(type) \
1342	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1343
1344#define OP_GEN_AGG_VECT(index) \
1345	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1346
1347int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1348{
1349	u32 op_gen_command = 0;
1350	u32 comp_addr = BAR_CSTRORM_INTMEM +
1351			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1352	int ret = 0;
1353
1354	if (REG_RD(bp, comp_addr)) {
1355		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1356		return 1;
1357	}
1358
1359	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1360	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1361	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1362	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1363
1364	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1365	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1366
1367	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1368		BNX2X_ERR("FW final cleanup did not succeed\n");
1369		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1370		   (REG_RD(bp, comp_addr)));
1371		bnx2x_panic();
1372		return 1;
1373	}
1374	/* Zero completion for next FLR */
1375	REG_WR(bp, comp_addr, 0);
1376
1377	return ret;
1378}
1379
1380u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1381{
1382	u16 status;
1383
1384	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1385	return status & PCI_EXP_DEVSTA_TRPND;
1386}
1387
1388/* PF FLR specific routines
1389*/
1390static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1391{
1392	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1393	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394			CFC_REG_NUM_LCIDS_INSIDE_PF,
1395			"CFC PF usage counter timed out",
1396			poll_cnt))
1397		return 1;
1398
1399	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1400	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1401			DORQ_REG_PF_USAGE_CNT,
1402			"DQ PF usage counter timed out",
1403			poll_cnt))
1404		return 1;
1405
1406	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1407	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1408			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1409			"QM PF usage counter timed out",
1410			poll_cnt))
1411		return 1;
1412
1413	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1414	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1415			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1416			"Timers VNIC usage counter timed out",
1417			poll_cnt))
1418		return 1;
1419	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1420			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1421			"Timers NUM_SCANS usage counter timed out",
1422			poll_cnt))
1423		return 1;
1424
1425	/* Wait DMAE PF usage counter to zero */
1426	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1427			dmae_reg_go_c[INIT_DMAE_C(bp)],
1428			"DMAE command register timed out",
1429			poll_cnt))
1430		return 1;
1431
1432	return 0;
1433}
1434
1435static void bnx2x_hw_enable_status(struct bnx2x *bp)
1436{
1437	u32 val;
1438
1439	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1440	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1441
1442	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1443	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1444
1445	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1446	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1447
1448	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1449	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1450
1451	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1452	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1453
1454	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1455	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1456
1457	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1458	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1459
1460	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1461	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1462	   val);
1463}
1464
1465static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1466{
1467	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1468
1469	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1470
1471	/* Re-enable PF target read access */
1472	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1473
1474	/* Poll HW usage counters */
1475	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1476	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1477		return -EBUSY;
1478
1479	/* Zero the igu 'trailing edge' and 'leading edge' */
1480
1481	/* Send the FW cleanup command */
1482	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1483		return -EBUSY;
1484
1485	/* ATC cleanup */
1486
1487	/* Verify TX hw is flushed */
1488	bnx2x_tx_hw_flushed(bp, poll_cnt);
1489
1490	/* Wait 100ms (not adjusted according to platform) */
1491	msleep(100);
1492
1493	/* Verify no pending pci transactions */
1494	if (bnx2x_is_pcie_pending(bp->pdev))
1495		BNX2X_ERR("PCIE Transactions still pending\n");
1496
1497	/* Debug */
1498	bnx2x_hw_enable_status(bp);
1499
1500	/*
1501	 * Master enable - Due to WB DMAE writes performed before this
1502	 * register is re-initialized as part of the regular function init
1503	 */
1504	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1505
1506	return 0;
1507}
1508
1509static void bnx2x_hc_int_enable(struct bnx2x *bp)
1510{
1511	int port = BP_PORT(bp);
1512	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1513	u32 val = REG_RD(bp, addr);
1514	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1515	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1516	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1517
1518	if (msix) {
1519		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1520			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1521		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1523		if (single_msix)
1524			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1525	} else if (msi) {
1526		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1527		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1528			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1529			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1530	} else {
1531		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1532			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1533			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1534			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1535
1536		if (!CHIP_IS_E1(bp)) {
1537			DP(NETIF_MSG_IFUP,
1538			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1539
1540			REG_WR(bp, addr, val);
1541
1542			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1543		}
1544	}
1545
1546	if (CHIP_IS_E1(bp))
1547		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1548
1549	DP(NETIF_MSG_IFUP,
1550	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1551	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1552
1553	REG_WR(bp, addr, val);
1554	/*
1555	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1556	 */
1557	mmiowb();
1558	barrier();
1559
1560	if (!CHIP_IS_E1(bp)) {
1561		/* init leading/trailing edge */
1562		if (IS_MF(bp)) {
1563			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1564			if (bp->port.pmf)
1565				/* enable nig and gpio3 attention */
1566				val |= 0x1100;
1567		} else
1568			val = 0xffff;
1569
1570		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1571		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1572	}
1573
1574	/* Make sure that interrupts are indeed enabled from here on */
1575	mmiowb();
1576}
1577
1578static void bnx2x_igu_int_enable(struct bnx2x *bp)
1579{
1580	u32 val;
1581	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1582	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1583	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1584
1585	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1586
1587	if (msix) {
1588		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1589			 IGU_PF_CONF_SINGLE_ISR_EN);
1590		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1591			IGU_PF_CONF_ATTN_BIT_EN);
1592
1593		if (single_msix)
1594			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1595	} else if (msi) {
1596		val &= ~IGU_PF_CONF_INT_LINE_EN;
1597		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1598			IGU_PF_CONF_ATTN_BIT_EN |
1599			IGU_PF_CONF_SINGLE_ISR_EN);
1600	} else {
1601		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1602		val |= (IGU_PF_CONF_INT_LINE_EN |
1603			IGU_PF_CONF_ATTN_BIT_EN |
1604			IGU_PF_CONF_SINGLE_ISR_EN);
1605	}
1606
1607	/* Clean previous status - need to configure igu prior to ack*/
1608	if ((!msix) || single_msix) {
1609		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1610		bnx2x_ack_int(bp);
1611	}
1612
1613	val |= IGU_PF_CONF_FUNC_EN;
1614
1615	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1616	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1617
1618	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1619
1620	if (val & IGU_PF_CONF_INT_LINE_EN)
1621		pci_intx(bp->pdev, true);
1622
1623	barrier();
1624
1625	/* init leading/trailing edge */
1626	if (IS_MF(bp)) {
1627		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1628		if (bp->port.pmf)
1629			/* enable nig and gpio3 attention */
1630			val |= 0x1100;
1631	} else
1632		val = 0xffff;
1633
1634	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1635	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1636
1637	/* Make sure that interrupts are indeed enabled from here on */
1638	mmiowb();
1639}
1640
1641void bnx2x_int_enable(struct bnx2x *bp)
1642{
1643	if (bp->common.int_block == INT_BLOCK_HC)
1644		bnx2x_hc_int_enable(bp);
1645	else
1646		bnx2x_igu_int_enable(bp);
1647}
1648
1649void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1650{
1651	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1652	int i, offset;
1653
1654	if (disable_hw)
1655		/* prevent the HW from sending interrupts */
1656		bnx2x_int_disable(bp);
1657
1658	/* make sure all ISRs are done */
1659	if (msix) {
1660		synchronize_irq(bp->msix_table[0].vector);
1661		offset = 1;
1662		if (CNIC_SUPPORT(bp))
1663			offset++;
1664		for_each_eth_queue(bp, i)
1665			synchronize_irq(bp->msix_table[offset++].vector);
1666	} else
1667		synchronize_irq(bp->pdev->irq);
1668
1669	/* make sure sp_task is not running */
1670	cancel_delayed_work(&bp->sp_task);
1671	cancel_delayed_work(&bp->period_task);
1672	flush_workqueue(bnx2x_wq);
1673}
1674
1675/* fast path */
1676
1677/*
1678 * General service functions
1679 */
1680
1681/* Return true if succeeded to acquire the lock */
1682static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1683{
1684	u32 lock_status;
1685	u32 resource_bit = (1 << resource);
1686	int func = BP_FUNC(bp);
1687	u32 hw_lock_control_reg;
1688
1689	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1690	   "Trying to take a lock on resource %d\n", resource);
1691
1692	/* Validating that the resource is within range */
1693	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1694		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1695		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1696		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1697		return false;
1698	}
1699
1700	if (func <= 5)
1701		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1702	else
1703		hw_lock_control_reg =
1704				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1705
1706	/* Try to acquire the lock */
1707	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1708	lock_status = REG_RD(bp, hw_lock_control_reg);
1709	if (lock_status & resource_bit)
1710		return true;
1711
1712	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713	   "Failed to get a lock on resource %d\n", resource);
1714	return false;
1715}
1716
1717/**
1718 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1719 *
1720 * @bp:	driver handle
1721 *
1722 * Returns the recovery leader resource id according to the engine this function
1723 * belongs to. Currently only only 2 engines is supported.
1724 */
1725static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1726{
1727	if (BP_PATH(bp))
1728		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1729	else
1730		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1731}
1732
1733/**
1734 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1735 *
1736 * @bp: driver handle
1737 *
1738 * Tries to acquire a leader lock for current engine.
1739 */
1740static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1741{
1742	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1743}
1744
1745static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1746
1747/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1748static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1749{
1750	/* Set the interrupt occurred bit for the sp-task to recognize it
1751	 * must ack the interrupt and transition according to the IGU
1752	 * state machine.
1753	 */
1754	atomic_set(&bp->interrupt_occurred, 1);
1755
1756	/* The sp_task must execute only after this bit
1757	 * is set, otherwise we will get out of sync and miss all
1758	 * further interrupts. Hence, the barrier.
1759	 */
1760	smp_wmb();
1761
1762	/* schedule sp_task to workqueue */
1763	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1764}
1765
1766void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1767{
1768	struct bnx2x *bp = fp->bp;
1769	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1770	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1771	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1772	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1773
1774	DP(BNX2X_MSG_SP,
1775	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1776	   fp->index, cid, command, bp->state,
1777	   rr_cqe->ramrod_cqe.ramrod_type);
1778
1779	/* If cid is within VF range, replace the slowpath object with the
1780	 * one corresponding to this VF
1781	 */
1782	if (cid >= BNX2X_FIRST_VF_CID  &&
1783	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1784		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1785
1786	switch (command) {
1787	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1788		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1789		drv_cmd = BNX2X_Q_CMD_UPDATE;
1790		break;
1791
1792	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1793		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1794		drv_cmd = BNX2X_Q_CMD_SETUP;
1795		break;
1796
1797	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1798		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1799		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1800		break;
1801
1802	case (RAMROD_CMD_ID_ETH_HALT):
1803		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1804		drv_cmd = BNX2X_Q_CMD_HALT;
1805		break;
1806
1807	case (RAMROD_CMD_ID_ETH_TERMINATE):
1808		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1809		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1810		break;
1811
1812	case (RAMROD_CMD_ID_ETH_EMPTY):
1813		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1814		drv_cmd = BNX2X_Q_CMD_EMPTY;
1815		break;
1816
1817	default:
1818		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1819			  command, fp->index);
1820		return;
1821	}
1822
1823	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1824	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1825		/* q_obj->complete_cmd() failure means that this was
1826		 * an unexpected completion.
1827		 *
1828		 * In this case we don't want to increase the bp->spq_left
1829		 * because apparently we haven't sent this command the first
1830		 * place.
1831		 */
1832#ifdef BNX2X_STOP_ON_ERROR
1833		bnx2x_panic();
1834#else
1835		return;
1836#endif
1837	/* SRIOV: reschedule any 'in_progress' operations */
1838	bnx2x_iov_sp_event(bp, cid, true);
1839
1840	smp_mb__before_atomic_inc();
1841	atomic_inc(&bp->cq_spq_left);
1842	/* push the change in bp->spq_left and towards the memory */
1843	smp_mb__after_atomic_inc();
1844
1845	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1846
1847	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1848	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1849		/* if Q update ramrod is completed for last Q in AFEX vif set
1850		 * flow, then ACK MCP at the end
1851		 *
1852		 * mark pending ACK to MCP bit.
1853		 * prevent case that both bits are cleared.
1854		 * At the end of load/unload driver checks that
1855		 * sp_state is cleared, and this order prevents
1856		 * races
1857		 */
1858		smp_mb__before_clear_bit();
1859		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1860		wmb();
1861		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1862		smp_mb__after_clear_bit();
1863
1864		/* schedule the sp task as mcp ack is required */
1865		bnx2x_schedule_sp_task(bp);
1866	}
1867
1868	return;
1869}
1870
1871irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1872{
1873	struct bnx2x *bp = netdev_priv(dev_instance);
1874	u16 status = bnx2x_ack_int(bp);
1875	u16 mask;
1876	int i;
1877	u8 cos;
1878
1879	/* Return here if interrupt is shared and it's not for us */
1880	if (unlikely(status == 0)) {
1881		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1882		return IRQ_NONE;
1883	}
1884	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1885
1886#ifdef BNX2X_STOP_ON_ERROR
1887	if (unlikely(bp->panic))
1888		return IRQ_HANDLED;
1889#endif
1890
1891	for_each_eth_queue(bp, i) {
1892		struct bnx2x_fastpath *fp = &bp->fp[i];
1893
1894		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1895		if (status & mask) {
1896			/* Handle Rx or Tx according to SB id */
1897			for_each_cos_in_tx_queue(fp, cos)
1898				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1899			prefetch(&fp->sb_running_index[SM_RX_ID]);
1900			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1901			status &= ~mask;
1902		}
1903	}
1904
1905	if (CNIC_SUPPORT(bp)) {
1906		mask = 0x2;
1907		if (status & (mask | 0x1)) {
1908			struct cnic_ops *c_ops = NULL;
1909
1910			rcu_read_lock();
1911			c_ops = rcu_dereference(bp->cnic_ops);
1912			if (c_ops && (bp->cnic_eth_dev.drv_state &
1913				      CNIC_DRV_STATE_HANDLES_IRQ))
1914				c_ops->cnic_handler(bp->cnic_data, NULL);
1915			rcu_read_unlock();
1916
1917			status &= ~mask;
1918		}
1919	}
1920
1921	if (unlikely(status & 0x1)) {
1922
1923		/* schedule sp task to perform default status block work, ack
1924		 * attentions and enable interrupts.
1925		 */
1926		bnx2x_schedule_sp_task(bp);
1927
1928		status &= ~0x1;
1929		if (!status)
1930			return IRQ_HANDLED;
1931	}
1932
1933	if (unlikely(status))
1934		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1935		   status);
1936
1937	return IRQ_HANDLED;
1938}
1939
1940/* Link */
1941
1942/*
1943 * General service functions
1944 */
1945
1946int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1947{
1948	u32 lock_status;
1949	u32 resource_bit = (1 << resource);
1950	int func = BP_FUNC(bp);
1951	u32 hw_lock_control_reg;
1952	int cnt;
1953
1954	/* Validating that the resource is within range */
1955	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1956		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1957		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1958		return -EINVAL;
1959	}
1960
1961	if (func <= 5) {
1962		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1963	} else {
1964		hw_lock_control_reg =
1965				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1966	}
1967
1968	/* Validating that the resource is not already taken */
1969	lock_status = REG_RD(bp, hw_lock_control_reg);
1970	if (lock_status & resource_bit) {
1971		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1972		   lock_status, resource_bit);
1973		return -EEXIST;
1974	}
1975
1976	/* Try for 5 second every 5ms */
1977	for (cnt = 0; cnt < 1000; cnt++) {
1978		/* Try to acquire the lock */
1979		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1980		lock_status = REG_RD(bp, hw_lock_control_reg);
1981		if (lock_status & resource_bit)
1982			return 0;
1983
1984		usleep_range(5000, 10000);
1985	}
1986	BNX2X_ERR("Timeout\n");
1987	return -EAGAIN;
1988}
1989
1990int bnx2x_release_leader_lock(struct bnx2x *bp)
1991{
1992	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1993}
1994
1995int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1996{
1997	u32 lock_status;
1998	u32 resource_bit = (1 << resource);
1999	int func = BP_FUNC(bp);
2000	u32 hw_lock_control_reg;
2001
2002	/* Validating that the resource is within range */
2003	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2004		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2005		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2006		return -EINVAL;
2007	}
2008
2009	if (func <= 5) {
2010		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2011	} else {
2012		hw_lock_control_reg =
2013				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2014	}
2015
2016	/* Validating that the resource is currently taken */
2017	lock_status = REG_RD(bp, hw_lock_control_reg);
2018	if (!(lock_status & resource_bit)) {
2019		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2020			  lock_status, resource_bit);
2021		return -EFAULT;
2022	}
2023
2024	REG_WR(bp, hw_lock_control_reg, resource_bit);
2025	return 0;
2026}
2027
2028int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2029{
2030	/* The GPIO should be swapped if swap register is set and active */
2031	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2032			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2033	int gpio_shift = gpio_num +
2034			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2035	u32 gpio_mask = (1 << gpio_shift);
2036	u32 gpio_reg;
2037	int value;
2038
2039	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2040		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2041		return -EINVAL;
2042	}
2043
2044	/* read GPIO value */
2045	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2046
2047	/* get the requested pin value */
2048	if ((gpio_reg & gpio_mask) == gpio_mask)
2049		value = 1;
2050	else
2051		value = 0;
2052
2053	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2054
2055	return value;
2056}
2057
2058int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2059{
2060	/* The GPIO should be swapped if swap register is set and active */
2061	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2062			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2063	int gpio_shift = gpio_num +
2064			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2065	u32 gpio_mask = (1 << gpio_shift);
2066	u32 gpio_reg;
2067
2068	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2069		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2070		return -EINVAL;
2071	}
2072
2073	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2074	/* read GPIO and mask except the float bits */
2075	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2076
2077	switch (mode) {
2078	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2079		DP(NETIF_MSG_LINK,
2080		   "Set GPIO %d (shift %d) -> output low\n",
2081		   gpio_num, gpio_shift);
2082		/* clear FLOAT and set CLR */
2083		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2084		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2085		break;
2086
2087	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2088		DP(NETIF_MSG_LINK,
2089		   "Set GPIO %d (shift %d) -> output high\n",
2090		   gpio_num, gpio_shift);
2091		/* clear FLOAT and set SET */
2092		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2093		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2094		break;
2095
2096	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2097		DP(NETIF_MSG_LINK,
2098		   "Set GPIO %d (shift %d) -> input\n",
2099		   gpio_num, gpio_shift);
2100		/* set FLOAT */
2101		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2102		break;
2103
2104	default:
2105		break;
2106	}
2107
2108	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2109	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2110
2111	return 0;
2112}
2113
2114int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2115{
2116	u32 gpio_reg = 0;
2117	int rc = 0;
2118
2119	/* Any port swapping should be handled by caller. */
2120
2121	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2122	/* read GPIO and mask except the float bits */
2123	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2124	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2125	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2126	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2127
2128	switch (mode) {
2129	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2131		/* set CLR */
2132		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2133		break;
2134
2135	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2136		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2137		/* set SET */
2138		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2139		break;
2140
2141	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2142		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2143		/* set FLOAT */
2144		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2145		break;
2146
2147	default:
2148		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2149		rc = -EINVAL;
2150		break;
2151	}
2152
2153	if (rc == 0)
2154		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2155
2156	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2157
2158	return rc;
2159}
2160
2161int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2162{
2163	/* The GPIO should be swapped if swap register is set and active */
2164	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2165			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2166	int gpio_shift = gpio_num +
2167			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2168	u32 gpio_mask = (1 << gpio_shift);
2169	u32 gpio_reg;
2170
2171	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2172		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2173		return -EINVAL;
2174	}
2175
2176	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177	/* read GPIO int */
2178	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2179
2180	switch (mode) {
2181	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2182		DP(NETIF_MSG_LINK,
2183		   "Clear GPIO INT %d (shift %d) -> output low\n",
2184		   gpio_num, gpio_shift);
2185		/* clear SET and set CLR */
2186		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2187		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2188		break;
2189
2190	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2191		DP(NETIF_MSG_LINK,
2192		   "Set GPIO INT %d (shift %d) -> output high\n",
2193		   gpio_num, gpio_shift);
2194		/* clear CLR and set SET */
2195		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2196		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2197		break;
2198
2199	default:
2200		break;
2201	}
2202
2203	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2204	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2205
2206	return 0;
2207}
2208
2209static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2210{
2211	u32 spio_reg;
2212
2213	/* Only 2 SPIOs are configurable */
2214	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2215		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2216		return -EINVAL;
2217	}
2218
2219	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2220	/* read SPIO and mask except the float bits */
2221	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2222
2223	switch (mode) {
2224	case MISC_SPIO_OUTPUT_LOW:
2225		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2226		/* clear FLOAT and set CLR */
2227		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2228		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2229		break;
2230
2231	case MISC_SPIO_OUTPUT_HIGH:
2232		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2233		/* clear FLOAT and set SET */
2234		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2235		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2236		break;
2237
2238	case MISC_SPIO_INPUT_HI_Z:
2239		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2240		/* set FLOAT */
2241		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2242		break;
2243
2244	default:
2245		break;
2246	}
2247
2248	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2249	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2250
2251	return 0;
2252}
2253
2254void bnx2x_calc_fc_adv(struct bnx2x *bp)
2255{
2256	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2257	switch (bp->link_vars.ieee_fc &
2258		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2259	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2260		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2261						   ADVERTISED_Pause);
2262		break;
2263
2264	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2265		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2266						  ADVERTISED_Pause);
2267		break;
2268
2269	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2270		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2271		break;
2272
2273	default:
2274		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2275						   ADVERTISED_Pause);
2276		break;
2277	}
2278}
2279
2280static void bnx2x_set_requested_fc(struct bnx2x *bp)
2281{
2282	/* Initialize link parameters structure variables
2283	 * It is recommended to turn off RX FC for jumbo frames
2284	 *  for better performance
2285	 */
2286	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2287		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2288	else
2289		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2290}
2291
2292static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2293{
2294	u32 pause_enabled = 0;
2295
2296	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2297		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2298			pause_enabled = 1;
2299
2300		REG_WR(bp, BAR_USTRORM_INTMEM +
2301			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2302		       pause_enabled);
2303	}
2304
2305	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2306	   pause_enabled ? "enabled" : "disabled");
2307}
2308
2309int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2310{
2311	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2312	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2313
2314	if (!BP_NOMCP(bp)) {
2315		bnx2x_set_requested_fc(bp);
2316		bnx2x_acquire_phy_lock(bp);
2317
2318		if (load_mode == LOAD_DIAG) {
2319			struct link_params *lp = &bp->link_params;
2320			lp->loopback_mode = LOOPBACK_XGXS;
2321			/* do PHY loopback at 10G speed, if possible */
2322			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2323				if (lp->speed_cap_mask[cfx_idx] &
2324				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2325					lp->req_line_speed[cfx_idx] =
2326					SPEED_10000;
2327				else
2328					lp->req_line_speed[cfx_idx] =
2329					SPEED_1000;
2330			}
2331		}
2332
2333		if (load_mode == LOAD_LOOPBACK_EXT) {
2334			struct link_params *lp = &bp->link_params;
2335			lp->loopback_mode = LOOPBACK_EXT;
2336		}
2337
2338		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2339
2340		bnx2x_release_phy_lock(bp);
2341
2342		bnx2x_init_dropless_fc(bp);
2343
2344		bnx2x_calc_fc_adv(bp);
2345
2346		if (bp->link_vars.link_up) {
2347			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2348			bnx2x_link_report(bp);
2349		}
2350		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2351		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2352		return rc;
2353	}
2354	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2355	return -EINVAL;
2356}
2357
2358void bnx2x_link_set(struct bnx2x *bp)
2359{
2360	if (!BP_NOMCP(bp)) {
2361		bnx2x_acquire_phy_lock(bp);
2362		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2363		bnx2x_release_phy_lock(bp);
2364
2365		bnx2x_init_dropless_fc(bp);
2366
2367		bnx2x_calc_fc_adv(bp);
2368	} else
2369		BNX2X_ERR("Bootcode is missing - can not set link\n");
2370}
2371
2372static void bnx2x__link_reset(struct bnx2x *bp)
2373{
2374	if (!BP_NOMCP(bp)) {
2375		bnx2x_acquire_phy_lock(bp);
2376		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2377		bnx2x_release_phy_lock(bp);
2378	} else
2379		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2380}
2381
2382void bnx2x_force_link_reset(struct bnx2x *bp)
2383{
2384	bnx2x_acquire_phy_lock(bp);
2385	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2386	bnx2x_release_phy_lock(bp);
2387}
2388
2389u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2390{
2391	u8 rc = 0;
2392
2393	if (!BP_NOMCP(bp)) {
2394		bnx2x_acquire_phy_lock(bp);
2395		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2396				     is_serdes);
2397		bnx2x_release_phy_lock(bp);
2398	} else
2399		BNX2X_ERR("Bootcode is missing - can not test link\n");
2400
2401	return rc;
2402}
2403
2404/* Calculates the sum of vn_min_rates.
2405   It's needed for further normalizing of the min_rates.
2406   Returns:
2407     sum of vn_min_rates.
2408       or
2409     0 - if all the min_rates are 0.
2410     In the later case fairness algorithm should be deactivated.
2411     If not all min_rates are zero then those that are zeroes will be set to 1.
2412 */
2413static void bnx2x_calc_vn_min(struct bnx2x *bp,
2414				      struct cmng_init_input *input)
2415{
2416	int all_zero = 1;
2417	int vn;
2418
2419	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2420		u32 vn_cfg = bp->mf_config[vn];
2421		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2422				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2423
2424		/* Skip hidden vns */
2425		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2426			vn_min_rate = 0;
2427		/* If min rate is zero - set it to 1 */
2428		else if (!vn_min_rate)
2429			vn_min_rate = DEF_MIN_RATE;
2430		else
2431			all_zero = 0;
2432
2433		input->vnic_min_rate[vn] = vn_min_rate;
2434	}
2435
2436	/* if ETS or all min rates are zeros - disable fairness */
2437	if (BNX2X_IS_ETS_ENABLED(bp)) {
2438		input->flags.cmng_enables &=
2439					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2440		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2441	} else if (all_zero) {
2442		input->flags.cmng_enables &=
2443					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2444		DP(NETIF_MSG_IFUP,
2445		   "All MIN values are zeroes fairness will be disabled\n");
2446	} else
2447		input->flags.cmng_enables |=
2448					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2449}
2450
2451static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2452				    struct cmng_init_input *input)
2453{
2454	u16 vn_max_rate;
2455	u32 vn_cfg = bp->mf_config[vn];
2456
2457	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458		vn_max_rate = 0;
2459	else {
2460		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2461
2462		if (IS_MF_SI(bp)) {
2463			/* maxCfg in percents of linkspeed */
2464			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2465		} else /* SD modes */
2466			/* maxCfg is absolute in 100Mb units */
2467			vn_max_rate = maxCfg * 100;
2468	}
2469
2470	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2471
2472	input->vnic_max_rate[vn] = vn_max_rate;
2473}
2474
2475static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2476{
2477	if (CHIP_REV_IS_SLOW(bp))
2478		return CMNG_FNS_NONE;
2479	if (IS_MF(bp))
2480		return CMNG_FNS_MINMAX;
2481
2482	return CMNG_FNS_NONE;
2483}
2484
2485void bnx2x_read_mf_cfg(struct bnx2x *bp)
2486{
2487	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2488
2489	if (BP_NOMCP(bp))
2490		return; /* what should be the default value in this case */
2491
2492	/* For 2 port configuration the absolute function number formula
2493	 * is:
2494	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2495	 *
2496	 *      and there are 4 functions per port
2497	 *
2498	 * For 4 port configuration it is
2499	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2500	 *
2501	 *      and there are 2 functions per port
2502	 */
2503	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2504		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2505
2506		if (func >= E1H_FUNC_MAX)
2507			break;
2508
2509		bp->mf_config[vn] =
2510			MF_CFG_RD(bp, func_mf_config[func].config);
2511	}
2512	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2513		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2514		bp->flags |= MF_FUNC_DIS;
2515	} else {
2516		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2517		bp->flags &= ~MF_FUNC_DIS;
2518	}
2519}
2520
2521static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2522{
2523	struct cmng_init_input input;
2524	memset(&input, 0, sizeof(struct cmng_init_input));
2525
2526	input.port_rate = bp->link_vars.line_speed;
2527
2528	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2529		int vn;
2530
2531		/* read mf conf from shmem */
2532		if (read_cfg)
2533			bnx2x_read_mf_cfg(bp);
2534
2535		/* vn_weight_sum and enable fairness if not 0 */
2536		bnx2x_calc_vn_min(bp, &input);
2537
2538		/* calculate and set min-max rate for each vn */
2539		if (bp->port.pmf)
2540			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2541				bnx2x_calc_vn_max(bp, vn, &input);
2542
2543		/* always enable rate shaping and fairness */
2544		input.flags.cmng_enables |=
2545					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2546
2547		bnx2x_init_cmng(&input, &bp->cmng);
2548		return;
2549	}
2550
2551	/* rate shaping and fairness are disabled */
2552	DP(NETIF_MSG_IFUP,
2553	   "rate shaping and fairness are disabled\n");
2554}
2555
2556static void storm_memset_cmng(struct bnx2x *bp,
2557			      struct cmng_init *cmng,
2558			      u8 port)
2559{
2560	int vn;
2561	size_t size = sizeof(struct cmng_struct_per_port);
2562
2563	u32 addr = BAR_XSTRORM_INTMEM +
2564			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2565
2566	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2567
2568	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2569		int func = func_by_vn(bp, vn);
2570
2571		addr = BAR_XSTRORM_INTMEM +
2572		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2573		size = sizeof(struct rate_shaping_vars_per_vn);
2574		__storm_memset_struct(bp, addr, size,
2575				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2576
2577		addr = BAR_XSTRORM_INTMEM +
2578		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2579		size = sizeof(struct fairness_vars_per_vn);
2580		__storm_memset_struct(bp, addr, size,
2581				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2582	}
2583}
2584
2585/* init cmng mode in HW according to local configuration */
2586void bnx2x_set_local_cmng(struct bnx2x *bp)
2587{
2588	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2589
2590	if (cmng_fns != CMNG_FNS_NONE) {
2591		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2592		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2593	} else {
2594		/* rate shaping and fairness are disabled */
2595		DP(NETIF_MSG_IFUP,
2596		   "single function mode without fairness\n");
2597	}
2598}
2599
2600/* This function is called upon link interrupt */
2601static void bnx2x_link_attn(struct bnx2x *bp)
2602{
2603	/* Make sure that we are synced with the current statistics */
2604	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2605
2606	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2607
2608	bnx2x_init_dropless_fc(bp);
2609
2610	if (bp->link_vars.link_up) {
2611
2612		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2613			struct host_port_stats *pstats;
2614
2615			pstats = bnx2x_sp(bp, port_stats);
2616			/* reset old mac stats */
2617			memset(&(pstats->mac_stx[0]), 0,
2618			       sizeof(struct mac_stx));
2619		}
2620		if (bp->state == BNX2X_STATE_OPEN)
2621			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2622	}
2623
2624	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2625		bnx2x_set_local_cmng(bp);
2626
2627	__bnx2x_link_report(bp);
2628
2629	if (IS_MF(bp))
2630		bnx2x_link_sync_notify(bp);
2631}
2632
2633void bnx2x__link_status_update(struct bnx2x *bp)
2634{
2635	if (bp->state != BNX2X_STATE_OPEN)
2636		return;
2637
2638	/* read updated dcb configuration */
2639	if (IS_PF(bp)) {
2640		bnx2x_dcbx_pmf_update(bp);
2641		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2642		if (bp->link_vars.link_up)
2643			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2644		else
2645			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2646			/* indicate link status */
2647		bnx2x_link_report(bp);
2648
2649	} else { /* VF */
2650		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2651					  SUPPORTED_10baseT_Full |
2652					  SUPPORTED_100baseT_Half |
2653					  SUPPORTED_100baseT_Full |
2654					  SUPPORTED_1000baseT_Full |
2655					  SUPPORTED_2500baseX_Full |
2656					  SUPPORTED_10000baseT_Full |
2657					  SUPPORTED_TP |
2658					  SUPPORTED_FIBRE |
2659					  SUPPORTED_Autoneg |
2660					  SUPPORTED_Pause |
2661					  SUPPORTED_Asym_Pause);
2662		bp->port.advertising[0] = bp->port.supported[0];
2663
2664		bp->link_params.bp = bp;
2665		bp->link_params.port = BP_PORT(bp);
2666		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2667		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2668		bp->link_params.req_line_speed[0] = SPEED_10000;
2669		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2670		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2671		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2672		bp->link_vars.line_speed = SPEED_10000;
2673		bp->link_vars.link_status =
2674			(LINK_STATUS_LINK_UP |
2675			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2676		bp->link_vars.link_up = 1;
2677		bp->link_vars.duplex = DUPLEX_FULL;
2678		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2679		__bnx2x_link_report(bp);
2680		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681	}
2682}
2683
2684static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2685				  u16 vlan_val, u8 allowed_prio)
2686{
2687	struct bnx2x_func_state_params func_params = {NULL};
2688	struct bnx2x_func_afex_update_params *f_update_params =
2689		&func_params.params.afex_update;
2690
2691	func_params.f_obj = &bp->func_obj;
2692	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2693
2694	/* no need to wait for RAMROD completion, so don't
2695	 * set RAMROD_COMP_WAIT flag
2696	 */
2697
2698	f_update_params->vif_id = vifid;
2699	f_update_params->afex_default_vlan = vlan_val;
2700	f_update_params->allowed_priorities = allowed_prio;
2701
2702	/* if ramrod can not be sent, response to MCP immediately */
2703	if (bnx2x_func_state_change(bp, &func_params) < 0)
2704		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2705
2706	return 0;
2707}
2708
2709static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2710					  u16 vif_index, u8 func_bit_map)
2711{
2712	struct bnx2x_func_state_params func_params = {NULL};
2713	struct bnx2x_func_afex_viflists_params *update_params =
2714		&func_params.params.afex_viflists;
2715	int rc;
2716	u32 drv_msg_code;
2717
2718	/* validate only LIST_SET and LIST_GET are received from switch */
2719	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2720		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2721			  cmd_type);
2722
2723	func_params.f_obj = &bp->func_obj;
2724	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2725
2726	/* set parameters according to cmd_type */
2727	update_params->afex_vif_list_command = cmd_type;
2728	update_params->vif_list_index = vif_index;
2729	update_params->func_bit_map =
2730		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2731	update_params->func_to_clear = 0;
2732	drv_msg_code =
2733		(cmd_type == VIF_LIST_RULE_GET) ?
2734		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2735		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2736
2737	/* if ramrod can not be sent, respond to MCP immediately for
2738	 * SET and GET requests (other are not triggered from MCP)
2739	 */
2740	rc = bnx2x_func_state_change(bp, &func_params);
2741	if (rc < 0)
2742		bnx2x_fw_command(bp, drv_msg_code, 0);
2743
2744	return 0;
2745}
2746
2747static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2748{
2749	struct afex_stats afex_stats;
2750	u32 func = BP_ABS_FUNC(bp);
2751	u32 mf_config;
2752	u16 vlan_val;
2753	u32 vlan_prio;
2754	u16 vif_id;
2755	u8 allowed_prio;
2756	u8 vlan_mode;
2757	u32 addr_to_write, vifid, addrs, stats_type, i;
2758
2759	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2760		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2761		DP(BNX2X_MSG_MCP,
2762		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2763		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2764	}
2765
2766	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2767		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2768		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2769		DP(BNX2X_MSG_MCP,
2770		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2771		   vifid, addrs);
2772		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2773					       addrs);
2774	}
2775
2776	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2777		addr_to_write = SHMEM2_RD(bp,
2778			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2779		stats_type = SHMEM2_RD(bp,
2780			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2781
2782		DP(BNX2X_MSG_MCP,
2783		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2784		   addr_to_write);
2785
2786		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2787
2788		/* write response to scratchpad, for MCP */
2789		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2790			REG_WR(bp, addr_to_write + i*sizeof(u32),
2791			       *(((u32 *)(&afex_stats))+i));
2792
2793		/* send ack message to MCP */
2794		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2795	}
2796
2797	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2798		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2799		bp->mf_config[BP_VN(bp)] = mf_config;
2800		DP(BNX2X_MSG_MCP,
2801		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2802		   mf_config);
2803
2804		/* if VIF_SET is "enabled" */
2805		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2806			/* set rate limit directly to internal RAM */
2807			struct cmng_init_input cmng_input;
2808			struct rate_shaping_vars_per_vn m_rs_vn;
2809			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2810			u32 addr = BAR_XSTRORM_INTMEM +
2811			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2812
2813			bp->mf_config[BP_VN(bp)] = mf_config;
2814
2815			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2816			m_rs_vn.vn_counter.rate =
2817				cmng_input.vnic_max_rate[BP_VN(bp)];
2818			m_rs_vn.vn_counter.quota =
2819				(m_rs_vn.vn_counter.rate *
2820				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2821
2822			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2823
2824			/* read relevant values from mf_cfg struct in shmem */
2825			vif_id =
2826				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2827				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2828				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2829			vlan_val =
2830				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2831				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2832				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2833			vlan_prio = (mf_config &
2834				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2835				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2836			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2837			vlan_mode =
2838				(MF_CFG_RD(bp,
2839					   func_mf_config[func].afex_config) &
2840				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2841				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2842			allowed_prio =
2843				(MF_CFG_RD(bp,
2844					   func_mf_config[func].afex_config) &
2845				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2846				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2847
2848			/* send ramrod to FW, return in case of failure */
2849			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2850						   allowed_prio))
2851				return;
2852
2853			bp->afex_def_vlan_tag = vlan_val;
2854			bp->afex_vlan_mode = vlan_mode;
2855		} else {
2856			/* notify link down because BP->flags is disabled */
2857			bnx2x_link_report(bp);
2858
2859			/* send INVALID VIF ramrod to FW */
2860			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2861
2862			/* Reset the default afex VLAN */
2863			bp->afex_def_vlan_tag = -1;
2864		}
2865	}
2866}
2867
2868static void bnx2x_pmf_update(struct bnx2x *bp)
2869{
2870	int port = BP_PORT(bp);
2871	u32 val;
2872
2873	bp->port.pmf = 1;
2874	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2875
2876	/*
2877	 * We need the mb() to ensure the ordering between the writing to
2878	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2879	 */
2880	smp_mb();
2881
2882	/* queue a periodic task */
2883	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2884
2885	bnx2x_dcbx_pmf_update(bp);
2886
2887	/* enable nig attention */
2888	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2889	if (bp->common.int_block == INT_BLOCK_HC) {
2890		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2891		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2892	} else if (!CHIP_IS_E1x(bp)) {
2893		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2894		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2895	}
2896
2897	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2898}
2899
2900/* end of Link */
2901
2902/* slow path */
2903
2904/*
2905 * General service functions
2906 */
2907
2908/* send the MCP a request, block until there is a reply */
2909u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2910{
2911	int mb_idx = BP_FW_MB_IDX(bp);
2912	u32 seq;
2913	u32 rc = 0;
2914	u32 cnt = 1;
2915	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2916
2917	mutex_lock(&bp->fw_mb_mutex);
2918	seq = ++bp->fw_seq;
2919	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2920	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2921
2922	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2923			(command | seq), param);
2924
2925	do {
2926		/* let the FW do it's magic ... */
2927		msleep(delay);
2928
2929		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2930
2931		/* Give the FW up to 5 second (500*10ms) */
2932	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2933
2934	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2935	   cnt*delay, rc, seq);
2936
2937	/* is this a reply to our command? */
2938	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2939		rc &= FW_MSG_CODE_MASK;
2940	else {
2941		/* FW BUG! */
2942		BNX2X_ERR("FW failed to respond!\n");
2943		bnx2x_fw_dump(bp);
2944		rc = 0;
2945	}
2946	mutex_unlock(&bp->fw_mb_mutex);
2947
2948	return rc;
2949}
2950
2951static void storm_memset_func_cfg(struct bnx2x *bp,
2952				 struct tstorm_eth_function_common_config *tcfg,
2953				 u16 abs_fid)
2954{
2955	size_t size = sizeof(struct tstorm_eth_function_common_config);
2956
2957	u32 addr = BAR_TSTRORM_INTMEM +
2958			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2959
2960	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2961}
2962
2963void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2964{
2965	if (CHIP_IS_E1x(bp)) {
2966		struct tstorm_eth_function_common_config tcfg = {0};
2967
2968		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2969	}
2970
2971	/* Enable the function in the FW */
2972	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2973	storm_memset_func_en(bp, p->func_id, 1);
2974
2975	/* spq */
2976	if (p->func_flgs & FUNC_FLG_SPQ) {
2977		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2978		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2979		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2980	}
2981}
2982
2983/**
2984 * bnx2x_get_common_flags - Return common flags
2985 *
2986 * @bp		device handle
2987 * @fp		queue handle
2988 * @zero_stats	TRUE if statistics zeroing is needed
2989 *
2990 * Return the flags that are common for the Tx-only and not normal connections.
2991 */
2992static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2993					    struct bnx2x_fastpath *fp,
2994					    bool zero_stats)
2995{
2996	unsigned long flags = 0;
2997
2998	/* PF driver will always initialize the Queue to an ACTIVE state */
2999	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3000
3001	/* tx only connections collect statistics (on the same index as the
3002	 * parent connection). The statistics are zeroed when the parent
3003	 * connection is initialized.
3004	 */
3005
3006	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3007	if (zero_stats)
3008		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3009
3010	if (bp->flags & TX_SWITCHING)
3011		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3012
3013	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3014	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3015
3016#ifdef BNX2X_STOP_ON_ERROR
3017	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3018#endif
3019
3020	return flags;
3021}
3022
3023static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3024				       struct bnx2x_fastpath *fp,
3025				       bool leading)
3026{
3027	unsigned long flags = 0;
3028
3029	/* calculate other queue flags */
3030	if (IS_MF_SD(bp))
3031		__set_bit(BNX2X_Q_FLG_OV, &flags);
3032
3033	if (IS_FCOE_FP(fp)) {
3034		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3035		/* For FCoE - force usage of default priority (for afex) */
3036		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3037	}
3038
3039	if (!fp->disable_tpa) {
3040		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3041		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3042		if (fp->mode == TPA_MODE_GRO)
3043			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3044	}
3045
3046	if (leading) {
3047		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3048		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3049	}
3050
3051	/* Always set HW VLAN stripping */
3052	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3053
3054	/* configure silent vlan removal */
3055	if (IS_MF_AFEX(bp))
3056		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3057
3058	return flags | bnx2x_get_common_flags(bp, fp, true);
3059}
3060
3061static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3062	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3063	u8 cos)
3064{
3065	gen_init->stat_id = bnx2x_stats_id(fp);
3066	gen_init->spcl_id = fp->cl_id;
3067
3068	/* Always use mini-jumbo MTU for FCoE L2 ring */
3069	if (IS_FCOE_FP(fp))
3070		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3071	else
3072		gen_init->mtu = bp->dev->mtu;
3073
3074	gen_init->cos = cos;
3075}
3076
3077static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3078	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3079	struct bnx2x_rxq_setup_params *rxq_init)
3080{
3081	u8 max_sge = 0;
3082	u16 sge_sz = 0;
3083	u16 tpa_agg_size = 0;
3084
3085	if (!fp->disable_tpa) {
3086		pause->sge_th_lo = SGE_TH_LO(bp);
3087		pause->sge_th_hi = SGE_TH_HI(bp);
3088
3089		/* validate SGE ring has enough to cross high threshold */
3090		WARN_ON(bp->dropless_fc &&
3091				pause->sge_th_hi + FW_PREFETCH_CNT >
3092				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3093
3094		tpa_agg_size = TPA_AGG_SIZE;
3095		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3096			SGE_PAGE_SHIFT;
3097		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3098			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3099		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3100	}
3101
3102	/* pause - not for e1 */
3103	if (!CHIP_IS_E1(bp)) {
3104		pause->bd_th_lo = BD_TH_LO(bp);
3105		pause->bd_th_hi = BD_TH_HI(bp);
3106
3107		pause->rcq_th_lo = RCQ_TH_LO(bp);
3108		pause->rcq_th_hi = RCQ_TH_HI(bp);
3109		/*
3110		 * validate that rings have enough entries to cross
3111		 * high thresholds
3112		 */
3113		WARN_ON(bp->dropless_fc &&
3114				pause->bd_th_hi + FW_PREFETCH_CNT >
3115				bp->rx_ring_size);
3116		WARN_ON(bp->dropless_fc &&
3117				pause->rcq_th_hi + FW_PREFETCH_CNT >
3118				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3119
3120		pause->pri_map = 1;
3121	}
3122
3123	/* rxq setup */
3124	rxq_init->dscr_map = fp->rx_desc_mapping;
3125	rxq_init->sge_map = fp->rx_sge_mapping;
3126	rxq_init->rcq_map = fp->rx_comp_mapping;
3127	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3128
3129	/* This should be a maximum number of data bytes that may be
3130	 * placed on the BD (not including paddings).
3131	 */
3132	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3133			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3134
3135	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3136	rxq_init->tpa_agg_sz = tpa_agg_size;
3137	rxq_init->sge_buf_sz = sge_sz;
3138	rxq_init->max_sges_pkt = max_sge;
3139	rxq_init->rss_engine_id = BP_FUNC(bp);
3140	rxq_init->mcast_engine_id = BP_FUNC(bp);
3141
3142	/* Maximum number or simultaneous TPA aggregation for this Queue.
3143	 *
3144	 * For PF Clients it should be the maximum available number.
3145	 * VF driver(s) may want to define it to a smaller value.
3146	 */
3147	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3148
3149	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3150	rxq_init->fw_sb_id = fp->fw_sb_id;
3151
3152	if (IS_FCOE_FP(fp))
3153		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3154	else
3155		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3156	/* configure silent vlan removal
3157	 * if multi function mode is afex, then mask default vlan
3158	 */
3159	if (IS_MF_AFEX(bp)) {
3160		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3161		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3162	}
3163}
3164
3165static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3166	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3167	u8 cos)
3168{
3169	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3170	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3171	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3172	txq_init->fw_sb_id = fp->fw_sb_id;
3173
3174	/*
3175	 * set the tss leading client id for TX classification ==
3176	 * leading RSS client id
3177	 */
3178	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3179
3180	if (IS_FCOE_FP(fp)) {
3181		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3182		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3183	}
3184}
3185
3186static void bnx2x_pf_init(struct bnx2x *bp)
3187{
3188	struct bnx2x_func_init_params func_init = {0};
3189	struct event_ring_data eq_data = { {0} };
3190	u16 flags;
3191
3192	if (!CHIP_IS_E1x(bp)) {
3193		/* reset IGU PF statistics: MSIX + ATTN */
3194		/* PF */
3195		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3196			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3197			   (CHIP_MODE_IS_4_PORT(bp) ?
3198				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3199		/* ATTN */
3200		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3201			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3202			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3203			   (CHIP_MODE_IS_4_PORT(bp) ?
3204				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3205	}
3206
3207	/* function setup flags */
3208	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3209
3210	/* This flag is relevant for E1x only.
3211	 * E2 doesn't have a TPA configuration in a function level.
3212	 */
3213	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3214
3215	func_init.func_flgs = flags;
3216	func_init.pf_id = BP_FUNC(bp);
3217	func_init.func_id = BP_FUNC(bp);
3218	func_init.spq_map = bp->spq_mapping;
3219	func_init.spq_prod = bp->spq_prod_idx;
3220
3221	bnx2x_func_init(bp, &func_init);
3222
3223	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3224
3225	/*
3226	 * Congestion management values depend on the link rate
3227	 * There is no active link so initial link rate is set to 10 Gbps.
3228	 * When the link comes up The congestion management values are
3229	 * re-calculated according to the actual link rate.
3230	 */
3231	bp->link_vars.line_speed = SPEED_10000;
3232	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3233
3234	/* Only the PMF sets the HW */
3235	if (bp->port.pmf)
3236		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3237
3238	/* init Event Queue - PCI bus guarantees correct endianity*/
3239	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3240	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3241	eq_data.producer = bp->eq_prod;
3242	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3243	eq_data.sb_id = DEF_SB_ID;
3244	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3245}
3246
3247static void bnx2x_e1h_disable(struct bnx2x *bp)
3248{
3249	int port = BP_PORT(bp);
3250
3251	bnx2x_tx_disable(bp);
3252
3253	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3254}
3255
3256static void bnx2x_e1h_enable(struct bnx2x *bp)
3257{
3258	int port = BP_PORT(bp);
3259
3260	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3261
3262	/* Tx queue should be only re-enabled */
3263	netif_tx_wake_all_queues(bp->dev);
3264
3265	/*
3266	 * Should not call netif_carrier_on since it will be called if the link
3267	 * is up when checking for link state
3268	 */
3269}
3270
3271#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3272
3273static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3274{
3275	struct eth_stats_info *ether_stat =
3276		&bp->slowpath->drv_info_to_mcp.ether_stat;
3277	struct bnx2x_vlan_mac_obj *mac_obj =
3278		&bp->sp_objs->mac_obj;
3279	int i;
3280
3281	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3282		ETH_STAT_INFO_VERSION_LEN);
3283
3284	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3285	 * mac_local field in ether_stat struct. The base address is offset by 2
3286	 * bytes to account for the field being 8 bytes but a mac address is
3287	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3288	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3289	 * allocated by the ether_stat struct, so the macs will land in their
3290	 * proper positions.
3291	 */
3292	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3293		memset(ether_stat->mac_local + i, 0,
3294		       sizeof(ether_stat->mac_local[0]));
3295	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3296				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3297				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3298				ETH_ALEN);
3299	ether_stat->mtu_size = bp->dev->mtu;
3300	if (bp->dev->features & NETIF_F_RXCSUM)
3301		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3302	if (bp->dev->features & NETIF_F_TSO)
3303		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3304	ether_stat->feature_flags |= bp->common.boot_mode;
3305
3306	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3307
3308	ether_stat->txq_size = bp->tx_ring_size;
3309	ether_stat->rxq_size = bp->rx_ring_size;
3310
3311#ifdef CONFIG_BNX2X_SRIOV
3312	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3313#endif
3314}
3315
3316static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3317{
3318	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3319	struct fcoe_stats_info *fcoe_stat =
3320		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3321
3322	if (!CNIC_LOADED(bp))
3323		return;
3324
3325	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3326
3327	fcoe_stat->qos_priority =
3328		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3329
3330	/* insert FCoE stats from ramrod response */
3331	if (!NO_FCOE(bp)) {
3332		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3333			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3334			tstorm_queue_statistics;
3335
3336		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3337			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3338			xstorm_queue_statistics;
3339
3340		struct fcoe_statistics_params *fw_fcoe_stat =
3341			&bp->fw_stats_data->fcoe;
3342
3343		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3344			  fcoe_stat->rx_bytes_lo,
3345			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3346
3347		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3348			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3349			  fcoe_stat->rx_bytes_lo,
3350			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3351
3352		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3353			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3354			  fcoe_stat->rx_bytes_lo,
3355			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3356
3357		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3358			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3359			  fcoe_stat->rx_bytes_lo,
3360			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3361
3362		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3363			  fcoe_stat->rx_frames_lo,
3364			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3365
3366		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3367			  fcoe_stat->rx_frames_lo,
3368			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3369
3370		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3371			  fcoe_stat->rx_frames_lo,
3372			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3373
3374		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3375			  fcoe_stat->rx_frames_lo,
3376			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3377
3378		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3379			  fcoe_stat->tx_bytes_lo,
3380			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3381
3382		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3383			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3384			  fcoe_stat->tx_bytes_lo,
3385			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3386
3387		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3388			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3389			  fcoe_stat->tx_bytes_lo,
3390			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3391
3392		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3393			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3394			  fcoe_stat->tx_bytes_lo,
3395			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3396
3397		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3398			  fcoe_stat->tx_frames_lo,
3399			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3400
3401		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3402			  fcoe_stat->tx_frames_lo,
3403			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3404
3405		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3406			  fcoe_stat->tx_frames_lo,
3407			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3408
3409		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3410			  fcoe_stat->tx_frames_lo,
3411			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3412	}
3413
3414	/* ask L5 driver to add data to the struct */
3415	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3416}
3417
3418static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3419{
3420	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3421	struct iscsi_stats_info *iscsi_stat =
3422		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3423
3424	if (!CNIC_LOADED(bp))
3425		return;
3426
3427	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3428	       ETH_ALEN);
3429
3430	iscsi_stat->qos_priority =
3431		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3432
3433	/* ask L5 driver to add data to the struct */
3434	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3435}
3436
3437/* called due to MCP event (on pmf):
3438 *	reread new bandwidth configuration
3439 *	configure FW
3440 *	notify others function about the change
3441 */
3442static void bnx2x_config_mf_bw(struct bnx2x *bp)
3443{
3444	if (bp->link_vars.link_up) {
3445		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3446		bnx2x_link_sync_notify(bp);
3447	}
3448	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3449}
3450
3451static void bnx2x_set_mf_bw(struct bnx2x *bp)
3452{
3453	bnx2x_config_mf_bw(bp);
3454	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3455}
3456
3457static void bnx2x_handle_eee_event(struct bnx2x *bp)
3458{
3459	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3460	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3461}
3462
3463static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3464{
3465	enum drv_info_opcode op_code;
3466	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3467
3468	/* if drv_info version supported by MFW doesn't match - send NACK */
3469	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3470		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3471		return;
3472	}
3473
3474	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3475		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3476
3477	memset(&bp->slowpath->drv_info_to_mcp, 0,
3478	       sizeof(union drv_info_to_mcp));
3479
3480	switch (op_code) {
3481	case ETH_STATS_OPCODE:
3482		bnx2x_drv_info_ether_stat(bp);
3483		break;
3484	case FCOE_STATS_OPCODE:
3485		bnx2x_drv_info_fcoe_stat(bp);
3486		break;
3487	case ISCSI_STATS_OPCODE:
3488		bnx2x_drv_info_iscsi_stat(bp);
3489		break;
3490	default:
3491		/* if op code isn't supported - send NACK */
3492		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3493		return;
3494	}
3495
3496	/* if we got drv_info attn from MFW then these fields are defined in
3497	 * shmem2 for sure
3498	 */
3499	SHMEM2_WR(bp, drv_info_host_addr_lo,
3500		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3501	SHMEM2_WR(bp, drv_info_host_addr_hi,
3502		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3503
3504	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3505}
3506
3507static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3508{
3509	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3510
3511	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3512
3513		/*
3514		 * This is the only place besides the function initialization
3515		 * where the bp->flags can change so it is done without any
3516		 * locks
3517		 */
3518		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3519			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3520			bp->flags |= MF_FUNC_DIS;
3521
3522			bnx2x_e1h_disable(bp);
3523		} else {
3524			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3525			bp->flags &= ~MF_FUNC_DIS;
3526
3527			bnx2x_e1h_enable(bp);
3528		}
3529		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3530	}
3531	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3532		bnx2x_config_mf_bw(bp);
3533		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3534	}
3535
3536	/* Report results to MCP */
3537	if (dcc_event)
3538		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3539	else
3540		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3541}
3542
3543/* must be called under the spq lock */
3544static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3545{
3546	struct eth_spe *next_spe = bp->spq_prod_bd;
3547
3548	if (bp->spq_prod_bd == bp->spq_last_bd) {
3549		bp->spq_prod_bd = bp->spq;
3550		bp->spq_prod_idx = 0;
3551		DP(BNX2X_MSG_SP, "end of spq\n");
3552	} else {
3553		bp->spq_prod_bd++;
3554		bp->spq_prod_idx++;
3555	}
3556	return next_spe;
3557}
3558
3559/* must be called under the spq lock */
3560static void bnx2x_sp_prod_update(struct bnx2x *bp)
3561{
3562	int func = BP_FUNC(bp);
3563
3564	/*
3565	 * Make sure that BD data is updated before writing the producer:
3566	 * BD data is written to the memory, the producer is read from the
3567	 * memory, thus we need a full memory barrier to ensure the ordering.
3568	 */
3569	mb();
3570
3571	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3572		 bp->spq_prod_idx);
3573	mmiowb();
3574}
3575
3576/**
3577 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3578 *
3579 * @cmd:	command to check
3580 * @cmd_type:	command type
3581 */
3582static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3583{
3584	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3585	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3586	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3587	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3588	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3589	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3590	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3591		return true;
3592	else
3593		return false;
3594}
3595
3596/**
3597 * bnx2x_sp_post - place a single command on an SP ring
3598 *
3599 * @bp:		driver handle
3600 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3601 * @cid:	SW CID the command is related to
3602 * @data_hi:	command private data address (high 32 bits)
3603 * @data_lo:	command private data address (low 32 bits)
3604 * @cmd_type:	command type (e.g. NONE, ETH)
3605 *
3606 * SP data is handled as if it's always an address pair, thus data fields are
3607 * not swapped to little endian in upper functions. Instead this function swaps
3608 * data as if it's two u32 fields.
3609 */
3610int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3611		  u32 data_hi, u32 data_lo, int cmd_type)
3612{
3613	struct eth_spe *spe;
3614	u16 type;
3615	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3616
3617#ifdef BNX2X_STOP_ON_ERROR
3618	if (unlikely(bp->panic)) {
3619		BNX2X_ERR("Can't post SP when there is panic\n");
3620		return -EIO;
3621	}
3622#endif
3623
3624	spin_lock_bh(&bp->spq_lock);
3625
3626	if (common) {
3627		if (!atomic_read(&bp->eq_spq_left)) {
3628			BNX2X_ERR("BUG! EQ ring full!\n");
3629			spin_unlock_bh(&bp->spq_lock);
3630			bnx2x_panic();
3631			return -EBUSY;
3632		}
3633	} else if (!atomic_read(&bp->cq_spq_left)) {
3634			BNX2X_ERR("BUG! SPQ ring full!\n");
3635			spin_unlock_bh(&bp->spq_lock);
3636			bnx2x_panic();
3637			return -EBUSY;
3638	}
3639
3640	spe = bnx2x_sp_get_next(bp);
3641
3642	/* CID needs port number to be encoded int it */
3643	spe->hdr.conn_and_cmd_data =
3644			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3645				    HW_CID(bp, cid));
3646
3647	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3648
3649	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3650		 SPE_HDR_FUNCTION_ID);
3651
3652	spe->hdr.type = cpu_to_le16(type);
3653
3654	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3655	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3656
3657	/*
3658	 * It's ok if the actual decrement is issued towards the memory
3659	 * somewhere between the spin_lock and spin_unlock. Thus no
3660	 * more explicit memory barrier is needed.
3661	 */
3662	if (common)
3663		atomic_dec(&bp->eq_spq_left);
3664	else
3665		atomic_dec(&bp->cq_spq_left);
3666
3667	DP(BNX2X_MSG_SP,
3668	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3669	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3670	   (u32)(U64_LO(bp->spq_mapping) +
3671	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3672	   HW_CID(bp, cid), data_hi, data_lo, type,
3673	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3674
3675	bnx2x_sp_prod_update(bp);
3676	spin_unlock_bh(&bp->spq_lock);
3677	return 0;
3678}
3679
3680/* acquire split MCP access lock register */
3681static int bnx2x_acquire_alr(struct bnx2x *bp)
3682{
3683	u32 j, val;
3684	int rc = 0;
3685
3686	might_sleep();
3687	for (j = 0; j < 1000; j++) {
3688		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3689		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3690		if (val & MCPR_ACCESS_LOCK_LOCK)
3691			break;
3692
3693		usleep_range(5000, 10000);
3694	}
3695	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3696		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3697		rc = -EBUSY;
3698	}
3699
3700	return rc;
3701}
3702
3703/* release split MCP access lock register */
3704static void bnx2x_release_alr(struct bnx2x *bp)
3705{
3706	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3707}
3708
3709#define BNX2X_DEF_SB_ATT_IDX	0x0001
3710#define BNX2X_DEF_SB_IDX	0x0002
3711
3712static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3713{
3714	struct host_sp_status_block *def_sb = bp->def_status_blk;
3715	u16 rc = 0;
3716
3717	barrier(); /* status block is written to by the chip */
3718	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3719		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3720		rc |= BNX2X_DEF_SB_ATT_IDX;
3721	}
3722
3723	if (bp->def_idx != def_sb->sp_sb.running_index) {
3724		bp->def_idx = def_sb->sp_sb.running_index;
3725		rc |= BNX2X_DEF_SB_IDX;
3726	}
3727
3728	/* Do not reorder: indices reading should complete before handling */
3729	barrier();
3730	return rc;
3731}
3732
3733/*
3734 * slow path service functions
3735 */
3736
3737static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3738{
3739	int port = BP_PORT(bp);
3740	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3741			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3742	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3743				       NIG_REG_MASK_INTERRUPT_PORT0;
3744	u32 aeu_mask;
3745	u32 nig_mask = 0;
3746	u32 reg_addr;
3747
3748	if (bp->attn_state & asserted)
3749		BNX2X_ERR("IGU ERROR\n");
3750
3751	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3752	aeu_mask = REG_RD(bp, aeu_addr);
3753
3754	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3755	   aeu_mask, asserted);
3756	aeu_mask &= ~(asserted & 0x3ff);
3757	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3758
3759	REG_WR(bp, aeu_addr, aeu_mask);
3760	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3761
3762	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3763	bp->attn_state |= asserted;
3764	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3765
3766	if (asserted & ATTN_HARD_WIRED_MASK) {
3767		if (asserted & ATTN_NIG_FOR_FUNC) {
3768
3769			bnx2x_acquire_phy_lock(bp);
3770
3771			/* save nig interrupt mask */
3772			nig_mask = REG_RD(bp, nig_int_mask_addr);
3773
3774			/* If nig_mask is not set, no need to call the update
3775			 * function.
3776			 */
3777			if (nig_mask) {
3778				REG_WR(bp, nig_int_mask_addr, 0);
3779
3780				bnx2x_link_attn(bp);
3781			}
3782
3783			/* handle unicore attn? */
3784		}
3785		if (asserted & ATTN_SW_TIMER_4_FUNC)
3786			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3787
3788		if (asserted & GPIO_2_FUNC)
3789			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3790
3791		if (asserted & GPIO_3_FUNC)
3792			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3793
3794		if (asserted & GPIO_4_FUNC)
3795			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3796
3797		if (port == 0) {
3798			if (asserted & ATTN_GENERAL_ATTN_1) {
3799				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3800				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3801			}
3802			if (asserted & ATTN_GENERAL_ATTN_2) {
3803				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3804				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3805			}
3806			if (asserted & ATTN_GENERAL_ATTN_3) {
3807				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3808				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3809			}
3810		} else {
3811			if (asserted & ATTN_GENERAL_ATTN_4) {
3812				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3813				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3814			}
3815			if (asserted & ATTN_GENERAL_ATTN_5) {
3816				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3817				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3818			}
3819			if (asserted & ATTN_GENERAL_ATTN_6) {
3820				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3821				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3822			}
3823		}
3824
3825	} /* if hardwired */
3826
3827	if (bp->common.int_block == INT_BLOCK_HC)
3828		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3829			    COMMAND_REG_ATTN_BITS_SET);
3830	else
3831		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3832
3833	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3834	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3835	REG_WR(bp, reg_addr, asserted);
3836
3837	/* now set back the mask */
3838	if (asserted & ATTN_NIG_FOR_FUNC) {
3839		/* Verify that IGU ack through BAR was written before restoring
3840		 * NIG mask. This loop should exit after 2-3 iterations max.
3841		 */
3842		if (bp->common.int_block != INT_BLOCK_HC) {
3843			u32 cnt = 0, igu_acked;
3844			do {
3845				igu_acked = REG_RD(bp,
3846						   IGU_REG_ATTENTION_ACK_BITS);
3847			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3848				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3849			if (!igu_acked)
3850				DP(NETIF_MSG_HW,
3851				   "Failed to verify IGU ack on time\n");
3852			barrier();
3853		}
3854		REG_WR(bp, nig_int_mask_addr, nig_mask);
3855		bnx2x_release_phy_lock(bp);
3856	}
3857}
3858
3859static void bnx2x_fan_failure(struct bnx2x *bp)
3860{
3861	int port = BP_PORT(bp);
3862	u32 ext_phy_config;
3863	/* mark the failure */
3864	ext_phy_config =
3865		SHMEM_RD(bp,
3866			 dev_info.port_hw_config[port].external_phy_config);
3867
3868	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3869	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3870	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3871		 ext_phy_config);
3872
3873	/* log the failure */
3874	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3875			    "Please contact OEM Support for assistance\n");
3876
3877	/* Schedule device reset (unload)
3878	 * This is due to some boards consuming sufficient power when driver is
3879	 * up to overheat if fan fails.
3880	 */
3881	smp_mb__before_clear_bit();
3882	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3883	smp_mb__after_clear_bit();
3884	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3885}
3886
3887static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3888{
3889	int port = BP_PORT(bp);
3890	int reg_offset;
3891	u32 val;
3892
3893	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3894			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3895
3896	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3897
3898		val = REG_RD(bp, reg_offset);
3899		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3900		REG_WR(bp, reg_offset, val);
3901
3902		BNX2X_ERR("SPIO5 hw attention\n");
3903
3904		/* Fan failure attention */
3905		bnx2x_hw_reset_phy(&bp->link_params);
3906		bnx2x_fan_failure(bp);
3907	}
3908
3909	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3910		bnx2x_acquire_phy_lock(bp);
3911		bnx2x_handle_module_detect_int(&bp->link_params);
3912		bnx2x_release_phy_lock(bp);
3913	}
3914
3915	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3916
3917		val = REG_RD(bp, reg_offset);
3918		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3919		REG_WR(bp, reg_offset, val);
3920
3921		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3922			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3923		bnx2x_panic();
3924	}
3925}
3926
3927static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3928{
3929	u32 val;
3930
3931	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3932
3933		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3934		BNX2X_ERR("DB hw attention 0x%x\n", val);
3935		/* DORQ discard attention */
3936		if (val & 0x2)
3937			BNX2X_ERR("FATAL error from DORQ\n");
3938	}
3939
3940	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3941
3942		int port = BP_PORT(bp);
3943		int reg_offset;
3944
3945		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3946				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3947
3948		val = REG_RD(bp, reg_offset);
3949		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3950		REG_WR(bp, reg_offset, val);
3951
3952		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3953			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3954		bnx2x_panic();
3955	}
3956}
3957
3958static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3959{
3960	u32 val;
3961
3962	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3963
3964		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3965		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3966		/* CFC error attention */
3967		if (val & 0x2)
3968			BNX2X_ERR("FATAL error from CFC\n");
3969	}
3970
3971	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3972		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3973		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3974		/* RQ_USDMDP_FIFO_OVERFLOW */
3975		if (val & 0x18000)
3976			BNX2X_ERR("FATAL error from PXP\n");
3977
3978		if (!CHIP_IS_E1x(bp)) {
3979			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3980			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3981		}
3982	}
3983
3984	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3985
3986		int port = BP_PORT(bp);
3987		int reg_offset;
3988
3989		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3990				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3991
3992		val = REG_RD(bp, reg_offset);
3993		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3994		REG_WR(bp, reg_offset, val);
3995
3996		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3997			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3998		bnx2x_panic();
3999	}
4000}
4001
4002static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4003{
4004	u32 val;
4005
4006	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4007
4008		if (attn & BNX2X_PMF_LINK_ASSERT) {
4009			int func = BP_FUNC(bp);
4010
4011			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4012			bnx2x_read_mf_cfg(bp);
4013			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4014					func_mf_config[BP_ABS_FUNC(bp)].config);
4015			val = SHMEM_RD(bp,
4016				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4017			if (val & DRV_STATUS_DCC_EVENT_MASK)
4018				bnx2x_dcc_event(bp,
4019					    (val & DRV_STATUS_DCC_EVENT_MASK));
4020
4021			if (val & DRV_STATUS_SET_MF_BW)
4022				bnx2x_set_mf_bw(bp);
4023
4024			if (val & DRV_STATUS_DRV_INFO_REQ)
4025				bnx2x_handle_drv_info_req(bp);
4026
4027			if (val & DRV_STATUS_VF_DISABLED)
4028				bnx2x_vf_handle_flr_event(bp);
4029
4030			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4031				bnx2x_pmf_update(bp);
4032
4033			if (bp->port.pmf &&
4034			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4035				bp->dcbx_enabled > 0)
4036				/* start dcbx state machine */
4037				bnx2x_dcbx_set_params(bp,
4038					BNX2X_DCBX_STATE_NEG_RECEIVED);
4039			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4040				bnx2x_handle_afex_cmd(bp,
4041					val & DRV_STATUS_AFEX_EVENT_MASK);
4042			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4043				bnx2x_handle_eee_event(bp);
4044			if (bp->link_vars.periodic_flags &
4045			    PERIODIC_FLAGS_LINK_EVENT) {
4046				/*  sync with link */
4047				bnx2x_acquire_phy_lock(bp);
4048				bp->link_vars.periodic_flags &=
4049					~PERIODIC_FLAGS_LINK_EVENT;
4050				bnx2x_release_phy_lock(bp);
4051				if (IS_MF(bp))
4052					bnx2x_link_sync_notify(bp);
4053				bnx2x_link_report(bp);
4054			}
4055			/* Always call it here: bnx2x_link_report() will
4056			 * prevent the link indication duplication.
4057			 */
4058			bnx2x__link_status_update(bp);
4059		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4060
4061			BNX2X_ERR("MC assert!\n");
4062			bnx2x_mc_assert(bp);
4063			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4064			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4065			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4066			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4067			bnx2x_panic();
4068
4069		} else if (attn & BNX2X_MCP_ASSERT) {
4070
4071			BNX2X_ERR("MCP assert!\n");
4072			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4073			bnx2x_fw_dump(bp);
4074
4075		} else
4076			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4077	}
4078
4079	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4080		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4081		if (attn & BNX2X_GRC_TIMEOUT) {
4082			val = CHIP_IS_E1(bp) ? 0 :
4083					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4084			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4085		}
4086		if (attn & BNX2X_GRC_RSV) {
4087			val = CHIP_IS_E1(bp) ? 0 :
4088					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4089			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4090		}
4091		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4092	}
4093}
4094
4095/*
4096 * Bits map:
4097 * 0-7   - Engine0 load counter.
4098 * 8-15  - Engine1 load counter.
4099 * 16    - Engine0 RESET_IN_PROGRESS bit.
4100 * 17    - Engine1 RESET_IN_PROGRESS bit.
4101 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4102 *         on the engine
4103 * 19    - Engine1 ONE_IS_LOADED.
4104 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4105 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4106 *         just the one belonging to its engine).
4107 *
4108 */
4109#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4110
4111#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4112#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4113#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4114#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4115#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4116#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4117#define BNX2X_GLOBAL_RESET_BIT		0x00040000
4118
4119/*
4120 * Set the GLOBAL_RESET bit.
4121 *
4122 * Should be run under rtnl lock
4123 */
4124void bnx2x_set_reset_global(struct bnx2x *bp)
4125{
4126	u32 val;
4127	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4129	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4130	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4131}
4132
4133/*
4134 * Clear the GLOBAL_RESET bit.
4135 *
4136 * Should be run under rtnl lock
4137 */
4138static void bnx2x_clear_reset_global(struct bnx2x *bp)
4139{
4140	u32 val;
4141	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4142	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4143	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4144	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4145}
4146
4147/*
4148 * Checks the GLOBAL_RESET bit.
4149 *
4150 * should be run under rtnl lock
4151 */
4152static bool bnx2x_reset_is_global(struct bnx2x *bp)
4153{
4154	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4155
4156	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4157	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4158}
4159
4160/*
4161 * Clear RESET_IN_PROGRESS bit for the current engine.
4162 *
4163 * Should be run under rtnl lock
4164 */
4165static void bnx2x_set_reset_done(struct bnx2x *bp)
4166{
4167	u32 val;
4168	u32 bit = BP_PATH(bp) ?
4169		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4170	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4171	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4172
4173	/* Clear the bit */
4174	val &= ~bit;
4175	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4176
4177	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4178}
4179
4180/*
4181 * Set RESET_IN_PROGRESS for the current engine.
4182 *
4183 * should be run under rtnl lock
4184 */
4185void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4186{
4187	u32 val;
4188	u32 bit = BP_PATH(bp) ?
4189		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4190	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4191	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4192
4193	/* Set the bit */
4194	val |= bit;
4195	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4196	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4197}
4198
4199/*
4200 * Checks the RESET_IN_PROGRESS bit for the given engine.
4201 * should be run under rtnl lock
4202 */
4203bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4204{
4205	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4206	u32 bit = engine ?
4207		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4208
4209	/* return false if bit is set */
4210	return (val & bit) ? false : true;
4211}
4212
4213/*
4214 * set pf load for the current pf.
4215 *
4216 * should be run under rtnl lock
4217 */
4218void bnx2x_set_pf_load(struct bnx2x *bp)
4219{
4220	u32 val1, val;
4221	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4222			     BNX2X_PATH0_LOAD_CNT_MASK;
4223	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4224			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4225
4226	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4227	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4228
4229	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4230
4231	/* get the current counter value */
4232	val1 = (val & mask) >> shift;
4233
4234	/* set bit of that PF */
4235	val1 |= (1 << bp->pf_num);
4236
4237	/* clear the old value */
4238	val &= ~mask;
4239
4240	/* set the new one */
4241	val |= ((val1 << shift) & mask);
4242
4243	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4244	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4245}
4246
4247/**
4248 * bnx2x_clear_pf_load - clear pf load mark
4249 *
4250 * @bp:		driver handle
4251 *
4252 * Should be run under rtnl lock.
4253 * Decrements the load counter for the current engine. Returns
4254 * whether other functions are still loaded
4255 */
4256bool bnx2x_clear_pf_load(struct bnx2x *bp)
4257{
4258	u32 val1, val;
4259	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4260			     BNX2X_PATH0_LOAD_CNT_MASK;
4261	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4262			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4263
4264	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4265	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4266	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4267
4268	/* get the current counter value */
4269	val1 = (val & mask) >> shift;
4270
4271	/* clear bit of that PF */
4272	val1 &= ~(1 << bp->pf_num);
4273
4274	/* clear the old value */
4275	val &= ~mask;
4276
4277	/* set the new one */
4278	val |= ((val1 << shift) & mask);
4279
4280	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4281	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4282	return val1 != 0;
4283}
4284
4285/*
4286 * Read the load status for the current engine.
4287 *
4288 * should be run under rtnl lock
4289 */
4290static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4291{
4292	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4293			     BNX2X_PATH0_LOAD_CNT_MASK);
4294	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4295			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4296	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4297
4298	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4299
4300	val = (val & mask) >> shift;
4301
4302	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4303	   engine, val);
4304
4305	return val != 0;
4306}
4307
4308static void _print_parity(struct bnx2x *bp, u32 reg)
4309{
4310	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4311}
4312
4313static void _print_next_block(int idx, const char *blk)
4314{
4315	pr_cont("%s%s", idx ? ", " : "", blk);
4316}
4317
4318static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4319					    int *par_num, bool print)
4320{
4321	u32 cur_bit;
4322	bool res;
4323	int i;
4324
4325	res = false;
4326
4327	for (i = 0; sig; i++) {
4328		cur_bit = (0x1UL << i);
4329		if (sig & cur_bit) {
4330			res |= true; /* Each bit is real error! */
4331
4332			if (print) {
4333				switch (cur_bit) {
4334				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4335					_print_next_block((*par_num)++, "BRB");
4336					_print_parity(bp,
4337						      BRB1_REG_BRB1_PRTY_STS);
4338					break;
4339				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4340					_print_next_block((*par_num)++,
4341							  "PARSER");
4342					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4343					break;
4344				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4345					_print_next_block((*par_num)++, "TSDM");
4346					_print_parity(bp,
4347						      TSDM_REG_TSDM_PRTY_STS);
4348					break;
4349				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4350					_print_next_block((*par_num)++,
4351							  "SEARCHER");
4352					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4353					break;
4354				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4355					_print_next_block((*par_num)++, "TCM");
4356					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4357					break;
4358				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4359					_print_next_block((*par_num)++,
4360							  "TSEMI");
4361					_print_parity(bp,
4362						      TSEM_REG_TSEM_PRTY_STS_0);
4363					_print_parity(bp,
4364						      TSEM_REG_TSEM_PRTY_STS_1);
4365					break;
4366				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4367					_print_next_block((*par_num)++, "XPB");
4368					_print_parity(bp, GRCBASE_XPB +
4369							  PB_REG_PB_PRTY_STS);
4370					break;
4371				}
4372			}
4373
4374			/* Clear the bit */
4375			sig &= ~cur_bit;
4376		}
4377	}
4378
4379	return res;
4380}
4381
4382static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4383					    int *par_num, bool *global,
4384					    bool print)
4385{
4386	u32 cur_bit;
4387	bool res;
4388	int i;
4389
4390	res = false;
4391
4392	for (i = 0; sig; i++) {
4393		cur_bit = (0x1UL << i);
4394		if (sig & cur_bit) {
4395			res |= true; /* Each bit is real error! */
4396			switch (cur_bit) {
4397			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4398				if (print) {
4399					_print_next_block((*par_num)++, "PBF");
4400					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4401				}
4402				break;
4403			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4404				if (print) {
4405					_print_next_block((*par_num)++, "QM");
4406					_print_parity(bp, QM_REG_QM_PRTY_STS);
4407				}
4408				break;
4409			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4410				if (print) {
4411					_print_next_block((*par_num)++, "TM");
4412					_print_parity(bp, TM_REG_TM_PRTY_STS);
4413				}
4414				break;
4415			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4416				if (print) {
4417					_print_next_block((*par_num)++, "XSDM");
4418					_print_parity(bp,
4419						      XSDM_REG_XSDM_PRTY_STS);
4420				}
4421				break;
4422			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4423				if (print) {
4424					_print_next_block((*par_num)++, "XCM");
4425					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4426				}
4427				break;
4428			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4429				if (print) {
4430					_print_next_block((*par_num)++,
4431							  "XSEMI");
4432					_print_parity(bp,
4433						      XSEM_REG_XSEM_PRTY_STS_0);
4434					_print_parity(bp,
4435						      XSEM_REG_XSEM_PRTY_STS_1);
4436				}
4437				break;
4438			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4439				if (print) {
4440					_print_next_block((*par_num)++,
4441							  "DOORBELLQ");
4442					_print_parity(bp,
4443						      DORQ_REG_DORQ_PRTY_STS);
4444				}
4445				break;
4446			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4447				if (print) {
4448					_print_next_block((*par_num)++, "NIG");
4449					if (CHIP_IS_E1x(bp)) {
4450						_print_parity(bp,
4451							NIG_REG_NIG_PRTY_STS);
4452					} else {
4453						_print_parity(bp,
4454							NIG_REG_NIG_PRTY_STS_0);
4455						_print_parity(bp,
4456							NIG_REG_NIG_PRTY_STS_1);
4457					}
4458				}
4459				break;
4460			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4461				if (print)
4462					_print_next_block((*par_num)++,
4463							  "VAUX PCI CORE");
4464				*global = true;
4465				break;
4466			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4467				if (print) {
4468					_print_next_block((*par_num)++,
4469							  "DEBUG");
4470					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4471				}
4472				break;
4473			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4474				if (print) {
4475					_print_next_block((*par_num)++, "USDM");
4476					_print_parity(bp,
4477						      USDM_REG_USDM_PRTY_STS);
4478				}
4479				break;
4480			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4481				if (print) {
4482					_print_next_block((*par_num)++, "UCM");
4483					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4484				}
4485				break;
4486			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4487				if (print) {
4488					_print_next_block((*par_num)++,
4489							  "USEMI");
4490					_print_parity(bp,
4491						      USEM_REG_USEM_PRTY_STS_0);
4492					_print_parity(bp,
4493						      USEM_REG_USEM_PRTY_STS_1);
4494				}
4495				break;
4496			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4497				if (print) {
4498					_print_next_block((*par_num)++, "UPB");
4499					_print_parity(bp, GRCBASE_UPB +
4500							  PB_REG_PB_PRTY_STS);
4501				}
4502				break;
4503			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4504				if (print) {
4505					_print_next_block((*par_num)++, "CSDM");
4506					_print_parity(bp,
4507						      CSDM_REG_CSDM_PRTY_STS);
4508				}
4509				break;
4510			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4511				if (print) {
4512					_print_next_block((*par_num)++, "CCM");
4513					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4514				}
4515				break;
4516			}
4517
4518			/* Clear the bit */
4519			sig &= ~cur_bit;
4520		}
4521	}
4522
4523	return res;
4524}
4525
4526static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4527					    int *par_num, bool print)
4528{
4529	u32 cur_bit;
4530	bool res;
4531	int i;
4532
4533	res = false;
4534
4535	for (i = 0; sig; i++) {
4536		cur_bit = (0x1UL << i);
4537		if (sig & cur_bit) {
4538			res |= true; /* Each bit is real error! */
4539			if (print) {
4540				switch (cur_bit) {
4541				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4542					_print_next_block((*par_num)++,
4543							  "CSEMI");
4544					_print_parity(bp,
4545						      CSEM_REG_CSEM_PRTY_STS_0);
4546					_print_parity(bp,
4547						      CSEM_REG_CSEM_PRTY_STS_1);
4548					break;
4549				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4550					_print_next_block((*par_num)++, "PXP");
4551					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4552					_print_parity(bp,
4553						      PXP2_REG_PXP2_PRTY_STS_0);
4554					_print_parity(bp,
4555						      PXP2_REG_PXP2_PRTY_STS_1);
4556					break;
4557				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4558					_print_next_block((*par_num)++,
4559							  "PXPPCICLOCKCLIENT");
4560					break;
4561				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4562					_print_next_block((*par_num)++, "CFC");
4563					_print_parity(bp,
4564						      CFC_REG_CFC_PRTY_STS);
4565					break;
4566				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4567					_print_next_block((*par_num)++, "CDU");
4568					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4569					break;
4570				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4571					_print_next_block((*par_num)++, "DMAE");
4572					_print_parity(bp,
4573						      DMAE_REG_DMAE_PRTY_STS);
4574					break;
4575				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4576					_print_next_block((*par_num)++, "IGU");
4577					if (CHIP_IS_E1x(bp))
4578						_print_parity(bp,
4579							HC_REG_HC_PRTY_STS);
4580					else
4581						_print_parity(bp,
4582							IGU_REG_IGU_PRTY_STS);
4583					break;
4584				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4585					_print_next_block((*par_num)++, "MISC");
4586					_print_parity(bp,
4587						      MISC_REG_MISC_PRTY_STS);
4588					break;
4589				}
4590			}
4591
4592			/* Clear the bit */
4593			sig &= ~cur_bit;
4594		}
4595	}
4596
4597	return res;
4598}
4599
4600static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4601					    int *par_num, bool *global,
4602					    bool print)
4603{
4604	bool res = false;
4605	u32 cur_bit;
4606	int i;
4607
4608	for (i = 0; sig; i++) {
4609		cur_bit = (0x1UL << i);
4610		if (sig & cur_bit) {
4611			switch (cur_bit) {
4612			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4613				if (print)
4614					_print_next_block((*par_num)++,
4615							  "MCP ROM");
4616				*global = true;
4617				res |= true;
4618				break;
4619			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4620				if (print)
4621					_print_next_block((*par_num)++,
4622							  "MCP UMP RX");
4623				*global = true;
4624				res |= true;
4625				break;
4626			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4627				if (print)
4628					_print_next_block((*par_num)++,
4629							  "MCP UMP TX");
4630				*global = true;
4631				res |= true;
4632				break;
4633			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4634				if (print)
4635					_print_next_block((*par_num)++,
4636							  "MCP SCPAD");
4637				/* clear latched SCPAD PATIRY from MCP */
4638				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4639				       1UL << 10);
4640				break;
4641			}
4642
4643			/* Clear the bit */
4644			sig &= ~cur_bit;
4645		}
4646	}
4647
4648	return res;
4649}
4650
4651static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4652					    int *par_num, bool print)
4653{
4654	u32 cur_bit;
4655	bool res;
4656	int i;
4657
4658	res = false;
4659
4660	for (i = 0; sig; i++) {
4661		cur_bit = (0x1UL << i);
4662		if (sig & cur_bit) {
4663			res |= true; /* Each bit is real error! */
4664			if (print) {
4665				switch (cur_bit) {
4666				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4667					_print_next_block((*par_num)++,
4668							  "PGLUE_B");
4669					_print_parity(bp,
4670						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4671					break;
4672				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4673					_print_next_block((*par_num)++, "ATC");
4674					_print_parity(bp,
4675						      ATC_REG_ATC_PRTY_STS);
4676					break;
4677				}
4678			}
4679			/* Clear the bit */
4680			sig &= ~cur_bit;
4681		}
4682	}
4683
4684	return res;
4685}
4686
4687static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4688			      u32 *sig)
4689{
4690	bool res = false;
4691
4692	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4693	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4694	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4695	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4696	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4697		int par_num = 0;
4698		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4699				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4700			  sig[0] & HW_PRTY_ASSERT_SET_0,
4701			  sig[1] & HW_PRTY_ASSERT_SET_1,
4702			  sig[2] & HW_PRTY_ASSERT_SET_2,
4703			  sig[3] & HW_PRTY_ASSERT_SET_3,
4704			  sig[4] & HW_PRTY_ASSERT_SET_4);
4705		if (print)
4706			netdev_err(bp->dev,
4707				   "Parity errors detected in blocks: ");
4708		res |= bnx2x_check_blocks_with_parity0(bp,
4709			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4710		res |= bnx2x_check_blocks_with_parity1(bp,
4711			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4712		res |= bnx2x_check_blocks_with_parity2(bp,
4713			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4714		res |= bnx2x_check_blocks_with_parity3(bp,
4715			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4716		res |= bnx2x_check_blocks_with_parity4(bp,
4717			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4718
4719		if (print)
4720			pr_cont("\n");
4721	}
4722
4723	return res;
4724}
4725
4726/**
4727 * bnx2x_chk_parity_attn - checks for parity attentions.
4728 *
4729 * @bp:		driver handle
4730 * @global:	true if there was a global attention
4731 * @print:	show parity attention in syslog
4732 */
4733bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4734{
4735	struct attn_route attn = { {0} };
4736	int port = BP_PORT(bp);
4737
4738	attn.sig[0] = REG_RD(bp,
4739		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4740			     port*4);
4741	attn.sig[1] = REG_RD(bp,
4742		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4743			     port*4);
4744	attn.sig[2] = REG_RD(bp,
4745		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4746			     port*4);
4747	attn.sig[3] = REG_RD(bp,
4748		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4749			     port*4);
4750	/* Since MCP attentions can't be disabled inside the block, we need to
4751	 * read AEU registers to see whether they're currently disabled
4752	 */
4753	attn.sig[3] &= ((REG_RD(bp,
4754				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4755				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4756			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4757			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4758
4759	if (!CHIP_IS_E1x(bp))
4760		attn.sig[4] = REG_RD(bp,
4761			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4762				     port*4);
4763
4764	return bnx2x_parity_attn(bp, global, print, attn.sig);
4765}
4766
4767static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4768{
4769	u32 val;
4770	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4771
4772		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4773		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4774		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4775			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4776		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4777			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4778		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4779			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4780		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4781			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4782		if (val &
4783		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4784			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4785		if (val &
4786		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4787			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4788		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4789			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4790		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4791			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4792		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4793			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4794	}
4795	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4796		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4797		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4798		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4799			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4800		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4801			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4802		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4803			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4804		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4805			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4806		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4807			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4808		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4809			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4810	}
4811
4812	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4813		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4814		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4815		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4816		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4817	}
4818}
4819
4820static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4821{
4822	struct attn_route attn, *group_mask;
4823	int port = BP_PORT(bp);
4824	int index;
4825	u32 reg_addr;
4826	u32 val;
4827	u32 aeu_mask;
4828	bool global = false;
4829
4830	/* need to take HW lock because MCP or other port might also
4831	   try to handle this event */
4832	bnx2x_acquire_alr(bp);
4833
4834	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4835#ifndef BNX2X_STOP_ON_ERROR
4836		bp->recovery_state = BNX2X_RECOVERY_INIT;
4837		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4838		/* Disable HW interrupts */
4839		bnx2x_int_disable(bp);
4840		/* In case of parity errors don't handle attentions so that
4841		 * other function would "see" parity errors.
4842		 */
4843#else
4844		bnx2x_panic();
4845#endif
4846		bnx2x_release_alr(bp);
4847		return;
4848	}
4849
4850	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4851	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4852	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4853	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4854	if (!CHIP_IS_E1x(bp))
4855		attn.sig[4] =
4856		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4857	else
4858		attn.sig[4] = 0;
4859
4860	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4861	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4862
4863	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4864		if (deasserted & (1 << index)) {
4865			group_mask = &bp->attn_group[index];
4866
4867			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4868			   index,
4869			   group_mask->sig[0], group_mask->sig[1],
4870			   group_mask->sig[2], group_mask->sig[3],
4871			   group_mask->sig[4]);
4872
4873			bnx2x_attn_int_deasserted4(bp,
4874					attn.sig[4] & group_mask->sig[4]);
4875			bnx2x_attn_int_deasserted3(bp,
4876					attn.sig[3] & group_mask->sig[3]);
4877			bnx2x_attn_int_deasserted1(bp,
4878					attn.sig[1] & group_mask->sig[1]);
4879			bnx2x_attn_int_deasserted2(bp,
4880					attn.sig[2] & group_mask->sig[2]);
4881			bnx2x_attn_int_deasserted0(bp,
4882					attn.sig[0] & group_mask->sig[0]);
4883		}
4884	}
4885
4886	bnx2x_release_alr(bp);
4887
4888	if (bp->common.int_block == INT_BLOCK_HC)
4889		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4890			    COMMAND_REG_ATTN_BITS_CLR);
4891	else
4892		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4893
4894	val = ~deasserted;
4895	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4896	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4897	REG_WR(bp, reg_addr, val);
4898
4899	if (~bp->attn_state & deasserted)
4900		BNX2X_ERR("IGU ERROR\n");
4901
4902	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4903			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4904
4905	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4906	aeu_mask = REG_RD(bp, reg_addr);
4907
4908	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4909	   aeu_mask, deasserted);
4910	aeu_mask |= (deasserted & 0x3ff);
4911	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4912
4913	REG_WR(bp, reg_addr, aeu_mask);
4914	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4915
4916	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4917	bp->attn_state &= ~deasserted;
4918	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4919}
4920
4921static void bnx2x_attn_int(struct bnx2x *bp)
4922{
4923	/* read local copy of bits */
4924	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4925								attn_bits);
4926	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4927								attn_bits_ack);
4928	u32 attn_state = bp->attn_state;
4929
4930	/* look for changed bits */
4931	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4932	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4933
4934	DP(NETIF_MSG_HW,
4935	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4936	   attn_bits, attn_ack, asserted, deasserted);
4937
4938	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4939		BNX2X_ERR("BAD attention state\n");
4940
4941	/* handle bits that were raised */
4942	if (asserted)
4943		bnx2x_attn_int_asserted(bp, asserted);
4944
4945	if (deasserted)
4946		bnx2x_attn_int_deasserted(bp, deasserted);
4947}
4948
4949void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4950		      u16 index, u8 op, u8 update)
4951{
4952	u32 igu_addr = bp->igu_base_addr;
4953	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4954	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4955			     igu_addr);
4956}
4957
4958static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4959{
4960	/* No memory barriers */
4961	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4962	mmiowb(); /* keep prod updates ordered */
4963}
4964
4965static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4966				      union event_ring_elem *elem)
4967{
4968	u8 err = elem->message.error;
4969
4970	if (!bp->cnic_eth_dev.starting_cid  ||
4971	    (cid < bp->cnic_eth_dev.starting_cid &&
4972	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4973		return 1;
4974
4975	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4976
4977	if (unlikely(err)) {
4978
4979		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4980			  cid);
4981		bnx2x_panic_dump(bp, false);
4982	}
4983	bnx2x_cnic_cfc_comp(bp, cid, err);
4984	return 0;
4985}
4986
4987static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4988{
4989	struct bnx2x_mcast_ramrod_params rparam;
4990	int rc;
4991
4992	memset(&rparam, 0, sizeof(rparam));
4993
4994	rparam.mcast_obj = &bp->mcast_obj;
4995
4996	netif_addr_lock_bh(bp->dev);
4997
4998	/* Clear pending state for the last command */
4999	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5000
5001	/* If there are pending mcast commands - send them */
5002	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5003		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5004		if (rc < 0)
5005			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5006				  rc);
5007	}
5008
5009	netif_addr_unlock_bh(bp->dev);
5010}
5011
5012static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5013					    union event_ring_elem *elem)
5014{
5015	unsigned long ramrod_flags = 0;
5016	int rc = 0;
5017	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5018	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5019
5020	/* Always push next commands out, don't wait here */
5021	__set_bit(RAMROD_CONT, &ramrod_flags);
5022
5023	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5024			    >> BNX2X_SWCID_SHIFT) {
5025	case BNX2X_FILTER_MAC_PENDING:
5026		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5027		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5028			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5029		else
5030			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5031
5032		break;
5033	case BNX2X_FILTER_MCAST_PENDING:
5034		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5035		/* This is only relevant for 57710 where multicast MACs are
5036		 * configured as unicast MACs using the same ramrod.
5037		 */
5038		bnx2x_handle_mcast_eqe(bp);
5039		return;
5040	default:
5041		BNX2X_ERR("Unsupported classification command: %d\n",
5042			  elem->message.data.eth_event.echo);
5043		return;
5044	}
5045
5046	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5047
5048	if (rc < 0)
5049		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5050	else if (rc > 0)
5051		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5052}
5053
5054static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5055
5056static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5057{
5058	netif_addr_lock_bh(bp->dev);
5059
5060	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5061
5062	/* Send rx_mode command again if was requested */
5063	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5064		bnx2x_set_storm_rx_mode(bp);
5065	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5066				    &bp->sp_state))
5067		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5068	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5069				    &bp->sp_state))
5070		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5071
5072	netif_addr_unlock_bh(bp->dev);
5073}
5074
5075static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5076					      union event_ring_elem *elem)
5077{
5078	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5079		DP(BNX2X_MSG_SP,
5080		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5081		   elem->message.data.vif_list_event.func_bit_map);
5082		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5083			elem->message.data.vif_list_event.func_bit_map);
5084	} else if (elem->message.data.vif_list_event.echo ==
5085		   VIF_LIST_RULE_SET) {
5086		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5087		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5088	}
5089}
5090
5091/* called with rtnl_lock */
5092static void bnx2x_after_function_update(struct bnx2x *bp)
5093{
5094	int q, rc;
5095	struct bnx2x_fastpath *fp;
5096	struct bnx2x_queue_state_params queue_params = {NULL};
5097	struct bnx2x_queue_update_params *q_update_params =
5098		&queue_params.params.update;
5099
5100	/* Send Q update command with afex vlan removal values for all Qs */
5101	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5102
5103	/* set silent vlan removal values according to vlan mode */
5104	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5105		  &q_update_params->update_flags);
5106	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5107		  &q_update_params->update_flags);
5108	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5109
5110	/* in access mode mark mask and value are 0 to strip all vlans */
5111	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5112		q_update_params->silent_removal_value = 0;
5113		q_update_params->silent_removal_mask = 0;
5114	} else {
5115		q_update_params->silent_removal_value =
5116			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5117		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5118	}
5119
5120	for_each_eth_queue(bp, q) {
5121		/* Set the appropriate Queue object */
5122		fp = &bp->fp[q];
5123		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5124
5125		/* send the ramrod */
5126		rc = bnx2x_queue_state_change(bp, &queue_params);
5127		if (rc < 0)
5128			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5129				  q);
5130	}
5131
5132	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5133		fp = &bp->fp[FCOE_IDX(bp)];
5134		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5135
5136		/* clear pending completion bit */
5137		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5138
5139		/* mark latest Q bit */
5140		smp_mb__before_clear_bit();
5141		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5142		smp_mb__after_clear_bit();
5143
5144		/* send Q update ramrod for FCoE Q */
5145		rc = bnx2x_queue_state_change(bp, &queue_params);
5146		if (rc < 0)
5147			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5148				  q);
5149	} else {
5150		/* If no FCoE ring - ACK MCP now */
5151		bnx2x_link_report(bp);
5152		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5153	}
5154}
5155
5156static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5157	struct bnx2x *bp, u32 cid)
5158{
5159	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5160
5161	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5162		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5163	else
5164		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5165}
5166
5167static void bnx2x_eq_int(struct bnx2x *bp)
5168{
5169	u16 hw_cons, sw_cons, sw_prod;
5170	union event_ring_elem *elem;
5171	u8 echo;
5172	u32 cid;
5173	u8 opcode;
5174	int rc, spqe_cnt = 0;
5175	struct bnx2x_queue_sp_obj *q_obj;
5176	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5177	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5178
5179	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5180
5181	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5182	 * when we get the next-page we need to adjust so the loop
5183	 * condition below will be met. The next element is the size of a
5184	 * regular element and hence incrementing by 1
5185	 */
5186	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5187		hw_cons++;
5188
5189	/* This function may never run in parallel with itself for a
5190	 * specific bp, thus there is no need in "paired" read memory
5191	 * barrier here.
5192	 */
5193	sw_cons = bp->eq_cons;
5194	sw_prod = bp->eq_prod;
5195
5196	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5197			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5198
5199	for (; sw_cons != hw_cons;
5200	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5201
5202		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5203
5204		rc = bnx2x_iov_eq_sp_event(bp, elem);
5205		if (!rc) {
5206			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5207			   rc);
5208			goto next_spqe;
5209		}
5210
5211		/* elem CID originates from FW; actually LE */
5212		cid = SW_CID((__force __le32)
5213			     elem->message.data.cfc_del_event.cid);
5214		opcode = elem->message.opcode;
5215
5216		/* handle eq element */
5217		switch (opcode) {
5218		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5219			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5220			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5221			continue;
5222
5223		case EVENT_RING_OPCODE_STAT_QUERY:
5224			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5225			   "got statistics comp event %d\n",
5226			   bp->stats_comp++);
5227			/* nothing to do with stats comp */
5228			goto next_spqe;
5229
5230		case EVENT_RING_OPCODE_CFC_DEL:
5231			/* handle according to cid range */
5232			/*
5233			 * we may want to verify here that the bp state is
5234			 * HALTING
5235			 */
5236			DP(BNX2X_MSG_SP,
5237			   "got delete ramrod for MULTI[%d]\n", cid);
5238
5239			if (CNIC_LOADED(bp) &&
5240			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5241				goto next_spqe;
5242
5243			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5244
5245			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5246				break;
5247
5248			goto next_spqe;
5249
5250		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5251			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5252			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5253			if (f_obj->complete_cmd(bp, f_obj,
5254						BNX2X_F_CMD_TX_STOP))
5255				break;
5256			goto next_spqe;
5257
5258		case EVENT_RING_OPCODE_START_TRAFFIC:
5259			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5260			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5261			if (f_obj->complete_cmd(bp, f_obj,
5262						BNX2X_F_CMD_TX_START))
5263				break;
5264			goto next_spqe;
5265
5266		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5267			echo = elem->message.data.function_update_event.echo;
5268			if (echo == SWITCH_UPDATE) {
5269				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5270				   "got FUNC_SWITCH_UPDATE ramrod\n");
5271				if (f_obj->complete_cmd(
5272					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5273					break;
5274
5275			} else {
5276				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5277				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5278				f_obj->complete_cmd(bp, f_obj,
5279						    BNX2X_F_CMD_AFEX_UPDATE);
5280
5281				/* We will perform the Queues update from
5282				 * sp_rtnl task as all Queue SP operations
5283				 * should run under rtnl_lock.
5284				 */
5285				smp_mb__before_clear_bit();
5286				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5287					&bp->sp_rtnl_state);
5288				smp_mb__after_clear_bit();
5289
5290				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5291			}
5292
5293			goto next_spqe;
5294
5295		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5296			f_obj->complete_cmd(bp, f_obj,
5297					    BNX2X_F_CMD_AFEX_VIFLISTS);
5298			bnx2x_after_afex_vif_lists(bp, elem);
5299			goto next_spqe;
5300		case EVENT_RING_OPCODE_FUNCTION_START:
5301			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5302			   "got FUNC_START ramrod\n");
5303			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5304				break;
5305
5306			goto next_spqe;
5307
5308		case EVENT_RING_OPCODE_FUNCTION_STOP:
5309			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5310			   "got FUNC_STOP ramrod\n");
5311			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5312				break;
5313
5314			goto next_spqe;
5315		}
5316
5317		switch (opcode | bp->state) {
5318		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5319		      BNX2X_STATE_OPEN):
5320		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5321		      BNX2X_STATE_OPENING_WAIT4_PORT):
5322			cid = elem->message.data.eth_event.echo &
5323				BNX2X_SWCID_MASK;
5324			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5325			   cid);
5326			rss_raw->clear_pending(rss_raw);
5327			break;
5328
5329		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5330		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5331		case (EVENT_RING_OPCODE_SET_MAC |
5332		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5333		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5334		      BNX2X_STATE_OPEN):
5335		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5336		      BNX2X_STATE_DIAG):
5337		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5338		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5339			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5340			bnx2x_handle_classification_eqe(bp, elem);
5341			break;
5342
5343		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5344		      BNX2X_STATE_OPEN):
5345		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5346		      BNX2X_STATE_DIAG):
5347		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5348		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5349			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5350			bnx2x_handle_mcast_eqe(bp);
5351			break;
5352
5353		case (EVENT_RING_OPCODE_FILTERS_RULES |
5354		      BNX2X_STATE_OPEN):
5355		case (EVENT_RING_OPCODE_FILTERS_RULES |
5356		      BNX2X_STATE_DIAG):
5357		case (EVENT_RING_OPCODE_FILTERS_RULES |
5358		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5359			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5360			bnx2x_handle_rx_mode_eqe(bp);
5361			break;
5362		default:
5363			/* unknown event log error and continue */
5364			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5365				  elem->message.opcode, bp->state);
5366		}
5367next_spqe:
5368		spqe_cnt++;
5369	} /* for */
5370
5371	smp_mb__before_atomic_inc();
5372	atomic_add(spqe_cnt, &bp->eq_spq_left);
5373
5374	bp->eq_cons = sw_cons;
5375	bp->eq_prod = sw_prod;
5376	/* Make sure that above mem writes were issued towards the memory */
5377	smp_wmb();
5378
5379	/* update producer */
5380	bnx2x_update_eq_prod(bp, bp->eq_prod);
5381}
5382
5383static void bnx2x_sp_task(struct work_struct *work)
5384{
5385	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5386
5387	DP(BNX2X_MSG_SP, "sp task invoked\n");
5388
5389	/* make sure the atomic interrupt_occurred has been written */
5390	smp_rmb();
5391	if (atomic_read(&bp->interrupt_occurred)) {
5392
5393		/* what work needs to be performed? */
5394		u16 status = bnx2x_update_dsb_idx(bp);
5395
5396		DP(BNX2X_MSG_SP, "status %x\n", status);
5397		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5398		atomic_set(&bp->interrupt_occurred, 0);
5399
5400		/* HW attentions */
5401		if (status & BNX2X_DEF_SB_ATT_IDX) {
5402			bnx2x_attn_int(bp);
5403			status &= ~BNX2X_DEF_SB_ATT_IDX;
5404		}
5405
5406		/* SP events: STAT_QUERY and others */
5407		if (status & BNX2X_DEF_SB_IDX) {
5408			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5409
5410		if (FCOE_INIT(bp) &&
5411			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5412				/* Prevent local bottom-halves from running as
5413				 * we are going to change the local NAPI list.
5414				 */
5415				local_bh_disable();
5416				napi_schedule(&bnx2x_fcoe(bp, napi));
5417				local_bh_enable();
5418			}
5419
5420			/* Handle EQ completions */
5421			bnx2x_eq_int(bp);
5422			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5423				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5424
5425			status &= ~BNX2X_DEF_SB_IDX;
5426		}
5427
5428		/* if status is non zero then perhaps something went wrong */
5429		if (unlikely(status))
5430			DP(BNX2X_MSG_SP,
5431			   "got an unknown interrupt! (status 0x%x)\n", status);
5432
5433		/* ack status block only if something was actually handled */
5434		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5435			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5436	}
5437
5438	/* must be called after the EQ processing (since eq leads to sriov
5439	 * ramrod completion flows).
5440	 * This flow may have been scheduled by the arrival of a ramrod
5441	 * completion, or by the sriov code rescheduling itself.
5442	 */
5443	bnx2x_iov_sp_task(bp);
5444
5445	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5446	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5447			       &bp->sp_state)) {
5448		bnx2x_link_report(bp);
5449		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5450	}
5451}
5452
5453irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5454{
5455	struct net_device *dev = dev_instance;
5456	struct bnx2x *bp = netdev_priv(dev);
5457
5458	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5459		     IGU_INT_DISABLE, 0);
5460
5461#ifdef BNX2X_STOP_ON_ERROR
5462	if (unlikely(bp->panic))
5463		return IRQ_HANDLED;
5464#endif
5465
5466	if (CNIC_LOADED(bp)) {
5467		struct cnic_ops *c_ops;
5468
5469		rcu_read_lock();
5470		c_ops = rcu_dereference(bp->cnic_ops);
5471		if (c_ops)
5472			c_ops->cnic_handler(bp->cnic_data, NULL);
5473		rcu_read_unlock();
5474	}
5475
5476	/* schedule sp task to perform default status block work, ack
5477	 * attentions and enable interrupts.
5478	 */
5479	bnx2x_schedule_sp_task(bp);
5480
5481	return IRQ_HANDLED;
5482}
5483
5484/* end of slow path */
5485
5486void bnx2x_drv_pulse(struct bnx2x *bp)
5487{
5488	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5489		 bp->fw_drv_pulse_wr_seq);
5490}
5491
5492static void bnx2x_timer(unsigned long data)
5493{
5494	struct bnx2x *bp = (struct bnx2x *) data;
5495
5496	if (!netif_running(bp->dev))
5497		return;
5498
5499	if (IS_PF(bp) &&
5500	    !BP_NOMCP(bp)) {
5501		int mb_idx = BP_FW_MB_IDX(bp);
5502		u16 drv_pulse;
5503		u16 mcp_pulse;
5504
5505		++bp->fw_drv_pulse_wr_seq;
5506		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5507		drv_pulse = bp->fw_drv_pulse_wr_seq;
5508		bnx2x_drv_pulse(bp);
5509
5510		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5511			     MCP_PULSE_SEQ_MASK);
5512		/* The delta between driver pulse and mcp response
5513		 * should not get too big. If the MFW is more than 5 pulses
5514		 * behind, we should worry about it enough to generate an error
5515		 * log.
5516		 */
5517		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5518			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5519				  drv_pulse, mcp_pulse);
5520	}
5521
5522	if (bp->state == BNX2X_STATE_OPEN)
5523		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5524
5525	/* sample pf vf bulletin board for new posts from pf */
5526	if (IS_VF(bp))
5527		bnx2x_timer_sriov(bp);
5528
5529	mod_timer(&bp->timer, jiffies + bp->current_interval);
5530}
5531
5532/* end of Statistics */
5533
5534/* nic init */
5535
5536/*
5537 * nic init service functions
5538 */
5539
5540static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5541{
5542	u32 i;
5543	if (!(len%4) && !(addr%4))
5544		for (i = 0; i < len; i += 4)
5545			REG_WR(bp, addr + i, fill);
5546	else
5547		for (i = 0; i < len; i++)
5548			REG_WR8(bp, addr + i, fill);
5549}
5550
5551/* helper: writes FP SP data to FW - data_size in dwords */
5552static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5553				int fw_sb_id,
5554				u32 *sb_data_p,
5555				u32 data_size)
5556{
5557	int index;
5558	for (index = 0; index < data_size; index++)
5559		REG_WR(bp, BAR_CSTRORM_INTMEM +
5560			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5561			sizeof(u32)*index,
5562			*(sb_data_p + index));
5563}
5564
5565static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5566{
5567	u32 *sb_data_p;
5568	u32 data_size = 0;
5569	struct hc_status_block_data_e2 sb_data_e2;
5570	struct hc_status_block_data_e1x sb_data_e1x;
5571
5572	/* disable the function first */
5573	if (!CHIP_IS_E1x(bp)) {
5574		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5575		sb_data_e2.common.state = SB_DISABLED;
5576		sb_data_e2.common.p_func.vf_valid = false;
5577		sb_data_p = (u32 *)&sb_data_e2;
5578		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5579	} else {
5580		memset(&sb_data_e1x, 0,
5581		       sizeof(struct hc_status_block_data_e1x));
5582		sb_data_e1x.common.state = SB_DISABLED;
5583		sb_data_e1x.common.p_func.vf_valid = false;
5584		sb_data_p = (u32 *)&sb_data_e1x;
5585		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5586	}
5587	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5588
5589	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5590			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5591			CSTORM_STATUS_BLOCK_SIZE);
5592	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5593			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5594			CSTORM_SYNC_BLOCK_SIZE);
5595}
5596
5597/* helper:  writes SP SB data to FW */
5598static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5599		struct hc_sp_status_block_data *sp_sb_data)
5600{
5601	int func = BP_FUNC(bp);
5602	int i;
5603	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5604		REG_WR(bp, BAR_CSTRORM_INTMEM +
5605			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5606			i*sizeof(u32),
5607			*((u32 *)sp_sb_data + i));
5608}
5609
5610static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5611{
5612	int func = BP_FUNC(bp);
5613	struct hc_sp_status_block_data sp_sb_data;
5614	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5615
5616	sp_sb_data.state = SB_DISABLED;
5617	sp_sb_data.p_func.vf_valid = false;
5618
5619	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5620
5621	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5622			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5623			CSTORM_SP_STATUS_BLOCK_SIZE);
5624	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5625			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5626			CSTORM_SP_SYNC_BLOCK_SIZE);
5627}
5628
5629static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5630					   int igu_sb_id, int igu_seg_id)
5631{
5632	hc_sm->igu_sb_id = igu_sb_id;
5633	hc_sm->igu_seg_id = igu_seg_id;
5634	hc_sm->timer_value = 0xFF;
5635	hc_sm->time_to_expire = 0xFFFFFFFF;
5636}
5637
5638/* allocates state machine ids. */
5639static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5640{
5641	/* zero out state machine indices */
5642	/* rx indices */
5643	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5644
5645	/* tx indices */
5646	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5647	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5648	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5649	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5650
5651	/* map indices */
5652	/* rx indices */
5653	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5654		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5655
5656	/* tx indices */
5657	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5658		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5659	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5660		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5661	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5662		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5663	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5664		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5665}
5666
5667void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5668			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5669{
5670	int igu_seg_id;
5671
5672	struct hc_status_block_data_e2 sb_data_e2;
5673	struct hc_status_block_data_e1x sb_data_e1x;
5674	struct hc_status_block_sm  *hc_sm_p;
5675	int data_size;
5676	u32 *sb_data_p;
5677
5678	if (CHIP_INT_MODE_IS_BC(bp))
5679		igu_seg_id = HC_SEG_ACCESS_NORM;
5680	else
5681		igu_seg_id = IGU_SEG_ACCESS_NORM;
5682
5683	bnx2x_zero_fp_sb(bp, fw_sb_id);
5684
5685	if (!CHIP_IS_E1x(bp)) {
5686		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5687		sb_data_e2.common.state = SB_ENABLED;
5688		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5689		sb_data_e2.common.p_func.vf_id = vfid;
5690		sb_data_e2.common.p_func.vf_valid = vf_valid;
5691		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5692		sb_data_e2.common.same_igu_sb_1b = true;
5693		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5694		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5695		hc_sm_p = sb_data_e2.common.state_machine;
5696		sb_data_p = (u32 *)&sb_data_e2;
5697		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5698		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5699	} else {
5700		memset(&sb_data_e1x, 0,
5701		       sizeof(struct hc_status_block_data_e1x));
5702		sb_data_e1x.common.state = SB_ENABLED;
5703		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5704		sb_data_e1x.common.p_func.vf_id = 0xff;
5705		sb_data_e1x.common.p_func.vf_valid = false;
5706		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5707		sb_data_e1x.common.same_igu_sb_1b = true;
5708		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5709		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5710		hc_sm_p = sb_data_e1x.common.state_machine;
5711		sb_data_p = (u32 *)&sb_data_e1x;
5712		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5713		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5714	}
5715
5716	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5717				       igu_sb_id, igu_seg_id);
5718	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5719				       igu_sb_id, igu_seg_id);
5720
5721	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5722
5723	/* write indices to HW - PCI guarantees endianity of regpairs */
5724	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5725}
5726
5727static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5728				     u16 tx_usec, u16 rx_usec)
5729{
5730	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5731				    false, rx_usec);
5732	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5733				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5734				       tx_usec);
5735	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5736				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5737				       tx_usec);
5738	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5739				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5740				       tx_usec);
5741}
5742
5743static void bnx2x_init_def_sb(struct bnx2x *bp)
5744{
5745	struct host_sp_status_block *def_sb = bp->def_status_blk;
5746	dma_addr_t mapping = bp->def_status_blk_mapping;
5747	int igu_sp_sb_index;
5748	int igu_seg_id;
5749	int port = BP_PORT(bp);
5750	int func = BP_FUNC(bp);
5751	int reg_offset, reg_offset_en5;
5752	u64 section;
5753	int index;
5754	struct hc_sp_status_block_data sp_sb_data;
5755	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5756
5757	if (CHIP_INT_MODE_IS_BC(bp)) {
5758		igu_sp_sb_index = DEF_SB_IGU_ID;
5759		igu_seg_id = HC_SEG_ACCESS_DEF;
5760	} else {
5761		igu_sp_sb_index = bp->igu_dsb_id;
5762		igu_seg_id = IGU_SEG_ACCESS_DEF;
5763	}
5764
5765	/* ATTN */
5766	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5767					    atten_status_block);
5768	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5769
5770	bp->attn_state = 0;
5771
5772	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5773			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5774	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5775				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5776	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5777		int sindex;
5778		/* take care of sig[0]..sig[4] */
5779		for (sindex = 0; sindex < 4; sindex++)
5780			bp->attn_group[index].sig[sindex] =
5781			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5782
5783		if (!CHIP_IS_E1x(bp))
5784			/*
5785			 * enable5 is separate from the rest of the registers,
5786			 * and therefore the address skip is 4
5787			 * and not 16 between the different groups
5788			 */
5789			bp->attn_group[index].sig[4] = REG_RD(bp,
5790					reg_offset_en5 + 0x4*index);
5791		else
5792			bp->attn_group[index].sig[4] = 0;
5793	}
5794
5795	if (bp->common.int_block == INT_BLOCK_HC) {
5796		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5797				     HC_REG_ATTN_MSG0_ADDR_L);
5798
5799		REG_WR(bp, reg_offset, U64_LO(section));
5800		REG_WR(bp, reg_offset + 4, U64_HI(section));
5801	} else if (!CHIP_IS_E1x(bp)) {
5802		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5803		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5804	}
5805
5806	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5807					    sp_sb);
5808
5809	bnx2x_zero_sp_sb(bp);
5810
5811	/* PCI guarantees endianity of regpairs */
5812	sp_sb_data.state		= SB_ENABLED;
5813	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5814	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5815	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5816	sp_sb_data.igu_seg_id		= igu_seg_id;
5817	sp_sb_data.p_func.pf_id		= func;
5818	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5819	sp_sb_data.p_func.vf_id		= 0xff;
5820
5821	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5822
5823	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5824}
5825
5826void bnx2x_update_coalesce(struct bnx2x *bp)
5827{
5828	int i;
5829
5830	for_each_eth_queue(bp, i)
5831		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5832					 bp->tx_ticks, bp->rx_ticks);
5833}
5834
5835static void bnx2x_init_sp_ring(struct bnx2x *bp)
5836{
5837	spin_lock_init(&bp->spq_lock);
5838	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5839
5840	bp->spq_prod_idx = 0;
5841	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5842	bp->spq_prod_bd = bp->spq;
5843	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5844}
5845
5846static void bnx2x_init_eq_ring(struct bnx2x *bp)
5847{
5848	int i;
5849	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5850		union event_ring_elem *elem =
5851			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5852
5853		elem->next_page.addr.hi =
5854			cpu_to_le32(U64_HI(bp->eq_mapping +
5855				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5856		elem->next_page.addr.lo =
5857			cpu_to_le32(U64_LO(bp->eq_mapping +
5858				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5859	}
5860	bp->eq_cons = 0;
5861	bp->eq_prod = NUM_EQ_DESC;
5862	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5863	/* we want a warning message before it gets wrought... */
5864	atomic_set(&bp->eq_spq_left,
5865		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5866}
5867
5868/* called with netif_addr_lock_bh() */
5869static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5870			       unsigned long rx_mode_flags,
5871			       unsigned long rx_accept_flags,
5872			       unsigned long tx_accept_flags,
5873			       unsigned long ramrod_flags)
5874{
5875	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5876	int rc;
5877
5878	memset(&ramrod_param, 0, sizeof(ramrod_param));
5879
5880	/* Prepare ramrod parameters */
5881	ramrod_param.cid = 0;
5882	ramrod_param.cl_id = cl_id;
5883	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5884	ramrod_param.func_id = BP_FUNC(bp);
5885
5886	ramrod_param.pstate = &bp->sp_state;
5887	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5888
5889	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5890	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5891
5892	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5893
5894	ramrod_param.ramrod_flags = ramrod_flags;
5895	ramrod_param.rx_mode_flags = rx_mode_flags;
5896
5897	ramrod_param.rx_accept_flags = rx_accept_flags;
5898	ramrod_param.tx_accept_flags = tx_accept_flags;
5899
5900	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5901	if (rc < 0) {
5902		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5903		return rc;
5904	}
5905
5906	return 0;
5907}
5908
5909static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5910				   unsigned long *rx_accept_flags,
5911				   unsigned long *tx_accept_flags)
5912{
5913	/* Clear the flags first */
5914	*rx_accept_flags = 0;
5915	*tx_accept_flags = 0;
5916
5917	switch (rx_mode) {
5918	case BNX2X_RX_MODE_NONE:
5919		/*
5920		 * 'drop all' supersedes any accept flags that may have been
5921		 * passed to the function.
5922		 */
5923		break;
5924	case BNX2X_RX_MODE_NORMAL:
5925		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5926		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5927		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5928
5929		/* internal switching mode */
5930		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5931		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5932		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5933
5934		break;
5935	case BNX2X_RX_MODE_ALLMULTI:
5936		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5937		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5938		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5939
5940		/* internal switching mode */
5941		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5942		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5943		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5944
5945		break;
5946	case BNX2X_RX_MODE_PROMISC:
5947		/* According to definition of SI mode, iface in promisc mode
5948		 * should receive matched and unmatched (in resolution of port)
5949		 * unicast packets.
5950		 */
5951		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5952		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5953		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5954		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5955
5956		/* internal switching mode */
5957		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5958		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5959
5960		if (IS_MF_SI(bp))
5961			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5962		else
5963			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5964
5965		break;
5966	default:
5967		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5968		return -EINVAL;
5969	}
5970
5971	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5972	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5973		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5974		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5975	}
5976
5977	return 0;
5978}
5979
5980/* called with netif_addr_lock_bh() */
5981static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5982{
5983	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5984	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5985	int rc;
5986
5987	if (!NO_FCOE(bp))
5988		/* Configure rx_mode of FCoE Queue */
5989		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5990
5991	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5992				     &tx_accept_flags);
5993	if (rc)
5994		return rc;
5995
5996	__set_bit(RAMROD_RX, &ramrod_flags);
5997	__set_bit(RAMROD_TX, &ramrod_flags);
5998
5999	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6000				   rx_accept_flags, tx_accept_flags,
6001				   ramrod_flags);
6002}
6003
6004static void bnx2x_init_internal_common(struct bnx2x *bp)
6005{
6006	int i;
6007
6008	if (IS_MF_SI(bp))
6009		/*
6010		 * In switch independent mode, the TSTORM needs to accept
6011		 * packets that failed classification, since approximate match
6012		 * mac addresses aren't written to NIG LLH
6013		 */
6014		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6015			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
6016	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
6017		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6018			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6019
6020	/* Zero this manually as its initialization is
6021	   currently missing in the initTool */
6022	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6023		REG_WR(bp, BAR_USTRORM_INTMEM +
6024		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6025	if (!CHIP_IS_E1x(bp)) {
6026		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6027			CHIP_INT_MODE_IS_BC(bp) ?
6028			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6029	}
6030}
6031
6032static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6033{
6034	switch (load_code) {
6035	case FW_MSG_CODE_DRV_LOAD_COMMON:
6036	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6037		bnx2x_init_internal_common(bp);
6038		/* no break */
6039
6040	case FW_MSG_CODE_DRV_LOAD_PORT:
6041		/* nothing to do */
6042		/* no break */
6043
6044	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6045		/* internal memory per function is
6046		   initialized inside bnx2x_pf_init */
6047		break;
6048
6049	default:
6050		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6051		break;
6052	}
6053}
6054
6055static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6056{
6057	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6058}
6059
6060static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6061{
6062	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6063}
6064
6065static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6066{
6067	if (CHIP_IS_E1x(fp->bp))
6068		return BP_L_ID(fp->bp) + fp->index;
6069	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6070		return bnx2x_fp_igu_sb_id(fp);
6071}
6072
6073static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6074{
6075	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6076	u8 cos;
6077	unsigned long q_type = 0;
6078	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6079	fp->rx_queue = fp_idx;
6080	fp->cid = fp_idx;
6081	fp->cl_id = bnx2x_fp_cl_id(fp);
6082	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6083	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6084	/* qZone id equals to FW (per path) client id */
6085	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6086
6087	/* init shortcut */
6088	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6089
6090	/* Setup SB indices */
6091	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6092
6093	/* Configure Queue State object */
6094	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6095	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6096
6097	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6098
6099	/* init tx data */
6100	for_each_cos_in_tx_queue(fp, cos) {
6101		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6102				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6103				  FP_COS_TO_TXQ(fp, cos, bp),
6104				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6105		cids[cos] = fp->txdata_ptr[cos]->cid;
6106	}
6107
6108	/* nothing more for vf to do here */
6109	if (IS_VF(bp))
6110		return;
6111
6112	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6113		      fp->fw_sb_id, fp->igu_sb_id);
6114	bnx2x_update_fpsb_idx(fp);
6115	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6116			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6117			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6118
6119	/**
6120	 * Configure classification DBs: Always enable Tx switching
6121	 */
6122	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6123
6124	DP(NETIF_MSG_IFUP,
6125	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6126	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6127	   fp->igu_sb_id);
6128}
6129
6130static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6131{
6132	int i;
6133
6134	for (i = 1; i <= NUM_TX_RINGS; i++) {
6135		struct eth_tx_next_bd *tx_next_bd =
6136			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6137
6138		tx_next_bd->addr_hi =
6139			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6140				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6141		tx_next_bd->addr_lo =
6142			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6143				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6144	}
6145
6146	*txdata->tx_cons_sb = cpu_to_le16(0);
6147
6148	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6149	txdata->tx_db.data.zero_fill1 = 0;
6150	txdata->tx_db.data.prod = 0;
6151
6152	txdata->tx_pkt_prod = 0;
6153	txdata->tx_pkt_cons = 0;
6154	txdata->tx_bd_prod = 0;
6155	txdata->tx_bd_cons = 0;
6156	txdata->tx_pkt = 0;
6157}
6158
6159static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6160{
6161	int i;
6162
6163	for_each_tx_queue_cnic(bp, i)
6164		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6165}
6166
6167static void bnx2x_init_tx_rings(struct bnx2x *bp)
6168{
6169	int i;
6170	u8 cos;
6171
6172	for_each_eth_queue(bp, i)
6173		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6174			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6175}
6176
6177static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6178{
6179	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6180	unsigned long q_type = 0;
6181
6182	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6183	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6184						     BNX2X_FCOE_ETH_CL_ID_IDX);
6185	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6186	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6187	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6188	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6189	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6190			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6191			  fp);
6192
6193	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6194
6195	/* qZone id equals to FW (per path) client id */
6196	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6197	/* init shortcut */
6198	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6199		bnx2x_rx_ustorm_prods_offset(fp);
6200
6201	/* Configure Queue State object */
6202	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6203	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6204
6205	/* No multi-CoS for FCoE L2 client */
6206	BUG_ON(fp->max_cos != 1);
6207
6208	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6209			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6210			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6211
6212	DP(NETIF_MSG_IFUP,
6213	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6214	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6215	   fp->igu_sb_id);
6216}
6217
6218void bnx2x_nic_init_cnic(struct bnx2x *bp)
6219{
6220	if (!NO_FCOE(bp))
6221		bnx2x_init_fcoe_fp(bp);
6222
6223	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6224		      BNX2X_VF_ID_INVALID, false,
6225		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6226
6227	/* ensure status block indices were read */
6228	rmb();
6229	bnx2x_init_rx_rings_cnic(bp);
6230	bnx2x_init_tx_rings_cnic(bp);
6231
6232	/* flush all */
6233	mb();
6234	mmiowb();
6235}
6236
6237void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6238{
6239	int i;
6240
6241	/* Setup NIC internals and enable interrupts */
6242	for_each_eth_queue(bp, i)
6243		bnx2x_init_eth_fp(bp, i);
6244
6245	/* ensure status block indices were read */
6246	rmb();
6247	bnx2x_init_rx_rings(bp);
6248	bnx2x_init_tx_rings(bp);
6249
6250	if (IS_PF(bp)) {
6251		/* Initialize MOD_ABS interrupts */
6252		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6253				       bp->common.shmem_base,
6254				       bp->common.shmem2_base, BP_PORT(bp));
6255
6256		/* initialize the default status block and sp ring */
6257		bnx2x_init_def_sb(bp);
6258		bnx2x_update_dsb_idx(bp);
6259		bnx2x_init_sp_ring(bp);
6260	} else {
6261		bnx2x_memset_stats(bp);
6262	}
6263}
6264
6265void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6266{
6267	bnx2x_init_eq_ring(bp);
6268	bnx2x_init_internal(bp, load_code);
6269	bnx2x_pf_init(bp);
6270	bnx2x_stats_init(bp);
6271
6272	/* flush all before enabling interrupts */
6273	mb();
6274	mmiowb();
6275
6276	bnx2x_int_enable(bp);
6277
6278	/* Check for SPIO5 */
6279	bnx2x_attn_int_deasserted0(bp,
6280		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6281				   AEU_INPUTS_ATTN_BITS_SPIO5);
6282}
6283
6284/* gzip service functions */
6285static int bnx2x_gunzip_init(struct bnx2x *bp)
6286{
6287	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6288					    &bp->gunzip_mapping, GFP_KERNEL);
6289	if (bp->gunzip_buf  == NULL)
6290		goto gunzip_nomem1;
6291
6292	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6293	if (bp->strm  == NULL)
6294		goto gunzip_nomem2;
6295
6296	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6297	if (bp->strm->workspace == NULL)
6298		goto gunzip_nomem3;
6299
6300	return 0;
6301
6302gunzip_nomem3:
6303	kfree(bp->strm);
6304	bp->strm = NULL;
6305
6306gunzip_nomem2:
6307	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6308			  bp->gunzip_mapping);
6309	bp->gunzip_buf = NULL;
6310
6311gunzip_nomem1:
6312	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6313	return -ENOMEM;
6314}
6315
6316static void bnx2x_gunzip_end(struct bnx2x *bp)
6317{
6318	if (bp->strm) {
6319		vfree(bp->strm->workspace);
6320		kfree(bp->strm);
6321		bp->strm = NULL;
6322	}
6323
6324	if (bp->gunzip_buf) {
6325		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6326				  bp->gunzip_mapping);
6327		bp->gunzip_buf = NULL;
6328	}
6329}
6330
6331static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6332{
6333	int n, rc;
6334
6335	/* check gzip header */
6336	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6337		BNX2X_ERR("Bad gzip header\n");
6338		return -EINVAL;
6339	}
6340
6341	n = 10;
6342
6343#define FNAME				0x8
6344
6345	if (zbuf[3] & FNAME)
6346		while ((zbuf[n++] != 0) && (n < len));
6347
6348	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6349	bp->strm->avail_in = len - n;
6350	bp->strm->next_out = bp->gunzip_buf;
6351	bp->strm->avail_out = FW_BUF_SIZE;
6352
6353	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6354	if (rc != Z_OK)
6355		return rc;
6356
6357	rc = zlib_inflate(bp->strm, Z_FINISH);
6358	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6359		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6360			   bp->strm->msg);
6361
6362	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6363	if (bp->gunzip_outlen & 0x3)
6364		netdev_err(bp->dev,
6365			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6366				bp->gunzip_outlen);
6367	bp->gunzip_outlen >>= 2;
6368
6369	zlib_inflateEnd(bp->strm);
6370
6371	if (rc == Z_STREAM_END)
6372		return 0;
6373
6374	return rc;
6375}
6376
6377/* nic load/unload */
6378
6379/*
6380 * General service functions
6381 */
6382
6383/* send a NIG loopback debug packet */
6384static void bnx2x_lb_pckt(struct bnx2x *bp)
6385{
6386	u32 wb_write[3];
6387
6388	/* Ethernet source and destination addresses */
6389	wb_write[0] = 0x55555555;
6390	wb_write[1] = 0x55555555;
6391	wb_write[2] = 0x20;		/* SOP */
6392	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6393
6394	/* NON-IP protocol */
6395	wb_write[0] = 0x09000000;
6396	wb_write[1] = 0x55555555;
6397	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6398	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6399}
6400
6401/* some of the internal memories
6402 * are not directly readable from the driver
6403 * to test them we send debug packets
6404 */
6405static int bnx2x_int_mem_test(struct bnx2x *bp)
6406{
6407	int factor;
6408	int count, i;
6409	u32 val = 0;
6410
6411	if (CHIP_REV_IS_FPGA(bp))
6412		factor = 120;
6413	else if (CHIP_REV_IS_EMUL(bp))
6414		factor = 200;
6415	else
6416		factor = 1;
6417
6418	/* Disable inputs of parser neighbor blocks */
6419	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6420	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6421	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6422	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6423
6424	/*  Write 0 to parser credits for CFC search request */
6425	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6426
6427	/* send Ethernet packet */
6428	bnx2x_lb_pckt(bp);
6429
6430	/* TODO do i reset NIG statistic? */
6431	/* Wait until NIG register shows 1 packet of size 0x10 */
6432	count = 1000 * factor;
6433	while (count) {
6434
6435		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6436		val = *bnx2x_sp(bp, wb_data[0]);
6437		if (val == 0x10)
6438			break;
6439
6440		usleep_range(10000, 20000);
6441		count--;
6442	}
6443	if (val != 0x10) {
6444		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6445		return -1;
6446	}
6447
6448	/* Wait until PRS register shows 1 packet */
6449	count = 1000 * factor;
6450	while (count) {
6451		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6452		if (val == 1)
6453			break;
6454
6455		usleep_range(10000, 20000);
6456		count--;
6457	}
6458	if (val != 0x1) {
6459		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6460		return -2;
6461	}
6462
6463	/* Reset and init BRB, PRS */
6464	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6465	msleep(50);
6466	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6467	msleep(50);
6468	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6469	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6470
6471	DP(NETIF_MSG_HW, "part2\n");
6472
6473	/* Disable inputs of parser neighbor blocks */
6474	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6475	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6476	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6477	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6478
6479	/* Write 0 to parser credits for CFC search request */
6480	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6481
6482	/* send 10 Ethernet packets */
6483	for (i = 0; i < 10; i++)
6484		bnx2x_lb_pckt(bp);
6485
6486	/* Wait until NIG register shows 10 + 1
6487	   packets of size 11*0x10 = 0xb0 */
6488	count = 1000 * factor;
6489	while (count) {
6490
6491		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6492		val = *bnx2x_sp(bp, wb_data[0]);
6493		if (val == 0xb0)
6494			break;
6495
6496		usleep_range(10000, 20000);
6497		count--;
6498	}
6499	if (val != 0xb0) {
6500		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6501		return -3;
6502	}
6503
6504	/* Wait until PRS register shows 2 packets */
6505	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6506	if (val != 2)
6507		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6508
6509	/* Write 1 to parser credits for CFC search request */
6510	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6511
6512	/* Wait until PRS register shows 3 packets */
6513	msleep(10 * factor);
6514	/* Wait until NIG register shows 1 packet of size 0x10 */
6515	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6516	if (val != 3)
6517		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6518
6519	/* clear NIG EOP FIFO */
6520	for (i = 0; i < 11; i++)
6521		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6522	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6523	if (val != 1) {
6524		BNX2X_ERR("clear of NIG failed\n");
6525		return -4;
6526	}
6527
6528	/* Reset and init BRB, PRS, NIG */
6529	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6530	msleep(50);
6531	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6532	msleep(50);
6533	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6534	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6535	if (!CNIC_SUPPORT(bp))
6536		/* set NIC mode */
6537		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6538
6539	/* Enable inputs of parser neighbor blocks */
6540	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6541	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6542	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6543	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6544
6545	DP(NETIF_MSG_HW, "done\n");
6546
6547	return 0; /* OK */
6548}
6549
6550static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6551{
6552	u32 val;
6553
6554	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6555	if (!CHIP_IS_E1x(bp))
6556		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6557	else
6558		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6559	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6560	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6561	/*
6562	 * mask read length error interrupts in brb for parser
6563	 * (parsing unit and 'checksum and crc' unit)
6564	 * these errors are legal (PU reads fixed length and CAC can cause
6565	 * read length error on truncated packets)
6566	 */
6567	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6568	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6569	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6570	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6571	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6572	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6573/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6574/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6575	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6576	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6577	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6578/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6579/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6580	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6581	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6582	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6583	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6584/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6585/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6586
6587	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6588		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6589		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6590	if (!CHIP_IS_E1x(bp))
6591		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6592			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6593	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6594
6595	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6596	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6597	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6598/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6599
6600	if (!CHIP_IS_E1x(bp))
6601		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6602		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6603
6604	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6605	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6606/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6607	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6608}
6609
6610static void bnx2x_reset_common(struct bnx2x *bp)
6611{
6612	u32 val = 0x1400;
6613
6614	/* reset_common */
6615	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6616	       0xd3ffff7f);
6617
6618	if (CHIP_IS_E3(bp)) {
6619		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6620		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6621	}
6622
6623	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6624}
6625
6626static void bnx2x_setup_dmae(struct bnx2x *bp)
6627{
6628	bp->dmae_ready = 0;
6629	spin_lock_init(&bp->dmae_lock);
6630}
6631
6632static void bnx2x_init_pxp(struct bnx2x *bp)
6633{
6634	u16 devctl;
6635	int r_order, w_order;
6636
6637	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6638	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6639	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6640	if (bp->mrrs == -1)
6641		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6642	else {
6643		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6644		r_order = bp->mrrs;
6645	}
6646
6647	bnx2x_init_pxp_arb(bp, r_order, w_order);
6648}
6649
6650static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6651{
6652	int is_required;
6653	u32 val;
6654	int port;
6655
6656	if (BP_NOMCP(bp))
6657		return;
6658
6659	is_required = 0;
6660	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6661	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6662
6663	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6664		is_required = 1;
6665
6666	/*
6667	 * The fan failure mechanism is usually related to the PHY type since
6668	 * the power consumption of the board is affected by the PHY. Currently,
6669	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6670	 */
6671	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6672		for (port = PORT_0; port < PORT_MAX; port++) {
6673			is_required |=
6674				bnx2x_fan_failure_det_req(
6675					bp,
6676					bp->common.shmem_base,
6677					bp->common.shmem2_base,
6678					port);
6679		}
6680
6681	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6682
6683	if (is_required == 0)
6684		return;
6685
6686	/* Fan failure is indicated by SPIO 5 */
6687	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6688
6689	/* set to active low mode */
6690	val = REG_RD(bp, MISC_REG_SPIO_INT);
6691	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6692	REG_WR(bp, MISC_REG_SPIO_INT, val);
6693
6694	/* enable interrupt to signal the IGU */
6695	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6696	val |= MISC_SPIO_SPIO5;
6697	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6698}
6699
6700void bnx2x_pf_disable(struct bnx2x *bp)
6701{
6702	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6703	val &= ~IGU_PF_CONF_FUNC_EN;
6704
6705	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6706	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6707	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6708}
6709
6710static void bnx2x__common_init_phy(struct bnx2x *bp)
6711{
6712	u32 shmem_base[2], shmem2_base[2];
6713	/* Avoid common init in case MFW supports LFA */
6714	if (SHMEM2_RD(bp, size) >
6715	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6716		return;
6717	shmem_base[0] =  bp->common.shmem_base;
6718	shmem2_base[0] = bp->common.shmem2_base;
6719	if (!CHIP_IS_E1x(bp)) {
6720		shmem_base[1] =
6721			SHMEM2_RD(bp, other_shmem_base_addr);
6722		shmem2_base[1] =
6723			SHMEM2_RD(bp, other_shmem2_base_addr);
6724	}
6725	bnx2x_acquire_phy_lock(bp);
6726	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6727			      bp->common.chip_id);
6728	bnx2x_release_phy_lock(bp);
6729}
6730
6731/**
6732 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6733 *
6734 * @bp:		driver handle
6735 */
6736static int bnx2x_init_hw_common(struct bnx2x *bp)
6737{
6738	u32 val;
6739
6740	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6741
6742	/*
6743	 * take the RESET lock to protect undi_unload flow from accessing
6744	 * registers while we're resetting the chip
6745	 */
6746	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6747
6748	bnx2x_reset_common(bp);
6749	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6750
6751	val = 0xfffc;
6752	if (CHIP_IS_E3(bp)) {
6753		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6754		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6755	}
6756	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6757
6758	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6759
6760	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6761
6762	if (!CHIP_IS_E1x(bp)) {
6763		u8 abs_func_id;
6764
6765		/**
6766		 * 4-port mode or 2-port mode we need to turn of master-enable
6767		 * for everyone, after that, turn it back on for self.
6768		 * so, we disregard multi-function or not, and always disable
6769		 * for all functions on the given path, this means 0,2,4,6 for
6770		 * path 0 and 1,3,5,7 for path 1
6771		 */
6772		for (abs_func_id = BP_PATH(bp);
6773		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6774			if (abs_func_id == BP_ABS_FUNC(bp)) {
6775				REG_WR(bp,
6776				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6777				    1);
6778				continue;
6779			}
6780
6781			bnx2x_pretend_func(bp, abs_func_id);
6782			/* clear pf enable */
6783			bnx2x_pf_disable(bp);
6784			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6785		}
6786	}
6787
6788	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6789	if (CHIP_IS_E1(bp)) {
6790		/* enable HW interrupt from PXP on USDM overflow
6791		   bit 16 on INT_MASK_0 */
6792		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6793	}
6794
6795	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6796	bnx2x_init_pxp(bp);
6797
6798#ifdef __BIG_ENDIAN
6799	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6800	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6801	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6802	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6803	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6804	/* make sure this value is 0 */
6805	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6806
6807/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6808	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6809	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6810	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6811	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6812#endif
6813
6814	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6815
6816	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6817		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6818
6819	/* let the HW do it's magic ... */
6820	msleep(100);
6821	/* finish PXP init */
6822	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6823	if (val != 1) {
6824		BNX2X_ERR("PXP2 CFG failed\n");
6825		return -EBUSY;
6826	}
6827	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6828	if (val != 1) {
6829		BNX2X_ERR("PXP2 RD_INIT failed\n");
6830		return -EBUSY;
6831	}
6832
6833	/* Timers bug workaround E2 only. We need to set the entire ILT to
6834	 * have entries with value "0" and valid bit on.
6835	 * This needs to be done by the first PF that is loaded in a path
6836	 * (i.e. common phase)
6837	 */
6838	if (!CHIP_IS_E1x(bp)) {
6839/* In E2 there is a bug in the timers block that can cause function 6 / 7
6840 * (i.e. vnic3) to start even if it is marked as "scan-off".
6841 * This occurs when a different function (func2,3) is being marked
6842 * as "scan-off". Real-life scenario for example: if a driver is being
6843 * load-unloaded while func6,7 are down. This will cause the timer to access
6844 * the ilt, translate to a logical address and send a request to read/write.
6845 * Since the ilt for the function that is down is not valid, this will cause
6846 * a translation error which is unrecoverable.
6847 * The Workaround is intended to make sure that when this happens nothing fatal
6848 * will occur. The workaround:
6849 *	1.  First PF driver which loads on a path will:
6850 *		a.  After taking the chip out of reset, by using pretend,
6851 *		    it will write "0" to the following registers of
6852 *		    the other vnics.
6853 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6854 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6855 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6856 *		    And for itself it will write '1' to
6857 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6858 *		    dmae-operations (writing to pram for example.)
6859 *		    note: can be done for only function 6,7 but cleaner this
6860 *			  way.
6861 *		b.  Write zero+valid to the entire ILT.
6862 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6863 *		    VNIC3 (of that port). The range allocated will be the
6864 *		    entire ILT. This is needed to prevent  ILT range error.
6865 *	2.  Any PF driver load flow:
6866 *		a.  ILT update with the physical addresses of the allocated
6867 *		    logical pages.
6868 *		b.  Wait 20msec. - note that this timeout is needed to make
6869 *		    sure there are no requests in one of the PXP internal
6870 *		    queues with "old" ILT addresses.
6871 *		c.  PF enable in the PGLC.
6872 *		d.  Clear the was_error of the PF in the PGLC. (could have
6873 *		    occurred while driver was down)
6874 *		e.  PF enable in the CFC (WEAK + STRONG)
6875 *		f.  Timers scan enable
6876 *	3.  PF driver unload flow:
6877 *		a.  Clear the Timers scan_en.
6878 *		b.  Polling for scan_on=0 for that PF.
6879 *		c.  Clear the PF enable bit in the PXP.
6880 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6881 *		e.  Write zero+valid to all ILT entries (The valid bit must
6882 *		    stay set)
6883 *		f.  If this is VNIC 3 of a port then also init
6884 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6885 *		    to the last entry in the ILT.
6886 *
6887 *	Notes:
6888 *	Currently the PF error in the PGLC is non recoverable.
6889 *	In the future the there will be a recovery routine for this error.
6890 *	Currently attention is masked.
6891 *	Having an MCP lock on the load/unload process does not guarantee that
6892 *	there is no Timer disable during Func6/7 enable. This is because the
6893 *	Timers scan is currently being cleared by the MCP on FLR.
6894 *	Step 2.d can be done only for PF6/7 and the driver can also check if
6895 *	there is error before clearing it. But the flow above is simpler and
6896 *	more general.
6897 *	All ILT entries are written by zero+valid and not just PF6/7
6898 *	ILT entries since in the future the ILT entries allocation for
6899 *	PF-s might be dynamic.
6900 */
6901		struct ilt_client_info ilt_cli;
6902		struct bnx2x_ilt ilt;
6903		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6904		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6905
6906		/* initialize dummy TM client */
6907		ilt_cli.start = 0;
6908		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6909		ilt_cli.client_num = ILT_CLIENT_TM;
6910
6911		/* Step 1: set zeroes to all ilt page entries with valid bit on
6912		 * Step 2: set the timers first/last ilt entry to point
6913		 * to the entire range to prevent ILT range error for 3rd/4th
6914		 * vnic	(this code assumes existence of the vnic)
6915		 *
6916		 * both steps performed by call to bnx2x_ilt_client_init_op()
6917		 * with dummy TM client
6918		 *
6919		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6920		 * and his brother are split registers
6921		 */
6922		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6923		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6924		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6925
6926		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6927		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6928		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6929	}
6930
6931	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6932	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6933
6934	if (!CHIP_IS_E1x(bp)) {
6935		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6936				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6937		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6938
6939		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6940
6941		/* let the HW do it's magic ... */
6942		do {
6943			msleep(200);
6944			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6945		} while (factor-- && (val != 1));
6946
6947		if (val != 1) {
6948			BNX2X_ERR("ATC_INIT failed\n");
6949			return -EBUSY;
6950		}
6951	}
6952
6953	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6954
6955	bnx2x_iov_init_dmae(bp);
6956
6957	/* clean the DMAE memory */
6958	bp->dmae_ready = 1;
6959	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6960
6961	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6962
6963	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6964
6965	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6966
6967	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6968
6969	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6970	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6971	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6972	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6973
6974	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6975
6976	/* QM queues pointers table */
6977	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6978
6979	/* soft reset pulse */
6980	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6981	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6982
6983	if (CNIC_SUPPORT(bp))
6984		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6985
6986	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6987
6988	if (!CHIP_REV_IS_SLOW(bp))
6989		/* enable hw interrupt from doorbell Q */
6990		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6991
6992	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6993
6994	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6995	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6996
6997	if (!CHIP_IS_E1(bp))
6998		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6999
7000	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7001		if (IS_MF_AFEX(bp)) {
7002			/* configure that VNTag and VLAN headers must be
7003			 * received in afex mode
7004			 */
7005			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7006			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7007			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7008			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7009			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7010		} else {
7011			/* Bit-map indicating which L2 hdrs may appear
7012			 * after the basic Ethernet header
7013			 */
7014			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7015			       bp->path_has_ovlan ? 7 : 6);
7016		}
7017	}
7018
7019	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7020	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7021	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7022	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7023
7024	if (!CHIP_IS_E1x(bp)) {
7025		/* reset VFC memories */
7026		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7027			   VFC_MEMORIES_RST_REG_CAM_RST |
7028			   VFC_MEMORIES_RST_REG_RAM_RST);
7029		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7030			   VFC_MEMORIES_RST_REG_CAM_RST |
7031			   VFC_MEMORIES_RST_REG_RAM_RST);
7032
7033		msleep(20);
7034	}
7035
7036	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7037	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7038	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7039	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7040
7041	/* sync semi rtc */
7042	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7043	       0x80000000);
7044	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7045	       0x80000000);
7046
7047	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7048	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7049	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7050
7051	if (!CHIP_IS_E1x(bp)) {
7052		if (IS_MF_AFEX(bp)) {
7053			/* configure that VNTag and VLAN headers must be
7054			 * sent in afex mode
7055			 */
7056			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7057			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7058			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7059			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7060			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7061		} else {
7062			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7063			       bp->path_has_ovlan ? 7 : 6);
7064		}
7065	}
7066
7067	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7068
7069	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7070
7071	if (CNIC_SUPPORT(bp)) {
7072		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7073		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7074		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7075		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7076		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7077		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7078		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7079		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7080		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7081		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7082	}
7083	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7084
7085	if (sizeof(union cdu_context) != 1024)
7086		/* we currently assume that a context is 1024 bytes */
7087		dev_alert(&bp->pdev->dev,
7088			  "please adjust the size of cdu_context(%ld)\n",
7089			  (long)sizeof(union cdu_context));
7090
7091	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7092	val = (4 << 24) + (0 << 12) + 1024;
7093	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7094
7095	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7096	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7097	/* enable context validation interrupt from CFC */
7098	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7099
7100	/* set the thresholds to prevent CFC/CDU race */
7101	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7102
7103	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7104
7105	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7106		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7107
7108	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7109	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7110
7111	/* Reset PCIE errors for debug */
7112	REG_WR(bp, 0x2814, 0xffffffff);
7113	REG_WR(bp, 0x3820, 0xffffffff);
7114
7115	if (!CHIP_IS_E1x(bp)) {
7116		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7117			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7118				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7119		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7120			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7121				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7122				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7123		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7124			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7125				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7126				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7127	}
7128
7129	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7130	if (!CHIP_IS_E1(bp)) {
7131		/* in E3 this done in per-port section */
7132		if (!CHIP_IS_E3(bp))
7133			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7134	}
7135	if (CHIP_IS_E1H(bp))
7136		/* not applicable for E2 (and above ...) */
7137		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7138
7139	if (CHIP_REV_IS_SLOW(bp))
7140		msleep(200);
7141
7142	/* finish CFC init */
7143	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7144	if (val != 1) {
7145		BNX2X_ERR("CFC LL_INIT failed\n");
7146		return -EBUSY;
7147	}
7148	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7149	if (val != 1) {
7150		BNX2X_ERR("CFC AC_INIT failed\n");
7151		return -EBUSY;
7152	}
7153	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7154	if (val != 1) {
7155		BNX2X_ERR("CFC CAM_INIT failed\n");
7156		return -EBUSY;
7157	}
7158	REG_WR(bp, CFC_REG_DEBUG0, 0);
7159
7160	if (CHIP_IS_E1(bp)) {
7161		/* read NIG statistic
7162		   to see if this is our first up since powerup */
7163		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7164		val = *bnx2x_sp(bp, wb_data[0]);
7165
7166		/* do internal memory self test */
7167		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7168			BNX2X_ERR("internal mem self test failed\n");
7169			return -EBUSY;
7170		}
7171	}
7172
7173	bnx2x_setup_fan_failure_detection(bp);
7174
7175	/* clear PXP2 attentions */
7176	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7177
7178	bnx2x_enable_blocks_attention(bp);
7179	bnx2x_enable_blocks_parity(bp);
7180
7181	if (!BP_NOMCP(bp)) {
7182		if (CHIP_IS_E1x(bp))
7183			bnx2x__common_init_phy(bp);
7184	} else
7185		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7186
7187	return 0;
7188}
7189
7190/**
7191 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7192 *
7193 * @bp:		driver handle
7194 */
7195static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7196{
7197	int rc = bnx2x_init_hw_common(bp);
7198
7199	if (rc)
7200		return rc;
7201
7202	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7203	if (!BP_NOMCP(bp))
7204		bnx2x__common_init_phy(bp);
7205
7206	return 0;
7207}
7208
7209static int bnx2x_init_hw_port(struct bnx2x *bp)
7210{
7211	int port = BP_PORT(bp);
7212	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7213	u32 low, high;
7214	u32 val, reg;
7215
7216	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7217
7218	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7219
7220	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7221	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7222	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7223
7224	/* Timers bug workaround: disables the pf_master bit in pglue at
7225	 * common phase, we need to enable it here before any dmae access are
7226	 * attempted. Therefore we manually added the enable-master to the
7227	 * port phase (it also happens in the function phase)
7228	 */
7229	if (!CHIP_IS_E1x(bp))
7230		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7231
7232	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7233	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7234	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7235	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7236
7237	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7238	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7239	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7240	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7241
7242	/* QM cid (connection) count */
7243	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7244
7245	if (CNIC_SUPPORT(bp)) {
7246		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7247		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7248		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7249	}
7250
7251	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7252
7253	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7254
7255	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7256
7257		if (IS_MF(bp))
7258			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7259		else if (bp->dev->mtu > 4096) {
7260			if (bp->flags & ONE_PORT_FLAG)
7261				low = 160;
7262			else {
7263				val = bp->dev->mtu;
7264				/* (24*1024 + val*4)/256 */
7265				low = 96 + (val/64) +
7266						((val % 64) ? 1 : 0);
7267			}
7268		} else
7269			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7270		high = low + 56;	/* 14*1024/256 */
7271		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7272		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7273	}
7274
7275	if (CHIP_MODE_IS_4_PORT(bp))
7276		REG_WR(bp, (BP_PORT(bp) ?
7277			    BRB1_REG_MAC_GUARANTIED_1 :
7278			    BRB1_REG_MAC_GUARANTIED_0), 40);
7279
7280	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7281	if (CHIP_IS_E3B0(bp)) {
7282		if (IS_MF_AFEX(bp)) {
7283			/* configure headers for AFEX mode */
7284			REG_WR(bp, BP_PORT(bp) ?
7285			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7286			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7287			REG_WR(bp, BP_PORT(bp) ?
7288			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7289			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7290			REG_WR(bp, BP_PORT(bp) ?
7291			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7292			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7293		} else {
7294			/* Ovlan exists only if we are in multi-function +
7295			 * switch-dependent mode, in switch-independent there
7296			 * is no ovlan headers
7297			 */
7298			REG_WR(bp, BP_PORT(bp) ?
7299			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7300			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7301			       (bp->path_has_ovlan ? 7 : 6));
7302		}
7303	}
7304
7305	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7306	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7307	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7308	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7309
7310	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7311	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7312	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7313	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7314
7315	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7316	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7317
7318	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7319
7320	if (CHIP_IS_E1x(bp)) {
7321		/* configure PBF to work without PAUSE mtu 9000 */
7322		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7323
7324		/* update threshold */
7325		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7326		/* update init credit */
7327		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7328
7329		/* probe changes */
7330		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7331		udelay(50);
7332		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7333	}
7334
7335	if (CNIC_SUPPORT(bp))
7336		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7337
7338	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7339	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7340
7341	if (CHIP_IS_E1(bp)) {
7342		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7343		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7344	}
7345	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7346
7347	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7348
7349	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7350	/* init aeu_mask_attn_func_0/1:
7351	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7352	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7353	 *             bits 4-7 are used for "per vn group attention" */
7354	val = IS_MF(bp) ? 0xF7 : 0x7;
7355	/* Enable DCBX attention for all but E1 */
7356	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7357	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7358
7359	/* SCPAD_PARITY should NOT trigger close the gates */
7360	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7361	REG_WR(bp, reg,
7362	       REG_RD(bp, reg) &
7363	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7364
7365	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7366	REG_WR(bp, reg,
7367	       REG_RD(bp, reg) &
7368	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7369
7370	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7371
7372	if (!CHIP_IS_E1x(bp)) {
7373		/* Bit-map indicating which L2 hdrs may appear after the
7374		 * basic Ethernet header
7375		 */
7376		if (IS_MF_AFEX(bp))
7377			REG_WR(bp, BP_PORT(bp) ?
7378			       NIG_REG_P1_HDRS_AFTER_BASIC :
7379			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7380		else
7381			REG_WR(bp, BP_PORT(bp) ?
7382			       NIG_REG_P1_HDRS_AFTER_BASIC :
7383			       NIG_REG_P0_HDRS_AFTER_BASIC,
7384			       IS_MF_SD(bp) ? 7 : 6);
7385
7386		if (CHIP_IS_E3(bp))
7387			REG_WR(bp, BP_PORT(bp) ?
7388				   NIG_REG_LLH1_MF_MODE :
7389				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7390	}
7391	if (!CHIP_IS_E3(bp))
7392		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7393
7394	if (!CHIP_IS_E1(bp)) {
7395		/* 0x2 disable mf_ov, 0x1 enable */
7396		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7397		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7398
7399		if (!CHIP_IS_E1x(bp)) {
7400			val = 0;
7401			switch (bp->mf_mode) {
7402			case MULTI_FUNCTION_SD:
7403				val = 1;
7404				break;
7405			case MULTI_FUNCTION_SI:
7406			case MULTI_FUNCTION_AFEX:
7407				val = 2;
7408				break;
7409			}
7410
7411			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7412						  NIG_REG_LLH0_CLS_TYPE), val);
7413		}
7414		{
7415			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7416			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7417			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7418		}
7419	}
7420
7421	/* If SPIO5 is set to generate interrupts, enable it for this port */
7422	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7423	if (val & MISC_SPIO_SPIO5) {
7424		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7425				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7426		val = REG_RD(bp, reg_addr);
7427		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7428		REG_WR(bp, reg_addr, val);
7429	}
7430
7431	return 0;
7432}
7433
7434static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7435{
7436	int reg;
7437	u32 wb_write[2];
7438
7439	if (CHIP_IS_E1(bp))
7440		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7441	else
7442		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7443
7444	wb_write[0] = ONCHIP_ADDR1(addr);
7445	wb_write[1] = ONCHIP_ADDR2(addr);
7446	REG_WR_DMAE(bp, reg, wb_write, 2);
7447}
7448
7449void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7450{
7451	u32 data, ctl, cnt = 100;
7452	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7453	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7454	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7455	u32 sb_bit =  1 << (idu_sb_id%32);
7456	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7457	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7458
7459	/* Not supported in BC mode */
7460	if (CHIP_INT_MODE_IS_BC(bp))
7461		return;
7462
7463	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7464			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7465		IGU_REGULAR_CLEANUP_SET				|
7466		IGU_REGULAR_BCLEANUP;
7467
7468	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7469	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7470	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7471
7472	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7473			 data, igu_addr_data);
7474	REG_WR(bp, igu_addr_data, data);
7475	mmiowb();
7476	barrier();
7477	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7478			  ctl, igu_addr_ctl);
7479	REG_WR(bp, igu_addr_ctl, ctl);
7480	mmiowb();
7481	barrier();
7482
7483	/* wait for clean up to finish */
7484	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7485		msleep(20);
7486
7487	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7488		DP(NETIF_MSG_HW,
7489		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7490			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7491	}
7492}
7493
7494static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7495{
7496	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7497}
7498
7499static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7500{
7501	u32 i, base = FUNC_ILT_BASE(func);
7502	for (i = base; i < base + ILT_PER_FUNC; i++)
7503		bnx2x_ilt_wr(bp, i, 0);
7504}
7505
7506static void bnx2x_init_searcher(struct bnx2x *bp)
7507{
7508	int port = BP_PORT(bp);
7509	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7510	/* T1 hash bits value determines the T1 number of entries */
7511	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7512}
7513
7514static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7515{
7516	int rc;
7517	struct bnx2x_func_state_params func_params = {NULL};
7518	struct bnx2x_func_switch_update_params *switch_update_params =
7519		&func_params.params.switch_update;
7520
7521	/* Prepare parameters for function state transitions */
7522	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7523	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7524
7525	func_params.f_obj = &bp->func_obj;
7526	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7527
7528	/* Function parameters */
7529	switch_update_params->suspend = suspend;
7530
7531	rc = bnx2x_func_state_change(bp, &func_params);
7532
7533	return rc;
7534}
7535
7536static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7537{
7538	int rc, i, port = BP_PORT(bp);
7539	int vlan_en = 0, mac_en[NUM_MACS];
7540
7541	/* Close input from network */
7542	if (bp->mf_mode == SINGLE_FUNCTION) {
7543		bnx2x_set_rx_filter(&bp->link_params, 0);
7544	} else {
7545		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7546				   NIG_REG_LLH0_FUNC_EN);
7547		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7548			  NIG_REG_LLH0_FUNC_EN, 0);
7549		for (i = 0; i < NUM_MACS; i++) {
7550			mac_en[i] = REG_RD(bp, port ?
7551					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7552					      4 * i) :
7553					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7554					      4 * i));
7555			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7556					      4 * i) :
7557				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7558		}
7559	}
7560
7561	/* Close BMC to host */
7562	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7563	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7564
7565	/* Suspend Tx switching to the PF. Completion of this ramrod
7566	 * further guarantees that all the packets of that PF / child
7567	 * VFs in BRB were processed by the Parser, so it is safe to
7568	 * change the NIC_MODE register.
7569	 */
7570	rc = bnx2x_func_switch_update(bp, 1);
7571	if (rc) {
7572		BNX2X_ERR("Can't suspend tx-switching!\n");
7573		return rc;
7574	}
7575
7576	/* Change NIC_MODE register */
7577	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7578
7579	/* Open input from network */
7580	if (bp->mf_mode == SINGLE_FUNCTION) {
7581		bnx2x_set_rx_filter(&bp->link_params, 1);
7582	} else {
7583		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7584			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7585		for (i = 0; i < NUM_MACS; i++) {
7586			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7587					      4 * i) :
7588				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7589				  mac_en[i]);
7590		}
7591	}
7592
7593	/* Enable BMC to host */
7594	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7595	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7596
7597	/* Resume Tx switching to the PF */
7598	rc = bnx2x_func_switch_update(bp, 0);
7599	if (rc) {
7600		BNX2X_ERR("Can't resume tx-switching!\n");
7601		return rc;
7602	}
7603
7604	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7605	return 0;
7606}
7607
7608int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7609{
7610	int rc;
7611
7612	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7613
7614	if (CONFIGURE_NIC_MODE(bp)) {
7615		/* Configure searcher as part of function hw init */
7616		bnx2x_init_searcher(bp);
7617
7618		/* Reset NIC mode */
7619		rc = bnx2x_reset_nic_mode(bp);
7620		if (rc)
7621			BNX2X_ERR("Can't change NIC mode!\n");
7622		return rc;
7623	}
7624
7625	return 0;
7626}
7627
7628static int bnx2x_init_hw_func(struct bnx2x *bp)
7629{
7630	int port = BP_PORT(bp);
7631	int func = BP_FUNC(bp);
7632	int init_phase = PHASE_PF0 + func;
7633	struct bnx2x_ilt *ilt = BP_ILT(bp);
7634	u16 cdu_ilt_start;
7635	u32 addr, val;
7636	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7637	int i, main_mem_width, rc;
7638
7639	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7640
7641	/* FLR cleanup - hmmm */
7642	if (!CHIP_IS_E1x(bp)) {
7643		rc = bnx2x_pf_flr_clnup(bp);
7644		if (rc) {
7645			bnx2x_fw_dump(bp);
7646			return rc;
7647		}
7648	}
7649
7650	/* set MSI reconfigure capability */
7651	if (bp->common.int_block == INT_BLOCK_HC) {
7652		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7653		val = REG_RD(bp, addr);
7654		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7655		REG_WR(bp, addr, val);
7656	}
7657
7658	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7659	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7660
7661	ilt = BP_ILT(bp);
7662	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7663
7664	if (IS_SRIOV(bp))
7665		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7666	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7667
7668	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7669	 * those of the VFs, so start line should be reset
7670	 */
7671	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7672	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7673		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7674		ilt->lines[cdu_ilt_start + i].page_mapping =
7675			bp->context[i].cxt_mapping;
7676		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7677	}
7678
7679	bnx2x_ilt_init_op(bp, INITOP_SET);
7680
7681	if (!CONFIGURE_NIC_MODE(bp)) {
7682		bnx2x_init_searcher(bp);
7683		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7684		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7685	} else {
7686		/* Set NIC mode */
7687		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7688		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7689	}
7690
7691	if (!CHIP_IS_E1x(bp)) {
7692		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7693
7694		/* Turn on a single ISR mode in IGU if driver is going to use
7695		 * INT#x or MSI
7696		 */
7697		if (!(bp->flags & USING_MSIX_FLAG))
7698			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7699		/*
7700		 * Timers workaround bug: function init part.
7701		 * Need to wait 20msec after initializing ILT,
7702		 * needed to make sure there are no requests in
7703		 * one of the PXP internal queues with "old" ILT addresses
7704		 */
7705		msleep(20);
7706		/*
7707		 * Master enable - Due to WB DMAE writes performed before this
7708		 * register is re-initialized as part of the regular function
7709		 * init
7710		 */
7711		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7712		/* Enable the function in IGU */
7713		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7714	}
7715
7716	bp->dmae_ready = 1;
7717
7718	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7719
7720	if (!CHIP_IS_E1x(bp))
7721		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7722
7723	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7724	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7725	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7726	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7727	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7728	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7729	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7730	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7731	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7732	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7733	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7734	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7735	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7736
7737	if (!CHIP_IS_E1x(bp))
7738		REG_WR(bp, QM_REG_PF_EN, 1);
7739
7740	if (!CHIP_IS_E1x(bp)) {
7741		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7742		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7743		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7744		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7745	}
7746	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7747
7748	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7749	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7750	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7751
7752	bnx2x_iov_init_dq(bp);
7753
7754	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7755	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7756	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7757	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7758	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7759	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7760	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7761	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7762	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7763	if (!CHIP_IS_E1x(bp))
7764		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7765
7766	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7767
7768	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7769
7770	if (!CHIP_IS_E1x(bp))
7771		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7772
7773	if (IS_MF(bp)) {
7774		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7775		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7776	}
7777
7778	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7779
7780	/* HC init per function */
7781	if (bp->common.int_block == INT_BLOCK_HC) {
7782		if (CHIP_IS_E1H(bp)) {
7783			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7784
7785			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7786			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7787		}
7788		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7789
7790	} else {
7791		int num_segs, sb_idx, prod_offset;
7792
7793		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7794
7795		if (!CHIP_IS_E1x(bp)) {
7796			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7797			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7798		}
7799
7800		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7801
7802		if (!CHIP_IS_E1x(bp)) {
7803			int dsb_idx = 0;
7804			/**
7805			 * Producer memory:
7806			 * E2 mode: address 0-135 match to the mapping memory;
7807			 * 136 - PF0 default prod; 137 - PF1 default prod;
7808			 * 138 - PF2 default prod; 139 - PF3 default prod;
7809			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7810			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7811			 * 144-147 reserved.
7812			 *
7813			 * E1.5 mode - In backward compatible mode;
7814			 * for non default SB; each even line in the memory
7815			 * holds the U producer and each odd line hold
7816			 * the C producer. The first 128 producers are for
7817			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7818			 * producers are for the DSB for each PF.
7819			 * Each PF has five segments: (the order inside each
7820			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7821			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7822			 * 144-147 attn prods;
7823			 */
7824			/* non-default-status-blocks */
7825			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7826				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7827			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7828				prod_offset = (bp->igu_base_sb + sb_idx) *
7829					num_segs;
7830
7831				for (i = 0; i < num_segs; i++) {
7832					addr = IGU_REG_PROD_CONS_MEMORY +
7833							(prod_offset + i) * 4;
7834					REG_WR(bp, addr, 0);
7835				}
7836				/* send consumer update with value 0 */
7837				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7838					     USTORM_ID, 0, IGU_INT_NOP, 1);
7839				bnx2x_igu_clear_sb(bp,
7840						   bp->igu_base_sb + sb_idx);
7841			}
7842
7843			/* default-status-blocks */
7844			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7845				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7846
7847			if (CHIP_MODE_IS_4_PORT(bp))
7848				dsb_idx = BP_FUNC(bp);
7849			else
7850				dsb_idx = BP_VN(bp);
7851
7852			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7853				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7854				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7855
7856			/*
7857			 * igu prods come in chunks of E1HVN_MAX (4) -
7858			 * does not matters what is the current chip mode
7859			 */
7860			for (i = 0; i < (num_segs * E1HVN_MAX);
7861			     i += E1HVN_MAX) {
7862				addr = IGU_REG_PROD_CONS_MEMORY +
7863							(prod_offset + i)*4;
7864				REG_WR(bp, addr, 0);
7865			}
7866			/* send consumer update with 0 */
7867			if (CHIP_INT_MODE_IS_BC(bp)) {
7868				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7869					     USTORM_ID, 0, IGU_INT_NOP, 1);
7870				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7871					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7872				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7873					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7874				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7875					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7876				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7877					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7878			} else {
7879				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7880					     USTORM_ID, 0, IGU_INT_NOP, 1);
7881				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7882					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7883			}
7884			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7885
7886			/* !!! These should become driver const once
7887			   rf-tool supports split-68 const */
7888			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7889			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7890			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7891			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7892			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7893			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7894		}
7895	}
7896
7897	/* Reset PCIE errors for debug */
7898	REG_WR(bp, 0x2114, 0xffffffff);
7899	REG_WR(bp, 0x2120, 0xffffffff);
7900
7901	if (CHIP_IS_E1x(bp)) {
7902		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7903		main_mem_base = HC_REG_MAIN_MEMORY +
7904				BP_PORT(bp) * (main_mem_size * 4);
7905		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7906		main_mem_width = 8;
7907
7908		val = REG_RD(bp, main_mem_prty_clr);
7909		if (val)
7910			DP(NETIF_MSG_HW,
7911			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7912			   val);
7913
7914		/* Clear "false" parity errors in MSI-X table */
7915		for (i = main_mem_base;
7916		     i < main_mem_base + main_mem_size * 4;
7917		     i += main_mem_width) {
7918			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7919			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7920					 i, main_mem_width / 4);
7921		}
7922		/* Clear HC parity attention */
7923		REG_RD(bp, main_mem_prty_clr);
7924	}
7925
7926#ifdef BNX2X_STOP_ON_ERROR
7927	/* Enable STORMs SP logging */
7928	REG_WR8(bp, BAR_USTRORM_INTMEM +
7929	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7930	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7931	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7932	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7933	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7934	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7935	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7936#endif
7937
7938	bnx2x_phy_probe(&bp->link_params);
7939
7940	return 0;
7941}
7942
7943void bnx2x_free_mem_cnic(struct bnx2x *bp)
7944{
7945	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7946
7947	if (!CHIP_IS_E1x(bp))
7948		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7949			       sizeof(struct host_hc_status_block_e2));
7950	else
7951		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7952			       sizeof(struct host_hc_status_block_e1x));
7953
7954	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7955}
7956
7957void bnx2x_free_mem(struct bnx2x *bp)
7958{
7959	int i;
7960
7961	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7962		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7963
7964	if (IS_VF(bp))
7965		return;
7966
7967	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7968		       sizeof(struct host_sp_status_block));
7969
7970	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7971		       sizeof(struct bnx2x_slowpath));
7972
7973	for (i = 0; i < L2_ILT_LINES(bp); i++)
7974		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7975			       bp->context[i].size);
7976	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7977
7978	BNX2X_FREE(bp->ilt->lines);
7979
7980	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7981
7982	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7983		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7984
7985	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7986
7987	bnx2x_iov_free_mem(bp);
7988}
7989
7990int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7991{
7992	if (!CHIP_IS_E1x(bp))
7993		/* size = the status block + ramrod buffers */
7994		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7995				sizeof(struct host_hc_status_block_e2));
7996	else
7997		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7998				&bp->cnic_sb_mapping,
7999				sizeof(struct
8000				       host_hc_status_block_e1x));
8001
8002	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
8003		/* allocate searcher T2 table, as it wasn't allocated before */
8004		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8005
8006	/* write address to which L5 should insert its values */
8007	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8008		&bp->slowpath->drv_info_to_mcp;
8009
8010	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8011		goto alloc_mem_err;
8012
8013	return 0;
8014
8015alloc_mem_err:
8016	bnx2x_free_mem_cnic(bp);
8017	BNX2X_ERR("Can't allocate memory\n");
8018	return -ENOMEM;
8019}
8020
8021int bnx2x_alloc_mem(struct bnx2x *bp)
8022{
8023	int i, allocated, context_size;
8024
8025	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
8026		/* allocate searcher T2 table */
8027		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8028
8029	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
8030			sizeof(struct host_sp_status_block));
8031
8032	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
8033			sizeof(struct bnx2x_slowpath));
8034
8035	/* Allocate memory for CDU context:
8036	 * This memory is allocated separately and not in the generic ILT
8037	 * functions because CDU differs in few aspects:
8038	 * 1. There are multiple entities allocating memory for context -
8039	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8040	 * its own ILT lines.
8041	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8042	 * for the other ILT clients), to be efficient we want to support
8043	 * allocation of sub-page-size in the last entry.
8044	 * 3. Context pointers are used by the driver to pass to FW / update
8045	 * the context (for the other ILT clients the pointers are used just to
8046	 * free the memory during unload).
8047	 */
8048	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8049
8050	for (i = 0, allocated = 0; allocated < context_size; i++) {
8051		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8052					  (context_size - allocated));
8053		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
8054				&bp->context[i].cxt_mapping,
8055				bp->context[i].size);
8056		allocated += bp->context[i].size;
8057	}
8058	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8059
8060	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8061		goto alloc_mem_err;
8062
8063	if (bnx2x_iov_alloc_mem(bp))
8064		goto alloc_mem_err;
8065
8066	/* Slow path ring */
8067	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8068
8069	/* EQ */
8070	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8071			BCM_PAGE_SIZE * NUM_EQ_PAGES);
8072
8073	return 0;
8074
8075alloc_mem_err:
8076	bnx2x_free_mem(bp);
8077	BNX2X_ERR("Can't allocate memory\n");
8078	return -ENOMEM;
8079}
8080
8081/*
8082 * Init service functions
8083 */
8084
8085int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8086		      struct bnx2x_vlan_mac_obj *obj, bool set,
8087		      int mac_type, unsigned long *ramrod_flags)
8088{
8089	int rc;
8090	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8091
8092	memset(&ramrod_param, 0, sizeof(ramrod_param));
8093
8094	/* Fill general parameters */
8095	ramrod_param.vlan_mac_obj = obj;
8096	ramrod_param.ramrod_flags = *ramrod_flags;
8097
8098	/* Fill a user request section if needed */
8099	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8100		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8101
8102		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8103
8104		/* Set the command: ADD or DEL */
8105		if (set)
8106			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8107		else
8108			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8109	}
8110
8111	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8112
8113	if (rc == -EEXIST) {
8114		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8115		/* do not treat adding same MAC as error */
8116		rc = 0;
8117	} else if (rc < 0)
8118		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8119
8120	return rc;
8121}
8122
8123int bnx2x_del_all_macs(struct bnx2x *bp,
8124		       struct bnx2x_vlan_mac_obj *mac_obj,
8125		       int mac_type, bool wait_for_comp)
8126{
8127	int rc;
8128	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8129
8130	/* Wait for completion of requested */
8131	if (wait_for_comp)
8132		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8133
8134	/* Set the mac type of addresses we want to clear */
8135	__set_bit(mac_type, &vlan_mac_flags);
8136
8137	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8138	if (rc < 0)
8139		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8140
8141	return rc;
8142}
8143
8144int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8145{
8146	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8147	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8148		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8149		   "Ignoring Zero MAC for STORAGE SD mode\n");
8150		return 0;
8151	}
8152
8153	if (IS_PF(bp)) {
8154		unsigned long ramrod_flags = 0;
8155
8156		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8157		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8158		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8159					 &bp->sp_objs->mac_obj, set,
8160					 BNX2X_ETH_MAC, &ramrod_flags);
8161	} else { /* vf */
8162		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8163					     bp->fp->index, true);
8164	}
8165}
8166
8167int bnx2x_setup_leading(struct bnx2x *bp)
8168{
8169	if (IS_PF(bp))
8170		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8171	else /* VF */
8172		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8173}
8174
8175/**
8176 * bnx2x_set_int_mode - configure interrupt mode
8177 *
8178 * @bp:		driver handle
8179 *
8180 * In case of MSI-X it will also try to enable MSI-X.
8181 */
8182int bnx2x_set_int_mode(struct bnx2x *bp)
8183{
8184	int rc = 0;
8185
8186	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8187		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8188		return -EINVAL;
8189	}
8190
8191	switch (int_mode) {
8192	case BNX2X_INT_MODE_MSIX:
8193		/* attempt to enable msix */
8194		rc = bnx2x_enable_msix(bp);
8195
8196		/* msix attained */
8197		if (!rc)
8198			return 0;
8199
8200		/* vfs use only msix */
8201		if (rc && IS_VF(bp))
8202			return rc;
8203
8204		/* failed to enable multiple MSI-X */
8205		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8206			       bp->num_queues,
8207			       1 + bp->num_cnic_queues);
8208
8209		/* falling through... */
8210	case BNX2X_INT_MODE_MSI:
8211		bnx2x_enable_msi(bp);
8212
8213		/* falling through... */
8214	case BNX2X_INT_MODE_INTX:
8215		bp->num_ethernet_queues = 1;
8216		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8217		BNX2X_DEV_INFO("set number of queues to 1\n");
8218		break;
8219	default:
8220		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8221		return -EINVAL;
8222	}
8223	return 0;
8224}
8225
8226/* must be called prior to any HW initializations */
8227static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8228{
8229	if (IS_SRIOV(bp))
8230		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8231	return L2_ILT_LINES(bp);
8232}
8233
8234void bnx2x_ilt_set_info(struct bnx2x *bp)
8235{
8236	struct ilt_client_info *ilt_client;
8237	struct bnx2x_ilt *ilt = BP_ILT(bp);
8238	u16 line = 0;
8239
8240	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8241	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8242
8243	/* CDU */
8244	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8245	ilt_client->client_num = ILT_CLIENT_CDU;
8246	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8247	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8248	ilt_client->start = line;
8249	line += bnx2x_cid_ilt_lines(bp);
8250
8251	if (CNIC_SUPPORT(bp))
8252		line += CNIC_ILT_LINES;
8253	ilt_client->end = line - 1;
8254
8255	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8256	   ilt_client->start,
8257	   ilt_client->end,
8258	   ilt_client->page_size,
8259	   ilt_client->flags,
8260	   ilog2(ilt_client->page_size >> 12));
8261
8262	/* QM */
8263	if (QM_INIT(bp->qm_cid_count)) {
8264		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8265		ilt_client->client_num = ILT_CLIENT_QM;
8266		ilt_client->page_size = QM_ILT_PAGE_SZ;
8267		ilt_client->flags = 0;
8268		ilt_client->start = line;
8269
8270		/* 4 bytes for each cid */
8271		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8272							 QM_ILT_PAGE_SZ);
8273
8274		ilt_client->end = line - 1;
8275
8276		DP(NETIF_MSG_IFUP,
8277		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8278		   ilt_client->start,
8279		   ilt_client->end,
8280		   ilt_client->page_size,
8281		   ilt_client->flags,
8282		   ilog2(ilt_client->page_size >> 12));
8283	}
8284
8285	if (CNIC_SUPPORT(bp)) {
8286		/* SRC */
8287		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8288		ilt_client->client_num = ILT_CLIENT_SRC;
8289		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8290		ilt_client->flags = 0;
8291		ilt_client->start = line;
8292		line += SRC_ILT_LINES;
8293		ilt_client->end = line - 1;
8294
8295		DP(NETIF_MSG_IFUP,
8296		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8297		   ilt_client->start,
8298		   ilt_client->end,
8299		   ilt_client->page_size,
8300		   ilt_client->flags,
8301		   ilog2(ilt_client->page_size >> 12));
8302
8303		/* TM */
8304		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8305		ilt_client->client_num = ILT_CLIENT_TM;
8306		ilt_client->page_size = TM_ILT_PAGE_SZ;
8307		ilt_client->flags = 0;
8308		ilt_client->start = line;
8309		line += TM_ILT_LINES;
8310		ilt_client->end = line - 1;
8311
8312		DP(NETIF_MSG_IFUP,
8313		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8314		   ilt_client->start,
8315		   ilt_client->end,
8316		   ilt_client->page_size,
8317		   ilt_client->flags,
8318		   ilog2(ilt_client->page_size >> 12));
8319	}
8320
8321	BUG_ON(line > ILT_MAX_LINES);
8322}
8323
8324/**
8325 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8326 *
8327 * @bp:			driver handle
8328 * @fp:			pointer to fastpath
8329 * @init_params:	pointer to parameters structure
8330 *
8331 * parameters configured:
8332 *      - HC configuration
8333 *      - Queue's CDU context
8334 */
8335static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8336	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8337{
8338	u8 cos;
8339	int cxt_index, cxt_offset;
8340
8341	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8342	if (!IS_FCOE_FP(fp)) {
8343		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8344		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8345
8346		/* If HC is supported, enable host coalescing in the transition
8347		 * to INIT state.
8348		 */
8349		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8350		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8351
8352		/* HC rate */
8353		init_params->rx.hc_rate = bp->rx_ticks ?
8354			(1000000 / bp->rx_ticks) : 0;
8355		init_params->tx.hc_rate = bp->tx_ticks ?
8356			(1000000 / bp->tx_ticks) : 0;
8357
8358		/* FW SB ID */
8359		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8360			fp->fw_sb_id;
8361
8362		/*
8363		 * CQ index among the SB indices: FCoE clients uses the default
8364		 * SB, therefore it's different.
8365		 */
8366		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8367		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8368	}
8369
8370	/* set maximum number of COSs supported by this queue */
8371	init_params->max_cos = fp->max_cos;
8372
8373	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8374	    fp->index, init_params->max_cos);
8375
8376	/* set the context pointers queue object */
8377	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8378		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8379		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8380				ILT_PAGE_CIDS);
8381		init_params->cxts[cos] =
8382			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8383	}
8384}
8385
8386static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8387			struct bnx2x_queue_state_params *q_params,
8388			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8389			int tx_index, bool leading)
8390{
8391	memset(tx_only_params, 0, sizeof(*tx_only_params));
8392
8393	/* Set the command */
8394	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8395
8396	/* Set tx-only QUEUE flags: don't zero statistics */
8397	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8398
8399	/* choose the index of the cid to send the slow path on */
8400	tx_only_params->cid_index = tx_index;
8401
8402	/* Set general TX_ONLY_SETUP parameters */
8403	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8404
8405	/* Set Tx TX_ONLY_SETUP parameters */
8406	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8407
8408	DP(NETIF_MSG_IFUP,
8409	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8410	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8411	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8412	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8413
8414	/* send the ramrod */
8415	return bnx2x_queue_state_change(bp, q_params);
8416}
8417
8418/**
8419 * bnx2x_setup_queue - setup queue
8420 *
8421 * @bp:		driver handle
8422 * @fp:		pointer to fastpath
8423 * @leading:	is leading
8424 *
8425 * This function performs 2 steps in a Queue state machine
8426 *      actually: 1) RESET->INIT 2) INIT->SETUP
8427 */
8428
8429int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8430		       bool leading)
8431{
8432	struct bnx2x_queue_state_params q_params = {NULL};
8433	struct bnx2x_queue_setup_params *setup_params =
8434						&q_params.params.setup;
8435	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8436						&q_params.params.tx_only;
8437	int rc;
8438	u8 tx_index;
8439
8440	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8441
8442	/* reset IGU state skip FCoE L2 queue */
8443	if (!IS_FCOE_FP(fp))
8444		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8445			     IGU_INT_ENABLE, 0);
8446
8447	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8448	/* We want to wait for completion in this context */
8449	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8450
8451	/* Prepare the INIT parameters */
8452	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8453
8454	/* Set the command */
8455	q_params.cmd = BNX2X_Q_CMD_INIT;
8456
8457	/* Change the state to INIT */
8458	rc = bnx2x_queue_state_change(bp, &q_params);
8459	if (rc) {
8460		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8461		return rc;
8462	}
8463
8464	DP(NETIF_MSG_IFUP, "init complete\n");
8465
8466	/* Now move the Queue to the SETUP state... */
8467	memset(setup_params, 0, sizeof(*setup_params));
8468
8469	/* Set QUEUE flags */
8470	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8471
8472	/* Set general SETUP parameters */
8473	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8474				FIRST_TX_COS_INDEX);
8475
8476	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8477			    &setup_params->rxq_params);
8478
8479	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8480			   FIRST_TX_COS_INDEX);
8481
8482	/* Set the command */
8483	q_params.cmd = BNX2X_Q_CMD_SETUP;
8484
8485	if (IS_FCOE_FP(fp))
8486		bp->fcoe_init = true;
8487
8488	/* Change the state to SETUP */
8489	rc = bnx2x_queue_state_change(bp, &q_params);
8490	if (rc) {
8491		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8492		return rc;
8493	}
8494
8495	/* loop through the relevant tx-only indices */
8496	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8497	      tx_index < fp->max_cos;
8498	      tx_index++) {
8499
8500		/* prepare and send tx-only ramrod*/
8501		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8502					  tx_only_params, tx_index, leading);
8503		if (rc) {
8504			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8505				  fp->index, tx_index);
8506			return rc;
8507		}
8508	}
8509
8510	return rc;
8511}
8512
8513static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8514{
8515	struct bnx2x_fastpath *fp = &bp->fp[index];
8516	struct bnx2x_fp_txdata *txdata;
8517	struct bnx2x_queue_state_params q_params = {NULL};
8518	int rc, tx_index;
8519
8520	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8521
8522	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8523	/* We want to wait for completion in this context */
8524	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8525
8526	/* close tx-only connections */
8527	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8528	     tx_index < fp->max_cos;
8529	     tx_index++){
8530
8531		/* ascertain this is a normal queue*/
8532		txdata = fp->txdata_ptr[tx_index];
8533
8534		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8535							txdata->txq_index);
8536
8537		/* send halt terminate on tx-only connection */
8538		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8539		memset(&q_params.params.terminate, 0,
8540		       sizeof(q_params.params.terminate));
8541		q_params.params.terminate.cid_index = tx_index;
8542
8543		rc = bnx2x_queue_state_change(bp, &q_params);
8544		if (rc)
8545			return rc;
8546
8547		/* send halt terminate on tx-only connection */
8548		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8549		memset(&q_params.params.cfc_del, 0,
8550		       sizeof(q_params.params.cfc_del));
8551		q_params.params.cfc_del.cid_index = tx_index;
8552		rc = bnx2x_queue_state_change(bp, &q_params);
8553		if (rc)
8554			return rc;
8555	}
8556	/* Stop the primary connection: */
8557	/* ...halt the connection */
8558	q_params.cmd = BNX2X_Q_CMD_HALT;
8559	rc = bnx2x_queue_state_change(bp, &q_params);
8560	if (rc)
8561		return rc;
8562
8563	/* ...terminate the connection */
8564	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8565	memset(&q_params.params.terminate, 0,
8566	       sizeof(q_params.params.terminate));
8567	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8568	rc = bnx2x_queue_state_change(bp, &q_params);
8569	if (rc)
8570		return rc;
8571	/* ...delete cfc entry */
8572	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8573	memset(&q_params.params.cfc_del, 0,
8574	       sizeof(q_params.params.cfc_del));
8575	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8576	return bnx2x_queue_state_change(bp, &q_params);
8577}
8578
8579static void bnx2x_reset_func(struct bnx2x *bp)
8580{
8581	int port = BP_PORT(bp);
8582	int func = BP_FUNC(bp);
8583	int i;
8584
8585	/* Disable the function in the FW */
8586	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8587	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8588	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8589	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8590
8591	/* FP SBs */
8592	for_each_eth_queue(bp, i) {
8593		struct bnx2x_fastpath *fp = &bp->fp[i];
8594		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8595			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8596			   SB_DISABLED);
8597	}
8598
8599	if (CNIC_LOADED(bp))
8600		/* CNIC SB */
8601		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8602			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8603			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8604
8605	/* SP SB */
8606	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8607		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8608		SB_DISABLED);
8609
8610	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8611		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8612		       0);
8613
8614	/* Configure IGU */
8615	if (bp->common.int_block == INT_BLOCK_HC) {
8616		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8617		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8618	} else {
8619		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8620		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8621	}
8622
8623	if (CNIC_LOADED(bp)) {
8624		/* Disable Timer scan */
8625		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8626		/*
8627		 * Wait for at least 10ms and up to 2 second for the timers
8628		 * scan to complete
8629		 */
8630		for (i = 0; i < 200; i++) {
8631			usleep_range(10000, 20000);
8632			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8633				break;
8634		}
8635	}
8636	/* Clear ILT */
8637	bnx2x_clear_func_ilt(bp, func);
8638
8639	/* Timers workaround bug for E2: if this is vnic-3,
8640	 * we need to set the entire ilt range for this timers.
8641	 */
8642	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8643		struct ilt_client_info ilt_cli;
8644		/* use dummy TM client */
8645		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8646		ilt_cli.start = 0;
8647		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8648		ilt_cli.client_num = ILT_CLIENT_TM;
8649
8650		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8651	}
8652
8653	/* this assumes that reset_port() called before reset_func()*/
8654	if (!CHIP_IS_E1x(bp))
8655		bnx2x_pf_disable(bp);
8656
8657	bp->dmae_ready = 0;
8658}
8659
8660static void bnx2x_reset_port(struct bnx2x *bp)
8661{
8662	int port = BP_PORT(bp);
8663	u32 val;
8664
8665	/* Reset physical Link */
8666	bnx2x__link_reset(bp);
8667
8668	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8669
8670	/* Do not rcv packets to BRB */
8671	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8672	/* Do not direct rcv packets that are not for MCP to the BRB */
8673	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8674			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8675
8676	/* Configure AEU */
8677	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8678
8679	msleep(100);
8680	/* Check for BRB port occupancy */
8681	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8682	if (val)
8683		DP(NETIF_MSG_IFDOWN,
8684		   "BRB1 is not empty  %d blocks are occupied\n", val);
8685
8686	/* TODO: Close Doorbell port? */
8687}
8688
8689static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8690{
8691	struct bnx2x_func_state_params func_params = {NULL};
8692
8693	/* Prepare parameters for function state transitions */
8694	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8695
8696	func_params.f_obj = &bp->func_obj;
8697	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8698
8699	func_params.params.hw_init.load_phase = load_code;
8700
8701	return bnx2x_func_state_change(bp, &func_params);
8702}
8703
8704static int bnx2x_func_stop(struct bnx2x *bp)
8705{
8706	struct bnx2x_func_state_params func_params = {NULL};
8707	int rc;
8708
8709	/* Prepare parameters for function state transitions */
8710	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8711	func_params.f_obj = &bp->func_obj;
8712	func_params.cmd = BNX2X_F_CMD_STOP;
8713
8714	/*
8715	 * Try to stop the function the 'good way'. If fails (in case
8716	 * of a parity error during bnx2x_chip_cleanup()) and we are
8717	 * not in a debug mode, perform a state transaction in order to
8718	 * enable further HW_RESET transaction.
8719	 */
8720	rc = bnx2x_func_state_change(bp, &func_params);
8721	if (rc) {
8722#ifdef BNX2X_STOP_ON_ERROR
8723		return rc;
8724#else
8725		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8726		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8727		return bnx2x_func_state_change(bp, &func_params);
8728#endif
8729	}
8730
8731	return 0;
8732}
8733
8734/**
8735 * bnx2x_send_unload_req - request unload mode from the MCP.
8736 *
8737 * @bp:			driver handle
8738 * @unload_mode:	requested function's unload mode
8739 *
8740 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8741 */
8742u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8743{
8744	u32 reset_code = 0;
8745	int port = BP_PORT(bp);
8746
8747	/* Select the UNLOAD request mode */
8748	if (unload_mode == UNLOAD_NORMAL)
8749		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8750
8751	else if (bp->flags & NO_WOL_FLAG)
8752		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8753
8754	else if (bp->wol) {
8755		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8756		u8 *mac_addr = bp->dev->dev_addr;
8757		struct pci_dev *pdev = bp->pdev;
8758		u32 val;
8759		u16 pmc;
8760
8761		/* The mac address is written to entries 1-4 to
8762		 * preserve entry 0 which is used by the PMF
8763		 */
8764		u8 entry = (BP_VN(bp) + 1)*8;
8765
8766		val = (mac_addr[0] << 8) | mac_addr[1];
8767		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8768
8769		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8770		      (mac_addr[4] << 8) | mac_addr[5];
8771		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8772
8773		/* Enable the PME and clear the status */
8774		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8775		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8776		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8777
8778		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8779
8780	} else
8781		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8782
8783	/* Send the request to the MCP */
8784	if (!BP_NOMCP(bp))
8785		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8786	else {
8787		int path = BP_PATH(bp);
8788
8789		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8790		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8791		   bnx2x_load_count[path][2]);
8792		bnx2x_load_count[path][0]--;
8793		bnx2x_load_count[path][1 + port]--;
8794		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8795		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8796		   bnx2x_load_count[path][2]);
8797		if (bnx2x_load_count[path][0] == 0)
8798			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8799		else if (bnx2x_load_count[path][1 + port] == 0)
8800			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8801		else
8802			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8803	}
8804
8805	return reset_code;
8806}
8807
8808/**
8809 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8810 *
8811 * @bp:		driver handle
8812 * @keep_link:		true iff link should be kept up
8813 */
8814void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8815{
8816	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8817
8818	/* Report UNLOAD_DONE to MCP */
8819	if (!BP_NOMCP(bp))
8820		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8821}
8822
8823static int bnx2x_func_wait_started(struct bnx2x *bp)
8824{
8825	int tout = 50;
8826	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8827
8828	if (!bp->port.pmf)
8829		return 0;
8830
8831	/*
8832	 * (assumption: No Attention from MCP at this stage)
8833	 * PMF probably in the middle of TX disable/enable transaction
8834	 * 1. Sync IRS for default SB
8835	 * 2. Sync SP queue - this guarantees us that attention handling started
8836	 * 3. Wait, that TX disable/enable transaction completes
8837	 *
8838	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8839	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8840	 * received completion for the transaction the state is TX_STOPPED.
8841	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8842	 * transaction.
8843	 */
8844
8845	/* make sure default SB ISR is done */
8846	if (msix)
8847		synchronize_irq(bp->msix_table[0].vector);
8848	else
8849		synchronize_irq(bp->pdev->irq);
8850
8851	flush_workqueue(bnx2x_wq);
8852
8853	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8854				BNX2X_F_STATE_STARTED && tout--)
8855		msleep(20);
8856
8857	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8858						BNX2X_F_STATE_STARTED) {
8859#ifdef BNX2X_STOP_ON_ERROR
8860		BNX2X_ERR("Wrong function state\n");
8861		return -EBUSY;
8862#else
8863		/*
8864		 * Failed to complete the transaction in a "good way"
8865		 * Force both transactions with CLR bit
8866		 */
8867		struct bnx2x_func_state_params func_params = {NULL};
8868
8869		DP(NETIF_MSG_IFDOWN,
8870		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8871
8872		func_params.f_obj = &bp->func_obj;
8873		__set_bit(RAMROD_DRV_CLR_ONLY,
8874					&func_params.ramrod_flags);
8875
8876		/* STARTED-->TX_ST0PPED */
8877		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8878		bnx2x_func_state_change(bp, &func_params);
8879
8880		/* TX_ST0PPED-->STARTED */
8881		func_params.cmd = BNX2X_F_CMD_TX_START;
8882		return bnx2x_func_state_change(bp, &func_params);
8883#endif
8884	}
8885
8886	return 0;
8887}
8888
8889void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8890{
8891	int port = BP_PORT(bp);
8892	int i, rc = 0;
8893	u8 cos;
8894	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8895	u32 reset_code;
8896
8897	/* Wait until tx fastpath tasks complete */
8898	for_each_tx_queue(bp, i) {
8899		struct bnx2x_fastpath *fp = &bp->fp[i];
8900
8901		for_each_cos_in_tx_queue(fp, cos)
8902			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8903#ifdef BNX2X_STOP_ON_ERROR
8904		if (rc)
8905			return;
8906#endif
8907	}
8908
8909	/* Give HW time to discard old tx messages */
8910	usleep_range(1000, 2000);
8911
8912	/* Clean all ETH MACs */
8913	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8914				false);
8915	if (rc < 0)
8916		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8917
8918	/* Clean up UC list  */
8919	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8920				true);
8921	if (rc < 0)
8922		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8923			  rc);
8924
8925	/* Disable LLH */
8926	if (!CHIP_IS_E1(bp))
8927		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8928
8929	/* Set "drop all" (stop Rx).
8930	 * We need to take a netif_addr_lock() here in order to prevent
8931	 * a race between the completion code and this code.
8932	 */
8933	netif_addr_lock_bh(bp->dev);
8934	/* Schedule the rx_mode command */
8935	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8936		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8937	else
8938		bnx2x_set_storm_rx_mode(bp);
8939
8940	/* Cleanup multicast configuration */
8941	rparam.mcast_obj = &bp->mcast_obj;
8942	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8943	if (rc < 0)
8944		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8945
8946	netif_addr_unlock_bh(bp->dev);
8947
8948	bnx2x_iov_chip_cleanup(bp);
8949
8950	/*
8951	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8952	 * this function should perform FUNC, PORT or COMMON HW
8953	 * reset.
8954	 */
8955	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8956
8957	/*
8958	 * (assumption: No Attention from MCP at this stage)
8959	 * PMF probably in the middle of TX disable/enable transaction
8960	 */
8961	rc = bnx2x_func_wait_started(bp);
8962	if (rc) {
8963		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8964#ifdef BNX2X_STOP_ON_ERROR
8965		return;
8966#endif
8967	}
8968
8969	/* Close multi and leading connections
8970	 * Completions for ramrods are collected in a synchronous way
8971	 */
8972	for_each_eth_queue(bp, i)
8973		if (bnx2x_stop_queue(bp, i))
8974#ifdef BNX2X_STOP_ON_ERROR
8975			return;
8976#else
8977			goto unload_error;
8978#endif
8979
8980	if (CNIC_LOADED(bp)) {
8981		for_each_cnic_queue(bp, i)
8982			if (bnx2x_stop_queue(bp, i))
8983#ifdef BNX2X_STOP_ON_ERROR
8984				return;
8985#else
8986				goto unload_error;
8987#endif
8988	}
8989
8990	/* If SP settings didn't get completed so far - something
8991	 * very wrong has happen.
8992	 */
8993	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8994		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8995
8996#ifndef BNX2X_STOP_ON_ERROR
8997unload_error:
8998#endif
8999	rc = bnx2x_func_stop(bp);
9000	if (rc) {
9001		BNX2X_ERR("Function stop failed!\n");
9002#ifdef BNX2X_STOP_ON_ERROR
9003		return;
9004#endif
9005	}
9006
9007	/* Disable HW interrupts, NAPI */
9008	bnx2x_netif_stop(bp, 1);
9009	/* Delete all NAPI objects */
9010	bnx2x_del_all_napi(bp);
9011	if (CNIC_LOADED(bp))
9012		bnx2x_del_all_napi_cnic(bp);
9013
9014	/* Release IRQs */
9015	bnx2x_free_irq(bp);
9016
9017	/* Reset the chip */
9018	rc = bnx2x_reset_hw(bp, reset_code);
9019	if (rc)
9020		BNX2X_ERR("HW_RESET failed\n");
9021
9022	/* Report UNLOAD_DONE to MCP */
9023	bnx2x_send_unload_done(bp, keep_link);
9024}
9025
9026void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9027{
9028	u32 val;
9029
9030	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9031
9032	if (CHIP_IS_E1(bp)) {
9033		int port = BP_PORT(bp);
9034		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9035			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9036
9037		val = REG_RD(bp, addr);
9038		val &= ~(0x300);
9039		REG_WR(bp, addr, val);
9040	} else {
9041		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9042		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9043			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9044		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9045	}
9046}
9047
9048/* Close gates #2, #3 and #4: */
9049static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9050{
9051	u32 val;
9052
9053	/* Gates #2 and #4a are closed/opened for "not E1" only */
9054	if (!CHIP_IS_E1(bp)) {
9055		/* #4 */
9056		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9057		/* #2 */
9058		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9059	}
9060
9061	/* #3 */
9062	if (CHIP_IS_E1x(bp)) {
9063		/* Prevent interrupts from HC on both ports */
9064		val = REG_RD(bp, HC_REG_CONFIG_1);
9065		REG_WR(bp, HC_REG_CONFIG_1,
9066		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9067		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9068
9069		val = REG_RD(bp, HC_REG_CONFIG_0);
9070		REG_WR(bp, HC_REG_CONFIG_0,
9071		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9072		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9073	} else {
9074		/* Prevent incoming interrupts in IGU */
9075		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9076
9077		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9078		       (!close) ?
9079		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9080		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9081	}
9082
9083	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9084		close ? "closing" : "opening");
9085	mmiowb();
9086}
9087
9088#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9089
9090static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9091{
9092	/* Do some magic... */
9093	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9094	*magic_val = val & SHARED_MF_CLP_MAGIC;
9095	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9096}
9097
9098/**
9099 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9100 *
9101 * @bp:		driver handle
9102 * @magic_val:	old value of the `magic' bit.
9103 */
9104static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9105{
9106	/* Restore the `magic' bit value... */
9107	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9108	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9109		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9110}
9111
9112/**
9113 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9114 *
9115 * @bp:		driver handle
9116 * @magic_val:	old value of 'magic' bit.
9117 *
9118 * Takes care of CLP configurations.
9119 */
9120static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9121{
9122	u32 shmem;
9123	u32 validity_offset;
9124
9125	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9126
9127	/* Set `magic' bit in order to save MF config */
9128	if (!CHIP_IS_E1(bp))
9129		bnx2x_clp_reset_prep(bp, magic_val);
9130
9131	/* Get shmem offset */
9132	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9133	validity_offset =
9134		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9135
9136	/* Clear validity map flags */
9137	if (shmem > 0)
9138		REG_WR(bp, shmem + validity_offset, 0);
9139}
9140
9141#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9142#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9143
9144/**
9145 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9146 *
9147 * @bp:	driver handle
9148 */
9149static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9150{
9151	/* special handling for emulation and FPGA,
9152	   wait 10 times longer */
9153	if (CHIP_REV_IS_SLOW(bp))
9154		msleep(MCP_ONE_TIMEOUT*10);
9155	else
9156		msleep(MCP_ONE_TIMEOUT);
9157}
9158
9159/*
9160 * initializes bp->common.shmem_base and waits for validity signature to appear
9161 */
9162static int bnx2x_init_shmem(struct bnx2x *bp)
9163{
9164	int cnt = 0;
9165	u32 val = 0;
9166
9167	do {
9168		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9169		if (bp->common.shmem_base) {
9170			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9171			if (val & SHR_MEM_VALIDITY_MB)
9172				return 0;
9173		}
9174
9175		bnx2x_mcp_wait_one(bp);
9176
9177	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9178
9179	BNX2X_ERR("BAD MCP validity signature\n");
9180
9181	return -ENODEV;
9182}
9183
9184static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9185{
9186	int rc = bnx2x_init_shmem(bp);
9187
9188	/* Restore the `magic' bit value */
9189	if (!CHIP_IS_E1(bp))
9190		bnx2x_clp_reset_done(bp, magic_val);
9191
9192	return rc;
9193}
9194
9195static void bnx2x_pxp_prep(struct bnx2x *bp)
9196{
9197	if (!CHIP_IS_E1(bp)) {
9198		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9199		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9200		mmiowb();
9201	}
9202}
9203
9204/*
9205 * Reset the whole chip except for:
9206 *      - PCIE core
9207 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9208 *              one reset bit)
9209 *      - IGU
9210 *      - MISC (including AEU)
9211 *      - GRC
9212 *      - RBCN, RBCP
9213 */
9214static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9215{
9216	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9217	u32 global_bits2, stay_reset2;
9218
9219	/*
9220	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9221	 * (per chip) blocks.
9222	 */
9223	global_bits2 =
9224		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9225		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9226
9227	/* Don't reset the following blocks.
9228	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9229	 *            reset, as in 4 port device they might still be owned
9230	 *            by the MCP (there is only one leader per path).
9231	 */
9232	not_reset_mask1 =
9233		MISC_REGISTERS_RESET_REG_1_RST_HC |
9234		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9235		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9236
9237	not_reset_mask2 =
9238		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9239		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9240		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9241		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9242		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9243		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9244		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9245		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9246		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9247		MISC_REGISTERS_RESET_REG_2_PGLC |
9248		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9249		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9250		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9251		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9252		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9253		MISC_REGISTERS_RESET_REG_2_UMAC1;
9254
9255	/*
9256	 * Keep the following blocks in reset:
9257	 *  - all xxMACs are handled by the bnx2x_link code.
9258	 */
9259	stay_reset2 =
9260		MISC_REGISTERS_RESET_REG_2_XMAC |
9261		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9262
9263	/* Full reset masks according to the chip */
9264	reset_mask1 = 0xffffffff;
9265
9266	if (CHIP_IS_E1(bp))
9267		reset_mask2 = 0xffff;
9268	else if (CHIP_IS_E1H(bp))
9269		reset_mask2 = 0x1ffff;
9270	else if (CHIP_IS_E2(bp))
9271		reset_mask2 = 0xfffff;
9272	else /* CHIP_IS_E3 */
9273		reset_mask2 = 0x3ffffff;
9274
9275	/* Don't reset global blocks unless we need to */
9276	if (!global)
9277		reset_mask2 &= ~global_bits2;
9278
9279	/*
9280	 * In case of attention in the QM, we need to reset PXP
9281	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9282	 * because otherwise QM reset would release 'close the gates' shortly
9283	 * before resetting the PXP, then the PSWRQ would send a write
9284	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9285	 * read the payload data from PSWWR, but PSWWR would not
9286	 * respond. The write queue in PGLUE would stuck, dmae commands
9287	 * would not return. Therefore it's important to reset the second
9288	 * reset register (containing the
9289	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9290	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9291	 * bit).
9292	 */
9293	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9294	       reset_mask2 & (~not_reset_mask2));
9295
9296	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9297	       reset_mask1 & (~not_reset_mask1));
9298
9299	barrier();
9300	mmiowb();
9301
9302	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9303	       reset_mask2 & (~stay_reset2));
9304
9305	barrier();
9306	mmiowb();
9307
9308	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9309	mmiowb();
9310}
9311
9312/**
9313 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9314 * It should get cleared in no more than 1s.
9315 *
9316 * @bp:	driver handle
9317 *
9318 * It should get cleared in no more than 1s. Returns 0 if
9319 * pending writes bit gets cleared.
9320 */
9321static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9322{
9323	u32 cnt = 1000;
9324	u32 pend_bits = 0;
9325
9326	do {
9327		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9328
9329		if (pend_bits == 0)
9330			break;
9331
9332		usleep_range(1000, 2000);
9333	} while (cnt-- > 0);
9334
9335	if (cnt <= 0) {
9336		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9337			  pend_bits);
9338		return -EBUSY;
9339	}
9340
9341	return 0;
9342}
9343
9344static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9345{
9346	int cnt = 1000;
9347	u32 val = 0;
9348	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9349	u32 tags_63_32 = 0;
9350
9351	/* Empty the Tetris buffer, wait for 1s */
9352	do {
9353		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9354		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9355		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9356		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9357		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9358		if (CHIP_IS_E3(bp))
9359			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9360
9361		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9362		    ((port_is_idle_0 & 0x1) == 0x1) &&
9363		    ((port_is_idle_1 & 0x1) == 0x1) &&
9364		    (pgl_exp_rom2 == 0xffffffff) &&
9365		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9366			break;
9367		usleep_range(1000, 2000);
9368	} while (cnt-- > 0);
9369
9370	if (cnt <= 0) {
9371		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9372		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9373			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9374			  pgl_exp_rom2);
9375		return -EAGAIN;
9376	}
9377
9378	barrier();
9379
9380	/* Close gates #2, #3 and #4 */
9381	bnx2x_set_234_gates(bp, true);
9382
9383	/* Poll for IGU VQs for 57712 and newer chips */
9384	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9385		return -EAGAIN;
9386
9387	/* TBD: Indicate that "process kill" is in progress to MCP */
9388
9389	/* Clear "unprepared" bit */
9390	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9391	barrier();
9392
9393	/* Make sure all is written to the chip before the reset */
9394	mmiowb();
9395
9396	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9397	 * PSWHST, GRC and PSWRD Tetris buffer.
9398	 */
9399	usleep_range(1000, 2000);
9400
9401	/* Prepare to chip reset: */
9402	/* MCP */
9403	if (global)
9404		bnx2x_reset_mcp_prep(bp, &val);
9405
9406	/* PXP */
9407	bnx2x_pxp_prep(bp);
9408	barrier();
9409
9410	/* reset the chip */
9411	bnx2x_process_kill_chip_reset(bp, global);
9412	barrier();
9413
9414	/* clear errors in PGB */
9415	if (!CHIP_IS_E1x(bp))
9416		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9417
9418	/* Recover after reset: */
9419	/* MCP */
9420	if (global && bnx2x_reset_mcp_comp(bp, val))
9421		return -EAGAIN;
9422
9423	/* TBD: Add resetting the NO_MCP mode DB here */
9424
9425	/* Open the gates #2, #3 and #4 */
9426	bnx2x_set_234_gates(bp, false);
9427
9428	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9429	 * reset state, re-enable attentions. */
9430
9431	return 0;
9432}
9433
9434static int bnx2x_leader_reset(struct bnx2x *bp)
9435{
9436	int rc = 0;
9437	bool global = bnx2x_reset_is_global(bp);
9438	u32 load_code;
9439
9440	/* if not going to reset MCP - load "fake" driver to reset HW while
9441	 * driver is owner of the HW
9442	 */
9443	if (!global && !BP_NOMCP(bp)) {
9444		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9445					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9446		if (!load_code) {
9447			BNX2X_ERR("MCP response failure, aborting\n");
9448			rc = -EAGAIN;
9449			goto exit_leader_reset;
9450		}
9451		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9452		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9453			BNX2X_ERR("MCP unexpected resp, aborting\n");
9454			rc = -EAGAIN;
9455			goto exit_leader_reset2;
9456		}
9457		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9458		if (!load_code) {
9459			BNX2X_ERR("MCP response failure, aborting\n");
9460			rc = -EAGAIN;
9461			goto exit_leader_reset2;
9462		}
9463	}
9464
9465	/* Try to recover after the failure */
9466	if (bnx2x_process_kill(bp, global)) {
9467		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9468			  BP_PATH(bp));
9469		rc = -EAGAIN;
9470		goto exit_leader_reset2;
9471	}
9472
9473	/*
9474	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9475	 * state.
9476	 */
9477	bnx2x_set_reset_done(bp);
9478	if (global)
9479		bnx2x_clear_reset_global(bp);
9480
9481exit_leader_reset2:
9482	/* unload "fake driver" if it was loaded */
9483	if (!global && !BP_NOMCP(bp)) {
9484		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9485		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9486	}
9487exit_leader_reset:
9488	bp->is_leader = 0;
9489	bnx2x_release_leader_lock(bp);
9490	smp_mb();
9491	return rc;
9492}
9493
9494static void bnx2x_recovery_failed(struct bnx2x *bp)
9495{
9496	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9497
9498	/* Disconnect this device */
9499	netif_device_detach(bp->dev);
9500
9501	/*
9502	 * Block ifup for all function on this engine until "process kill"
9503	 * or power cycle.
9504	 */
9505	bnx2x_set_reset_in_progress(bp);
9506
9507	/* Shut down the power */
9508	bnx2x_set_power_state(bp, PCI_D3hot);
9509
9510	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9511
9512	smp_mb();
9513}
9514
9515/*
9516 * Assumption: runs under rtnl lock. This together with the fact
9517 * that it's called only from bnx2x_sp_rtnl() ensure that it
9518 * will never be called when netif_running(bp->dev) is false.
9519 */
9520static void bnx2x_parity_recover(struct bnx2x *bp)
9521{
9522	bool global = false;
9523	u32 error_recovered, error_unrecovered;
9524	bool is_parity;
9525
9526	DP(NETIF_MSG_HW, "Handling parity\n");
9527	while (1) {
9528		switch (bp->recovery_state) {
9529		case BNX2X_RECOVERY_INIT:
9530			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9531			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9532			WARN_ON(!is_parity);
9533
9534			/* Try to get a LEADER_LOCK HW lock */
9535			if (bnx2x_trylock_leader_lock(bp)) {
9536				bnx2x_set_reset_in_progress(bp);
9537				/*
9538				 * Check if there is a global attention and if
9539				 * there was a global attention, set the global
9540				 * reset bit.
9541				 */
9542
9543				if (global)
9544					bnx2x_set_reset_global(bp);
9545
9546				bp->is_leader = 1;
9547			}
9548
9549			/* Stop the driver */
9550			/* If interface has been removed - break */
9551			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9552				return;
9553
9554			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9555
9556			/* Ensure "is_leader", MCP command sequence and
9557			 * "recovery_state" update values are seen on other
9558			 * CPUs.
9559			 */
9560			smp_mb();
9561			break;
9562
9563		case BNX2X_RECOVERY_WAIT:
9564			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9565			if (bp->is_leader) {
9566				int other_engine = BP_PATH(bp) ? 0 : 1;
9567				bool other_load_status =
9568					bnx2x_get_load_status(bp, other_engine);
9569				bool load_status =
9570					bnx2x_get_load_status(bp, BP_PATH(bp));
9571				global = bnx2x_reset_is_global(bp);
9572
9573				/*
9574				 * In case of a parity in a global block, let
9575				 * the first leader that performs a
9576				 * leader_reset() reset the global blocks in
9577				 * order to clear global attentions. Otherwise
9578				 * the gates will remain closed for that
9579				 * engine.
9580				 */
9581				if (load_status ||
9582				    (global && other_load_status)) {
9583					/* Wait until all other functions get
9584					 * down.
9585					 */
9586					schedule_delayed_work(&bp->sp_rtnl_task,
9587								HZ/10);
9588					return;
9589				} else {
9590					/* If all other functions got down -
9591					 * try to bring the chip back to
9592					 * normal. In any case it's an exit
9593					 * point for a leader.
9594					 */
9595					if (bnx2x_leader_reset(bp)) {
9596						bnx2x_recovery_failed(bp);
9597						return;
9598					}
9599
9600					/* If we are here, means that the
9601					 * leader has succeeded and doesn't
9602					 * want to be a leader any more. Try
9603					 * to continue as a none-leader.
9604					 */
9605					break;
9606				}
9607			} else { /* non-leader */
9608				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9609					/* Try to get a LEADER_LOCK HW lock as
9610					 * long as a former leader may have
9611					 * been unloaded by the user or
9612					 * released a leadership by another
9613					 * reason.
9614					 */
9615					if (bnx2x_trylock_leader_lock(bp)) {
9616						/* I'm a leader now! Restart a
9617						 * switch case.
9618						 */
9619						bp->is_leader = 1;
9620						break;
9621					}
9622
9623					schedule_delayed_work(&bp->sp_rtnl_task,
9624								HZ/10);
9625					return;
9626
9627				} else {
9628					/*
9629					 * If there was a global attention, wait
9630					 * for it to be cleared.
9631					 */
9632					if (bnx2x_reset_is_global(bp)) {
9633						schedule_delayed_work(
9634							&bp->sp_rtnl_task,
9635							HZ/10);
9636						return;
9637					}
9638
9639					error_recovered =
9640					  bp->eth_stats.recoverable_error;
9641					error_unrecovered =
9642					  bp->eth_stats.unrecoverable_error;
9643					bp->recovery_state =
9644						BNX2X_RECOVERY_NIC_LOADING;
9645					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9646						error_unrecovered++;
9647						netdev_err(bp->dev,
9648							   "Recovery failed. Power cycle needed\n");
9649						/* Disconnect this device */
9650						netif_device_detach(bp->dev);
9651						/* Shut down the power */
9652						bnx2x_set_power_state(
9653							bp, PCI_D3hot);
9654						smp_mb();
9655					} else {
9656						bp->recovery_state =
9657							BNX2X_RECOVERY_DONE;
9658						error_recovered++;
9659						smp_mb();
9660					}
9661					bp->eth_stats.recoverable_error =
9662						error_recovered;
9663					bp->eth_stats.unrecoverable_error =
9664						error_unrecovered;
9665
9666					return;
9667				}
9668			}
9669		default:
9670			return;
9671		}
9672	}
9673}
9674
9675static int bnx2x_close(struct net_device *dev);
9676
9677/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9678 * scheduled on a general queue in order to prevent a dead lock.
9679 */
9680static void bnx2x_sp_rtnl_task(struct work_struct *work)
9681{
9682	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9683
9684	rtnl_lock();
9685
9686	if (!netif_running(bp->dev)) {
9687		rtnl_unlock();
9688		return;
9689	}
9690
9691	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9692#ifdef BNX2X_STOP_ON_ERROR
9693		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9694			  "you will need to reboot when done\n");
9695		goto sp_rtnl_not_reset;
9696#endif
9697		/*
9698		 * Clear all pending SP commands as we are going to reset the
9699		 * function anyway.
9700		 */
9701		bp->sp_rtnl_state = 0;
9702		smp_mb();
9703
9704		bnx2x_parity_recover(bp);
9705
9706		rtnl_unlock();
9707		return;
9708	}
9709
9710	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9711#ifdef BNX2X_STOP_ON_ERROR
9712		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9713			  "you will need to reboot when done\n");
9714		goto sp_rtnl_not_reset;
9715#endif
9716
9717		/*
9718		 * Clear all pending SP commands as we are going to reset the
9719		 * function anyway.
9720		 */
9721		bp->sp_rtnl_state = 0;
9722		smp_mb();
9723
9724		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9725		bnx2x_nic_load(bp, LOAD_NORMAL);
9726
9727		rtnl_unlock();
9728		return;
9729	}
9730#ifdef BNX2X_STOP_ON_ERROR
9731sp_rtnl_not_reset:
9732#endif
9733	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9734		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9735	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9736		bnx2x_after_function_update(bp);
9737	/*
9738	 * in case of fan failure we need to reset id if the "stop on error"
9739	 * debug flag is set, since we trying to prevent permanent overheating
9740	 * damage
9741	 */
9742	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9743		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9744		netif_device_detach(bp->dev);
9745		bnx2x_close(bp->dev);
9746		rtnl_unlock();
9747		return;
9748	}
9749
9750	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9751		DP(BNX2X_MSG_SP,
9752		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9753		bnx2x_vfpf_set_mcast(bp->dev);
9754	}
9755	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9756			       &bp->sp_rtnl_state)){
9757		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9758			bnx2x_tx_disable(bp);
9759			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9760		}
9761	}
9762
9763	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9764		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9765		bnx2x_set_rx_mode_inner(bp);
9766	}
9767
9768	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9769			       &bp->sp_rtnl_state))
9770		bnx2x_pf_set_vfs_vlan(bp);
9771
9772	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9773		bnx2x_dcbx_stop_hw_tx(bp);
9774		bnx2x_dcbx_resume_hw_tx(bp);
9775	}
9776
9777	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9778	 * can be called from other contexts as well)
9779	 */
9780	rtnl_unlock();
9781
9782	/* enable SR-IOV if applicable */
9783	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9784					       &bp->sp_rtnl_state)) {
9785		bnx2x_disable_sriov(bp);
9786		bnx2x_enable_sriov(bp);
9787	}
9788}
9789
9790static void bnx2x_period_task(struct work_struct *work)
9791{
9792	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9793
9794	if (!netif_running(bp->dev))
9795		goto period_task_exit;
9796
9797	if (CHIP_REV_IS_SLOW(bp)) {
9798		BNX2X_ERR("period task called on emulation, ignoring\n");
9799		goto period_task_exit;
9800	}
9801
9802	bnx2x_acquire_phy_lock(bp);
9803	/*
9804	 * The barrier is needed to ensure the ordering between the writing to
9805	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9806	 * the reading here.
9807	 */
9808	smp_mb();
9809	if (bp->port.pmf) {
9810		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9811
9812		/* Re-queue task in 1 sec */
9813		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9814	}
9815
9816	bnx2x_release_phy_lock(bp);
9817period_task_exit:
9818	return;
9819}
9820
9821/*
9822 * Init service functions
9823 */
9824
9825static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9826{
9827	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9828	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9829	return base + (BP_ABS_FUNC(bp)) * stride;
9830}
9831
9832static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9833					struct bnx2x_mac_vals *vals)
9834{
9835	u32 val, base_addr, offset, mask, reset_reg;
9836	bool mac_stopped = false;
9837	u8 port = BP_PORT(bp);
9838
9839	/* reset addresses as they also mark which values were changed */
9840	vals->bmac_addr = 0;
9841	vals->umac_addr = 0;
9842	vals->xmac_addr = 0;
9843	vals->emac_addr = 0;
9844
9845	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9846
9847	if (!CHIP_IS_E3(bp)) {
9848		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9849		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9850		if ((mask & reset_reg) && val) {
9851			u32 wb_data[2];
9852			BNX2X_DEV_INFO("Disable bmac Rx\n");
9853			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9854						: NIG_REG_INGRESS_BMAC0_MEM;
9855			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9856						: BIGMAC_REGISTER_BMAC_CONTROL;
9857
9858			/*
9859			 * use rd/wr since we cannot use dmae. This is safe
9860			 * since MCP won't access the bus due to the request
9861			 * to unload, and no function on the path can be
9862			 * loaded at this time.
9863			 */
9864			wb_data[0] = REG_RD(bp, base_addr + offset);
9865			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9866			vals->bmac_addr = base_addr + offset;
9867			vals->bmac_val[0] = wb_data[0];
9868			vals->bmac_val[1] = wb_data[1];
9869			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9870			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9871			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9872		}
9873		BNX2X_DEV_INFO("Disable emac Rx\n");
9874		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9875		vals->emac_val = REG_RD(bp, vals->emac_addr);
9876		REG_WR(bp, vals->emac_addr, 0);
9877		mac_stopped = true;
9878	} else {
9879		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9880			BNX2X_DEV_INFO("Disable xmac Rx\n");
9881			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9882			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9883			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9884			       val & ~(1 << 1));
9885			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9886			       val | (1 << 1));
9887			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9888			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9889			REG_WR(bp, vals->xmac_addr, 0);
9890			mac_stopped = true;
9891		}
9892		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9893		if (mask & reset_reg) {
9894			BNX2X_DEV_INFO("Disable umac Rx\n");
9895			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9896			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9897			vals->umac_val = REG_RD(bp, vals->umac_addr);
9898			REG_WR(bp, vals->umac_addr, 0);
9899			mac_stopped = true;
9900		}
9901	}
9902
9903	if (mac_stopped)
9904		msleep(20);
9905}
9906
9907#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9908#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9909#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9910#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9911
9912#define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
9913#define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
9914#define BCM_5710_UNDI_FW_MF_VERS	(0x05)
9915#define BNX2X_PREV_UNDI_MF_PORT(p)	(0x1a150c + ((p) << 4))
9916#define BNX2X_PREV_UNDI_MF_FUNC(f)	(0x1a184c + ((f) << 4))
9917static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
9918{
9919	u8 major, minor, version;
9920	u32 fw;
9921
9922	/* Must check that FW is loaded */
9923	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
9924	     MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
9925		BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
9926		return false;
9927	}
9928
9929	/* Read Currently loaded FW version */
9930	fw = REG_RD(bp, XSEM_REG_PRAM);
9931	major = fw & 0xff;
9932	minor = (fw >> 0x8) & 0xff;
9933	version = (fw >> 0x10) & 0xff;
9934	BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
9935		       fw, major, minor, version);
9936
9937	if (major > BCM_5710_UNDI_FW_MF_MAJOR)
9938		return true;
9939
9940	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9941	    (minor > BCM_5710_UNDI_FW_MF_MINOR))
9942		return true;
9943
9944	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9945	    (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
9946	    (version >= BCM_5710_UNDI_FW_MF_VERS))
9947		return true;
9948
9949	return false;
9950}
9951
9952static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
9953{
9954	int i;
9955
9956	/* Due to legacy (FW) code, the first function on each engine has a
9957	 * different offset macro from the rest of the functions.
9958	 * Setting this for all 8 functions is harmless regardless of whether
9959	 * this is actually a multi-function device.
9960	 */
9961	for (i = 0; i < 2; i++)
9962		REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
9963
9964	for (i = 2; i < 8; i++)
9965		REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
9966
9967	BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
9968}
9969
9970static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9971{
9972	u16 rcq, bd;
9973	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9974
9975	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9976	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9977
9978	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9979	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9980
9981	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9982		       port, bd, rcq);
9983}
9984
9985static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9986{
9987	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9988				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9989	if (!rc) {
9990		BNX2X_ERR("MCP response failure, aborting\n");
9991		return -EBUSY;
9992	}
9993
9994	return 0;
9995}
9996
9997static struct bnx2x_prev_path_list *
9998		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9999{
10000	struct bnx2x_prev_path_list *tmp_list;
10001
10002	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10003		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10004		    bp->pdev->bus->number == tmp_list->bus &&
10005		    BP_PATH(bp) == tmp_list->path)
10006			return tmp_list;
10007
10008	return NULL;
10009}
10010
10011static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10012{
10013	struct bnx2x_prev_path_list *tmp_list;
10014	int rc;
10015
10016	rc = down_interruptible(&bnx2x_prev_sem);
10017	if (rc) {
10018		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10019		return rc;
10020	}
10021
10022	tmp_list = bnx2x_prev_path_get_entry(bp);
10023	if (tmp_list) {
10024		tmp_list->aer = 1;
10025		rc = 0;
10026	} else {
10027		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10028			  BP_PATH(bp));
10029	}
10030
10031	up(&bnx2x_prev_sem);
10032
10033	return rc;
10034}
10035
10036static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10037{
10038	struct bnx2x_prev_path_list *tmp_list;
10039	bool rc = false;
10040
10041	if (down_trylock(&bnx2x_prev_sem))
10042		return false;
10043
10044	tmp_list = bnx2x_prev_path_get_entry(bp);
10045	if (tmp_list) {
10046		if (tmp_list->aer) {
10047			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10048			   BP_PATH(bp));
10049		} else {
10050			rc = true;
10051			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10052				       BP_PATH(bp));
10053		}
10054	}
10055
10056	up(&bnx2x_prev_sem);
10057
10058	return rc;
10059}
10060
10061bool bnx2x_port_after_undi(struct bnx2x *bp)
10062{
10063	struct bnx2x_prev_path_list *entry;
10064	bool val;
10065
10066	down(&bnx2x_prev_sem);
10067
10068	entry = bnx2x_prev_path_get_entry(bp);
10069	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10070
10071	up(&bnx2x_prev_sem);
10072
10073	return val;
10074}
10075
10076static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10077{
10078	struct bnx2x_prev_path_list *tmp_list;
10079	int rc;
10080
10081	rc = down_interruptible(&bnx2x_prev_sem);
10082	if (rc) {
10083		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10084		return rc;
10085	}
10086
10087	/* Check whether the entry for this path already exists */
10088	tmp_list = bnx2x_prev_path_get_entry(bp);
10089	if (tmp_list) {
10090		if (!tmp_list->aer) {
10091			BNX2X_ERR("Re-Marking the path.\n");
10092		} else {
10093			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10094			   BP_PATH(bp));
10095			tmp_list->aer = 0;
10096		}
10097		up(&bnx2x_prev_sem);
10098		return 0;
10099	}
10100	up(&bnx2x_prev_sem);
10101
10102	/* Create an entry for this path and add it */
10103	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10104	if (!tmp_list) {
10105		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10106		return -ENOMEM;
10107	}
10108
10109	tmp_list->bus = bp->pdev->bus->number;
10110	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10111	tmp_list->path = BP_PATH(bp);
10112	tmp_list->aer = 0;
10113	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10114
10115	rc = down_interruptible(&bnx2x_prev_sem);
10116	if (rc) {
10117		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10118		kfree(tmp_list);
10119	} else {
10120		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10121		   BP_PATH(bp));
10122		list_add(&tmp_list->list, &bnx2x_prev_list);
10123		up(&bnx2x_prev_sem);
10124	}
10125
10126	return rc;
10127}
10128
10129static int bnx2x_do_flr(struct bnx2x *bp)
10130{
10131	struct pci_dev *dev = bp->pdev;
10132
10133	if (CHIP_IS_E1x(bp)) {
10134		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10135		return -EINVAL;
10136	}
10137
10138	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10139	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10140		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10141			  bp->common.bc_ver);
10142		return -EINVAL;
10143	}
10144
10145	if (!pci_wait_for_pending_transaction(dev))
10146		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10147
10148	BNX2X_DEV_INFO("Initiating FLR\n");
10149	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10150
10151	return 0;
10152}
10153
10154static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10155{
10156	int rc;
10157
10158	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10159
10160	/* Test if previous unload process was already finished for this path */
10161	if (bnx2x_prev_is_path_marked(bp))
10162		return bnx2x_prev_mcp_done(bp);
10163
10164	BNX2X_DEV_INFO("Path is unmarked\n");
10165
10166	/* If function has FLR capabilities, and existing FW version matches
10167	 * the one required, then FLR will be sufficient to clean any residue
10168	 * left by previous driver
10169	 */
10170	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10171
10172	if (!rc) {
10173		/* fw version is good */
10174		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10175		rc = bnx2x_do_flr(bp);
10176	}
10177
10178	if (!rc) {
10179		/* FLR was performed */
10180		BNX2X_DEV_INFO("FLR successful\n");
10181		return 0;
10182	}
10183
10184	BNX2X_DEV_INFO("Could not FLR\n");
10185
10186	/* Close the MCP request, return failure*/
10187	rc = bnx2x_prev_mcp_done(bp);
10188	if (!rc)
10189		rc = BNX2X_PREV_WAIT_NEEDED;
10190
10191	return rc;
10192}
10193
10194static int bnx2x_prev_unload_common(struct bnx2x *bp)
10195{
10196	u32 reset_reg, tmp_reg = 0, rc;
10197	bool prev_undi = false;
10198	struct bnx2x_mac_vals mac_vals;
10199
10200	/* It is possible a previous function received 'common' answer,
10201	 * but hasn't loaded yet, therefore creating a scenario of
10202	 * multiple functions receiving 'common' on the same path.
10203	 */
10204	BNX2X_DEV_INFO("Common unload Flow\n");
10205
10206	memset(&mac_vals, 0, sizeof(mac_vals));
10207
10208	if (bnx2x_prev_is_path_marked(bp))
10209		return bnx2x_prev_mcp_done(bp);
10210
10211	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10212
10213	/* Reset should be performed after BRB is emptied */
10214	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10215		u32 timer_count = 1000;
10216
10217		/* Close the MAC Rx to prevent BRB from filling up */
10218		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10219
10220		/* close LLH filters towards the BRB */
10221		bnx2x_set_rx_filter(&bp->link_params, 0);
10222
10223		/* Check if the UNDI driver was previously loaded
10224		 * UNDI driver initializes CID offset for normal bell to 0x7
10225		 */
10226		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10227			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10228			if (tmp_reg == 0x7) {
10229				BNX2X_DEV_INFO("UNDI previously loaded\n");
10230				prev_undi = true;
10231				/* clear the UNDI indication */
10232				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10233				/* clear possible idle check errors */
10234				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10235			}
10236		}
10237		if (!CHIP_IS_E1x(bp))
10238			/* block FW from writing to host */
10239			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10240
10241		/* wait until BRB is empty */
10242		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10243		while (timer_count) {
10244			u32 prev_brb = tmp_reg;
10245
10246			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10247			if (!tmp_reg)
10248				break;
10249
10250			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10251
10252			/* reset timer as long as BRB actually gets emptied */
10253			if (prev_brb > tmp_reg)
10254				timer_count = 1000;
10255			else
10256				timer_count--;
10257
10258			/* New UNDI FW supports MF and contains better
10259			 * cleaning methods - might be redundant but harmless.
10260			 */
10261			if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10262				bnx2x_prev_unload_undi_mf(bp);
10263			} else if (prev_undi) {
10264				/* If UNDI resides in memory,
10265				 * manually increment it
10266				 */
10267				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10268			}
10269			udelay(10);
10270		}
10271
10272		if (!timer_count)
10273			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10274	}
10275
10276	/* No packets are in the pipeline, path is ready for reset */
10277	bnx2x_reset_common(bp);
10278
10279	if (mac_vals.xmac_addr)
10280		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10281	if (mac_vals.umac_addr)
10282		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10283	if (mac_vals.emac_addr)
10284		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10285	if (mac_vals.bmac_addr) {
10286		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10287		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10288	}
10289
10290	rc = bnx2x_prev_mark_path(bp, prev_undi);
10291	if (rc) {
10292		bnx2x_prev_mcp_done(bp);
10293		return rc;
10294	}
10295
10296	return bnx2x_prev_mcp_done(bp);
10297}
10298
10299/* previous driver DMAE transaction may have occurred when pre-boot stage ended
10300 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10301 * the addresses of the transaction, resulting in was-error bit set in the pci
10302 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10303 * to clear the interrupt which detected this from the pglueb and the was done
10304 * bit
10305 */
10306static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10307{
10308	if (!CHIP_IS_E1x(bp)) {
10309		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10310		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10311			DP(BNX2X_MSG_SP,
10312			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10313			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10314			       1 << BP_FUNC(bp));
10315		}
10316	}
10317}
10318
10319static int bnx2x_prev_unload(struct bnx2x *bp)
10320{
10321	int time_counter = 10;
10322	u32 rc, fw, hw_lock_reg, hw_lock_val;
10323	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10324
10325	/* clear hw from errors which may have resulted from an interrupted
10326	 * dmae transaction.
10327	 */
10328	bnx2x_prev_interrupted_dmae(bp);
10329
10330	/* Release previously held locks */
10331	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10332		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10333		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10334
10335	hw_lock_val = REG_RD(bp, hw_lock_reg);
10336	if (hw_lock_val) {
10337		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10338			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10339			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10340			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10341		}
10342
10343		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10344		REG_WR(bp, hw_lock_reg, 0xffffffff);
10345	} else
10346		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10347
10348	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10349		BNX2X_DEV_INFO("Release previously held alr\n");
10350		bnx2x_release_alr(bp);
10351	}
10352
10353	do {
10354		int aer = 0;
10355		/* Lock MCP using an unload request */
10356		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10357		if (!fw) {
10358			BNX2X_ERR("MCP response failure, aborting\n");
10359			rc = -EBUSY;
10360			break;
10361		}
10362
10363		rc = down_interruptible(&bnx2x_prev_sem);
10364		if (rc) {
10365			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10366				  rc);
10367		} else {
10368			/* If Path is marked by EEH, ignore unload status */
10369			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10370				 bnx2x_prev_path_get_entry(bp)->aer);
10371			up(&bnx2x_prev_sem);
10372		}
10373
10374		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10375			rc = bnx2x_prev_unload_common(bp);
10376			break;
10377		}
10378
10379		/* non-common reply from MCP might require looping */
10380		rc = bnx2x_prev_unload_uncommon(bp);
10381		if (rc != BNX2X_PREV_WAIT_NEEDED)
10382			break;
10383
10384		msleep(20);
10385	} while (--time_counter);
10386
10387	if (!time_counter || rc) {
10388		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10389		rc = -EPROBE_DEFER;
10390	}
10391
10392	/* Mark function if its port was used to boot from SAN */
10393	if (bnx2x_port_after_undi(bp))
10394		bp->link_params.feature_config_flags |=
10395			FEATURE_CONFIG_BOOT_FROM_SAN;
10396
10397	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10398
10399	return rc;
10400}
10401
10402static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10403{
10404	u32 val, val2, val3, val4, id, boot_mode;
10405	u16 pmc;
10406
10407	/* Get the chip revision id and number. */
10408	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10409	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10410	id = ((val & 0xffff) << 16);
10411	val = REG_RD(bp, MISC_REG_CHIP_REV);
10412	id |= ((val & 0xf) << 12);
10413
10414	/* Metal is read from PCI regs, but we can't access >=0x400 from
10415	 * the configuration space (so we need to reg_rd)
10416	 */
10417	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10418	id |= (((val >> 24) & 0xf) << 4);
10419	val = REG_RD(bp, MISC_REG_BOND_ID);
10420	id |= (val & 0xf);
10421	bp->common.chip_id = id;
10422
10423	/* force 57811 according to MISC register */
10424	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10425		if (CHIP_IS_57810(bp))
10426			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10427				(bp->common.chip_id & 0x0000FFFF);
10428		else if (CHIP_IS_57810_MF(bp))
10429			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10430				(bp->common.chip_id & 0x0000FFFF);
10431		bp->common.chip_id |= 0x1;
10432	}
10433
10434	/* Set doorbell size */
10435	bp->db_size = (1 << BNX2X_DB_SHIFT);
10436
10437	if (!CHIP_IS_E1x(bp)) {
10438		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10439		if ((val & 1) == 0)
10440			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10441		else
10442			val = (val >> 1) & 1;
10443		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10444						       "2_PORT_MODE");
10445		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10446						 CHIP_2_PORT_MODE;
10447
10448		if (CHIP_MODE_IS_4_PORT(bp))
10449			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10450		else
10451			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10452	} else {
10453		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10454		bp->pfid = bp->pf_num;			/* 0..7 */
10455	}
10456
10457	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10458
10459	bp->link_params.chip_id = bp->common.chip_id;
10460	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10461
10462	val = (REG_RD(bp, 0x2874) & 0x55);
10463	if ((bp->common.chip_id & 0x1) ||
10464	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10465		bp->flags |= ONE_PORT_FLAG;
10466		BNX2X_DEV_INFO("single port device\n");
10467	}
10468
10469	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10470	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10471				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10472	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10473		       bp->common.flash_size, bp->common.flash_size);
10474
10475	bnx2x_init_shmem(bp);
10476
10477	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10478					MISC_REG_GENERIC_CR_1 :
10479					MISC_REG_GENERIC_CR_0));
10480
10481	bp->link_params.shmem_base = bp->common.shmem_base;
10482	bp->link_params.shmem2_base = bp->common.shmem2_base;
10483	if (SHMEM2_RD(bp, size) >
10484	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10485		bp->link_params.lfa_base =
10486		REG_RD(bp, bp->common.shmem2_base +
10487		       (u32)offsetof(struct shmem2_region,
10488				     lfa_host_addr[BP_PORT(bp)]));
10489	else
10490		bp->link_params.lfa_base = 0;
10491	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10492		       bp->common.shmem_base, bp->common.shmem2_base);
10493
10494	if (!bp->common.shmem_base) {
10495		BNX2X_DEV_INFO("MCP not active\n");
10496		bp->flags |= NO_MCP_FLAG;
10497		return;
10498	}
10499
10500	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10501	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10502
10503	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10504					SHARED_HW_CFG_LED_MODE_MASK) >>
10505				       SHARED_HW_CFG_LED_MODE_SHIFT);
10506
10507	bp->link_params.feature_config_flags = 0;
10508	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10509	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10510		bp->link_params.feature_config_flags |=
10511				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10512	else
10513		bp->link_params.feature_config_flags &=
10514				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10515
10516	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10517	bp->common.bc_ver = val;
10518	BNX2X_DEV_INFO("bc_ver %X\n", val);
10519	if (val < BNX2X_BC_VER) {
10520		/* for now only warn
10521		 * later we might need to enforce this */
10522		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10523			  BNX2X_BC_VER, val);
10524	}
10525	bp->link_params.feature_config_flags |=
10526				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10527				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10528
10529	bp->link_params.feature_config_flags |=
10530		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10531		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10532	bp->link_params.feature_config_flags |=
10533		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10534		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10535	bp->link_params.feature_config_flags |=
10536		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10537		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10538
10539	bp->link_params.feature_config_flags |=
10540		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10541		FEATURE_CONFIG_MT_SUPPORT : 0;
10542
10543	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10544			BC_SUPPORTS_PFC_STATS : 0;
10545
10546	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10547			BC_SUPPORTS_FCOE_FEATURES : 0;
10548
10549	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10550			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10551
10552	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10553			BC_SUPPORTS_RMMOD_CMD : 0;
10554
10555	boot_mode = SHMEM_RD(bp,
10556			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10557			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10558	switch (boot_mode) {
10559	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10560		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10561		break;
10562	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10563		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10564		break;
10565	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10566		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10567		break;
10568	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10569		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10570		break;
10571	}
10572
10573	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10574	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10575
10576	BNX2X_DEV_INFO("%sWoL capable\n",
10577		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10578
10579	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10580	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10581	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10582	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10583
10584	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10585		 val, val2, val3, val4);
10586}
10587
10588#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10589#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10590
10591static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10592{
10593	int pfid = BP_FUNC(bp);
10594	int igu_sb_id;
10595	u32 val;
10596	u8 fid, igu_sb_cnt = 0;
10597
10598	bp->igu_base_sb = 0xff;
10599	if (CHIP_INT_MODE_IS_BC(bp)) {
10600		int vn = BP_VN(bp);
10601		igu_sb_cnt = bp->igu_sb_cnt;
10602		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10603			FP_SB_MAX_E1x;
10604
10605		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10606			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10607
10608		return 0;
10609	}
10610
10611	/* IGU in normal mode - read CAM */
10612	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10613	     igu_sb_id++) {
10614		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10615		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10616			continue;
10617		fid = IGU_FID(val);
10618		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10619			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10620				continue;
10621			if (IGU_VEC(val) == 0)
10622				/* default status block */
10623				bp->igu_dsb_id = igu_sb_id;
10624			else {
10625				if (bp->igu_base_sb == 0xff)
10626					bp->igu_base_sb = igu_sb_id;
10627				igu_sb_cnt++;
10628			}
10629		}
10630	}
10631
10632#ifdef CONFIG_PCI_MSI
10633	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10634	 * optional that number of CAM entries will not be equal to the value
10635	 * advertised in PCI.
10636	 * Driver should use the minimal value of both as the actual status
10637	 * block count
10638	 */
10639	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10640#endif
10641
10642	if (igu_sb_cnt == 0) {
10643		BNX2X_ERR("CAM configuration error\n");
10644		return -EINVAL;
10645	}
10646
10647	return 0;
10648}
10649
10650static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10651{
10652	int cfg_size = 0, idx, port = BP_PORT(bp);
10653
10654	/* Aggregation of supported attributes of all external phys */
10655	bp->port.supported[0] = 0;
10656	bp->port.supported[1] = 0;
10657	switch (bp->link_params.num_phys) {
10658	case 1:
10659		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10660		cfg_size = 1;
10661		break;
10662	case 2:
10663		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10664		cfg_size = 1;
10665		break;
10666	case 3:
10667		if (bp->link_params.multi_phy_config &
10668		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10669			bp->port.supported[1] =
10670				bp->link_params.phy[EXT_PHY1].supported;
10671			bp->port.supported[0] =
10672				bp->link_params.phy[EXT_PHY2].supported;
10673		} else {
10674			bp->port.supported[0] =
10675				bp->link_params.phy[EXT_PHY1].supported;
10676			bp->port.supported[1] =
10677				bp->link_params.phy[EXT_PHY2].supported;
10678		}
10679		cfg_size = 2;
10680		break;
10681	}
10682
10683	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10684		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10685			   SHMEM_RD(bp,
10686			   dev_info.port_hw_config[port].external_phy_config),
10687			   SHMEM_RD(bp,
10688			   dev_info.port_hw_config[port].external_phy_config2));
10689			return;
10690	}
10691
10692	if (CHIP_IS_E3(bp))
10693		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10694	else {
10695		switch (switch_cfg) {
10696		case SWITCH_CFG_1G:
10697			bp->port.phy_addr = REG_RD(
10698				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10699			break;
10700		case SWITCH_CFG_10G:
10701			bp->port.phy_addr = REG_RD(
10702				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10703			break;
10704		default:
10705			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10706				  bp->port.link_config[0]);
10707			return;
10708		}
10709	}
10710	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10711	/* mask what we support according to speed_cap_mask per configuration */
10712	for (idx = 0; idx < cfg_size; idx++) {
10713		if (!(bp->link_params.speed_cap_mask[idx] &
10714				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10715			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10716
10717		if (!(bp->link_params.speed_cap_mask[idx] &
10718				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10719			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10720
10721		if (!(bp->link_params.speed_cap_mask[idx] &
10722				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10723			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10724
10725		if (!(bp->link_params.speed_cap_mask[idx] &
10726				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10727			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10728
10729		if (!(bp->link_params.speed_cap_mask[idx] &
10730					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10731			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10732						     SUPPORTED_1000baseT_Full);
10733
10734		if (!(bp->link_params.speed_cap_mask[idx] &
10735					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10736			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10737
10738		if (!(bp->link_params.speed_cap_mask[idx] &
10739					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10740			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10741
10742		if (!(bp->link_params.speed_cap_mask[idx] &
10743					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10744			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10745	}
10746
10747	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10748		       bp->port.supported[1]);
10749}
10750
10751static void bnx2x_link_settings_requested(struct bnx2x *bp)
10752{
10753	u32 link_config, idx, cfg_size = 0;
10754	bp->port.advertising[0] = 0;
10755	bp->port.advertising[1] = 0;
10756	switch (bp->link_params.num_phys) {
10757	case 1:
10758	case 2:
10759		cfg_size = 1;
10760		break;
10761	case 3:
10762		cfg_size = 2;
10763		break;
10764	}
10765	for (idx = 0; idx < cfg_size; idx++) {
10766		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10767		link_config = bp->port.link_config[idx];
10768		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10769		case PORT_FEATURE_LINK_SPEED_AUTO:
10770			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10771				bp->link_params.req_line_speed[idx] =
10772					SPEED_AUTO_NEG;
10773				bp->port.advertising[idx] |=
10774					bp->port.supported[idx];
10775				if (bp->link_params.phy[EXT_PHY1].type ==
10776				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10777					bp->port.advertising[idx] |=
10778					(SUPPORTED_100baseT_Half |
10779					 SUPPORTED_100baseT_Full);
10780			} else {
10781				/* force 10G, no AN */
10782				bp->link_params.req_line_speed[idx] =
10783					SPEED_10000;
10784				bp->port.advertising[idx] |=
10785					(ADVERTISED_10000baseT_Full |
10786					 ADVERTISED_FIBRE);
10787				continue;
10788			}
10789			break;
10790
10791		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10792			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10793				bp->link_params.req_line_speed[idx] =
10794					SPEED_10;
10795				bp->port.advertising[idx] |=
10796					(ADVERTISED_10baseT_Full |
10797					 ADVERTISED_TP);
10798			} else {
10799				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10800					    link_config,
10801				    bp->link_params.speed_cap_mask[idx]);
10802				return;
10803			}
10804			break;
10805
10806		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10807			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10808				bp->link_params.req_line_speed[idx] =
10809					SPEED_10;
10810				bp->link_params.req_duplex[idx] =
10811					DUPLEX_HALF;
10812				bp->port.advertising[idx] |=
10813					(ADVERTISED_10baseT_Half |
10814					 ADVERTISED_TP);
10815			} else {
10816				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10817					    link_config,
10818					  bp->link_params.speed_cap_mask[idx]);
10819				return;
10820			}
10821			break;
10822
10823		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10824			if (bp->port.supported[idx] &
10825			    SUPPORTED_100baseT_Full) {
10826				bp->link_params.req_line_speed[idx] =
10827					SPEED_100;
10828				bp->port.advertising[idx] |=
10829					(ADVERTISED_100baseT_Full |
10830					 ADVERTISED_TP);
10831			} else {
10832				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10833					    link_config,
10834					  bp->link_params.speed_cap_mask[idx]);
10835				return;
10836			}
10837			break;
10838
10839		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10840			if (bp->port.supported[idx] &
10841			    SUPPORTED_100baseT_Half) {
10842				bp->link_params.req_line_speed[idx] =
10843								SPEED_100;
10844				bp->link_params.req_duplex[idx] =
10845								DUPLEX_HALF;
10846				bp->port.advertising[idx] |=
10847					(ADVERTISED_100baseT_Half |
10848					 ADVERTISED_TP);
10849			} else {
10850				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10851				    link_config,
10852				    bp->link_params.speed_cap_mask[idx]);
10853				return;
10854			}
10855			break;
10856
10857		case PORT_FEATURE_LINK_SPEED_1G:
10858			if (bp->port.supported[idx] &
10859			    SUPPORTED_1000baseT_Full) {
10860				bp->link_params.req_line_speed[idx] =
10861					SPEED_1000;
10862				bp->port.advertising[idx] |=
10863					(ADVERTISED_1000baseT_Full |
10864					 ADVERTISED_TP);
10865			} else {
10866				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10867				    link_config,
10868				    bp->link_params.speed_cap_mask[idx]);
10869				return;
10870			}
10871			break;
10872
10873		case PORT_FEATURE_LINK_SPEED_2_5G:
10874			if (bp->port.supported[idx] &
10875			    SUPPORTED_2500baseX_Full) {
10876				bp->link_params.req_line_speed[idx] =
10877					SPEED_2500;
10878				bp->port.advertising[idx] |=
10879					(ADVERTISED_2500baseX_Full |
10880						ADVERTISED_TP);
10881			} else {
10882				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10883				    link_config,
10884				    bp->link_params.speed_cap_mask[idx]);
10885				return;
10886			}
10887			break;
10888
10889		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10890			if (bp->port.supported[idx] &
10891			    SUPPORTED_10000baseT_Full) {
10892				bp->link_params.req_line_speed[idx] =
10893					SPEED_10000;
10894				bp->port.advertising[idx] |=
10895					(ADVERTISED_10000baseT_Full |
10896						ADVERTISED_FIBRE);
10897			} else {
10898				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10899				    link_config,
10900				    bp->link_params.speed_cap_mask[idx]);
10901				return;
10902			}
10903			break;
10904		case PORT_FEATURE_LINK_SPEED_20G:
10905			bp->link_params.req_line_speed[idx] = SPEED_20000;
10906
10907			break;
10908		default:
10909			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10910				  link_config);
10911				bp->link_params.req_line_speed[idx] =
10912							SPEED_AUTO_NEG;
10913				bp->port.advertising[idx] =
10914						bp->port.supported[idx];
10915			break;
10916		}
10917
10918		bp->link_params.req_flow_ctrl[idx] = (link_config &
10919					 PORT_FEATURE_FLOW_CONTROL_MASK);
10920		if (bp->link_params.req_flow_ctrl[idx] ==
10921		    BNX2X_FLOW_CTRL_AUTO) {
10922			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10923				bp->link_params.req_flow_ctrl[idx] =
10924							BNX2X_FLOW_CTRL_NONE;
10925			else
10926				bnx2x_set_requested_fc(bp);
10927		}
10928
10929		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10930			       bp->link_params.req_line_speed[idx],
10931			       bp->link_params.req_duplex[idx],
10932			       bp->link_params.req_flow_ctrl[idx],
10933			       bp->port.advertising[idx]);
10934	}
10935}
10936
10937static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10938{
10939	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10940	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10941	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10942	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10943}
10944
10945static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10946{
10947	int port = BP_PORT(bp);
10948	u32 config;
10949	u32 ext_phy_type, ext_phy_config, eee_mode;
10950
10951	bp->link_params.bp = bp;
10952	bp->link_params.port = port;
10953
10954	bp->link_params.lane_config =
10955		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10956
10957	bp->link_params.speed_cap_mask[0] =
10958		SHMEM_RD(bp,
10959			 dev_info.port_hw_config[port].speed_capability_mask) &
10960		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10961	bp->link_params.speed_cap_mask[1] =
10962		SHMEM_RD(bp,
10963			 dev_info.port_hw_config[port].speed_capability_mask2) &
10964		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10965	bp->port.link_config[0] =
10966		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10967
10968	bp->port.link_config[1] =
10969		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10970
10971	bp->link_params.multi_phy_config =
10972		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10973	/* If the device is capable of WoL, set the default state according
10974	 * to the HW
10975	 */
10976	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10977	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10978		   (config & PORT_FEATURE_WOL_ENABLED));
10979
10980	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10981	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10982		bp->flags |= NO_ISCSI_FLAG;
10983	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10984	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10985		bp->flags |= NO_FCOE_FLAG;
10986
10987	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10988		       bp->link_params.lane_config,
10989		       bp->link_params.speed_cap_mask[0],
10990		       bp->port.link_config[0]);
10991
10992	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10993				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10994	bnx2x_phy_probe(&bp->link_params);
10995	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10996
10997	bnx2x_link_settings_requested(bp);
10998
10999	/*
11000	 * If connected directly, work with the internal PHY, otherwise, work
11001	 * with the external PHY
11002	 */
11003	ext_phy_config =
11004		SHMEM_RD(bp,
11005			 dev_info.port_hw_config[port].external_phy_config);
11006	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11007	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11008		bp->mdio.prtad = bp->port.phy_addr;
11009
11010	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11011		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11012		bp->mdio.prtad =
11013			XGXS_EXT_PHY_ADDR(ext_phy_config);
11014
11015	/* Configure link feature according to nvram value */
11016	eee_mode = (((SHMEM_RD(bp, dev_info.
11017		      port_feature_config[port].eee_power_mode)) &
11018		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11019		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11020	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11021		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11022					   EEE_MODE_ENABLE_LPI |
11023					   EEE_MODE_OUTPUT_TIME;
11024	} else {
11025		bp->link_params.eee_mode = 0;
11026	}
11027}
11028
11029void bnx2x_get_iscsi_info(struct bnx2x *bp)
11030{
11031	u32 no_flags = NO_ISCSI_FLAG;
11032	int port = BP_PORT(bp);
11033	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11034				drv_lic_key[port].max_iscsi_conn);
11035
11036	if (!CNIC_SUPPORT(bp)) {
11037		bp->flags |= no_flags;
11038		return;
11039	}
11040
11041	/* Get the number of maximum allowed iSCSI connections */
11042	bp->cnic_eth_dev.max_iscsi_conn =
11043		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11044		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11045
11046	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11047		       bp->cnic_eth_dev.max_iscsi_conn);
11048
11049	/*
11050	 * If maximum allowed number of connections is zero -
11051	 * disable the feature.
11052	 */
11053	if (!bp->cnic_eth_dev.max_iscsi_conn)
11054		bp->flags |= no_flags;
11055}
11056
11057static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11058{
11059	/* Port info */
11060	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11061		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11062	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11063		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11064
11065	/* Node info */
11066	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11067		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11068	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11069		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11070}
11071
11072static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11073{
11074	u8 count = 0;
11075
11076	if (IS_MF(bp)) {
11077		u8 fid;
11078
11079		/* iterate over absolute function ids for this path: */
11080		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11081			if (IS_MF_SD(bp)) {
11082				u32 cfg = MF_CFG_RD(bp,
11083						    func_mf_config[fid].config);
11084
11085				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11086				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11087					    FUNC_MF_CFG_PROTOCOL_FCOE))
11088					count++;
11089			} else {
11090				u32 cfg = MF_CFG_RD(bp,
11091						    func_ext_config[fid].
11092								      func_cfg);
11093
11094				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11095				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11096					count++;
11097			}
11098		}
11099	} else { /* SF */
11100		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11101
11102		for (port = 0; port < port_cnt; port++) {
11103			u32 lic = SHMEM_RD(bp,
11104					   drv_lic_key[port].max_fcoe_conn) ^
11105				  FW_ENCODE_32BIT_PATTERN;
11106			if (lic)
11107				count++;
11108		}
11109	}
11110
11111	return count;
11112}
11113
11114static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11115{
11116	int port = BP_PORT(bp);
11117	int func = BP_ABS_FUNC(bp);
11118	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11119				drv_lic_key[port].max_fcoe_conn);
11120	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11121
11122	if (!CNIC_SUPPORT(bp)) {
11123		bp->flags |= NO_FCOE_FLAG;
11124		return;
11125	}
11126
11127	/* Get the number of maximum allowed FCoE connections */
11128	bp->cnic_eth_dev.max_fcoe_conn =
11129		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11130		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11131
11132	/* Calculate the number of maximum allowed FCoE tasks */
11133	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11134
11135	/* check if FCoE resources must be shared between different functions */
11136	if (num_fcoe_func)
11137		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11138
11139	/* Read the WWN: */
11140	if (!IS_MF(bp)) {
11141		/* Port info */
11142		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11143			SHMEM_RD(bp,
11144				 dev_info.port_hw_config[port].
11145				 fcoe_wwn_port_name_upper);
11146		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11147			SHMEM_RD(bp,
11148				 dev_info.port_hw_config[port].
11149				 fcoe_wwn_port_name_lower);
11150
11151		/* Node info */
11152		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11153			SHMEM_RD(bp,
11154				 dev_info.port_hw_config[port].
11155				 fcoe_wwn_node_name_upper);
11156		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11157			SHMEM_RD(bp,
11158				 dev_info.port_hw_config[port].
11159				 fcoe_wwn_node_name_lower);
11160	} else if (!IS_MF_SD(bp)) {
11161		/*
11162		 * Read the WWN info only if the FCoE feature is enabled for
11163		 * this function.
11164		 */
11165		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11166			bnx2x_get_ext_wwn_info(bp, func);
11167
11168	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11169		bnx2x_get_ext_wwn_info(bp, func);
11170	}
11171
11172	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11173
11174	/*
11175	 * If maximum allowed number of connections is zero -
11176	 * disable the feature.
11177	 */
11178	if (!bp->cnic_eth_dev.max_fcoe_conn)
11179		bp->flags |= NO_FCOE_FLAG;
11180}
11181
11182static void bnx2x_get_cnic_info(struct bnx2x *bp)
11183{
11184	/*
11185	 * iSCSI may be dynamically disabled but reading
11186	 * info here we will decrease memory usage by driver
11187	 * if the feature is disabled for good
11188	 */
11189	bnx2x_get_iscsi_info(bp);
11190	bnx2x_get_fcoe_info(bp);
11191}
11192
11193static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11194{
11195	u32 val, val2;
11196	int func = BP_ABS_FUNC(bp);
11197	int port = BP_PORT(bp);
11198	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11199	u8 *fip_mac = bp->fip_mac;
11200
11201	if (IS_MF(bp)) {
11202		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11203		 * FCoE MAC then the appropriate feature should be disabled.
11204		 * In non SD mode features configuration comes from struct
11205		 * func_ext_config.
11206		 */
11207		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11208			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11209			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11210				val2 = MF_CFG_RD(bp, func_ext_config[func].
11211						 iscsi_mac_addr_upper);
11212				val = MF_CFG_RD(bp, func_ext_config[func].
11213						iscsi_mac_addr_lower);
11214				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11215				BNX2X_DEV_INFO
11216					("Read iSCSI MAC: %pM\n", iscsi_mac);
11217			} else {
11218				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11219			}
11220
11221			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11222				val2 = MF_CFG_RD(bp, func_ext_config[func].
11223						 fcoe_mac_addr_upper);
11224				val = MF_CFG_RD(bp, func_ext_config[func].
11225						fcoe_mac_addr_lower);
11226				bnx2x_set_mac_buf(fip_mac, val, val2);
11227				BNX2X_DEV_INFO
11228					("Read FCoE L2 MAC: %pM\n", fip_mac);
11229			} else {
11230				bp->flags |= NO_FCOE_FLAG;
11231			}
11232
11233			bp->mf_ext_config = cfg;
11234
11235		} else { /* SD MODE */
11236			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11237				/* use primary mac as iscsi mac */
11238				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11239
11240				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11241				BNX2X_DEV_INFO
11242					("Read iSCSI MAC: %pM\n", iscsi_mac);
11243			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11244				/* use primary mac as fip mac */
11245				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11246				BNX2X_DEV_INFO("SD FCoE MODE\n");
11247				BNX2X_DEV_INFO
11248					("Read FIP MAC: %pM\n", fip_mac);
11249			}
11250		}
11251
11252		/* If this is a storage-only interface, use SAN mac as
11253		 * primary MAC. Notice that for SD this is already the case,
11254		 * as the SAN mac was copied from the primary MAC.
11255		 */
11256		if (IS_MF_FCOE_AFEX(bp))
11257			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11258	} else {
11259		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11260				iscsi_mac_upper);
11261		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11262			       iscsi_mac_lower);
11263		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11264
11265		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11266				fcoe_fip_mac_upper);
11267		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11268			       fcoe_fip_mac_lower);
11269		bnx2x_set_mac_buf(fip_mac, val, val2);
11270	}
11271
11272	/* Disable iSCSI OOO if MAC configuration is invalid. */
11273	if (!is_valid_ether_addr(iscsi_mac)) {
11274		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11275		memset(iscsi_mac, 0, ETH_ALEN);
11276	}
11277
11278	/* Disable FCoE if MAC configuration is invalid. */
11279	if (!is_valid_ether_addr(fip_mac)) {
11280		bp->flags |= NO_FCOE_FLAG;
11281		memset(bp->fip_mac, 0, ETH_ALEN);
11282	}
11283}
11284
11285static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11286{
11287	u32 val, val2;
11288	int func = BP_ABS_FUNC(bp);
11289	int port = BP_PORT(bp);
11290
11291	/* Zero primary MAC configuration */
11292	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11293
11294	if (BP_NOMCP(bp)) {
11295		BNX2X_ERROR("warning: random MAC workaround active\n");
11296		eth_hw_addr_random(bp->dev);
11297	} else if (IS_MF(bp)) {
11298		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11299		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11300		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11301		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11302			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11303
11304		if (CNIC_SUPPORT(bp))
11305			bnx2x_get_cnic_mac_hwinfo(bp);
11306	} else {
11307		/* in SF read MACs from port configuration */
11308		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11309		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11310		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11311
11312		if (CNIC_SUPPORT(bp))
11313			bnx2x_get_cnic_mac_hwinfo(bp);
11314	}
11315
11316	if (!BP_NOMCP(bp)) {
11317		/* Read physical port identifier from shmem */
11318		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11319		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11320		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11321		bp->flags |= HAS_PHYS_PORT_ID;
11322	}
11323
11324	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11325
11326	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11327		dev_err(&bp->pdev->dev,
11328			"bad Ethernet MAC address configuration: %pM\n"
11329			"change it manually before bringing up the appropriate network interface\n",
11330			bp->dev->dev_addr);
11331}
11332
11333static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11334{
11335	int tmp;
11336	u32 cfg;
11337
11338	if (IS_VF(bp))
11339		return 0;
11340
11341	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11342		/* Take function: tmp = func */
11343		tmp = BP_ABS_FUNC(bp);
11344		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11345		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11346	} else {
11347		/* Take port: tmp = port */
11348		tmp = BP_PORT(bp);
11349		cfg = SHMEM_RD(bp,
11350			       dev_info.port_hw_config[tmp].generic_features);
11351		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11352	}
11353	return cfg;
11354}
11355
11356static int bnx2x_get_hwinfo(struct bnx2x *bp)
11357{
11358	int /*abs*/func = BP_ABS_FUNC(bp);
11359	int vn;
11360	u32 val = 0;
11361	int rc = 0;
11362
11363	bnx2x_get_common_hwinfo(bp);
11364
11365	/*
11366	 * initialize IGU parameters
11367	 */
11368	if (CHIP_IS_E1x(bp)) {
11369		bp->common.int_block = INT_BLOCK_HC;
11370
11371		bp->igu_dsb_id = DEF_SB_IGU_ID;
11372		bp->igu_base_sb = 0;
11373	} else {
11374		bp->common.int_block = INT_BLOCK_IGU;
11375
11376		/* do not allow device reset during IGU info processing */
11377		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11378
11379		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11380
11381		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11382			int tout = 5000;
11383
11384			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11385
11386			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11387			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11388			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11389
11390			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11391				tout--;
11392				usleep_range(1000, 2000);
11393			}
11394
11395			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11396				dev_err(&bp->pdev->dev,
11397					"FORCING Normal Mode failed!!!\n");
11398				bnx2x_release_hw_lock(bp,
11399						      HW_LOCK_RESOURCE_RESET);
11400				return -EPERM;
11401			}
11402		}
11403
11404		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11405			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11406			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11407		} else
11408			BNX2X_DEV_INFO("IGU Normal Mode\n");
11409
11410		rc = bnx2x_get_igu_cam_info(bp);
11411		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11412		if (rc)
11413			return rc;
11414	}
11415
11416	/*
11417	 * set base FW non-default (fast path) status block id, this value is
11418	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11419	 * determine the id used by the FW.
11420	 */
11421	if (CHIP_IS_E1x(bp))
11422		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11423	else /*
11424	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11425	      * the same queue are indicated on the same IGU SB). So we prefer
11426	      * FW and IGU SBs to be the same value.
11427	      */
11428		bp->base_fw_ndsb = bp->igu_base_sb;
11429
11430	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11431		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11432		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11433
11434	/*
11435	 * Initialize MF configuration
11436	 */
11437
11438	bp->mf_ov = 0;
11439	bp->mf_mode = 0;
11440	vn = BP_VN(bp);
11441
11442	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11443		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11444			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11445			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11446
11447		if (SHMEM2_HAS(bp, mf_cfg_addr))
11448			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11449		else
11450			bp->common.mf_cfg_base = bp->common.shmem_base +
11451				offsetof(struct shmem_region, func_mb) +
11452				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11453		/*
11454		 * get mf configuration:
11455		 * 1. Existence of MF configuration
11456		 * 2. MAC address must be legal (check only upper bytes)
11457		 *    for  Switch-Independent mode;
11458		 *    OVLAN must be legal for Switch-Dependent mode
11459		 * 3. SF_MODE configures specific MF mode
11460		 */
11461		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11462			/* get mf configuration */
11463			val = SHMEM_RD(bp,
11464				       dev_info.shared_feature_config.config);
11465			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11466
11467			switch (val) {
11468			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11469				val = MF_CFG_RD(bp, func_mf_config[func].
11470						mac_upper);
11471				/* check for legal mac (upper bytes)*/
11472				if (val != 0xffff) {
11473					bp->mf_mode = MULTI_FUNCTION_SI;
11474					bp->mf_config[vn] = MF_CFG_RD(bp,
11475						   func_mf_config[func].config);
11476				} else
11477					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11478				break;
11479			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11480				if ((!CHIP_IS_E1x(bp)) &&
11481				    (MF_CFG_RD(bp, func_mf_config[func].
11482					       mac_upper) != 0xffff) &&
11483				    (SHMEM2_HAS(bp,
11484						afex_driver_support))) {
11485					bp->mf_mode = MULTI_FUNCTION_AFEX;
11486					bp->mf_config[vn] = MF_CFG_RD(bp,
11487						func_mf_config[func].config);
11488				} else {
11489					BNX2X_DEV_INFO("can not configure afex mode\n");
11490				}
11491				break;
11492			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11493				/* get OV configuration */
11494				val = MF_CFG_RD(bp,
11495					func_mf_config[FUNC_0].e1hov_tag);
11496				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11497
11498				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11499					bp->mf_mode = MULTI_FUNCTION_SD;
11500					bp->mf_config[vn] = MF_CFG_RD(bp,
11501						func_mf_config[func].config);
11502				} else
11503					BNX2X_DEV_INFO("illegal OV for SD\n");
11504				break;
11505			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11506				bp->mf_config[vn] = 0;
11507				break;
11508			default:
11509				/* Unknown configuration: reset mf_config */
11510				bp->mf_config[vn] = 0;
11511				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11512			}
11513		}
11514
11515		BNX2X_DEV_INFO("%s function mode\n",
11516			       IS_MF(bp) ? "multi" : "single");
11517
11518		switch (bp->mf_mode) {
11519		case MULTI_FUNCTION_SD:
11520			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11521			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11522			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11523				bp->mf_ov = val;
11524				bp->path_has_ovlan = true;
11525
11526				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11527					       func, bp->mf_ov, bp->mf_ov);
11528			} else {
11529				dev_err(&bp->pdev->dev,
11530					"No valid MF OV for func %d, aborting\n",
11531					func);
11532				return -EPERM;
11533			}
11534			break;
11535		case MULTI_FUNCTION_AFEX:
11536			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11537			break;
11538		case MULTI_FUNCTION_SI:
11539			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11540				       func);
11541			break;
11542		default:
11543			if (vn) {
11544				dev_err(&bp->pdev->dev,
11545					"VN %d is in a single function mode, aborting\n",
11546					vn);
11547				return -EPERM;
11548			}
11549			break;
11550		}
11551
11552		/* check if other port on the path needs ovlan:
11553		 * Since MF configuration is shared between ports
11554		 * Possible mixed modes are only
11555		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11556		 */
11557		if (CHIP_MODE_IS_4_PORT(bp) &&
11558		    !bp->path_has_ovlan &&
11559		    !IS_MF(bp) &&
11560		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11561			u8 other_port = !BP_PORT(bp);
11562			u8 other_func = BP_PATH(bp) + 2*other_port;
11563			val = MF_CFG_RD(bp,
11564					func_mf_config[other_func].e1hov_tag);
11565			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11566				bp->path_has_ovlan = true;
11567		}
11568	}
11569
11570	/* adjust igu_sb_cnt to MF for E1H */
11571	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11572		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11573
11574	/* port info */
11575	bnx2x_get_port_hwinfo(bp);
11576
11577	/* Get MAC addresses */
11578	bnx2x_get_mac_hwinfo(bp);
11579
11580	bnx2x_get_cnic_info(bp);
11581
11582	return rc;
11583}
11584
11585static void bnx2x_read_fwinfo(struct bnx2x *bp)
11586{
11587	int cnt, i, block_end, rodi;
11588	char vpd_start[BNX2X_VPD_LEN+1];
11589	char str_id_reg[VENDOR_ID_LEN+1];
11590	char str_id_cap[VENDOR_ID_LEN+1];
11591	char *vpd_data;
11592	char *vpd_extended_data = NULL;
11593	u8 len;
11594
11595	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11596	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11597
11598	if (cnt < BNX2X_VPD_LEN)
11599		goto out_not_found;
11600
11601	/* VPD RO tag should be first tag after identifier string, hence
11602	 * we should be able to find it in first BNX2X_VPD_LEN chars
11603	 */
11604	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11605			     PCI_VPD_LRDT_RO_DATA);
11606	if (i < 0)
11607		goto out_not_found;
11608
11609	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11610		    pci_vpd_lrdt_size(&vpd_start[i]);
11611
11612	i += PCI_VPD_LRDT_TAG_SIZE;
11613
11614	if (block_end > BNX2X_VPD_LEN) {
11615		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11616		if (vpd_extended_data  == NULL)
11617			goto out_not_found;
11618
11619		/* read rest of vpd image into vpd_extended_data */
11620		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11621		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11622				   block_end - BNX2X_VPD_LEN,
11623				   vpd_extended_data + BNX2X_VPD_LEN);
11624		if (cnt < (block_end - BNX2X_VPD_LEN))
11625			goto out_not_found;
11626		vpd_data = vpd_extended_data;
11627	} else
11628		vpd_data = vpd_start;
11629
11630	/* now vpd_data holds full vpd content in both cases */
11631
11632	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11633				   PCI_VPD_RO_KEYWORD_MFR_ID);
11634	if (rodi < 0)
11635		goto out_not_found;
11636
11637	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11638
11639	if (len != VENDOR_ID_LEN)
11640		goto out_not_found;
11641
11642	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11643
11644	/* vendor specific info */
11645	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11646	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11647	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11648	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11649
11650		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11651						PCI_VPD_RO_KEYWORD_VENDOR0);
11652		if (rodi >= 0) {
11653			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11654
11655			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11656
11657			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11658				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11659				bp->fw_ver[len] = ' ';
11660			}
11661		}
11662		kfree(vpd_extended_data);
11663		return;
11664	}
11665out_not_found:
11666	kfree(vpd_extended_data);
11667	return;
11668}
11669
11670static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11671{
11672	u32 flags = 0;
11673
11674	if (CHIP_REV_IS_FPGA(bp))
11675		SET_FLAGS(flags, MODE_FPGA);
11676	else if (CHIP_REV_IS_EMUL(bp))
11677		SET_FLAGS(flags, MODE_EMUL);
11678	else
11679		SET_FLAGS(flags, MODE_ASIC);
11680
11681	if (CHIP_MODE_IS_4_PORT(bp))
11682		SET_FLAGS(flags, MODE_PORT4);
11683	else
11684		SET_FLAGS(flags, MODE_PORT2);
11685
11686	if (CHIP_IS_E2(bp))
11687		SET_FLAGS(flags, MODE_E2);
11688	else if (CHIP_IS_E3(bp)) {
11689		SET_FLAGS(flags, MODE_E3);
11690		if (CHIP_REV(bp) == CHIP_REV_Ax)
11691			SET_FLAGS(flags, MODE_E3_A0);
11692		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11693			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11694	}
11695
11696	if (IS_MF(bp)) {
11697		SET_FLAGS(flags, MODE_MF);
11698		switch (bp->mf_mode) {
11699		case MULTI_FUNCTION_SD:
11700			SET_FLAGS(flags, MODE_MF_SD);
11701			break;
11702		case MULTI_FUNCTION_SI:
11703			SET_FLAGS(flags, MODE_MF_SI);
11704			break;
11705		case MULTI_FUNCTION_AFEX:
11706			SET_FLAGS(flags, MODE_MF_AFEX);
11707			break;
11708		}
11709	} else
11710		SET_FLAGS(flags, MODE_SF);
11711
11712#if defined(__LITTLE_ENDIAN)
11713	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11714#else /*(__BIG_ENDIAN)*/
11715	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11716#endif
11717	INIT_MODE_FLAGS(bp) = flags;
11718}
11719
11720static int bnx2x_init_bp(struct bnx2x *bp)
11721{
11722	int func;
11723	int rc;
11724
11725	mutex_init(&bp->port.phy_mutex);
11726	mutex_init(&bp->fw_mb_mutex);
11727	spin_lock_init(&bp->stats_lock);
11728	sema_init(&bp->stats_sema, 1);
11729
11730	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11731	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11732	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11733	if (IS_PF(bp)) {
11734		rc = bnx2x_get_hwinfo(bp);
11735		if (rc)
11736			return rc;
11737	} else {
11738		eth_zero_addr(bp->dev->dev_addr);
11739	}
11740
11741	bnx2x_set_modes_bitmap(bp);
11742
11743	rc = bnx2x_alloc_mem_bp(bp);
11744	if (rc)
11745		return rc;
11746
11747	bnx2x_read_fwinfo(bp);
11748
11749	func = BP_FUNC(bp);
11750
11751	/* need to reset chip if undi was active */
11752	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11753		/* init fw_seq */
11754		bp->fw_seq =
11755			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11756							DRV_MSG_SEQ_NUMBER_MASK;
11757		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11758
11759		rc = bnx2x_prev_unload(bp);
11760		if (rc) {
11761			bnx2x_free_mem_bp(bp);
11762			return rc;
11763		}
11764	}
11765
11766	if (CHIP_REV_IS_FPGA(bp))
11767		dev_err(&bp->pdev->dev, "FPGA detected\n");
11768
11769	if (BP_NOMCP(bp) && (func == 0))
11770		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11771
11772	bp->disable_tpa = disable_tpa;
11773	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11774
11775	/* Set TPA flags */
11776	if (bp->disable_tpa) {
11777		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11778		bp->dev->features &= ~NETIF_F_LRO;
11779	} else {
11780		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11781		bp->dev->features |= NETIF_F_LRO;
11782	}
11783
11784	if (CHIP_IS_E1(bp))
11785		bp->dropless_fc = 0;
11786	else
11787		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11788
11789	bp->mrrs = mrrs;
11790
11791	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11792	if (IS_VF(bp))
11793		bp->rx_ring_size = MAX_RX_AVAIL;
11794
11795	/* make sure that the numbers are in the right granularity */
11796	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11797	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11798
11799	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11800
11801	init_timer(&bp->timer);
11802	bp->timer.expires = jiffies + bp->current_interval;
11803	bp->timer.data = (unsigned long) bp;
11804	bp->timer.function = bnx2x_timer;
11805
11806	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11807	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11808	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11809	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11810		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11811		bnx2x_dcbx_init_params(bp);
11812	} else {
11813		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11814	}
11815
11816	if (CHIP_IS_E1x(bp))
11817		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11818	else
11819		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11820
11821	/* multiple tx priority */
11822	if (IS_VF(bp))
11823		bp->max_cos = 1;
11824	else if (CHIP_IS_E1x(bp))
11825		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11826	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11827		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11828	else if (CHIP_IS_E3B0(bp))
11829		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11830	else
11831		BNX2X_ERR("unknown chip %x revision %x\n",
11832			  CHIP_NUM(bp), CHIP_REV(bp));
11833	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11834
11835	/* We need at least one default status block for slow-path events,
11836	 * second status block for the L2 queue, and a third status block for
11837	 * CNIC if supported.
11838	 */
11839	if (IS_VF(bp))
11840		bp->min_msix_vec_cnt = 1;
11841	else if (CNIC_SUPPORT(bp))
11842		bp->min_msix_vec_cnt = 3;
11843	else /* PF w/o cnic */
11844		bp->min_msix_vec_cnt = 2;
11845	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11846
11847	bp->dump_preset_idx = 1;
11848
11849	return rc;
11850}
11851
11852/****************************************************************************
11853* General service functions
11854****************************************************************************/
11855
11856/*
11857 * net_device service functions
11858 */
11859
11860/* called with rtnl_lock */
11861static int bnx2x_open(struct net_device *dev)
11862{
11863	struct bnx2x *bp = netdev_priv(dev);
11864	int rc;
11865
11866	bp->stats_init = true;
11867
11868	netif_carrier_off(dev);
11869
11870	bnx2x_set_power_state(bp, PCI_D0);
11871
11872	/* If parity had happen during the unload, then attentions
11873	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11874	 * want the first function loaded on the current engine to
11875	 * complete the recovery.
11876	 * Parity recovery is only relevant for PF driver.
11877	 */
11878	if (IS_PF(bp)) {
11879		int other_engine = BP_PATH(bp) ? 0 : 1;
11880		bool other_load_status, load_status;
11881		bool global = false;
11882
11883		other_load_status = bnx2x_get_load_status(bp, other_engine);
11884		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11885		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11886		    bnx2x_chk_parity_attn(bp, &global, true)) {
11887			do {
11888				/* If there are attentions and they are in a
11889				 * global blocks, set the GLOBAL_RESET bit
11890				 * regardless whether it will be this function
11891				 * that will complete the recovery or not.
11892				 */
11893				if (global)
11894					bnx2x_set_reset_global(bp);
11895
11896				/* Only the first function on the current
11897				 * engine should try to recover in open. In case
11898				 * of attentions in global blocks only the first
11899				 * in the chip should try to recover.
11900				 */
11901				if ((!load_status &&
11902				     (!global || !other_load_status)) &&
11903				      bnx2x_trylock_leader_lock(bp) &&
11904				      !bnx2x_leader_reset(bp)) {
11905					netdev_info(bp->dev,
11906						    "Recovered in open\n");
11907					break;
11908				}
11909
11910				/* recovery has failed... */
11911				bnx2x_set_power_state(bp, PCI_D3hot);
11912				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11913
11914				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11915					  "If you still see this message after a few retries then power cycle is required.\n");
11916
11917				return -EAGAIN;
11918			} while (0);
11919		}
11920	}
11921
11922	bp->recovery_state = BNX2X_RECOVERY_DONE;
11923	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11924	if (rc)
11925		return rc;
11926	return 0;
11927}
11928
11929/* called with rtnl_lock */
11930static int bnx2x_close(struct net_device *dev)
11931{
11932	struct bnx2x *bp = netdev_priv(dev);
11933
11934	/* Unload the driver, release IRQs */
11935	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11936
11937	return 0;
11938}
11939
11940static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11941				      struct bnx2x_mcast_ramrod_params *p)
11942{
11943	int mc_count = netdev_mc_count(bp->dev);
11944	struct bnx2x_mcast_list_elem *mc_mac =
11945		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11946	struct netdev_hw_addr *ha;
11947
11948	if (!mc_mac)
11949		return -ENOMEM;
11950
11951	INIT_LIST_HEAD(&p->mcast_list);
11952
11953	netdev_for_each_mc_addr(ha, bp->dev) {
11954		mc_mac->mac = bnx2x_mc_addr(ha);
11955		list_add_tail(&mc_mac->link, &p->mcast_list);
11956		mc_mac++;
11957	}
11958
11959	p->mcast_list_len = mc_count;
11960
11961	return 0;
11962}
11963
11964static void bnx2x_free_mcast_macs_list(
11965	struct bnx2x_mcast_ramrod_params *p)
11966{
11967	struct bnx2x_mcast_list_elem *mc_mac =
11968		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11969				 link);
11970
11971	WARN_ON(!mc_mac);
11972	kfree(mc_mac);
11973}
11974
11975/**
11976 * bnx2x_set_uc_list - configure a new unicast MACs list.
11977 *
11978 * @bp: driver handle
11979 *
11980 * We will use zero (0) as a MAC type for these MACs.
11981 */
11982static int bnx2x_set_uc_list(struct bnx2x *bp)
11983{
11984	int rc;
11985	struct net_device *dev = bp->dev;
11986	struct netdev_hw_addr *ha;
11987	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11988	unsigned long ramrod_flags = 0;
11989
11990	/* First schedule a cleanup up of old configuration */
11991	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11992	if (rc < 0) {
11993		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11994		return rc;
11995	}
11996
11997	netdev_for_each_uc_addr(ha, dev) {
11998		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11999				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12000		if (rc == -EEXIST) {
12001			DP(BNX2X_MSG_SP,
12002			   "Failed to schedule ADD operations: %d\n", rc);
12003			/* do not treat adding same MAC as error */
12004			rc = 0;
12005
12006		} else if (rc < 0) {
12007
12008			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12009				  rc);
12010			return rc;
12011		}
12012	}
12013
12014	/* Execute the pending commands */
12015	__set_bit(RAMROD_CONT, &ramrod_flags);
12016	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12017				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12018}
12019
12020static int bnx2x_set_mc_list(struct bnx2x *bp)
12021{
12022	struct net_device *dev = bp->dev;
12023	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12024	int rc = 0;
12025
12026	rparam.mcast_obj = &bp->mcast_obj;
12027
12028	/* first, clear all configured multicast MACs */
12029	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12030	if (rc < 0) {
12031		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12032		return rc;
12033	}
12034
12035	/* then, configure a new MACs list */
12036	if (netdev_mc_count(dev)) {
12037		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12038		if (rc) {
12039			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12040				  rc);
12041			return rc;
12042		}
12043
12044		/* Now add the new MACs */
12045		rc = bnx2x_config_mcast(bp, &rparam,
12046					BNX2X_MCAST_CMD_ADD);
12047		if (rc < 0)
12048			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12049				  rc);
12050
12051		bnx2x_free_mcast_macs_list(&rparam);
12052	}
12053
12054	return rc;
12055}
12056
12057/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12058static void bnx2x_set_rx_mode(struct net_device *dev)
12059{
12060	struct bnx2x *bp = netdev_priv(dev);
12061
12062	if (bp->state != BNX2X_STATE_OPEN) {
12063		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12064		return;
12065	} else {
12066		/* Schedule an SP task to handle rest of change */
12067		DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
12068		smp_mb__before_clear_bit();
12069		set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
12070		smp_mb__after_clear_bit();
12071		schedule_delayed_work(&bp->sp_rtnl_task, 0);
12072	}
12073}
12074
12075void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12076{
12077	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12078
12079	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12080
12081	netif_addr_lock_bh(bp->dev);
12082
12083	if (bp->dev->flags & IFF_PROMISC) {
12084		rx_mode = BNX2X_RX_MODE_PROMISC;
12085	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12086		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12087		    CHIP_IS_E1(bp))) {
12088		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12089	} else {
12090		if (IS_PF(bp)) {
12091			/* some multicasts */
12092			if (bnx2x_set_mc_list(bp) < 0)
12093				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12094
12095			/* release bh lock, as bnx2x_set_uc_list might sleep */
12096			netif_addr_unlock_bh(bp->dev);
12097			if (bnx2x_set_uc_list(bp) < 0)
12098				rx_mode = BNX2X_RX_MODE_PROMISC;
12099			netif_addr_lock_bh(bp->dev);
12100		} else {
12101			/* configuring mcast to a vf involves sleeping (when we
12102			 * wait for the pf's response).
12103			 */
12104			smp_mb__before_clear_bit();
12105			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
12106				&bp->sp_rtnl_state);
12107			smp_mb__after_clear_bit();
12108			schedule_delayed_work(&bp->sp_rtnl_task, 0);
12109		}
12110	}
12111
12112	bp->rx_mode = rx_mode;
12113	/* handle ISCSI SD mode */
12114	if (IS_MF_ISCSI_SD(bp))
12115		bp->rx_mode = BNX2X_RX_MODE_NONE;
12116
12117	/* Schedule the rx_mode command */
12118	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12119		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12120		netif_addr_unlock_bh(bp->dev);
12121		return;
12122	}
12123
12124	if (IS_PF(bp)) {
12125		bnx2x_set_storm_rx_mode(bp);
12126		netif_addr_unlock_bh(bp->dev);
12127	} else {
12128		/* VF will need to request the PF to make this change, and so
12129		 * the VF needs to release the bottom-half lock prior to the
12130		 * request (as it will likely require sleep on the VF side)
12131		 */
12132		netif_addr_unlock_bh(bp->dev);
12133		bnx2x_vfpf_storm_rx_mode(bp);
12134	}
12135}
12136
12137/* called with rtnl_lock */
12138static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12139			   int devad, u16 addr)
12140{
12141	struct bnx2x *bp = netdev_priv(netdev);
12142	u16 value;
12143	int rc;
12144
12145	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12146	   prtad, devad, addr);
12147
12148	/* The HW expects different devad if CL22 is used */
12149	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12150
12151	bnx2x_acquire_phy_lock(bp);
12152	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12153	bnx2x_release_phy_lock(bp);
12154	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12155
12156	if (!rc)
12157		rc = value;
12158	return rc;
12159}
12160
12161/* called with rtnl_lock */
12162static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12163			    u16 addr, u16 value)
12164{
12165	struct bnx2x *bp = netdev_priv(netdev);
12166	int rc;
12167
12168	DP(NETIF_MSG_LINK,
12169	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12170	   prtad, devad, addr, value);
12171
12172	/* The HW expects different devad if CL22 is used */
12173	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12174
12175	bnx2x_acquire_phy_lock(bp);
12176	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12177	bnx2x_release_phy_lock(bp);
12178	return rc;
12179}
12180
12181/* called with rtnl_lock */
12182static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12183{
12184	struct bnx2x *bp = netdev_priv(dev);
12185	struct mii_ioctl_data *mdio = if_mii(ifr);
12186
12187	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12188	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12189
12190	if (!netif_running(dev))
12191		return -EAGAIN;
12192
12193	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12194}
12195
12196#ifdef CONFIG_NET_POLL_CONTROLLER
12197static void poll_bnx2x(struct net_device *dev)
12198{
12199	struct bnx2x *bp = netdev_priv(dev);
12200	int i;
12201
12202	for_each_eth_queue(bp, i) {
12203		struct bnx2x_fastpath *fp = &bp->fp[i];
12204		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12205	}
12206}
12207#endif
12208
12209static int bnx2x_validate_addr(struct net_device *dev)
12210{
12211	struct bnx2x *bp = netdev_priv(dev);
12212
12213	/* query the bulletin board for mac address configured by the PF */
12214	if (IS_VF(bp))
12215		bnx2x_sample_bulletin(bp);
12216
12217	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12218		BNX2X_ERR("Non-valid Ethernet address\n");
12219		return -EADDRNOTAVAIL;
12220	}
12221	return 0;
12222}
12223
12224static int bnx2x_get_phys_port_id(struct net_device *netdev,
12225				  struct netdev_phys_port_id *ppid)
12226{
12227	struct bnx2x *bp = netdev_priv(netdev);
12228
12229	if (!(bp->flags & HAS_PHYS_PORT_ID))
12230		return -EOPNOTSUPP;
12231
12232	ppid->id_len = sizeof(bp->phys_port_id);
12233	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12234
12235	return 0;
12236}
12237
12238static const struct net_device_ops bnx2x_netdev_ops = {
12239	.ndo_open		= bnx2x_open,
12240	.ndo_stop		= bnx2x_close,
12241	.ndo_start_xmit		= bnx2x_start_xmit,
12242	.ndo_select_queue	= bnx2x_select_queue,
12243	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12244	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12245	.ndo_validate_addr	= bnx2x_validate_addr,
12246	.ndo_do_ioctl		= bnx2x_ioctl,
12247	.ndo_change_mtu		= bnx2x_change_mtu,
12248	.ndo_fix_features	= bnx2x_fix_features,
12249	.ndo_set_features	= bnx2x_set_features,
12250	.ndo_tx_timeout		= bnx2x_tx_timeout,
12251#ifdef CONFIG_NET_POLL_CONTROLLER
12252	.ndo_poll_controller	= poll_bnx2x,
12253#endif
12254	.ndo_setup_tc		= bnx2x_setup_tc,
12255#ifdef CONFIG_BNX2X_SRIOV
12256	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12257	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12258	.ndo_get_vf_config	= bnx2x_get_vf_config,
12259#endif
12260#ifdef NETDEV_FCOE_WWNN
12261	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12262#endif
12263
12264#ifdef CONFIG_NET_RX_BUSY_POLL
12265	.ndo_busy_poll		= bnx2x_low_latency_recv,
12266#endif
12267	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12268};
12269
12270static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12271{
12272	struct device *dev = &bp->pdev->dev;
12273
12274	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12275	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12276		dev_err(dev, "System does not support DMA, aborting\n");
12277		return -EIO;
12278	}
12279
12280	return 0;
12281}
12282
12283static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12284{
12285	if (bp->flags & AER_ENABLED) {
12286		pci_disable_pcie_error_reporting(bp->pdev);
12287		bp->flags &= ~AER_ENABLED;
12288	}
12289}
12290
12291static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12292			  struct net_device *dev, unsigned long board_type)
12293{
12294	int rc;
12295	u32 pci_cfg_dword;
12296	bool chip_is_e1x = (board_type == BCM57710 ||
12297			    board_type == BCM57711 ||
12298			    board_type == BCM57711E);
12299
12300	SET_NETDEV_DEV(dev, &pdev->dev);
12301
12302	bp->dev = dev;
12303	bp->pdev = pdev;
12304
12305	rc = pci_enable_device(pdev);
12306	if (rc) {
12307		dev_err(&bp->pdev->dev,
12308			"Cannot enable PCI device, aborting\n");
12309		goto err_out;
12310	}
12311
12312	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12313		dev_err(&bp->pdev->dev,
12314			"Cannot find PCI device base address, aborting\n");
12315		rc = -ENODEV;
12316		goto err_out_disable;
12317	}
12318
12319	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12320		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12321		rc = -ENODEV;
12322		goto err_out_disable;
12323	}
12324
12325	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12326	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12327	    PCICFG_REVESION_ID_ERROR_VAL) {
12328		pr_err("PCI device error, probably due to fan failure, aborting\n");
12329		rc = -ENODEV;
12330		goto err_out_disable;
12331	}
12332
12333	if (atomic_read(&pdev->enable_cnt) == 1) {
12334		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12335		if (rc) {
12336			dev_err(&bp->pdev->dev,
12337				"Cannot obtain PCI resources, aborting\n");
12338			goto err_out_disable;
12339		}
12340
12341		pci_set_master(pdev);
12342		pci_save_state(pdev);
12343	}
12344
12345	if (IS_PF(bp)) {
12346		if (!pdev->pm_cap) {
12347			dev_err(&bp->pdev->dev,
12348				"Cannot find power management capability, aborting\n");
12349			rc = -EIO;
12350			goto err_out_release;
12351		}
12352	}
12353
12354	if (!pci_is_pcie(pdev)) {
12355		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12356		rc = -EIO;
12357		goto err_out_release;
12358	}
12359
12360	rc = bnx2x_set_coherency_mask(bp);
12361	if (rc)
12362		goto err_out_release;
12363
12364	dev->mem_start = pci_resource_start(pdev, 0);
12365	dev->base_addr = dev->mem_start;
12366	dev->mem_end = pci_resource_end(pdev, 0);
12367
12368	dev->irq = pdev->irq;
12369
12370	bp->regview = pci_ioremap_bar(pdev, 0);
12371	if (!bp->regview) {
12372		dev_err(&bp->pdev->dev,
12373			"Cannot map register space, aborting\n");
12374		rc = -ENOMEM;
12375		goto err_out_release;
12376	}
12377
12378	/* In E1/E1H use pci device function given by kernel.
12379	 * In E2/E3 read physical function from ME register since these chips
12380	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12381	 * (depending on hypervisor).
12382	 */
12383	if (chip_is_e1x) {
12384		bp->pf_num = PCI_FUNC(pdev->devfn);
12385	} else {
12386		/* chip is E2/3*/
12387		pci_read_config_dword(bp->pdev,
12388				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12389		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12390				  ME_REG_ABS_PF_NUM_SHIFT);
12391	}
12392	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12393
12394	/* clean indirect addresses */
12395	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12396			       PCICFG_VENDOR_ID_OFFSET);
12397
12398	/* AER (Advanced Error reporting) configuration */
12399	rc = pci_enable_pcie_error_reporting(pdev);
12400	if (!rc)
12401		bp->flags |= AER_ENABLED;
12402	else
12403		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12404
12405	/*
12406	 * Clean the following indirect addresses for all functions since it
12407	 * is not used by the driver.
12408	 */
12409	if (IS_PF(bp)) {
12410		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12411		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12412		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12413		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12414
12415		if (chip_is_e1x) {
12416			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12417			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12418			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12419			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12420		}
12421
12422		/* Enable internal target-read (in case we are probed after PF
12423		 * FLR). Must be done prior to any BAR read access. Only for
12424		 * 57712 and up
12425		 */
12426		if (!chip_is_e1x)
12427			REG_WR(bp,
12428			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12429	}
12430
12431	dev->watchdog_timeo = TX_TIMEOUT;
12432
12433	dev->netdev_ops = &bnx2x_netdev_ops;
12434	bnx2x_set_ethtool_ops(bp, dev);
12435
12436	dev->priv_flags |= IFF_UNICAST_FLT;
12437
12438	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12439		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12440		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12441		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12442	if (!CHIP_IS_E1x(bp)) {
12443		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12444				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12445		dev->hw_enc_features =
12446			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12447			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12448			NETIF_F_GSO_IPIP |
12449			NETIF_F_GSO_SIT |
12450			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12451	}
12452
12453	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12454		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12455
12456	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12457	dev->features |= NETIF_F_HIGHDMA;
12458
12459	/* Add Loopback capability to the device */
12460	dev->hw_features |= NETIF_F_LOOPBACK;
12461
12462#ifdef BCM_DCBNL
12463	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12464#endif
12465
12466	/* get_port_hwinfo() will set prtad and mmds properly */
12467	bp->mdio.prtad = MDIO_PRTAD_NONE;
12468	bp->mdio.mmds = 0;
12469	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12470	bp->mdio.dev = dev;
12471	bp->mdio.mdio_read = bnx2x_mdio_read;
12472	bp->mdio.mdio_write = bnx2x_mdio_write;
12473
12474	return 0;
12475
12476err_out_release:
12477	if (atomic_read(&pdev->enable_cnt) == 1)
12478		pci_release_regions(pdev);
12479
12480err_out_disable:
12481	pci_disable_device(pdev);
12482
12483err_out:
12484	return rc;
12485}
12486
12487static int bnx2x_check_firmware(struct bnx2x *bp)
12488{
12489	const struct firmware *firmware = bp->firmware;
12490	struct bnx2x_fw_file_hdr *fw_hdr;
12491	struct bnx2x_fw_file_section *sections;
12492	u32 offset, len, num_ops;
12493	__be16 *ops_offsets;
12494	int i;
12495	const u8 *fw_ver;
12496
12497	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12498		BNX2X_ERR("Wrong FW size\n");
12499		return -EINVAL;
12500	}
12501
12502	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12503	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12504
12505	/* Make sure none of the offsets and sizes make us read beyond
12506	 * the end of the firmware data */
12507	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12508		offset = be32_to_cpu(sections[i].offset);
12509		len = be32_to_cpu(sections[i].len);
12510		if (offset + len > firmware->size) {
12511			BNX2X_ERR("Section %d length is out of bounds\n", i);
12512			return -EINVAL;
12513		}
12514	}
12515
12516	/* Likewise for the init_ops offsets */
12517	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12518	ops_offsets = (__force __be16 *)(firmware->data + offset);
12519	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12520
12521	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12522		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12523			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12524			return -EINVAL;
12525		}
12526	}
12527
12528	/* Check FW version */
12529	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12530	fw_ver = firmware->data + offset;
12531	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12532	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12533	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12534	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12535		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12536		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12537		       BCM_5710_FW_MAJOR_VERSION,
12538		       BCM_5710_FW_MINOR_VERSION,
12539		       BCM_5710_FW_REVISION_VERSION,
12540		       BCM_5710_FW_ENGINEERING_VERSION);
12541		return -EINVAL;
12542	}
12543
12544	return 0;
12545}
12546
12547static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12548{
12549	const __be32 *source = (const __be32 *)_source;
12550	u32 *target = (u32 *)_target;
12551	u32 i;
12552
12553	for (i = 0; i < n/4; i++)
12554		target[i] = be32_to_cpu(source[i]);
12555}
12556
12557/*
12558   Ops array is stored in the following format:
12559   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12560 */
12561static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12562{
12563	const __be32 *source = (const __be32 *)_source;
12564	struct raw_op *target = (struct raw_op *)_target;
12565	u32 i, j, tmp;
12566
12567	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12568		tmp = be32_to_cpu(source[j]);
12569		target[i].op = (tmp >> 24) & 0xff;
12570		target[i].offset = tmp & 0xffffff;
12571		target[i].raw_data = be32_to_cpu(source[j + 1]);
12572	}
12573}
12574
12575/* IRO array is stored in the following format:
12576 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12577 */
12578static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12579{
12580	const __be32 *source = (const __be32 *)_source;
12581	struct iro *target = (struct iro *)_target;
12582	u32 i, j, tmp;
12583
12584	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12585		target[i].base = be32_to_cpu(source[j]);
12586		j++;
12587		tmp = be32_to_cpu(source[j]);
12588		target[i].m1 = (tmp >> 16) & 0xffff;
12589		target[i].m2 = tmp & 0xffff;
12590		j++;
12591		tmp = be32_to_cpu(source[j]);
12592		target[i].m3 = (tmp >> 16) & 0xffff;
12593		target[i].size = tmp & 0xffff;
12594		j++;
12595	}
12596}
12597
12598static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12599{
12600	const __be16 *source = (const __be16 *)_source;
12601	u16 *target = (u16 *)_target;
12602	u32 i;
12603
12604	for (i = 0; i < n/2; i++)
12605		target[i] = be16_to_cpu(source[i]);
12606}
12607
12608#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12609do {									\
12610	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12611	bp->arr = kmalloc(len, GFP_KERNEL);				\
12612	if (!bp->arr)							\
12613		goto lbl;						\
12614	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12615	     (u8 *)bp->arr, len);					\
12616} while (0)
12617
12618static int bnx2x_init_firmware(struct bnx2x *bp)
12619{
12620	const char *fw_file_name;
12621	struct bnx2x_fw_file_hdr *fw_hdr;
12622	int rc;
12623
12624	if (bp->firmware)
12625		return 0;
12626
12627	if (CHIP_IS_E1(bp))
12628		fw_file_name = FW_FILE_NAME_E1;
12629	else if (CHIP_IS_E1H(bp))
12630		fw_file_name = FW_FILE_NAME_E1H;
12631	else if (!CHIP_IS_E1x(bp))
12632		fw_file_name = FW_FILE_NAME_E2;
12633	else {
12634		BNX2X_ERR("Unsupported chip revision\n");
12635		return -EINVAL;
12636	}
12637	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12638
12639	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12640	if (rc) {
12641		BNX2X_ERR("Can't load firmware file %s\n",
12642			  fw_file_name);
12643		goto request_firmware_exit;
12644	}
12645
12646	rc = bnx2x_check_firmware(bp);
12647	if (rc) {
12648		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12649		goto request_firmware_exit;
12650	}
12651
12652	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12653
12654	/* Initialize the pointers to the init arrays */
12655	/* Blob */
12656	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12657
12658	/* Opcodes */
12659	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12660
12661	/* Offsets */
12662	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12663			    be16_to_cpu_n);
12664
12665	/* STORMs firmware */
12666	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12667			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12668	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12669			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12670	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12671			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12672	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12673			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12674	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12675			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12676	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12677			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12678	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12679			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12680	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12681			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12682	/* IRO */
12683	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12684
12685	return 0;
12686
12687iro_alloc_err:
12688	kfree(bp->init_ops_offsets);
12689init_offsets_alloc_err:
12690	kfree(bp->init_ops);
12691init_ops_alloc_err:
12692	kfree(bp->init_data);
12693request_firmware_exit:
12694	release_firmware(bp->firmware);
12695	bp->firmware = NULL;
12696
12697	return rc;
12698}
12699
12700static void bnx2x_release_firmware(struct bnx2x *bp)
12701{
12702	kfree(bp->init_ops_offsets);
12703	kfree(bp->init_ops);
12704	kfree(bp->init_data);
12705	release_firmware(bp->firmware);
12706	bp->firmware = NULL;
12707}
12708
12709static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12710	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12711	.init_hw_cmn      = bnx2x_init_hw_common,
12712	.init_hw_port     = bnx2x_init_hw_port,
12713	.init_hw_func     = bnx2x_init_hw_func,
12714
12715	.reset_hw_cmn     = bnx2x_reset_common,
12716	.reset_hw_port    = bnx2x_reset_port,
12717	.reset_hw_func    = bnx2x_reset_func,
12718
12719	.gunzip_init      = bnx2x_gunzip_init,
12720	.gunzip_end       = bnx2x_gunzip_end,
12721
12722	.init_fw          = bnx2x_init_firmware,
12723	.release_fw       = bnx2x_release_firmware,
12724};
12725
12726void bnx2x__init_func_obj(struct bnx2x *bp)
12727{
12728	/* Prepare DMAE related driver resources */
12729	bnx2x_setup_dmae(bp);
12730
12731	bnx2x_init_func_obj(bp, &bp->func_obj,
12732			    bnx2x_sp(bp, func_rdata),
12733			    bnx2x_sp_mapping(bp, func_rdata),
12734			    bnx2x_sp(bp, func_afex_rdata),
12735			    bnx2x_sp_mapping(bp, func_afex_rdata),
12736			    &bnx2x_func_sp_drv);
12737}
12738
12739/* must be called after sriov-enable */
12740static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12741{
12742	int cid_count = BNX2X_L2_MAX_CID(bp);
12743
12744	if (IS_SRIOV(bp))
12745		cid_count += BNX2X_VF_CIDS;
12746
12747	if (CNIC_SUPPORT(bp))
12748		cid_count += CNIC_CID_MAX;
12749
12750	return roundup(cid_count, QM_CID_ROUND);
12751}
12752
12753/**
12754 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12755 *
12756 * @dev:	pci device
12757 *
12758 */
12759static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12760{
12761	int index;
12762	u16 control = 0;
12763
12764	/*
12765	 * If MSI-X is not supported - return number of SBs needed to support
12766	 * one fast path queue: one FP queue + SB for CNIC
12767	 */
12768	if (!pdev->msix_cap) {
12769		dev_info(&pdev->dev, "no msix capability found\n");
12770		return 1 + cnic_cnt;
12771	}
12772	dev_info(&pdev->dev, "msix capability found\n");
12773
12774	/*
12775	 * The value in the PCI configuration space is the index of the last
12776	 * entry, namely one less than the actual size of the table, which is
12777	 * exactly what we want to return from this function: number of all SBs
12778	 * without the default SB.
12779	 * For VFs there is no default SB, then we return (index+1).
12780	 */
12781	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12782
12783	index = control & PCI_MSIX_FLAGS_QSIZE;
12784
12785	return index;
12786}
12787
12788static int set_max_cos_est(int chip_id)
12789{
12790	switch (chip_id) {
12791	case BCM57710:
12792	case BCM57711:
12793	case BCM57711E:
12794		return BNX2X_MULTI_TX_COS_E1X;
12795	case BCM57712:
12796	case BCM57712_MF:
12797		return BNX2X_MULTI_TX_COS_E2_E3A0;
12798	case BCM57800:
12799	case BCM57800_MF:
12800	case BCM57810:
12801	case BCM57810_MF:
12802	case BCM57840_4_10:
12803	case BCM57840_2_20:
12804	case BCM57840_O:
12805	case BCM57840_MFO:
12806	case BCM57840_MF:
12807	case BCM57811:
12808	case BCM57811_MF:
12809		return BNX2X_MULTI_TX_COS_E3B0;
12810	case BCM57712_VF:
12811	case BCM57800_VF:
12812	case BCM57810_VF:
12813	case BCM57840_VF:
12814	case BCM57811_VF:
12815		return 1;
12816	default:
12817		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12818		return -ENODEV;
12819	}
12820}
12821
12822static int set_is_vf(int chip_id)
12823{
12824	switch (chip_id) {
12825	case BCM57712_VF:
12826	case BCM57800_VF:
12827	case BCM57810_VF:
12828	case BCM57840_VF:
12829	case BCM57811_VF:
12830		return true;
12831	default:
12832		return false;
12833	}
12834}
12835
12836static int bnx2x_init_one(struct pci_dev *pdev,
12837				    const struct pci_device_id *ent)
12838{
12839	struct net_device *dev = NULL;
12840	struct bnx2x *bp;
12841	enum pcie_link_width pcie_width;
12842	enum pci_bus_speed pcie_speed;
12843	int rc, max_non_def_sbs;
12844	int rx_count, tx_count, rss_count, doorbell_size;
12845	int max_cos_est;
12846	bool is_vf;
12847	int cnic_cnt;
12848
12849	/* An estimated maximum supported CoS number according to the chip
12850	 * version.
12851	 * We will try to roughly estimate the maximum number of CoSes this chip
12852	 * may support in order to minimize the memory allocated for Tx
12853	 * netdev_queue's. This number will be accurately calculated during the
12854	 * initialization of bp->max_cos based on the chip versions AND chip
12855	 * revision in the bnx2x_init_bp().
12856	 */
12857	max_cos_est = set_max_cos_est(ent->driver_data);
12858	if (max_cos_est < 0)
12859		return max_cos_est;
12860	is_vf = set_is_vf(ent->driver_data);
12861	cnic_cnt = is_vf ? 0 : 1;
12862
12863	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12864
12865	/* add another SB for VF as it has no default SB */
12866	max_non_def_sbs += is_vf ? 1 : 0;
12867
12868	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12869	rss_count = max_non_def_sbs - cnic_cnt;
12870
12871	if (rss_count < 1)
12872		return -EINVAL;
12873
12874	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12875	rx_count = rss_count + cnic_cnt;
12876
12877	/* Maximum number of netdev Tx queues:
12878	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12879	 */
12880	tx_count = rss_count * max_cos_est + cnic_cnt;
12881
12882	/* dev zeroed in init_etherdev */
12883	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12884	if (!dev)
12885		return -ENOMEM;
12886
12887	bp = netdev_priv(dev);
12888
12889	bp->flags = 0;
12890	if (is_vf)
12891		bp->flags |= IS_VF_FLAG;
12892
12893	bp->igu_sb_cnt = max_non_def_sbs;
12894	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12895	bp->msg_enable = debug;
12896	bp->cnic_support = cnic_cnt;
12897	bp->cnic_probe = bnx2x_cnic_probe;
12898
12899	pci_set_drvdata(pdev, dev);
12900
12901	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12902	if (rc < 0) {
12903		free_netdev(dev);
12904		return rc;
12905	}
12906
12907	BNX2X_DEV_INFO("This is a %s function\n",
12908		       IS_PF(bp) ? "physical" : "virtual");
12909	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12910	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12911	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12912		       tx_count, rx_count);
12913
12914	rc = bnx2x_init_bp(bp);
12915	if (rc)
12916		goto init_one_exit;
12917
12918	/* Map doorbells here as we need the real value of bp->max_cos which
12919	 * is initialized in bnx2x_init_bp() to determine the number of
12920	 * l2 connections.
12921	 */
12922	if (IS_VF(bp)) {
12923		bp->doorbells = bnx2x_vf_doorbells(bp);
12924		rc = bnx2x_vf_pci_alloc(bp);
12925		if (rc)
12926			goto init_one_exit;
12927	} else {
12928		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12929		if (doorbell_size > pci_resource_len(pdev, 2)) {
12930			dev_err(&bp->pdev->dev,
12931				"Cannot map doorbells, bar size too small, aborting\n");
12932			rc = -ENOMEM;
12933			goto init_one_exit;
12934		}
12935		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12936						doorbell_size);
12937	}
12938	if (!bp->doorbells) {
12939		dev_err(&bp->pdev->dev,
12940			"Cannot map doorbell space, aborting\n");
12941		rc = -ENOMEM;
12942		goto init_one_exit;
12943	}
12944
12945	if (IS_VF(bp)) {
12946		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12947		if (rc)
12948			goto init_one_exit;
12949	}
12950
12951	/* Enable SRIOV if capability found in configuration space */
12952	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12953	if (rc)
12954		goto init_one_exit;
12955
12956	/* calc qm_cid_count */
12957	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12958	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12959
12960	/* disable FCOE L2 queue for E1x*/
12961	if (CHIP_IS_E1x(bp))
12962		bp->flags |= NO_FCOE_FLAG;
12963
12964	/* Set bp->num_queues for MSI-X mode*/
12965	bnx2x_set_num_queues(bp);
12966
12967	/* Configure interrupt mode: try to enable MSI-X/MSI if
12968	 * needed.
12969	 */
12970	rc = bnx2x_set_int_mode(bp);
12971	if (rc) {
12972		dev_err(&pdev->dev, "Cannot set interrupts\n");
12973		goto init_one_exit;
12974	}
12975	BNX2X_DEV_INFO("set interrupts successfully\n");
12976
12977	/* register the net device */
12978	rc = register_netdev(dev);
12979	if (rc) {
12980		dev_err(&pdev->dev, "Cannot register net device\n");
12981		goto init_one_exit;
12982	}
12983	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12984
12985	if (!NO_FCOE(bp)) {
12986		/* Add storage MAC address */
12987		rtnl_lock();
12988		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12989		rtnl_unlock();
12990	}
12991	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
12992	    pcie_speed == PCI_SPEED_UNKNOWN ||
12993	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
12994		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12995	else
12996		BNX2X_DEV_INFO(
12997		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12998		       board_info[ent->driver_data].name,
12999		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13000		       pcie_width,
13001		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13002		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13003		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13004		       "Unknown",
13005		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13006
13007	return 0;
13008
13009init_one_exit:
13010	bnx2x_disable_pcie_error_reporting(bp);
13011
13012	if (bp->regview)
13013		iounmap(bp->regview);
13014
13015	if (IS_PF(bp) && bp->doorbells)
13016		iounmap(bp->doorbells);
13017
13018	free_netdev(dev);
13019
13020	if (atomic_read(&pdev->enable_cnt) == 1)
13021		pci_release_regions(pdev);
13022
13023	pci_disable_device(pdev);
13024
13025	return rc;
13026}
13027
13028static void __bnx2x_remove(struct pci_dev *pdev,
13029			   struct net_device *dev,
13030			   struct bnx2x *bp,
13031			   bool remove_netdev)
13032{
13033	/* Delete storage MAC address */
13034	if (!NO_FCOE(bp)) {
13035		rtnl_lock();
13036		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13037		rtnl_unlock();
13038	}
13039
13040#ifdef BCM_DCBNL
13041	/* Delete app tlvs from dcbnl */
13042	bnx2x_dcbnl_update_applist(bp, true);
13043#endif
13044
13045	if (IS_PF(bp) &&
13046	    !BP_NOMCP(bp) &&
13047	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13048		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13049
13050	/* Close the interface - either directly or implicitly */
13051	if (remove_netdev) {
13052		unregister_netdev(dev);
13053	} else {
13054		rtnl_lock();
13055		dev_close(dev);
13056		rtnl_unlock();
13057	}
13058
13059	bnx2x_iov_remove_one(bp);
13060
13061	/* Power on: we can't let PCI layer write to us while we are in D3 */
13062	if (IS_PF(bp))
13063		bnx2x_set_power_state(bp, PCI_D0);
13064
13065	/* Disable MSI/MSI-X */
13066	bnx2x_disable_msi(bp);
13067
13068	/* Power off */
13069	if (IS_PF(bp))
13070		bnx2x_set_power_state(bp, PCI_D3hot);
13071
13072	/* Make sure RESET task is not scheduled before continuing */
13073	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13074
13075	/* send message via vfpf channel to release the resources of this vf */
13076	if (IS_VF(bp))
13077		bnx2x_vfpf_release(bp);
13078
13079	/* Assumes no further PCIe PM changes will occur */
13080	if (system_state == SYSTEM_POWER_OFF) {
13081		pci_wake_from_d3(pdev, bp->wol);
13082		pci_set_power_state(pdev, PCI_D3hot);
13083	}
13084
13085	bnx2x_disable_pcie_error_reporting(bp);
13086	if (remove_netdev) {
13087		if (bp->regview)
13088			iounmap(bp->regview);
13089
13090		/* For vfs, doorbells are part of the regview and were unmapped
13091		 * along with it. FW is only loaded by PF.
13092		 */
13093		if (IS_PF(bp)) {
13094			if (bp->doorbells)
13095				iounmap(bp->doorbells);
13096
13097			bnx2x_release_firmware(bp);
13098		}
13099		bnx2x_free_mem_bp(bp);
13100
13101		free_netdev(dev);
13102
13103		if (atomic_read(&pdev->enable_cnt) == 1)
13104			pci_release_regions(pdev);
13105
13106		pci_disable_device(pdev);
13107	}
13108}
13109
13110static void bnx2x_remove_one(struct pci_dev *pdev)
13111{
13112	struct net_device *dev = pci_get_drvdata(pdev);
13113	struct bnx2x *bp;
13114
13115	if (!dev) {
13116		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13117		return;
13118	}
13119	bp = netdev_priv(dev);
13120
13121	__bnx2x_remove(pdev, dev, bp, true);
13122}
13123
13124static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13125{
13126	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13127
13128	bp->rx_mode = BNX2X_RX_MODE_NONE;
13129
13130	if (CNIC_LOADED(bp))
13131		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13132
13133	/* Stop Tx */
13134	bnx2x_tx_disable(bp);
13135	/* Delete all NAPI objects */
13136	bnx2x_del_all_napi(bp);
13137	if (CNIC_LOADED(bp))
13138		bnx2x_del_all_napi_cnic(bp);
13139	netdev_reset_tc(bp->dev);
13140
13141	del_timer_sync(&bp->timer);
13142	cancel_delayed_work(&bp->sp_task);
13143	cancel_delayed_work(&bp->period_task);
13144
13145	spin_lock_bh(&bp->stats_lock);
13146	bp->stats_state = STATS_STATE_DISABLED;
13147	spin_unlock_bh(&bp->stats_lock);
13148
13149	bnx2x_save_statistics(bp);
13150
13151	netif_carrier_off(bp->dev);
13152
13153	return 0;
13154}
13155
13156/**
13157 * bnx2x_io_error_detected - called when PCI error is detected
13158 * @pdev: Pointer to PCI device
13159 * @state: The current pci connection state
13160 *
13161 * This function is called after a PCI bus error affecting
13162 * this device has been detected.
13163 */
13164static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13165						pci_channel_state_t state)
13166{
13167	struct net_device *dev = pci_get_drvdata(pdev);
13168	struct bnx2x *bp = netdev_priv(dev);
13169
13170	rtnl_lock();
13171
13172	BNX2X_ERR("IO error detected\n");
13173
13174	netif_device_detach(dev);
13175
13176	if (state == pci_channel_io_perm_failure) {
13177		rtnl_unlock();
13178		return PCI_ERS_RESULT_DISCONNECT;
13179	}
13180
13181	if (netif_running(dev))
13182		bnx2x_eeh_nic_unload(bp);
13183
13184	bnx2x_prev_path_mark_eeh(bp);
13185
13186	pci_disable_device(pdev);
13187
13188	rtnl_unlock();
13189
13190	/* Request a slot reset */
13191	return PCI_ERS_RESULT_NEED_RESET;
13192}
13193
13194/**
13195 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13196 * @pdev: Pointer to PCI device
13197 *
13198 * Restart the card from scratch, as if from a cold-boot.
13199 */
13200static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13201{
13202	struct net_device *dev = pci_get_drvdata(pdev);
13203	struct bnx2x *bp = netdev_priv(dev);
13204	int i;
13205
13206	rtnl_lock();
13207	BNX2X_ERR("IO slot reset initializing...\n");
13208	if (pci_enable_device(pdev)) {
13209		dev_err(&pdev->dev,
13210			"Cannot re-enable PCI device after reset\n");
13211		rtnl_unlock();
13212		return PCI_ERS_RESULT_DISCONNECT;
13213	}
13214
13215	pci_set_master(pdev);
13216	pci_restore_state(pdev);
13217	pci_save_state(pdev);
13218
13219	if (netif_running(dev))
13220		bnx2x_set_power_state(bp, PCI_D0);
13221
13222	if (netif_running(dev)) {
13223		BNX2X_ERR("IO slot reset --> driver unload\n");
13224
13225		/* MCP should have been reset; Need to wait for validity */
13226		bnx2x_init_shmem(bp);
13227
13228		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13229			u32 v;
13230
13231			v = SHMEM2_RD(bp,
13232				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13233			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13234				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13235		}
13236		bnx2x_drain_tx_queues(bp);
13237		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13238		bnx2x_netif_stop(bp, 1);
13239		bnx2x_free_irq(bp);
13240
13241		/* Report UNLOAD_DONE to MCP */
13242		bnx2x_send_unload_done(bp, true);
13243
13244		bp->sp_state = 0;
13245		bp->port.pmf = 0;
13246
13247		bnx2x_prev_unload(bp);
13248
13249		/* We should have reseted the engine, so It's fair to
13250		 * assume the FW will no longer write to the bnx2x driver.
13251		 */
13252		bnx2x_squeeze_objects(bp);
13253		bnx2x_free_skbs(bp);
13254		for_each_rx_queue(bp, i)
13255			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13256		bnx2x_free_fp_mem(bp);
13257		bnx2x_free_mem(bp);
13258
13259		bp->state = BNX2X_STATE_CLOSED;
13260	}
13261
13262	rtnl_unlock();
13263
13264	/* If AER, perform cleanup of the PCIe registers */
13265	if (bp->flags & AER_ENABLED) {
13266		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13267			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13268		else
13269			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13270	}
13271
13272	return PCI_ERS_RESULT_RECOVERED;
13273}
13274
13275/**
13276 * bnx2x_io_resume - called when traffic can start flowing again
13277 * @pdev: Pointer to PCI device
13278 *
13279 * This callback is called when the error recovery driver tells us that
13280 * its OK to resume normal operation.
13281 */
13282static void bnx2x_io_resume(struct pci_dev *pdev)
13283{
13284	struct net_device *dev = pci_get_drvdata(pdev);
13285	struct bnx2x *bp = netdev_priv(dev);
13286
13287	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13288		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13289		return;
13290	}
13291
13292	rtnl_lock();
13293
13294	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13295							DRV_MSG_SEQ_NUMBER_MASK;
13296
13297	if (netif_running(dev))
13298		bnx2x_nic_load(bp, LOAD_NORMAL);
13299
13300	netif_device_attach(dev);
13301
13302	rtnl_unlock();
13303}
13304
13305static const struct pci_error_handlers bnx2x_err_handler = {
13306	.error_detected = bnx2x_io_error_detected,
13307	.slot_reset     = bnx2x_io_slot_reset,
13308	.resume         = bnx2x_io_resume,
13309};
13310
13311static void bnx2x_shutdown(struct pci_dev *pdev)
13312{
13313	struct net_device *dev = pci_get_drvdata(pdev);
13314	struct bnx2x *bp;
13315
13316	if (!dev)
13317		return;
13318
13319	bp = netdev_priv(dev);
13320	if (!bp)
13321		return;
13322
13323	rtnl_lock();
13324	netif_device_detach(dev);
13325	rtnl_unlock();
13326
13327	/* Don't remove the netdevice, as there are scenarios which will cause
13328	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13329	 * rootfs is mounted from SAN.
13330	 */
13331	__bnx2x_remove(pdev, dev, bp, false);
13332}
13333
13334static struct pci_driver bnx2x_pci_driver = {
13335	.name        = DRV_MODULE_NAME,
13336	.id_table    = bnx2x_pci_tbl,
13337	.probe       = bnx2x_init_one,
13338	.remove      = bnx2x_remove_one,
13339	.suspend     = bnx2x_suspend,
13340	.resume      = bnx2x_resume,
13341	.err_handler = &bnx2x_err_handler,
13342#ifdef CONFIG_BNX2X_SRIOV
13343	.sriov_configure = bnx2x_sriov_configure,
13344#endif
13345	.shutdown    = bnx2x_shutdown,
13346};
13347
13348static int __init bnx2x_init(void)
13349{
13350	int ret;
13351
13352	pr_info("%s", version);
13353
13354	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13355	if (bnx2x_wq == NULL) {
13356		pr_err("Cannot create workqueue\n");
13357		return -ENOMEM;
13358	}
13359
13360	ret = pci_register_driver(&bnx2x_pci_driver);
13361	if (ret) {
13362		pr_err("Cannot register driver\n");
13363		destroy_workqueue(bnx2x_wq);
13364	}
13365	return ret;
13366}
13367
13368static void __exit bnx2x_cleanup(void)
13369{
13370	struct list_head *pos, *q;
13371
13372	pci_unregister_driver(&bnx2x_pci_driver);
13373
13374	destroy_workqueue(bnx2x_wq);
13375
13376	/* Free globally allocated resources */
13377	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13378		struct bnx2x_prev_path_list *tmp =
13379			list_entry(pos, struct bnx2x_prev_path_list, list);
13380		list_del(pos);
13381		kfree(tmp);
13382	}
13383}
13384
13385void bnx2x_notify_link_changed(struct bnx2x *bp)
13386{
13387	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13388}
13389
13390module_init(bnx2x_init);
13391module_exit(bnx2x_cleanup);
13392
13393/**
13394 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13395 *
13396 * @bp:		driver handle
13397 * @set:	set or clear the CAM entry
13398 *
13399 * This function will wait until the ramrod completion returns.
13400 * Return 0 if success, -ENODEV if ramrod doesn't return.
13401 */
13402static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13403{
13404	unsigned long ramrod_flags = 0;
13405
13406	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13407	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13408				 &bp->iscsi_l2_mac_obj, true,
13409				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13410}
13411
13412/* count denotes the number of new completions we have seen */
13413static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13414{
13415	struct eth_spe *spe;
13416	int cxt_index, cxt_offset;
13417
13418#ifdef BNX2X_STOP_ON_ERROR
13419	if (unlikely(bp->panic))
13420		return;
13421#endif
13422
13423	spin_lock_bh(&bp->spq_lock);
13424	BUG_ON(bp->cnic_spq_pending < count);
13425	bp->cnic_spq_pending -= count;
13426
13427	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13428		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13429				& SPE_HDR_CONN_TYPE) >>
13430				SPE_HDR_CONN_TYPE_SHIFT;
13431		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13432				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13433
13434		/* Set validation for iSCSI L2 client before sending SETUP
13435		 *  ramrod
13436		 */
13437		if (type == ETH_CONNECTION_TYPE) {
13438			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13439				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13440					ILT_PAGE_CIDS;
13441				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13442					(cxt_index * ILT_PAGE_CIDS);
13443				bnx2x_set_ctx_validation(bp,
13444					&bp->context[cxt_index].
13445							 vcxt[cxt_offset].eth,
13446					BNX2X_ISCSI_ETH_CID(bp));
13447			}
13448		}
13449
13450		/*
13451		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13452		 * and in the air. We also check that number of outstanding
13453		 * COMMON ramrods is not more than the EQ and SPQ can
13454		 * accommodate.
13455		 */
13456		if (type == ETH_CONNECTION_TYPE) {
13457			if (!atomic_read(&bp->cq_spq_left))
13458				break;
13459			else
13460				atomic_dec(&bp->cq_spq_left);
13461		} else if (type == NONE_CONNECTION_TYPE) {
13462			if (!atomic_read(&bp->eq_spq_left))
13463				break;
13464			else
13465				atomic_dec(&bp->eq_spq_left);
13466		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13467			   (type == FCOE_CONNECTION_TYPE)) {
13468			if (bp->cnic_spq_pending >=
13469			    bp->cnic_eth_dev.max_kwqe_pending)
13470				break;
13471			else
13472				bp->cnic_spq_pending++;
13473		} else {
13474			BNX2X_ERR("Unknown SPE type: %d\n", type);
13475			bnx2x_panic();
13476			break;
13477		}
13478
13479		spe = bnx2x_sp_get_next(bp);
13480		*spe = *bp->cnic_kwq_cons;
13481
13482		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13483		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13484
13485		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13486			bp->cnic_kwq_cons = bp->cnic_kwq;
13487		else
13488			bp->cnic_kwq_cons++;
13489	}
13490	bnx2x_sp_prod_update(bp);
13491	spin_unlock_bh(&bp->spq_lock);
13492}
13493
13494static int bnx2x_cnic_sp_queue(struct net_device *dev,
13495			       struct kwqe_16 *kwqes[], u32 count)
13496{
13497	struct bnx2x *bp = netdev_priv(dev);
13498	int i;
13499
13500#ifdef BNX2X_STOP_ON_ERROR
13501	if (unlikely(bp->panic)) {
13502		BNX2X_ERR("Can't post to SP queue while panic\n");
13503		return -EIO;
13504	}
13505#endif
13506
13507	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13508	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13509		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13510		return -EAGAIN;
13511	}
13512
13513	spin_lock_bh(&bp->spq_lock);
13514
13515	for (i = 0; i < count; i++) {
13516		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13517
13518		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13519			break;
13520
13521		*bp->cnic_kwq_prod = *spe;
13522
13523		bp->cnic_kwq_pending++;
13524
13525		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13526		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13527		   spe->data.update_data_addr.hi,
13528		   spe->data.update_data_addr.lo,
13529		   bp->cnic_kwq_pending);
13530
13531		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13532			bp->cnic_kwq_prod = bp->cnic_kwq;
13533		else
13534			bp->cnic_kwq_prod++;
13535	}
13536
13537	spin_unlock_bh(&bp->spq_lock);
13538
13539	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13540		bnx2x_cnic_sp_post(bp, 0);
13541
13542	return i;
13543}
13544
13545static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13546{
13547	struct cnic_ops *c_ops;
13548	int rc = 0;
13549
13550	mutex_lock(&bp->cnic_mutex);
13551	c_ops = rcu_dereference_protected(bp->cnic_ops,
13552					  lockdep_is_held(&bp->cnic_mutex));
13553	if (c_ops)
13554		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13555	mutex_unlock(&bp->cnic_mutex);
13556
13557	return rc;
13558}
13559
13560static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13561{
13562	struct cnic_ops *c_ops;
13563	int rc = 0;
13564
13565	rcu_read_lock();
13566	c_ops = rcu_dereference(bp->cnic_ops);
13567	if (c_ops)
13568		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13569	rcu_read_unlock();
13570
13571	return rc;
13572}
13573
13574/*
13575 * for commands that have no data
13576 */
13577int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13578{
13579	struct cnic_ctl_info ctl = {0};
13580
13581	ctl.cmd = cmd;
13582
13583	return bnx2x_cnic_ctl_send(bp, &ctl);
13584}
13585
13586static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13587{
13588	struct cnic_ctl_info ctl = {0};
13589
13590	/* first we tell CNIC and only then we count this as a completion */
13591	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13592	ctl.data.comp.cid = cid;
13593	ctl.data.comp.error = err;
13594
13595	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13596	bnx2x_cnic_sp_post(bp, 0);
13597}
13598
13599/* Called with netif_addr_lock_bh() taken.
13600 * Sets an rx_mode config for an iSCSI ETH client.
13601 * Doesn't block.
13602 * Completion should be checked outside.
13603 */
13604static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13605{
13606	unsigned long accept_flags = 0, ramrod_flags = 0;
13607	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13608	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13609
13610	if (start) {
13611		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13612		 * because it's the only way for UIO Queue to accept
13613		 * multicasts (in non-promiscuous mode only one Queue per
13614		 * function will receive multicast packets (leading in our
13615		 * case).
13616		 */
13617		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13618		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13619		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13620		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13621
13622		/* Clear STOP_PENDING bit if START is requested */
13623		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13624
13625		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13626	} else
13627		/* Clear START_PENDING bit if STOP is requested */
13628		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13629
13630	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13631		set_bit(sched_state, &bp->sp_state);
13632	else {
13633		__set_bit(RAMROD_RX, &ramrod_flags);
13634		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13635				    ramrod_flags);
13636	}
13637}
13638
13639static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13640{
13641	struct bnx2x *bp = netdev_priv(dev);
13642	int rc = 0;
13643
13644	switch (ctl->cmd) {
13645	case DRV_CTL_CTXTBL_WR_CMD: {
13646		u32 index = ctl->data.io.offset;
13647		dma_addr_t addr = ctl->data.io.dma_addr;
13648
13649		bnx2x_ilt_wr(bp, index, addr);
13650		break;
13651	}
13652
13653	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13654		int count = ctl->data.credit.credit_count;
13655
13656		bnx2x_cnic_sp_post(bp, count);
13657		break;
13658	}
13659
13660	/* rtnl_lock is held.  */
13661	case DRV_CTL_START_L2_CMD: {
13662		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13663		unsigned long sp_bits = 0;
13664
13665		/* Configure the iSCSI classification object */
13666		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13667				   cp->iscsi_l2_client_id,
13668				   cp->iscsi_l2_cid, BP_FUNC(bp),
13669				   bnx2x_sp(bp, mac_rdata),
13670				   bnx2x_sp_mapping(bp, mac_rdata),
13671				   BNX2X_FILTER_MAC_PENDING,
13672				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13673				   &bp->macs_pool);
13674
13675		/* Set iSCSI MAC address */
13676		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13677		if (rc)
13678			break;
13679
13680		mmiowb();
13681		barrier();
13682
13683		/* Start accepting on iSCSI L2 ring */
13684
13685		netif_addr_lock_bh(dev);
13686		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13687		netif_addr_unlock_bh(dev);
13688
13689		/* bits to wait on */
13690		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13691		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13692
13693		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13694			BNX2X_ERR("rx_mode completion timed out!\n");
13695
13696		break;
13697	}
13698
13699	/* rtnl_lock is held.  */
13700	case DRV_CTL_STOP_L2_CMD: {
13701		unsigned long sp_bits = 0;
13702
13703		/* Stop accepting on iSCSI L2 ring */
13704		netif_addr_lock_bh(dev);
13705		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13706		netif_addr_unlock_bh(dev);
13707
13708		/* bits to wait on */
13709		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13710		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13711
13712		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13713			BNX2X_ERR("rx_mode completion timed out!\n");
13714
13715		mmiowb();
13716		barrier();
13717
13718		/* Unset iSCSI L2 MAC */
13719		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13720					BNX2X_ISCSI_ETH_MAC, true);
13721		break;
13722	}
13723	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13724		int count = ctl->data.credit.credit_count;
13725
13726		smp_mb__before_atomic_inc();
13727		atomic_add(count, &bp->cq_spq_left);
13728		smp_mb__after_atomic_inc();
13729		break;
13730	}
13731	case DRV_CTL_ULP_REGISTER_CMD: {
13732		int ulp_type = ctl->data.register_data.ulp_type;
13733
13734		if (CHIP_IS_E3(bp)) {
13735			int idx = BP_FW_MB_IDX(bp);
13736			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13737			int path = BP_PATH(bp);
13738			int port = BP_PORT(bp);
13739			int i;
13740			u32 scratch_offset;
13741			u32 *host_addr;
13742
13743			/* first write capability to shmem2 */
13744			if (ulp_type == CNIC_ULP_ISCSI)
13745				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13746			else if (ulp_type == CNIC_ULP_FCOE)
13747				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13748			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13749
13750			if ((ulp_type != CNIC_ULP_FCOE) ||
13751			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13752			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13753				break;
13754
13755			/* if reached here - should write fcoe capabilities */
13756			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13757			if (!scratch_offset)
13758				break;
13759			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13760						   fcoe_features[path][port]);
13761			host_addr = (u32 *) &(ctl->data.register_data.
13762					      fcoe_features);
13763			for (i = 0; i < sizeof(struct fcoe_capabilities);
13764			     i += 4)
13765				REG_WR(bp, scratch_offset + i,
13766				       *(host_addr + i/4));
13767		}
13768		break;
13769	}
13770
13771	case DRV_CTL_ULP_UNREGISTER_CMD: {
13772		int ulp_type = ctl->data.ulp_type;
13773
13774		if (CHIP_IS_E3(bp)) {
13775			int idx = BP_FW_MB_IDX(bp);
13776			u32 cap;
13777
13778			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13779			if (ulp_type == CNIC_ULP_ISCSI)
13780				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13781			else if (ulp_type == CNIC_ULP_FCOE)
13782				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13783			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13784		}
13785		break;
13786	}
13787
13788	default:
13789		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13790		rc = -EINVAL;
13791	}
13792
13793	return rc;
13794}
13795
13796void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13797{
13798	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13799
13800	if (bp->flags & USING_MSIX_FLAG) {
13801		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13802		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13803		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13804	} else {
13805		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13806		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13807	}
13808	if (!CHIP_IS_E1x(bp))
13809		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13810	else
13811		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13812
13813	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13814	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13815	cp->irq_arr[1].status_blk = bp->def_status_blk;
13816	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13817	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13818
13819	cp->num_irq = 2;
13820}
13821
13822void bnx2x_setup_cnic_info(struct bnx2x *bp)
13823{
13824	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13825
13826	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13827			     bnx2x_cid_ilt_lines(bp);
13828	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13829	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13830	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13831
13832	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13833	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13834	   cp->iscsi_l2_cid);
13835
13836	if (NO_ISCSI_OOO(bp))
13837		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13838}
13839
13840static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13841			       void *data)
13842{
13843	struct bnx2x *bp = netdev_priv(dev);
13844	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13845	int rc;
13846
13847	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13848
13849	if (ops == NULL) {
13850		BNX2X_ERR("NULL ops received\n");
13851		return -EINVAL;
13852	}
13853
13854	if (!CNIC_SUPPORT(bp)) {
13855		BNX2X_ERR("Can't register CNIC when not supported\n");
13856		return -EOPNOTSUPP;
13857	}
13858
13859	if (!CNIC_LOADED(bp)) {
13860		rc = bnx2x_load_cnic(bp);
13861		if (rc) {
13862			BNX2X_ERR("CNIC-related load failed\n");
13863			return rc;
13864		}
13865	}
13866
13867	bp->cnic_enabled = true;
13868
13869	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13870	if (!bp->cnic_kwq)
13871		return -ENOMEM;
13872
13873	bp->cnic_kwq_cons = bp->cnic_kwq;
13874	bp->cnic_kwq_prod = bp->cnic_kwq;
13875	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13876
13877	bp->cnic_spq_pending = 0;
13878	bp->cnic_kwq_pending = 0;
13879
13880	bp->cnic_data = data;
13881
13882	cp->num_irq = 0;
13883	cp->drv_state |= CNIC_DRV_STATE_REGD;
13884	cp->iro_arr = bp->iro_arr;
13885
13886	bnx2x_setup_cnic_irq_info(bp);
13887
13888	rcu_assign_pointer(bp->cnic_ops, ops);
13889
13890	return 0;
13891}
13892
13893static int bnx2x_unregister_cnic(struct net_device *dev)
13894{
13895	struct bnx2x *bp = netdev_priv(dev);
13896	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13897
13898	mutex_lock(&bp->cnic_mutex);
13899	cp->drv_state = 0;
13900	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13901	mutex_unlock(&bp->cnic_mutex);
13902	synchronize_rcu();
13903	bp->cnic_enabled = false;
13904	kfree(bp->cnic_kwq);
13905	bp->cnic_kwq = NULL;
13906
13907	return 0;
13908}
13909
13910static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13911{
13912	struct bnx2x *bp = netdev_priv(dev);
13913	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13914
13915	/* If both iSCSI and FCoE are disabled - return NULL in
13916	 * order to indicate CNIC that it should not try to work
13917	 * with this device.
13918	 */
13919	if (NO_ISCSI(bp) && NO_FCOE(bp))
13920		return NULL;
13921
13922	cp->drv_owner = THIS_MODULE;
13923	cp->chip_id = CHIP_ID(bp);
13924	cp->pdev = bp->pdev;
13925	cp->io_base = bp->regview;
13926	cp->io_base2 = bp->doorbells;
13927	cp->max_kwqe_pending = 8;
13928	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13929	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13930			     bnx2x_cid_ilt_lines(bp);
13931	cp->ctx_tbl_len = CNIC_ILT_LINES;
13932	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13933	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13934	cp->drv_ctl = bnx2x_drv_ctl;
13935	cp->drv_register_cnic = bnx2x_register_cnic;
13936	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13937	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13938	cp->iscsi_l2_client_id =
13939		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13940	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13941
13942	if (NO_ISCSI_OOO(bp))
13943		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13944
13945	if (NO_ISCSI(bp))
13946		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13947
13948	if (NO_FCOE(bp))
13949		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13950
13951	BNX2X_DEV_INFO(
13952		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13953	   cp->ctx_blk_size,
13954	   cp->ctx_tbl_offset,
13955	   cp->ctx_tbl_len,
13956	   cp->starting_cid);
13957	return cp;
13958}
13959
13960static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13961{
13962	struct bnx2x *bp = fp->bp;
13963	u32 offset = BAR_USTRORM_INTMEM;
13964
13965	if (IS_VF(bp))
13966		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13967	else if (!CHIP_IS_E1x(bp))
13968		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13969	else
13970		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13971
13972	return offset;
13973}
13974
13975/* called only on E1H or E2.
13976 * When pretending to be PF, the pretend value is the function number 0...7
13977 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13978 * combination
13979 */
13980int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13981{
13982	u32 pretend_reg;
13983
13984	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13985		return -1;
13986
13987	/* get my own pretend register */
13988	pretend_reg = bnx2x_get_pretend_reg(bp);
13989	REG_WR(bp, pretend_reg, pretend_func_val);
13990	REG_RD(bp, pretend_reg);
13991	return 0;
13992}
13993