1/*
2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
3 * Provides Bus interface for MIIM regs
4 *
5 * Author: Andy Fleming <afleming@freescale.com>
6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
7 *
8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
9 *
10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
11 *
12 * This program is free software; you can redistribute  it and/or modify it
13 * under  the terms of  the GNU General  Public License as published by the
14 * Free Software Foundation;  either version 2 of the  License, or (at your
15 * option) any later version.
16 *
17 */
18
19#include <linux/kernel.h>
20#include <linux/string.h>
21#include <linux/errno.h>
22#include <linux/slab.h>
23#include <linux/delay.h>
24#include <linux/module.h>
25#include <linux/mii.h>
26#include <linux/of_address.h>
27#include <linux/of_mdio.h>
28#include <linux/of_device.h>
29
30#include <asm/io.h>
31#if IS_ENABLED(CONFIG_UCC_GETH)
32#include <asm/ucc.h>	/* for ucc_set_qe_mux_mii_mng() */
33#endif
34
35#include "gianfar.h"
36
37#define MIIMIND_BUSY		0x00000001
38#define MIIMIND_NOTVALID	0x00000004
39#define MIIMCFG_INIT_VALUE	0x00000007
40#define MIIMCFG_RESET		0x80000000
41
42#define MII_READ_COMMAND	0x00000001
43
44struct fsl_pq_mii {
45	u32 miimcfg;	/* MII management configuration reg */
46	u32 miimcom;	/* MII management command reg */
47	u32 miimadd;	/* MII management address reg */
48	u32 miimcon;	/* MII management control reg */
49	u32 miimstat;	/* MII management status reg */
50	u32 miimind;	/* MII management indication reg */
51};
52
53struct fsl_pq_mdio {
54	u8 res1[16];
55	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
56	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
57	u8 res2[4];
58	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
59	u8 res3[1280];
60	struct fsl_pq_mii mii;
61	u8 res4[28];
62	u32 utbipar;	/* TBI phy address reg (only on UCC) */
63	u8 res5[2728];
64} __packed;
65
66/* Number of microseconds to wait for an MII register to respond */
67#define MII_TIMEOUT	1000
68
69struct fsl_pq_mdio_priv {
70	void __iomem *map;
71	struct fsl_pq_mii __iomem *regs;
72	int irqs[PHY_MAX_ADDR];
73};
74
75/*
76 * Per-device-type data.  Each type of device tree node that we support gets
77 * one of these.
78 *
79 * @mii_offset: the offset of the MII registers within the memory map of the
80 * node.  Some nodes define only the MII registers, and some define the whole
81 * MAC (which includes the MII registers).
82 *
83 * @get_tbipa: determines the address of the TBIPA register
84 *
85 * @ucc_configure: a special function for extra QE configuration
86 */
87struct fsl_pq_mdio_data {
88	unsigned int mii_offset;	/* offset of the MII registers */
89	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
90	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
91};
92
93/*
94 * Write value to the PHY at mii_id at register regnum, on the bus attached
95 * to the local interface, which may be different from the generic mdio bus
96 * (tied to a single interface), waiting until the write is done before
97 * returning. This is helpful in programming interfaces like the TBI which
98 * control interfaces like onchip SERDES and are always tied to the local
99 * mdio pins, which may not be the same as system mdio bus, used for
100 * controlling the external PHYs, for example.
101 */
102static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
103		u16 value)
104{
105	struct fsl_pq_mdio_priv *priv = bus->priv;
106	struct fsl_pq_mii __iomem *regs = priv->regs;
107	unsigned int timeout;
108
109	/* Set the PHY address and the register address we want to write */
110	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
111
112	/* Write out the value we want */
113	iowrite32be(value, &regs->miimcon);
114
115	/* Wait for the transaction to finish */
116	timeout = MII_TIMEOUT;
117	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
118		cpu_relax();
119		timeout--;
120	}
121
122	return timeout ? 0 : -ETIMEDOUT;
123}
124
125/*
126 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
127 * Clears miimcom first.
128 *
129 * All PHY operation done on the bus attached to the local interface, which
130 * may be different from the generic mdio bus.  This is helpful in programming
131 * interfaces like the TBI which, in turn, control interfaces like on-chip
132 * SERDES and are always tied to the local mdio pins, which may not be the
133 * same as system mdio bus, used for controlling the external PHYs, for eg.
134 */
135static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
136{
137	struct fsl_pq_mdio_priv *priv = bus->priv;
138	struct fsl_pq_mii __iomem *regs = priv->regs;
139	unsigned int timeout;
140	u16 value;
141
142	/* Set the PHY address and the register address we want to read */
143	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
144
145	/* Clear miimcom, and then initiate a read */
146	iowrite32be(0, &regs->miimcom);
147	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
148
149	/* Wait for the transaction to finish, normally less than 100us */
150	timeout = MII_TIMEOUT;
151	while ((ioread32be(&regs->miimind) &
152	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
153		cpu_relax();
154		timeout--;
155	}
156
157	if (!timeout)
158		return -ETIMEDOUT;
159
160	/* Grab the value of the register from miimstat */
161	value = ioread32be(&regs->miimstat);
162
163	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
164	return value;
165}
166
167/* Reset the MIIM registers, and wait for the bus to free */
168static int fsl_pq_mdio_reset(struct mii_bus *bus)
169{
170	struct fsl_pq_mdio_priv *priv = bus->priv;
171	struct fsl_pq_mii __iomem *regs = priv->regs;
172	unsigned int timeout;
173
174	mutex_lock(&bus->mdio_lock);
175
176	/* Reset the management interface */
177	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
178
179	/* Setup the MII Mgmt clock speed */
180	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
181
182	/* Wait until the bus is free */
183	timeout = MII_TIMEOUT;
184	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
185		cpu_relax();
186		timeout--;
187	}
188
189	mutex_unlock(&bus->mdio_lock);
190
191	if (!timeout) {
192		dev_err(&bus->dev, "timeout waiting for MII bus\n");
193		return -EBUSY;
194	}
195
196	return 0;
197}
198
199#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
200/*
201 * This is mildly evil, but so is our hardware for doing this.
202 * Also, we have to cast back to struct gfar because of
203 * definition weirdness done in gianfar.h.
204 */
205static uint32_t __iomem *get_gfar_tbipa(void __iomem *p)
206{
207	struct gfar __iomem *enet_regs = p;
208
209	return &enet_regs->tbipa;
210}
211
212/*
213 * Return the TBIPAR address for an eTSEC2 node
214 */
215static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
216{
217	return p;
218}
219#endif
220
221#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
222/*
223 * Return the TBIPAR address for a QE MDIO node
224 */
225static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
226{
227	struct fsl_pq_mdio __iomem *mdio = p;
228
229	return &mdio->utbipar;
230}
231
232/*
233 * Find the UCC node that controls the given MDIO node
234 *
235 * For some reason, the QE MDIO nodes are not children of the UCC devices
236 * that control them.  Therefore, we need to scan all UCC nodes looking for
237 * the one that encompases the given MDIO node.  We do this by comparing
238 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
239 * passed, and the correct UCC node will cover the entire address range.
240 *
241 * This assumes that there is only one QE MDIO node in the entire device tree.
242 */
243static void ucc_configure(phys_addr_t start, phys_addr_t end)
244{
245	static bool found_mii_master;
246	struct device_node *np = NULL;
247
248	if (found_mii_master)
249		return;
250
251	for_each_compatible_node(np, NULL, "ucc_geth") {
252		struct resource res;
253		const uint32_t *iprop;
254		uint32_t id;
255		int ret;
256
257		ret = of_address_to_resource(np, 0, &res);
258		if (ret < 0) {
259			pr_debug("fsl-pq-mdio: no address range in node %s\n",
260				 np->full_name);
261			continue;
262		}
263
264		/* if our mdio regs fall within this UCC regs range */
265		if ((start < res.start) || (end > res.end))
266			continue;
267
268		iprop = of_get_property(np, "cell-index", NULL);
269		if (!iprop) {
270			iprop = of_get_property(np, "device-id", NULL);
271			if (!iprop) {
272				pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
273					 np->full_name);
274				continue;
275			}
276		}
277
278		id = be32_to_cpup(iprop);
279
280		/*
281		 * cell-index and device-id for QE nodes are
282		 * numbered from 1, not 0.
283		 */
284		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
285			pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
286				 np->full_name);
287			continue;
288		}
289
290		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
291		found_mii_master = true;
292	}
293}
294
295#endif
296
297static struct of_device_id fsl_pq_mdio_match[] = {
298#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
299	{
300		.compatible = "fsl,gianfar-tbi",
301		.data = &(struct fsl_pq_mdio_data) {
302			.mii_offset = 0,
303			.get_tbipa = get_gfar_tbipa,
304		},
305	},
306	{
307		.compatible = "fsl,gianfar-mdio",
308		.data = &(struct fsl_pq_mdio_data) {
309			.mii_offset = 0,
310			.get_tbipa = get_gfar_tbipa,
311		},
312	},
313	{
314		.type = "mdio",
315		.compatible = "gianfar",
316		.data = &(struct fsl_pq_mdio_data) {
317			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
318			.get_tbipa = get_gfar_tbipa,
319		},
320	},
321	{
322		.compatible = "fsl,etsec2-tbi",
323		.data = &(struct fsl_pq_mdio_data) {
324			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
325			.get_tbipa = get_etsec_tbipa,
326		},
327	},
328	{
329		.compatible = "fsl,etsec2-mdio",
330		.data = &(struct fsl_pq_mdio_data) {
331			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
332			.get_tbipa = get_etsec_tbipa,
333		},
334	},
335#endif
336#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
337	{
338		.compatible = "fsl,ucc-mdio",
339		.data = &(struct fsl_pq_mdio_data) {
340			.mii_offset = 0,
341			.get_tbipa = get_ucc_tbipa,
342			.ucc_configure = ucc_configure,
343		},
344	},
345	{
346		/* Legacy UCC MDIO node */
347		.type = "mdio",
348		.compatible = "ucc_geth_phy",
349		.data = &(struct fsl_pq_mdio_data) {
350			.mii_offset = 0,
351			.get_tbipa = get_ucc_tbipa,
352			.ucc_configure = ucc_configure,
353		},
354	},
355#endif
356	/* No Kconfig option for Fman support yet */
357	{
358		.compatible = "fsl,fman-mdio",
359		.data = &(struct fsl_pq_mdio_data) {
360			.mii_offset = 0,
361			/* Fman TBI operations are handled elsewhere */
362		},
363	},
364
365	{},
366};
367MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
368
369static int fsl_pq_mdio_probe(struct platform_device *pdev)
370{
371	const struct of_device_id *id =
372		of_match_device(fsl_pq_mdio_match, &pdev->dev);
373	const struct fsl_pq_mdio_data *data = id->data;
374	struct device_node *np = pdev->dev.of_node;
375	struct resource res;
376	struct device_node *tbi;
377	struct fsl_pq_mdio_priv *priv;
378	struct mii_bus *new_bus;
379	int err;
380
381	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
382
383	new_bus = mdiobus_alloc_size(sizeof(*priv));
384	if (!new_bus)
385		return -ENOMEM;
386
387	priv = new_bus->priv;
388	new_bus->name = "Freescale PowerQUICC MII Bus",
389	new_bus->read = &fsl_pq_mdio_read;
390	new_bus->write = &fsl_pq_mdio_write;
391	new_bus->reset = &fsl_pq_mdio_reset;
392	new_bus->irq = priv->irqs;
393
394	err = of_address_to_resource(np, 0, &res);
395	if (err < 0) {
396		dev_err(&pdev->dev, "could not obtain address information\n");
397		goto error;
398	}
399
400	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
401		(unsigned long long)res.start);
402
403	priv->map = of_iomap(np, 0);
404	if (!priv->map) {
405		err = -ENOMEM;
406		goto error;
407	}
408
409	/*
410	 * Some device tree nodes represent only the MII registers, and
411	 * others represent the MAC and MII registers.  The 'mii_offset' field
412	 * contains the offset of the MII registers inside the mapped register
413	 * space.
414	 */
415	if (data->mii_offset > resource_size(&res)) {
416		dev_err(&pdev->dev, "invalid register map\n");
417		err = -EINVAL;
418		goto error;
419	}
420	priv->regs = priv->map + data->mii_offset;
421
422	new_bus->parent = &pdev->dev;
423	platform_set_drvdata(pdev, new_bus);
424
425	if (data->get_tbipa) {
426		for_each_child_of_node(np, tbi) {
427			if (strcmp(tbi->type, "tbi-phy") == 0) {
428				dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
429					strrchr(tbi->full_name, '/') + 1);
430				break;
431			}
432		}
433
434		if (tbi) {
435			const u32 *prop = of_get_property(tbi, "reg", NULL);
436			uint32_t __iomem *tbipa;
437
438			if (!prop) {
439				dev_err(&pdev->dev,
440					"missing 'reg' property in node %s\n",
441					tbi->full_name);
442				err = -EBUSY;
443				goto error;
444			}
445
446			tbipa = data->get_tbipa(priv->map);
447
448			iowrite32be(be32_to_cpup(prop), tbipa);
449		}
450	}
451
452	if (data->ucc_configure)
453		data->ucc_configure(res.start, res.end);
454
455	err = of_mdiobus_register(new_bus, np);
456	if (err) {
457		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
458			new_bus->name);
459		goto error;
460	}
461
462	return 0;
463
464error:
465	if (priv->map)
466		iounmap(priv->map);
467
468	kfree(new_bus);
469
470	return err;
471}
472
473
474static int fsl_pq_mdio_remove(struct platform_device *pdev)
475{
476	struct device *device = &pdev->dev;
477	struct mii_bus *bus = dev_get_drvdata(device);
478	struct fsl_pq_mdio_priv *priv = bus->priv;
479
480	mdiobus_unregister(bus);
481
482	iounmap(priv->map);
483	mdiobus_free(bus);
484
485	return 0;
486}
487
488static struct platform_driver fsl_pq_mdio_driver = {
489	.driver = {
490		.name = "fsl-pq_mdio",
491		.owner = THIS_MODULE,
492		.of_match_table = fsl_pq_mdio_match,
493	},
494	.probe = fsl_pq_mdio_probe,
495	.remove = fsl_pq_mdio_remove,
496};
497
498module_platform_driver(fsl_pq_mdio_driver);
499
500MODULE_LICENSE("GPL");
501