1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36/*
37 * This file should not be included directly.  Include t4vf_common.h instead.
38 */
39
40#ifndef __CXGB4VF_ADAPTER_H__
41#define __CXGB4VF_ADAPTER_H__
42
43#include <linux/interrupt.h>
44#include <linux/pci.h>
45#include <linux/spinlock.h>
46#include <linux/skbuff.h>
47#include <linux/if_ether.h>
48#include <linux/netdevice.h>
49
50#include "../cxgb4/t4_hw.h"
51
52/*
53 * Constants of the implementation.
54 */
55enum {
56	MAX_NPORTS	= 1,		/* max # of "ports" */
57	MAX_PORT_QSETS	= 8,		/* max # of Queue Sets / "port" */
58	MAX_ETH_QSETS	= MAX_NPORTS*MAX_PORT_QSETS,
59
60	/*
61	 * MSI-X interrupt index usage.
62	 */
63	MSIX_FW		= 0,		/* MSI-X index for firmware Q */
64	MSIX_IQFLINT	= 1,		/* MSI-X index base for Ingress Qs */
65	MSIX_EXTRAS	= 1,
66	MSIX_ENTRIES	= MAX_ETH_QSETS + MSIX_EXTRAS,
67
68	/*
69	 * The maximum number of Ingress and Egress Queues is determined by
70	 * the maximum number of "Queue Sets" which we support plus any
71	 * ancillary queues.  Each "Queue Set" requires one Ingress Queue
72	 * for RX Packet Ingress Event notifications and two Egress Queues for
73	 * a Free List and an Ethernet TX list.
74	 */
75	INGQ_EXTRAS	= 2,		/* firmware event queue and */
76					/*   forwarded interrupts */
77	MAX_INGQ	= MAX_ETH_QSETS+INGQ_EXTRAS,
78	MAX_EGRQ	= MAX_ETH_QSETS*2,
79};
80
81/*
82 * Forward structure definition references.
83 */
84struct adapter;
85struct sge_eth_rxq;
86struct sge_rspq;
87
88/*
89 * Per-"port" information.  This is really per-Virtual Interface information
90 * but the use of the "port" nomanclature makes it easier to go back and forth
91 * between the PF and VF drivers ...
92 */
93struct port_info {
94	struct adapter *adapter;	/* our adapter */
95	u16 viid;			/* virtual interface ID */
96	s16 xact_addr_filt;		/* index of our MAC address filter */
97	u16 rss_size;			/* size of VI's RSS table slice */
98	u8 pidx;			/* index into adapter port[] */
99	u8 port_id;			/* physical port ID */
100	u8 nqsets;			/* # of "Queue Sets" */
101	u8 first_qset;			/* index of first "Queue Set" */
102	struct link_config link_cfg;	/* physical port configuration */
103};
104
105/*
106 * Scatter Gather Engine resources for the "adapter".  Our ingress and egress
107 * queues are organized into "Queue Sets" with one ingress and one egress
108 * queue per Queue Set.  These Queue Sets are aportionable between the "ports"
109 * (Virtual Interfaces).  One extra ingress queue is used to receive
110 * asynchronous messages from the firmware.  Note that the "Queue IDs" that we
111 * use here are really "Relative Queue IDs" which are returned as part of the
112 * firmware command to allocate queues.  These queue IDs are relative to the
113 * absolute Queue ID base of the section of the Queue ID space allocated to
114 * the PF/VF.
115 */
116
117/*
118 * SGE free-list queue state.
119 */
120struct rx_sw_desc;
121struct sge_fl {
122	unsigned int avail;		/* # of available RX buffers */
123	unsigned int pend_cred;		/* new buffers since last FL DB ring */
124	unsigned int cidx;		/* consumer index */
125	unsigned int pidx;		/* producer index */
126	unsigned long alloc_failed;	/* # of buffer allocation failures */
127	unsigned long large_alloc_failed;
128	unsigned long starving;		/* # of times FL was found starving */
129
130	/*
131	 * Write-once/infrequently fields.
132	 * -------------------------------
133	 */
134
135	unsigned int cntxt_id;		/* SGE relative QID for the free list */
136	unsigned int abs_id;		/* SGE absolute QID for the free list */
137	unsigned int size;		/* capacity of free list */
138	struct rx_sw_desc *sdesc;	/* address of SW RX descriptor ring */
139	__be64 *desc;			/* address of HW RX descriptor ring */
140	dma_addr_t addr;		/* PCI bus address of hardware ring */
141};
142
143/*
144 * An ingress packet gather list.
145 */
146struct pkt_gl {
147	struct page_frag frags[MAX_SKB_FRAGS];
148	void *va;			/* virtual address of first byte */
149	unsigned int nfrags;		/* # of fragments */
150	unsigned int tot_len;		/* total length of fragments */
151};
152
153typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
154			      const struct pkt_gl *);
155
156/*
157 * State for an SGE Response Queue.
158 */
159struct sge_rspq {
160	struct napi_struct napi;	/* NAPI scheduling control */
161	const __be64 *cur_desc;		/* current descriptor in queue */
162	unsigned int cidx;		/* consumer index */
163	u8 gen;				/* current generation bit */
164	u8 next_intr_params;		/* holdoff params for next interrupt */
165	int offset;			/* offset into current FL buffer */
166
167	unsigned int unhandled_irqs;	/* bogus interrupts */
168
169	/*
170	 * Write-once/infrequently fields.
171	 * -------------------------------
172	 */
173
174	u8 intr_params;			/* interrupt holdoff parameters */
175	u8 pktcnt_idx;			/* interrupt packet threshold */
176	u8 idx;				/* queue index within its group */
177	u16 cntxt_id;			/* SGE rel QID for the response Q */
178	u16 abs_id;			/* SGE abs QID for the response Q */
179	__be64 *desc;			/* address of hardware response ring */
180	dma_addr_t phys_addr;		/* PCI bus address of ring */
181	unsigned int iqe_len;		/* entry size */
182	unsigned int size;		/* capcity of response Q */
183	struct adapter *adapter;	/* our adapter */
184	struct net_device *netdev;	/* associated net device */
185	rspq_handler_t handler;		/* the handler for this response Q */
186};
187
188/*
189 * Ethernet queue statistics
190 */
191struct sge_eth_stats {
192	unsigned long pkts;		/* # of ethernet packets */
193	unsigned long lro_pkts;		/* # of LRO super packets */
194	unsigned long lro_merged;	/* # of wire packets merged by LRO */
195	unsigned long rx_cso;		/* # of Rx checksum offloads */
196	unsigned long vlan_ex;		/* # of Rx VLAN extractions */
197	unsigned long rx_drops;		/* # of packets dropped due to no mem */
198};
199
200/*
201 * State for an Ethernet Receive Queue.
202 */
203struct sge_eth_rxq {
204	struct sge_rspq rspq;		/* Response Queue */
205	struct sge_fl fl;		/* Free List */
206	struct sge_eth_stats stats;	/* receive statistics */
207};
208
209/*
210 * SGE Transmit Queue state.  This contains all of the resources associated
211 * with the hardware status of a TX Queue which is a circular ring of hardware
212 * TX Descriptors.  For convenience, it also contains a pointer to a parallel
213 * "Software Descriptor" array but we don't know anything about it here other
214 * than its type name.
215 */
216struct tx_desc {
217	/*
218	 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
219	 * hardware: Sizes, Producer and Consumer indices, etc.
220	 */
221	__be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
222};
223struct tx_sw_desc;
224struct sge_txq {
225	unsigned int in_use;		/* # of in-use TX descriptors */
226	unsigned int size;		/* # of descriptors */
227	unsigned int cidx;		/* SW consumer index */
228	unsigned int pidx;		/* producer index */
229	unsigned long stops;		/* # of times queue has been stopped */
230	unsigned long restarts;		/* # of queue restarts */
231
232	/*
233	 * Write-once/infrequently fields.
234	 * -------------------------------
235	 */
236
237	unsigned int cntxt_id;		/* SGE relative QID for the TX Q */
238	unsigned int abs_id;		/* SGE absolute QID for the TX Q */
239	struct tx_desc *desc;		/* address of HW TX descriptor ring */
240	struct tx_sw_desc *sdesc;	/* address of SW TX descriptor ring */
241	struct sge_qstat *stat;		/* queue status entry */
242	dma_addr_t phys_addr;		/* PCI bus address of hardware ring */
243};
244
245/*
246 * State for an Ethernet Transmit Queue.
247 */
248struct sge_eth_txq {
249	struct sge_txq q;		/* SGE TX Queue */
250	struct netdev_queue *txq;	/* associated netdev TX queue */
251	unsigned long tso;		/* # of TSO requests */
252	unsigned long tx_cso;		/* # of TX checksum offloads */
253	unsigned long vlan_ins;		/* # of TX VLAN insertions */
254	unsigned long mapping_err;	/* # of I/O MMU packet mapping errors */
255};
256
257/*
258 * The complete set of Scatter/Gather Engine resources.
259 */
260struct sge {
261	/*
262	 * Our "Queue Sets" ...
263	 */
264	struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
265	struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
266
267	/*
268	 * Extra ingress queues for asynchronous firmware events and
269	 * forwarded interrupts (when in MSI mode).
270	 */
271	struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
272
273	struct sge_rspq intrq ____cacheline_aligned_in_smp;
274	spinlock_t intrq_lock;
275
276	/*
277	 * State for managing "starving Free Lists" -- Free Lists which have
278	 * fallen below a certain threshold of buffers available to the
279	 * hardware and attempts to refill them up to that threshold have
280	 * failed.  We have a regular "slow tick" timer process which will
281	 * make periodic attempts to refill these starving Free Lists ...
282	 */
283	DECLARE_BITMAP(starving_fl, MAX_EGRQ);
284	struct timer_list rx_timer;
285
286	/*
287	 * State for cleaning up completed TX descriptors.
288	 */
289	struct timer_list tx_timer;
290
291	/*
292	 * Write-once/infrequently fields.
293	 * -------------------------------
294	 */
295
296	u16 max_ethqsets;		/* # of available Ethernet queue sets */
297	u16 ethqsets;			/* # of active Ethernet queue sets */
298	u16 ethtxq_rover;		/* Tx queue to clean up next */
299	u16 timer_val[SGE_NTIMERS];	/* interrupt holdoff timer array */
300	u8 counter_val[SGE_NCOUNTERS];	/* interrupt RX threshold array */
301
302	/* Decoded Adapter Parameters.
303	 */
304	u32 fl_pg_order;		/* large page allocation size */
305	u32 stat_len;			/* length of status page at ring end */
306	u32 pktshift;			/* padding between CPL & packet data */
307	u32 fl_align;			/* response queue message alignment */
308	u32 fl_starve_thres;		/* Free List starvation threshold */
309
310	/*
311	 * Reverse maps from Absolute Queue IDs to associated queue pointers.
312	 * The absolute Queue IDs are in a compact range which start at a
313	 * [potentially large] Base Queue ID.  We perform the reverse map by
314	 * first converting the Absolute Queue ID into a Relative Queue ID by
315	 * subtracting off the Base Queue ID and then use a Relative Queue ID
316	 * indexed table to get the pointer to the corresponding software
317	 * queue structure.
318	 */
319	unsigned int egr_base;
320	unsigned int ingr_base;
321	void *egr_map[MAX_EGRQ];
322	struct sge_rspq *ingr_map[MAX_INGQ];
323};
324
325/*
326 * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
327 * and Ingress-Queues.  The EQ_MAP() and IQ_MAP() macros which provide
328 * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
329 */
330#define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
331#define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
332
333#define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
334#define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
335
336/*
337 * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
338 */
339#define for_each_ethrxq(sge, iter) \
340	for (iter = 0; iter < (sge)->ethqsets; iter++)
341
342/*
343 * Per-"adapter" (Virtual Function) information.
344 */
345struct adapter {
346	/* PCI resources */
347	void __iomem *regs;
348	struct pci_dev *pdev;
349	struct device *pdev_dev;
350
351	/* "adapter" resources */
352	unsigned long registered_device_map;
353	unsigned long open_device_map;
354	unsigned long flags;
355	struct adapter_params params;
356
357	/* queue and interrupt resources */
358	struct {
359		unsigned short vec;
360		char desc[22];
361	} msix_info[MSIX_ENTRIES];
362	struct sge sge;
363
364	/* Linux network device resources */
365	struct net_device *port[MAX_NPORTS];
366	const char *name;
367	unsigned int msg_enable;
368
369	/* debugfs resources */
370	struct dentry *debugfs_root;
371
372	/* various locks */
373	spinlock_t stats_lock;
374};
375
376enum { /* adapter flags */
377	FULL_INIT_DONE     = (1UL << 0),
378	USING_MSI          = (1UL << 1),
379	USING_MSIX         = (1UL << 2),
380	QUEUES_BOUND       = (1UL << 3),
381};
382
383/*
384 * The following register read/write routine definitions are required by
385 * the common code.
386 */
387
388/**
389 * t4_read_reg - read a HW register
390 * @adapter: the adapter
391 * @reg_addr: the register address
392 *
393 * Returns the 32-bit value of the given HW register.
394 */
395static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
396{
397	return readl(adapter->regs + reg_addr);
398}
399
400/**
401 * t4_write_reg - write a HW register
402 * @adapter: the adapter
403 * @reg_addr: the register address
404 * @val: the value to write
405 *
406 * Write a 32-bit value into the given HW register.
407 */
408static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
409{
410	writel(val, adapter->regs + reg_addr);
411}
412
413#ifndef readq
414static inline u64 readq(const volatile void __iomem *addr)
415{
416	return readl(addr) + ((u64)readl(addr + 4) << 32);
417}
418
419static inline void writeq(u64 val, volatile void __iomem *addr)
420{
421	writel(val, addr);
422	writel(val >> 32, addr + 4);
423}
424#endif
425
426/**
427 * t4_read_reg64 - read a 64-bit HW register
428 * @adapter: the adapter
429 * @reg_addr: the register address
430 *
431 * Returns the 64-bit value of the given HW register.
432 */
433static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
434{
435	return readq(adapter->regs + reg_addr);
436}
437
438/**
439 * t4_write_reg64 - write a 64-bit HW register
440 * @adapter: the adapter
441 * @reg_addr: the register address
442 * @val: the value to write
443 *
444 * Write a 64-bit value into the given HW register.
445 */
446static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
447				  u64 val)
448{
449	writeq(val, adapter->regs + reg_addr);
450}
451
452/**
453 * port_name - return the string name of a port
454 * @adapter: the adapter
455 * @pidx: the port index
456 *
457 * Return the string name of the selected port.
458 */
459static inline const char *port_name(struct adapter *adapter, int pidx)
460{
461	return adapter->port[pidx]->name;
462}
463
464/**
465 * t4_os_set_hw_addr - store a port's MAC address in SW
466 * @adapter: the adapter
467 * @pidx: the port index
468 * @hw_addr: the Ethernet address
469 *
470 * Store the Ethernet address of the given port in SW.  Called by the common
471 * code when it retrieves a port's Ethernet address from EEPROM.
472 */
473static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
474				     u8 hw_addr[])
475{
476	memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN);
477}
478
479/**
480 * netdev2pinfo - return the port_info structure associated with a net_device
481 * @dev: the netdev
482 *
483 * Return the struct port_info associated with a net_device
484 */
485static inline struct port_info *netdev2pinfo(const struct net_device *dev)
486{
487	return netdev_priv(dev);
488}
489
490/**
491 * adap2pinfo - return the port_info of a port
492 * @adap: the adapter
493 * @pidx: the port index
494 *
495 * Return the port_info structure for the adapter.
496 */
497static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
498{
499	return netdev_priv(adapter->port[pidx]);
500}
501
502/**
503 * netdev2adap - return the adapter structure associated with a net_device
504 * @dev: the netdev
505 *
506 * Return the struct adapter associated with a net_device
507 */
508static inline struct adapter *netdev2adap(const struct net_device *dev)
509{
510	return netdev2pinfo(dev)->adapter;
511}
512
513/*
514 * OS "Callback" function declarations.  These are functions that the OS code
515 * is "contracted" to provide for the common code.
516 */
517void t4vf_os_link_changed(struct adapter *, int, int);
518
519/*
520 * SGE function prototype declarations.
521 */
522int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
523		       struct net_device *, int,
524		       struct sge_fl *, rspq_handler_t);
525int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
526			   struct net_device *, struct netdev_queue *,
527			   unsigned int);
528void t4vf_free_sge_resources(struct adapter *);
529
530int t4vf_eth_xmit(struct sk_buff *, struct net_device *);
531int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
532		       const struct pkt_gl *);
533
534irq_handler_t t4vf_intr_handler(struct adapter *);
535irqreturn_t t4vf_sge_intr_msix(int, void *);
536
537int t4vf_sge_init(struct adapter *);
538void t4vf_sge_start(struct adapter *);
539void t4vf_sge_stop(struct adapter *);
540
541#endif /* __CXGB4VF_ADAPTER_H__ */
542