bnx2x_main.c revision a8f47eb701a562f6b5c81e2e0c143148915d7913
1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/aer.h>
31#include <linux/init.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
35#include <linux/dma-mapping.h>
36#include <linux/bitops.h>
37#include <linux/irq.h>
38#include <linux/delay.h>
39#include <asm/byteorder.h>
40#include <linux/time.h>
41#include <linux/ethtool.h>
42#include <linux/mii.h>
43#include <linux/if_vlan.h>
44#include <net/ip.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/workqueue.h>
50#include <linux/crc32.h>
51#include <linux/crc32c.h>
52#include <linux/prefetch.h>
53#include <linux/zlib.h>
54#include <linux/io.h>
55#include <linux/semaphore.h>
56#include <linux/stringify.h>
57#include <linux/vmalloc.h>
58
59#include "bnx2x.h"
60#include "bnx2x_init.h"
61#include "bnx2x_init_ops.h"
62#include "bnx2x_cmn.h"
63#include "bnx2x_vfpf.h"
64#include "bnx2x_dcb.h"
65#include "bnx2x_sp.h"
66
67#include <linux/firmware.h>
68#include "bnx2x_fw_file_hdr.h"
69/* FW files */
70#define FW_FILE_VERSION					\
71	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
72	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
73	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
74	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
75#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79/* Time in jiffies before concluding the transmitter is hung */
80#define TX_TIMEOUT		(5*HZ)
81
82static char version[] =
83	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86MODULE_AUTHOR("Eliezer Tamir");
87MODULE_DESCRIPTION("Broadcom NetXtreme II "
88		   "BCM57710/57711/57711E/"
89		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90		   "57840/57840_MF Driver");
91MODULE_LICENSE("GPL");
92MODULE_VERSION(DRV_MODULE_VERSION);
93MODULE_FIRMWARE(FW_FILE_NAME_E1);
94MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97int bnx2x_num_queues;
98module_param_named(num_queues, bnx2x_num_queues, int, 0);
99MODULE_PARM_DESC(num_queues,
100		 " Set number of queues (default is as a number of CPUs)");
101
102static int disable_tpa;
103module_param(disable_tpa, int, 0);
104MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106static int int_mode;
107module_param(int_mode, int, 0);
108MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109				"(1 INT#x; 2 MSI)");
110
111static int dropless_fc;
112module_param(dropless_fc, int, 0);
113MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115static int mrrs = -1;
116module_param(mrrs, int, 0);
117MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119static int debug;
120module_param(debug, int, 0);
121MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123struct workqueue_struct *bnx2x_wq;
124
125struct bnx2x_mac_vals {
126	u32 xmac_addr;
127	u32 xmac_val;
128	u32 emac_addr;
129	u32 emac_val;
130	u32 umac_addr;
131	u32 umac_val;
132	u32 bmac_addr;
133	u32 bmac_val[2];
134};
135
136enum bnx2x_board_type {
137	BCM57710 = 0,
138	BCM57711,
139	BCM57711E,
140	BCM57712,
141	BCM57712_MF,
142	BCM57712_VF,
143	BCM57800,
144	BCM57800_MF,
145	BCM57800_VF,
146	BCM57810,
147	BCM57810_MF,
148	BCM57810_VF,
149	BCM57840_4_10,
150	BCM57840_2_20,
151	BCM57840_MF,
152	BCM57840_VF,
153	BCM57811,
154	BCM57811_MF,
155	BCM57840_O,
156	BCM57840_MFO,
157	BCM57811_VF
158};
159
160/* indexed by board_type, above */
161static struct {
162	char *name;
163} board_info[] = {
164	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
165	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
166	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
167	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
168	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
169	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
170	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
171	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
172	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
173	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
174	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
175	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
176	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
177	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
178	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
179	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
180	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
181	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
182	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
183	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
184	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
185};
186
187#ifndef PCI_DEVICE_ID_NX2_57710
188#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
189#endif
190#ifndef PCI_DEVICE_ID_NX2_57711
191#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
192#endif
193#ifndef PCI_DEVICE_ID_NX2_57711E
194#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
195#endif
196#ifndef PCI_DEVICE_ID_NX2_57712
197#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
198#endif
199#ifndef PCI_DEVICE_ID_NX2_57712_MF
200#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
201#endif
202#ifndef PCI_DEVICE_ID_NX2_57712_VF
203#define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
204#endif
205#ifndef PCI_DEVICE_ID_NX2_57800
206#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
207#endif
208#ifndef PCI_DEVICE_ID_NX2_57800_MF
209#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
210#endif
211#ifndef PCI_DEVICE_ID_NX2_57800_VF
212#define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
213#endif
214#ifndef PCI_DEVICE_ID_NX2_57810
215#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
216#endif
217#ifndef PCI_DEVICE_ID_NX2_57810_MF
218#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
219#endif
220#ifndef PCI_DEVICE_ID_NX2_57840_O
221#define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
222#endif
223#ifndef PCI_DEVICE_ID_NX2_57810_VF
224#define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
225#endif
226#ifndef PCI_DEVICE_ID_NX2_57840_4_10
227#define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
228#endif
229#ifndef PCI_DEVICE_ID_NX2_57840_2_20
230#define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
231#endif
232#ifndef PCI_DEVICE_ID_NX2_57840_MFO
233#define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
234#endif
235#ifndef PCI_DEVICE_ID_NX2_57840_MF
236#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
237#endif
238#ifndef PCI_DEVICE_ID_NX2_57840_VF
239#define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
240#endif
241#ifndef PCI_DEVICE_ID_NX2_57811
242#define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
243#endif
244#ifndef PCI_DEVICE_ID_NX2_57811_MF
245#define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
246#endif
247#ifndef PCI_DEVICE_ID_NX2_57811_VF
248#define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
249#endif
250
251static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
252	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
253	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
254	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
255	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
256	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
257	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
258	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
259	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
260	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
261	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
262	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
263	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
264	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
265	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
266	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
267	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
268	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
271	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
272	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
273	{ 0 }
274};
275
276MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
277
278/* Global resources for unloading a previously loaded device */
279#define BNX2X_PREV_WAIT_NEEDED 1
280static DEFINE_SEMAPHORE(bnx2x_prev_sem);
281static LIST_HEAD(bnx2x_prev_list);
282
283/* Forward declaration */
284static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
285static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
286static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
287
288/****************************************************************************
289* General service functions
290****************************************************************************/
291
292static void __storm_memset_dma_mapping(struct bnx2x *bp,
293				       u32 addr, dma_addr_t mapping)
294{
295	REG_WR(bp,  addr, U64_LO(mapping));
296	REG_WR(bp,  addr + 4, U64_HI(mapping));
297}
298
299static void storm_memset_spq_addr(struct bnx2x *bp,
300				  dma_addr_t mapping, u16 abs_fid)
301{
302	u32 addr = XSEM_REG_FAST_MEMORY +
303			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
304
305	__storm_memset_dma_mapping(bp, addr, mapping);
306}
307
308static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
309				  u16 pf_id)
310{
311	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
312		pf_id);
313	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
314		pf_id);
315	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
316		pf_id);
317	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
318		pf_id);
319}
320
321static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
322				 u8 enable)
323{
324	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
325		enable);
326	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
327		enable);
328	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
329		enable);
330	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
331		enable);
332}
333
334static void storm_memset_eq_data(struct bnx2x *bp,
335				 struct event_ring_data *eq_data,
336				u16 pfid)
337{
338	size_t size = sizeof(struct event_ring_data);
339
340	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
341
342	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
343}
344
345static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
346				 u16 pfid)
347{
348	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
349	REG_WR16(bp, addr, eq_prod);
350}
351
352/* used only at init
353 * locking is done by mcp
354 */
355static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
356{
357	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
358	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
359	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
360			       PCICFG_VENDOR_ID_OFFSET);
361}
362
363static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
364{
365	u32 val;
366
367	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
369	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370			       PCICFG_VENDOR_ID_OFFSET);
371
372	return val;
373}
374
375#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
376#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
377#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
378#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
379#define DMAE_DP_DST_NONE	"dst_addr [none]"
380
381static void bnx2x_dp_dmae(struct bnx2x *bp,
382			  struct dmae_command *dmae, int msglvl)
383{
384	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
385	int i;
386
387	switch (dmae->opcode & DMAE_COMMAND_DST) {
388	case DMAE_CMD_DST_PCI:
389		if (src_type == DMAE_CMD_SRC_PCI)
390			DP(msglvl, "DMAE: opcode 0x%08x\n"
391			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
392			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
393			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
394			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
395			   dmae->comp_addr_hi, dmae->comp_addr_lo,
396			   dmae->comp_val);
397		else
398			DP(msglvl, "DMAE: opcode 0x%08x\n"
399			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
400			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401			   dmae->opcode, dmae->src_addr_lo >> 2,
402			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404			   dmae->comp_val);
405		break;
406	case DMAE_CMD_DST_GRC:
407		if (src_type == DMAE_CMD_SRC_PCI)
408			DP(msglvl, "DMAE: opcode 0x%08x\n"
409			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
410			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
411			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
412			   dmae->len, dmae->dst_addr_lo >> 2,
413			   dmae->comp_addr_hi, dmae->comp_addr_lo,
414			   dmae->comp_val);
415		else
416			DP(msglvl, "DMAE: opcode 0x%08x\n"
417			   "src [%08x], len [%d*4], dst [%08x]\n"
418			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419			   dmae->opcode, dmae->src_addr_lo >> 2,
420			   dmae->len, dmae->dst_addr_lo >> 2,
421			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422			   dmae->comp_val);
423		break;
424	default:
425		if (src_type == DMAE_CMD_SRC_PCI)
426			DP(msglvl, "DMAE: opcode 0x%08x\n"
427			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
428			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
430			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431			   dmae->comp_val);
432		else
433			DP(msglvl, "DMAE: opcode 0x%08x\n"
434			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
435			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
436			   dmae->opcode, dmae->src_addr_lo >> 2,
437			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
438			   dmae->comp_val);
439		break;
440	}
441
442	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
443		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
444		   i, *(((u32 *)dmae) + i));
445}
446
447/* copy command into DMAE command memory and set DMAE command go */
448void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
449{
450	u32 cmd_offset;
451	int i;
452
453	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
454	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
455		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
456	}
457	REG_WR(bp, dmae_reg_go_c[idx], 1);
458}
459
460u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
461{
462	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
463			   DMAE_CMD_C_ENABLE);
464}
465
466u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
467{
468	return opcode & ~DMAE_CMD_SRC_RESET;
469}
470
471u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
472			     bool with_comp, u8 comp_type)
473{
474	u32 opcode = 0;
475
476	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
477		   (dst_type << DMAE_COMMAND_DST_SHIFT));
478
479	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
480
481	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
482	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
483		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
484	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
485
486#ifdef __BIG_ENDIAN
487	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
488#else
489	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
490#endif
491	if (with_comp)
492		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
493	return opcode;
494}
495
496void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
497				      struct dmae_command *dmae,
498				      u8 src_type, u8 dst_type)
499{
500	memset(dmae, 0, sizeof(struct dmae_command));
501
502	/* set the opcode */
503	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
504					 true, DMAE_COMP_PCI);
505
506	/* fill in the completion parameters */
507	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
508	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
509	dmae->comp_val = DMAE_COMP_VAL;
510}
511
512/* issue a dmae command over the init-channel and wait for completion */
513int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
514			       u32 *comp)
515{
516	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
517	int rc = 0;
518
519	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
520
521	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
522	 * as long as this code is called both from syscall context and
523	 * from ndo_set_rx_mode() flow that may be called from BH.
524	 */
525	spin_lock_bh(&bp->dmae_lock);
526
527	/* reset completion */
528	*comp = 0;
529
530	/* post the command on the channel used for initializations */
531	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
532
533	/* wait for completion */
534	udelay(5);
535	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
536
537		if (!cnt ||
538		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
539		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
540			BNX2X_ERR("DMAE timeout!\n");
541			rc = DMAE_TIMEOUT;
542			goto unlock;
543		}
544		cnt--;
545		udelay(50);
546	}
547	if (*comp & DMAE_PCI_ERR_FLAG) {
548		BNX2X_ERR("DMAE PCI error!\n");
549		rc = DMAE_PCI_ERROR;
550	}
551
552unlock:
553	spin_unlock_bh(&bp->dmae_lock);
554	return rc;
555}
556
557void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
558		      u32 len32)
559{
560	int rc;
561	struct dmae_command dmae;
562
563	if (!bp->dmae_ready) {
564		u32 *data = bnx2x_sp(bp, wb_data[0]);
565
566		if (CHIP_IS_E1(bp))
567			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
568		else
569			bnx2x_init_str_wr(bp, dst_addr, data, len32);
570		return;
571	}
572
573	/* set opcode and fixed command fields */
574	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
575
576	/* fill in addresses and len */
577	dmae.src_addr_lo = U64_LO(dma_addr);
578	dmae.src_addr_hi = U64_HI(dma_addr);
579	dmae.dst_addr_lo = dst_addr >> 2;
580	dmae.dst_addr_hi = 0;
581	dmae.len = len32;
582
583	/* issue the command and wait for completion */
584	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
585	if (rc) {
586		BNX2X_ERR("DMAE returned failure %d\n", rc);
587#ifdef BNX2X_STOP_ON_ERROR
588		bnx2x_panic();
589#endif
590	}
591}
592
593void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
594{
595	int rc;
596	struct dmae_command dmae;
597
598	if (!bp->dmae_ready) {
599		u32 *data = bnx2x_sp(bp, wb_data[0]);
600		int i;
601
602		if (CHIP_IS_E1(bp))
603			for (i = 0; i < len32; i++)
604				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
605		else
606			for (i = 0; i < len32; i++)
607				data[i] = REG_RD(bp, src_addr + i*4);
608
609		return;
610	}
611
612	/* set opcode and fixed command fields */
613	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
614
615	/* fill in addresses and len */
616	dmae.src_addr_lo = src_addr >> 2;
617	dmae.src_addr_hi = 0;
618	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
619	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
620	dmae.len = len32;
621
622	/* issue the command and wait for completion */
623	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
624	if (rc) {
625		BNX2X_ERR("DMAE returned failure %d\n", rc);
626#ifdef BNX2X_STOP_ON_ERROR
627		bnx2x_panic();
628#endif
629	}
630}
631
632static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
633				      u32 addr, u32 len)
634{
635	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
636	int offset = 0;
637
638	while (len > dmae_wr_max) {
639		bnx2x_write_dmae(bp, phys_addr + offset,
640				 addr + offset, dmae_wr_max);
641		offset += dmae_wr_max * 4;
642		len -= dmae_wr_max;
643	}
644
645	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
646}
647
648static int bnx2x_mc_assert(struct bnx2x *bp)
649{
650	char last_idx;
651	int i, rc = 0;
652	u32 row0, row1, row2, row3;
653
654	/* XSTORM */
655	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
656			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
657	if (last_idx)
658		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
659
660	/* print the asserts */
661	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
662
663		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
664			      XSTORM_ASSERT_LIST_OFFSET(i));
665		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
666			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
667		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
668			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
669		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
670			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
671
672		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
673			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
674				  i, row3, row2, row1, row0);
675			rc++;
676		} else {
677			break;
678		}
679	}
680
681	/* TSTORM */
682	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
683			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
684	if (last_idx)
685		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686
687	/* print the asserts */
688	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689
690		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
691			      TSTORM_ASSERT_LIST_OFFSET(i));
692		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
693			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
694		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
695			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
696		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
697			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
698
699		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
701				  i, row3, row2, row1, row0);
702			rc++;
703		} else {
704			break;
705		}
706	}
707
708	/* CSTORM */
709	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
710			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
711	if (last_idx)
712		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
713
714	/* print the asserts */
715	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
716
717		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
718			      CSTORM_ASSERT_LIST_OFFSET(i));
719		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
720			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
721		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
722			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
723		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
724			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
725
726		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
727			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
728				  i, row3, row2, row1, row0);
729			rc++;
730		} else {
731			break;
732		}
733	}
734
735	/* USTORM */
736	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
737			   USTORM_ASSERT_LIST_INDEX_OFFSET);
738	if (last_idx)
739		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
740
741	/* print the asserts */
742	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
743
744		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
745			      USTORM_ASSERT_LIST_OFFSET(i));
746		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
747			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
748		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
749			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
750		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
751			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
752
753		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
754			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
755				  i, row3, row2, row1, row0);
756			rc++;
757		} else {
758			break;
759		}
760	}
761
762	return rc;
763}
764
765#define MCPR_TRACE_BUFFER_SIZE	(0x800)
766#define SCRATCH_BUFFER_SIZE(bp)	\
767	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
768
769void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
770{
771	u32 addr, val;
772	u32 mark, offset;
773	__be32 data[9];
774	int word;
775	u32 trace_shmem_base;
776	if (BP_NOMCP(bp)) {
777		BNX2X_ERR("NO MCP - can not dump\n");
778		return;
779	}
780	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
781		(bp->common.bc_ver & 0xff0000) >> 16,
782		(bp->common.bc_ver & 0xff00) >> 8,
783		(bp->common.bc_ver & 0xff));
784
785	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
786	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
787		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
788
789	if (BP_PATH(bp) == 0)
790		trace_shmem_base = bp->common.shmem_base;
791	else
792		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
793
794	/* sanity */
795	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
796	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
797				SCRATCH_BUFFER_SIZE(bp)) {
798		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
799			  trace_shmem_base);
800		return;
801	}
802
803	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
804
805	/* validate TRCB signature */
806	mark = REG_RD(bp, addr);
807	if (mark != MFW_TRACE_SIGNATURE) {
808		BNX2X_ERR("Trace buffer signature is missing.");
809		return ;
810	}
811
812	/* read cyclic buffer pointer */
813	addr += 4;
814	mark = REG_RD(bp, addr);
815	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
816	if (mark >= trace_shmem_base || mark < addr + 4) {
817		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
818		return;
819	}
820	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
821
822	printk("%s", lvl);
823
824	/* dump buffer after the mark */
825	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
826		for (word = 0; word < 8; word++)
827			data[word] = htonl(REG_RD(bp, offset + 4*word));
828		data[8] = 0x0;
829		pr_cont("%s", (char *)data);
830	}
831
832	/* dump buffer before the mark */
833	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
834		for (word = 0; word < 8; word++)
835			data[word] = htonl(REG_RD(bp, offset + 4*word));
836		data[8] = 0x0;
837		pr_cont("%s", (char *)data);
838	}
839	printk("%s" "end of fw dump\n", lvl);
840}
841
842static void bnx2x_fw_dump(struct bnx2x *bp)
843{
844	bnx2x_fw_dump_lvl(bp, KERN_ERR);
845}
846
847static void bnx2x_hc_int_disable(struct bnx2x *bp)
848{
849	int port = BP_PORT(bp);
850	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
851	u32 val = REG_RD(bp, addr);
852
853	/* in E1 we must use only PCI configuration space to disable
854	 * MSI/MSIX capability
855	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
856	 */
857	if (CHIP_IS_E1(bp)) {
858		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
859		 * Use mask register to prevent from HC sending interrupts
860		 * after we exit the function
861		 */
862		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
863
864		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
865			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867	} else
868		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
869			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
870			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
871			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
872
873	DP(NETIF_MSG_IFDOWN,
874	   "write %x to HC %d (addr 0x%x)\n",
875	   val, port, addr);
876
877	/* flush all outstanding writes */
878	mmiowb();
879
880	REG_WR(bp, addr, val);
881	if (REG_RD(bp, addr) != val)
882		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
883}
884
885static void bnx2x_igu_int_disable(struct bnx2x *bp)
886{
887	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
888
889	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
890		 IGU_PF_CONF_INT_LINE_EN |
891		 IGU_PF_CONF_ATTN_BIT_EN);
892
893	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
894
895	/* flush all outstanding writes */
896	mmiowb();
897
898	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
899	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
900		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
901}
902
903static void bnx2x_int_disable(struct bnx2x *bp)
904{
905	if (bp->common.int_block == INT_BLOCK_HC)
906		bnx2x_hc_int_disable(bp);
907	else
908		bnx2x_igu_int_disable(bp);
909}
910
911void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
912{
913	int i;
914	u16 j;
915	struct hc_sp_status_block_data sp_sb_data;
916	int func = BP_FUNC(bp);
917#ifdef BNX2X_STOP_ON_ERROR
918	u16 start = 0, end = 0;
919	u8 cos;
920#endif
921	if (disable_int)
922		bnx2x_int_disable(bp);
923
924	bp->stats_state = STATS_STATE_DISABLED;
925	bp->eth_stats.unrecoverable_error++;
926	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
927
928	BNX2X_ERR("begin crash dump -----------------\n");
929
930	/* Indices */
931	/* Common */
932	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
933		  bp->def_idx, bp->def_att_idx, bp->attn_state,
934		  bp->spq_prod_idx, bp->stats_counter);
935	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
936		  bp->def_status_blk->atten_status_block.attn_bits,
937		  bp->def_status_blk->atten_status_block.attn_bits_ack,
938		  bp->def_status_blk->atten_status_block.status_block_id,
939		  bp->def_status_blk->atten_status_block.attn_bits_index);
940	BNX2X_ERR("     def (");
941	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
942		pr_cont("0x%x%s",
943			bp->def_status_blk->sp_sb.index_values[i],
944			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
945
946	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
947		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
948			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
949			i*sizeof(u32));
950
951	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
952	       sp_sb_data.igu_sb_id,
953	       sp_sb_data.igu_seg_id,
954	       sp_sb_data.p_func.pf_id,
955	       sp_sb_data.p_func.vnic_id,
956	       sp_sb_data.p_func.vf_id,
957	       sp_sb_data.p_func.vf_valid,
958	       sp_sb_data.state);
959
960	for_each_eth_queue(bp, i) {
961		struct bnx2x_fastpath *fp = &bp->fp[i];
962		int loop;
963		struct hc_status_block_data_e2 sb_data_e2;
964		struct hc_status_block_data_e1x sb_data_e1x;
965		struct hc_status_block_sm  *hc_sm_p =
966			CHIP_IS_E1x(bp) ?
967			sb_data_e1x.common.state_machine :
968			sb_data_e2.common.state_machine;
969		struct hc_index_data *hc_index_p =
970			CHIP_IS_E1x(bp) ?
971			sb_data_e1x.index_data :
972			sb_data_e2.index_data;
973		u8 data_size, cos;
974		u32 *sb_data_p;
975		struct bnx2x_fp_txdata txdata;
976
977		/* Rx */
978		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
979			  i, fp->rx_bd_prod, fp->rx_bd_cons,
980			  fp->rx_comp_prod,
981			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
983			  fp->rx_sge_prod, fp->last_max_sge,
984			  le16_to_cpu(fp->fp_hc_idx));
985
986		/* Tx */
987		for_each_cos_in_tx_queue(fp, cos)
988		{
989			txdata = *fp->txdata_ptr[cos];
990			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
991				  i, txdata.tx_pkt_prod,
992				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
993				  txdata.tx_bd_cons,
994				  le16_to_cpu(*txdata.tx_cons_sb));
995		}
996
997		loop = CHIP_IS_E1x(bp) ?
998			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
999
1000		/* host sb data */
1001
1002		if (IS_FCOE_FP(fp))
1003			continue;
1004
1005		BNX2X_ERR("     run indexes (");
1006		for (j = 0; j < HC_SB_MAX_SM; j++)
1007			pr_cont("0x%x%s",
1008			       fp->sb_running_index[j],
1009			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1010
1011		BNX2X_ERR("     indexes (");
1012		for (j = 0; j < loop; j++)
1013			pr_cont("0x%x%s",
1014			       fp->sb_index_values[j],
1015			       (j == loop - 1) ? ")" : " ");
1016		/* fw sb data */
1017		data_size = CHIP_IS_E1x(bp) ?
1018			sizeof(struct hc_status_block_data_e1x) :
1019			sizeof(struct hc_status_block_data_e2);
1020		data_size /= sizeof(u32);
1021		sb_data_p = CHIP_IS_E1x(bp) ?
1022			(u32 *)&sb_data_e1x :
1023			(u32 *)&sb_data_e2;
1024		/* copy sb data in here */
1025		for (j = 0; j < data_size; j++)
1026			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1027				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1028				j * sizeof(u32));
1029
1030		if (!CHIP_IS_E1x(bp)) {
1031			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1032				sb_data_e2.common.p_func.pf_id,
1033				sb_data_e2.common.p_func.vf_id,
1034				sb_data_e2.common.p_func.vf_valid,
1035				sb_data_e2.common.p_func.vnic_id,
1036				sb_data_e2.common.same_igu_sb_1b,
1037				sb_data_e2.common.state);
1038		} else {
1039			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1040				sb_data_e1x.common.p_func.pf_id,
1041				sb_data_e1x.common.p_func.vf_id,
1042				sb_data_e1x.common.p_func.vf_valid,
1043				sb_data_e1x.common.p_func.vnic_id,
1044				sb_data_e1x.common.same_igu_sb_1b,
1045				sb_data_e1x.common.state);
1046		}
1047
1048		/* SB_SMs data */
1049		for (j = 0; j < HC_SB_MAX_SM; j++) {
1050			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1051				j, hc_sm_p[j].__flags,
1052				hc_sm_p[j].igu_sb_id,
1053				hc_sm_p[j].igu_seg_id,
1054				hc_sm_p[j].time_to_expire,
1055				hc_sm_p[j].timer_value);
1056		}
1057
1058		/* Indices data */
1059		for (j = 0; j < loop; j++) {
1060			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1061			       hc_index_p[j].flags,
1062			       hc_index_p[j].timeout);
1063		}
1064	}
1065
1066#ifdef BNX2X_STOP_ON_ERROR
1067
1068	/* event queue */
1069	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1070	for (i = 0; i < NUM_EQ_DESC; i++) {
1071		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1072
1073		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1074			  i, bp->eq_ring[i].message.opcode,
1075			  bp->eq_ring[i].message.error);
1076		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1077	}
1078
1079	/* Rings */
1080	/* Rx */
1081	for_each_valid_rx_queue(bp, i) {
1082		struct bnx2x_fastpath *fp = &bp->fp[i];
1083
1084		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1085		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1086		for (j = start; j != end; j = RX_BD(j + 1)) {
1087			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1088			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1089
1090			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1091				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1092		}
1093
1094		start = RX_SGE(fp->rx_sge_prod);
1095		end = RX_SGE(fp->last_max_sge);
1096		for (j = start; j != end; j = RX_SGE(j + 1)) {
1097			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1098			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1099
1100			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1101				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1102		}
1103
1104		start = RCQ_BD(fp->rx_comp_cons - 10);
1105		end = RCQ_BD(fp->rx_comp_cons + 503);
1106		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1107			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1108
1109			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1110				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1111		}
1112	}
1113
1114	/* Tx */
1115	for_each_valid_tx_queue(bp, i) {
1116		struct bnx2x_fastpath *fp = &bp->fp[i];
1117		for_each_cos_in_tx_queue(fp, cos) {
1118			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1119
1120			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1121			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1122			for (j = start; j != end; j = TX_BD(j + 1)) {
1123				struct sw_tx_bd *sw_bd =
1124					&txdata->tx_buf_ring[j];
1125
1126				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1127					  i, cos, j, sw_bd->skb,
1128					  sw_bd->first_bd);
1129			}
1130
1131			start = TX_BD(txdata->tx_bd_cons - 10);
1132			end = TX_BD(txdata->tx_bd_cons + 254);
1133			for (j = start; j != end; j = TX_BD(j + 1)) {
1134				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1135
1136				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1137					  i, cos, j, tx_bd[0], tx_bd[1],
1138					  tx_bd[2], tx_bd[3]);
1139			}
1140		}
1141	}
1142#endif
1143	bnx2x_fw_dump(bp);
1144	bnx2x_mc_assert(bp);
1145	BNX2X_ERR("end crash dump -----------------\n");
1146}
1147
1148/*
1149 * FLR Support for E2
1150 *
1151 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1152 * initialization.
1153 */
1154#define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1155#define FLR_WAIT_INTERVAL	50	/* usec */
1156#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1157
1158struct pbf_pN_buf_regs {
1159	int pN;
1160	u32 init_crd;
1161	u32 crd;
1162	u32 crd_freed;
1163};
1164
1165struct pbf_pN_cmd_regs {
1166	int pN;
1167	u32 lines_occup;
1168	u32 lines_freed;
1169};
1170
1171static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1172				     struct pbf_pN_buf_regs *regs,
1173				     u32 poll_count)
1174{
1175	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1176	u32 cur_cnt = poll_count;
1177
1178	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1179	crd = crd_start = REG_RD(bp, regs->crd);
1180	init_crd = REG_RD(bp, regs->init_crd);
1181
1182	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1183	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1184	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1185
1186	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1187	       (init_crd - crd_start))) {
1188		if (cur_cnt--) {
1189			udelay(FLR_WAIT_INTERVAL);
1190			crd = REG_RD(bp, regs->crd);
1191			crd_freed = REG_RD(bp, regs->crd_freed);
1192		} else {
1193			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1194			   regs->pN);
1195			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1196			   regs->pN, crd);
1197			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1198			   regs->pN, crd_freed);
1199			break;
1200		}
1201	}
1202	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1203	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1204}
1205
1206static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1207				     struct pbf_pN_cmd_regs *regs,
1208				     u32 poll_count)
1209{
1210	u32 occup, to_free, freed, freed_start;
1211	u32 cur_cnt = poll_count;
1212
1213	occup = to_free = REG_RD(bp, regs->lines_occup);
1214	freed = freed_start = REG_RD(bp, regs->lines_freed);
1215
1216	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1217	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1218
1219	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1220		if (cur_cnt--) {
1221			udelay(FLR_WAIT_INTERVAL);
1222			occup = REG_RD(bp, regs->lines_occup);
1223			freed = REG_RD(bp, regs->lines_freed);
1224		} else {
1225			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1226			   regs->pN);
1227			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1228			   regs->pN, occup);
1229			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1230			   regs->pN, freed);
1231			break;
1232		}
1233	}
1234	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1235	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236}
1237
1238static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1239				    u32 expected, u32 poll_count)
1240{
1241	u32 cur_cnt = poll_count;
1242	u32 val;
1243
1244	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1245		udelay(FLR_WAIT_INTERVAL);
1246
1247	return val;
1248}
1249
1250int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1251				    char *msg, u32 poll_cnt)
1252{
1253	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1254	if (val != 0) {
1255		BNX2X_ERR("%s usage count=%d\n", msg, val);
1256		return 1;
1257	}
1258	return 0;
1259}
1260
1261/* Common routines with VF FLR cleanup */
1262u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1263{
1264	/* adjust polling timeout */
1265	if (CHIP_REV_IS_EMUL(bp))
1266		return FLR_POLL_CNT * 2000;
1267
1268	if (CHIP_REV_IS_FPGA(bp))
1269		return FLR_POLL_CNT * 120;
1270
1271	return FLR_POLL_CNT;
1272}
1273
1274void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1275{
1276	struct pbf_pN_cmd_regs cmd_regs[] = {
1277		{0, (CHIP_IS_E3B0(bp)) ?
1278			PBF_REG_TQ_OCCUPANCY_Q0 :
1279			PBF_REG_P0_TQ_OCCUPANCY,
1280		    (CHIP_IS_E3B0(bp)) ?
1281			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1282			PBF_REG_P0_TQ_LINES_FREED_CNT},
1283		{1, (CHIP_IS_E3B0(bp)) ?
1284			PBF_REG_TQ_OCCUPANCY_Q1 :
1285			PBF_REG_P1_TQ_OCCUPANCY,
1286		    (CHIP_IS_E3B0(bp)) ?
1287			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1288			PBF_REG_P1_TQ_LINES_FREED_CNT},
1289		{4, (CHIP_IS_E3B0(bp)) ?
1290			PBF_REG_TQ_OCCUPANCY_LB_Q :
1291			PBF_REG_P4_TQ_OCCUPANCY,
1292		    (CHIP_IS_E3B0(bp)) ?
1293			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1294			PBF_REG_P4_TQ_LINES_FREED_CNT}
1295	};
1296
1297	struct pbf_pN_buf_regs buf_regs[] = {
1298		{0, (CHIP_IS_E3B0(bp)) ?
1299			PBF_REG_INIT_CRD_Q0 :
1300			PBF_REG_P0_INIT_CRD ,
1301		    (CHIP_IS_E3B0(bp)) ?
1302			PBF_REG_CREDIT_Q0 :
1303			PBF_REG_P0_CREDIT,
1304		    (CHIP_IS_E3B0(bp)) ?
1305			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1306			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1307		{1, (CHIP_IS_E3B0(bp)) ?
1308			PBF_REG_INIT_CRD_Q1 :
1309			PBF_REG_P1_INIT_CRD,
1310		    (CHIP_IS_E3B0(bp)) ?
1311			PBF_REG_CREDIT_Q1 :
1312			PBF_REG_P1_CREDIT,
1313		    (CHIP_IS_E3B0(bp)) ?
1314			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1315			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1316		{4, (CHIP_IS_E3B0(bp)) ?
1317			PBF_REG_INIT_CRD_LB_Q :
1318			PBF_REG_P4_INIT_CRD,
1319		    (CHIP_IS_E3B0(bp)) ?
1320			PBF_REG_CREDIT_LB_Q :
1321			PBF_REG_P4_CREDIT,
1322		    (CHIP_IS_E3B0(bp)) ?
1323			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1324			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1325	};
1326
1327	int i;
1328
1329	/* Verify the command queues are flushed P0, P1, P4 */
1330	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1331		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1332
1333	/* Verify the transmission buffers are flushed P0, P1, P4 */
1334	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1335		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1336}
1337
1338#define OP_GEN_PARAM(param) \
1339	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1340
1341#define OP_GEN_TYPE(type) \
1342	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1343
1344#define OP_GEN_AGG_VECT(index) \
1345	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1346
1347int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1348{
1349	u32 op_gen_command = 0;
1350	u32 comp_addr = BAR_CSTRORM_INTMEM +
1351			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1352	int ret = 0;
1353
1354	if (REG_RD(bp, comp_addr)) {
1355		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1356		return 1;
1357	}
1358
1359	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1360	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1361	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1362	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1363
1364	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1365	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1366
1367	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1368		BNX2X_ERR("FW final cleanup did not succeed\n");
1369		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1370		   (REG_RD(bp, comp_addr)));
1371		bnx2x_panic();
1372		return 1;
1373	}
1374	/* Zero completion for next FLR */
1375	REG_WR(bp, comp_addr, 0);
1376
1377	return ret;
1378}
1379
1380u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1381{
1382	u16 status;
1383
1384	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1385	return status & PCI_EXP_DEVSTA_TRPND;
1386}
1387
1388/* PF FLR specific routines
1389*/
1390static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1391{
1392	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1393	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394			CFC_REG_NUM_LCIDS_INSIDE_PF,
1395			"CFC PF usage counter timed out",
1396			poll_cnt))
1397		return 1;
1398
1399	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1400	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1401			DORQ_REG_PF_USAGE_CNT,
1402			"DQ PF usage counter timed out",
1403			poll_cnt))
1404		return 1;
1405
1406	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1407	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1408			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1409			"QM PF usage counter timed out",
1410			poll_cnt))
1411		return 1;
1412
1413	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1414	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1415			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1416			"Timers VNIC usage counter timed out",
1417			poll_cnt))
1418		return 1;
1419	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1420			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1421			"Timers NUM_SCANS usage counter timed out",
1422			poll_cnt))
1423		return 1;
1424
1425	/* Wait DMAE PF usage counter to zero */
1426	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1427			dmae_reg_go_c[INIT_DMAE_C(bp)],
1428			"DMAE command register timed out",
1429			poll_cnt))
1430		return 1;
1431
1432	return 0;
1433}
1434
1435static void bnx2x_hw_enable_status(struct bnx2x *bp)
1436{
1437	u32 val;
1438
1439	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1440	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1441
1442	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1443	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1444
1445	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1446	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1447
1448	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1449	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1450
1451	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1452	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1453
1454	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1455	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1456
1457	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1458	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1459
1460	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1461	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1462	   val);
1463}
1464
1465static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1466{
1467	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1468
1469	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1470
1471	/* Re-enable PF target read access */
1472	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1473
1474	/* Poll HW usage counters */
1475	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1476	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1477		return -EBUSY;
1478
1479	/* Zero the igu 'trailing edge' and 'leading edge' */
1480
1481	/* Send the FW cleanup command */
1482	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1483		return -EBUSY;
1484
1485	/* ATC cleanup */
1486
1487	/* Verify TX hw is flushed */
1488	bnx2x_tx_hw_flushed(bp, poll_cnt);
1489
1490	/* Wait 100ms (not adjusted according to platform) */
1491	msleep(100);
1492
1493	/* Verify no pending pci transactions */
1494	if (bnx2x_is_pcie_pending(bp->pdev))
1495		BNX2X_ERR("PCIE Transactions still pending\n");
1496
1497	/* Debug */
1498	bnx2x_hw_enable_status(bp);
1499
1500	/*
1501	 * Master enable - Due to WB DMAE writes performed before this
1502	 * register is re-initialized as part of the regular function init
1503	 */
1504	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1505
1506	return 0;
1507}
1508
1509static void bnx2x_hc_int_enable(struct bnx2x *bp)
1510{
1511	int port = BP_PORT(bp);
1512	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1513	u32 val = REG_RD(bp, addr);
1514	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1515	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1516	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1517
1518	if (msix) {
1519		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1520			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1521		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1523		if (single_msix)
1524			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1525	} else if (msi) {
1526		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1527		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1528			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1529			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1530	} else {
1531		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1532			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1533			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1534			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1535
1536		if (!CHIP_IS_E1(bp)) {
1537			DP(NETIF_MSG_IFUP,
1538			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1539
1540			REG_WR(bp, addr, val);
1541
1542			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1543		}
1544	}
1545
1546	if (CHIP_IS_E1(bp))
1547		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1548
1549	DP(NETIF_MSG_IFUP,
1550	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1551	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1552
1553	REG_WR(bp, addr, val);
1554	/*
1555	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1556	 */
1557	mmiowb();
1558	barrier();
1559
1560	if (!CHIP_IS_E1(bp)) {
1561		/* init leading/trailing edge */
1562		if (IS_MF(bp)) {
1563			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1564			if (bp->port.pmf)
1565				/* enable nig and gpio3 attention */
1566				val |= 0x1100;
1567		} else
1568			val = 0xffff;
1569
1570		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1571		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1572	}
1573
1574	/* Make sure that interrupts are indeed enabled from here on */
1575	mmiowb();
1576}
1577
1578static void bnx2x_igu_int_enable(struct bnx2x *bp)
1579{
1580	u32 val;
1581	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1582	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1583	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1584
1585	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1586
1587	if (msix) {
1588		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1589			 IGU_PF_CONF_SINGLE_ISR_EN);
1590		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1591			IGU_PF_CONF_ATTN_BIT_EN);
1592
1593		if (single_msix)
1594			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1595	} else if (msi) {
1596		val &= ~IGU_PF_CONF_INT_LINE_EN;
1597		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1598			IGU_PF_CONF_ATTN_BIT_EN |
1599			IGU_PF_CONF_SINGLE_ISR_EN);
1600	} else {
1601		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1602		val |= (IGU_PF_CONF_INT_LINE_EN |
1603			IGU_PF_CONF_ATTN_BIT_EN |
1604			IGU_PF_CONF_SINGLE_ISR_EN);
1605	}
1606
1607	/* Clean previous status - need to configure igu prior to ack*/
1608	if ((!msix) || single_msix) {
1609		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1610		bnx2x_ack_int(bp);
1611	}
1612
1613	val |= IGU_PF_CONF_FUNC_EN;
1614
1615	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1616	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1617
1618	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1619
1620	if (val & IGU_PF_CONF_INT_LINE_EN)
1621		pci_intx(bp->pdev, true);
1622
1623	barrier();
1624
1625	/* init leading/trailing edge */
1626	if (IS_MF(bp)) {
1627		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1628		if (bp->port.pmf)
1629			/* enable nig and gpio3 attention */
1630			val |= 0x1100;
1631	} else
1632		val = 0xffff;
1633
1634	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1635	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1636
1637	/* Make sure that interrupts are indeed enabled from here on */
1638	mmiowb();
1639}
1640
1641void bnx2x_int_enable(struct bnx2x *bp)
1642{
1643	if (bp->common.int_block == INT_BLOCK_HC)
1644		bnx2x_hc_int_enable(bp);
1645	else
1646		bnx2x_igu_int_enable(bp);
1647}
1648
1649void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1650{
1651	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1652	int i, offset;
1653
1654	if (disable_hw)
1655		/* prevent the HW from sending interrupts */
1656		bnx2x_int_disable(bp);
1657
1658	/* make sure all ISRs are done */
1659	if (msix) {
1660		synchronize_irq(bp->msix_table[0].vector);
1661		offset = 1;
1662		if (CNIC_SUPPORT(bp))
1663			offset++;
1664		for_each_eth_queue(bp, i)
1665			synchronize_irq(bp->msix_table[offset++].vector);
1666	} else
1667		synchronize_irq(bp->pdev->irq);
1668
1669	/* make sure sp_task is not running */
1670	cancel_delayed_work(&bp->sp_task);
1671	cancel_delayed_work(&bp->period_task);
1672	flush_workqueue(bnx2x_wq);
1673}
1674
1675/* fast path */
1676
1677/*
1678 * General service functions
1679 */
1680
1681/* Return true if succeeded to acquire the lock */
1682static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1683{
1684	u32 lock_status;
1685	u32 resource_bit = (1 << resource);
1686	int func = BP_FUNC(bp);
1687	u32 hw_lock_control_reg;
1688
1689	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1690	   "Trying to take a lock on resource %d\n", resource);
1691
1692	/* Validating that the resource is within range */
1693	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1694		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1695		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1696		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1697		return false;
1698	}
1699
1700	if (func <= 5)
1701		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1702	else
1703		hw_lock_control_reg =
1704				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1705
1706	/* Try to acquire the lock */
1707	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1708	lock_status = REG_RD(bp, hw_lock_control_reg);
1709	if (lock_status & resource_bit)
1710		return true;
1711
1712	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713	   "Failed to get a lock on resource %d\n", resource);
1714	return false;
1715}
1716
1717/**
1718 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1719 *
1720 * @bp:	driver handle
1721 *
1722 * Returns the recovery leader resource id according to the engine this function
1723 * belongs to. Currently only only 2 engines is supported.
1724 */
1725static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1726{
1727	if (BP_PATH(bp))
1728		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1729	else
1730		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1731}
1732
1733/**
1734 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1735 *
1736 * @bp: driver handle
1737 *
1738 * Tries to acquire a leader lock for current engine.
1739 */
1740static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1741{
1742	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1743}
1744
1745static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1746
1747/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1748static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1749{
1750	/* Set the interrupt occurred bit for the sp-task to recognize it
1751	 * must ack the interrupt and transition according to the IGU
1752	 * state machine.
1753	 */
1754	atomic_set(&bp->interrupt_occurred, 1);
1755
1756	/* The sp_task must execute only after this bit
1757	 * is set, otherwise we will get out of sync and miss all
1758	 * further interrupts. Hence, the barrier.
1759	 */
1760	smp_wmb();
1761
1762	/* schedule sp_task to workqueue */
1763	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1764}
1765
1766void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1767{
1768	struct bnx2x *bp = fp->bp;
1769	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1770	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1771	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1772	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1773
1774	DP(BNX2X_MSG_SP,
1775	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1776	   fp->index, cid, command, bp->state,
1777	   rr_cqe->ramrod_cqe.ramrod_type);
1778
1779	/* If cid is within VF range, replace the slowpath object with the
1780	 * one corresponding to this VF
1781	 */
1782	if (cid >= BNX2X_FIRST_VF_CID  &&
1783	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1784		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1785
1786	switch (command) {
1787	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1788		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1789		drv_cmd = BNX2X_Q_CMD_UPDATE;
1790		break;
1791
1792	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1793		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1794		drv_cmd = BNX2X_Q_CMD_SETUP;
1795		break;
1796
1797	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1798		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1799		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1800		break;
1801
1802	case (RAMROD_CMD_ID_ETH_HALT):
1803		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1804		drv_cmd = BNX2X_Q_CMD_HALT;
1805		break;
1806
1807	case (RAMROD_CMD_ID_ETH_TERMINATE):
1808		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1809		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1810		break;
1811
1812	case (RAMROD_CMD_ID_ETH_EMPTY):
1813		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1814		drv_cmd = BNX2X_Q_CMD_EMPTY;
1815		break;
1816
1817	default:
1818		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1819			  command, fp->index);
1820		return;
1821	}
1822
1823	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1824	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1825		/* q_obj->complete_cmd() failure means that this was
1826		 * an unexpected completion.
1827		 *
1828		 * In this case we don't want to increase the bp->spq_left
1829		 * because apparently we haven't sent this command the first
1830		 * place.
1831		 */
1832#ifdef BNX2X_STOP_ON_ERROR
1833		bnx2x_panic();
1834#else
1835		return;
1836#endif
1837	/* SRIOV: reschedule any 'in_progress' operations */
1838	bnx2x_iov_sp_event(bp, cid, true);
1839
1840	smp_mb__before_atomic_inc();
1841	atomic_inc(&bp->cq_spq_left);
1842	/* push the change in bp->spq_left and towards the memory */
1843	smp_mb__after_atomic_inc();
1844
1845	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1846
1847	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1848	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1849		/* if Q update ramrod is completed for last Q in AFEX vif set
1850		 * flow, then ACK MCP at the end
1851		 *
1852		 * mark pending ACK to MCP bit.
1853		 * prevent case that both bits are cleared.
1854		 * At the end of load/unload driver checks that
1855		 * sp_state is cleared, and this order prevents
1856		 * races
1857		 */
1858		smp_mb__before_clear_bit();
1859		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1860		wmb();
1861		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1862		smp_mb__after_clear_bit();
1863
1864		/* schedule the sp task as mcp ack is required */
1865		bnx2x_schedule_sp_task(bp);
1866	}
1867
1868	return;
1869}
1870
1871irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1872{
1873	struct bnx2x *bp = netdev_priv(dev_instance);
1874	u16 status = bnx2x_ack_int(bp);
1875	u16 mask;
1876	int i;
1877	u8 cos;
1878
1879	/* Return here if interrupt is shared and it's not for us */
1880	if (unlikely(status == 0)) {
1881		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1882		return IRQ_NONE;
1883	}
1884	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1885
1886#ifdef BNX2X_STOP_ON_ERROR
1887	if (unlikely(bp->panic))
1888		return IRQ_HANDLED;
1889#endif
1890
1891	for_each_eth_queue(bp, i) {
1892		struct bnx2x_fastpath *fp = &bp->fp[i];
1893
1894		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1895		if (status & mask) {
1896			/* Handle Rx or Tx according to SB id */
1897			for_each_cos_in_tx_queue(fp, cos)
1898				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1899			prefetch(&fp->sb_running_index[SM_RX_ID]);
1900			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1901			status &= ~mask;
1902		}
1903	}
1904
1905	if (CNIC_SUPPORT(bp)) {
1906		mask = 0x2;
1907		if (status & (mask | 0x1)) {
1908			struct cnic_ops *c_ops = NULL;
1909
1910			rcu_read_lock();
1911			c_ops = rcu_dereference(bp->cnic_ops);
1912			if (c_ops && (bp->cnic_eth_dev.drv_state &
1913				      CNIC_DRV_STATE_HANDLES_IRQ))
1914				c_ops->cnic_handler(bp->cnic_data, NULL);
1915			rcu_read_unlock();
1916
1917			status &= ~mask;
1918		}
1919	}
1920
1921	if (unlikely(status & 0x1)) {
1922
1923		/* schedule sp task to perform default status block work, ack
1924		 * attentions and enable interrupts.
1925		 */
1926		bnx2x_schedule_sp_task(bp);
1927
1928		status &= ~0x1;
1929		if (!status)
1930			return IRQ_HANDLED;
1931	}
1932
1933	if (unlikely(status))
1934		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1935		   status);
1936
1937	return IRQ_HANDLED;
1938}
1939
1940/* Link */
1941
1942/*
1943 * General service functions
1944 */
1945
1946int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1947{
1948	u32 lock_status;
1949	u32 resource_bit = (1 << resource);
1950	int func = BP_FUNC(bp);
1951	u32 hw_lock_control_reg;
1952	int cnt;
1953
1954	/* Validating that the resource is within range */
1955	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1956		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1957		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1958		return -EINVAL;
1959	}
1960
1961	if (func <= 5) {
1962		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1963	} else {
1964		hw_lock_control_reg =
1965				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1966	}
1967
1968	/* Validating that the resource is not already taken */
1969	lock_status = REG_RD(bp, hw_lock_control_reg);
1970	if (lock_status & resource_bit) {
1971		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1972		   lock_status, resource_bit);
1973		return -EEXIST;
1974	}
1975
1976	/* Try for 5 second every 5ms */
1977	for (cnt = 0; cnt < 1000; cnt++) {
1978		/* Try to acquire the lock */
1979		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1980		lock_status = REG_RD(bp, hw_lock_control_reg);
1981		if (lock_status & resource_bit)
1982			return 0;
1983
1984		usleep_range(5000, 10000);
1985	}
1986	BNX2X_ERR("Timeout\n");
1987	return -EAGAIN;
1988}
1989
1990int bnx2x_release_leader_lock(struct bnx2x *bp)
1991{
1992	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1993}
1994
1995int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1996{
1997	u32 lock_status;
1998	u32 resource_bit = (1 << resource);
1999	int func = BP_FUNC(bp);
2000	u32 hw_lock_control_reg;
2001
2002	/* Validating that the resource is within range */
2003	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2004		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2005		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2006		return -EINVAL;
2007	}
2008
2009	if (func <= 5) {
2010		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2011	} else {
2012		hw_lock_control_reg =
2013				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2014	}
2015
2016	/* Validating that the resource is currently taken */
2017	lock_status = REG_RD(bp, hw_lock_control_reg);
2018	if (!(lock_status & resource_bit)) {
2019		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2020			  lock_status, resource_bit);
2021		return -EFAULT;
2022	}
2023
2024	REG_WR(bp, hw_lock_control_reg, resource_bit);
2025	return 0;
2026}
2027
2028int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2029{
2030	/* The GPIO should be swapped if swap register is set and active */
2031	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2032			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2033	int gpio_shift = gpio_num +
2034			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2035	u32 gpio_mask = (1 << gpio_shift);
2036	u32 gpio_reg;
2037	int value;
2038
2039	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2040		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2041		return -EINVAL;
2042	}
2043
2044	/* read GPIO value */
2045	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2046
2047	/* get the requested pin value */
2048	if ((gpio_reg & gpio_mask) == gpio_mask)
2049		value = 1;
2050	else
2051		value = 0;
2052
2053	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2054
2055	return value;
2056}
2057
2058int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2059{
2060	/* The GPIO should be swapped if swap register is set and active */
2061	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2062			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2063	int gpio_shift = gpio_num +
2064			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2065	u32 gpio_mask = (1 << gpio_shift);
2066	u32 gpio_reg;
2067
2068	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2069		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2070		return -EINVAL;
2071	}
2072
2073	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2074	/* read GPIO and mask except the float bits */
2075	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2076
2077	switch (mode) {
2078	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2079		DP(NETIF_MSG_LINK,
2080		   "Set GPIO %d (shift %d) -> output low\n",
2081		   gpio_num, gpio_shift);
2082		/* clear FLOAT and set CLR */
2083		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2084		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2085		break;
2086
2087	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2088		DP(NETIF_MSG_LINK,
2089		   "Set GPIO %d (shift %d) -> output high\n",
2090		   gpio_num, gpio_shift);
2091		/* clear FLOAT and set SET */
2092		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2093		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2094		break;
2095
2096	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2097		DP(NETIF_MSG_LINK,
2098		   "Set GPIO %d (shift %d) -> input\n",
2099		   gpio_num, gpio_shift);
2100		/* set FLOAT */
2101		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2102		break;
2103
2104	default:
2105		break;
2106	}
2107
2108	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2109	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2110
2111	return 0;
2112}
2113
2114int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2115{
2116	u32 gpio_reg = 0;
2117	int rc = 0;
2118
2119	/* Any port swapping should be handled by caller. */
2120
2121	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2122	/* read GPIO and mask except the float bits */
2123	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2124	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2125	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2126	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2127
2128	switch (mode) {
2129	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2131		/* set CLR */
2132		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2133		break;
2134
2135	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2136		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2137		/* set SET */
2138		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2139		break;
2140
2141	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2142		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2143		/* set FLOAT */
2144		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2145		break;
2146
2147	default:
2148		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2149		rc = -EINVAL;
2150		break;
2151	}
2152
2153	if (rc == 0)
2154		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2155
2156	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2157
2158	return rc;
2159}
2160
2161int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2162{
2163	/* The GPIO should be swapped if swap register is set and active */
2164	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2165			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2166	int gpio_shift = gpio_num +
2167			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2168	u32 gpio_mask = (1 << gpio_shift);
2169	u32 gpio_reg;
2170
2171	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2172		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2173		return -EINVAL;
2174	}
2175
2176	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177	/* read GPIO int */
2178	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2179
2180	switch (mode) {
2181	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2182		DP(NETIF_MSG_LINK,
2183		   "Clear GPIO INT %d (shift %d) -> output low\n",
2184		   gpio_num, gpio_shift);
2185		/* clear SET and set CLR */
2186		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2187		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2188		break;
2189
2190	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2191		DP(NETIF_MSG_LINK,
2192		   "Set GPIO INT %d (shift %d) -> output high\n",
2193		   gpio_num, gpio_shift);
2194		/* clear CLR and set SET */
2195		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2196		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2197		break;
2198
2199	default:
2200		break;
2201	}
2202
2203	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2204	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2205
2206	return 0;
2207}
2208
2209static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2210{
2211	u32 spio_reg;
2212
2213	/* Only 2 SPIOs are configurable */
2214	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2215		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2216		return -EINVAL;
2217	}
2218
2219	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2220	/* read SPIO and mask except the float bits */
2221	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2222
2223	switch (mode) {
2224	case MISC_SPIO_OUTPUT_LOW:
2225		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2226		/* clear FLOAT and set CLR */
2227		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2228		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2229		break;
2230
2231	case MISC_SPIO_OUTPUT_HIGH:
2232		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2233		/* clear FLOAT and set SET */
2234		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2235		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2236		break;
2237
2238	case MISC_SPIO_INPUT_HI_Z:
2239		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2240		/* set FLOAT */
2241		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2242		break;
2243
2244	default:
2245		break;
2246	}
2247
2248	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2249	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2250
2251	return 0;
2252}
2253
2254void bnx2x_calc_fc_adv(struct bnx2x *bp)
2255{
2256	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2257	switch (bp->link_vars.ieee_fc &
2258		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2259	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2260		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2261						   ADVERTISED_Pause);
2262		break;
2263
2264	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2265		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2266						  ADVERTISED_Pause);
2267		break;
2268
2269	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2270		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2271		break;
2272
2273	default:
2274		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2275						   ADVERTISED_Pause);
2276		break;
2277	}
2278}
2279
2280static void bnx2x_set_requested_fc(struct bnx2x *bp)
2281{
2282	/* Initialize link parameters structure variables
2283	 * It is recommended to turn off RX FC for jumbo frames
2284	 *  for better performance
2285	 */
2286	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2287		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2288	else
2289		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2290}
2291
2292static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2293{
2294	u32 pause_enabled = 0;
2295
2296	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2297		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2298			pause_enabled = 1;
2299
2300		REG_WR(bp, BAR_USTRORM_INTMEM +
2301			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2302		       pause_enabled);
2303	}
2304
2305	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2306	   pause_enabled ? "enabled" : "disabled");
2307}
2308
2309int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2310{
2311	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2312	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2313
2314	if (!BP_NOMCP(bp)) {
2315		bnx2x_set_requested_fc(bp);
2316		bnx2x_acquire_phy_lock(bp);
2317
2318		if (load_mode == LOAD_DIAG) {
2319			struct link_params *lp = &bp->link_params;
2320			lp->loopback_mode = LOOPBACK_XGXS;
2321			/* do PHY loopback at 10G speed, if possible */
2322			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2323				if (lp->speed_cap_mask[cfx_idx] &
2324				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2325					lp->req_line_speed[cfx_idx] =
2326					SPEED_10000;
2327				else
2328					lp->req_line_speed[cfx_idx] =
2329					SPEED_1000;
2330			}
2331		}
2332
2333		if (load_mode == LOAD_LOOPBACK_EXT) {
2334			struct link_params *lp = &bp->link_params;
2335			lp->loopback_mode = LOOPBACK_EXT;
2336		}
2337
2338		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2339
2340		bnx2x_release_phy_lock(bp);
2341
2342		bnx2x_init_dropless_fc(bp);
2343
2344		bnx2x_calc_fc_adv(bp);
2345
2346		if (bp->link_vars.link_up) {
2347			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2348			bnx2x_link_report(bp);
2349		}
2350		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2351		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2352		return rc;
2353	}
2354	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2355	return -EINVAL;
2356}
2357
2358void bnx2x_link_set(struct bnx2x *bp)
2359{
2360	if (!BP_NOMCP(bp)) {
2361		bnx2x_acquire_phy_lock(bp);
2362		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2363		bnx2x_release_phy_lock(bp);
2364
2365		bnx2x_init_dropless_fc(bp);
2366
2367		bnx2x_calc_fc_adv(bp);
2368	} else
2369		BNX2X_ERR("Bootcode is missing - can not set link\n");
2370}
2371
2372static void bnx2x__link_reset(struct bnx2x *bp)
2373{
2374	if (!BP_NOMCP(bp)) {
2375		bnx2x_acquire_phy_lock(bp);
2376		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2377		bnx2x_release_phy_lock(bp);
2378	} else
2379		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2380}
2381
2382void bnx2x_force_link_reset(struct bnx2x *bp)
2383{
2384	bnx2x_acquire_phy_lock(bp);
2385	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2386	bnx2x_release_phy_lock(bp);
2387}
2388
2389u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2390{
2391	u8 rc = 0;
2392
2393	if (!BP_NOMCP(bp)) {
2394		bnx2x_acquire_phy_lock(bp);
2395		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2396				     is_serdes);
2397		bnx2x_release_phy_lock(bp);
2398	} else
2399		BNX2X_ERR("Bootcode is missing - can not test link\n");
2400
2401	return rc;
2402}
2403
2404/* Calculates the sum of vn_min_rates.
2405   It's needed for further normalizing of the min_rates.
2406   Returns:
2407     sum of vn_min_rates.
2408       or
2409     0 - if all the min_rates are 0.
2410     In the later case fairness algorithm should be deactivated.
2411     If not all min_rates are zero then those that are zeroes will be set to 1.
2412 */
2413static void bnx2x_calc_vn_min(struct bnx2x *bp,
2414				      struct cmng_init_input *input)
2415{
2416	int all_zero = 1;
2417	int vn;
2418
2419	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2420		u32 vn_cfg = bp->mf_config[vn];
2421		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2422				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2423
2424		/* Skip hidden vns */
2425		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2426			vn_min_rate = 0;
2427		/* If min rate is zero - set it to 1 */
2428		else if (!vn_min_rate)
2429			vn_min_rate = DEF_MIN_RATE;
2430		else
2431			all_zero = 0;
2432
2433		input->vnic_min_rate[vn] = vn_min_rate;
2434	}
2435
2436	/* if ETS or all min rates are zeros - disable fairness */
2437	if (BNX2X_IS_ETS_ENABLED(bp)) {
2438		input->flags.cmng_enables &=
2439					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2440		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2441	} else if (all_zero) {
2442		input->flags.cmng_enables &=
2443					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2444		DP(NETIF_MSG_IFUP,
2445		   "All MIN values are zeroes fairness will be disabled\n");
2446	} else
2447		input->flags.cmng_enables |=
2448					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2449}
2450
2451static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2452				    struct cmng_init_input *input)
2453{
2454	u16 vn_max_rate;
2455	u32 vn_cfg = bp->mf_config[vn];
2456
2457	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458		vn_max_rate = 0;
2459	else {
2460		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2461
2462		if (IS_MF_SI(bp)) {
2463			/* maxCfg in percents of linkspeed */
2464			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2465		} else /* SD modes */
2466			/* maxCfg is absolute in 100Mb units */
2467			vn_max_rate = maxCfg * 100;
2468	}
2469
2470	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2471
2472	input->vnic_max_rate[vn] = vn_max_rate;
2473}
2474
2475static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2476{
2477	if (CHIP_REV_IS_SLOW(bp))
2478		return CMNG_FNS_NONE;
2479	if (IS_MF(bp))
2480		return CMNG_FNS_MINMAX;
2481
2482	return CMNG_FNS_NONE;
2483}
2484
2485void bnx2x_read_mf_cfg(struct bnx2x *bp)
2486{
2487	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2488
2489	if (BP_NOMCP(bp))
2490		return; /* what should be the default value in this case */
2491
2492	/* For 2 port configuration the absolute function number formula
2493	 * is:
2494	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2495	 *
2496	 *      and there are 4 functions per port
2497	 *
2498	 * For 4 port configuration it is
2499	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2500	 *
2501	 *      and there are 2 functions per port
2502	 */
2503	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2504		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2505
2506		if (func >= E1H_FUNC_MAX)
2507			break;
2508
2509		bp->mf_config[vn] =
2510			MF_CFG_RD(bp, func_mf_config[func].config);
2511	}
2512	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2513		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2514		bp->flags |= MF_FUNC_DIS;
2515	} else {
2516		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2517		bp->flags &= ~MF_FUNC_DIS;
2518	}
2519}
2520
2521static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2522{
2523	struct cmng_init_input input;
2524	memset(&input, 0, sizeof(struct cmng_init_input));
2525
2526	input.port_rate = bp->link_vars.line_speed;
2527
2528	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2529		int vn;
2530
2531		/* read mf conf from shmem */
2532		if (read_cfg)
2533			bnx2x_read_mf_cfg(bp);
2534
2535		/* vn_weight_sum and enable fairness if not 0 */
2536		bnx2x_calc_vn_min(bp, &input);
2537
2538		/* calculate and set min-max rate for each vn */
2539		if (bp->port.pmf)
2540			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2541				bnx2x_calc_vn_max(bp, vn, &input);
2542
2543		/* always enable rate shaping and fairness */
2544		input.flags.cmng_enables |=
2545					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2546
2547		bnx2x_init_cmng(&input, &bp->cmng);
2548		return;
2549	}
2550
2551	/* rate shaping and fairness are disabled */
2552	DP(NETIF_MSG_IFUP,
2553	   "rate shaping and fairness are disabled\n");
2554}
2555
2556static void storm_memset_cmng(struct bnx2x *bp,
2557			      struct cmng_init *cmng,
2558			      u8 port)
2559{
2560	int vn;
2561	size_t size = sizeof(struct cmng_struct_per_port);
2562
2563	u32 addr = BAR_XSTRORM_INTMEM +
2564			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2565
2566	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2567
2568	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2569		int func = func_by_vn(bp, vn);
2570
2571		addr = BAR_XSTRORM_INTMEM +
2572		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2573		size = sizeof(struct rate_shaping_vars_per_vn);
2574		__storm_memset_struct(bp, addr, size,
2575				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2576
2577		addr = BAR_XSTRORM_INTMEM +
2578		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2579		size = sizeof(struct fairness_vars_per_vn);
2580		__storm_memset_struct(bp, addr, size,
2581				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2582	}
2583}
2584
2585/* init cmng mode in HW according to local configuration */
2586void bnx2x_set_local_cmng(struct bnx2x *bp)
2587{
2588	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2589
2590	if (cmng_fns != CMNG_FNS_NONE) {
2591		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2592		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2593	} else {
2594		/* rate shaping and fairness are disabled */
2595		DP(NETIF_MSG_IFUP,
2596		   "single function mode without fairness\n");
2597	}
2598}
2599
2600/* This function is called upon link interrupt */
2601static void bnx2x_link_attn(struct bnx2x *bp)
2602{
2603	/* Make sure that we are synced with the current statistics */
2604	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2605
2606	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2607
2608	bnx2x_init_dropless_fc(bp);
2609
2610	if (bp->link_vars.link_up) {
2611
2612		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2613			struct host_port_stats *pstats;
2614
2615			pstats = bnx2x_sp(bp, port_stats);
2616			/* reset old mac stats */
2617			memset(&(pstats->mac_stx[0]), 0,
2618			       sizeof(struct mac_stx));
2619		}
2620		if (bp->state == BNX2X_STATE_OPEN)
2621			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2622	}
2623
2624	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2625		bnx2x_set_local_cmng(bp);
2626
2627	__bnx2x_link_report(bp);
2628
2629	if (IS_MF(bp))
2630		bnx2x_link_sync_notify(bp);
2631}
2632
2633void bnx2x__link_status_update(struct bnx2x *bp)
2634{
2635	if (bp->state != BNX2X_STATE_OPEN)
2636		return;
2637
2638	/* read updated dcb configuration */
2639	if (IS_PF(bp)) {
2640		bnx2x_dcbx_pmf_update(bp);
2641		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2642		if (bp->link_vars.link_up)
2643			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2644		else
2645			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2646			/* indicate link status */
2647		bnx2x_link_report(bp);
2648
2649	} else { /* VF */
2650		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2651					  SUPPORTED_10baseT_Full |
2652					  SUPPORTED_100baseT_Half |
2653					  SUPPORTED_100baseT_Full |
2654					  SUPPORTED_1000baseT_Full |
2655					  SUPPORTED_2500baseX_Full |
2656					  SUPPORTED_10000baseT_Full |
2657					  SUPPORTED_TP |
2658					  SUPPORTED_FIBRE |
2659					  SUPPORTED_Autoneg |
2660					  SUPPORTED_Pause |
2661					  SUPPORTED_Asym_Pause);
2662		bp->port.advertising[0] = bp->port.supported[0];
2663
2664		bp->link_params.bp = bp;
2665		bp->link_params.port = BP_PORT(bp);
2666		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2667		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2668		bp->link_params.req_line_speed[0] = SPEED_10000;
2669		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2670		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2671		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2672		bp->link_vars.line_speed = SPEED_10000;
2673		bp->link_vars.link_status =
2674			(LINK_STATUS_LINK_UP |
2675			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2676		bp->link_vars.link_up = 1;
2677		bp->link_vars.duplex = DUPLEX_FULL;
2678		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2679		__bnx2x_link_report(bp);
2680		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681	}
2682}
2683
2684static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2685				  u16 vlan_val, u8 allowed_prio)
2686{
2687	struct bnx2x_func_state_params func_params = {NULL};
2688	struct bnx2x_func_afex_update_params *f_update_params =
2689		&func_params.params.afex_update;
2690
2691	func_params.f_obj = &bp->func_obj;
2692	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2693
2694	/* no need to wait for RAMROD completion, so don't
2695	 * set RAMROD_COMP_WAIT flag
2696	 */
2697
2698	f_update_params->vif_id = vifid;
2699	f_update_params->afex_default_vlan = vlan_val;
2700	f_update_params->allowed_priorities = allowed_prio;
2701
2702	/* if ramrod can not be sent, response to MCP immediately */
2703	if (bnx2x_func_state_change(bp, &func_params) < 0)
2704		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2705
2706	return 0;
2707}
2708
2709static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2710					  u16 vif_index, u8 func_bit_map)
2711{
2712	struct bnx2x_func_state_params func_params = {NULL};
2713	struct bnx2x_func_afex_viflists_params *update_params =
2714		&func_params.params.afex_viflists;
2715	int rc;
2716	u32 drv_msg_code;
2717
2718	/* validate only LIST_SET and LIST_GET are received from switch */
2719	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2720		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2721			  cmd_type);
2722
2723	func_params.f_obj = &bp->func_obj;
2724	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2725
2726	/* set parameters according to cmd_type */
2727	update_params->afex_vif_list_command = cmd_type;
2728	update_params->vif_list_index = vif_index;
2729	update_params->func_bit_map =
2730		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2731	update_params->func_to_clear = 0;
2732	drv_msg_code =
2733		(cmd_type == VIF_LIST_RULE_GET) ?
2734		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2735		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2736
2737	/* if ramrod can not be sent, respond to MCP immediately for
2738	 * SET and GET requests (other are not triggered from MCP)
2739	 */
2740	rc = bnx2x_func_state_change(bp, &func_params);
2741	if (rc < 0)
2742		bnx2x_fw_command(bp, drv_msg_code, 0);
2743
2744	return 0;
2745}
2746
2747static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2748{
2749	struct afex_stats afex_stats;
2750	u32 func = BP_ABS_FUNC(bp);
2751	u32 mf_config;
2752	u16 vlan_val;
2753	u32 vlan_prio;
2754	u16 vif_id;
2755	u8 allowed_prio;
2756	u8 vlan_mode;
2757	u32 addr_to_write, vifid, addrs, stats_type, i;
2758
2759	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2760		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2761		DP(BNX2X_MSG_MCP,
2762		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2763		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2764	}
2765
2766	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2767		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2768		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2769		DP(BNX2X_MSG_MCP,
2770		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2771		   vifid, addrs);
2772		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2773					       addrs);
2774	}
2775
2776	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2777		addr_to_write = SHMEM2_RD(bp,
2778			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2779		stats_type = SHMEM2_RD(bp,
2780			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2781
2782		DP(BNX2X_MSG_MCP,
2783		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2784		   addr_to_write);
2785
2786		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2787
2788		/* write response to scratchpad, for MCP */
2789		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2790			REG_WR(bp, addr_to_write + i*sizeof(u32),
2791			       *(((u32 *)(&afex_stats))+i));
2792
2793		/* send ack message to MCP */
2794		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2795	}
2796
2797	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2798		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2799		bp->mf_config[BP_VN(bp)] = mf_config;
2800		DP(BNX2X_MSG_MCP,
2801		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2802		   mf_config);
2803
2804		/* if VIF_SET is "enabled" */
2805		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2806			/* set rate limit directly to internal RAM */
2807			struct cmng_init_input cmng_input;
2808			struct rate_shaping_vars_per_vn m_rs_vn;
2809			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2810			u32 addr = BAR_XSTRORM_INTMEM +
2811			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2812
2813			bp->mf_config[BP_VN(bp)] = mf_config;
2814
2815			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2816			m_rs_vn.vn_counter.rate =
2817				cmng_input.vnic_max_rate[BP_VN(bp)];
2818			m_rs_vn.vn_counter.quota =
2819				(m_rs_vn.vn_counter.rate *
2820				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2821
2822			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2823
2824			/* read relevant values from mf_cfg struct in shmem */
2825			vif_id =
2826				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2827				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2828				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2829			vlan_val =
2830				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2831				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2832				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2833			vlan_prio = (mf_config &
2834				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2835				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2836			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2837			vlan_mode =
2838				(MF_CFG_RD(bp,
2839					   func_mf_config[func].afex_config) &
2840				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2841				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2842			allowed_prio =
2843				(MF_CFG_RD(bp,
2844					   func_mf_config[func].afex_config) &
2845				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2846				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2847
2848			/* send ramrod to FW, return in case of failure */
2849			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2850						   allowed_prio))
2851				return;
2852
2853			bp->afex_def_vlan_tag = vlan_val;
2854			bp->afex_vlan_mode = vlan_mode;
2855		} else {
2856			/* notify link down because BP->flags is disabled */
2857			bnx2x_link_report(bp);
2858
2859			/* send INVALID VIF ramrod to FW */
2860			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2861
2862			/* Reset the default afex VLAN */
2863			bp->afex_def_vlan_tag = -1;
2864		}
2865	}
2866}
2867
2868static void bnx2x_pmf_update(struct bnx2x *bp)
2869{
2870	int port = BP_PORT(bp);
2871	u32 val;
2872
2873	bp->port.pmf = 1;
2874	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2875
2876	/*
2877	 * We need the mb() to ensure the ordering between the writing to
2878	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2879	 */
2880	smp_mb();
2881
2882	/* queue a periodic task */
2883	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2884
2885	bnx2x_dcbx_pmf_update(bp);
2886
2887	/* enable nig attention */
2888	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2889	if (bp->common.int_block == INT_BLOCK_HC) {
2890		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2891		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2892	} else if (!CHIP_IS_E1x(bp)) {
2893		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2894		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2895	}
2896
2897	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2898}
2899
2900/* end of Link */
2901
2902/* slow path */
2903
2904/*
2905 * General service functions
2906 */
2907
2908/* send the MCP a request, block until there is a reply */
2909u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2910{
2911	int mb_idx = BP_FW_MB_IDX(bp);
2912	u32 seq;
2913	u32 rc = 0;
2914	u32 cnt = 1;
2915	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2916
2917	mutex_lock(&bp->fw_mb_mutex);
2918	seq = ++bp->fw_seq;
2919	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2920	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2921
2922	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2923			(command | seq), param);
2924
2925	do {
2926		/* let the FW do it's magic ... */
2927		msleep(delay);
2928
2929		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2930
2931		/* Give the FW up to 5 second (500*10ms) */
2932	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2933
2934	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2935	   cnt*delay, rc, seq);
2936
2937	/* is this a reply to our command? */
2938	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2939		rc &= FW_MSG_CODE_MASK;
2940	else {
2941		/* FW BUG! */
2942		BNX2X_ERR("FW failed to respond!\n");
2943		bnx2x_fw_dump(bp);
2944		rc = 0;
2945	}
2946	mutex_unlock(&bp->fw_mb_mutex);
2947
2948	return rc;
2949}
2950
2951static void storm_memset_func_cfg(struct bnx2x *bp,
2952				 struct tstorm_eth_function_common_config *tcfg,
2953				 u16 abs_fid)
2954{
2955	size_t size = sizeof(struct tstorm_eth_function_common_config);
2956
2957	u32 addr = BAR_TSTRORM_INTMEM +
2958			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2959
2960	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2961}
2962
2963void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2964{
2965	if (CHIP_IS_E1x(bp)) {
2966		struct tstorm_eth_function_common_config tcfg = {0};
2967
2968		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2969	}
2970
2971	/* Enable the function in the FW */
2972	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2973	storm_memset_func_en(bp, p->func_id, 1);
2974
2975	/* spq */
2976	if (p->func_flgs & FUNC_FLG_SPQ) {
2977		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2978		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2979		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2980	}
2981}
2982
2983/**
2984 * bnx2x_get_common_flags - Return common flags
2985 *
2986 * @bp		device handle
2987 * @fp		queue handle
2988 * @zero_stats	TRUE if statistics zeroing is needed
2989 *
2990 * Return the flags that are common for the Tx-only and not normal connections.
2991 */
2992static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2993					    struct bnx2x_fastpath *fp,
2994					    bool zero_stats)
2995{
2996	unsigned long flags = 0;
2997
2998	/* PF driver will always initialize the Queue to an ACTIVE state */
2999	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3000
3001	/* tx only connections collect statistics (on the same index as the
3002	 * parent connection). The statistics are zeroed when the parent
3003	 * connection is initialized.
3004	 */
3005
3006	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3007	if (zero_stats)
3008		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3009
3010	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3011	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3012
3013#ifdef BNX2X_STOP_ON_ERROR
3014	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3015#endif
3016
3017	return flags;
3018}
3019
3020static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3021				       struct bnx2x_fastpath *fp,
3022				       bool leading)
3023{
3024	unsigned long flags = 0;
3025
3026	/* calculate other queue flags */
3027	if (IS_MF_SD(bp))
3028		__set_bit(BNX2X_Q_FLG_OV, &flags);
3029
3030	if (IS_FCOE_FP(fp)) {
3031		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3032		/* For FCoE - force usage of default priority (for afex) */
3033		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3034	}
3035
3036	if (!fp->disable_tpa) {
3037		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3038		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3039		if (fp->mode == TPA_MODE_GRO)
3040			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3041	}
3042
3043	if (leading) {
3044		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3045		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3046	}
3047
3048	/* Always set HW VLAN stripping */
3049	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3050
3051	/* configure silent vlan removal */
3052	if (IS_MF_AFEX(bp))
3053		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3054
3055	return flags | bnx2x_get_common_flags(bp, fp, true);
3056}
3057
3058static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3059	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3060	u8 cos)
3061{
3062	gen_init->stat_id = bnx2x_stats_id(fp);
3063	gen_init->spcl_id = fp->cl_id;
3064
3065	/* Always use mini-jumbo MTU for FCoE L2 ring */
3066	if (IS_FCOE_FP(fp))
3067		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3068	else
3069		gen_init->mtu = bp->dev->mtu;
3070
3071	gen_init->cos = cos;
3072}
3073
3074static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3075	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3076	struct bnx2x_rxq_setup_params *rxq_init)
3077{
3078	u8 max_sge = 0;
3079	u16 sge_sz = 0;
3080	u16 tpa_agg_size = 0;
3081
3082	if (!fp->disable_tpa) {
3083		pause->sge_th_lo = SGE_TH_LO(bp);
3084		pause->sge_th_hi = SGE_TH_HI(bp);
3085
3086		/* validate SGE ring has enough to cross high threshold */
3087		WARN_ON(bp->dropless_fc &&
3088				pause->sge_th_hi + FW_PREFETCH_CNT >
3089				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3090
3091		tpa_agg_size = TPA_AGG_SIZE;
3092		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3093			SGE_PAGE_SHIFT;
3094		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3095			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3096		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3097	}
3098
3099	/* pause - not for e1 */
3100	if (!CHIP_IS_E1(bp)) {
3101		pause->bd_th_lo = BD_TH_LO(bp);
3102		pause->bd_th_hi = BD_TH_HI(bp);
3103
3104		pause->rcq_th_lo = RCQ_TH_LO(bp);
3105		pause->rcq_th_hi = RCQ_TH_HI(bp);
3106		/*
3107		 * validate that rings have enough entries to cross
3108		 * high thresholds
3109		 */
3110		WARN_ON(bp->dropless_fc &&
3111				pause->bd_th_hi + FW_PREFETCH_CNT >
3112				bp->rx_ring_size);
3113		WARN_ON(bp->dropless_fc &&
3114				pause->rcq_th_hi + FW_PREFETCH_CNT >
3115				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3116
3117		pause->pri_map = 1;
3118	}
3119
3120	/* rxq setup */
3121	rxq_init->dscr_map = fp->rx_desc_mapping;
3122	rxq_init->sge_map = fp->rx_sge_mapping;
3123	rxq_init->rcq_map = fp->rx_comp_mapping;
3124	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3125
3126	/* This should be a maximum number of data bytes that may be
3127	 * placed on the BD (not including paddings).
3128	 */
3129	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3130			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3131
3132	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3133	rxq_init->tpa_agg_sz = tpa_agg_size;
3134	rxq_init->sge_buf_sz = sge_sz;
3135	rxq_init->max_sges_pkt = max_sge;
3136	rxq_init->rss_engine_id = BP_FUNC(bp);
3137	rxq_init->mcast_engine_id = BP_FUNC(bp);
3138
3139	/* Maximum number or simultaneous TPA aggregation for this Queue.
3140	 *
3141	 * For PF Clients it should be the maximum available number.
3142	 * VF driver(s) may want to define it to a smaller value.
3143	 */
3144	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3145
3146	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3147	rxq_init->fw_sb_id = fp->fw_sb_id;
3148
3149	if (IS_FCOE_FP(fp))
3150		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3151	else
3152		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3153	/* configure silent vlan removal
3154	 * if multi function mode is afex, then mask default vlan
3155	 */
3156	if (IS_MF_AFEX(bp)) {
3157		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3158		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3159	}
3160}
3161
3162static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3163	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3164	u8 cos)
3165{
3166	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3167	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3168	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3169	txq_init->fw_sb_id = fp->fw_sb_id;
3170
3171	/*
3172	 * set the tss leading client id for TX classification ==
3173	 * leading RSS client id
3174	 */
3175	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3176
3177	if (IS_FCOE_FP(fp)) {
3178		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3179		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3180	}
3181}
3182
3183static void bnx2x_pf_init(struct bnx2x *bp)
3184{
3185	struct bnx2x_func_init_params func_init = {0};
3186	struct event_ring_data eq_data = { {0} };
3187	u16 flags;
3188
3189	if (!CHIP_IS_E1x(bp)) {
3190		/* reset IGU PF statistics: MSIX + ATTN */
3191		/* PF */
3192		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3193			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3194			   (CHIP_MODE_IS_4_PORT(bp) ?
3195				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3196		/* ATTN */
3197		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3198			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3199			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3200			   (CHIP_MODE_IS_4_PORT(bp) ?
3201				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3202	}
3203
3204	/* function setup flags */
3205	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3206
3207	/* This flag is relevant for E1x only.
3208	 * E2 doesn't have a TPA configuration in a function level.
3209	 */
3210	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3211
3212	func_init.func_flgs = flags;
3213	func_init.pf_id = BP_FUNC(bp);
3214	func_init.func_id = BP_FUNC(bp);
3215	func_init.spq_map = bp->spq_mapping;
3216	func_init.spq_prod = bp->spq_prod_idx;
3217
3218	bnx2x_func_init(bp, &func_init);
3219
3220	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3221
3222	/*
3223	 * Congestion management values depend on the link rate
3224	 * There is no active link so initial link rate is set to 10 Gbps.
3225	 * When the link comes up The congestion management values are
3226	 * re-calculated according to the actual link rate.
3227	 */
3228	bp->link_vars.line_speed = SPEED_10000;
3229	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3230
3231	/* Only the PMF sets the HW */
3232	if (bp->port.pmf)
3233		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3234
3235	/* init Event Queue - PCI bus guarantees correct endianity*/
3236	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3237	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3238	eq_data.producer = bp->eq_prod;
3239	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3240	eq_data.sb_id = DEF_SB_ID;
3241	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3242}
3243
3244static void bnx2x_e1h_disable(struct bnx2x *bp)
3245{
3246	int port = BP_PORT(bp);
3247
3248	bnx2x_tx_disable(bp);
3249
3250	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3251}
3252
3253static void bnx2x_e1h_enable(struct bnx2x *bp)
3254{
3255	int port = BP_PORT(bp);
3256
3257	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3258
3259	/* Tx queue should be only re-enabled */
3260	netif_tx_wake_all_queues(bp->dev);
3261
3262	/*
3263	 * Should not call netif_carrier_on since it will be called if the link
3264	 * is up when checking for link state
3265	 */
3266}
3267
3268#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3269
3270static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3271{
3272	struct eth_stats_info *ether_stat =
3273		&bp->slowpath->drv_info_to_mcp.ether_stat;
3274	struct bnx2x_vlan_mac_obj *mac_obj =
3275		&bp->sp_objs->mac_obj;
3276	int i;
3277
3278	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3279		ETH_STAT_INFO_VERSION_LEN);
3280
3281	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3282	 * mac_local field in ether_stat struct. The base address is offset by 2
3283	 * bytes to account for the field being 8 bytes but a mac address is
3284	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3285	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3286	 * allocated by the ether_stat struct, so the macs will land in their
3287	 * proper positions.
3288	 */
3289	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3290		memset(ether_stat->mac_local + i, 0,
3291		       sizeof(ether_stat->mac_local[0]));
3292	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3293				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3294				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3295				ETH_ALEN);
3296	ether_stat->mtu_size = bp->dev->mtu;
3297	if (bp->dev->features & NETIF_F_RXCSUM)
3298		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3299	if (bp->dev->features & NETIF_F_TSO)
3300		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3301	ether_stat->feature_flags |= bp->common.boot_mode;
3302
3303	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3304
3305	ether_stat->txq_size = bp->tx_ring_size;
3306	ether_stat->rxq_size = bp->rx_ring_size;
3307
3308#ifdef CONFIG_BNX2X_SRIOV
3309	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3310#endif
3311}
3312
3313static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3314{
3315	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3316	struct fcoe_stats_info *fcoe_stat =
3317		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3318
3319	if (!CNIC_LOADED(bp))
3320		return;
3321
3322	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3323
3324	fcoe_stat->qos_priority =
3325		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3326
3327	/* insert FCoE stats from ramrod response */
3328	if (!NO_FCOE(bp)) {
3329		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3330			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3331			tstorm_queue_statistics;
3332
3333		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3334			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3335			xstorm_queue_statistics;
3336
3337		struct fcoe_statistics_params *fw_fcoe_stat =
3338			&bp->fw_stats_data->fcoe;
3339
3340		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3341			  fcoe_stat->rx_bytes_lo,
3342			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3343
3344		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3345			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3346			  fcoe_stat->rx_bytes_lo,
3347			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3348
3349		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3350			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3351			  fcoe_stat->rx_bytes_lo,
3352			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3353
3354		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3355			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3356			  fcoe_stat->rx_bytes_lo,
3357			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3358
3359		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3360			  fcoe_stat->rx_frames_lo,
3361			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3362
3363		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3364			  fcoe_stat->rx_frames_lo,
3365			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3366
3367		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3368			  fcoe_stat->rx_frames_lo,
3369			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3370
3371		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3372			  fcoe_stat->rx_frames_lo,
3373			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3374
3375		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3376			  fcoe_stat->tx_bytes_lo,
3377			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3378
3379		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3380			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3381			  fcoe_stat->tx_bytes_lo,
3382			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3383
3384		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3385			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3386			  fcoe_stat->tx_bytes_lo,
3387			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3388
3389		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3390			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3391			  fcoe_stat->tx_bytes_lo,
3392			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3393
3394		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3395			  fcoe_stat->tx_frames_lo,
3396			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3397
3398		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3399			  fcoe_stat->tx_frames_lo,
3400			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3401
3402		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3403			  fcoe_stat->tx_frames_lo,
3404			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3405
3406		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3407			  fcoe_stat->tx_frames_lo,
3408			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3409	}
3410
3411	/* ask L5 driver to add data to the struct */
3412	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3413}
3414
3415static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3416{
3417	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3418	struct iscsi_stats_info *iscsi_stat =
3419		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3420
3421	if (!CNIC_LOADED(bp))
3422		return;
3423
3424	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3425	       ETH_ALEN);
3426
3427	iscsi_stat->qos_priority =
3428		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3429
3430	/* ask L5 driver to add data to the struct */
3431	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3432}
3433
3434/* called due to MCP event (on pmf):
3435 *	reread new bandwidth configuration
3436 *	configure FW
3437 *	notify others function about the change
3438 */
3439static void bnx2x_config_mf_bw(struct bnx2x *bp)
3440{
3441	if (bp->link_vars.link_up) {
3442		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3443		bnx2x_link_sync_notify(bp);
3444	}
3445	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3446}
3447
3448static void bnx2x_set_mf_bw(struct bnx2x *bp)
3449{
3450	bnx2x_config_mf_bw(bp);
3451	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3452}
3453
3454static void bnx2x_handle_eee_event(struct bnx2x *bp)
3455{
3456	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3457	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3458}
3459
3460static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3461{
3462	enum drv_info_opcode op_code;
3463	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3464
3465	/* if drv_info version supported by MFW doesn't match - send NACK */
3466	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3467		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3468		return;
3469	}
3470
3471	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3472		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3473
3474	memset(&bp->slowpath->drv_info_to_mcp, 0,
3475	       sizeof(union drv_info_to_mcp));
3476
3477	switch (op_code) {
3478	case ETH_STATS_OPCODE:
3479		bnx2x_drv_info_ether_stat(bp);
3480		break;
3481	case FCOE_STATS_OPCODE:
3482		bnx2x_drv_info_fcoe_stat(bp);
3483		break;
3484	case ISCSI_STATS_OPCODE:
3485		bnx2x_drv_info_iscsi_stat(bp);
3486		break;
3487	default:
3488		/* if op code isn't supported - send NACK */
3489		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3490		return;
3491	}
3492
3493	/* if we got drv_info attn from MFW then these fields are defined in
3494	 * shmem2 for sure
3495	 */
3496	SHMEM2_WR(bp, drv_info_host_addr_lo,
3497		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3498	SHMEM2_WR(bp, drv_info_host_addr_hi,
3499		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3500
3501	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3502}
3503
3504static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3505{
3506	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3507
3508	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3509
3510		/*
3511		 * This is the only place besides the function initialization
3512		 * where the bp->flags can change so it is done without any
3513		 * locks
3514		 */
3515		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3516			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3517			bp->flags |= MF_FUNC_DIS;
3518
3519			bnx2x_e1h_disable(bp);
3520		} else {
3521			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3522			bp->flags &= ~MF_FUNC_DIS;
3523
3524			bnx2x_e1h_enable(bp);
3525		}
3526		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3527	}
3528	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3529		bnx2x_config_mf_bw(bp);
3530		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3531	}
3532
3533	/* Report results to MCP */
3534	if (dcc_event)
3535		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3536	else
3537		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3538}
3539
3540/* must be called under the spq lock */
3541static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3542{
3543	struct eth_spe *next_spe = bp->spq_prod_bd;
3544
3545	if (bp->spq_prod_bd == bp->spq_last_bd) {
3546		bp->spq_prod_bd = bp->spq;
3547		bp->spq_prod_idx = 0;
3548		DP(BNX2X_MSG_SP, "end of spq\n");
3549	} else {
3550		bp->spq_prod_bd++;
3551		bp->spq_prod_idx++;
3552	}
3553	return next_spe;
3554}
3555
3556/* must be called under the spq lock */
3557static void bnx2x_sp_prod_update(struct bnx2x *bp)
3558{
3559	int func = BP_FUNC(bp);
3560
3561	/*
3562	 * Make sure that BD data is updated before writing the producer:
3563	 * BD data is written to the memory, the producer is read from the
3564	 * memory, thus we need a full memory barrier to ensure the ordering.
3565	 */
3566	mb();
3567
3568	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3569		 bp->spq_prod_idx);
3570	mmiowb();
3571}
3572
3573/**
3574 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3575 *
3576 * @cmd:	command to check
3577 * @cmd_type:	command type
3578 */
3579static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3580{
3581	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3582	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3583	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3584	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3585	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3586	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3587	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3588		return true;
3589	else
3590		return false;
3591}
3592
3593/**
3594 * bnx2x_sp_post - place a single command on an SP ring
3595 *
3596 * @bp:		driver handle
3597 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3598 * @cid:	SW CID the command is related to
3599 * @data_hi:	command private data address (high 32 bits)
3600 * @data_lo:	command private data address (low 32 bits)
3601 * @cmd_type:	command type (e.g. NONE, ETH)
3602 *
3603 * SP data is handled as if it's always an address pair, thus data fields are
3604 * not swapped to little endian in upper functions. Instead this function swaps
3605 * data as if it's two u32 fields.
3606 */
3607int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3608		  u32 data_hi, u32 data_lo, int cmd_type)
3609{
3610	struct eth_spe *spe;
3611	u16 type;
3612	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3613
3614#ifdef BNX2X_STOP_ON_ERROR
3615	if (unlikely(bp->panic)) {
3616		BNX2X_ERR("Can't post SP when there is panic\n");
3617		return -EIO;
3618	}
3619#endif
3620
3621	spin_lock_bh(&bp->spq_lock);
3622
3623	if (common) {
3624		if (!atomic_read(&bp->eq_spq_left)) {
3625			BNX2X_ERR("BUG! EQ ring full!\n");
3626			spin_unlock_bh(&bp->spq_lock);
3627			bnx2x_panic();
3628			return -EBUSY;
3629		}
3630	} else if (!atomic_read(&bp->cq_spq_left)) {
3631			BNX2X_ERR("BUG! SPQ ring full!\n");
3632			spin_unlock_bh(&bp->spq_lock);
3633			bnx2x_panic();
3634			return -EBUSY;
3635	}
3636
3637	spe = bnx2x_sp_get_next(bp);
3638
3639	/* CID needs port number to be encoded int it */
3640	spe->hdr.conn_and_cmd_data =
3641			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3642				    HW_CID(bp, cid));
3643
3644	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3645
3646	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3647		 SPE_HDR_FUNCTION_ID);
3648
3649	spe->hdr.type = cpu_to_le16(type);
3650
3651	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3652	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3653
3654	/*
3655	 * It's ok if the actual decrement is issued towards the memory
3656	 * somewhere between the spin_lock and spin_unlock. Thus no
3657	 * more explicit memory barrier is needed.
3658	 */
3659	if (common)
3660		atomic_dec(&bp->eq_spq_left);
3661	else
3662		atomic_dec(&bp->cq_spq_left);
3663
3664	DP(BNX2X_MSG_SP,
3665	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3666	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3667	   (u32)(U64_LO(bp->spq_mapping) +
3668	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3669	   HW_CID(bp, cid), data_hi, data_lo, type,
3670	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3671
3672	bnx2x_sp_prod_update(bp);
3673	spin_unlock_bh(&bp->spq_lock);
3674	return 0;
3675}
3676
3677/* acquire split MCP access lock register */
3678static int bnx2x_acquire_alr(struct bnx2x *bp)
3679{
3680	u32 j, val;
3681	int rc = 0;
3682
3683	might_sleep();
3684	for (j = 0; j < 1000; j++) {
3685		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3686		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3687		if (val & MCPR_ACCESS_LOCK_LOCK)
3688			break;
3689
3690		usleep_range(5000, 10000);
3691	}
3692	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3693		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3694		rc = -EBUSY;
3695	}
3696
3697	return rc;
3698}
3699
3700/* release split MCP access lock register */
3701static void bnx2x_release_alr(struct bnx2x *bp)
3702{
3703	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3704}
3705
3706#define BNX2X_DEF_SB_ATT_IDX	0x0001
3707#define BNX2X_DEF_SB_IDX	0x0002
3708
3709static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3710{
3711	struct host_sp_status_block *def_sb = bp->def_status_blk;
3712	u16 rc = 0;
3713
3714	barrier(); /* status block is written to by the chip */
3715	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3716		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3717		rc |= BNX2X_DEF_SB_ATT_IDX;
3718	}
3719
3720	if (bp->def_idx != def_sb->sp_sb.running_index) {
3721		bp->def_idx = def_sb->sp_sb.running_index;
3722		rc |= BNX2X_DEF_SB_IDX;
3723	}
3724
3725	/* Do not reorder: indices reading should complete before handling */
3726	barrier();
3727	return rc;
3728}
3729
3730/*
3731 * slow path service functions
3732 */
3733
3734static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3735{
3736	int port = BP_PORT(bp);
3737	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3738			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3739	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3740				       NIG_REG_MASK_INTERRUPT_PORT0;
3741	u32 aeu_mask;
3742	u32 nig_mask = 0;
3743	u32 reg_addr;
3744
3745	if (bp->attn_state & asserted)
3746		BNX2X_ERR("IGU ERROR\n");
3747
3748	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3749	aeu_mask = REG_RD(bp, aeu_addr);
3750
3751	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3752	   aeu_mask, asserted);
3753	aeu_mask &= ~(asserted & 0x3ff);
3754	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3755
3756	REG_WR(bp, aeu_addr, aeu_mask);
3757	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3758
3759	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3760	bp->attn_state |= asserted;
3761	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3762
3763	if (asserted & ATTN_HARD_WIRED_MASK) {
3764		if (asserted & ATTN_NIG_FOR_FUNC) {
3765
3766			bnx2x_acquire_phy_lock(bp);
3767
3768			/* save nig interrupt mask */
3769			nig_mask = REG_RD(bp, nig_int_mask_addr);
3770
3771			/* If nig_mask is not set, no need to call the update
3772			 * function.
3773			 */
3774			if (nig_mask) {
3775				REG_WR(bp, nig_int_mask_addr, 0);
3776
3777				bnx2x_link_attn(bp);
3778			}
3779
3780			/* handle unicore attn? */
3781		}
3782		if (asserted & ATTN_SW_TIMER_4_FUNC)
3783			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3784
3785		if (asserted & GPIO_2_FUNC)
3786			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3787
3788		if (asserted & GPIO_3_FUNC)
3789			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3790
3791		if (asserted & GPIO_4_FUNC)
3792			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3793
3794		if (port == 0) {
3795			if (asserted & ATTN_GENERAL_ATTN_1) {
3796				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3797				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3798			}
3799			if (asserted & ATTN_GENERAL_ATTN_2) {
3800				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3801				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3802			}
3803			if (asserted & ATTN_GENERAL_ATTN_3) {
3804				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3805				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3806			}
3807		} else {
3808			if (asserted & ATTN_GENERAL_ATTN_4) {
3809				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3810				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3811			}
3812			if (asserted & ATTN_GENERAL_ATTN_5) {
3813				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3814				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3815			}
3816			if (asserted & ATTN_GENERAL_ATTN_6) {
3817				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3818				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3819			}
3820		}
3821
3822	} /* if hardwired */
3823
3824	if (bp->common.int_block == INT_BLOCK_HC)
3825		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3826			    COMMAND_REG_ATTN_BITS_SET);
3827	else
3828		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3829
3830	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3831	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3832	REG_WR(bp, reg_addr, asserted);
3833
3834	/* now set back the mask */
3835	if (asserted & ATTN_NIG_FOR_FUNC) {
3836		/* Verify that IGU ack through BAR was written before restoring
3837		 * NIG mask. This loop should exit after 2-3 iterations max.
3838		 */
3839		if (bp->common.int_block != INT_BLOCK_HC) {
3840			u32 cnt = 0, igu_acked;
3841			do {
3842				igu_acked = REG_RD(bp,
3843						   IGU_REG_ATTENTION_ACK_BITS);
3844			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3845				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3846			if (!igu_acked)
3847				DP(NETIF_MSG_HW,
3848				   "Failed to verify IGU ack on time\n");
3849			barrier();
3850		}
3851		REG_WR(bp, nig_int_mask_addr, nig_mask);
3852		bnx2x_release_phy_lock(bp);
3853	}
3854}
3855
3856static void bnx2x_fan_failure(struct bnx2x *bp)
3857{
3858	int port = BP_PORT(bp);
3859	u32 ext_phy_config;
3860	/* mark the failure */
3861	ext_phy_config =
3862		SHMEM_RD(bp,
3863			 dev_info.port_hw_config[port].external_phy_config);
3864
3865	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3866	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3867	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3868		 ext_phy_config);
3869
3870	/* log the failure */
3871	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3872			    "Please contact OEM Support for assistance\n");
3873
3874	/* Schedule device reset (unload)
3875	 * This is due to some boards consuming sufficient power when driver is
3876	 * up to overheat if fan fails.
3877	 */
3878	smp_mb__before_clear_bit();
3879	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3880	smp_mb__after_clear_bit();
3881	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3882}
3883
3884static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3885{
3886	int port = BP_PORT(bp);
3887	int reg_offset;
3888	u32 val;
3889
3890	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3891			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3892
3893	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3894
3895		val = REG_RD(bp, reg_offset);
3896		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3897		REG_WR(bp, reg_offset, val);
3898
3899		BNX2X_ERR("SPIO5 hw attention\n");
3900
3901		/* Fan failure attention */
3902		bnx2x_hw_reset_phy(&bp->link_params);
3903		bnx2x_fan_failure(bp);
3904	}
3905
3906	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3907		bnx2x_acquire_phy_lock(bp);
3908		bnx2x_handle_module_detect_int(&bp->link_params);
3909		bnx2x_release_phy_lock(bp);
3910	}
3911
3912	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3913
3914		val = REG_RD(bp, reg_offset);
3915		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3916		REG_WR(bp, reg_offset, val);
3917
3918		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3919			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3920		bnx2x_panic();
3921	}
3922}
3923
3924static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3925{
3926	u32 val;
3927
3928	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3929
3930		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3931		BNX2X_ERR("DB hw attention 0x%x\n", val);
3932		/* DORQ discard attention */
3933		if (val & 0x2)
3934			BNX2X_ERR("FATAL error from DORQ\n");
3935	}
3936
3937	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3938
3939		int port = BP_PORT(bp);
3940		int reg_offset;
3941
3942		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3943				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3944
3945		val = REG_RD(bp, reg_offset);
3946		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3947		REG_WR(bp, reg_offset, val);
3948
3949		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3950			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3951		bnx2x_panic();
3952	}
3953}
3954
3955static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3956{
3957	u32 val;
3958
3959	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3960
3961		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3962		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3963		/* CFC error attention */
3964		if (val & 0x2)
3965			BNX2X_ERR("FATAL error from CFC\n");
3966	}
3967
3968	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3969		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3970		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3971		/* RQ_USDMDP_FIFO_OVERFLOW */
3972		if (val & 0x18000)
3973			BNX2X_ERR("FATAL error from PXP\n");
3974
3975		if (!CHIP_IS_E1x(bp)) {
3976			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3977			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3978		}
3979	}
3980
3981	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3982
3983		int port = BP_PORT(bp);
3984		int reg_offset;
3985
3986		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3987				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3988
3989		val = REG_RD(bp, reg_offset);
3990		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3991		REG_WR(bp, reg_offset, val);
3992
3993		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3994			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3995		bnx2x_panic();
3996	}
3997}
3998
3999static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4000{
4001	u32 val;
4002
4003	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4004
4005		if (attn & BNX2X_PMF_LINK_ASSERT) {
4006			int func = BP_FUNC(bp);
4007
4008			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4009			bnx2x_read_mf_cfg(bp);
4010			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4011					func_mf_config[BP_ABS_FUNC(bp)].config);
4012			val = SHMEM_RD(bp,
4013				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4014			if (val & DRV_STATUS_DCC_EVENT_MASK)
4015				bnx2x_dcc_event(bp,
4016					    (val & DRV_STATUS_DCC_EVENT_MASK));
4017
4018			if (val & DRV_STATUS_SET_MF_BW)
4019				bnx2x_set_mf_bw(bp);
4020
4021			if (val & DRV_STATUS_DRV_INFO_REQ)
4022				bnx2x_handle_drv_info_req(bp);
4023
4024			if (val & DRV_STATUS_VF_DISABLED)
4025				bnx2x_vf_handle_flr_event(bp);
4026
4027			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4028				bnx2x_pmf_update(bp);
4029
4030			if (bp->port.pmf &&
4031			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4032				bp->dcbx_enabled > 0)
4033				/* start dcbx state machine */
4034				bnx2x_dcbx_set_params(bp,
4035					BNX2X_DCBX_STATE_NEG_RECEIVED);
4036			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4037				bnx2x_handle_afex_cmd(bp,
4038					val & DRV_STATUS_AFEX_EVENT_MASK);
4039			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4040				bnx2x_handle_eee_event(bp);
4041			if (bp->link_vars.periodic_flags &
4042			    PERIODIC_FLAGS_LINK_EVENT) {
4043				/*  sync with link */
4044				bnx2x_acquire_phy_lock(bp);
4045				bp->link_vars.periodic_flags &=
4046					~PERIODIC_FLAGS_LINK_EVENT;
4047				bnx2x_release_phy_lock(bp);
4048				if (IS_MF(bp))
4049					bnx2x_link_sync_notify(bp);
4050				bnx2x_link_report(bp);
4051			}
4052			/* Always call it here: bnx2x_link_report() will
4053			 * prevent the link indication duplication.
4054			 */
4055			bnx2x__link_status_update(bp);
4056		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4057
4058			BNX2X_ERR("MC assert!\n");
4059			bnx2x_mc_assert(bp);
4060			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4061			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4062			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4063			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4064			bnx2x_panic();
4065
4066		} else if (attn & BNX2X_MCP_ASSERT) {
4067
4068			BNX2X_ERR("MCP assert!\n");
4069			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4070			bnx2x_fw_dump(bp);
4071
4072		} else
4073			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4074	}
4075
4076	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4077		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4078		if (attn & BNX2X_GRC_TIMEOUT) {
4079			val = CHIP_IS_E1(bp) ? 0 :
4080					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4081			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4082		}
4083		if (attn & BNX2X_GRC_RSV) {
4084			val = CHIP_IS_E1(bp) ? 0 :
4085					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4086			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4087		}
4088		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4089	}
4090}
4091
4092/*
4093 * Bits map:
4094 * 0-7   - Engine0 load counter.
4095 * 8-15  - Engine1 load counter.
4096 * 16    - Engine0 RESET_IN_PROGRESS bit.
4097 * 17    - Engine1 RESET_IN_PROGRESS bit.
4098 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4099 *         on the engine
4100 * 19    - Engine1 ONE_IS_LOADED.
4101 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4102 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4103 *         just the one belonging to its engine).
4104 *
4105 */
4106#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4107
4108#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4109#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4110#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4111#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4112#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4113#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4114#define BNX2X_GLOBAL_RESET_BIT		0x00040000
4115
4116/*
4117 * Set the GLOBAL_RESET bit.
4118 *
4119 * Should be run under rtnl lock
4120 */
4121void bnx2x_set_reset_global(struct bnx2x *bp)
4122{
4123	u32 val;
4124	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4125	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4126	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4127	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128}
4129
4130/*
4131 * Clear the GLOBAL_RESET bit.
4132 *
4133 * Should be run under rtnl lock
4134 */
4135static void bnx2x_clear_reset_global(struct bnx2x *bp)
4136{
4137	u32 val;
4138	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4139	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4140	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4141	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4142}
4143
4144/*
4145 * Checks the GLOBAL_RESET bit.
4146 *
4147 * should be run under rtnl lock
4148 */
4149static bool bnx2x_reset_is_global(struct bnx2x *bp)
4150{
4151	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4152
4153	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4154	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4155}
4156
4157/*
4158 * Clear RESET_IN_PROGRESS bit for the current engine.
4159 *
4160 * Should be run under rtnl lock
4161 */
4162static void bnx2x_set_reset_done(struct bnx2x *bp)
4163{
4164	u32 val;
4165	u32 bit = BP_PATH(bp) ?
4166		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4167	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4168	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4169
4170	/* Clear the bit */
4171	val &= ~bit;
4172	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4173
4174	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4175}
4176
4177/*
4178 * Set RESET_IN_PROGRESS for the current engine.
4179 *
4180 * should be run under rtnl lock
4181 */
4182void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4183{
4184	u32 val;
4185	u32 bit = BP_PATH(bp) ?
4186		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4187	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4188	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4189
4190	/* Set the bit */
4191	val |= bit;
4192	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4193	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4194}
4195
4196/*
4197 * Checks the RESET_IN_PROGRESS bit for the given engine.
4198 * should be run under rtnl lock
4199 */
4200bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4201{
4202	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4203	u32 bit = engine ?
4204		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4205
4206	/* return false if bit is set */
4207	return (val & bit) ? false : true;
4208}
4209
4210/*
4211 * set pf load for the current pf.
4212 *
4213 * should be run under rtnl lock
4214 */
4215void bnx2x_set_pf_load(struct bnx2x *bp)
4216{
4217	u32 val1, val;
4218	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4219			     BNX2X_PATH0_LOAD_CNT_MASK;
4220	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4221			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4222
4223	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4224	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4225
4226	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4227
4228	/* get the current counter value */
4229	val1 = (val & mask) >> shift;
4230
4231	/* set bit of that PF */
4232	val1 |= (1 << bp->pf_num);
4233
4234	/* clear the old value */
4235	val &= ~mask;
4236
4237	/* set the new one */
4238	val |= ((val1 << shift) & mask);
4239
4240	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4241	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4242}
4243
4244/**
4245 * bnx2x_clear_pf_load - clear pf load mark
4246 *
4247 * @bp:		driver handle
4248 *
4249 * Should be run under rtnl lock.
4250 * Decrements the load counter for the current engine. Returns
4251 * whether other functions are still loaded
4252 */
4253bool bnx2x_clear_pf_load(struct bnx2x *bp)
4254{
4255	u32 val1, val;
4256	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4257			     BNX2X_PATH0_LOAD_CNT_MASK;
4258	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4259			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4260
4261	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4262	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4263	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4264
4265	/* get the current counter value */
4266	val1 = (val & mask) >> shift;
4267
4268	/* clear bit of that PF */
4269	val1 &= ~(1 << bp->pf_num);
4270
4271	/* clear the old value */
4272	val &= ~mask;
4273
4274	/* set the new one */
4275	val |= ((val1 << shift) & mask);
4276
4277	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4278	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4279	return val1 != 0;
4280}
4281
4282/*
4283 * Read the load status for the current engine.
4284 *
4285 * should be run under rtnl lock
4286 */
4287static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4288{
4289	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4290			     BNX2X_PATH0_LOAD_CNT_MASK);
4291	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4292			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4293	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4294
4295	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4296
4297	val = (val & mask) >> shift;
4298
4299	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4300	   engine, val);
4301
4302	return val != 0;
4303}
4304
4305static void _print_parity(struct bnx2x *bp, u32 reg)
4306{
4307	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4308}
4309
4310static void _print_next_block(int idx, const char *blk)
4311{
4312	pr_cont("%s%s", idx ? ", " : "", blk);
4313}
4314
4315static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4316					    int *par_num, bool print)
4317{
4318	u32 cur_bit;
4319	bool res;
4320	int i;
4321
4322	res = false;
4323
4324	for (i = 0; sig; i++) {
4325		cur_bit = (0x1UL << i);
4326		if (sig & cur_bit) {
4327			res |= true; /* Each bit is real error! */
4328
4329			if (print) {
4330				switch (cur_bit) {
4331				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4332					_print_next_block((*par_num)++, "BRB");
4333					_print_parity(bp,
4334						      BRB1_REG_BRB1_PRTY_STS);
4335					break;
4336				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4337					_print_next_block((*par_num)++,
4338							  "PARSER");
4339					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4340					break;
4341				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4342					_print_next_block((*par_num)++, "TSDM");
4343					_print_parity(bp,
4344						      TSDM_REG_TSDM_PRTY_STS);
4345					break;
4346				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4347					_print_next_block((*par_num)++,
4348							  "SEARCHER");
4349					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4350					break;
4351				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4352					_print_next_block((*par_num)++, "TCM");
4353					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4354					break;
4355				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4356					_print_next_block((*par_num)++,
4357							  "TSEMI");
4358					_print_parity(bp,
4359						      TSEM_REG_TSEM_PRTY_STS_0);
4360					_print_parity(bp,
4361						      TSEM_REG_TSEM_PRTY_STS_1);
4362					break;
4363				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4364					_print_next_block((*par_num)++, "XPB");
4365					_print_parity(bp, GRCBASE_XPB +
4366							  PB_REG_PB_PRTY_STS);
4367					break;
4368				}
4369			}
4370
4371			/* Clear the bit */
4372			sig &= ~cur_bit;
4373		}
4374	}
4375
4376	return res;
4377}
4378
4379static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4380					    int *par_num, bool *global,
4381					    bool print)
4382{
4383	u32 cur_bit;
4384	bool res;
4385	int i;
4386
4387	res = false;
4388
4389	for (i = 0; sig; i++) {
4390		cur_bit = (0x1UL << i);
4391		if (sig & cur_bit) {
4392			res |= true; /* Each bit is real error! */
4393			switch (cur_bit) {
4394			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4395				if (print) {
4396					_print_next_block((*par_num)++, "PBF");
4397					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4398				}
4399				break;
4400			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4401				if (print) {
4402					_print_next_block((*par_num)++, "QM");
4403					_print_parity(bp, QM_REG_QM_PRTY_STS);
4404				}
4405				break;
4406			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4407				if (print) {
4408					_print_next_block((*par_num)++, "TM");
4409					_print_parity(bp, TM_REG_TM_PRTY_STS);
4410				}
4411				break;
4412			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4413				if (print) {
4414					_print_next_block((*par_num)++, "XSDM");
4415					_print_parity(bp,
4416						      XSDM_REG_XSDM_PRTY_STS);
4417				}
4418				break;
4419			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4420				if (print) {
4421					_print_next_block((*par_num)++, "XCM");
4422					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4423				}
4424				break;
4425			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4426				if (print) {
4427					_print_next_block((*par_num)++,
4428							  "XSEMI");
4429					_print_parity(bp,
4430						      XSEM_REG_XSEM_PRTY_STS_0);
4431					_print_parity(bp,
4432						      XSEM_REG_XSEM_PRTY_STS_1);
4433				}
4434				break;
4435			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4436				if (print) {
4437					_print_next_block((*par_num)++,
4438							  "DOORBELLQ");
4439					_print_parity(bp,
4440						      DORQ_REG_DORQ_PRTY_STS);
4441				}
4442				break;
4443			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4444				if (print) {
4445					_print_next_block((*par_num)++, "NIG");
4446					if (CHIP_IS_E1x(bp)) {
4447						_print_parity(bp,
4448							NIG_REG_NIG_PRTY_STS);
4449					} else {
4450						_print_parity(bp,
4451							NIG_REG_NIG_PRTY_STS_0);
4452						_print_parity(bp,
4453							NIG_REG_NIG_PRTY_STS_1);
4454					}
4455				}
4456				break;
4457			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4458				if (print)
4459					_print_next_block((*par_num)++,
4460							  "VAUX PCI CORE");
4461				*global = true;
4462				break;
4463			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4464				if (print) {
4465					_print_next_block((*par_num)++,
4466							  "DEBUG");
4467					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4468				}
4469				break;
4470			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4471				if (print) {
4472					_print_next_block((*par_num)++, "USDM");
4473					_print_parity(bp,
4474						      USDM_REG_USDM_PRTY_STS);
4475				}
4476				break;
4477			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4478				if (print) {
4479					_print_next_block((*par_num)++, "UCM");
4480					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4481				}
4482				break;
4483			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4484				if (print) {
4485					_print_next_block((*par_num)++,
4486							  "USEMI");
4487					_print_parity(bp,
4488						      USEM_REG_USEM_PRTY_STS_0);
4489					_print_parity(bp,
4490						      USEM_REG_USEM_PRTY_STS_1);
4491				}
4492				break;
4493			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4494				if (print) {
4495					_print_next_block((*par_num)++, "UPB");
4496					_print_parity(bp, GRCBASE_UPB +
4497							  PB_REG_PB_PRTY_STS);
4498				}
4499				break;
4500			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4501				if (print) {
4502					_print_next_block((*par_num)++, "CSDM");
4503					_print_parity(bp,
4504						      CSDM_REG_CSDM_PRTY_STS);
4505				}
4506				break;
4507			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4508				if (print) {
4509					_print_next_block((*par_num)++, "CCM");
4510					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4511				}
4512				break;
4513			}
4514
4515			/* Clear the bit */
4516			sig &= ~cur_bit;
4517		}
4518	}
4519
4520	return res;
4521}
4522
4523static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4524					    int *par_num, bool print)
4525{
4526	u32 cur_bit;
4527	bool res;
4528	int i;
4529
4530	res = false;
4531
4532	for (i = 0; sig; i++) {
4533		cur_bit = (0x1UL << i);
4534		if (sig & cur_bit) {
4535			res |= true; /* Each bit is real error! */
4536			if (print) {
4537				switch (cur_bit) {
4538				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4539					_print_next_block((*par_num)++,
4540							  "CSEMI");
4541					_print_parity(bp,
4542						      CSEM_REG_CSEM_PRTY_STS_0);
4543					_print_parity(bp,
4544						      CSEM_REG_CSEM_PRTY_STS_1);
4545					break;
4546				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4547					_print_next_block((*par_num)++, "PXP");
4548					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4549					_print_parity(bp,
4550						      PXP2_REG_PXP2_PRTY_STS_0);
4551					_print_parity(bp,
4552						      PXP2_REG_PXP2_PRTY_STS_1);
4553					break;
4554				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4555					_print_next_block((*par_num)++,
4556							  "PXPPCICLOCKCLIENT");
4557					break;
4558				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4559					_print_next_block((*par_num)++, "CFC");
4560					_print_parity(bp,
4561						      CFC_REG_CFC_PRTY_STS);
4562					break;
4563				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4564					_print_next_block((*par_num)++, "CDU");
4565					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4566					break;
4567				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4568					_print_next_block((*par_num)++, "DMAE");
4569					_print_parity(bp,
4570						      DMAE_REG_DMAE_PRTY_STS);
4571					break;
4572				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4573					_print_next_block((*par_num)++, "IGU");
4574					if (CHIP_IS_E1x(bp))
4575						_print_parity(bp,
4576							HC_REG_HC_PRTY_STS);
4577					else
4578						_print_parity(bp,
4579							IGU_REG_IGU_PRTY_STS);
4580					break;
4581				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4582					_print_next_block((*par_num)++, "MISC");
4583					_print_parity(bp,
4584						      MISC_REG_MISC_PRTY_STS);
4585					break;
4586				}
4587			}
4588
4589			/* Clear the bit */
4590			sig &= ~cur_bit;
4591		}
4592	}
4593
4594	return res;
4595}
4596
4597static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4598					    int *par_num, bool *global,
4599					    bool print)
4600{
4601	bool res = false;
4602	u32 cur_bit;
4603	int i;
4604
4605	for (i = 0; sig; i++) {
4606		cur_bit = (0x1UL << i);
4607		if (sig & cur_bit) {
4608			switch (cur_bit) {
4609			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4610				if (print)
4611					_print_next_block((*par_num)++,
4612							  "MCP ROM");
4613				*global = true;
4614				res |= true;
4615				break;
4616			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4617				if (print)
4618					_print_next_block((*par_num)++,
4619							  "MCP UMP RX");
4620				*global = true;
4621				res |= true;
4622				break;
4623			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4624				if (print)
4625					_print_next_block((*par_num)++,
4626							  "MCP UMP TX");
4627				*global = true;
4628				res |= true;
4629				break;
4630			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4631				if (print)
4632					_print_next_block((*par_num)++,
4633							  "MCP SCPAD");
4634				/* clear latched SCPAD PATIRY from MCP */
4635				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4636				       1UL << 10);
4637				break;
4638			}
4639
4640			/* Clear the bit */
4641			sig &= ~cur_bit;
4642		}
4643	}
4644
4645	return res;
4646}
4647
4648static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4649					    int *par_num, bool print)
4650{
4651	u32 cur_bit;
4652	bool res;
4653	int i;
4654
4655	res = false;
4656
4657	for (i = 0; sig; i++) {
4658		cur_bit = (0x1UL << i);
4659		if (sig & cur_bit) {
4660			res |= true; /* Each bit is real error! */
4661			if (print) {
4662				switch (cur_bit) {
4663				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4664					_print_next_block((*par_num)++,
4665							  "PGLUE_B");
4666					_print_parity(bp,
4667						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4668					break;
4669				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4670					_print_next_block((*par_num)++, "ATC");
4671					_print_parity(bp,
4672						      ATC_REG_ATC_PRTY_STS);
4673					break;
4674				}
4675			}
4676			/* Clear the bit */
4677			sig &= ~cur_bit;
4678		}
4679	}
4680
4681	return res;
4682}
4683
4684static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4685			      u32 *sig)
4686{
4687	bool res = false;
4688
4689	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4690	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4691	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4692	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4693	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4694		int par_num = 0;
4695		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4696				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4697			  sig[0] & HW_PRTY_ASSERT_SET_0,
4698			  sig[1] & HW_PRTY_ASSERT_SET_1,
4699			  sig[2] & HW_PRTY_ASSERT_SET_2,
4700			  sig[3] & HW_PRTY_ASSERT_SET_3,
4701			  sig[4] & HW_PRTY_ASSERT_SET_4);
4702		if (print)
4703			netdev_err(bp->dev,
4704				   "Parity errors detected in blocks: ");
4705		res |= bnx2x_check_blocks_with_parity0(bp,
4706			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4707		res |= bnx2x_check_blocks_with_parity1(bp,
4708			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4709		res |= bnx2x_check_blocks_with_parity2(bp,
4710			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4711		res |= bnx2x_check_blocks_with_parity3(bp,
4712			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4713		res |= bnx2x_check_blocks_with_parity4(bp,
4714			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4715
4716		if (print)
4717			pr_cont("\n");
4718	}
4719
4720	return res;
4721}
4722
4723/**
4724 * bnx2x_chk_parity_attn - checks for parity attentions.
4725 *
4726 * @bp:		driver handle
4727 * @global:	true if there was a global attention
4728 * @print:	show parity attention in syslog
4729 */
4730bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4731{
4732	struct attn_route attn = { {0} };
4733	int port = BP_PORT(bp);
4734
4735	attn.sig[0] = REG_RD(bp,
4736		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4737			     port*4);
4738	attn.sig[1] = REG_RD(bp,
4739		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4740			     port*4);
4741	attn.sig[2] = REG_RD(bp,
4742		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4743			     port*4);
4744	attn.sig[3] = REG_RD(bp,
4745		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4746			     port*4);
4747	/* Since MCP attentions can't be disabled inside the block, we need to
4748	 * read AEU registers to see whether they're currently disabled
4749	 */
4750	attn.sig[3] &= ((REG_RD(bp,
4751				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4752				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4753			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4754			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4755
4756	if (!CHIP_IS_E1x(bp))
4757		attn.sig[4] = REG_RD(bp,
4758			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4759				     port*4);
4760
4761	return bnx2x_parity_attn(bp, global, print, attn.sig);
4762}
4763
4764static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4765{
4766	u32 val;
4767	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4768
4769		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4770		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4771		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4772			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4773		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4774			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4775		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4776			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4777		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4778			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4779		if (val &
4780		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4781			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4782		if (val &
4783		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4784			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4785		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4786			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4787		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4788			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4789		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4790			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4791	}
4792	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4793		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4794		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4795		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4796			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4797		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4798			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4799		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4800			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4801		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4802			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4803		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4804			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4805		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4806			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4807	}
4808
4809	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4810		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4811		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4812		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4813		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4814	}
4815}
4816
4817static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4818{
4819	struct attn_route attn, *group_mask;
4820	int port = BP_PORT(bp);
4821	int index;
4822	u32 reg_addr;
4823	u32 val;
4824	u32 aeu_mask;
4825	bool global = false;
4826
4827	/* need to take HW lock because MCP or other port might also
4828	   try to handle this event */
4829	bnx2x_acquire_alr(bp);
4830
4831	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4832#ifndef BNX2X_STOP_ON_ERROR
4833		bp->recovery_state = BNX2X_RECOVERY_INIT;
4834		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4835		/* Disable HW interrupts */
4836		bnx2x_int_disable(bp);
4837		/* In case of parity errors don't handle attentions so that
4838		 * other function would "see" parity errors.
4839		 */
4840#else
4841		bnx2x_panic();
4842#endif
4843		bnx2x_release_alr(bp);
4844		return;
4845	}
4846
4847	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4848	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4849	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4850	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4851	if (!CHIP_IS_E1x(bp))
4852		attn.sig[4] =
4853		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4854	else
4855		attn.sig[4] = 0;
4856
4857	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4858	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4859
4860	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4861		if (deasserted & (1 << index)) {
4862			group_mask = &bp->attn_group[index];
4863
4864			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4865			   index,
4866			   group_mask->sig[0], group_mask->sig[1],
4867			   group_mask->sig[2], group_mask->sig[3],
4868			   group_mask->sig[4]);
4869
4870			bnx2x_attn_int_deasserted4(bp,
4871					attn.sig[4] & group_mask->sig[4]);
4872			bnx2x_attn_int_deasserted3(bp,
4873					attn.sig[3] & group_mask->sig[3]);
4874			bnx2x_attn_int_deasserted1(bp,
4875					attn.sig[1] & group_mask->sig[1]);
4876			bnx2x_attn_int_deasserted2(bp,
4877					attn.sig[2] & group_mask->sig[2]);
4878			bnx2x_attn_int_deasserted0(bp,
4879					attn.sig[0] & group_mask->sig[0]);
4880		}
4881	}
4882
4883	bnx2x_release_alr(bp);
4884
4885	if (bp->common.int_block == INT_BLOCK_HC)
4886		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4887			    COMMAND_REG_ATTN_BITS_CLR);
4888	else
4889		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4890
4891	val = ~deasserted;
4892	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4893	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4894	REG_WR(bp, reg_addr, val);
4895
4896	if (~bp->attn_state & deasserted)
4897		BNX2X_ERR("IGU ERROR\n");
4898
4899	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4900			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4901
4902	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4903	aeu_mask = REG_RD(bp, reg_addr);
4904
4905	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4906	   aeu_mask, deasserted);
4907	aeu_mask |= (deasserted & 0x3ff);
4908	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4909
4910	REG_WR(bp, reg_addr, aeu_mask);
4911	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4912
4913	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4914	bp->attn_state &= ~deasserted;
4915	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4916}
4917
4918static void bnx2x_attn_int(struct bnx2x *bp)
4919{
4920	/* read local copy of bits */
4921	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4922								attn_bits);
4923	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4924								attn_bits_ack);
4925	u32 attn_state = bp->attn_state;
4926
4927	/* look for changed bits */
4928	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4929	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4930
4931	DP(NETIF_MSG_HW,
4932	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4933	   attn_bits, attn_ack, asserted, deasserted);
4934
4935	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4936		BNX2X_ERR("BAD attention state\n");
4937
4938	/* handle bits that were raised */
4939	if (asserted)
4940		bnx2x_attn_int_asserted(bp, asserted);
4941
4942	if (deasserted)
4943		bnx2x_attn_int_deasserted(bp, deasserted);
4944}
4945
4946void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4947		      u16 index, u8 op, u8 update)
4948{
4949	u32 igu_addr = bp->igu_base_addr;
4950	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4951	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4952			     igu_addr);
4953}
4954
4955static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4956{
4957	/* No memory barriers */
4958	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4959	mmiowb(); /* keep prod updates ordered */
4960}
4961
4962static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4963				      union event_ring_elem *elem)
4964{
4965	u8 err = elem->message.error;
4966
4967	if (!bp->cnic_eth_dev.starting_cid  ||
4968	    (cid < bp->cnic_eth_dev.starting_cid &&
4969	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4970		return 1;
4971
4972	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4973
4974	if (unlikely(err)) {
4975
4976		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4977			  cid);
4978		bnx2x_panic_dump(bp, false);
4979	}
4980	bnx2x_cnic_cfc_comp(bp, cid, err);
4981	return 0;
4982}
4983
4984static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4985{
4986	struct bnx2x_mcast_ramrod_params rparam;
4987	int rc;
4988
4989	memset(&rparam, 0, sizeof(rparam));
4990
4991	rparam.mcast_obj = &bp->mcast_obj;
4992
4993	netif_addr_lock_bh(bp->dev);
4994
4995	/* Clear pending state for the last command */
4996	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4997
4998	/* If there are pending mcast commands - send them */
4999	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5000		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5001		if (rc < 0)
5002			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5003				  rc);
5004	}
5005
5006	netif_addr_unlock_bh(bp->dev);
5007}
5008
5009static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5010					    union event_ring_elem *elem)
5011{
5012	unsigned long ramrod_flags = 0;
5013	int rc = 0;
5014	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5015	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5016
5017	/* Always push next commands out, don't wait here */
5018	__set_bit(RAMROD_CONT, &ramrod_flags);
5019
5020	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5021			    >> BNX2X_SWCID_SHIFT) {
5022	case BNX2X_FILTER_MAC_PENDING:
5023		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5024		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5025			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5026		else
5027			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5028
5029		break;
5030	case BNX2X_FILTER_MCAST_PENDING:
5031		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5032		/* This is only relevant for 57710 where multicast MACs are
5033		 * configured as unicast MACs using the same ramrod.
5034		 */
5035		bnx2x_handle_mcast_eqe(bp);
5036		return;
5037	default:
5038		BNX2X_ERR("Unsupported classification command: %d\n",
5039			  elem->message.data.eth_event.echo);
5040		return;
5041	}
5042
5043	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5044
5045	if (rc < 0)
5046		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5047	else if (rc > 0)
5048		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5049}
5050
5051static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5052
5053static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5054{
5055	netif_addr_lock_bh(bp->dev);
5056
5057	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5058
5059	/* Send rx_mode command again if was requested */
5060	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5061		bnx2x_set_storm_rx_mode(bp);
5062	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5063				    &bp->sp_state))
5064		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5065	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5066				    &bp->sp_state))
5067		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5068
5069	netif_addr_unlock_bh(bp->dev);
5070}
5071
5072static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5073					      union event_ring_elem *elem)
5074{
5075	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5076		DP(BNX2X_MSG_SP,
5077		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5078		   elem->message.data.vif_list_event.func_bit_map);
5079		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5080			elem->message.data.vif_list_event.func_bit_map);
5081	} else if (elem->message.data.vif_list_event.echo ==
5082		   VIF_LIST_RULE_SET) {
5083		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5084		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5085	}
5086}
5087
5088/* called with rtnl_lock */
5089static void bnx2x_after_function_update(struct bnx2x *bp)
5090{
5091	int q, rc;
5092	struct bnx2x_fastpath *fp;
5093	struct bnx2x_queue_state_params queue_params = {NULL};
5094	struct bnx2x_queue_update_params *q_update_params =
5095		&queue_params.params.update;
5096
5097	/* Send Q update command with afex vlan removal values for all Qs */
5098	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5099
5100	/* set silent vlan removal values according to vlan mode */
5101	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5102		  &q_update_params->update_flags);
5103	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5104		  &q_update_params->update_flags);
5105	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5106
5107	/* in access mode mark mask and value are 0 to strip all vlans */
5108	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5109		q_update_params->silent_removal_value = 0;
5110		q_update_params->silent_removal_mask = 0;
5111	} else {
5112		q_update_params->silent_removal_value =
5113			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5114		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5115	}
5116
5117	for_each_eth_queue(bp, q) {
5118		/* Set the appropriate Queue object */
5119		fp = &bp->fp[q];
5120		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5121
5122		/* send the ramrod */
5123		rc = bnx2x_queue_state_change(bp, &queue_params);
5124		if (rc < 0)
5125			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5126				  q);
5127	}
5128
5129	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5130		fp = &bp->fp[FCOE_IDX(bp)];
5131		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5132
5133		/* clear pending completion bit */
5134		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5135
5136		/* mark latest Q bit */
5137		smp_mb__before_clear_bit();
5138		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5139		smp_mb__after_clear_bit();
5140
5141		/* send Q update ramrod for FCoE Q */
5142		rc = bnx2x_queue_state_change(bp, &queue_params);
5143		if (rc < 0)
5144			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5145				  q);
5146	} else {
5147		/* If no FCoE ring - ACK MCP now */
5148		bnx2x_link_report(bp);
5149		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5150	}
5151}
5152
5153static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5154	struct bnx2x *bp, u32 cid)
5155{
5156	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5157
5158	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5159		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5160	else
5161		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5162}
5163
5164static void bnx2x_eq_int(struct bnx2x *bp)
5165{
5166	u16 hw_cons, sw_cons, sw_prod;
5167	union event_ring_elem *elem;
5168	u8 echo;
5169	u32 cid;
5170	u8 opcode;
5171	int rc, spqe_cnt = 0;
5172	struct bnx2x_queue_sp_obj *q_obj;
5173	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5174	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5175
5176	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5177
5178	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5179	 * when we get the next-page we need to adjust so the loop
5180	 * condition below will be met. The next element is the size of a
5181	 * regular element and hence incrementing by 1
5182	 */
5183	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5184		hw_cons++;
5185
5186	/* This function may never run in parallel with itself for a
5187	 * specific bp, thus there is no need in "paired" read memory
5188	 * barrier here.
5189	 */
5190	sw_cons = bp->eq_cons;
5191	sw_prod = bp->eq_prod;
5192
5193	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5194			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5195
5196	for (; sw_cons != hw_cons;
5197	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5198
5199		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5200
5201		rc = bnx2x_iov_eq_sp_event(bp, elem);
5202		if (!rc) {
5203			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5204			   rc);
5205			goto next_spqe;
5206		}
5207
5208		/* elem CID originates from FW; actually LE */
5209		cid = SW_CID((__force __le32)
5210			     elem->message.data.cfc_del_event.cid);
5211		opcode = elem->message.opcode;
5212
5213		/* handle eq element */
5214		switch (opcode) {
5215		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5216			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5217			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5218			continue;
5219
5220		case EVENT_RING_OPCODE_STAT_QUERY:
5221			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5222			   "got statistics comp event %d\n",
5223			   bp->stats_comp++);
5224			/* nothing to do with stats comp */
5225			goto next_spqe;
5226
5227		case EVENT_RING_OPCODE_CFC_DEL:
5228			/* handle according to cid range */
5229			/*
5230			 * we may want to verify here that the bp state is
5231			 * HALTING
5232			 */
5233			DP(BNX2X_MSG_SP,
5234			   "got delete ramrod for MULTI[%d]\n", cid);
5235
5236			if (CNIC_LOADED(bp) &&
5237			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5238				goto next_spqe;
5239
5240			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5241
5242			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5243				break;
5244
5245			goto next_spqe;
5246
5247		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5248			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5249			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5250			if (f_obj->complete_cmd(bp, f_obj,
5251						BNX2X_F_CMD_TX_STOP))
5252				break;
5253			goto next_spqe;
5254
5255		case EVENT_RING_OPCODE_START_TRAFFIC:
5256			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5257			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5258			if (f_obj->complete_cmd(bp, f_obj,
5259						BNX2X_F_CMD_TX_START))
5260				break;
5261			goto next_spqe;
5262
5263		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5264			echo = elem->message.data.function_update_event.echo;
5265			if (echo == SWITCH_UPDATE) {
5266				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5267				   "got FUNC_SWITCH_UPDATE ramrod\n");
5268				if (f_obj->complete_cmd(
5269					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5270					break;
5271
5272			} else {
5273				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5274				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5275				f_obj->complete_cmd(bp, f_obj,
5276						    BNX2X_F_CMD_AFEX_UPDATE);
5277
5278				/* We will perform the Queues update from
5279				 * sp_rtnl task as all Queue SP operations
5280				 * should run under rtnl_lock.
5281				 */
5282				smp_mb__before_clear_bit();
5283				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5284					&bp->sp_rtnl_state);
5285				smp_mb__after_clear_bit();
5286
5287				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5288			}
5289
5290			goto next_spqe;
5291
5292		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5293			f_obj->complete_cmd(bp, f_obj,
5294					    BNX2X_F_CMD_AFEX_VIFLISTS);
5295			bnx2x_after_afex_vif_lists(bp, elem);
5296			goto next_spqe;
5297		case EVENT_RING_OPCODE_FUNCTION_START:
5298			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5299			   "got FUNC_START ramrod\n");
5300			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5301				break;
5302
5303			goto next_spqe;
5304
5305		case EVENT_RING_OPCODE_FUNCTION_STOP:
5306			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5307			   "got FUNC_STOP ramrod\n");
5308			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5309				break;
5310
5311			goto next_spqe;
5312		}
5313
5314		switch (opcode | bp->state) {
5315		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5316		      BNX2X_STATE_OPEN):
5317		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5318		      BNX2X_STATE_OPENING_WAIT4_PORT):
5319			cid = elem->message.data.eth_event.echo &
5320				BNX2X_SWCID_MASK;
5321			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5322			   cid);
5323			rss_raw->clear_pending(rss_raw);
5324			break;
5325
5326		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5327		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5328		case (EVENT_RING_OPCODE_SET_MAC |
5329		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5330		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5331		      BNX2X_STATE_OPEN):
5332		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5333		      BNX2X_STATE_DIAG):
5334		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5335		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5336			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5337			bnx2x_handle_classification_eqe(bp, elem);
5338			break;
5339
5340		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5341		      BNX2X_STATE_OPEN):
5342		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5343		      BNX2X_STATE_DIAG):
5344		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5345		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5346			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5347			bnx2x_handle_mcast_eqe(bp);
5348			break;
5349
5350		case (EVENT_RING_OPCODE_FILTERS_RULES |
5351		      BNX2X_STATE_OPEN):
5352		case (EVENT_RING_OPCODE_FILTERS_RULES |
5353		      BNX2X_STATE_DIAG):
5354		case (EVENT_RING_OPCODE_FILTERS_RULES |
5355		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5356			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5357			bnx2x_handle_rx_mode_eqe(bp);
5358			break;
5359		default:
5360			/* unknown event log error and continue */
5361			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5362				  elem->message.opcode, bp->state);
5363		}
5364next_spqe:
5365		spqe_cnt++;
5366	} /* for */
5367
5368	smp_mb__before_atomic_inc();
5369	atomic_add(spqe_cnt, &bp->eq_spq_left);
5370
5371	bp->eq_cons = sw_cons;
5372	bp->eq_prod = sw_prod;
5373	/* Make sure that above mem writes were issued towards the memory */
5374	smp_wmb();
5375
5376	/* update producer */
5377	bnx2x_update_eq_prod(bp, bp->eq_prod);
5378}
5379
5380static void bnx2x_sp_task(struct work_struct *work)
5381{
5382	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5383
5384	DP(BNX2X_MSG_SP, "sp task invoked\n");
5385
5386	/* make sure the atomic interrupt_occurred has been written */
5387	smp_rmb();
5388	if (atomic_read(&bp->interrupt_occurred)) {
5389
5390		/* what work needs to be performed? */
5391		u16 status = bnx2x_update_dsb_idx(bp);
5392
5393		DP(BNX2X_MSG_SP, "status %x\n", status);
5394		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5395		atomic_set(&bp->interrupt_occurred, 0);
5396
5397		/* HW attentions */
5398		if (status & BNX2X_DEF_SB_ATT_IDX) {
5399			bnx2x_attn_int(bp);
5400			status &= ~BNX2X_DEF_SB_ATT_IDX;
5401		}
5402
5403		/* SP events: STAT_QUERY and others */
5404		if (status & BNX2X_DEF_SB_IDX) {
5405			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5406
5407		if (FCOE_INIT(bp) &&
5408			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5409				/* Prevent local bottom-halves from running as
5410				 * we are going to change the local NAPI list.
5411				 */
5412				local_bh_disable();
5413				napi_schedule(&bnx2x_fcoe(bp, napi));
5414				local_bh_enable();
5415			}
5416
5417			/* Handle EQ completions */
5418			bnx2x_eq_int(bp);
5419			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5420				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5421
5422			status &= ~BNX2X_DEF_SB_IDX;
5423		}
5424
5425		/* if status is non zero then perhaps something went wrong */
5426		if (unlikely(status))
5427			DP(BNX2X_MSG_SP,
5428			   "got an unknown interrupt! (status 0x%x)\n", status);
5429
5430		/* ack status block only if something was actually handled */
5431		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5432			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5433	}
5434
5435	/* must be called after the EQ processing (since eq leads to sriov
5436	 * ramrod completion flows).
5437	 * This flow may have been scheduled by the arrival of a ramrod
5438	 * completion, or by the sriov code rescheduling itself.
5439	 */
5440	bnx2x_iov_sp_task(bp);
5441
5442	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5443	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5444			       &bp->sp_state)) {
5445		bnx2x_link_report(bp);
5446		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5447	}
5448}
5449
5450irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5451{
5452	struct net_device *dev = dev_instance;
5453	struct bnx2x *bp = netdev_priv(dev);
5454
5455	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5456		     IGU_INT_DISABLE, 0);
5457
5458#ifdef BNX2X_STOP_ON_ERROR
5459	if (unlikely(bp->panic))
5460		return IRQ_HANDLED;
5461#endif
5462
5463	if (CNIC_LOADED(bp)) {
5464		struct cnic_ops *c_ops;
5465
5466		rcu_read_lock();
5467		c_ops = rcu_dereference(bp->cnic_ops);
5468		if (c_ops)
5469			c_ops->cnic_handler(bp->cnic_data, NULL);
5470		rcu_read_unlock();
5471	}
5472
5473	/* schedule sp task to perform default status block work, ack
5474	 * attentions and enable interrupts.
5475	 */
5476	bnx2x_schedule_sp_task(bp);
5477
5478	return IRQ_HANDLED;
5479}
5480
5481/* end of slow path */
5482
5483void bnx2x_drv_pulse(struct bnx2x *bp)
5484{
5485	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5486		 bp->fw_drv_pulse_wr_seq);
5487}
5488
5489static void bnx2x_timer(unsigned long data)
5490{
5491	struct bnx2x *bp = (struct bnx2x *) data;
5492
5493	if (!netif_running(bp->dev))
5494		return;
5495
5496	if (IS_PF(bp) &&
5497	    !BP_NOMCP(bp)) {
5498		int mb_idx = BP_FW_MB_IDX(bp);
5499		u16 drv_pulse;
5500		u16 mcp_pulse;
5501
5502		++bp->fw_drv_pulse_wr_seq;
5503		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5504		drv_pulse = bp->fw_drv_pulse_wr_seq;
5505		bnx2x_drv_pulse(bp);
5506
5507		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5508			     MCP_PULSE_SEQ_MASK);
5509		/* The delta between driver pulse and mcp response
5510		 * should not get too big. If the MFW is more than 5 pulses
5511		 * behind, we should worry about it enough to generate an error
5512		 * log.
5513		 */
5514		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5515			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5516				  drv_pulse, mcp_pulse);
5517	}
5518
5519	if (bp->state == BNX2X_STATE_OPEN)
5520		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5521
5522	/* sample pf vf bulletin board for new posts from pf */
5523	if (IS_VF(bp))
5524		bnx2x_timer_sriov(bp);
5525
5526	mod_timer(&bp->timer, jiffies + bp->current_interval);
5527}
5528
5529/* end of Statistics */
5530
5531/* nic init */
5532
5533/*
5534 * nic init service functions
5535 */
5536
5537static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5538{
5539	u32 i;
5540	if (!(len%4) && !(addr%4))
5541		for (i = 0; i < len; i += 4)
5542			REG_WR(bp, addr + i, fill);
5543	else
5544		for (i = 0; i < len; i++)
5545			REG_WR8(bp, addr + i, fill);
5546}
5547
5548/* helper: writes FP SP data to FW - data_size in dwords */
5549static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5550				int fw_sb_id,
5551				u32 *sb_data_p,
5552				u32 data_size)
5553{
5554	int index;
5555	for (index = 0; index < data_size; index++)
5556		REG_WR(bp, BAR_CSTRORM_INTMEM +
5557			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5558			sizeof(u32)*index,
5559			*(sb_data_p + index));
5560}
5561
5562static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5563{
5564	u32 *sb_data_p;
5565	u32 data_size = 0;
5566	struct hc_status_block_data_e2 sb_data_e2;
5567	struct hc_status_block_data_e1x sb_data_e1x;
5568
5569	/* disable the function first */
5570	if (!CHIP_IS_E1x(bp)) {
5571		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5572		sb_data_e2.common.state = SB_DISABLED;
5573		sb_data_e2.common.p_func.vf_valid = false;
5574		sb_data_p = (u32 *)&sb_data_e2;
5575		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5576	} else {
5577		memset(&sb_data_e1x, 0,
5578		       sizeof(struct hc_status_block_data_e1x));
5579		sb_data_e1x.common.state = SB_DISABLED;
5580		sb_data_e1x.common.p_func.vf_valid = false;
5581		sb_data_p = (u32 *)&sb_data_e1x;
5582		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5583	}
5584	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5585
5586	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5587			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5588			CSTORM_STATUS_BLOCK_SIZE);
5589	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5590			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5591			CSTORM_SYNC_BLOCK_SIZE);
5592}
5593
5594/* helper:  writes SP SB data to FW */
5595static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5596		struct hc_sp_status_block_data *sp_sb_data)
5597{
5598	int func = BP_FUNC(bp);
5599	int i;
5600	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5601		REG_WR(bp, BAR_CSTRORM_INTMEM +
5602			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5603			i*sizeof(u32),
5604			*((u32 *)sp_sb_data + i));
5605}
5606
5607static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5608{
5609	int func = BP_FUNC(bp);
5610	struct hc_sp_status_block_data sp_sb_data;
5611	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5612
5613	sp_sb_data.state = SB_DISABLED;
5614	sp_sb_data.p_func.vf_valid = false;
5615
5616	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5617
5618	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5619			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5620			CSTORM_SP_STATUS_BLOCK_SIZE);
5621	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5622			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5623			CSTORM_SP_SYNC_BLOCK_SIZE);
5624}
5625
5626static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5627					   int igu_sb_id, int igu_seg_id)
5628{
5629	hc_sm->igu_sb_id = igu_sb_id;
5630	hc_sm->igu_seg_id = igu_seg_id;
5631	hc_sm->timer_value = 0xFF;
5632	hc_sm->time_to_expire = 0xFFFFFFFF;
5633}
5634
5635/* allocates state machine ids. */
5636static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5637{
5638	/* zero out state machine indices */
5639	/* rx indices */
5640	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5641
5642	/* tx indices */
5643	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5644	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5645	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5646	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5647
5648	/* map indices */
5649	/* rx indices */
5650	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5651		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5652
5653	/* tx indices */
5654	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5655		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5656	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5657		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5658	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5659		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5660	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5661		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5662}
5663
5664void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5665			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5666{
5667	int igu_seg_id;
5668
5669	struct hc_status_block_data_e2 sb_data_e2;
5670	struct hc_status_block_data_e1x sb_data_e1x;
5671	struct hc_status_block_sm  *hc_sm_p;
5672	int data_size;
5673	u32 *sb_data_p;
5674
5675	if (CHIP_INT_MODE_IS_BC(bp))
5676		igu_seg_id = HC_SEG_ACCESS_NORM;
5677	else
5678		igu_seg_id = IGU_SEG_ACCESS_NORM;
5679
5680	bnx2x_zero_fp_sb(bp, fw_sb_id);
5681
5682	if (!CHIP_IS_E1x(bp)) {
5683		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5684		sb_data_e2.common.state = SB_ENABLED;
5685		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5686		sb_data_e2.common.p_func.vf_id = vfid;
5687		sb_data_e2.common.p_func.vf_valid = vf_valid;
5688		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5689		sb_data_e2.common.same_igu_sb_1b = true;
5690		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5691		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5692		hc_sm_p = sb_data_e2.common.state_machine;
5693		sb_data_p = (u32 *)&sb_data_e2;
5694		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5695		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5696	} else {
5697		memset(&sb_data_e1x, 0,
5698		       sizeof(struct hc_status_block_data_e1x));
5699		sb_data_e1x.common.state = SB_ENABLED;
5700		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5701		sb_data_e1x.common.p_func.vf_id = 0xff;
5702		sb_data_e1x.common.p_func.vf_valid = false;
5703		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5704		sb_data_e1x.common.same_igu_sb_1b = true;
5705		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5706		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5707		hc_sm_p = sb_data_e1x.common.state_machine;
5708		sb_data_p = (u32 *)&sb_data_e1x;
5709		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5710		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5711	}
5712
5713	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5714				       igu_sb_id, igu_seg_id);
5715	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5716				       igu_sb_id, igu_seg_id);
5717
5718	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5719
5720	/* write indices to HW - PCI guarantees endianity of regpairs */
5721	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5722}
5723
5724static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5725				     u16 tx_usec, u16 rx_usec)
5726{
5727	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5728				    false, rx_usec);
5729	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5730				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5731				       tx_usec);
5732	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5733				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5734				       tx_usec);
5735	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5736				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5737				       tx_usec);
5738}
5739
5740static void bnx2x_init_def_sb(struct bnx2x *bp)
5741{
5742	struct host_sp_status_block *def_sb = bp->def_status_blk;
5743	dma_addr_t mapping = bp->def_status_blk_mapping;
5744	int igu_sp_sb_index;
5745	int igu_seg_id;
5746	int port = BP_PORT(bp);
5747	int func = BP_FUNC(bp);
5748	int reg_offset, reg_offset_en5;
5749	u64 section;
5750	int index;
5751	struct hc_sp_status_block_data sp_sb_data;
5752	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5753
5754	if (CHIP_INT_MODE_IS_BC(bp)) {
5755		igu_sp_sb_index = DEF_SB_IGU_ID;
5756		igu_seg_id = HC_SEG_ACCESS_DEF;
5757	} else {
5758		igu_sp_sb_index = bp->igu_dsb_id;
5759		igu_seg_id = IGU_SEG_ACCESS_DEF;
5760	}
5761
5762	/* ATTN */
5763	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5764					    atten_status_block);
5765	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5766
5767	bp->attn_state = 0;
5768
5769	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5770			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5771	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5772				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5773	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5774		int sindex;
5775		/* take care of sig[0]..sig[4] */
5776		for (sindex = 0; sindex < 4; sindex++)
5777			bp->attn_group[index].sig[sindex] =
5778			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5779
5780		if (!CHIP_IS_E1x(bp))
5781			/*
5782			 * enable5 is separate from the rest of the registers,
5783			 * and therefore the address skip is 4
5784			 * and not 16 between the different groups
5785			 */
5786			bp->attn_group[index].sig[4] = REG_RD(bp,
5787					reg_offset_en5 + 0x4*index);
5788		else
5789			bp->attn_group[index].sig[4] = 0;
5790	}
5791
5792	if (bp->common.int_block == INT_BLOCK_HC) {
5793		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5794				     HC_REG_ATTN_MSG0_ADDR_L);
5795
5796		REG_WR(bp, reg_offset, U64_LO(section));
5797		REG_WR(bp, reg_offset + 4, U64_HI(section));
5798	} else if (!CHIP_IS_E1x(bp)) {
5799		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5800		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5801	}
5802
5803	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5804					    sp_sb);
5805
5806	bnx2x_zero_sp_sb(bp);
5807
5808	/* PCI guarantees endianity of regpairs */
5809	sp_sb_data.state		= SB_ENABLED;
5810	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5811	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5812	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5813	sp_sb_data.igu_seg_id		= igu_seg_id;
5814	sp_sb_data.p_func.pf_id		= func;
5815	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5816	sp_sb_data.p_func.vf_id		= 0xff;
5817
5818	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5819
5820	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5821}
5822
5823void bnx2x_update_coalesce(struct bnx2x *bp)
5824{
5825	int i;
5826
5827	for_each_eth_queue(bp, i)
5828		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5829					 bp->tx_ticks, bp->rx_ticks);
5830}
5831
5832static void bnx2x_init_sp_ring(struct bnx2x *bp)
5833{
5834	spin_lock_init(&bp->spq_lock);
5835	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5836
5837	bp->spq_prod_idx = 0;
5838	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5839	bp->spq_prod_bd = bp->spq;
5840	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5841}
5842
5843static void bnx2x_init_eq_ring(struct bnx2x *bp)
5844{
5845	int i;
5846	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5847		union event_ring_elem *elem =
5848			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5849
5850		elem->next_page.addr.hi =
5851			cpu_to_le32(U64_HI(bp->eq_mapping +
5852				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5853		elem->next_page.addr.lo =
5854			cpu_to_le32(U64_LO(bp->eq_mapping +
5855				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5856	}
5857	bp->eq_cons = 0;
5858	bp->eq_prod = NUM_EQ_DESC;
5859	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5860	/* we want a warning message before it gets wrought... */
5861	atomic_set(&bp->eq_spq_left,
5862		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5863}
5864
5865/* called with netif_addr_lock_bh() */
5866static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5867			       unsigned long rx_mode_flags,
5868			       unsigned long rx_accept_flags,
5869			       unsigned long tx_accept_flags,
5870			       unsigned long ramrod_flags)
5871{
5872	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5873	int rc;
5874
5875	memset(&ramrod_param, 0, sizeof(ramrod_param));
5876
5877	/* Prepare ramrod parameters */
5878	ramrod_param.cid = 0;
5879	ramrod_param.cl_id = cl_id;
5880	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5881	ramrod_param.func_id = BP_FUNC(bp);
5882
5883	ramrod_param.pstate = &bp->sp_state;
5884	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5885
5886	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5887	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5888
5889	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5890
5891	ramrod_param.ramrod_flags = ramrod_flags;
5892	ramrod_param.rx_mode_flags = rx_mode_flags;
5893
5894	ramrod_param.rx_accept_flags = rx_accept_flags;
5895	ramrod_param.tx_accept_flags = tx_accept_flags;
5896
5897	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5898	if (rc < 0) {
5899		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5900		return rc;
5901	}
5902
5903	return 0;
5904}
5905
5906static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5907				   unsigned long *rx_accept_flags,
5908				   unsigned long *tx_accept_flags)
5909{
5910	/* Clear the flags first */
5911	*rx_accept_flags = 0;
5912	*tx_accept_flags = 0;
5913
5914	switch (rx_mode) {
5915	case BNX2X_RX_MODE_NONE:
5916		/*
5917		 * 'drop all' supersedes any accept flags that may have been
5918		 * passed to the function.
5919		 */
5920		break;
5921	case BNX2X_RX_MODE_NORMAL:
5922		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5923		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5924		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5925
5926		/* internal switching mode */
5927		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5928		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5929		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5930
5931		break;
5932	case BNX2X_RX_MODE_ALLMULTI:
5933		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5934		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5935		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5936
5937		/* internal switching mode */
5938		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5939		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5940		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5941
5942		break;
5943	case BNX2X_RX_MODE_PROMISC:
5944		/* According to definition of SI mode, iface in promisc mode
5945		 * should receive matched and unmatched (in resolution of port)
5946		 * unicast packets.
5947		 */
5948		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5949		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5950		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5951		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5952
5953		/* internal switching mode */
5954		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5955		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5956
5957		if (IS_MF_SI(bp))
5958			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5959		else
5960			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5961
5962		break;
5963	default:
5964		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5965		return -EINVAL;
5966	}
5967
5968	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5969	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5970		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5971		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5972	}
5973
5974	return 0;
5975}
5976
5977/* called with netif_addr_lock_bh() */
5978static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5979{
5980	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5981	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5982	int rc;
5983
5984	if (!NO_FCOE(bp))
5985		/* Configure rx_mode of FCoE Queue */
5986		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5987
5988	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5989				     &tx_accept_flags);
5990	if (rc)
5991		return rc;
5992
5993	__set_bit(RAMROD_RX, &ramrod_flags);
5994	__set_bit(RAMROD_TX, &ramrod_flags);
5995
5996	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5997				   rx_accept_flags, tx_accept_flags,
5998				   ramrod_flags);
5999}
6000
6001static void bnx2x_init_internal_common(struct bnx2x *bp)
6002{
6003	int i;
6004
6005	if (IS_MF_SI(bp))
6006		/*
6007		 * In switch independent mode, the TSTORM needs to accept
6008		 * packets that failed classification, since approximate match
6009		 * mac addresses aren't written to NIG LLH
6010		 */
6011		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6012			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
6013	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
6014		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6015			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6016
6017	/* Zero this manually as its initialization is
6018	   currently missing in the initTool */
6019	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6020		REG_WR(bp, BAR_USTRORM_INTMEM +
6021		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6022	if (!CHIP_IS_E1x(bp)) {
6023		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6024			CHIP_INT_MODE_IS_BC(bp) ?
6025			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6026	}
6027}
6028
6029static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6030{
6031	switch (load_code) {
6032	case FW_MSG_CODE_DRV_LOAD_COMMON:
6033	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6034		bnx2x_init_internal_common(bp);
6035		/* no break */
6036
6037	case FW_MSG_CODE_DRV_LOAD_PORT:
6038		/* nothing to do */
6039		/* no break */
6040
6041	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6042		/* internal memory per function is
6043		   initialized inside bnx2x_pf_init */
6044		break;
6045
6046	default:
6047		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6048		break;
6049	}
6050}
6051
6052static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6053{
6054	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6055}
6056
6057static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6058{
6059	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6060}
6061
6062static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6063{
6064	if (CHIP_IS_E1x(fp->bp))
6065		return BP_L_ID(fp->bp) + fp->index;
6066	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6067		return bnx2x_fp_igu_sb_id(fp);
6068}
6069
6070static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6071{
6072	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6073	u8 cos;
6074	unsigned long q_type = 0;
6075	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6076	fp->rx_queue = fp_idx;
6077	fp->cid = fp_idx;
6078	fp->cl_id = bnx2x_fp_cl_id(fp);
6079	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6080	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6081	/* qZone id equals to FW (per path) client id */
6082	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6083
6084	/* init shortcut */
6085	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6086
6087	/* Setup SB indices */
6088	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6089
6090	/* Configure Queue State object */
6091	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6092	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6093
6094	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6095
6096	/* init tx data */
6097	for_each_cos_in_tx_queue(fp, cos) {
6098		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6099				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6100				  FP_COS_TO_TXQ(fp, cos, bp),
6101				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6102		cids[cos] = fp->txdata_ptr[cos]->cid;
6103	}
6104
6105	/* nothing more for vf to do here */
6106	if (IS_VF(bp))
6107		return;
6108
6109	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6110		      fp->fw_sb_id, fp->igu_sb_id);
6111	bnx2x_update_fpsb_idx(fp);
6112	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6113			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6114			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6115
6116	/**
6117	 * Configure classification DBs: Always enable Tx switching
6118	 */
6119	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6120
6121	DP(NETIF_MSG_IFUP,
6122	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6123	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6124	   fp->igu_sb_id);
6125}
6126
6127static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6128{
6129	int i;
6130
6131	for (i = 1; i <= NUM_TX_RINGS; i++) {
6132		struct eth_tx_next_bd *tx_next_bd =
6133			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6134
6135		tx_next_bd->addr_hi =
6136			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6137				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6138		tx_next_bd->addr_lo =
6139			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6140				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6141	}
6142
6143	*txdata->tx_cons_sb = cpu_to_le16(0);
6144
6145	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6146	txdata->tx_db.data.zero_fill1 = 0;
6147	txdata->tx_db.data.prod = 0;
6148
6149	txdata->tx_pkt_prod = 0;
6150	txdata->tx_pkt_cons = 0;
6151	txdata->tx_bd_prod = 0;
6152	txdata->tx_bd_cons = 0;
6153	txdata->tx_pkt = 0;
6154}
6155
6156static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6157{
6158	int i;
6159
6160	for_each_tx_queue_cnic(bp, i)
6161		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6162}
6163
6164static void bnx2x_init_tx_rings(struct bnx2x *bp)
6165{
6166	int i;
6167	u8 cos;
6168
6169	for_each_eth_queue(bp, i)
6170		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6171			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6172}
6173
6174static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6175{
6176	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6177	unsigned long q_type = 0;
6178
6179	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6180	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6181						     BNX2X_FCOE_ETH_CL_ID_IDX);
6182	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6183	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6184	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6185	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6186	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6187			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6188			  fp);
6189
6190	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6191
6192	/* qZone id equals to FW (per path) client id */
6193	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6194	/* init shortcut */
6195	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6196		bnx2x_rx_ustorm_prods_offset(fp);
6197
6198	/* Configure Queue State object */
6199	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6200	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6201
6202	/* No multi-CoS for FCoE L2 client */
6203	BUG_ON(fp->max_cos != 1);
6204
6205	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6206			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6207			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6208
6209	DP(NETIF_MSG_IFUP,
6210	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6211	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6212	   fp->igu_sb_id);
6213}
6214
6215void bnx2x_nic_init_cnic(struct bnx2x *bp)
6216{
6217	if (!NO_FCOE(bp))
6218		bnx2x_init_fcoe_fp(bp);
6219
6220	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6221		      BNX2X_VF_ID_INVALID, false,
6222		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6223
6224	/* ensure status block indices were read */
6225	rmb();
6226	bnx2x_init_rx_rings_cnic(bp);
6227	bnx2x_init_tx_rings_cnic(bp);
6228
6229	/* flush all */
6230	mb();
6231	mmiowb();
6232}
6233
6234void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6235{
6236	int i;
6237
6238	/* Setup NIC internals and enable interrupts */
6239	for_each_eth_queue(bp, i)
6240		bnx2x_init_eth_fp(bp, i);
6241
6242	/* ensure status block indices were read */
6243	rmb();
6244	bnx2x_init_rx_rings(bp);
6245	bnx2x_init_tx_rings(bp);
6246
6247	if (IS_PF(bp)) {
6248		/* Initialize MOD_ABS interrupts */
6249		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6250				       bp->common.shmem_base,
6251				       bp->common.shmem2_base, BP_PORT(bp));
6252
6253		/* initialize the default status block and sp ring */
6254		bnx2x_init_def_sb(bp);
6255		bnx2x_update_dsb_idx(bp);
6256		bnx2x_init_sp_ring(bp);
6257	} else {
6258		bnx2x_memset_stats(bp);
6259	}
6260}
6261
6262void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6263{
6264	bnx2x_init_eq_ring(bp);
6265	bnx2x_init_internal(bp, load_code);
6266	bnx2x_pf_init(bp);
6267	bnx2x_stats_init(bp);
6268
6269	/* flush all before enabling interrupts */
6270	mb();
6271	mmiowb();
6272
6273	bnx2x_int_enable(bp);
6274
6275	/* Check for SPIO5 */
6276	bnx2x_attn_int_deasserted0(bp,
6277		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6278				   AEU_INPUTS_ATTN_BITS_SPIO5);
6279}
6280
6281/* gzip service functions */
6282static int bnx2x_gunzip_init(struct bnx2x *bp)
6283{
6284	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6285					    &bp->gunzip_mapping, GFP_KERNEL);
6286	if (bp->gunzip_buf  == NULL)
6287		goto gunzip_nomem1;
6288
6289	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6290	if (bp->strm  == NULL)
6291		goto gunzip_nomem2;
6292
6293	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6294	if (bp->strm->workspace == NULL)
6295		goto gunzip_nomem3;
6296
6297	return 0;
6298
6299gunzip_nomem3:
6300	kfree(bp->strm);
6301	bp->strm = NULL;
6302
6303gunzip_nomem2:
6304	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6305			  bp->gunzip_mapping);
6306	bp->gunzip_buf = NULL;
6307
6308gunzip_nomem1:
6309	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6310	return -ENOMEM;
6311}
6312
6313static void bnx2x_gunzip_end(struct bnx2x *bp)
6314{
6315	if (bp->strm) {
6316		vfree(bp->strm->workspace);
6317		kfree(bp->strm);
6318		bp->strm = NULL;
6319	}
6320
6321	if (bp->gunzip_buf) {
6322		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6323				  bp->gunzip_mapping);
6324		bp->gunzip_buf = NULL;
6325	}
6326}
6327
6328static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6329{
6330	int n, rc;
6331
6332	/* check gzip header */
6333	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6334		BNX2X_ERR("Bad gzip header\n");
6335		return -EINVAL;
6336	}
6337
6338	n = 10;
6339
6340#define FNAME				0x8
6341
6342	if (zbuf[3] & FNAME)
6343		while ((zbuf[n++] != 0) && (n < len));
6344
6345	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6346	bp->strm->avail_in = len - n;
6347	bp->strm->next_out = bp->gunzip_buf;
6348	bp->strm->avail_out = FW_BUF_SIZE;
6349
6350	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6351	if (rc != Z_OK)
6352		return rc;
6353
6354	rc = zlib_inflate(bp->strm, Z_FINISH);
6355	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6356		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6357			   bp->strm->msg);
6358
6359	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6360	if (bp->gunzip_outlen & 0x3)
6361		netdev_err(bp->dev,
6362			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6363				bp->gunzip_outlen);
6364	bp->gunzip_outlen >>= 2;
6365
6366	zlib_inflateEnd(bp->strm);
6367
6368	if (rc == Z_STREAM_END)
6369		return 0;
6370
6371	return rc;
6372}
6373
6374/* nic load/unload */
6375
6376/*
6377 * General service functions
6378 */
6379
6380/* send a NIG loopback debug packet */
6381static void bnx2x_lb_pckt(struct bnx2x *bp)
6382{
6383	u32 wb_write[3];
6384
6385	/* Ethernet source and destination addresses */
6386	wb_write[0] = 0x55555555;
6387	wb_write[1] = 0x55555555;
6388	wb_write[2] = 0x20;		/* SOP */
6389	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6390
6391	/* NON-IP protocol */
6392	wb_write[0] = 0x09000000;
6393	wb_write[1] = 0x55555555;
6394	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6395	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6396}
6397
6398/* some of the internal memories
6399 * are not directly readable from the driver
6400 * to test them we send debug packets
6401 */
6402static int bnx2x_int_mem_test(struct bnx2x *bp)
6403{
6404	int factor;
6405	int count, i;
6406	u32 val = 0;
6407
6408	if (CHIP_REV_IS_FPGA(bp))
6409		factor = 120;
6410	else if (CHIP_REV_IS_EMUL(bp))
6411		factor = 200;
6412	else
6413		factor = 1;
6414
6415	/* Disable inputs of parser neighbor blocks */
6416	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6417	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6418	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6419	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6420
6421	/*  Write 0 to parser credits for CFC search request */
6422	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6423
6424	/* send Ethernet packet */
6425	bnx2x_lb_pckt(bp);
6426
6427	/* TODO do i reset NIG statistic? */
6428	/* Wait until NIG register shows 1 packet of size 0x10 */
6429	count = 1000 * factor;
6430	while (count) {
6431
6432		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6433		val = *bnx2x_sp(bp, wb_data[0]);
6434		if (val == 0x10)
6435			break;
6436
6437		usleep_range(10000, 20000);
6438		count--;
6439	}
6440	if (val != 0x10) {
6441		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6442		return -1;
6443	}
6444
6445	/* Wait until PRS register shows 1 packet */
6446	count = 1000 * factor;
6447	while (count) {
6448		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6449		if (val == 1)
6450			break;
6451
6452		usleep_range(10000, 20000);
6453		count--;
6454	}
6455	if (val != 0x1) {
6456		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6457		return -2;
6458	}
6459
6460	/* Reset and init BRB, PRS */
6461	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6462	msleep(50);
6463	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6464	msleep(50);
6465	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6466	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6467
6468	DP(NETIF_MSG_HW, "part2\n");
6469
6470	/* Disable inputs of parser neighbor blocks */
6471	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6472	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6473	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6474	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6475
6476	/* Write 0 to parser credits for CFC search request */
6477	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6478
6479	/* send 10 Ethernet packets */
6480	for (i = 0; i < 10; i++)
6481		bnx2x_lb_pckt(bp);
6482
6483	/* Wait until NIG register shows 10 + 1
6484	   packets of size 11*0x10 = 0xb0 */
6485	count = 1000 * factor;
6486	while (count) {
6487
6488		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6489		val = *bnx2x_sp(bp, wb_data[0]);
6490		if (val == 0xb0)
6491			break;
6492
6493		usleep_range(10000, 20000);
6494		count--;
6495	}
6496	if (val != 0xb0) {
6497		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6498		return -3;
6499	}
6500
6501	/* Wait until PRS register shows 2 packets */
6502	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6503	if (val != 2)
6504		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6505
6506	/* Write 1 to parser credits for CFC search request */
6507	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6508
6509	/* Wait until PRS register shows 3 packets */
6510	msleep(10 * factor);
6511	/* Wait until NIG register shows 1 packet of size 0x10 */
6512	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6513	if (val != 3)
6514		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6515
6516	/* clear NIG EOP FIFO */
6517	for (i = 0; i < 11; i++)
6518		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6519	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6520	if (val != 1) {
6521		BNX2X_ERR("clear of NIG failed\n");
6522		return -4;
6523	}
6524
6525	/* Reset and init BRB, PRS, NIG */
6526	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6527	msleep(50);
6528	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6529	msleep(50);
6530	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6531	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6532	if (!CNIC_SUPPORT(bp))
6533		/* set NIC mode */
6534		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6535
6536	/* Enable inputs of parser neighbor blocks */
6537	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6538	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6539	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6540	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6541
6542	DP(NETIF_MSG_HW, "done\n");
6543
6544	return 0; /* OK */
6545}
6546
6547static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6548{
6549	u32 val;
6550
6551	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6552	if (!CHIP_IS_E1x(bp))
6553		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6554	else
6555		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6556	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6557	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6558	/*
6559	 * mask read length error interrupts in brb for parser
6560	 * (parsing unit and 'checksum and crc' unit)
6561	 * these errors are legal (PU reads fixed length and CAC can cause
6562	 * read length error on truncated packets)
6563	 */
6564	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6565	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6566	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6567	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6568	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6569	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6570/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6571/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6572	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6573	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6574	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6575/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6576/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6577	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6578	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6579	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6580	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6581/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6582/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6583
6584	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6585		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6586		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6587	if (!CHIP_IS_E1x(bp))
6588		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6589			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6590	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6591
6592	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6593	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6594	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6595/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6596
6597	if (!CHIP_IS_E1x(bp))
6598		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6599		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6600
6601	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6602	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6603/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6604	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6605}
6606
6607static void bnx2x_reset_common(struct bnx2x *bp)
6608{
6609	u32 val = 0x1400;
6610
6611	/* reset_common */
6612	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6613	       0xd3ffff7f);
6614
6615	if (CHIP_IS_E3(bp)) {
6616		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6617		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6618	}
6619
6620	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6621}
6622
6623static void bnx2x_setup_dmae(struct bnx2x *bp)
6624{
6625	bp->dmae_ready = 0;
6626	spin_lock_init(&bp->dmae_lock);
6627}
6628
6629static void bnx2x_init_pxp(struct bnx2x *bp)
6630{
6631	u16 devctl;
6632	int r_order, w_order;
6633
6634	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6635	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6636	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6637	if (bp->mrrs == -1)
6638		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6639	else {
6640		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6641		r_order = bp->mrrs;
6642	}
6643
6644	bnx2x_init_pxp_arb(bp, r_order, w_order);
6645}
6646
6647static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6648{
6649	int is_required;
6650	u32 val;
6651	int port;
6652
6653	if (BP_NOMCP(bp))
6654		return;
6655
6656	is_required = 0;
6657	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6658	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6659
6660	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6661		is_required = 1;
6662
6663	/*
6664	 * The fan failure mechanism is usually related to the PHY type since
6665	 * the power consumption of the board is affected by the PHY. Currently,
6666	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6667	 */
6668	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6669		for (port = PORT_0; port < PORT_MAX; port++) {
6670			is_required |=
6671				bnx2x_fan_failure_det_req(
6672					bp,
6673					bp->common.shmem_base,
6674					bp->common.shmem2_base,
6675					port);
6676		}
6677
6678	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6679
6680	if (is_required == 0)
6681		return;
6682
6683	/* Fan failure is indicated by SPIO 5 */
6684	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6685
6686	/* set to active low mode */
6687	val = REG_RD(bp, MISC_REG_SPIO_INT);
6688	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6689	REG_WR(bp, MISC_REG_SPIO_INT, val);
6690
6691	/* enable interrupt to signal the IGU */
6692	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6693	val |= MISC_SPIO_SPIO5;
6694	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6695}
6696
6697void bnx2x_pf_disable(struct bnx2x *bp)
6698{
6699	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6700	val &= ~IGU_PF_CONF_FUNC_EN;
6701
6702	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6703	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6704	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6705}
6706
6707static void bnx2x__common_init_phy(struct bnx2x *bp)
6708{
6709	u32 shmem_base[2], shmem2_base[2];
6710	/* Avoid common init in case MFW supports LFA */
6711	if (SHMEM2_RD(bp, size) >
6712	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6713		return;
6714	shmem_base[0] =  bp->common.shmem_base;
6715	shmem2_base[0] = bp->common.shmem2_base;
6716	if (!CHIP_IS_E1x(bp)) {
6717		shmem_base[1] =
6718			SHMEM2_RD(bp, other_shmem_base_addr);
6719		shmem2_base[1] =
6720			SHMEM2_RD(bp, other_shmem2_base_addr);
6721	}
6722	bnx2x_acquire_phy_lock(bp);
6723	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6724			      bp->common.chip_id);
6725	bnx2x_release_phy_lock(bp);
6726}
6727
6728/**
6729 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6730 *
6731 * @bp:		driver handle
6732 */
6733static int bnx2x_init_hw_common(struct bnx2x *bp)
6734{
6735	u32 val;
6736
6737	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6738
6739	/*
6740	 * take the RESET lock to protect undi_unload flow from accessing
6741	 * registers while we're resetting the chip
6742	 */
6743	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6744
6745	bnx2x_reset_common(bp);
6746	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6747
6748	val = 0xfffc;
6749	if (CHIP_IS_E3(bp)) {
6750		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6751		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6752	}
6753	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6754
6755	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6756
6757	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6758
6759	if (!CHIP_IS_E1x(bp)) {
6760		u8 abs_func_id;
6761
6762		/**
6763		 * 4-port mode or 2-port mode we need to turn of master-enable
6764		 * for everyone, after that, turn it back on for self.
6765		 * so, we disregard multi-function or not, and always disable
6766		 * for all functions on the given path, this means 0,2,4,6 for
6767		 * path 0 and 1,3,5,7 for path 1
6768		 */
6769		for (abs_func_id = BP_PATH(bp);
6770		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6771			if (abs_func_id == BP_ABS_FUNC(bp)) {
6772				REG_WR(bp,
6773				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6774				    1);
6775				continue;
6776			}
6777
6778			bnx2x_pretend_func(bp, abs_func_id);
6779			/* clear pf enable */
6780			bnx2x_pf_disable(bp);
6781			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6782		}
6783	}
6784
6785	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6786	if (CHIP_IS_E1(bp)) {
6787		/* enable HW interrupt from PXP on USDM overflow
6788		   bit 16 on INT_MASK_0 */
6789		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6790	}
6791
6792	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6793	bnx2x_init_pxp(bp);
6794
6795#ifdef __BIG_ENDIAN
6796	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6797	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6798	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6799	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6800	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6801	/* make sure this value is 0 */
6802	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6803
6804/*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6805	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6806	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6807	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6808	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6809#endif
6810
6811	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6812
6813	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6814		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6815
6816	/* let the HW do it's magic ... */
6817	msleep(100);
6818	/* finish PXP init */
6819	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6820	if (val != 1) {
6821		BNX2X_ERR("PXP2 CFG failed\n");
6822		return -EBUSY;
6823	}
6824	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6825	if (val != 1) {
6826		BNX2X_ERR("PXP2 RD_INIT failed\n");
6827		return -EBUSY;
6828	}
6829
6830	/* Timers bug workaround E2 only. We need to set the entire ILT to
6831	 * have entries with value "0" and valid bit on.
6832	 * This needs to be done by the first PF that is loaded in a path
6833	 * (i.e. common phase)
6834	 */
6835	if (!CHIP_IS_E1x(bp)) {
6836/* In E2 there is a bug in the timers block that can cause function 6 / 7
6837 * (i.e. vnic3) to start even if it is marked as "scan-off".
6838 * This occurs when a different function (func2,3) is being marked
6839 * as "scan-off". Real-life scenario for example: if a driver is being
6840 * load-unloaded while func6,7 are down. This will cause the timer to access
6841 * the ilt, translate to a logical address and send a request to read/write.
6842 * Since the ilt for the function that is down is not valid, this will cause
6843 * a translation error which is unrecoverable.
6844 * The Workaround is intended to make sure that when this happens nothing fatal
6845 * will occur. The workaround:
6846 *	1.  First PF driver which loads on a path will:
6847 *		a.  After taking the chip out of reset, by using pretend,
6848 *		    it will write "0" to the following registers of
6849 *		    the other vnics.
6850 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6851 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6852 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6853 *		    And for itself it will write '1' to
6854 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6855 *		    dmae-operations (writing to pram for example.)
6856 *		    note: can be done for only function 6,7 but cleaner this
6857 *			  way.
6858 *		b.  Write zero+valid to the entire ILT.
6859 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6860 *		    VNIC3 (of that port). The range allocated will be the
6861 *		    entire ILT. This is needed to prevent  ILT range error.
6862 *	2.  Any PF driver load flow:
6863 *		a.  ILT update with the physical addresses of the allocated
6864 *		    logical pages.
6865 *		b.  Wait 20msec. - note that this timeout is needed to make
6866 *		    sure there are no requests in one of the PXP internal
6867 *		    queues with "old" ILT addresses.
6868 *		c.  PF enable in the PGLC.
6869 *		d.  Clear the was_error of the PF in the PGLC. (could have
6870 *		    occurred while driver was down)
6871 *		e.  PF enable in the CFC (WEAK + STRONG)
6872 *		f.  Timers scan enable
6873 *	3.  PF driver unload flow:
6874 *		a.  Clear the Timers scan_en.
6875 *		b.  Polling for scan_on=0 for that PF.
6876 *		c.  Clear the PF enable bit in the PXP.
6877 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6878 *		e.  Write zero+valid to all ILT entries (The valid bit must
6879 *		    stay set)
6880 *		f.  If this is VNIC 3 of a port then also init
6881 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6882 *		    to the last entry in the ILT.
6883 *
6884 *	Notes:
6885 *	Currently the PF error in the PGLC is non recoverable.
6886 *	In the future the there will be a recovery routine for this error.
6887 *	Currently attention is masked.
6888 *	Having an MCP lock on the load/unload process does not guarantee that
6889 *	there is no Timer disable during Func6/7 enable. This is because the
6890 *	Timers scan is currently being cleared by the MCP on FLR.
6891 *	Step 2.d can be done only for PF6/7 and the driver can also check if
6892 *	there is error before clearing it. But the flow above is simpler and
6893 *	more general.
6894 *	All ILT entries are written by zero+valid and not just PF6/7
6895 *	ILT entries since in the future the ILT entries allocation for
6896 *	PF-s might be dynamic.
6897 */
6898		struct ilt_client_info ilt_cli;
6899		struct bnx2x_ilt ilt;
6900		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6901		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6902
6903		/* initialize dummy TM client */
6904		ilt_cli.start = 0;
6905		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6906		ilt_cli.client_num = ILT_CLIENT_TM;
6907
6908		/* Step 1: set zeroes to all ilt page entries with valid bit on
6909		 * Step 2: set the timers first/last ilt entry to point
6910		 * to the entire range to prevent ILT range error for 3rd/4th
6911		 * vnic	(this code assumes existence of the vnic)
6912		 *
6913		 * both steps performed by call to bnx2x_ilt_client_init_op()
6914		 * with dummy TM client
6915		 *
6916		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6917		 * and his brother are split registers
6918		 */
6919		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6920		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6921		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6922
6923		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6924		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6925		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6926	}
6927
6928	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6929	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6930
6931	if (!CHIP_IS_E1x(bp)) {
6932		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6933				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6934		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6935
6936		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6937
6938		/* let the HW do it's magic ... */
6939		do {
6940			msleep(200);
6941			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6942		} while (factor-- && (val != 1));
6943
6944		if (val != 1) {
6945			BNX2X_ERR("ATC_INIT failed\n");
6946			return -EBUSY;
6947		}
6948	}
6949
6950	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6951
6952	bnx2x_iov_init_dmae(bp);
6953
6954	/* clean the DMAE memory */
6955	bp->dmae_ready = 1;
6956	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6957
6958	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6959
6960	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6961
6962	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6963
6964	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6965
6966	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6967	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6968	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6969	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6970
6971	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6972
6973	/* QM queues pointers table */
6974	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6975
6976	/* soft reset pulse */
6977	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6978	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6979
6980	if (CNIC_SUPPORT(bp))
6981		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6982
6983	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6984
6985	if (!CHIP_REV_IS_SLOW(bp))
6986		/* enable hw interrupt from doorbell Q */
6987		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6988
6989	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6990
6991	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6992	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6993
6994	if (!CHIP_IS_E1(bp))
6995		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6996
6997	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6998		if (IS_MF_AFEX(bp)) {
6999			/* configure that VNTag and VLAN headers must be
7000			 * received in afex mode
7001			 */
7002			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7003			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7004			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7005			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7006			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7007		} else {
7008			/* Bit-map indicating which L2 hdrs may appear
7009			 * after the basic Ethernet header
7010			 */
7011			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7012			       bp->path_has_ovlan ? 7 : 6);
7013		}
7014	}
7015
7016	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7017	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7018	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7019	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7020
7021	if (!CHIP_IS_E1x(bp)) {
7022		/* reset VFC memories */
7023		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7024			   VFC_MEMORIES_RST_REG_CAM_RST |
7025			   VFC_MEMORIES_RST_REG_RAM_RST);
7026		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7027			   VFC_MEMORIES_RST_REG_CAM_RST |
7028			   VFC_MEMORIES_RST_REG_RAM_RST);
7029
7030		msleep(20);
7031	}
7032
7033	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7034	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7035	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7036	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7037
7038	/* sync semi rtc */
7039	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7040	       0x80000000);
7041	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7042	       0x80000000);
7043
7044	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7045	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7046	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7047
7048	if (!CHIP_IS_E1x(bp)) {
7049		if (IS_MF_AFEX(bp)) {
7050			/* configure that VNTag and VLAN headers must be
7051			 * sent in afex mode
7052			 */
7053			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7054			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7055			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7056			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7057			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7058		} else {
7059			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7060			       bp->path_has_ovlan ? 7 : 6);
7061		}
7062	}
7063
7064	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7065
7066	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7067
7068	if (CNIC_SUPPORT(bp)) {
7069		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7070		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7071		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7072		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7073		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7074		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7075		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7076		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7077		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7078		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7079	}
7080	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7081
7082	if (sizeof(union cdu_context) != 1024)
7083		/* we currently assume that a context is 1024 bytes */
7084		dev_alert(&bp->pdev->dev,
7085			  "please adjust the size of cdu_context(%ld)\n",
7086			  (long)sizeof(union cdu_context));
7087
7088	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7089	val = (4 << 24) + (0 << 12) + 1024;
7090	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7091
7092	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7093	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7094	/* enable context validation interrupt from CFC */
7095	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7096
7097	/* set the thresholds to prevent CFC/CDU race */
7098	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7099
7100	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7101
7102	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7103		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7104
7105	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7106	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7107
7108	/* Reset PCIE errors for debug */
7109	REG_WR(bp, 0x2814, 0xffffffff);
7110	REG_WR(bp, 0x3820, 0xffffffff);
7111
7112	if (!CHIP_IS_E1x(bp)) {
7113		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7114			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7115				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7116		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7117			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7118				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7119				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7120		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7121			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7122				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7123				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7124	}
7125
7126	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7127	if (!CHIP_IS_E1(bp)) {
7128		/* in E3 this done in per-port section */
7129		if (!CHIP_IS_E3(bp))
7130			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7131	}
7132	if (CHIP_IS_E1H(bp))
7133		/* not applicable for E2 (and above ...) */
7134		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7135
7136	if (CHIP_REV_IS_SLOW(bp))
7137		msleep(200);
7138
7139	/* finish CFC init */
7140	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7141	if (val != 1) {
7142		BNX2X_ERR("CFC LL_INIT failed\n");
7143		return -EBUSY;
7144	}
7145	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7146	if (val != 1) {
7147		BNX2X_ERR("CFC AC_INIT failed\n");
7148		return -EBUSY;
7149	}
7150	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7151	if (val != 1) {
7152		BNX2X_ERR("CFC CAM_INIT failed\n");
7153		return -EBUSY;
7154	}
7155	REG_WR(bp, CFC_REG_DEBUG0, 0);
7156
7157	if (CHIP_IS_E1(bp)) {
7158		/* read NIG statistic
7159		   to see if this is our first up since powerup */
7160		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7161		val = *bnx2x_sp(bp, wb_data[0]);
7162
7163		/* do internal memory self test */
7164		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7165			BNX2X_ERR("internal mem self test failed\n");
7166			return -EBUSY;
7167		}
7168	}
7169
7170	bnx2x_setup_fan_failure_detection(bp);
7171
7172	/* clear PXP2 attentions */
7173	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7174
7175	bnx2x_enable_blocks_attention(bp);
7176	bnx2x_enable_blocks_parity(bp);
7177
7178	if (!BP_NOMCP(bp)) {
7179		if (CHIP_IS_E1x(bp))
7180			bnx2x__common_init_phy(bp);
7181	} else
7182		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7183
7184	return 0;
7185}
7186
7187/**
7188 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7189 *
7190 * @bp:		driver handle
7191 */
7192static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7193{
7194	int rc = bnx2x_init_hw_common(bp);
7195
7196	if (rc)
7197		return rc;
7198
7199	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7200	if (!BP_NOMCP(bp))
7201		bnx2x__common_init_phy(bp);
7202
7203	return 0;
7204}
7205
7206static int bnx2x_init_hw_port(struct bnx2x *bp)
7207{
7208	int port = BP_PORT(bp);
7209	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7210	u32 low, high;
7211	u32 val, reg;
7212
7213	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7214
7215	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7216
7217	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7218	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7219	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7220
7221	/* Timers bug workaround: disables the pf_master bit in pglue at
7222	 * common phase, we need to enable it here before any dmae access are
7223	 * attempted. Therefore we manually added the enable-master to the
7224	 * port phase (it also happens in the function phase)
7225	 */
7226	if (!CHIP_IS_E1x(bp))
7227		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7228
7229	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7230	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7231	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7232	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7233
7234	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7235	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7236	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7237	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7238
7239	/* QM cid (connection) count */
7240	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7241
7242	if (CNIC_SUPPORT(bp)) {
7243		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7244		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7245		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7246	}
7247
7248	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7249
7250	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7251
7252	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7253
7254		if (IS_MF(bp))
7255			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7256		else if (bp->dev->mtu > 4096) {
7257			if (bp->flags & ONE_PORT_FLAG)
7258				low = 160;
7259			else {
7260				val = bp->dev->mtu;
7261				/* (24*1024 + val*4)/256 */
7262				low = 96 + (val/64) +
7263						((val % 64) ? 1 : 0);
7264			}
7265		} else
7266			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7267		high = low + 56;	/* 14*1024/256 */
7268		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7269		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7270	}
7271
7272	if (CHIP_MODE_IS_4_PORT(bp))
7273		REG_WR(bp, (BP_PORT(bp) ?
7274			    BRB1_REG_MAC_GUARANTIED_1 :
7275			    BRB1_REG_MAC_GUARANTIED_0), 40);
7276
7277	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7278	if (CHIP_IS_E3B0(bp)) {
7279		if (IS_MF_AFEX(bp)) {
7280			/* configure headers for AFEX mode */
7281			REG_WR(bp, BP_PORT(bp) ?
7282			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7283			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7284			REG_WR(bp, BP_PORT(bp) ?
7285			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7286			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7287			REG_WR(bp, BP_PORT(bp) ?
7288			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7289			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7290		} else {
7291			/* Ovlan exists only if we are in multi-function +
7292			 * switch-dependent mode, in switch-independent there
7293			 * is no ovlan headers
7294			 */
7295			REG_WR(bp, BP_PORT(bp) ?
7296			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7297			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7298			       (bp->path_has_ovlan ? 7 : 6));
7299		}
7300	}
7301
7302	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7303	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7304	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7305	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7306
7307	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7308	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7309	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7310	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7311
7312	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7313	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7314
7315	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7316
7317	if (CHIP_IS_E1x(bp)) {
7318		/* configure PBF to work without PAUSE mtu 9000 */
7319		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7320
7321		/* update threshold */
7322		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7323		/* update init credit */
7324		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7325
7326		/* probe changes */
7327		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7328		udelay(50);
7329		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7330	}
7331
7332	if (CNIC_SUPPORT(bp))
7333		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7334
7335	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7336	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7337
7338	if (CHIP_IS_E1(bp)) {
7339		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7340		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7341	}
7342	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7343
7344	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7345
7346	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7347	/* init aeu_mask_attn_func_0/1:
7348	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7349	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7350	 *             bits 4-7 are used for "per vn group attention" */
7351	val = IS_MF(bp) ? 0xF7 : 0x7;
7352	/* Enable DCBX attention for all but E1 */
7353	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7354	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7355
7356	/* SCPAD_PARITY should NOT trigger close the gates */
7357	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7358	REG_WR(bp, reg,
7359	       REG_RD(bp, reg) &
7360	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7361
7362	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7363	REG_WR(bp, reg,
7364	       REG_RD(bp, reg) &
7365	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7366
7367	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7368
7369	if (!CHIP_IS_E1x(bp)) {
7370		/* Bit-map indicating which L2 hdrs may appear after the
7371		 * basic Ethernet header
7372		 */
7373		if (IS_MF_AFEX(bp))
7374			REG_WR(bp, BP_PORT(bp) ?
7375			       NIG_REG_P1_HDRS_AFTER_BASIC :
7376			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7377		else
7378			REG_WR(bp, BP_PORT(bp) ?
7379			       NIG_REG_P1_HDRS_AFTER_BASIC :
7380			       NIG_REG_P0_HDRS_AFTER_BASIC,
7381			       IS_MF_SD(bp) ? 7 : 6);
7382
7383		if (CHIP_IS_E3(bp))
7384			REG_WR(bp, BP_PORT(bp) ?
7385				   NIG_REG_LLH1_MF_MODE :
7386				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7387	}
7388	if (!CHIP_IS_E3(bp))
7389		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7390
7391	if (!CHIP_IS_E1(bp)) {
7392		/* 0x2 disable mf_ov, 0x1 enable */
7393		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7394		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7395
7396		if (!CHIP_IS_E1x(bp)) {
7397			val = 0;
7398			switch (bp->mf_mode) {
7399			case MULTI_FUNCTION_SD:
7400				val = 1;
7401				break;
7402			case MULTI_FUNCTION_SI:
7403			case MULTI_FUNCTION_AFEX:
7404				val = 2;
7405				break;
7406			}
7407
7408			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7409						  NIG_REG_LLH0_CLS_TYPE), val);
7410		}
7411		{
7412			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7413			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7414			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7415		}
7416	}
7417
7418	/* If SPIO5 is set to generate interrupts, enable it for this port */
7419	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7420	if (val & MISC_SPIO_SPIO5) {
7421		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7422				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7423		val = REG_RD(bp, reg_addr);
7424		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7425		REG_WR(bp, reg_addr, val);
7426	}
7427
7428	return 0;
7429}
7430
7431static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7432{
7433	int reg;
7434	u32 wb_write[2];
7435
7436	if (CHIP_IS_E1(bp))
7437		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7438	else
7439		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7440
7441	wb_write[0] = ONCHIP_ADDR1(addr);
7442	wb_write[1] = ONCHIP_ADDR2(addr);
7443	REG_WR_DMAE(bp, reg, wb_write, 2);
7444}
7445
7446void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7447{
7448	u32 data, ctl, cnt = 100;
7449	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7450	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7451	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7452	u32 sb_bit =  1 << (idu_sb_id%32);
7453	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7454	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7455
7456	/* Not supported in BC mode */
7457	if (CHIP_INT_MODE_IS_BC(bp))
7458		return;
7459
7460	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7461			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7462		IGU_REGULAR_CLEANUP_SET				|
7463		IGU_REGULAR_BCLEANUP;
7464
7465	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7466	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7467	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7468
7469	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7470			 data, igu_addr_data);
7471	REG_WR(bp, igu_addr_data, data);
7472	mmiowb();
7473	barrier();
7474	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7475			  ctl, igu_addr_ctl);
7476	REG_WR(bp, igu_addr_ctl, ctl);
7477	mmiowb();
7478	barrier();
7479
7480	/* wait for clean up to finish */
7481	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7482		msleep(20);
7483
7484	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7485		DP(NETIF_MSG_HW,
7486		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7487			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7488	}
7489}
7490
7491static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7492{
7493	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7494}
7495
7496static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7497{
7498	u32 i, base = FUNC_ILT_BASE(func);
7499	for (i = base; i < base + ILT_PER_FUNC; i++)
7500		bnx2x_ilt_wr(bp, i, 0);
7501}
7502
7503static void bnx2x_init_searcher(struct bnx2x *bp)
7504{
7505	int port = BP_PORT(bp);
7506	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7507	/* T1 hash bits value determines the T1 number of entries */
7508	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7509}
7510
7511static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7512{
7513	int rc;
7514	struct bnx2x_func_state_params func_params = {NULL};
7515	struct bnx2x_func_switch_update_params *switch_update_params =
7516		&func_params.params.switch_update;
7517
7518	/* Prepare parameters for function state transitions */
7519	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7520	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7521
7522	func_params.f_obj = &bp->func_obj;
7523	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7524
7525	/* Function parameters */
7526	switch_update_params->suspend = suspend;
7527
7528	rc = bnx2x_func_state_change(bp, &func_params);
7529
7530	return rc;
7531}
7532
7533static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7534{
7535	int rc, i, port = BP_PORT(bp);
7536	int vlan_en = 0, mac_en[NUM_MACS];
7537
7538	/* Close input from network */
7539	if (bp->mf_mode == SINGLE_FUNCTION) {
7540		bnx2x_set_rx_filter(&bp->link_params, 0);
7541	} else {
7542		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7543				   NIG_REG_LLH0_FUNC_EN);
7544		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7545			  NIG_REG_LLH0_FUNC_EN, 0);
7546		for (i = 0; i < NUM_MACS; i++) {
7547			mac_en[i] = REG_RD(bp, port ?
7548					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7549					      4 * i) :
7550					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7551					      4 * i));
7552			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7553					      4 * i) :
7554				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7555		}
7556	}
7557
7558	/* Close BMC to host */
7559	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7560	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7561
7562	/* Suspend Tx switching to the PF. Completion of this ramrod
7563	 * further guarantees that all the packets of that PF / child
7564	 * VFs in BRB were processed by the Parser, so it is safe to
7565	 * change the NIC_MODE register.
7566	 */
7567	rc = bnx2x_func_switch_update(bp, 1);
7568	if (rc) {
7569		BNX2X_ERR("Can't suspend tx-switching!\n");
7570		return rc;
7571	}
7572
7573	/* Change NIC_MODE register */
7574	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7575
7576	/* Open input from network */
7577	if (bp->mf_mode == SINGLE_FUNCTION) {
7578		bnx2x_set_rx_filter(&bp->link_params, 1);
7579	} else {
7580		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7581			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7582		for (i = 0; i < NUM_MACS; i++) {
7583			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7584					      4 * i) :
7585				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7586				  mac_en[i]);
7587		}
7588	}
7589
7590	/* Enable BMC to host */
7591	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7592	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7593
7594	/* Resume Tx switching to the PF */
7595	rc = bnx2x_func_switch_update(bp, 0);
7596	if (rc) {
7597		BNX2X_ERR("Can't resume tx-switching!\n");
7598		return rc;
7599	}
7600
7601	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7602	return 0;
7603}
7604
7605int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7606{
7607	int rc;
7608
7609	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7610
7611	if (CONFIGURE_NIC_MODE(bp)) {
7612		/* Configure searcher as part of function hw init */
7613		bnx2x_init_searcher(bp);
7614
7615		/* Reset NIC mode */
7616		rc = bnx2x_reset_nic_mode(bp);
7617		if (rc)
7618			BNX2X_ERR("Can't change NIC mode!\n");
7619		return rc;
7620	}
7621
7622	return 0;
7623}
7624
7625static int bnx2x_init_hw_func(struct bnx2x *bp)
7626{
7627	int port = BP_PORT(bp);
7628	int func = BP_FUNC(bp);
7629	int init_phase = PHASE_PF0 + func;
7630	struct bnx2x_ilt *ilt = BP_ILT(bp);
7631	u16 cdu_ilt_start;
7632	u32 addr, val;
7633	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7634	int i, main_mem_width, rc;
7635
7636	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7637
7638	/* FLR cleanup - hmmm */
7639	if (!CHIP_IS_E1x(bp)) {
7640		rc = bnx2x_pf_flr_clnup(bp);
7641		if (rc) {
7642			bnx2x_fw_dump(bp);
7643			return rc;
7644		}
7645	}
7646
7647	/* set MSI reconfigure capability */
7648	if (bp->common.int_block == INT_BLOCK_HC) {
7649		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7650		val = REG_RD(bp, addr);
7651		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7652		REG_WR(bp, addr, val);
7653	}
7654
7655	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7656	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7657
7658	ilt = BP_ILT(bp);
7659	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7660
7661	if (IS_SRIOV(bp))
7662		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7663	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7664
7665	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7666	 * those of the VFs, so start line should be reset
7667	 */
7668	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7669	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7670		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7671		ilt->lines[cdu_ilt_start + i].page_mapping =
7672			bp->context[i].cxt_mapping;
7673		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7674	}
7675
7676	bnx2x_ilt_init_op(bp, INITOP_SET);
7677
7678	if (!CONFIGURE_NIC_MODE(bp)) {
7679		bnx2x_init_searcher(bp);
7680		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7681		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7682	} else {
7683		/* Set NIC mode */
7684		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7685		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7686	}
7687
7688	if (!CHIP_IS_E1x(bp)) {
7689		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7690
7691		/* Turn on a single ISR mode in IGU if driver is going to use
7692		 * INT#x or MSI
7693		 */
7694		if (!(bp->flags & USING_MSIX_FLAG))
7695			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7696		/*
7697		 * Timers workaround bug: function init part.
7698		 * Need to wait 20msec after initializing ILT,
7699		 * needed to make sure there are no requests in
7700		 * one of the PXP internal queues with "old" ILT addresses
7701		 */
7702		msleep(20);
7703		/*
7704		 * Master enable - Due to WB DMAE writes performed before this
7705		 * register is re-initialized as part of the regular function
7706		 * init
7707		 */
7708		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7709		/* Enable the function in IGU */
7710		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7711	}
7712
7713	bp->dmae_ready = 1;
7714
7715	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7716
7717	if (!CHIP_IS_E1x(bp))
7718		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7719
7720	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7721	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7722	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7723	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7724	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7725	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7726	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7727	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7728	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7729	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7730	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7731	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7732	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7733
7734	if (!CHIP_IS_E1x(bp))
7735		REG_WR(bp, QM_REG_PF_EN, 1);
7736
7737	if (!CHIP_IS_E1x(bp)) {
7738		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7739		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7740		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7741		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7742	}
7743	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7744
7745	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7746	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7747	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7748
7749	bnx2x_iov_init_dq(bp);
7750
7751	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7752	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7753	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7754	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7755	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7756	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7757	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7758	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7759	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7760	if (!CHIP_IS_E1x(bp))
7761		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7762
7763	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7764
7765	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7766
7767	if (!CHIP_IS_E1x(bp))
7768		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7769
7770	if (IS_MF(bp)) {
7771		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7772		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7773	}
7774
7775	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7776
7777	/* HC init per function */
7778	if (bp->common.int_block == INT_BLOCK_HC) {
7779		if (CHIP_IS_E1H(bp)) {
7780			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7781
7782			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7783			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7784		}
7785		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7786
7787	} else {
7788		int num_segs, sb_idx, prod_offset;
7789
7790		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7791
7792		if (!CHIP_IS_E1x(bp)) {
7793			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7794			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7795		}
7796
7797		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7798
7799		if (!CHIP_IS_E1x(bp)) {
7800			int dsb_idx = 0;
7801			/**
7802			 * Producer memory:
7803			 * E2 mode: address 0-135 match to the mapping memory;
7804			 * 136 - PF0 default prod; 137 - PF1 default prod;
7805			 * 138 - PF2 default prod; 139 - PF3 default prod;
7806			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7807			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7808			 * 144-147 reserved.
7809			 *
7810			 * E1.5 mode - In backward compatible mode;
7811			 * for non default SB; each even line in the memory
7812			 * holds the U producer and each odd line hold
7813			 * the C producer. The first 128 producers are for
7814			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7815			 * producers are for the DSB for each PF.
7816			 * Each PF has five segments: (the order inside each
7817			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7818			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7819			 * 144-147 attn prods;
7820			 */
7821			/* non-default-status-blocks */
7822			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7823				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7824			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7825				prod_offset = (bp->igu_base_sb + sb_idx) *
7826					num_segs;
7827
7828				for (i = 0; i < num_segs; i++) {
7829					addr = IGU_REG_PROD_CONS_MEMORY +
7830							(prod_offset + i) * 4;
7831					REG_WR(bp, addr, 0);
7832				}
7833				/* send consumer update with value 0 */
7834				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7835					     USTORM_ID, 0, IGU_INT_NOP, 1);
7836				bnx2x_igu_clear_sb(bp,
7837						   bp->igu_base_sb + sb_idx);
7838			}
7839
7840			/* default-status-blocks */
7841			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7842				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7843
7844			if (CHIP_MODE_IS_4_PORT(bp))
7845				dsb_idx = BP_FUNC(bp);
7846			else
7847				dsb_idx = BP_VN(bp);
7848
7849			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7850				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7851				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7852
7853			/*
7854			 * igu prods come in chunks of E1HVN_MAX (4) -
7855			 * does not matters what is the current chip mode
7856			 */
7857			for (i = 0; i < (num_segs * E1HVN_MAX);
7858			     i += E1HVN_MAX) {
7859				addr = IGU_REG_PROD_CONS_MEMORY +
7860							(prod_offset + i)*4;
7861				REG_WR(bp, addr, 0);
7862			}
7863			/* send consumer update with 0 */
7864			if (CHIP_INT_MODE_IS_BC(bp)) {
7865				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7866					     USTORM_ID, 0, IGU_INT_NOP, 1);
7867				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7868					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7869				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7870					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7871				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7872					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7873				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7874					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7875			} else {
7876				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7877					     USTORM_ID, 0, IGU_INT_NOP, 1);
7878				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7879					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7880			}
7881			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7882
7883			/* !!! These should become driver const once
7884			   rf-tool supports split-68 const */
7885			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7886			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7887			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7888			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7889			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7890			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7891		}
7892	}
7893
7894	/* Reset PCIE errors for debug */
7895	REG_WR(bp, 0x2114, 0xffffffff);
7896	REG_WR(bp, 0x2120, 0xffffffff);
7897
7898	if (CHIP_IS_E1x(bp)) {
7899		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7900		main_mem_base = HC_REG_MAIN_MEMORY +
7901				BP_PORT(bp) * (main_mem_size * 4);
7902		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7903		main_mem_width = 8;
7904
7905		val = REG_RD(bp, main_mem_prty_clr);
7906		if (val)
7907			DP(NETIF_MSG_HW,
7908			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7909			   val);
7910
7911		/* Clear "false" parity errors in MSI-X table */
7912		for (i = main_mem_base;
7913		     i < main_mem_base + main_mem_size * 4;
7914		     i += main_mem_width) {
7915			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7916			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7917					 i, main_mem_width / 4);
7918		}
7919		/* Clear HC parity attention */
7920		REG_RD(bp, main_mem_prty_clr);
7921	}
7922
7923#ifdef BNX2X_STOP_ON_ERROR
7924	/* Enable STORMs SP logging */
7925	REG_WR8(bp, BAR_USTRORM_INTMEM +
7926	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7927	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7928	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7929	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7930	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7931	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7932	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7933#endif
7934
7935	bnx2x_phy_probe(&bp->link_params);
7936
7937	return 0;
7938}
7939
7940void bnx2x_free_mem_cnic(struct bnx2x *bp)
7941{
7942	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7943
7944	if (!CHIP_IS_E1x(bp))
7945		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7946			       sizeof(struct host_hc_status_block_e2));
7947	else
7948		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7949			       sizeof(struct host_hc_status_block_e1x));
7950
7951	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7952}
7953
7954void bnx2x_free_mem(struct bnx2x *bp)
7955{
7956	int i;
7957
7958	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7959		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7960
7961	if (IS_VF(bp))
7962		return;
7963
7964	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7965		       sizeof(struct host_sp_status_block));
7966
7967	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7968		       sizeof(struct bnx2x_slowpath));
7969
7970	for (i = 0; i < L2_ILT_LINES(bp); i++)
7971		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7972			       bp->context[i].size);
7973	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7974
7975	BNX2X_FREE(bp->ilt->lines);
7976
7977	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7978
7979	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7980		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7981
7982	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7983
7984	bnx2x_iov_free_mem(bp);
7985}
7986
7987int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7988{
7989	if (!CHIP_IS_E1x(bp))
7990		/* size = the status block + ramrod buffers */
7991		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7992				sizeof(struct host_hc_status_block_e2));
7993	else
7994		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7995				&bp->cnic_sb_mapping,
7996				sizeof(struct
7997				       host_hc_status_block_e1x));
7998
7999	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
8000		/* allocate searcher T2 table, as it wasn't allocated before */
8001		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8002
8003	/* write address to which L5 should insert its values */
8004	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8005		&bp->slowpath->drv_info_to_mcp;
8006
8007	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8008		goto alloc_mem_err;
8009
8010	return 0;
8011
8012alloc_mem_err:
8013	bnx2x_free_mem_cnic(bp);
8014	BNX2X_ERR("Can't allocate memory\n");
8015	return -ENOMEM;
8016}
8017
8018int bnx2x_alloc_mem(struct bnx2x *bp)
8019{
8020	int i, allocated, context_size;
8021
8022	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
8023		/* allocate searcher T2 table */
8024		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8025
8026	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
8027			sizeof(struct host_sp_status_block));
8028
8029	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
8030			sizeof(struct bnx2x_slowpath));
8031
8032	/* Allocate memory for CDU context:
8033	 * This memory is allocated separately and not in the generic ILT
8034	 * functions because CDU differs in few aspects:
8035	 * 1. There are multiple entities allocating memory for context -
8036	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8037	 * its own ILT lines.
8038	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8039	 * for the other ILT clients), to be efficient we want to support
8040	 * allocation of sub-page-size in the last entry.
8041	 * 3. Context pointers are used by the driver to pass to FW / update
8042	 * the context (for the other ILT clients the pointers are used just to
8043	 * free the memory during unload).
8044	 */
8045	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8046
8047	for (i = 0, allocated = 0; allocated < context_size; i++) {
8048		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8049					  (context_size - allocated));
8050		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
8051				&bp->context[i].cxt_mapping,
8052				bp->context[i].size);
8053		allocated += bp->context[i].size;
8054	}
8055	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8056
8057	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8058		goto alloc_mem_err;
8059
8060	if (bnx2x_iov_alloc_mem(bp))
8061		goto alloc_mem_err;
8062
8063	/* Slow path ring */
8064	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8065
8066	/* EQ */
8067	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8068			BCM_PAGE_SIZE * NUM_EQ_PAGES);
8069
8070	return 0;
8071
8072alloc_mem_err:
8073	bnx2x_free_mem(bp);
8074	BNX2X_ERR("Can't allocate memory\n");
8075	return -ENOMEM;
8076}
8077
8078/*
8079 * Init service functions
8080 */
8081
8082int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8083		      struct bnx2x_vlan_mac_obj *obj, bool set,
8084		      int mac_type, unsigned long *ramrod_flags)
8085{
8086	int rc;
8087	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8088
8089	memset(&ramrod_param, 0, sizeof(ramrod_param));
8090
8091	/* Fill general parameters */
8092	ramrod_param.vlan_mac_obj = obj;
8093	ramrod_param.ramrod_flags = *ramrod_flags;
8094
8095	/* Fill a user request section if needed */
8096	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8097		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8098
8099		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8100
8101		/* Set the command: ADD or DEL */
8102		if (set)
8103			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8104		else
8105			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8106	}
8107
8108	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8109
8110	if (rc == -EEXIST) {
8111		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8112		/* do not treat adding same MAC as error */
8113		rc = 0;
8114	} else if (rc < 0)
8115		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8116
8117	return rc;
8118}
8119
8120int bnx2x_del_all_macs(struct bnx2x *bp,
8121		       struct bnx2x_vlan_mac_obj *mac_obj,
8122		       int mac_type, bool wait_for_comp)
8123{
8124	int rc;
8125	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8126
8127	/* Wait for completion of requested */
8128	if (wait_for_comp)
8129		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8130
8131	/* Set the mac type of addresses we want to clear */
8132	__set_bit(mac_type, &vlan_mac_flags);
8133
8134	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8135	if (rc < 0)
8136		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8137
8138	return rc;
8139}
8140
8141int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8142{
8143	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8144	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8145		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8146		   "Ignoring Zero MAC for STORAGE SD mode\n");
8147		return 0;
8148	}
8149
8150	if (IS_PF(bp)) {
8151		unsigned long ramrod_flags = 0;
8152
8153		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8154		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8155		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8156					 &bp->sp_objs->mac_obj, set,
8157					 BNX2X_ETH_MAC, &ramrod_flags);
8158	} else { /* vf */
8159		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8160					     bp->fp->index, true);
8161	}
8162}
8163
8164int bnx2x_setup_leading(struct bnx2x *bp)
8165{
8166	if (IS_PF(bp))
8167		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8168	else /* VF */
8169		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8170}
8171
8172/**
8173 * bnx2x_set_int_mode - configure interrupt mode
8174 *
8175 * @bp:		driver handle
8176 *
8177 * In case of MSI-X it will also try to enable MSI-X.
8178 */
8179int bnx2x_set_int_mode(struct bnx2x *bp)
8180{
8181	int rc = 0;
8182
8183	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8184		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8185		return -EINVAL;
8186	}
8187
8188	switch (int_mode) {
8189	case BNX2X_INT_MODE_MSIX:
8190		/* attempt to enable msix */
8191		rc = bnx2x_enable_msix(bp);
8192
8193		/* msix attained */
8194		if (!rc)
8195			return 0;
8196
8197		/* vfs use only msix */
8198		if (rc && IS_VF(bp))
8199			return rc;
8200
8201		/* failed to enable multiple MSI-X */
8202		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8203			       bp->num_queues,
8204			       1 + bp->num_cnic_queues);
8205
8206		/* falling through... */
8207	case BNX2X_INT_MODE_MSI:
8208		bnx2x_enable_msi(bp);
8209
8210		/* falling through... */
8211	case BNX2X_INT_MODE_INTX:
8212		bp->num_ethernet_queues = 1;
8213		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8214		BNX2X_DEV_INFO("set number of queues to 1\n");
8215		break;
8216	default:
8217		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8218		return -EINVAL;
8219	}
8220	return 0;
8221}
8222
8223/* must be called prior to any HW initializations */
8224static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8225{
8226	if (IS_SRIOV(bp))
8227		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8228	return L2_ILT_LINES(bp);
8229}
8230
8231void bnx2x_ilt_set_info(struct bnx2x *bp)
8232{
8233	struct ilt_client_info *ilt_client;
8234	struct bnx2x_ilt *ilt = BP_ILT(bp);
8235	u16 line = 0;
8236
8237	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8238	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8239
8240	/* CDU */
8241	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8242	ilt_client->client_num = ILT_CLIENT_CDU;
8243	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8244	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8245	ilt_client->start = line;
8246	line += bnx2x_cid_ilt_lines(bp);
8247
8248	if (CNIC_SUPPORT(bp))
8249		line += CNIC_ILT_LINES;
8250	ilt_client->end = line - 1;
8251
8252	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8253	   ilt_client->start,
8254	   ilt_client->end,
8255	   ilt_client->page_size,
8256	   ilt_client->flags,
8257	   ilog2(ilt_client->page_size >> 12));
8258
8259	/* QM */
8260	if (QM_INIT(bp->qm_cid_count)) {
8261		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8262		ilt_client->client_num = ILT_CLIENT_QM;
8263		ilt_client->page_size = QM_ILT_PAGE_SZ;
8264		ilt_client->flags = 0;
8265		ilt_client->start = line;
8266
8267		/* 4 bytes for each cid */
8268		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8269							 QM_ILT_PAGE_SZ);
8270
8271		ilt_client->end = line - 1;
8272
8273		DP(NETIF_MSG_IFUP,
8274		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8275		   ilt_client->start,
8276		   ilt_client->end,
8277		   ilt_client->page_size,
8278		   ilt_client->flags,
8279		   ilog2(ilt_client->page_size >> 12));
8280	}
8281
8282	if (CNIC_SUPPORT(bp)) {
8283		/* SRC */
8284		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8285		ilt_client->client_num = ILT_CLIENT_SRC;
8286		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8287		ilt_client->flags = 0;
8288		ilt_client->start = line;
8289		line += SRC_ILT_LINES;
8290		ilt_client->end = line - 1;
8291
8292		DP(NETIF_MSG_IFUP,
8293		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8294		   ilt_client->start,
8295		   ilt_client->end,
8296		   ilt_client->page_size,
8297		   ilt_client->flags,
8298		   ilog2(ilt_client->page_size >> 12));
8299
8300		/* TM */
8301		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8302		ilt_client->client_num = ILT_CLIENT_TM;
8303		ilt_client->page_size = TM_ILT_PAGE_SZ;
8304		ilt_client->flags = 0;
8305		ilt_client->start = line;
8306		line += TM_ILT_LINES;
8307		ilt_client->end = line - 1;
8308
8309		DP(NETIF_MSG_IFUP,
8310		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8311		   ilt_client->start,
8312		   ilt_client->end,
8313		   ilt_client->page_size,
8314		   ilt_client->flags,
8315		   ilog2(ilt_client->page_size >> 12));
8316	}
8317
8318	BUG_ON(line > ILT_MAX_LINES);
8319}
8320
8321/**
8322 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8323 *
8324 * @bp:			driver handle
8325 * @fp:			pointer to fastpath
8326 * @init_params:	pointer to parameters structure
8327 *
8328 * parameters configured:
8329 *      - HC configuration
8330 *      - Queue's CDU context
8331 */
8332static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8333	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8334{
8335	u8 cos;
8336	int cxt_index, cxt_offset;
8337
8338	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8339	if (!IS_FCOE_FP(fp)) {
8340		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8341		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8342
8343		/* If HC is supported, enable host coalescing in the transition
8344		 * to INIT state.
8345		 */
8346		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8347		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8348
8349		/* HC rate */
8350		init_params->rx.hc_rate = bp->rx_ticks ?
8351			(1000000 / bp->rx_ticks) : 0;
8352		init_params->tx.hc_rate = bp->tx_ticks ?
8353			(1000000 / bp->tx_ticks) : 0;
8354
8355		/* FW SB ID */
8356		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8357			fp->fw_sb_id;
8358
8359		/*
8360		 * CQ index among the SB indices: FCoE clients uses the default
8361		 * SB, therefore it's different.
8362		 */
8363		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8364		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8365	}
8366
8367	/* set maximum number of COSs supported by this queue */
8368	init_params->max_cos = fp->max_cos;
8369
8370	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8371	    fp->index, init_params->max_cos);
8372
8373	/* set the context pointers queue object */
8374	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8375		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8376		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8377				ILT_PAGE_CIDS);
8378		init_params->cxts[cos] =
8379			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8380	}
8381}
8382
8383static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8384			struct bnx2x_queue_state_params *q_params,
8385			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8386			int tx_index, bool leading)
8387{
8388	memset(tx_only_params, 0, sizeof(*tx_only_params));
8389
8390	/* Set the command */
8391	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8392
8393	/* Set tx-only QUEUE flags: don't zero statistics */
8394	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8395
8396	/* choose the index of the cid to send the slow path on */
8397	tx_only_params->cid_index = tx_index;
8398
8399	/* Set general TX_ONLY_SETUP parameters */
8400	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8401
8402	/* Set Tx TX_ONLY_SETUP parameters */
8403	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8404
8405	DP(NETIF_MSG_IFUP,
8406	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8407	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8408	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8409	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8410
8411	/* send the ramrod */
8412	return bnx2x_queue_state_change(bp, q_params);
8413}
8414
8415/**
8416 * bnx2x_setup_queue - setup queue
8417 *
8418 * @bp:		driver handle
8419 * @fp:		pointer to fastpath
8420 * @leading:	is leading
8421 *
8422 * This function performs 2 steps in a Queue state machine
8423 *      actually: 1) RESET->INIT 2) INIT->SETUP
8424 */
8425
8426int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8427		       bool leading)
8428{
8429	struct bnx2x_queue_state_params q_params = {NULL};
8430	struct bnx2x_queue_setup_params *setup_params =
8431						&q_params.params.setup;
8432	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8433						&q_params.params.tx_only;
8434	int rc;
8435	u8 tx_index;
8436
8437	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8438
8439	/* reset IGU state skip FCoE L2 queue */
8440	if (!IS_FCOE_FP(fp))
8441		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8442			     IGU_INT_ENABLE, 0);
8443
8444	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8445	/* We want to wait for completion in this context */
8446	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8447
8448	/* Prepare the INIT parameters */
8449	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8450
8451	/* Set the command */
8452	q_params.cmd = BNX2X_Q_CMD_INIT;
8453
8454	/* Change the state to INIT */
8455	rc = bnx2x_queue_state_change(bp, &q_params);
8456	if (rc) {
8457		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8458		return rc;
8459	}
8460
8461	DP(NETIF_MSG_IFUP, "init complete\n");
8462
8463	/* Now move the Queue to the SETUP state... */
8464	memset(setup_params, 0, sizeof(*setup_params));
8465
8466	/* Set QUEUE flags */
8467	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8468
8469	/* Set general SETUP parameters */
8470	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8471				FIRST_TX_COS_INDEX);
8472
8473	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8474			    &setup_params->rxq_params);
8475
8476	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8477			   FIRST_TX_COS_INDEX);
8478
8479	/* Set the command */
8480	q_params.cmd = BNX2X_Q_CMD_SETUP;
8481
8482	if (IS_FCOE_FP(fp))
8483		bp->fcoe_init = true;
8484
8485	/* Change the state to SETUP */
8486	rc = bnx2x_queue_state_change(bp, &q_params);
8487	if (rc) {
8488		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8489		return rc;
8490	}
8491
8492	/* loop through the relevant tx-only indices */
8493	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8494	      tx_index < fp->max_cos;
8495	      tx_index++) {
8496
8497		/* prepare and send tx-only ramrod*/
8498		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8499					  tx_only_params, tx_index, leading);
8500		if (rc) {
8501			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8502				  fp->index, tx_index);
8503			return rc;
8504		}
8505	}
8506
8507	return rc;
8508}
8509
8510static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8511{
8512	struct bnx2x_fastpath *fp = &bp->fp[index];
8513	struct bnx2x_fp_txdata *txdata;
8514	struct bnx2x_queue_state_params q_params = {NULL};
8515	int rc, tx_index;
8516
8517	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8518
8519	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8520	/* We want to wait for completion in this context */
8521	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8522
8523	/* close tx-only connections */
8524	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8525	     tx_index < fp->max_cos;
8526	     tx_index++){
8527
8528		/* ascertain this is a normal queue*/
8529		txdata = fp->txdata_ptr[tx_index];
8530
8531		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8532							txdata->txq_index);
8533
8534		/* send halt terminate on tx-only connection */
8535		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8536		memset(&q_params.params.terminate, 0,
8537		       sizeof(q_params.params.terminate));
8538		q_params.params.terminate.cid_index = tx_index;
8539
8540		rc = bnx2x_queue_state_change(bp, &q_params);
8541		if (rc)
8542			return rc;
8543
8544		/* send halt terminate on tx-only connection */
8545		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8546		memset(&q_params.params.cfc_del, 0,
8547		       sizeof(q_params.params.cfc_del));
8548		q_params.params.cfc_del.cid_index = tx_index;
8549		rc = bnx2x_queue_state_change(bp, &q_params);
8550		if (rc)
8551			return rc;
8552	}
8553	/* Stop the primary connection: */
8554	/* ...halt the connection */
8555	q_params.cmd = BNX2X_Q_CMD_HALT;
8556	rc = bnx2x_queue_state_change(bp, &q_params);
8557	if (rc)
8558		return rc;
8559
8560	/* ...terminate the connection */
8561	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8562	memset(&q_params.params.terminate, 0,
8563	       sizeof(q_params.params.terminate));
8564	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8565	rc = bnx2x_queue_state_change(bp, &q_params);
8566	if (rc)
8567		return rc;
8568	/* ...delete cfc entry */
8569	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8570	memset(&q_params.params.cfc_del, 0,
8571	       sizeof(q_params.params.cfc_del));
8572	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8573	return bnx2x_queue_state_change(bp, &q_params);
8574}
8575
8576static void bnx2x_reset_func(struct bnx2x *bp)
8577{
8578	int port = BP_PORT(bp);
8579	int func = BP_FUNC(bp);
8580	int i;
8581
8582	/* Disable the function in the FW */
8583	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8584	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8585	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8586	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8587
8588	/* FP SBs */
8589	for_each_eth_queue(bp, i) {
8590		struct bnx2x_fastpath *fp = &bp->fp[i];
8591		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8592			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8593			   SB_DISABLED);
8594	}
8595
8596	if (CNIC_LOADED(bp))
8597		/* CNIC SB */
8598		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8599			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8600			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8601
8602	/* SP SB */
8603	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8604		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8605		SB_DISABLED);
8606
8607	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8608		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8609		       0);
8610
8611	/* Configure IGU */
8612	if (bp->common.int_block == INT_BLOCK_HC) {
8613		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8614		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8615	} else {
8616		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8617		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8618	}
8619
8620	if (CNIC_LOADED(bp)) {
8621		/* Disable Timer scan */
8622		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8623		/*
8624		 * Wait for at least 10ms and up to 2 second for the timers
8625		 * scan to complete
8626		 */
8627		for (i = 0; i < 200; i++) {
8628			usleep_range(10000, 20000);
8629			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8630				break;
8631		}
8632	}
8633	/* Clear ILT */
8634	bnx2x_clear_func_ilt(bp, func);
8635
8636	/* Timers workaround bug for E2: if this is vnic-3,
8637	 * we need to set the entire ilt range for this timers.
8638	 */
8639	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8640		struct ilt_client_info ilt_cli;
8641		/* use dummy TM client */
8642		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8643		ilt_cli.start = 0;
8644		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8645		ilt_cli.client_num = ILT_CLIENT_TM;
8646
8647		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8648	}
8649
8650	/* this assumes that reset_port() called before reset_func()*/
8651	if (!CHIP_IS_E1x(bp))
8652		bnx2x_pf_disable(bp);
8653
8654	bp->dmae_ready = 0;
8655}
8656
8657static void bnx2x_reset_port(struct bnx2x *bp)
8658{
8659	int port = BP_PORT(bp);
8660	u32 val;
8661
8662	/* Reset physical Link */
8663	bnx2x__link_reset(bp);
8664
8665	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8666
8667	/* Do not rcv packets to BRB */
8668	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8669	/* Do not direct rcv packets that are not for MCP to the BRB */
8670	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8671			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8672
8673	/* Configure AEU */
8674	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8675
8676	msleep(100);
8677	/* Check for BRB port occupancy */
8678	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8679	if (val)
8680		DP(NETIF_MSG_IFDOWN,
8681		   "BRB1 is not empty  %d blocks are occupied\n", val);
8682
8683	/* TODO: Close Doorbell port? */
8684}
8685
8686static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8687{
8688	struct bnx2x_func_state_params func_params = {NULL};
8689
8690	/* Prepare parameters for function state transitions */
8691	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8692
8693	func_params.f_obj = &bp->func_obj;
8694	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8695
8696	func_params.params.hw_init.load_phase = load_code;
8697
8698	return bnx2x_func_state_change(bp, &func_params);
8699}
8700
8701static int bnx2x_func_stop(struct bnx2x *bp)
8702{
8703	struct bnx2x_func_state_params func_params = {NULL};
8704	int rc;
8705
8706	/* Prepare parameters for function state transitions */
8707	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8708	func_params.f_obj = &bp->func_obj;
8709	func_params.cmd = BNX2X_F_CMD_STOP;
8710
8711	/*
8712	 * Try to stop the function the 'good way'. If fails (in case
8713	 * of a parity error during bnx2x_chip_cleanup()) and we are
8714	 * not in a debug mode, perform a state transaction in order to
8715	 * enable further HW_RESET transaction.
8716	 */
8717	rc = bnx2x_func_state_change(bp, &func_params);
8718	if (rc) {
8719#ifdef BNX2X_STOP_ON_ERROR
8720		return rc;
8721#else
8722		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8723		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8724		return bnx2x_func_state_change(bp, &func_params);
8725#endif
8726	}
8727
8728	return 0;
8729}
8730
8731/**
8732 * bnx2x_send_unload_req - request unload mode from the MCP.
8733 *
8734 * @bp:			driver handle
8735 * @unload_mode:	requested function's unload mode
8736 *
8737 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8738 */
8739u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8740{
8741	u32 reset_code = 0;
8742	int port = BP_PORT(bp);
8743
8744	/* Select the UNLOAD request mode */
8745	if (unload_mode == UNLOAD_NORMAL)
8746		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8747
8748	else if (bp->flags & NO_WOL_FLAG)
8749		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8750
8751	else if (bp->wol) {
8752		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8753		u8 *mac_addr = bp->dev->dev_addr;
8754		struct pci_dev *pdev = bp->pdev;
8755		u32 val;
8756		u16 pmc;
8757
8758		/* The mac address is written to entries 1-4 to
8759		 * preserve entry 0 which is used by the PMF
8760		 */
8761		u8 entry = (BP_VN(bp) + 1)*8;
8762
8763		val = (mac_addr[0] << 8) | mac_addr[1];
8764		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8765
8766		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8767		      (mac_addr[4] << 8) | mac_addr[5];
8768		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8769
8770		/* Enable the PME and clear the status */
8771		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8772		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8773		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8774
8775		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8776
8777	} else
8778		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8779
8780	/* Send the request to the MCP */
8781	if (!BP_NOMCP(bp))
8782		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8783	else {
8784		int path = BP_PATH(bp);
8785
8786		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8787		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8788		   bnx2x_load_count[path][2]);
8789		bnx2x_load_count[path][0]--;
8790		bnx2x_load_count[path][1 + port]--;
8791		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8792		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8793		   bnx2x_load_count[path][2]);
8794		if (bnx2x_load_count[path][0] == 0)
8795			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8796		else if (bnx2x_load_count[path][1 + port] == 0)
8797			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8798		else
8799			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8800	}
8801
8802	return reset_code;
8803}
8804
8805/**
8806 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8807 *
8808 * @bp:		driver handle
8809 * @keep_link:		true iff link should be kept up
8810 */
8811void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8812{
8813	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8814
8815	/* Report UNLOAD_DONE to MCP */
8816	if (!BP_NOMCP(bp))
8817		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8818}
8819
8820static int bnx2x_func_wait_started(struct bnx2x *bp)
8821{
8822	int tout = 50;
8823	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8824
8825	if (!bp->port.pmf)
8826		return 0;
8827
8828	/*
8829	 * (assumption: No Attention from MCP at this stage)
8830	 * PMF probably in the middle of TX disable/enable transaction
8831	 * 1. Sync IRS for default SB
8832	 * 2. Sync SP queue - this guarantees us that attention handling started
8833	 * 3. Wait, that TX disable/enable transaction completes
8834	 *
8835	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8836	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8837	 * received completion for the transaction the state is TX_STOPPED.
8838	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8839	 * transaction.
8840	 */
8841
8842	/* make sure default SB ISR is done */
8843	if (msix)
8844		synchronize_irq(bp->msix_table[0].vector);
8845	else
8846		synchronize_irq(bp->pdev->irq);
8847
8848	flush_workqueue(bnx2x_wq);
8849
8850	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8851				BNX2X_F_STATE_STARTED && tout--)
8852		msleep(20);
8853
8854	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8855						BNX2X_F_STATE_STARTED) {
8856#ifdef BNX2X_STOP_ON_ERROR
8857		BNX2X_ERR("Wrong function state\n");
8858		return -EBUSY;
8859#else
8860		/*
8861		 * Failed to complete the transaction in a "good way"
8862		 * Force both transactions with CLR bit
8863		 */
8864		struct bnx2x_func_state_params func_params = {NULL};
8865
8866		DP(NETIF_MSG_IFDOWN,
8867		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8868
8869		func_params.f_obj = &bp->func_obj;
8870		__set_bit(RAMROD_DRV_CLR_ONLY,
8871					&func_params.ramrod_flags);
8872
8873		/* STARTED-->TX_ST0PPED */
8874		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8875		bnx2x_func_state_change(bp, &func_params);
8876
8877		/* TX_ST0PPED-->STARTED */
8878		func_params.cmd = BNX2X_F_CMD_TX_START;
8879		return bnx2x_func_state_change(bp, &func_params);
8880#endif
8881	}
8882
8883	return 0;
8884}
8885
8886void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8887{
8888	int port = BP_PORT(bp);
8889	int i, rc = 0;
8890	u8 cos;
8891	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8892	u32 reset_code;
8893
8894	/* Wait until tx fastpath tasks complete */
8895	for_each_tx_queue(bp, i) {
8896		struct bnx2x_fastpath *fp = &bp->fp[i];
8897
8898		for_each_cos_in_tx_queue(fp, cos)
8899			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8900#ifdef BNX2X_STOP_ON_ERROR
8901		if (rc)
8902			return;
8903#endif
8904	}
8905
8906	/* Give HW time to discard old tx messages */
8907	usleep_range(1000, 2000);
8908
8909	/* Clean all ETH MACs */
8910	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8911				false);
8912	if (rc < 0)
8913		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8914
8915	/* Clean up UC list  */
8916	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8917				true);
8918	if (rc < 0)
8919		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8920			  rc);
8921
8922	/* Disable LLH */
8923	if (!CHIP_IS_E1(bp))
8924		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8925
8926	/* Set "drop all" (stop Rx).
8927	 * We need to take a netif_addr_lock() here in order to prevent
8928	 * a race between the completion code and this code.
8929	 */
8930	netif_addr_lock_bh(bp->dev);
8931	/* Schedule the rx_mode command */
8932	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8933		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8934	else
8935		bnx2x_set_storm_rx_mode(bp);
8936
8937	/* Cleanup multicast configuration */
8938	rparam.mcast_obj = &bp->mcast_obj;
8939	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8940	if (rc < 0)
8941		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8942
8943	netif_addr_unlock_bh(bp->dev);
8944
8945	bnx2x_iov_chip_cleanup(bp);
8946
8947	/*
8948	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8949	 * this function should perform FUNC, PORT or COMMON HW
8950	 * reset.
8951	 */
8952	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8953
8954	/*
8955	 * (assumption: No Attention from MCP at this stage)
8956	 * PMF probably in the middle of TX disable/enable transaction
8957	 */
8958	rc = bnx2x_func_wait_started(bp);
8959	if (rc) {
8960		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8961#ifdef BNX2X_STOP_ON_ERROR
8962		return;
8963#endif
8964	}
8965
8966	/* Close multi and leading connections
8967	 * Completions for ramrods are collected in a synchronous way
8968	 */
8969	for_each_eth_queue(bp, i)
8970		if (bnx2x_stop_queue(bp, i))
8971#ifdef BNX2X_STOP_ON_ERROR
8972			return;
8973#else
8974			goto unload_error;
8975#endif
8976
8977	if (CNIC_LOADED(bp)) {
8978		for_each_cnic_queue(bp, i)
8979			if (bnx2x_stop_queue(bp, i))
8980#ifdef BNX2X_STOP_ON_ERROR
8981				return;
8982#else
8983				goto unload_error;
8984#endif
8985	}
8986
8987	/* If SP settings didn't get completed so far - something
8988	 * very wrong has happen.
8989	 */
8990	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8991		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8992
8993#ifndef BNX2X_STOP_ON_ERROR
8994unload_error:
8995#endif
8996	rc = bnx2x_func_stop(bp);
8997	if (rc) {
8998		BNX2X_ERR("Function stop failed!\n");
8999#ifdef BNX2X_STOP_ON_ERROR
9000		return;
9001#endif
9002	}
9003
9004	/* Disable HW interrupts, NAPI */
9005	bnx2x_netif_stop(bp, 1);
9006	/* Delete all NAPI objects */
9007	bnx2x_del_all_napi(bp);
9008	if (CNIC_LOADED(bp))
9009		bnx2x_del_all_napi_cnic(bp);
9010
9011	/* Release IRQs */
9012	bnx2x_free_irq(bp);
9013
9014	/* Reset the chip */
9015	rc = bnx2x_reset_hw(bp, reset_code);
9016	if (rc)
9017		BNX2X_ERR("HW_RESET failed\n");
9018
9019	/* Report UNLOAD_DONE to MCP */
9020	bnx2x_send_unload_done(bp, keep_link);
9021}
9022
9023void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9024{
9025	u32 val;
9026
9027	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9028
9029	if (CHIP_IS_E1(bp)) {
9030		int port = BP_PORT(bp);
9031		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9032			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9033
9034		val = REG_RD(bp, addr);
9035		val &= ~(0x300);
9036		REG_WR(bp, addr, val);
9037	} else {
9038		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9039		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9040			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9041		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9042	}
9043}
9044
9045/* Close gates #2, #3 and #4: */
9046static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9047{
9048	u32 val;
9049
9050	/* Gates #2 and #4a are closed/opened for "not E1" only */
9051	if (!CHIP_IS_E1(bp)) {
9052		/* #4 */
9053		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9054		/* #2 */
9055		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9056	}
9057
9058	/* #3 */
9059	if (CHIP_IS_E1x(bp)) {
9060		/* Prevent interrupts from HC on both ports */
9061		val = REG_RD(bp, HC_REG_CONFIG_1);
9062		REG_WR(bp, HC_REG_CONFIG_1,
9063		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9064		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9065
9066		val = REG_RD(bp, HC_REG_CONFIG_0);
9067		REG_WR(bp, HC_REG_CONFIG_0,
9068		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9069		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9070	} else {
9071		/* Prevent incoming interrupts in IGU */
9072		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9073
9074		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9075		       (!close) ?
9076		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9077		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9078	}
9079
9080	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9081		close ? "closing" : "opening");
9082	mmiowb();
9083}
9084
9085#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9086
9087static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9088{
9089	/* Do some magic... */
9090	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9091	*magic_val = val & SHARED_MF_CLP_MAGIC;
9092	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9093}
9094
9095/**
9096 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9097 *
9098 * @bp:		driver handle
9099 * @magic_val:	old value of the `magic' bit.
9100 */
9101static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9102{
9103	/* Restore the `magic' bit value... */
9104	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9105	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9106		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9107}
9108
9109/**
9110 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9111 *
9112 * @bp:		driver handle
9113 * @magic_val:	old value of 'magic' bit.
9114 *
9115 * Takes care of CLP configurations.
9116 */
9117static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9118{
9119	u32 shmem;
9120	u32 validity_offset;
9121
9122	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9123
9124	/* Set `magic' bit in order to save MF config */
9125	if (!CHIP_IS_E1(bp))
9126		bnx2x_clp_reset_prep(bp, magic_val);
9127
9128	/* Get shmem offset */
9129	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9130	validity_offset =
9131		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9132
9133	/* Clear validity map flags */
9134	if (shmem > 0)
9135		REG_WR(bp, shmem + validity_offset, 0);
9136}
9137
9138#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9139#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9140
9141/**
9142 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9143 *
9144 * @bp:	driver handle
9145 */
9146static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9147{
9148	/* special handling for emulation and FPGA,
9149	   wait 10 times longer */
9150	if (CHIP_REV_IS_SLOW(bp))
9151		msleep(MCP_ONE_TIMEOUT*10);
9152	else
9153		msleep(MCP_ONE_TIMEOUT);
9154}
9155
9156/*
9157 * initializes bp->common.shmem_base and waits for validity signature to appear
9158 */
9159static int bnx2x_init_shmem(struct bnx2x *bp)
9160{
9161	int cnt = 0;
9162	u32 val = 0;
9163
9164	do {
9165		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9166		if (bp->common.shmem_base) {
9167			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9168			if (val & SHR_MEM_VALIDITY_MB)
9169				return 0;
9170		}
9171
9172		bnx2x_mcp_wait_one(bp);
9173
9174	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9175
9176	BNX2X_ERR("BAD MCP validity signature\n");
9177
9178	return -ENODEV;
9179}
9180
9181static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9182{
9183	int rc = bnx2x_init_shmem(bp);
9184
9185	/* Restore the `magic' bit value */
9186	if (!CHIP_IS_E1(bp))
9187		bnx2x_clp_reset_done(bp, magic_val);
9188
9189	return rc;
9190}
9191
9192static void bnx2x_pxp_prep(struct bnx2x *bp)
9193{
9194	if (!CHIP_IS_E1(bp)) {
9195		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9196		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9197		mmiowb();
9198	}
9199}
9200
9201/*
9202 * Reset the whole chip except for:
9203 *      - PCIE core
9204 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9205 *              one reset bit)
9206 *      - IGU
9207 *      - MISC (including AEU)
9208 *      - GRC
9209 *      - RBCN, RBCP
9210 */
9211static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9212{
9213	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9214	u32 global_bits2, stay_reset2;
9215
9216	/*
9217	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9218	 * (per chip) blocks.
9219	 */
9220	global_bits2 =
9221		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9222		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9223
9224	/* Don't reset the following blocks.
9225	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9226	 *            reset, as in 4 port device they might still be owned
9227	 *            by the MCP (there is only one leader per path).
9228	 */
9229	not_reset_mask1 =
9230		MISC_REGISTERS_RESET_REG_1_RST_HC |
9231		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9232		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9233
9234	not_reset_mask2 =
9235		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9236		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9237		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9238		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9239		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9240		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9241		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9242		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9243		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9244		MISC_REGISTERS_RESET_REG_2_PGLC |
9245		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9246		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9247		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9248		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9249		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9250		MISC_REGISTERS_RESET_REG_2_UMAC1;
9251
9252	/*
9253	 * Keep the following blocks in reset:
9254	 *  - all xxMACs are handled by the bnx2x_link code.
9255	 */
9256	stay_reset2 =
9257		MISC_REGISTERS_RESET_REG_2_XMAC |
9258		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9259
9260	/* Full reset masks according to the chip */
9261	reset_mask1 = 0xffffffff;
9262
9263	if (CHIP_IS_E1(bp))
9264		reset_mask2 = 0xffff;
9265	else if (CHIP_IS_E1H(bp))
9266		reset_mask2 = 0x1ffff;
9267	else if (CHIP_IS_E2(bp))
9268		reset_mask2 = 0xfffff;
9269	else /* CHIP_IS_E3 */
9270		reset_mask2 = 0x3ffffff;
9271
9272	/* Don't reset global blocks unless we need to */
9273	if (!global)
9274		reset_mask2 &= ~global_bits2;
9275
9276	/*
9277	 * In case of attention in the QM, we need to reset PXP
9278	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9279	 * because otherwise QM reset would release 'close the gates' shortly
9280	 * before resetting the PXP, then the PSWRQ would send a write
9281	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9282	 * read the payload data from PSWWR, but PSWWR would not
9283	 * respond. The write queue in PGLUE would stuck, dmae commands
9284	 * would not return. Therefore it's important to reset the second
9285	 * reset register (containing the
9286	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9287	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9288	 * bit).
9289	 */
9290	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9291	       reset_mask2 & (~not_reset_mask2));
9292
9293	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9294	       reset_mask1 & (~not_reset_mask1));
9295
9296	barrier();
9297	mmiowb();
9298
9299	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9300	       reset_mask2 & (~stay_reset2));
9301
9302	barrier();
9303	mmiowb();
9304
9305	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9306	mmiowb();
9307}
9308
9309/**
9310 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9311 * It should get cleared in no more than 1s.
9312 *
9313 * @bp:	driver handle
9314 *
9315 * It should get cleared in no more than 1s. Returns 0 if
9316 * pending writes bit gets cleared.
9317 */
9318static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9319{
9320	u32 cnt = 1000;
9321	u32 pend_bits = 0;
9322
9323	do {
9324		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9325
9326		if (pend_bits == 0)
9327			break;
9328
9329		usleep_range(1000, 2000);
9330	} while (cnt-- > 0);
9331
9332	if (cnt <= 0) {
9333		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9334			  pend_bits);
9335		return -EBUSY;
9336	}
9337
9338	return 0;
9339}
9340
9341static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9342{
9343	int cnt = 1000;
9344	u32 val = 0;
9345	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9346	u32 tags_63_32 = 0;
9347
9348	/* Empty the Tetris buffer, wait for 1s */
9349	do {
9350		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9351		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9352		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9353		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9354		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9355		if (CHIP_IS_E3(bp))
9356			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9357
9358		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9359		    ((port_is_idle_0 & 0x1) == 0x1) &&
9360		    ((port_is_idle_1 & 0x1) == 0x1) &&
9361		    (pgl_exp_rom2 == 0xffffffff) &&
9362		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9363			break;
9364		usleep_range(1000, 2000);
9365	} while (cnt-- > 0);
9366
9367	if (cnt <= 0) {
9368		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9369		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9370			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9371			  pgl_exp_rom2);
9372		return -EAGAIN;
9373	}
9374
9375	barrier();
9376
9377	/* Close gates #2, #3 and #4 */
9378	bnx2x_set_234_gates(bp, true);
9379
9380	/* Poll for IGU VQs for 57712 and newer chips */
9381	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9382		return -EAGAIN;
9383
9384	/* TBD: Indicate that "process kill" is in progress to MCP */
9385
9386	/* Clear "unprepared" bit */
9387	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9388	barrier();
9389
9390	/* Make sure all is written to the chip before the reset */
9391	mmiowb();
9392
9393	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9394	 * PSWHST, GRC and PSWRD Tetris buffer.
9395	 */
9396	usleep_range(1000, 2000);
9397
9398	/* Prepare to chip reset: */
9399	/* MCP */
9400	if (global)
9401		bnx2x_reset_mcp_prep(bp, &val);
9402
9403	/* PXP */
9404	bnx2x_pxp_prep(bp);
9405	barrier();
9406
9407	/* reset the chip */
9408	bnx2x_process_kill_chip_reset(bp, global);
9409	barrier();
9410
9411	/* clear errors in PGB */
9412	if (!CHIP_IS_E1x(bp))
9413		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9414
9415	/* Recover after reset: */
9416	/* MCP */
9417	if (global && bnx2x_reset_mcp_comp(bp, val))
9418		return -EAGAIN;
9419
9420	/* TBD: Add resetting the NO_MCP mode DB here */
9421
9422	/* Open the gates #2, #3 and #4 */
9423	bnx2x_set_234_gates(bp, false);
9424
9425	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9426	 * reset state, re-enable attentions. */
9427
9428	return 0;
9429}
9430
9431static int bnx2x_leader_reset(struct bnx2x *bp)
9432{
9433	int rc = 0;
9434	bool global = bnx2x_reset_is_global(bp);
9435	u32 load_code;
9436
9437	/* if not going to reset MCP - load "fake" driver to reset HW while
9438	 * driver is owner of the HW
9439	 */
9440	if (!global && !BP_NOMCP(bp)) {
9441		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9442					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9443		if (!load_code) {
9444			BNX2X_ERR("MCP response failure, aborting\n");
9445			rc = -EAGAIN;
9446			goto exit_leader_reset;
9447		}
9448		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9449		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9450			BNX2X_ERR("MCP unexpected resp, aborting\n");
9451			rc = -EAGAIN;
9452			goto exit_leader_reset2;
9453		}
9454		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9455		if (!load_code) {
9456			BNX2X_ERR("MCP response failure, aborting\n");
9457			rc = -EAGAIN;
9458			goto exit_leader_reset2;
9459		}
9460	}
9461
9462	/* Try to recover after the failure */
9463	if (bnx2x_process_kill(bp, global)) {
9464		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9465			  BP_PATH(bp));
9466		rc = -EAGAIN;
9467		goto exit_leader_reset2;
9468	}
9469
9470	/*
9471	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9472	 * state.
9473	 */
9474	bnx2x_set_reset_done(bp);
9475	if (global)
9476		bnx2x_clear_reset_global(bp);
9477
9478exit_leader_reset2:
9479	/* unload "fake driver" if it was loaded */
9480	if (!global && !BP_NOMCP(bp)) {
9481		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9482		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9483	}
9484exit_leader_reset:
9485	bp->is_leader = 0;
9486	bnx2x_release_leader_lock(bp);
9487	smp_mb();
9488	return rc;
9489}
9490
9491static void bnx2x_recovery_failed(struct bnx2x *bp)
9492{
9493	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9494
9495	/* Disconnect this device */
9496	netif_device_detach(bp->dev);
9497
9498	/*
9499	 * Block ifup for all function on this engine until "process kill"
9500	 * or power cycle.
9501	 */
9502	bnx2x_set_reset_in_progress(bp);
9503
9504	/* Shut down the power */
9505	bnx2x_set_power_state(bp, PCI_D3hot);
9506
9507	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9508
9509	smp_mb();
9510}
9511
9512/*
9513 * Assumption: runs under rtnl lock. This together with the fact
9514 * that it's called only from bnx2x_sp_rtnl() ensure that it
9515 * will never be called when netif_running(bp->dev) is false.
9516 */
9517static void bnx2x_parity_recover(struct bnx2x *bp)
9518{
9519	bool global = false;
9520	u32 error_recovered, error_unrecovered;
9521	bool is_parity;
9522
9523	DP(NETIF_MSG_HW, "Handling parity\n");
9524	while (1) {
9525		switch (bp->recovery_state) {
9526		case BNX2X_RECOVERY_INIT:
9527			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9528			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9529			WARN_ON(!is_parity);
9530
9531			/* Try to get a LEADER_LOCK HW lock */
9532			if (bnx2x_trylock_leader_lock(bp)) {
9533				bnx2x_set_reset_in_progress(bp);
9534				/*
9535				 * Check if there is a global attention and if
9536				 * there was a global attention, set the global
9537				 * reset bit.
9538				 */
9539
9540				if (global)
9541					bnx2x_set_reset_global(bp);
9542
9543				bp->is_leader = 1;
9544			}
9545
9546			/* Stop the driver */
9547			/* If interface has been removed - break */
9548			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9549				return;
9550
9551			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9552
9553			/* Ensure "is_leader", MCP command sequence and
9554			 * "recovery_state" update values are seen on other
9555			 * CPUs.
9556			 */
9557			smp_mb();
9558			break;
9559
9560		case BNX2X_RECOVERY_WAIT:
9561			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9562			if (bp->is_leader) {
9563				int other_engine = BP_PATH(bp) ? 0 : 1;
9564				bool other_load_status =
9565					bnx2x_get_load_status(bp, other_engine);
9566				bool load_status =
9567					bnx2x_get_load_status(bp, BP_PATH(bp));
9568				global = bnx2x_reset_is_global(bp);
9569
9570				/*
9571				 * In case of a parity in a global block, let
9572				 * the first leader that performs a
9573				 * leader_reset() reset the global blocks in
9574				 * order to clear global attentions. Otherwise
9575				 * the gates will remain closed for that
9576				 * engine.
9577				 */
9578				if (load_status ||
9579				    (global && other_load_status)) {
9580					/* Wait until all other functions get
9581					 * down.
9582					 */
9583					schedule_delayed_work(&bp->sp_rtnl_task,
9584								HZ/10);
9585					return;
9586				} else {
9587					/* If all other functions got down -
9588					 * try to bring the chip back to
9589					 * normal. In any case it's an exit
9590					 * point for a leader.
9591					 */
9592					if (bnx2x_leader_reset(bp)) {
9593						bnx2x_recovery_failed(bp);
9594						return;
9595					}
9596
9597					/* If we are here, means that the
9598					 * leader has succeeded and doesn't
9599					 * want to be a leader any more. Try
9600					 * to continue as a none-leader.
9601					 */
9602					break;
9603				}
9604			} else { /* non-leader */
9605				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9606					/* Try to get a LEADER_LOCK HW lock as
9607					 * long as a former leader may have
9608					 * been unloaded by the user or
9609					 * released a leadership by another
9610					 * reason.
9611					 */
9612					if (bnx2x_trylock_leader_lock(bp)) {
9613						/* I'm a leader now! Restart a
9614						 * switch case.
9615						 */
9616						bp->is_leader = 1;
9617						break;
9618					}
9619
9620					schedule_delayed_work(&bp->sp_rtnl_task,
9621								HZ/10);
9622					return;
9623
9624				} else {
9625					/*
9626					 * If there was a global attention, wait
9627					 * for it to be cleared.
9628					 */
9629					if (bnx2x_reset_is_global(bp)) {
9630						schedule_delayed_work(
9631							&bp->sp_rtnl_task,
9632							HZ/10);
9633						return;
9634					}
9635
9636					error_recovered =
9637					  bp->eth_stats.recoverable_error;
9638					error_unrecovered =
9639					  bp->eth_stats.unrecoverable_error;
9640					bp->recovery_state =
9641						BNX2X_RECOVERY_NIC_LOADING;
9642					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9643						error_unrecovered++;
9644						netdev_err(bp->dev,
9645							   "Recovery failed. Power cycle needed\n");
9646						/* Disconnect this device */
9647						netif_device_detach(bp->dev);
9648						/* Shut down the power */
9649						bnx2x_set_power_state(
9650							bp, PCI_D3hot);
9651						smp_mb();
9652					} else {
9653						bp->recovery_state =
9654							BNX2X_RECOVERY_DONE;
9655						error_recovered++;
9656						smp_mb();
9657					}
9658					bp->eth_stats.recoverable_error =
9659						error_recovered;
9660					bp->eth_stats.unrecoverable_error =
9661						error_unrecovered;
9662
9663					return;
9664				}
9665			}
9666		default:
9667			return;
9668		}
9669	}
9670}
9671
9672static int bnx2x_close(struct net_device *dev);
9673
9674/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9675 * scheduled on a general queue in order to prevent a dead lock.
9676 */
9677static void bnx2x_sp_rtnl_task(struct work_struct *work)
9678{
9679	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9680
9681	rtnl_lock();
9682
9683	if (!netif_running(bp->dev)) {
9684		rtnl_unlock();
9685		return;
9686	}
9687
9688	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9689#ifdef BNX2X_STOP_ON_ERROR
9690		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9691			  "you will need to reboot when done\n");
9692		goto sp_rtnl_not_reset;
9693#endif
9694		/*
9695		 * Clear all pending SP commands as we are going to reset the
9696		 * function anyway.
9697		 */
9698		bp->sp_rtnl_state = 0;
9699		smp_mb();
9700
9701		bnx2x_parity_recover(bp);
9702
9703		rtnl_unlock();
9704		return;
9705	}
9706
9707	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9708#ifdef BNX2X_STOP_ON_ERROR
9709		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9710			  "you will need to reboot when done\n");
9711		goto sp_rtnl_not_reset;
9712#endif
9713
9714		/*
9715		 * Clear all pending SP commands as we are going to reset the
9716		 * function anyway.
9717		 */
9718		bp->sp_rtnl_state = 0;
9719		smp_mb();
9720
9721		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9722		bnx2x_nic_load(bp, LOAD_NORMAL);
9723
9724		rtnl_unlock();
9725		return;
9726	}
9727#ifdef BNX2X_STOP_ON_ERROR
9728sp_rtnl_not_reset:
9729#endif
9730	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9731		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9732	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9733		bnx2x_after_function_update(bp);
9734	/*
9735	 * in case of fan failure we need to reset id if the "stop on error"
9736	 * debug flag is set, since we trying to prevent permanent overheating
9737	 * damage
9738	 */
9739	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9740		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9741		netif_device_detach(bp->dev);
9742		bnx2x_close(bp->dev);
9743		rtnl_unlock();
9744		return;
9745	}
9746
9747	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9748		DP(BNX2X_MSG_SP,
9749		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9750		bnx2x_vfpf_set_mcast(bp->dev);
9751	}
9752	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9753			       &bp->sp_rtnl_state)){
9754		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9755			bnx2x_tx_disable(bp);
9756			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9757		}
9758	}
9759
9760	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9761		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9762		bnx2x_set_rx_mode_inner(bp);
9763	}
9764
9765	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9766			       &bp->sp_rtnl_state))
9767		bnx2x_pf_set_vfs_vlan(bp);
9768
9769	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9770		bnx2x_dcbx_stop_hw_tx(bp);
9771		bnx2x_dcbx_resume_hw_tx(bp);
9772	}
9773
9774	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9775	 * can be called from other contexts as well)
9776	 */
9777	rtnl_unlock();
9778
9779	/* enable SR-IOV if applicable */
9780	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9781					       &bp->sp_rtnl_state)) {
9782		bnx2x_disable_sriov(bp);
9783		bnx2x_enable_sriov(bp);
9784	}
9785}
9786
9787static void bnx2x_period_task(struct work_struct *work)
9788{
9789	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9790
9791	if (!netif_running(bp->dev))
9792		goto period_task_exit;
9793
9794	if (CHIP_REV_IS_SLOW(bp)) {
9795		BNX2X_ERR("period task called on emulation, ignoring\n");
9796		goto period_task_exit;
9797	}
9798
9799	bnx2x_acquire_phy_lock(bp);
9800	/*
9801	 * The barrier is needed to ensure the ordering between the writing to
9802	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9803	 * the reading here.
9804	 */
9805	smp_mb();
9806	if (bp->port.pmf) {
9807		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9808
9809		/* Re-queue task in 1 sec */
9810		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9811	}
9812
9813	bnx2x_release_phy_lock(bp);
9814period_task_exit:
9815	return;
9816}
9817
9818/*
9819 * Init service functions
9820 */
9821
9822static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9823{
9824	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9825	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9826	return base + (BP_ABS_FUNC(bp)) * stride;
9827}
9828
9829static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9830					struct bnx2x_mac_vals *vals)
9831{
9832	u32 val, base_addr, offset, mask, reset_reg;
9833	bool mac_stopped = false;
9834	u8 port = BP_PORT(bp);
9835
9836	/* reset addresses as they also mark which values were changed */
9837	vals->bmac_addr = 0;
9838	vals->umac_addr = 0;
9839	vals->xmac_addr = 0;
9840	vals->emac_addr = 0;
9841
9842	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9843
9844	if (!CHIP_IS_E3(bp)) {
9845		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9846		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9847		if ((mask & reset_reg) && val) {
9848			u32 wb_data[2];
9849			BNX2X_DEV_INFO("Disable bmac Rx\n");
9850			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9851						: NIG_REG_INGRESS_BMAC0_MEM;
9852			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9853						: BIGMAC_REGISTER_BMAC_CONTROL;
9854
9855			/*
9856			 * use rd/wr since we cannot use dmae. This is safe
9857			 * since MCP won't access the bus due to the request
9858			 * to unload, and no function on the path can be
9859			 * loaded at this time.
9860			 */
9861			wb_data[0] = REG_RD(bp, base_addr + offset);
9862			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9863			vals->bmac_addr = base_addr + offset;
9864			vals->bmac_val[0] = wb_data[0];
9865			vals->bmac_val[1] = wb_data[1];
9866			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9867			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9868			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9869		}
9870		BNX2X_DEV_INFO("Disable emac Rx\n");
9871		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9872		vals->emac_val = REG_RD(bp, vals->emac_addr);
9873		REG_WR(bp, vals->emac_addr, 0);
9874		mac_stopped = true;
9875	} else {
9876		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9877			BNX2X_DEV_INFO("Disable xmac Rx\n");
9878			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9879			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9880			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9881			       val & ~(1 << 1));
9882			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9883			       val | (1 << 1));
9884			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9885			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9886			REG_WR(bp, vals->xmac_addr, 0);
9887			mac_stopped = true;
9888		}
9889		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9890		if (mask & reset_reg) {
9891			BNX2X_DEV_INFO("Disable umac Rx\n");
9892			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9893			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9894			vals->umac_val = REG_RD(bp, vals->umac_addr);
9895			REG_WR(bp, vals->umac_addr, 0);
9896			mac_stopped = true;
9897		}
9898	}
9899
9900	if (mac_stopped)
9901		msleep(20);
9902}
9903
9904#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9905#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9906#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9907#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9908
9909#define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
9910#define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
9911#define BCM_5710_UNDI_FW_MF_VERS	(0x05)
9912#define BNX2X_PREV_UNDI_MF_PORT(p)	(0x1a150c + ((p) << 4))
9913#define BNX2X_PREV_UNDI_MF_FUNC(f)	(0x1a184c + ((f) << 4))
9914static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
9915{
9916	u8 major, minor, version;
9917	u32 fw;
9918
9919	/* Must check that FW is loaded */
9920	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
9921	     MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
9922		BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
9923		return false;
9924	}
9925
9926	/* Read Currently loaded FW version */
9927	fw = REG_RD(bp, XSEM_REG_PRAM);
9928	major = fw & 0xff;
9929	minor = (fw >> 0x8) & 0xff;
9930	version = (fw >> 0x10) & 0xff;
9931	BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
9932		       fw, major, minor, version);
9933
9934	if (major > BCM_5710_UNDI_FW_MF_MAJOR)
9935		return true;
9936
9937	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9938	    (minor > BCM_5710_UNDI_FW_MF_MINOR))
9939		return true;
9940
9941	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9942	    (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
9943	    (version >= BCM_5710_UNDI_FW_MF_VERS))
9944		return true;
9945
9946	return false;
9947}
9948
9949static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
9950{
9951	int i;
9952
9953	/* Due to legacy (FW) code, the first function on each engine has a
9954	 * different offset macro from the rest of the functions.
9955	 * Setting this for all 8 functions is harmless regardless of whether
9956	 * this is actually a multi-function device.
9957	 */
9958	for (i = 0; i < 2; i++)
9959		REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
9960
9961	for (i = 2; i < 8; i++)
9962		REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
9963
9964	BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
9965}
9966
9967static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9968{
9969	u16 rcq, bd;
9970	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9971
9972	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9973	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9974
9975	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9976	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9977
9978	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9979		       port, bd, rcq);
9980}
9981
9982static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9983{
9984	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9985				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9986	if (!rc) {
9987		BNX2X_ERR("MCP response failure, aborting\n");
9988		return -EBUSY;
9989	}
9990
9991	return 0;
9992}
9993
9994static struct bnx2x_prev_path_list *
9995		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9996{
9997	struct bnx2x_prev_path_list *tmp_list;
9998
9999	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10000		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10001		    bp->pdev->bus->number == tmp_list->bus &&
10002		    BP_PATH(bp) == tmp_list->path)
10003			return tmp_list;
10004
10005	return NULL;
10006}
10007
10008static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10009{
10010	struct bnx2x_prev_path_list *tmp_list;
10011	int rc;
10012
10013	rc = down_interruptible(&bnx2x_prev_sem);
10014	if (rc) {
10015		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10016		return rc;
10017	}
10018
10019	tmp_list = bnx2x_prev_path_get_entry(bp);
10020	if (tmp_list) {
10021		tmp_list->aer = 1;
10022		rc = 0;
10023	} else {
10024		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10025			  BP_PATH(bp));
10026	}
10027
10028	up(&bnx2x_prev_sem);
10029
10030	return rc;
10031}
10032
10033static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10034{
10035	struct bnx2x_prev_path_list *tmp_list;
10036	bool rc = false;
10037
10038	if (down_trylock(&bnx2x_prev_sem))
10039		return false;
10040
10041	tmp_list = bnx2x_prev_path_get_entry(bp);
10042	if (tmp_list) {
10043		if (tmp_list->aer) {
10044			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10045			   BP_PATH(bp));
10046		} else {
10047			rc = true;
10048			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10049				       BP_PATH(bp));
10050		}
10051	}
10052
10053	up(&bnx2x_prev_sem);
10054
10055	return rc;
10056}
10057
10058bool bnx2x_port_after_undi(struct bnx2x *bp)
10059{
10060	struct bnx2x_prev_path_list *entry;
10061	bool val;
10062
10063	down(&bnx2x_prev_sem);
10064
10065	entry = bnx2x_prev_path_get_entry(bp);
10066	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10067
10068	up(&bnx2x_prev_sem);
10069
10070	return val;
10071}
10072
10073static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10074{
10075	struct bnx2x_prev_path_list *tmp_list;
10076	int rc;
10077
10078	rc = down_interruptible(&bnx2x_prev_sem);
10079	if (rc) {
10080		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10081		return rc;
10082	}
10083
10084	/* Check whether the entry for this path already exists */
10085	tmp_list = bnx2x_prev_path_get_entry(bp);
10086	if (tmp_list) {
10087		if (!tmp_list->aer) {
10088			BNX2X_ERR("Re-Marking the path.\n");
10089		} else {
10090			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10091			   BP_PATH(bp));
10092			tmp_list->aer = 0;
10093		}
10094		up(&bnx2x_prev_sem);
10095		return 0;
10096	}
10097	up(&bnx2x_prev_sem);
10098
10099	/* Create an entry for this path and add it */
10100	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10101	if (!tmp_list) {
10102		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10103		return -ENOMEM;
10104	}
10105
10106	tmp_list->bus = bp->pdev->bus->number;
10107	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10108	tmp_list->path = BP_PATH(bp);
10109	tmp_list->aer = 0;
10110	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10111
10112	rc = down_interruptible(&bnx2x_prev_sem);
10113	if (rc) {
10114		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10115		kfree(tmp_list);
10116	} else {
10117		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10118		   BP_PATH(bp));
10119		list_add(&tmp_list->list, &bnx2x_prev_list);
10120		up(&bnx2x_prev_sem);
10121	}
10122
10123	return rc;
10124}
10125
10126static int bnx2x_do_flr(struct bnx2x *bp)
10127{
10128	struct pci_dev *dev = bp->pdev;
10129
10130	if (CHIP_IS_E1x(bp)) {
10131		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10132		return -EINVAL;
10133	}
10134
10135	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10136	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10137		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10138			  bp->common.bc_ver);
10139		return -EINVAL;
10140	}
10141
10142	if (!pci_wait_for_pending_transaction(dev))
10143		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10144
10145	BNX2X_DEV_INFO("Initiating FLR\n");
10146	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10147
10148	return 0;
10149}
10150
10151static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10152{
10153	int rc;
10154
10155	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10156
10157	/* Test if previous unload process was already finished for this path */
10158	if (bnx2x_prev_is_path_marked(bp))
10159		return bnx2x_prev_mcp_done(bp);
10160
10161	BNX2X_DEV_INFO("Path is unmarked\n");
10162
10163	/* If function has FLR capabilities, and existing FW version matches
10164	 * the one required, then FLR will be sufficient to clean any residue
10165	 * left by previous driver
10166	 */
10167	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10168
10169	if (!rc) {
10170		/* fw version is good */
10171		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10172		rc = bnx2x_do_flr(bp);
10173	}
10174
10175	if (!rc) {
10176		/* FLR was performed */
10177		BNX2X_DEV_INFO("FLR successful\n");
10178		return 0;
10179	}
10180
10181	BNX2X_DEV_INFO("Could not FLR\n");
10182
10183	/* Close the MCP request, return failure*/
10184	rc = bnx2x_prev_mcp_done(bp);
10185	if (!rc)
10186		rc = BNX2X_PREV_WAIT_NEEDED;
10187
10188	return rc;
10189}
10190
10191static int bnx2x_prev_unload_common(struct bnx2x *bp)
10192{
10193	u32 reset_reg, tmp_reg = 0, rc;
10194	bool prev_undi = false;
10195	struct bnx2x_mac_vals mac_vals;
10196
10197	/* It is possible a previous function received 'common' answer,
10198	 * but hasn't loaded yet, therefore creating a scenario of
10199	 * multiple functions receiving 'common' on the same path.
10200	 */
10201	BNX2X_DEV_INFO("Common unload Flow\n");
10202
10203	memset(&mac_vals, 0, sizeof(mac_vals));
10204
10205	if (bnx2x_prev_is_path_marked(bp))
10206		return bnx2x_prev_mcp_done(bp);
10207
10208	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10209
10210	/* Reset should be performed after BRB is emptied */
10211	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10212		u32 timer_count = 1000;
10213
10214		/* Close the MAC Rx to prevent BRB from filling up */
10215		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10216
10217		/* close LLH filters towards the BRB */
10218		bnx2x_set_rx_filter(&bp->link_params, 0);
10219
10220		/* Check if the UNDI driver was previously loaded
10221		 * UNDI driver initializes CID offset for normal bell to 0x7
10222		 */
10223		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10224			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10225			if (tmp_reg == 0x7) {
10226				BNX2X_DEV_INFO("UNDI previously loaded\n");
10227				prev_undi = true;
10228				/* clear the UNDI indication */
10229				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10230				/* clear possible idle check errors */
10231				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10232			}
10233		}
10234		if (!CHIP_IS_E1x(bp))
10235			/* block FW from writing to host */
10236			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10237
10238		/* wait until BRB is empty */
10239		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10240		while (timer_count) {
10241			u32 prev_brb = tmp_reg;
10242
10243			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10244			if (!tmp_reg)
10245				break;
10246
10247			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10248
10249			/* reset timer as long as BRB actually gets emptied */
10250			if (prev_brb > tmp_reg)
10251				timer_count = 1000;
10252			else
10253				timer_count--;
10254
10255			/* New UNDI FW supports MF and contains better
10256			 * cleaning methods - might be redundant but harmless.
10257			 */
10258			if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10259				bnx2x_prev_unload_undi_mf(bp);
10260			} else if (prev_undi) {
10261				/* If UNDI resides in memory,
10262				 * manually increment it
10263				 */
10264				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10265			}
10266			udelay(10);
10267		}
10268
10269		if (!timer_count)
10270			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10271	}
10272
10273	/* No packets are in the pipeline, path is ready for reset */
10274	bnx2x_reset_common(bp);
10275
10276	if (mac_vals.xmac_addr)
10277		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10278	if (mac_vals.umac_addr)
10279		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10280	if (mac_vals.emac_addr)
10281		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10282	if (mac_vals.bmac_addr) {
10283		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10284		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10285	}
10286
10287	rc = bnx2x_prev_mark_path(bp, prev_undi);
10288	if (rc) {
10289		bnx2x_prev_mcp_done(bp);
10290		return rc;
10291	}
10292
10293	return bnx2x_prev_mcp_done(bp);
10294}
10295
10296/* previous driver DMAE transaction may have occurred when pre-boot stage ended
10297 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10298 * the addresses of the transaction, resulting in was-error bit set in the pci
10299 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10300 * to clear the interrupt which detected this from the pglueb and the was done
10301 * bit
10302 */
10303static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10304{
10305	if (!CHIP_IS_E1x(bp)) {
10306		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10307		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10308			DP(BNX2X_MSG_SP,
10309			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10310			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10311			       1 << BP_FUNC(bp));
10312		}
10313	}
10314}
10315
10316static int bnx2x_prev_unload(struct bnx2x *bp)
10317{
10318	int time_counter = 10;
10319	u32 rc, fw, hw_lock_reg, hw_lock_val;
10320	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10321
10322	/* clear hw from errors which may have resulted from an interrupted
10323	 * dmae transaction.
10324	 */
10325	bnx2x_prev_interrupted_dmae(bp);
10326
10327	/* Release previously held locks */
10328	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10329		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10330		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10331
10332	hw_lock_val = REG_RD(bp, hw_lock_reg);
10333	if (hw_lock_val) {
10334		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10335			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10336			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10337			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10338		}
10339
10340		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10341		REG_WR(bp, hw_lock_reg, 0xffffffff);
10342	} else
10343		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10344
10345	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10346		BNX2X_DEV_INFO("Release previously held alr\n");
10347		bnx2x_release_alr(bp);
10348	}
10349
10350	do {
10351		int aer = 0;
10352		/* Lock MCP using an unload request */
10353		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10354		if (!fw) {
10355			BNX2X_ERR("MCP response failure, aborting\n");
10356			rc = -EBUSY;
10357			break;
10358		}
10359
10360		rc = down_interruptible(&bnx2x_prev_sem);
10361		if (rc) {
10362			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10363				  rc);
10364		} else {
10365			/* If Path is marked by EEH, ignore unload status */
10366			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10367				 bnx2x_prev_path_get_entry(bp)->aer);
10368			up(&bnx2x_prev_sem);
10369		}
10370
10371		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10372			rc = bnx2x_prev_unload_common(bp);
10373			break;
10374		}
10375
10376		/* non-common reply from MCP might require looping */
10377		rc = bnx2x_prev_unload_uncommon(bp);
10378		if (rc != BNX2X_PREV_WAIT_NEEDED)
10379			break;
10380
10381		msleep(20);
10382	} while (--time_counter);
10383
10384	if (!time_counter || rc) {
10385		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10386		rc = -EPROBE_DEFER;
10387	}
10388
10389	/* Mark function if its port was used to boot from SAN */
10390	if (bnx2x_port_after_undi(bp))
10391		bp->link_params.feature_config_flags |=
10392			FEATURE_CONFIG_BOOT_FROM_SAN;
10393
10394	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10395
10396	return rc;
10397}
10398
10399static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10400{
10401	u32 val, val2, val3, val4, id, boot_mode;
10402	u16 pmc;
10403
10404	/* Get the chip revision id and number. */
10405	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10406	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10407	id = ((val & 0xffff) << 16);
10408	val = REG_RD(bp, MISC_REG_CHIP_REV);
10409	id |= ((val & 0xf) << 12);
10410
10411	/* Metal is read from PCI regs, but we can't access >=0x400 from
10412	 * the configuration space (so we need to reg_rd)
10413	 */
10414	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10415	id |= (((val >> 24) & 0xf) << 4);
10416	val = REG_RD(bp, MISC_REG_BOND_ID);
10417	id |= (val & 0xf);
10418	bp->common.chip_id = id;
10419
10420	/* force 57811 according to MISC register */
10421	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10422		if (CHIP_IS_57810(bp))
10423			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10424				(bp->common.chip_id & 0x0000FFFF);
10425		else if (CHIP_IS_57810_MF(bp))
10426			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10427				(bp->common.chip_id & 0x0000FFFF);
10428		bp->common.chip_id |= 0x1;
10429	}
10430
10431	/* Set doorbell size */
10432	bp->db_size = (1 << BNX2X_DB_SHIFT);
10433
10434	if (!CHIP_IS_E1x(bp)) {
10435		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10436		if ((val & 1) == 0)
10437			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10438		else
10439			val = (val >> 1) & 1;
10440		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10441						       "2_PORT_MODE");
10442		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10443						 CHIP_2_PORT_MODE;
10444
10445		if (CHIP_MODE_IS_4_PORT(bp))
10446			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10447		else
10448			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10449	} else {
10450		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10451		bp->pfid = bp->pf_num;			/* 0..7 */
10452	}
10453
10454	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10455
10456	bp->link_params.chip_id = bp->common.chip_id;
10457	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10458
10459	val = (REG_RD(bp, 0x2874) & 0x55);
10460	if ((bp->common.chip_id & 0x1) ||
10461	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10462		bp->flags |= ONE_PORT_FLAG;
10463		BNX2X_DEV_INFO("single port device\n");
10464	}
10465
10466	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10467	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10468				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10469	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10470		       bp->common.flash_size, bp->common.flash_size);
10471
10472	bnx2x_init_shmem(bp);
10473
10474	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10475					MISC_REG_GENERIC_CR_1 :
10476					MISC_REG_GENERIC_CR_0));
10477
10478	bp->link_params.shmem_base = bp->common.shmem_base;
10479	bp->link_params.shmem2_base = bp->common.shmem2_base;
10480	if (SHMEM2_RD(bp, size) >
10481	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10482		bp->link_params.lfa_base =
10483		REG_RD(bp, bp->common.shmem2_base +
10484		       (u32)offsetof(struct shmem2_region,
10485				     lfa_host_addr[BP_PORT(bp)]));
10486	else
10487		bp->link_params.lfa_base = 0;
10488	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10489		       bp->common.shmem_base, bp->common.shmem2_base);
10490
10491	if (!bp->common.shmem_base) {
10492		BNX2X_DEV_INFO("MCP not active\n");
10493		bp->flags |= NO_MCP_FLAG;
10494		return;
10495	}
10496
10497	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10498	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10499
10500	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10501					SHARED_HW_CFG_LED_MODE_MASK) >>
10502				       SHARED_HW_CFG_LED_MODE_SHIFT);
10503
10504	bp->link_params.feature_config_flags = 0;
10505	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10506	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10507		bp->link_params.feature_config_flags |=
10508				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10509	else
10510		bp->link_params.feature_config_flags &=
10511				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10512
10513	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10514	bp->common.bc_ver = val;
10515	BNX2X_DEV_INFO("bc_ver %X\n", val);
10516	if (val < BNX2X_BC_VER) {
10517		/* for now only warn
10518		 * later we might need to enforce this */
10519		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10520			  BNX2X_BC_VER, val);
10521	}
10522	bp->link_params.feature_config_flags |=
10523				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10524				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10525
10526	bp->link_params.feature_config_flags |=
10527		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10528		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10529	bp->link_params.feature_config_flags |=
10530		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10531		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10532	bp->link_params.feature_config_flags |=
10533		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10534		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10535
10536	bp->link_params.feature_config_flags |=
10537		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10538		FEATURE_CONFIG_MT_SUPPORT : 0;
10539
10540	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10541			BC_SUPPORTS_PFC_STATS : 0;
10542
10543	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10544			BC_SUPPORTS_FCOE_FEATURES : 0;
10545
10546	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10547			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10548
10549	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10550			BC_SUPPORTS_RMMOD_CMD : 0;
10551
10552	boot_mode = SHMEM_RD(bp,
10553			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10554			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10555	switch (boot_mode) {
10556	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10557		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10558		break;
10559	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10560		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10561		break;
10562	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10563		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10564		break;
10565	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10566		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10567		break;
10568	}
10569
10570	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10571	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10572
10573	BNX2X_DEV_INFO("%sWoL capable\n",
10574		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10575
10576	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10577	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10578	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10579	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10580
10581	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10582		 val, val2, val3, val4);
10583}
10584
10585#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10586#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10587
10588static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10589{
10590	int pfid = BP_FUNC(bp);
10591	int igu_sb_id;
10592	u32 val;
10593	u8 fid, igu_sb_cnt = 0;
10594
10595	bp->igu_base_sb = 0xff;
10596	if (CHIP_INT_MODE_IS_BC(bp)) {
10597		int vn = BP_VN(bp);
10598		igu_sb_cnt = bp->igu_sb_cnt;
10599		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10600			FP_SB_MAX_E1x;
10601
10602		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10603			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10604
10605		return 0;
10606	}
10607
10608	/* IGU in normal mode - read CAM */
10609	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10610	     igu_sb_id++) {
10611		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10612		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10613			continue;
10614		fid = IGU_FID(val);
10615		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10616			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10617				continue;
10618			if (IGU_VEC(val) == 0)
10619				/* default status block */
10620				bp->igu_dsb_id = igu_sb_id;
10621			else {
10622				if (bp->igu_base_sb == 0xff)
10623					bp->igu_base_sb = igu_sb_id;
10624				igu_sb_cnt++;
10625			}
10626		}
10627	}
10628
10629#ifdef CONFIG_PCI_MSI
10630	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10631	 * optional that number of CAM entries will not be equal to the value
10632	 * advertised in PCI.
10633	 * Driver should use the minimal value of both as the actual status
10634	 * block count
10635	 */
10636	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10637#endif
10638
10639	if (igu_sb_cnt == 0) {
10640		BNX2X_ERR("CAM configuration error\n");
10641		return -EINVAL;
10642	}
10643
10644	return 0;
10645}
10646
10647static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10648{
10649	int cfg_size = 0, idx, port = BP_PORT(bp);
10650
10651	/* Aggregation of supported attributes of all external phys */
10652	bp->port.supported[0] = 0;
10653	bp->port.supported[1] = 0;
10654	switch (bp->link_params.num_phys) {
10655	case 1:
10656		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10657		cfg_size = 1;
10658		break;
10659	case 2:
10660		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10661		cfg_size = 1;
10662		break;
10663	case 3:
10664		if (bp->link_params.multi_phy_config &
10665		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10666			bp->port.supported[1] =
10667				bp->link_params.phy[EXT_PHY1].supported;
10668			bp->port.supported[0] =
10669				bp->link_params.phy[EXT_PHY2].supported;
10670		} else {
10671			bp->port.supported[0] =
10672				bp->link_params.phy[EXT_PHY1].supported;
10673			bp->port.supported[1] =
10674				bp->link_params.phy[EXT_PHY2].supported;
10675		}
10676		cfg_size = 2;
10677		break;
10678	}
10679
10680	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10681		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10682			   SHMEM_RD(bp,
10683			   dev_info.port_hw_config[port].external_phy_config),
10684			   SHMEM_RD(bp,
10685			   dev_info.port_hw_config[port].external_phy_config2));
10686			return;
10687	}
10688
10689	if (CHIP_IS_E3(bp))
10690		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10691	else {
10692		switch (switch_cfg) {
10693		case SWITCH_CFG_1G:
10694			bp->port.phy_addr = REG_RD(
10695				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10696			break;
10697		case SWITCH_CFG_10G:
10698			bp->port.phy_addr = REG_RD(
10699				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10700			break;
10701		default:
10702			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10703				  bp->port.link_config[0]);
10704			return;
10705		}
10706	}
10707	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10708	/* mask what we support according to speed_cap_mask per configuration */
10709	for (idx = 0; idx < cfg_size; idx++) {
10710		if (!(bp->link_params.speed_cap_mask[idx] &
10711				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10712			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10713
10714		if (!(bp->link_params.speed_cap_mask[idx] &
10715				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10716			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10717
10718		if (!(bp->link_params.speed_cap_mask[idx] &
10719				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10720			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10721
10722		if (!(bp->link_params.speed_cap_mask[idx] &
10723				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10724			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10725
10726		if (!(bp->link_params.speed_cap_mask[idx] &
10727					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10728			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10729						     SUPPORTED_1000baseT_Full);
10730
10731		if (!(bp->link_params.speed_cap_mask[idx] &
10732					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10733			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10734
10735		if (!(bp->link_params.speed_cap_mask[idx] &
10736					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10737			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10738
10739		if (!(bp->link_params.speed_cap_mask[idx] &
10740					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10741			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10742	}
10743
10744	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10745		       bp->port.supported[1]);
10746}
10747
10748static void bnx2x_link_settings_requested(struct bnx2x *bp)
10749{
10750	u32 link_config, idx, cfg_size = 0;
10751	bp->port.advertising[0] = 0;
10752	bp->port.advertising[1] = 0;
10753	switch (bp->link_params.num_phys) {
10754	case 1:
10755	case 2:
10756		cfg_size = 1;
10757		break;
10758	case 3:
10759		cfg_size = 2;
10760		break;
10761	}
10762	for (idx = 0; idx < cfg_size; idx++) {
10763		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10764		link_config = bp->port.link_config[idx];
10765		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10766		case PORT_FEATURE_LINK_SPEED_AUTO:
10767			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10768				bp->link_params.req_line_speed[idx] =
10769					SPEED_AUTO_NEG;
10770				bp->port.advertising[idx] |=
10771					bp->port.supported[idx];
10772				if (bp->link_params.phy[EXT_PHY1].type ==
10773				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10774					bp->port.advertising[idx] |=
10775					(SUPPORTED_100baseT_Half |
10776					 SUPPORTED_100baseT_Full);
10777			} else {
10778				/* force 10G, no AN */
10779				bp->link_params.req_line_speed[idx] =
10780					SPEED_10000;
10781				bp->port.advertising[idx] |=
10782					(ADVERTISED_10000baseT_Full |
10783					 ADVERTISED_FIBRE);
10784				continue;
10785			}
10786			break;
10787
10788		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10789			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10790				bp->link_params.req_line_speed[idx] =
10791					SPEED_10;
10792				bp->port.advertising[idx] |=
10793					(ADVERTISED_10baseT_Full |
10794					 ADVERTISED_TP);
10795			} else {
10796				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10797					    link_config,
10798				    bp->link_params.speed_cap_mask[idx]);
10799				return;
10800			}
10801			break;
10802
10803		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10804			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10805				bp->link_params.req_line_speed[idx] =
10806					SPEED_10;
10807				bp->link_params.req_duplex[idx] =
10808					DUPLEX_HALF;
10809				bp->port.advertising[idx] |=
10810					(ADVERTISED_10baseT_Half |
10811					 ADVERTISED_TP);
10812			} else {
10813				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10814					    link_config,
10815					  bp->link_params.speed_cap_mask[idx]);
10816				return;
10817			}
10818			break;
10819
10820		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10821			if (bp->port.supported[idx] &
10822			    SUPPORTED_100baseT_Full) {
10823				bp->link_params.req_line_speed[idx] =
10824					SPEED_100;
10825				bp->port.advertising[idx] |=
10826					(ADVERTISED_100baseT_Full |
10827					 ADVERTISED_TP);
10828			} else {
10829				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10830					    link_config,
10831					  bp->link_params.speed_cap_mask[idx]);
10832				return;
10833			}
10834			break;
10835
10836		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10837			if (bp->port.supported[idx] &
10838			    SUPPORTED_100baseT_Half) {
10839				bp->link_params.req_line_speed[idx] =
10840								SPEED_100;
10841				bp->link_params.req_duplex[idx] =
10842								DUPLEX_HALF;
10843				bp->port.advertising[idx] |=
10844					(ADVERTISED_100baseT_Half |
10845					 ADVERTISED_TP);
10846			} else {
10847				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10848				    link_config,
10849				    bp->link_params.speed_cap_mask[idx]);
10850				return;
10851			}
10852			break;
10853
10854		case PORT_FEATURE_LINK_SPEED_1G:
10855			if (bp->port.supported[idx] &
10856			    SUPPORTED_1000baseT_Full) {
10857				bp->link_params.req_line_speed[idx] =
10858					SPEED_1000;
10859				bp->port.advertising[idx] |=
10860					(ADVERTISED_1000baseT_Full |
10861					 ADVERTISED_TP);
10862			} else {
10863				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10864				    link_config,
10865				    bp->link_params.speed_cap_mask[idx]);
10866				return;
10867			}
10868			break;
10869
10870		case PORT_FEATURE_LINK_SPEED_2_5G:
10871			if (bp->port.supported[idx] &
10872			    SUPPORTED_2500baseX_Full) {
10873				bp->link_params.req_line_speed[idx] =
10874					SPEED_2500;
10875				bp->port.advertising[idx] |=
10876					(ADVERTISED_2500baseX_Full |
10877						ADVERTISED_TP);
10878			} else {
10879				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10880				    link_config,
10881				    bp->link_params.speed_cap_mask[idx]);
10882				return;
10883			}
10884			break;
10885
10886		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10887			if (bp->port.supported[idx] &
10888			    SUPPORTED_10000baseT_Full) {
10889				bp->link_params.req_line_speed[idx] =
10890					SPEED_10000;
10891				bp->port.advertising[idx] |=
10892					(ADVERTISED_10000baseT_Full |
10893						ADVERTISED_FIBRE);
10894			} else {
10895				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10896				    link_config,
10897				    bp->link_params.speed_cap_mask[idx]);
10898				return;
10899			}
10900			break;
10901		case PORT_FEATURE_LINK_SPEED_20G:
10902			bp->link_params.req_line_speed[idx] = SPEED_20000;
10903
10904			break;
10905		default:
10906			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10907				  link_config);
10908				bp->link_params.req_line_speed[idx] =
10909							SPEED_AUTO_NEG;
10910				bp->port.advertising[idx] =
10911						bp->port.supported[idx];
10912			break;
10913		}
10914
10915		bp->link_params.req_flow_ctrl[idx] = (link_config &
10916					 PORT_FEATURE_FLOW_CONTROL_MASK);
10917		if (bp->link_params.req_flow_ctrl[idx] ==
10918		    BNX2X_FLOW_CTRL_AUTO) {
10919			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10920				bp->link_params.req_flow_ctrl[idx] =
10921							BNX2X_FLOW_CTRL_NONE;
10922			else
10923				bnx2x_set_requested_fc(bp);
10924		}
10925
10926		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10927			       bp->link_params.req_line_speed[idx],
10928			       bp->link_params.req_duplex[idx],
10929			       bp->link_params.req_flow_ctrl[idx],
10930			       bp->port.advertising[idx]);
10931	}
10932}
10933
10934static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10935{
10936	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10937	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10938	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10939	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10940}
10941
10942static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10943{
10944	int port = BP_PORT(bp);
10945	u32 config;
10946	u32 ext_phy_type, ext_phy_config, eee_mode;
10947
10948	bp->link_params.bp = bp;
10949	bp->link_params.port = port;
10950
10951	bp->link_params.lane_config =
10952		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10953
10954	bp->link_params.speed_cap_mask[0] =
10955		SHMEM_RD(bp,
10956			 dev_info.port_hw_config[port].speed_capability_mask) &
10957		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10958	bp->link_params.speed_cap_mask[1] =
10959		SHMEM_RD(bp,
10960			 dev_info.port_hw_config[port].speed_capability_mask2) &
10961		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10962	bp->port.link_config[0] =
10963		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10964
10965	bp->port.link_config[1] =
10966		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10967
10968	bp->link_params.multi_phy_config =
10969		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10970	/* If the device is capable of WoL, set the default state according
10971	 * to the HW
10972	 */
10973	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10974	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10975		   (config & PORT_FEATURE_WOL_ENABLED));
10976
10977	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10978	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10979		bp->flags |= NO_ISCSI_FLAG;
10980	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10981	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10982		bp->flags |= NO_FCOE_FLAG;
10983
10984	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10985		       bp->link_params.lane_config,
10986		       bp->link_params.speed_cap_mask[0],
10987		       bp->port.link_config[0]);
10988
10989	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10990				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10991	bnx2x_phy_probe(&bp->link_params);
10992	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10993
10994	bnx2x_link_settings_requested(bp);
10995
10996	/*
10997	 * If connected directly, work with the internal PHY, otherwise, work
10998	 * with the external PHY
10999	 */
11000	ext_phy_config =
11001		SHMEM_RD(bp,
11002			 dev_info.port_hw_config[port].external_phy_config);
11003	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11004	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11005		bp->mdio.prtad = bp->port.phy_addr;
11006
11007	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11008		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11009		bp->mdio.prtad =
11010			XGXS_EXT_PHY_ADDR(ext_phy_config);
11011
11012	/* Configure link feature according to nvram value */
11013	eee_mode = (((SHMEM_RD(bp, dev_info.
11014		      port_feature_config[port].eee_power_mode)) &
11015		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11016		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11017	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11018		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11019					   EEE_MODE_ENABLE_LPI |
11020					   EEE_MODE_OUTPUT_TIME;
11021	} else {
11022		bp->link_params.eee_mode = 0;
11023	}
11024}
11025
11026void bnx2x_get_iscsi_info(struct bnx2x *bp)
11027{
11028	u32 no_flags = NO_ISCSI_FLAG;
11029	int port = BP_PORT(bp);
11030	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11031				drv_lic_key[port].max_iscsi_conn);
11032
11033	if (!CNIC_SUPPORT(bp)) {
11034		bp->flags |= no_flags;
11035		return;
11036	}
11037
11038	/* Get the number of maximum allowed iSCSI connections */
11039	bp->cnic_eth_dev.max_iscsi_conn =
11040		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11041		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11042
11043	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11044		       bp->cnic_eth_dev.max_iscsi_conn);
11045
11046	/*
11047	 * If maximum allowed number of connections is zero -
11048	 * disable the feature.
11049	 */
11050	if (!bp->cnic_eth_dev.max_iscsi_conn)
11051		bp->flags |= no_flags;
11052}
11053
11054static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11055{
11056	/* Port info */
11057	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11058		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11059	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11060		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11061
11062	/* Node info */
11063	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11064		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11065	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11066		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11067}
11068
11069static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11070{
11071	u8 count = 0;
11072
11073	if (IS_MF(bp)) {
11074		u8 fid;
11075
11076		/* iterate over absolute function ids for this path: */
11077		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11078			if (IS_MF_SD(bp)) {
11079				u32 cfg = MF_CFG_RD(bp,
11080						    func_mf_config[fid].config);
11081
11082				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11083				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11084					    FUNC_MF_CFG_PROTOCOL_FCOE))
11085					count++;
11086			} else {
11087				u32 cfg = MF_CFG_RD(bp,
11088						    func_ext_config[fid].
11089								      func_cfg);
11090
11091				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11092				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11093					count++;
11094			}
11095		}
11096	} else { /* SF */
11097		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11098
11099		for (port = 0; port < port_cnt; port++) {
11100			u32 lic = SHMEM_RD(bp,
11101					   drv_lic_key[port].max_fcoe_conn) ^
11102				  FW_ENCODE_32BIT_PATTERN;
11103			if (lic)
11104				count++;
11105		}
11106	}
11107
11108	return count;
11109}
11110
11111static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11112{
11113	int port = BP_PORT(bp);
11114	int func = BP_ABS_FUNC(bp);
11115	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11116				drv_lic_key[port].max_fcoe_conn);
11117	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11118
11119	if (!CNIC_SUPPORT(bp)) {
11120		bp->flags |= NO_FCOE_FLAG;
11121		return;
11122	}
11123
11124	/* Get the number of maximum allowed FCoE connections */
11125	bp->cnic_eth_dev.max_fcoe_conn =
11126		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11127		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11128
11129	/* Calculate the number of maximum allowed FCoE tasks */
11130	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11131
11132	/* check if FCoE resources must be shared between different functions */
11133	if (num_fcoe_func)
11134		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11135
11136	/* Read the WWN: */
11137	if (!IS_MF(bp)) {
11138		/* Port info */
11139		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11140			SHMEM_RD(bp,
11141				 dev_info.port_hw_config[port].
11142				 fcoe_wwn_port_name_upper);
11143		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11144			SHMEM_RD(bp,
11145				 dev_info.port_hw_config[port].
11146				 fcoe_wwn_port_name_lower);
11147
11148		/* Node info */
11149		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11150			SHMEM_RD(bp,
11151				 dev_info.port_hw_config[port].
11152				 fcoe_wwn_node_name_upper);
11153		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11154			SHMEM_RD(bp,
11155				 dev_info.port_hw_config[port].
11156				 fcoe_wwn_node_name_lower);
11157	} else if (!IS_MF_SD(bp)) {
11158		/*
11159		 * Read the WWN info only if the FCoE feature is enabled for
11160		 * this function.
11161		 */
11162		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11163			bnx2x_get_ext_wwn_info(bp, func);
11164
11165	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11166		bnx2x_get_ext_wwn_info(bp, func);
11167	}
11168
11169	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11170
11171	/*
11172	 * If maximum allowed number of connections is zero -
11173	 * disable the feature.
11174	 */
11175	if (!bp->cnic_eth_dev.max_fcoe_conn)
11176		bp->flags |= NO_FCOE_FLAG;
11177}
11178
11179static void bnx2x_get_cnic_info(struct bnx2x *bp)
11180{
11181	/*
11182	 * iSCSI may be dynamically disabled but reading
11183	 * info here we will decrease memory usage by driver
11184	 * if the feature is disabled for good
11185	 */
11186	bnx2x_get_iscsi_info(bp);
11187	bnx2x_get_fcoe_info(bp);
11188}
11189
11190static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11191{
11192	u32 val, val2;
11193	int func = BP_ABS_FUNC(bp);
11194	int port = BP_PORT(bp);
11195	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11196	u8 *fip_mac = bp->fip_mac;
11197
11198	if (IS_MF(bp)) {
11199		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11200		 * FCoE MAC then the appropriate feature should be disabled.
11201		 * In non SD mode features configuration comes from struct
11202		 * func_ext_config.
11203		 */
11204		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11205			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11206			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11207				val2 = MF_CFG_RD(bp, func_ext_config[func].
11208						 iscsi_mac_addr_upper);
11209				val = MF_CFG_RD(bp, func_ext_config[func].
11210						iscsi_mac_addr_lower);
11211				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11212				BNX2X_DEV_INFO
11213					("Read iSCSI MAC: %pM\n", iscsi_mac);
11214			} else {
11215				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11216			}
11217
11218			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11219				val2 = MF_CFG_RD(bp, func_ext_config[func].
11220						 fcoe_mac_addr_upper);
11221				val = MF_CFG_RD(bp, func_ext_config[func].
11222						fcoe_mac_addr_lower);
11223				bnx2x_set_mac_buf(fip_mac, val, val2);
11224				BNX2X_DEV_INFO
11225					("Read FCoE L2 MAC: %pM\n", fip_mac);
11226			} else {
11227				bp->flags |= NO_FCOE_FLAG;
11228			}
11229
11230			bp->mf_ext_config = cfg;
11231
11232		} else { /* SD MODE */
11233			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11234				/* use primary mac as iscsi mac */
11235				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11236
11237				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11238				BNX2X_DEV_INFO
11239					("Read iSCSI MAC: %pM\n", iscsi_mac);
11240			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11241				/* use primary mac as fip mac */
11242				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11243				BNX2X_DEV_INFO("SD FCoE MODE\n");
11244				BNX2X_DEV_INFO
11245					("Read FIP MAC: %pM\n", fip_mac);
11246			}
11247		}
11248
11249		/* If this is a storage-only interface, use SAN mac as
11250		 * primary MAC. Notice that for SD this is already the case,
11251		 * as the SAN mac was copied from the primary MAC.
11252		 */
11253		if (IS_MF_FCOE_AFEX(bp))
11254			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11255	} else {
11256		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11257				iscsi_mac_upper);
11258		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11259			       iscsi_mac_lower);
11260		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11261
11262		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11263				fcoe_fip_mac_upper);
11264		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11265			       fcoe_fip_mac_lower);
11266		bnx2x_set_mac_buf(fip_mac, val, val2);
11267	}
11268
11269	/* Disable iSCSI OOO if MAC configuration is invalid. */
11270	if (!is_valid_ether_addr(iscsi_mac)) {
11271		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11272		memset(iscsi_mac, 0, ETH_ALEN);
11273	}
11274
11275	/* Disable FCoE if MAC configuration is invalid. */
11276	if (!is_valid_ether_addr(fip_mac)) {
11277		bp->flags |= NO_FCOE_FLAG;
11278		memset(bp->fip_mac, 0, ETH_ALEN);
11279	}
11280}
11281
11282static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11283{
11284	u32 val, val2;
11285	int func = BP_ABS_FUNC(bp);
11286	int port = BP_PORT(bp);
11287
11288	/* Zero primary MAC configuration */
11289	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11290
11291	if (BP_NOMCP(bp)) {
11292		BNX2X_ERROR("warning: random MAC workaround active\n");
11293		eth_hw_addr_random(bp->dev);
11294	} else if (IS_MF(bp)) {
11295		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11296		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11297		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11298		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11299			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11300
11301		if (CNIC_SUPPORT(bp))
11302			bnx2x_get_cnic_mac_hwinfo(bp);
11303	} else {
11304		/* in SF read MACs from port configuration */
11305		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11306		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11307		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11308
11309		if (CNIC_SUPPORT(bp))
11310			bnx2x_get_cnic_mac_hwinfo(bp);
11311	}
11312
11313	if (!BP_NOMCP(bp)) {
11314		/* Read physical port identifier from shmem */
11315		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11316		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11317		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11318		bp->flags |= HAS_PHYS_PORT_ID;
11319	}
11320
11321	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11322
11323	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11324		dev_err(&bp->pdev->dev,
11325			"bad Ethernet MAC address configuration: %pM\n"
11326			"change it manually before bringing up the appropriate network interface\n",
11327			bp->dev->dev_addr);
11328}
11329
11330static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11331{
11332	int tmp;
11333	u32 cfg;
11334
11335	if (IS_VF(bp))
11336		return 0;
11337
11338	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11339		/* Take function: tmp = func */
11340		tmp = BP_ABS_FUNC(bp);
11341		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11342		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11343	} else {
11344		/* Take port: tmp = port */
11345		tmp = BP_PORT(bp);
11346		cfg = SHMEM_RD(bp,
11347			       dev_info.port_hw_config[tmp].generic_features);
11348		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11349	}
11350	return cfg;
11351}
11352
11353static int bnx2x_get_hwinfo(struct bnx2x *bp)
11354{
11355	int /*abs*/func = BP_ABS_FUNC(bp);
11356	int vn;
11357	u32 val = 0;
11358	int rc = 0;
11359
11360	bnx2x_get_common_hwinfo(bp);
11361
11362	/*
11363	 * initialize IGU parameters
11364	 */
11365	if (CHIP_IS_E1x(bp)) {
11366		bp->common.int_block = INT_BLOCK_HC;
11367
11368		bp->igu_dsb_id = DEF_SB_IGU_ID;
11369		bp->igu_base_sb = 0;
11370	} else {
11371		bp->common.int_block = INT_BLOCK_IGU;
11372
11373		/* do not allow device reset during IGU info processing */
11374		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11375
11376		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11377
11378		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11379			int tout = 5000;
11380
11381			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11382
11383			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11384			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11385			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11386
11387			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11388				tout--;
11389				usleep_range(1000, 2000);
11390			}
11391
11392			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11393				dev_err(&bp->pdev->dev,
11394					"FORCING Normal Mode failed!!!\n");
11395				bnx2x_release_hw_lock(bp,
11396						      HW_LOCK_RESOURCE_RESET);
11397				return -EPERM;
11398			}
11399		}
11400
11401		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11402			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11403			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11404		} else
11405			BNX2X_DEV_INFO("IGU Normal Mode\n");
11406
11407		rc = bnx2x_get_igu_cam_info(bp);
11408		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11409		if (rc)
11410			return rc;
11411	}
11412
11413	/*
11414	 * set base FW non-default (fast path) status block id, this value is
11415	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11416	 * determine the id used by the FW.
11417	 */
11418	if (CHIP_IS_E1x(bp))
11419		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11420	else /*
11421	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11422	      * the same queue are indicated on the same IGU SB). So we prefer
11423	      * FW and IGU SBs to be the same value.
11424	      */
11425		bp->base_fw_ndsb = bp->igu_base_sb;
11426
11427	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11428		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11429		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11430
11431	/*
11432	 * Initialize MF configuration
11433	 */
11434
11435	bp->mf_ov = 0;
11436	bp->mf_mode = 0;
11437	vn = BP_VN(bp);
11438
11439	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11440		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11441			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11442			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11443
11444		if (SHMEM2_HAS(bp, mf_cfg_addr))
11445			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11446		else
11447			bp->common.mf_cfg_base = bp->common.shmem_base +
11448				offsetof(struct shmem_region, func_mb) +
11449				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11450		/*
11451		 * get mf configuration:
11452		 * 1. Existence of MF configuration
11453		 * 2. MAC address must be legal (check only upper bytes)
11454		 *    for  Switch-Independent mode;
11455		 *    OVLAN must be legal for Switch-Dependent mode
11456		 * 3. SF_MODE configures specific MF mode
11457		 */
11458		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11459			/* get mf configuration */
11460			val = SHMEM_RD(bp,
11461				       dev_info.shared_feature_config.config);
11462			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11463
11464			switch (val) {
11465			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11466				val = MF_CFG_RD(bp, func_mf_config[func].
11467						mac_upper);
11468				/* check for legal mac (upper bytes)*/
11469				if (val != 0xffff) {
11470					bp->mf_mode = MULTI_FUNCTION_SI;
11471					bp->mf_config[vn] = MF_CFG_RD(bp,
11472						   func_mf_config[func].config);
11473				} else
11474					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11475				break;
11476			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11477				if ((!CHIP_IS_E1x(bp)) &&
11478				    (MF_CFG_RD(bp, func_mf_config[func].
11479					       mac_upper) != 0xffff) &&
11480				    (SHMEM2_HAS(bp,
11481						afex_driver_support))) {
11482					bp->mf_mode = MULTI_FUNCTION_AFEX;
11483					bp->mf_config[vn] = MF_CFG_RD(bp,
11484						func_mf_config[func].config);
11485				} else {
11486					BNX2X_DEV_INFO("can not configure afex mode\n");
11487				}
11488				break;
11489			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11490				/* get OV configuration */
11491				val = MF_CFG_RD(bp,
11492					func_mf_config[FUNC_0].e1hov_tag);
11493				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11494
11495				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11496					bp->mf_mode = MULTI_FUNCTION_SD;
11497					bp->mf_config[vn] = MF_CFG_RD(bp,
11498						func_mf_config[func].config);
11499				} else
11500					BNX2X_DEV_INFO("illegal OV for SD\n");
11501				break;
11502			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11503				bp->mf_config[vn] = 0;
11504				break;
11505			default:
11506				/* Unknown configuration: reset mf_config */
11507				bp->mf_config[vn] = 0;
11508				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11509			}
11510		}
11511
11512		BNX2X_DEV_INFO("%s function mode\n",
11513			       IS_MF(bp) ? "multi" : "single");
11514
11515		switch (bp->mf_mode) {
11516		case MULTI_FUNCTION_SD:
11517			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11518			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11519			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11520				bp->mf_ov = val;
11521				bp->path_has_ovlan = true;
11522
11523				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11524					       func, bp->mf_ov, bp->mf_ov);
11525			} else {
11526				dev_err(&bp->pdev->dev,
11527					"No valid MF OV for func %d, aborting\n",
11528					func);
11529				return -EPERM;
11530			}
11531			break;
11532		case MULTI_FUNCTION_AFEX:
11533			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11534			break;
11535		case MULTI_FUNCTION_SI:
11536			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11537				       func);
11538			break;
11539		default:
11540			if (vn) {
11541				dev_err(&bp->pdev->dev,
11542					"VN %d is in a single function mode, aborting\n",
11543					vn);
11544				return -EPERM;
11545			}
11546			break;
11547		}
11548
11549		/* check if other port on the path needs ovlan:
11550		 * Since MF configuration is shared between ports
11551		 * Possible mixed modes are only
11552		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11553		 */
11554		if (CHIP_MODE_IS_4_PORT(bp) &&
11555		    !bp->path_has_ovlan &&
11556		    !IS_MF(bp) &&
11557		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11558			u8 other_port = !BP_PORT(bp);
11559			u8 other_func = BP_PATH(bp) + 2*other_port;
11560			val = MF_CFG_RD(bp,
11561					func_mf_config[other_func].e1hov_tag);
11562			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11563				bp->path_has_ovlan = true;
11564		}
11565	}
11566
11567	/* adjust igu_sb_cnt to MF for E1H */
11568	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11569		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11570
11571	/* port info */
11572	bnx2x_get_port_hwinfo(bp);
11573
11574	/* Get MAC addresses */
11575	bnx2x_get_mac_hwinfo(bp);
11576
11577	bnx2x_get_cnic_info(bp);
11578
11579	return rc;
11580}
11581
11582static void bnx2x_read_fwinfo(struct bnx2x *bp)
11583{
11584	int cnt, i, block_end, rodi;
11585	char vpd_start[BNX2X_VPD_LEN+1];
11586	char str_id_reg[VENDOR_ID_LEN+1];
11587	char str_id_cap[VENDOR_ID_LEN+1];
11588	char *vpd_data;
11589	char *vpd_extended_data = NULL;
11590	u8 len;
11591
11592	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11593	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11594
11595	if (cnt < BNX2X_VPD_LEN)
11596		goto out_not_found;
11597
11598	/* VPD RO tag should be first tag after identifier string, hence
11599	 * we should be able to find it in first BNX2X_VPD_LEN chars
11600	 */
11601	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11602			     PCI_VPD_LRDT_RO_DATA);
11603	if (i < 0)
11604		goto out_not_found;
11605
11606	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11607		    pci_vpd_lrdt_size(&vpd_start[i]);
11608
11609	i += PCI_VPD_LRDT_TAG_SIZE;
11610
11611	if (block_end > BNX2X_VPD_LEN) {
11612		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11613		if (vpd_extended_data  == NULL)
11614			goto out_not_found;
11615
11616		/* read rest of vpd image into vpd_extended_data */
11617		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11618		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11619				   block_end - BNX2X_VPD_LEN,
11620				   vpd_extended_data + BNX2X_VPD_LEN);
11621		if (cnt < (block_end - BNX2X_VPD_LEN))
11622			goto out_not_found;
11623		vpd_data = vpd_extended_data;
11624	} else
11625		vpd_data = vpd_start;
11626
11627	/* now vpd_data holds full vpd content in both cases */
11628
11629	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11630				   PCI_VPD_RO_KEYWORD_MFR_ID);
11631	if (rodi < 0)
11632		goto out_not_found;
11633
11634	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11635
11636	if (len != VENDOR_ID_LEN)
11637		goto out_not_found;
11638
11639	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11640
11641	/* vendor specific info */
11642	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11643	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11644	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11645	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11646
11647		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11648						PCI_VPD_RO_KEYWORD_VENDOR0);
11649		if (rodi >= 0) {
11650			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11651
11652			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11653
11654			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11655				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11656				bp->fw_ver[len] = ' ';
11657			}
11658		}
11659		kfree(vpd_extended_data);
11660		return;
11661	}
11662out_not_found:
11663	kfree(vpd_extended_data);
11664	return;
11665}
11666
11667static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11668{
11669	u32 flags = 0;
11670
11671	if (CHIP_REV_IS_FPGA(bp))
11672		SET_FLAGS(flags, MODE_FPGA);
11673	else if (CHIP_REV_IS_EMUL(bp))
11674		SET_FLAGS(flags, MODE_EMUL);
11675	else
11676		SET_FLAGS(flags, MODE_ASIC);
11677
11678	if (CHIP_MODE_IS_4_PORT(bp))
11679		SET_FLAGS(flags, MODE_PORT4);
11680	else
11681		SET_FLAGS(flags, MODE_PORT2);
11682
11683	if (CHIP_IS_E2(bp))
11684		SET_FLAGS(flags, MODE_E2);
11685	else if (CHIP_IS_E3(bp)) {
11686		SET_FLAGS(flags, MODE_E3);
11687		if (CHIP_REV(bp) == CHIP_REV_Ax)
11688			SET_FLAGS(flags, MODE_E3_A0);
11689		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11690			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11691	}
11692
11693	if (IS_MF(bp)) {
11694		SET_FLAGS(flags, MODE_MF);
11695		switch (bp->mf_mode) {
11696		case MULTI_FUNCTION_SD:
11697			SET_FLAGS(flags, MODE_MF_SD);
11698			break;
11699		case MULTI_FUNCTION_SI:
11700			SET_FLAGS(flags, MODE_MF_SI);
11701			break;
11702		case MULTI_FUNCTION_AFEX:
11703			SET_FLAGS(flags, MODE_MF_AFEX);
11704			break;
11705		}
11706	} else
11707		SET_FLAGS(flags, MODE_SF);
11708
11709#if defined(__LITTLE_ENDIAN)
11710	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11711#else /*(__BIG_ENDIAN)*/
11712	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11713#endif
11714	INIT_MODE_FLAGS(bp) = flags;
11715}
11716
11717static int bnx2x_init_bp(struct bnx2x *bp)
11718{
11719	int func;
11720	int rc;
11721
11722	mutex_init(&bp->port.phy_mutex);
11723	mutex_init(&bp->fw_mb_mutex);
11724	spin_lock_init(&bp->stats_lock);
11725	sema_init(&bp->stats_sema, 1);
11726
11727	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11728	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11729	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11730	if (IS_PF(bp)) {
11731		rc = bnx2x_get_hwinfo(bp);
11732		if (rc)
11733			return rc;
11734	} else {
11735		eth_zero_addr(bp->dev->dev_addr);
11736	}
11737
11738	bnx2x_set_modes_bitmap(bp);
11739
11740	rc = bnx2x_alloc_mem_bp(bp);
11741	if (rc)
11742		return rc;
11743
11744	bnx2x_read_fwinfo(bp);
11745
11746	func = BP_FUNC(bp);
11747
11748	/* need to reset chip if undi was active */
11749	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11750		/* init fw_seq */
11751		bp->fw_seq =
11752			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11753							DRV_MSG_SEQ_NUMBER_MASK;
11754		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11755
11756		rc = bnx2x_prev_unload(bp);
11757		if (rc) {
11758			bnx2x_free_mem_bp(bp);
11759			return rc;
11760		}
11761	}
11762
11763	if (CHIP_REV_IS_FPGA(bp))
11764		dev_err(&bp->pdev->dev, "FPGA detected\n");
11765
11766	if (BP_NOMCP(bp) && (func == 0))
11767		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11768
11769	bp->disable_tpa = disable_tpa;
11770	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11771
11772	/* Set TPA flags */
11773	if (bp->disable_tpa) {
11774		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11775		bp->dev->features &= ~NETIF_F_LRO;
11776	} else {
11777		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11778		bp->dev->features |= NETIF_F_LRO;
11779	}
11780
11781	if (CHIP_IS_E1(bp))
11782		bp->dropless_fc = 0;
11783	else
11784		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11785
11786	bp->mrrs = mrrs;
11787
11788	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11789	if (IS_VF(bp))
11790		bp->rx_ring_size = MAX_RX_AVAIL;
11791
11792	/* make sure that the numbers are in the right granularity */
11793	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11794	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11795
11796	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11797
11798	init_timer(&bp->timer);
11799	bp->timer.expires = jiffies + bp->current_interval;
11800	bp->timer.data = (unsigned long) bp;
11801	bp->timer.function = bnx2x_timer;
11802
11803	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11804	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11805	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11806	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11807		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11808		bnx2x_dcbx_init_params(bp);
11809	} else {
11810		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11811	}
11812
11813	if (CHIP_IS_E1x(bp))
11814		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11815	else
11816		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11817
11818	/* multiple tx priority */
11819	if (IS_VF(bp))
11820		bp->max_cos = 1;
11821	else if (CHIP_IS_E1x(bp))
11822		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11823	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11824		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11825	else if (CHIP_IS_E3B0(bp))
11826		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11827	else
11828		BNX2X_ERR("unknown chip %x revision %x\n",
11829			  CHIP_NUM(bp), CHIP_REV(bp));
11830	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11831
11832	/* We need at least one default status block for slow-path events,
11833	 * second status block for the L2 queue, and a third status block for
11834	 * CNIC if supported.
11835	 */
11836	if (IS_VF(bp))
11837		bp->min_msix_vec_cnt = 1;
11838	else if (CNIC_SUPPORT(bp))
11839		bp->min_msix_vec_cnt = 3;
11840	else /* PF w/o cnic */
11841		bp->min_msix_vec_cnt = 2;
11842	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11843
11844	bp->dump_preset_idx = 1;
11845
11846	return rc;
11847}
11848
11849/****************************************************************************
11850* General service functions
11851****************************************************************************/
11852
11853/*
11854 * net_device service functions
11855 */
11856
11857/* called with rtnl_lock */
11858static int bnx2x_open(struct net_device *dev)
11859{
11860	struct bnx2x *bp = netdev_priv(dev);
11861	int rc;
11862
11863	bp->stats_init = true;
11864
11865	netif_carrier_off(dev);
11866
11867	bnx2x_set_power_state(bp, PCI_D0);
11868
11869	/* If parity had happen during the unload, then attentions
11870	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11871	 * want the first function loaded on the current engine to
11872	 * complete the recovery.
11873	 * Parity recovery is only relevant for PF driver.
11874	 */
11875	if (IS_PF(bp)) {
11876		int other_engine = BP_PATH(bp) ? 0 : 1;
11877		bool other_load_status, load_status;
11878		bool global = false;
11879
11880		other_load_status = bnx2x_get_load_status(bp, other_engine);
11881		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11882		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11883		    bnx2x_chk_parity_attn(bp, &global, true)) {
11884			do {
11885				/* If there are attentions and they are in a
11886				 * global blocks, set the GLOBAL_RESET bit
11887				 * regardless whether it will be this function
11888				 * that will complete the recovery or not.
11889				 */
11890				if (global)
11891					bnx2x_set_reset_global(bp);
11892
11893				/* Only the first function on the current
11894				 * engine should try to recover in open. In case
11895				 * of attentions in global blocks only the first
11896				 * in the chip should try to recover.
11897				 */
11898				if ((!load_status &&
11899				     (!global || !other_load_status)) &&
11900				      bnx2x_trylock_leader_lock(bp) &&
11901				      !bnx2x_leader_reset(bp)) {
11902					netdev_info(bp->dev,
11903						    "Recovered in open\n");
11904					break;
11905				}
11906
11907				/* recovery has failed... */
11908				bnx2x_set_power_state(bp, PCI_D3hot);
11909				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11910
11911				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11912					  "If you still see this message after a few retries then power cycle is required.\n");
11913
11914				return -EAGAIN;
11915			} while (0);
11916		}
11917	}
11918
11919	bp->recovery_state = BNX2X_RECOVERY_DONE;
11920	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11921	if (rc)
11922		return rc;
11923	return 0;
11924}
11925
11926/* called with rtnl_lock */
11927static int bnx2x_close(struct net_device *dev)
11928{
11929	struct bnx2x *bp = netdev_priv(dev);
11930
11931	/* Unload the driver, release IRQs */
11932	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11933
11934	return 0;
11935}
11936
11937static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11938				      struct bnx2x_mcast_ramrod_params *p)
11939{
11940	int mc_count = netdev_mc_count(bp->dev);
11941	struct bnx2x_mcast_list_elem *mc_mac =
11942		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11943	struct netdev_hw_addr *ha;
11944
11945	if (!mc_mac)
11946		return -ENOMEM;
11947
11948	INIT_LIST_HEAD(&p->mcast_list);
11949
11950	netdev_for_each_mc_addr(ha, bp->dev) {
11951		mc_mac->mac = bnx2x_mc_addr(ha);
11952		list_add_tail(&mc_mac->link, &p->mcast_list);
11953		mc_mac++;
11954	}
11955
11956	p->mcast_list_len = mc_count;
11957
11958	return 0;
11959}
11960
11961static void bnx2x_free_mcast_macs_list(
11962	struct bnx2x_mcast_ramrod_params *p)
11963{
11964	struct bnx2x_mcast_list_elem *mc_mac =
11965		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11966				 link);
11967
11968	WARN_ON(!mc_mac);
11969	kfree(mc_mac);
11970}
11971
11972/**
11973 * bnx2x_set_uc_list - configure a new unicast MACs list.
11974 *
11975 * @bp: driver handle
11976 *
11977 * We will use zero (0) as a MAC type for these MACs.
11978 */
11979static int bnx2x_set_uc_list(struct bnx2x *bp)
11980{
11981	int rc;
11982	struct net_device *dev = bp->dev;
11983	struct netdev_hw_addr *ha;
11984	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11985	unsigned long ramrod_flags = 0;
11986
11987	/* First schedule a cleanup up of old configuration */
11988	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11989	if (rc < 0) {
11990		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11991		return rc;
11992	}
11993
11994	netdev_for_each_uc_addr(ha, dev) {
11995		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11996				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11997		if (rc == -EEXIST) {
11998			DP(BNX2X_MSG_SP,
11999			   "Failed to schedule ADD operations: %d\n", rc);
12000			/* do not treat adding same MAC as error */
12001			rc = 0;
12002
12003		} else if (rc < 0) {
12004
12005			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12006				  rc);
12007			return rc;
12008		}
12009	}
12010
12011	/* Execute the pending commands */
12012	__set_bit(RAMROD_CONT, &ramrod_flags);
12013	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12014				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12015}
12016
12017static int bnx2x_set_mc_list(struct bnx2x *bp)
12018{
12019	struct net_device *dev = bp->dev;
12020	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12021	int rc = 0;
12022
12023	rparam.mcast_obj = &bp->mcast_obj;
12024
12025	/* first, clear all configured multicast MACs */
12026	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12027	if (rc < 0) {
12028		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12029		return rc;
12030	}
12031
12032	/* then, configure a new MACs list */
12033	if (netdev_mc_count(dev)) {
12034		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12035		if (rc) {
12036			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12037				  rc);
12038			return rc;
12039		}
12040
12041		/* Now add the new MACs */
12042		rc = bnx2x_config_mcast(bp, &rparam,
12043					BNX2X_MCAST_CMD_ADD);
12044		if (rc < 0)
12045			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12046				  rc);
12047
12048		bnx2x_free_mcast_macs_list(&rparam);
12049	}
12050
12051	return rc;
12052}
12053
12054/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12055static void bnx2x_set_rx_mode(struct net_device *dev)
12056{
12057	struct bnx2x *bp = netdev_priv(dev);
12058
12059	if (bp->state != BNX2X_STATE_OPEN) {
12060		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12061		return;
12062	} else {
12063		/* Schedule an SP task to handle rest of change */
12064		DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
12065		smp_mb__before_clear_bit();
12066		set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
12067		smp_mb__after_clear_bit();
12068		schedule_delayed_work(&bp->sp_rtnl_task, 0);
12069	}
12070}
12071
12072void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12073{
12074	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12075
12076	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12077
12078	netif_addr_lock_bh(bp->dev);
12079
12080	if (bp->dev->flags & IFF_PROMISC) {
12081		rx_mode = BNX2X_RX_MODE_PROMISC;
12082	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12083		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12084		    CHIP_IS_E1(bp))) {
12085		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12086	} else {
12087		if (IS_PF(bp)) {
12088			/* some multicasts */
12089			if (bnx2x_set_mc_list(bp) < 0)
12090				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12091
12092			/* release bh lock, as bnx2x_set_uc_list might sleep */
12093			netif_addr_unlock_bh(bp->dev);
12094			if (bnx2x_set_uc_list(bp) < 0)
12095				rx_mode = BNX2X_RX_MODE_PROMISC;
12096			netif_addr_lock_bh(bp->dev);
12097		} else {
12098			/* configuring mcast to a vf involves sleeping (when we
12099			 * wait for the pf's response).
12100			 */
12101			smp_mb__before_clear_bit();
12102			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
12103				&bp->sp_rtnl_state);
12104			smp_mb__after_clear_bit();
12105			schedule_delayed_work(&bp->sp_rtnl_task, 0);
12106		}
12107	}
12108
12109	bp->rx_mode = rx_mode;
12110	/* handle ISCSI SD mode */
12111	if (IS_MF_ISCSI_SD(bp))
12112		bp->rx_mode = BNX2X_RX_MODE_NONE;
12113
12114	/* Schedule the rx_mode command */
12115	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12116		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12117		netif_addr_unlock_bh(bp->dev);
12118		return;
12119	}
12120
12121	if (IS_PF(bp)) {
12122		bnx2x_set_storm_rx_mode(bp);
12123		netif_addr_unlock_bh(bp->dev);
12124	} else {
12125		/* VF will need to request the PF to make this change, and so
12126		 * the VF needs to release the bottom-half lock prior to the
12127		 * request (as it will likely require sleep on the VF side)
12128		 */
12129		netif_addr_unlock_bh(bp->dev);
12130		bnx2x_vfpf_storm_rx_mode(bp);
12131	}
12132}
12133
12134/* called with rtnl_lock */
12135static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12136			   int devad, u16 addr)
12137{
12138	struct bnx2x *bp = netdev_priv(netdev);
12139	u16 value;
12140	int rc;
12141
12142	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12143	   prtad, devad, addr);
12144
12145	/* The HW expects different devad if CL22 is used */
12146	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12147
12148	bnx2x_acquire_phy_lock(bp);
12149	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12150	bnx2x_release_phy_lock(bp);
12151	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12152
12153	if (!rc)
12154		rc = value;
12155	return rc;
12156}
12157
12158/* called with rtnl_lock */
12159static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12160			    u16 addr, u16 value)
12161{
12162	struct bnx2x *bp = netdev_priv(netdev);
12163	int rc;
12164
12165	DP(NETIF_MSG_LINK,
12166	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12167	   prtad, devad, addr, value);
12168
12169	/* The HW expects different devad if CL22 is used */
12170	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12171
12172	bnx2x_acquire_phy_lock(bp);
12173	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12174	bnx2x_release_phy_lock(bp);
12175	return rc;
12176}
12177
12178/* called with rtnl_lock */
12179static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12180{
12181	struct bnx2x *bp = netdev_priv(dev);
12182	struct mii_ioctl_data *mdio = if_mii(ifr);
12183
12184	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12185	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12186
12187	if (!netif_running(dev))
12188		return -EAGAIN;
12189
12190	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12191}
12192
12193#ifdef CONFIG_NET_POLL_CONTROLLER
12194static void poll_bnx2x(struct net_device *dev)
12195{
12196	struct bnx2x *bp = netdev_priv(dev);
12197	int i;
12198
12199	for_each_eth_queue(bp, i) {
12200		struct bnx2x_fastpath *fp = &bp->fp[i];
12201		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12202	}
12203}
12204#endif
12205
12206static int bnx2x_validate_addr(struct net_device *dev)
12207{
12208	struct bnx2x *bp = netdev_priv(dev);
12209
12210	/* query the bulletin board for mac address configured by the PF */
12211	if (IS_VF(bp))
12212		bnx2x_sample_bulletin(bp);
12213
12214	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12215		BNX2X_ERR("Non-valid Ethernet address\n");
12216		return -EADDRNOTAVAIL;
12217	}
12218	return 0;
12219}
12220
12221static int bnx2x_get_phys_port_id(struct net_device *netdev,
12222				  struct netdev_phys_port_id *ppid)
12223{
12224	struct bnx2x *bp = netdev_priv(netdev);
12225
12226	if (!(bp->flags & HAS_PHYS_PORT_ID))
12227		return -EOPNOTSUPP;
12228
12229	ppid->id_len = sizeof(bp->phys_port_id);
12230	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12231
12232	return 0;
12233}
12234
12235static const struct net_device_ops bnx2x_netdev_ops = {
12236	.ndo_open		= bnx2x_open,
12237	.ndo_stop		= bnx2x_close,
12238	.ndo_start_xmit		= bnx2x_start_xmit,
12239	.ndo_select_queue	= bnx2x_select_queue,
12240	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12241	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12242	.ndo_validate_addr	= bnx2x_validate_addr,
12243	.ndo_do_ioctl		= bnx2x_ioctl,
12244	.ndo_change_mtu		= bnx2x_change_mtu,
12245	.ndo_fix_features	= bnx2x_fix_features,
12246	.ndo_set_features	= bnx2x_set_features,
12247	.ndo_tx_timeout		= bnx2x_tx_timeout,
12248#ifdef CONFIG_NET_POLL_CONTROLLER
12249	.ndo_poll_controller	= poll_bnx2x,
12250#endif
12251	.ndo_setup_tc		= bnx2x_setup_tc,
12252#ifdef CONFIG_BNX2X_SRIOV
12253	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12254	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12255	.ndo_get_vf_config	= bnx2x_get_vf_config,
12256#endif
12257#ifdef NETDEV_FCOE_WWNN
12258	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12259#endif
12260
12261#ifdef CONFIG_NET_RX_BUSY_POLL
12262	.ndo_busy_poll		= bnx2x_low_latency_recv,
12263#endif
12264	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12265};
12266
12267static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12268{
12269	struct device *dev = &bp->pdev->dev;
12270
12271	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12272	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12273		dev_err(dev, "System does not support DMA, aborting\n");
12274		return -EIO;
12275	}
12276
12277	return 0;
12278}
12279
12280static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12281{
12282	if (bp->flags & AER_ENABLED) {
12283		pci_disable_pcie_error_reporting(bp->pdev);
12284		bp->flags &= ~AER_ENABLED;
12285	}
12286}
12287
12288static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12289			  struct net_device *dev, unsigned long board_type)
12290{
12291	int rc;
12292	u32 pci_cfg_dword;
12293	bool chip_is_e1x = (board_type == BCM57710 ||
12294			    board_type == BCM57711 ||
12295			    board_type == BCM57711E);
12296
12297	SET_NETDEV_DEV(dev, &pdev->dev);
12298
12299	bp->dev = dev;
12300	bp->pdev = pdev;
12301
12302	rc = pci_enable_device(pdev);
12303	if (rc) {
12304		dev_err(&bp->pdev->dev,
12305			"Cannot enable PCI device, aborting\n");
12306		goto err_out;
12307	}
12308
12309	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12310		dev_err(&bp->pdev->dev,
12311			"Cannot find PCI device base address, aborting\n");
12312		rc = -ENODEV;
12313		goto err_out_disable;
12314	}
12315
12316	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12317		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12318		rc = -ENODEV;
12319		goto err_out_disable;
12320	}
12321
12322	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12323	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12324	    PCICFG_REVESION_ID_ERROR_VAL) {
12325		pr_err("PCI device error, probably due to fan failure, aborting\n");
12326		rc = -ENODEV;
12327		goto err_out_disable;
12328	}
12329
12330	if (atomic_read(&pdev->enable_cnt) == 1) {
12331		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12332		if (rc) {
12333			dev_err(&bp->pdev->dev,
12334				"Cannot obtain PCI resources, aborting\n");
12335			goto err_out_disable;
12336		}
12337
12338		pci_set_master(pdev);
12339		pci_save_state(pdev);
12340	}
12341
12342	if (IS_PF(bp)) {
12343		if (!pdev->pm_cap) {
12344			dev_err(&bp->pdev->dev,
12345				"Cannot find power management capability, aborting\n");
12346			rc = -EIO;
12347			goto err_out_release;
12348		}
12349	}
12350
12351	if (!pci_is_pcie(pdev)) {
12352		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12353		rc = -EIO;
12354		goto err_out_release;
12355	}
12356
12357	rc = bnx2x_set_coherency_mask(bp);
12358	if (rc)
12359		goto err_out_release;
12360
12361	dev->mem_start = pci_resource_start(pdev, 0);
12362	dev->base_addr = dev->mem_start;
12363	dev->mem_end = pci_resource_end(pdev, 0);
12364
12365	dev->irq = pdev->irq;
12366
12367	bp->regview = pci_ioremap_bar(pdev, 0);
12368	if (!bp->regview) {
12369		dev_err(&bp->pdev->dev,
12370			"Cannot map register space, aborting\n");
12371		rc = -ENOMEM;
12372		goto err_out_release;
12373	}
12374
12375	/* In E1/E1H use pci device function given by kernel.
12376	 * In E2/E3 read physical function from ME register since these chips
12377	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12378	 * (depending on hypervisor).
12379	 */
12380	if (chip_is_e1x) {
12381		bp->pf_num = PCI_FUNC(pdev->devfn);
12382	} else {
12383		/* chip is E2/3*/
12384		pci_read_config_dword(bp->pdev,
12385				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12386		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12387				  ME_REG_ABS_PF_NUM_SHIFT);
12388	}
12389	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12390
12391	/* clean indirect addresses */
12392	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12393			       PCICFG_VENDOR_ID_OFFSET);
12394
12395	/* AER (Advanced Error reporting) configuration */
12396	rc = pci_enable_pcie_error_reporting(pdev);
12397	if (!rc)
12398		bp->flags |= AER_ENABLED;
12399	else
12400		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12401
12402	/*
12403	 * Clean the following indirect addresses for all functions since it
12404	 * is not used by the driver.
12405	 */
12406	if (IS_PF(bp)) {
12407		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12408		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12409		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12410		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12411
12412		if (chip_is_e1x) {
12413			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12414			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12415			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12416			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12417		}
12418
12419		/* Enable internal target-read (in case we are probed after PF
12420		 * FLR). Must be done prior to any BAR read access. Only for
12421		 * 57712 and up
12422		 */
12423		if (!chip_is_e1x)
12424			REG_WR(bp,
12425			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12426	}
12427
12428	dev->watchdog_timeo = TX_TIMEOUT;
12429
12430	dev->netdev_ops = &bnx2x_netdev_ops;
12431	bnx2x_set_ethtool_ops(bp, dev);
12432
12433	dev->priv_flags |= IFF_UNICAST_FLT;
12434
12435	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12436		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12437		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12438		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12439	if (!CHIP_IS_E1x(bp)) {
12440		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12441				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12442		dev->hw_enc_features =
12443			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12444			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12445			NETIF_F_GSO_IPIP |
12446			NETIF_F_GSO_SIT |
12447			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12448	}
12449
12450	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12451		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12452
12453	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12454	dev->features |= NETIF_F_HIGHDMA;
12455
12456	/* Add Loopback capability to the device */
12457	dev->hw_features |= NETIF_F_LOOPBACK;
12458
12459#ifdef BCM_DCBNL
12460	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12461#endif
12462
12463	/* get_port_hwinfo() will set prtad and mmds properly */
12464	bp->mdio.prtad = MDIO_PRTAD_NONE;
12465	bp->mdio.mmds = 0;
12466	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12467	bp->mdio.dev = dev;
12468	bp->mdio.mdio_read = bnx2x_mdio_read;
12469	bp->mdio.mdio_write = bnx2x_mdio_write;
12470
12471	return 0;
12472
12473err_out_release:
12474	if (atomic_read(&pdev->enable_cnt) == 1)
12475		pci_release_regions(pdev);
12476
12477err_out_disable:
12478	pci_disable_device(pdev);
12479
12480err_out:
12481	return rc;
12482}
12483
12484static int bnx2x_check_firmware(struct bnx2x *bp)
12485{
12486	const struct firmware *firmware = bp->firmware;
12487	struct bnx2x_fw_file_hdr *fw_hdr;
12488	struct bnx2x_fw_file_section *sections;
12489	u32 offset, len, num_ops;
12490	__be16 *ops_offsets;
12491	int i;
12492	const u8 *fw_ver;
12493
12494	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12495		BNX2X_ERR("Wrong FW size\n");
12496		return -EINVAL;
12497	}
12498
12499	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12500	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12501
12502	/* Make sure none of the offsets and sizes make us read beyond
12503	 * the end of the firmware data */
12504	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12505		offset = be32_to_cpu(sections[i].offset);
12506		len = be32_to_cpu(sections[i].len);
12507		if (offset + len > firmware->size) {
12508			BNX2X_ERR("Section %d length is out of bounds\n", i);
12509			return -EINVAL;
12510		}
12511	}
12512
12513	/* Likewise for the init_ops offsets */
12514	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12515	ops_offsets = (__force __be16 *)(firmware->data + offset);
12516	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12517
12518	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12519		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12520			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12521			return -EINVAL;
12522		}
12523	}
12524
12525	/* Check FW version */
12526	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12527	fw_ver = firmware->data + offset;
12528	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12529	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12530	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12531	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12532		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12533		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12534		       BCM_5710_FW_MAJOR_VERSION,
12535		       BCM_5710_FW_MINOR_VERSION,
12536		       BCM_5710_FW_REVISION_VERSION,
12537		       BCM_5710_FW_ENGINEERING_VERSION);
12538		return -EINVAL;
12539	}
12540
12541	return 0;
12542}
12543
12544static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12545{
12546	const __be32 *source = (const __be32 *)_source;
12547	u32 *target = (u32 *)_target;
12548	u32 i;
12549
12550	for (i = 0; i < n/4; i++)
12551		target[i] = be32_to_cpu(source[i]);
12552}
12553
12554/*
12555   Ops array is stored in the following format:
12556   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12557 */
12558static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12559{
12560	const __be32 *source = (const __be32 *)_source;
12561	struct raw_op *target = (struct raw_op *)_target;
12562	u32 i, j, tmp;
12563
12564	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12565		tmp = be32_to_cpu(source[j]);
12566		target[i].op = (tmp >> 24) & 0xff;
12567		target[i].offset = tmp & 0xffffff;
12568		target[i].raw_data = be32_to_cpu(source[j + 1]);
12569	}
12570}
12571
12572/* IRO array is stored in the following format:
12573 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12574 */
12575static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12576{
12577	const __be32 *source = (const __be32 *)_source;
12578	struct iro *target = (struct iro *)_target;
12579	u32 i, j, tmp;
12580
12581	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12582		target[i].base = be32_to_cpu(source[j]);
12583		j++;
12584		tmp = be32_to_cpu(source[j]);
12585		target[i].m1 = (tmp >> 16) & 0xffff;
12586		target[i].m2 = tmp & 0xffff;
12587		j++;
12588		tmp = be32_to_cpu(source[j]);
12589		target[i].m3 = (tmp >> 16) & 0xffff;
12590		target[i].size = tmp & 0xffff;
12591		j++;
12592	}
12593}
12594
12595static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12596{
12597	const __be16 *source = (const __be16 *)_source;
12598	u16 *target = (u16 *)_target;
12599	u32 i;
12600
12601	for (i = 0; i < n/2; i++)
12602		target[i] = be16_to_cpu(source[i]);
12603}
12604
12605#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12606do {									\
12607	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12608	bp->arr = kmalloc(len, GFP_KERNEL);				\
12609	if (!bp->arr)							\
12610		goto lbl;						\
12611	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12612	     (u8 *)bp->arr, len);					\
12613} while (0)
12614
12615static int bnx2x_init_firmware(struct bnx2x *bp)
12616{
12617	const char *fw_file_name;
12618	struct bnx2x_fw_file_hdr *fw_hdr;
12619	int rc;
12620
12621	if (bp->firmware)
12622		return 0;
12623
12624	if (CHIP_IS_E1(bp))
12625		fw_file_name = FW_FILE_NAME_E1;
12626	else if (CHIP_IS_E1H(bp))
12627		fw_file_name = FW_FILE_NAME_E1H;
12628	else if (!CHIP_IS_E1x(bp))
12629		fw_file_name = FW_FILE_NAME_E2;
12630	else {
12631		BNX2X_ERR("Unsupported chip revision\n");
12632		return -EINVAL;
12633	}
12634	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12635
12636	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12637	if (rc) {
12638		BNX2X_ERR("Can't load firmware file %s\n",
12639			  fw_file_name);
12640		goto request_firmware_exit;
12641	}
12642
12643	rc = bnx2x_check_firmware(bp);
12644	if (rc) {
12645		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12646		goto request_firmware_exit;
12647	}
12648
12649	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12650
12651	/* Initialize the pointers to the init arrays */
12652	/* Blob */
12653	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12654
12655	/* Opcodes */
12656	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12657
12658	/* Offsets */
12659	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12660			    be16_to_cpu_n);
12661
12662	/* STORMs firmware */
12663	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12664			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12665	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12666			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12667	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12668			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12669	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12670			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12671	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12672			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12673	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12674			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12675	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12676			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12677	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12678			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12679	/* IRO */
12680	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12681
12682	return 0;
12683
12684iro_alloc_err:
12685	kfree(bp->init_ops_offsets);
12686init_offsets_alloc_err:
12687	kfree(bp->init_ops);
12688init_ops_alloc_err:
12689	kfree(bp->init_data);
12690request_firmware_exit:
12691	release_firmware(bp->firmware);
12692	bp->firmware = NULL;
12693
12694	return rc;
12695}
12696
12697static void bnx2x_release_firmware(struct bnx2x *bp)
12698{
12699	kfree(bp->init_ops_offsets);
12700	kfree(bp->init_ops);
12701	kfree(bp->init_data);
12702	release_firmware(bp->firmware);
12703	bp->firmware = NULL;
12704}
12705
12706static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12707	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12708	.init_hw_cmn      = bnx2x_init_hw_common,
12709	.init_hw_port     = bnx2x_init_hw_port,
12710	.init_hw_func     = bnx2x_init_hw_func,
12711
12712	.reset_hw_cmn     = bnx2x_reset_common,
12713	.reset_hw_port    = bnx2x_reset_port,
12714	.reset_hw_func    = bnx2x_reset_func,
12715
12716	.gunzip_init      = bnx2x_gunzip_init,
12717	.gunzip_end       = bnx2x_gunzip_end,
12718
12719	.init_fw          = bnx2x_init_firmware,
12720	.release_fw       = bnx2x_release_firmware,
12721};
12722
12723void bnx2x__init_func_obj(struct bnx2x *bp)
12724{
12725	/* Prepare DMAE related driver resources */
12726	bnx2x_setup_dmae(bp);
12727
12728	bnx2x_init_func_obj(bp, &bp->func_obj,
12729			    bnx2x_sp(bp, func_rdata),
12730			    bnx2x_sp_mapping(bp, func_rdata),
12731			    bnx2x_sp(bp, func_afex_rdata),
12732			    bnx2x_sp_mapping(bp, func_afex_rdata),
12733			    &bnx2x_func_sp_drv);
12734}
12735
12736/* must be called after sriov-enable */
12737static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12738{
12739	int cid_count = BNX2X_L2_MAX_CID(bp);
12740
12741	if (IS_SRIOV(bp))
12742		cid_count += BNX2X_VF_CIDS;
12743
12744	if (CNIC_SUPPORT(bp))
12745		cid_count += CNIC_CID_MAX;
12746
12747	return roundup(cid_count, QM_CID_ROUND);
12748}
12749
12750/**
12751 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12752 *
12753 * @dev:	pci device
12754 *
12755 */
12756static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12757{
12758	int index;
12759	u16 control = 0;
12760
12761	/*
12762	 * If MSI-X is not supported - return number of SBs needed to support
12763	 * one fast path queue: one FP queue + SB for CNIC
12764	 */
12765	if (!pdev->msix_cap) {
12766		dev_info(&pdev->dev, "no msix capability found\n");
12767		return 1 + cnic_cnt;
12768	}
12769	dev_info(&pdev->dev, "msix capability found\n");
12770
12771	/*
12772	 * The value in the PCI configuration space is the index of the last
12773	 * entry, namely one less than the actual size of the table, which is
12774	 * exactly what we want to return from this function: number of all SBs
12775	 * without the default SB.
12776	 * For VFs there is no default SB, then we return (index+1).
12777	 */
12778	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12779
12780	index = control & PCI_MSIX_FLAGS_QSIZE;
12781
12782	return index;
12783}
12784
12785static int set_max_cos_est(int chip_id)
12786{
12787	switch (chip_id) {
12788	case BCM57710:
12789	case BCM57711:
12790	case BCM57711E:
12791		return BNX2X_MULTI_TX_COS_E1X;
12792	case BCM57712:
12793	case BCM57712_MF:
12794		return BNX2X_MULTI_TX_COS_E2_E3A0;
12795	case BCM57800:
12796	case BCM57800_MF:
12797	case BCM57810:
12798	case BCM57810_MF:
12799	case BCM57840_4_10:
12800	case BCM57840_2_20:
12801	case BCM57840_O:
12802	case BCM57840_MFO:
12803	case BCM57840_MF:
12804	case BCM57811:
12805	case BCM57811_MF:
12806		return BNX2X_MULTI_TX_COS_E3B0;
12807	case BCM57712_VF:
12808	case BCM57800_VF:
12809	case BCM57810_VF:
12810	case BCM57840_VF:
12811	case BCM57811_VF:
12812		return 1;
12813	default:
12814		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12815		return -ENODEV;
12816	}
12817}
12818
12819static int set_is_vf(int chip_id)
12820{
12821	switch (chip_id) {
12822	case BCM57712_VF:
12823	case BCM57800_VF:
12824	case BCM57810_VF:
12825	case BCM57840_VF:
12826	case BCM57811_VF:
12827		return true;
12828	default:
12829		return false;
12830	}
12831}
12832
12833static int bnx2x_init_one(struct pci_dev *pdev,
12834				    const struct pci_device_id *ent)
12835{
12836	struct net_device *dev = NULL;
12837	struct bnx2x *bp;
12838	enum pcie_link_width pcie_width;
12839	enum pci_bus_speed pcie_speed;
12840	int rc, max_non_def_sbs;
12841	int rx_count, tx_count, rss_count, doorbell_size;
12842	int max_cos_est;
12843	bool is_vf;
12844	int cnic_cnt;
12845
12846	/* An estimated maximum supported CoS number according to the chip
12847	 * version.
12848	 * We will try to roughly estimate the maximum number of CoSes this chip
12849	 * may support in order to minimize the memory allocated for Tx
12850	 * netdev_queue's. This number will be accurately calculated during the
12851	 * initialization of bp->max_cos based on the chip versions AND chip
12852	 * revision in the bnx2x_init_bp().
12853	 */
12854	max_cos_est = set_max_cos_est(ent->driver_data);
12855	if (max_cos_est < 0)
12856		return max_cos_est;
12857	is_vf = set_is_vf(ent->driver_data);
12858	cnic_cnt = is_vf ? 0 : 1;
12859
12860	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12861
12862	/* add another SB for VF as it has no default SB */
12863	max_non_def_sbs += is_vf ? 1 : 0;
12864
12865	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12866	rss_count = max_non_def_sbs - cnic_cnt;
12867
12868	if (rss_count < 1)
12869		return -EINVAL;
12870
12871	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12872	rx_count = rss_count + cnic_cnt;
12873
12874	/* Maximum number of netdev Tx queues:
12875	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12876	 */
12877	tx_count = rss_count * max_cos_est + cnic_cnt;
12878
12879	/* dev zeroed in init_etherdev */
12880	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12881	if (!dev)
12882		return -ENOMEM;
12883
12884	bp = netdev_priv(dev);
12885
12886	bp->flags = 0;
12887	if (is_vf)
12888		bp->flags |= IS_VF_FLAG;
12889
12890	bp->igu_sb_cnt = max_non_def_sbs;
12891	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12892	bp->msg_enable = debug;
12893	bp->cnic_support = cnic_cnt;
12894	bp->cnic_probe = bnx2x_cnic_probe;
12895
12896	pci_set_drvdata(pdev, dev);
12897
12898	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12899	if (rc < 0) {
12900		free_netdev(dev);
12901		return rc;
12902	}
12903
12904	BNX2X_DEV_INFO("This is a %s function\n",
12905		       IS_PF(bp) ? "physical" : "virtual");
12906	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12907	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12908	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12909		       tx_count, rx_count);
12910
12911	rc = bnx2x_init_bp(bp);
12912	if (rc)
12913		goto init_one_exit;
12914
12915	/* Map doorbells here as we need the real value of bp->max_cos which
12916	 * is initialized in bnx2x_init_bp() to determine the number of
12917	 * l2 connections.
12918	 */
12919	if (IS_VF(bp)) {
12920		bp->doorbells = bnx2x_vf_doorbells(bp);
12921		rc = bnx2x_vf_pci_alloc(bp);
12922		if (rc)
12923			goto init_one_exit;
12924	} else {
12925		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12926		if (doorbell_size > pci_resource_len(pdev, 2)) {
12927			dev_err(&bp->pdev->dev,
12928				"Cannot map doorbells, bar size too small, aborting\n");
12929			rc = -ENOMEM;
12930			goto init_one_exit;
12931		}
12932		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12933						doorbell_size);
12934	}
12935	if (!bp->doorbells) {
12936		dev_err(&bp->pdev->dev,
12937			"Cannot map doorbell space, aborting\n");
12938		rc = -ENOMEM;
12939		goto init_one_exit;
12940	}
12941
12942	if (IS_VF(bp)) {
12943		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12944		if (rc)
12945			goto init_one_exit;
12946	}
12947
12948	/* Enable SRIOV if capability found in configuration space */
12949	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12950	if (rc)
12951		goto init_one_exit;
12952
12953	/* calc qm_cid_count */
12954	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12955	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12956
12957	/* disable FCOE L2 queue for E1x*/
12958	if (CHIP_IS_E1x(bp))
12959		bp->flags |= NO_FCOE_FLAG;
12960
12961	/* Set bp->num_queues for MSI-X mode*/
12962	bnx2x_set_num_queues(bp);
12963
12964	/* Configure interrupt mode: try to enable MSI-X/MSI if
12965	 * needed.
12966	 */
12967	rc = bnx2x_set_int_mode(bp);
12968	if (rc) {
12969		dev_err(&pdev->dev, "Cannot set interrupts\n");
12970		goto init_one_exit;
12971	}
12972	BNX2X_DEV_INFO("set interrupts successfully\n");
12973
12974	/* register the net device */
12975	rc = register_netdev(dev);
12976	if (rc) {
12977		dev_err(&pdev->dev, "Cannot register net device\n");
12978		goto init_one_exit;
12979	}
12980	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12981
12982	if (!NO_FCOE(bp)) {
12983		/* Add storage MAC address */
12984		rtnl_lock();
12985		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12986		rtnl_unlock();
12987	}
12988	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
12989	    pcie_speed == PCI_SPEED_UNKNOWN ||
12990	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
12991		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12992	else
12993		BNX2X_DEV_INFO(
12994		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12995		       board_info[ent->driver_data].name,
12996		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12997		       pcie_width,
12998		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
12999		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13000		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13001		       "Unknown",
13002		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13003
13004	return 0;
13005
13006init_one_exit:
13007	bnx2x_disable_pcie_error_reporting(bp);
13008
13009	if (bp->regview)
13010		iounmap(bp->regview);
13011
13012	if (IS_PF(bp) && bp->doorbells)
13013		iounmap(bp->doorbells);
13014
13015	free_netdev(dev);
13016
13017	if (atomic_read(&pdev->enable_cnt) == 1)
13018		pci_release_regions(pdev);
13019
13020	pci_disable_device(pdev);
13021
13022	return rc;
13023}
13024
13025static void __bnx2x_remove(struct pci_dev *pdev,
13026			   struct net_device *dev,
13027			   struct bnx2x *bp,
13028			   bool remove_netdev)
13029{
13030	/* Delete storage MAC address */
13031	if (!NO_FCOE(bp)) {
13032		rtnl_lock();
13033		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13034		rtnl_unlock();
13035	}
13036
13037#ifdef BCM_DCBNL
13038	/* Delete app tlvs from dcbnl */
13039	bnx2x_dcbnl_update_applist(bp, true);
13040#endif
13041
13042	if (IS_PF(bp) &&
13043	    !BP_NOMCP(bp) &&
13044	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13045		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13046
13047	/* Close the interface - either directly or implicitly */
13048	if (remove_netdev) {
13049		unregister_netdev(dev);
13050	} else {
13051		rtnl_lock();
13052		dev_close(dev);
13053		rtnl_unlock();
13054	}
13055
13056	bnx2x_iov_remove_one(bp);
13057
13058	/* Power on: we can't let PCI layer write to us while we are in D3 */
13059	if (IS_PF(bp))
13060		bnx2x_set_power_state(bp, PCI_D0);
13061
13062	/* Disable MSI/MSI-X */
13063	bnx2x_disable_msi(bp);
13064
13065	/* Power off */
13066	if (IS_PF(bp))
13067		bnx2x_set_power_state(bp, PCI_D3hot);
13068
13069	/* Make sure RESET task is not scheduled before continuing */
13070	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13071
13072	/* send message via vfpf channel to release the resources of this vf */
13073	if (IS_VF(bp))
13074		bnx2x_vfpf_release(bp);
13075
13076	/* Assumes no further PCIe PM changes will occur */
13077	if (system_state == SYSTEM_POWER_OFF) {
13078		pci_wake_from_d3(pdev, bp->wol);
13079		pci_set_power_state(pdev, PCI_D3hot);
13080	}
13081
13082	bnx2x_disable_pcie_error_reporting(bp);
13083
13084	if (bp->regview)
13085		iounmap(bp->regview);
13086
13087	/* for vf doorbells are part of the regview and were unmapped along with
13088	 * it. FW is only loaded by PF.
13089	 */
13090	if (IS_PF(bp)) {
13091		if (bp->doorbells)
13092			iounmap(bp->doorbells);
13093
13094		bnx2x_release_firmware(bp);
13095	}
13096	bnx2x_free_mem_bp(bp);
13097
13098	if (remove_netdev)
13099		free_netdev(dev);
13100
13101	if (atomic_read(&pdev->enable_cnt) == 1)
13102		pci_release_regions(pdev);
13103
13104	pci_disable_device(pdev);
13105}
13106
13107static void bnx2x_remove_one(struct pci_dev *pdev)
13108{
13109	struct net_device *dev = pci_get_drvdata(pdev);
13110	struct bnx2x *bp;
13111
13112	if (!dev) {
13113		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13114		return;
13115	}
13116	bp = netdev_priv(dev);
13117
13118	__bnx2x_remove(pdev, dev, bp, true);
13119}
13120
13121static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13122{
13123	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13124
13125	bp->rx_mode = BNX2X_RX_MODE_NONE;
13126
13127	if (CNIC_LOADED(bp))
13128		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13129
13130	/* Stop Tx */
13131	bnx2x_tx_disable(bp);
13132	/* Delete all NAPI objects */
13133	bnx2x_del_all_napi(bp);
13134	if (CNIC_LOADED(bp))
13135		bnx2x_del_all_napi_cnic(bp);
13136	netdev_reset_tc(bp->dev);
13137
13138	del_timer_sync(&bp->timer);
13139	cancel_delayed_work(&bp->sp_task);
13140	cancel_delayed_work(&bp->period_task);
13141
13142	spin_lock_bh(&bp->stats_lock);
13143	bp->stats_state = STATS_STATE_DISABLED;
13144	spin_unlock_bh(&bp->stats_lock);
13145
13146	bnx2x_save_statistics(bp);
13147
13148	netif_carrier_off(bp->dev);
13149
13150	return 0;
13151}
13152
13153/**
13154 * bnx2x_io_error_detected - called when PCI error is detected
13155 * @pdev: Pointer to PCI device
13156 * @state: The current pci connection state
13157 *
13158 * This function is called after a PCI bus error affecting
13159 * this device has been detected.
13160 */
13161static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13162						pci_channel_state_t state)
13163{
13164	struct net_device *dev = pci_get_drvdata(pdev);
13165	struct bnx2x *bp = netdev_priv(dev);
13166
13167	rtnl_lock();
13168
13169	BNX2X_ERR("IO error detected\n");
13170
13171	netif_device_detach(dev);
13172
13173	if (state == pci_channel_io_perm_failure) {
13174		rtnl_unlock();
13175		return PCI_ERS_RESULT_DISCONNECT;
13176	}
13177
13178	if (netif_running(dev))
13179		bnx2x_eeh_nic_unload(bp);
13180
13181	bnx2x_prev_path_mark_eeh(bp);
13182
13183	pci_disable_device(pdev);
13184
13185	rtnl_unlock();
13186
13187	/* Request a slot reset */
13188	return PCI_ERS_RESULT_NEED_RESET;
13189}
13190
13191/**
13192 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13193 * @pdev: Pointer to PCI device
13194 *
13195 * Restart the card from scratch, as if from a cold-boot.
13196 */
13197static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13198{
13199	struct net_device *dev = pci_get_drvdata(pdev);
13200	struct bnx2x *bp = netdev_priv(dev);
13201	int i;
13202
13203	rtnl_lock();
13204	BNX2X_ERR("IO slot reset initializing...\n");
13205	if (pci_enable_device(pdev)) {
13206		dev_err(&pdev->dev,
13207			"Cannot re-enable PCI device after reset\n");
13208		rtnl_unlock();
13209		return PCI_ERS_RESULT_DISCONNECT;
13210	}
13211
13212	pci_set_master(pdev);
13213	pci_restore_state(pdev);
13214	pci_save_state(pdev);
13215
13216	if (netif_running(dev))
13217		bnx2x_set_power_state(bp, PCI_D0);
13218
13219	if (netif_running(dev)) {
13220		BNX2X_ERR("IO slot reset --> driver unload\n");
13221
13222		/* MCP should have been reset; Need to wait for validity */
13223		bnx2x_init_shmem(bp);
13224
13225		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13226			u32 v;
13227
13228			v = SHMEM2_RD(bp,
13229				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13230			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13231				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13232		}
13233		bnx2x_drain_tx_queues(bp);
13234		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13235		bnx2x_netif_stop(bp, 1);
13236		bnx2x_free_irq(bp);
13237
13238		/* Report UNLOAD_DONE to MCP */
13239		bnx2x_send_unload_done(bp, true);
13240
13241		bp->sp_state = 0;
13242		bp->port.pmf = 0;
13243
13244		bnx2x_prev_unload(bp);
13245
13246		/* We should have reseted the engine, so It's fair to
13247		 * assume the FW will no longer write to the bnx2x driver.
13248		 */
13249		bnx2x_squeeze_objects(bp);
13250		bnx2x_free_skbs(bp);
13251		for_each_rx_queue(bp, i)
13252			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13253		bnx2x_free_fp_mem(bp);
13254		bnx2x_free_mem(bp);
13255
13256		bp->state = BNX2X_STATE_CLOSED;
13257	}
13258
13259	rtnl_unlock();
13260
13261	/* If AER, perform cleanup of the PCIe registers */
13262	if (bp->flags & AER_ENABLED) {
13263		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13264			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13265		else
13266			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13267	}
13268
13269	return PCI_ERS_RESULT_RECOVERED;
13270}
13271
13272/**
13273 * bnx2x_io_resume - called when traffic can start flowing again
13274 * @pdev: Pointer to PCI device
13275 *
13276 * This callback is called when the error recovery driver tells us that
13277 * its OK to resume normal operation.
13278 */
13279static void bnx2x_io_resume(struct pci_dev *pdev)
13280{
13281	struct net_device *dev = pci_get_drvdata(pdev);
13282	struct bnx2x *bp = netdev_priv(dev);
13283
13284	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13285		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13286		return;
13287	}
13288
13289	rtnl_lock();
13290
13291	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13292							DRV_MSG_SEQ_NUMBER_MASK;
13293
13294	if (netif_running(dev))
13295		bnx2x_nic_load(bp, LOAD_NORMAL);
13296
13297	netif_device_attach(dev);
13298
13299	rtnl_unlock();
13300}
13301
13302static const struct pci_error_handlers bnx2x_err_handler = {
13303	.error_detected = bnx2x_io_error_detected,
13304	.slot_reset     = bnx2x_io_slot_reset,
13305	.resume         = bnx2x_io_resume,
13306};
13307
13308static void bnx2x_shutdown(struct pci_dev *pdev)
13309{
13310	struct net_device *dev = pci_get_drvdata(pdev);
13311	struct bnx2x *bp;
13312
13313	if (!dev)
13314		return;
13315
13316	bp = netdev_priv(dev);
13317	if (!bp)
13318		return;
13319
13320	rtnl_lock();
13321	netif_device_detach(dev);
13322	rtnl_unlock();
13323
13324	/* Don't remove the netdevice, as there are scenarios which will cause
13325	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13326	 * rootfs is mounted from SAN.
13327	 */
13328	__bnx2x_remove(pdev, dev, bp, false);
13329}
13330
13331static struct pci_driver bnx2x_pci_driver = {
13332	.name        = DRV_MODULE_NAME,
13333	.id_table    = bnx2x_pci_tbl,
13334	.probe       = bnx2x_init_one,
13335	.remove      = bnx2x_remove_one,
13336	.suspend     = bnx2x_suspend,
13337	.resume      = bnx2x_resume,
13338	.err_handler = &bnx2x_err_handler,
13339#ifdef CONFIG_BNX2X_SRIOV
13340	.sriov_configure = bnx2x_sriov_configure,
13341#endif
13342	.shutdown    = bnx2x_shutdown,
13343};
13344
13345static int __init bnx2x_init(void)
13346{
13347	int ret;
13348
13349	pr_info("%s", version);
13350
13351	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13352	if (bnx2x_wq == NULL) {
13353		pr_err("Cannot create workqueue\n");
13354		return -ENOMEM;
13355	}
13356
13357	ret = pci_register_driver(&bnx2x_pci_driver);
13358	if (ret) {
13359		pr_err("Cannot register driver\n");
13360		destroy_workqueue(bnx2x_wq);
13361	}
13362	return ret;
13363}
13364
13365static void __exit bnx2x_cleanup(void)
13366{
13367	struct list_head *pos, *q;
13368
13369	pci_unregister_driver(&bnx2x_pci_driver);
13370
13371	destroy_workqueue(bnx2x_wq);
13372
13373	/* Free globally allocated resources */
13374	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13375		struct bnx2x_prev_path_list *tmp =
13376			list_entry(pos, struct bnx2x_prev_path_list, list);
13377		list_del(pos);
13378		kfree(tmp);
13379	}
13380}
13381
13382void bnx2x_notify_link_changed(struct bnx2x *bp)
13383{
13384	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13385}
13386
13387module_init(bnx2x_init);
13388module_exit(bnx2x_cleanup);
13389
13390/**
13391 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13392 *
13393 * @bp:		driver handle
13394 * @set:	set or clear the CAM entry
13395 *
13396 * This function will wait until the ramrod completion returns.
13397 * Return 0 if success, -ENODEV if ramrod doesn't return.
13398 */
13399static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13400{
13401	unsigned long ramrod_flags = 0;
13402
13403	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13404	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13405				 &bp->iscsi_l2_mac_obj, true,
13406				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13407}
13408
13409/* count denotes the number of new completions we have seen */
13410static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13411{
13412	struct eth_spe *spe;
13413	int cxt_index, cxt_offset;
13414
13415#ifdef BNX2X_STOP_ON_ERROR
13416	if (unlikely(bp->panic))
13417		return;
13418#endif
13419
13420	spin_lock_bh(&bp->spq_lock);
13421	BUG_ON(bp->cnic_spq_pending < count);
13422	bp->cnic_spq_pending -= count;
13423
13424	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13425		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13426				& SPE_HDR_CONN_TYPE) >>
13427				SPE_HDR_CONN_TYPE_SHIFT;
13428		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13429				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13430
13431		/* Set validation for iSCSI L2 client before sending SETUP
13432		 *  ramrod
13433		 */
13434		if (type == ETH_CONNECTION_TYPE) {
13435			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13436				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13437					ILT_PAGE_CIDS;
13438				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13439					(cxt_index * ILT_PAGE_CIDS);
13440				bnx2x_set_ctx_validation(bp,
13441					&bp->context[cxt_index].
13442							 vcxt[cxt_offset].eth,
13443					BNX2X_ISCSI_ETH_CID(bp));
13444			}
13445		}
13446
13447		/*
13448		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13449		 * and in the air. We also check that number of outstanding
13450		 * COMMON ramrods is not more than the EQ and SPQ can
13451		 * accommodate.
13452		 */
13453		if (type == ETH_CONNECTION_TYPE) {
13454			if (!atomic_read(&bp->cq_spq_left))
13455				break;
13456			else
13457				atomic_dec(&bp->cq_spq_left);
13458		} else if (type == NONE_CONNECTION_TYPE) {
13459			if (!atomic_read(&bp->eq_spq_left))
13460				break;
13461			else
13462				atomic_dec(&bp->eq_spq_left);
13463		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13464			   (type == FCOE_CONNECTION_TYPE)) {
13465			if (bp->cnic_spq_pending >=
13466			    bp->cnic_eth_dev.max_kwqe_pending)
13467				break;
13468			else
13469				bp->cnic_spq_pending++;
13470		} else {
13471			BNX2X_ERR("Unknown SPE type: %d\n", type);
13472			bnx2x_panic();
13473			break;
13474		}
13475
13476		spe = bnx2x_sp_get_next(bp);
13477		*spe = *bp->cnic_kwq_cons;
13478
13479		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13480		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13481
13482		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13483			bp->cnic_kwq_cons = bp->cnic_kwq;
13484		else
13485			bp->cnic_kwq_cons++;
13486	}
13487	bnx2x_sp_prod_update(bp);
13488	spin_unlock_bh(&bp->spq_lock);
13489}
13490
13491static int bnx2x_cnic_sp_queue(struct net_device *dev,
13492			       struct kwqe_16 *kwqes[], u32 count)
13493{
13494	struct bnx2x *bp = netdev_priv(dev);
13495	int i;
13496
13497#ifdef BNX2X_STOP_ON_ERROR
13498	if (unlikely(bp->panic)) {
13499		BNX2X_ERR("Can't post to SP queue while panic\n");
13500		return -EIO;
13501	}
13502#endif
13503
13504	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13505	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13506		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13507		return -EAGAIN;
13508	}
13509
13510	spin_lock_bh(&bp->spq_lock);
13511
13512	for (i = 0; i < count; i++) {
13513		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13514
13515		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13516			break;
13517
13518		*bp->cnic_kwq_prod = *spe;
13519
13520		bp->cnic_kwq_pending++;
13521
13522		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13523		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13524		   spe->data.update_data_addr.hi,
13525		   spe->data.update_data_addr.lo,
13526		   bp->cnic_kwq_pending);
13527
13528		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13529			bp->cnic_kwq_prod = bp->cnic_kwq;
13530		else
13531			bp->cnic_kwq_prod++;
13532	}
13533
13534	spin_unlock_bh(&bp->spq_lock);
13535
13536	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13537		bnx2x_cnic_sp_post(bp, 0);
13538
13539	return i;
13540}
13541
13542static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13543{
13544	struct cnic_ops *c_ops;
13545	int rc = 0;
13546
13547	mutex_lock(&bp->cnic_mutex);
13548	c_ops = rcu_dereference_protected(bp->cnic_ops,
13549					  lockdep_is_held(&bp->cnic_mutex));
13550	if (c_ops)
13551		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13552	mutex_unlock(&bp->cnic_mutex);
13553
13554	return rc;
13555}
13556
13557static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13558{
13559	struct cnic_ops *c_ops;
13560	int rc = 0;
13561
13562	rcu_read_lock();
13563	c_ops = rcu_dereference(bp->cnic_ops);
13564	if (c_ops)
13565		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13566	rcu_read_unlock();
13567
13568	return rc;
13569}
13570
13571/*
13572 * for commands that have no data
13573 */
13574int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13575{
13576	struct cnic_ctl_info ctl = {0};
13577
13578	ctl.cmd = cmd;
13579
13580	return bnx2x_cnic_ctl_send(bp, &ctl);
13581}
13582
13583static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13584{
13585	struct cnic_ctl_info ctl = {0};
13586
13587	/* first we tell CNIC and only then we count this as a completion */
13588	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13589	ctl.data.comp.cid = cid;
13590	ctl.data.comp.error = err;
13591
13592	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13593	bnx2x_cnic_sp_post(bp, 0);
13594}
13595
13596/* Called with netif_addr_lock_bh() taken.
13597 * Sets an rx_mode config for an iSCSI ETH client.
13598 * Doesn't block.
13599 * Completion should be checked outside.
13600 */
13601static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13602{
13603	unsigned long accept_flags = 0, ramrod_flags = 0;
13604	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13605	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13606
13607	if (start) {
13608		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13609		 * because it's the only way for UIO Queue to accept
13610		 * multicasts (in non-promiscuous mode only one Queue per
13611		 * function will receive multicast packets (leading in our
13612		 * case).
13613		 */
13614		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13615		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13616		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13617		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13618
13619		/* Clear STOP_PENDING bit if START is requested */
13620		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13621
13622		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13623	} else
13624		/* Clear START_PENDING bit if STOP is requested */
13625		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13626
13627	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13628		set_bit(sched_state, &bp->sp_state);
13629	else {
13630		__set_bit(RAMROD_RX, &ramrod_flags);
13631		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13632				    ramrod_flags);
13633	}
13634}
13635
13636static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13637{
13638	struct bnx2x *bp = netdev_priv(dev);
13639	int rc = 0;
13640
13641	switch (ctl->cmd) {
13642	case DRV_CTL_CTXTBL_WR_CMD: {
13643		u32 index = ctl->data.io.offset;
13644		dma_addr_t addr = ctl->data.io.dma_addr;
13645
13646		bnx2x_ilt_wr(bp, index, addr);
13647		break;
13648	}
13649
13650	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13651		int count = ctl->data.credit.credit_count;
13652
13653		bnx2x_cnic_sp_post(bp, count);
13654		break;
13655	}
13656
13657	/* rtnl_lock is held.  */
13658	case DRV_CTL_START_L2_CMD: {
13659		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13660		unsigned long sp_bits = 0;
13661
13662		/* Configure the iSCSI classification object */
13663		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13664				   cp->iscsi_l2_client_id,
13665				   cp->iscsi_l2_cid, BP_FUNC(bp),
13666				   bnx2x_sp(bp, mac_rdata),
13667				   bnx2x_sp_mapping(bp, mac_rdata),
13668				   BNX2X_FILTER_MAC_PENDING,
13669				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13670				   &bp->macs_pool);
13671
13672		/* Set iSCSI MAC address */
13673		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13674		if (rc)
13675			break;
13676
13677		mmiowb();
13678		barrier();
13679
13680		/* Start accepting on iSCSI L2 ring */
13681
13682		netif_addr_lock_bh(dev);
13683		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13684		netif_addr_unlock_bh(dev);
13685
13686		/* bits to wait on */
13687		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13688		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13689
13690		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13691			BNX2X_ERR("rx_mode completion timed out!\n");
13692
13693		break;
13694	}
13695
13696	/* rtnl_lock is held.  */
13697	case DRV_CTL_STOP_L2_CMD: {
13698		unsigned long sp_bits = 0;
13699
13700		/* Stop accepting on iSCSI L2 ring */
13701		netif_addr_lock_bh(dev);
13702		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13703		netif_addr_unlock_bh(dev);
13704
13705		/* bits to wait on */
13706		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13707		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13708
13709		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13710			BNX2X_ERR("rx_mode completion timed out!\n");
13711
13712		mmiowb();
13713		barrier();
13714
13715		/* Unset iSCSI L2 MAC */
13716		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13717					BNX2X_ISCSI_ETH_MAC, true);
13718		break;
13719	}
13720	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13721		int count = ctl->data.credit.credit_count;
13722
13723		smp_mb__before_atomic_inc();
13724		atomic_add(count, &bp->cq_spq_left);
13725		smp_mb__after_atomic_inc();
13726		break;
13727	}
13728	case DRV_CTL_ULP_REGISTER_CMD: {
13729		int ulp_type = ctl->data.register_data.ulp_type;
13730
13731		if (CHIP_IS_E3(bp)) {
13732			int idx = BP_FW_MB_IDX(bp);
13733			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13734			int path = BP_PATH(bp);
13735			int port = BP_PORT(bp);
13736			int i;
13737			u32 scratch_offset;
13738			u32 *host_addr;
13739
13740			/* first write capability to shmem2 */
13741			if (ulp_type == CNIC_ULP_ISCSI)
13742				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13743			else if (ulp_type == CNIC_ULP_FCOE)
13744				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13745			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13746
13747			if ((ulp_type != CNIC_ULP_FCOE) ||
13748			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13749			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13750				break;
13751
13752			/* if reached here - should write fcoe capabilities */
13753			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13754			if (!scratch_offset)
13755				break;
13756			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13757						   fcoe_features[path][port]);
13758			host_addr = (u32 *) &(ctl->data.register_data.
13759					      fcoe_features);
13760			for (i = 0; i < sizeof(struct fcoe_capabilities);
13761			     i += 4)
13762				REG_WR(bp, scratch_offset + i,
13763				       *(host_addr + i/4));
13764		}
13765		break;
13766	}
13767
13768	case DRV_CTL_ULP_UNREGISTER_CMD: {
13769		int ulp_type = ctl->data.ulp_type;
13770
13771		if (CHIP_IS_E3(bp)) {
13772			int idx = BP_FW_MB_IDX(bp);
13773			u32 cap;
13774
13775			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13776			if (ulp_type == CNIC_ULP_ISCSI)
13777				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13778			else if (ulp_type == CNIC_ULP_FCOE)
13779				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13780			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13781		}
13782		break;
13783	}
13784
13785	default:
13786		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13787		rc = -EINVAL;
13788	}
13789
13790	return rc;
13791}
13792
13793void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13794{
13795	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13796
13797	if (bp->flags & USING_MSIX_FLAG) {
13798		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13799		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13800		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13801	} else {
13802		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13803		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13804	}
13805	if (!CHIP_IS_E1x(bp))
13806		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13807	else
13808		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13809
13810	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13811	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13812	cp->irq_arr[1].status_blk = bp->def_status_blk;
13813	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13814	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13815
13816	cp->num_irq = 2;
13817}
13818
13819void bnx2x_setup_cnic_info(struct bnx2x *bp)
13820{
13821	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13822
13823	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13824			     bnx2x_cid_ilt_lines(bp);
13825	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13826	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13827	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13828
13829	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13830	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13831	   cp->iscsi_l2_cid);
13832
13833	if (NO_ISCSI_OOO(bp))
13834		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13835}
13836
13837static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13838			       void *data)
13839{
13840	struct bnx2x *bp = netdev_priv(dev);
13841	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13842	int rc;
13843
13844	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13845
13846	if (ops == NULL) {
13847		BNX2X_ERR("NULL ops received\n");
13848		return -EINVAL;
13849	}
13850
13851	if (!CNIC_SUPPORT(bp)) {
13852		BNX2X_ERR("Can't register CNIC when not supported\n");
13853		return -EOPNOTSUPP;
13854	}
13855
13856	if (!CNIC_LOADED(bp)) {
13857		rc = bnx2x_load_cnic(bp);
13858		if (rc) {
13859			BNX2X_ERR("CNIC-related load failed\n");
13860			return rc;
13861		}
13862	}
13863
13864	bp->cnic_enabled = true;
13865
13866	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13867	if (!bp->cnic_kwq)
13868		return -ENOMEM;
13869
13870	bp->cnic_kwq_cons = bp->cnic_kwq;
13871	bp->cnic_kwq_prod = bp->cnic_kwq;
13872	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13873
13874	bp->cnic_spq_pending = 0;
13875	bp->cnic_kwq_pending = 0;
13876
13877	bp->cnic_data = data;
13878
13879	cp->num_irq = 0;
13880	cp->drv_state |= CNIC_DRV_STATE_REGD;
13881	cp->iro_arr = bp->iro_arr;
13882
13883	bnx2x_setup_cnic_irq_info(bp);
13884
13885	rcu_assign_pointer(bp->cnic_ops, ops);
13886
13887	return 0;
13888}
13889
13890static int bnx2x_unregister_cnic(struct net_device *dev)
13891{
13892	struct bnx2x *bp = netdev_priv(dev);
13893	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13894
13895	mutex_lock(&bp->cnic_mutex);
13896	cp->drv_state = 0;
13897	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13898	mutex_unlock(&bp->cnic_mutex);
13899	synchronize_rcu();
13900	bp->cnic_enabled = false;
13901	kfree(bp->cnic_kwq);
13902	bp->cnic_kwq = NULL;
13903
13904	return 0;
13905}
13906
13907static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13908{
13909	struct bnx2x *bp = netdev_priv(dev);
13910	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13911
13912	/* If both iSCSI and FCoE are disabled - return NULL in
13913	 * order to indicate CNIC that it should not try to work
13914	 * with this device.
13915	 */
13916	if (NO_ISCSI(bp) && NO_FCOE(bp))
13917		return NULL;
13918
13919	cp->drv_owner = THIS_MODULE;
13920	cp->chip_id = CHIP_ID(bp);
13921	cp->pdev = bp->pdev;
13922	cp->io_base = bp->regview;
13923	cp->io_base2 = bp->doorbells;
13924	cp->max_kwqe_pending = 8;
13925	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13926	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13927			     bnx2x_cid_ilt_lines(bp);
13928	cp->ctx_tbl_len = CNIC_ILT_LINES;
13929	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13930	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13931	cp->drv_ctl = bnx2x_drv_ctl;
13932	cp->drv_register_cnic = bnx2x_register_cnic;
13933	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13934	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13935	cp->iscsi_l2_client_id =
13936		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13937	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13938
13939	if (NO_ISCSI_OOO(bp))
13940		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13941
13942	if (NO_ISCSI(bp))
13943		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13944
13945	if (NO_FCOE(bp))
13946		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13947
13948	BNX2X_DEV_INFO(
13949		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13950	   cp->ctx_blk_size,
13951	   cp->ctx_tbl_offset,
13952	   cp->ctx_tbl_len,
13953	   cp->starting_cid);
13954	return cp;
13955}
13956
13957static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13958{
13959	struct bnx2x *bp = fp->bp;
13960	u32 offset = BAR_USTRORM_INTMEM;
13961
13962	if (IS_VF(bp))
13963		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13964	else if (!CHIP_IS_E1x(bp))
13965		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13966	else
13967		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13968
13969	return offset;
13970}
13971
13972/* called only on E1H or E2.
13973 * When pretending to be PF, the pretend value is the function number 0...7
13974 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13975 * combination
13976 */
13977int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13978{
13979	u32 pretend_reg;
13980
13981	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13982		return -1;
13983
13984	/* get my own pretend register */
13985	pretend_reg = bnx2x_get_pretend_reg(bp);
13986	REG_WR(bp, pretend_reg, pretend_func_val);
13987	REG_RD(bp, pretend_reg);
13988	return 0;
13989}
13990