1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/ethtool.h>
21#include <linux/topology.h>
22#include <linux/gfp.h>
23#include <linux/aer.h>
24#include <linux/interrupt.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28#include "selftest.h"
29
30#include "mcdi.h"
31#include "workarounds.h"
32
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42const char *const efx_loopback_mode_names[] = {
43	[LOOPBACK_NONE]		= "NONE",
44	[LOOPBACK_DATA]		= "DATAPATH",
45	[LOOPBACK_GMAC]		= "GMAC",
46	[LOOPBACK_XGMII]	= "XGMII",
47	[LOOPBACK_XGXS]		= "XGXS",
48	[LOOPBACK_XAUI]		= "XAUI",
49	[LOOPBACK_GMII]		= "GMII",
50	[LOOPBACK_SGMII]	= "SGMII",
51	[LOOPBACK_XGBR]		= "XGBR",
52	[LOOPBACK_XFI]		= "XFI",
53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57	[LOOPBACK_GPHY]		= "GPHY",
58	[LOOPBACK_PHYXS]	= "PHYXS",
59	[LOOPBACK_PCS]		= "PCS",
60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61	[LOOPBACK_XPORT]	= "XPORT",
62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66	[LOOPBACK_GMII_WS]	= "GMII_WS",
67	[LOOPBACK_XFI_WS]	= "XFI_WS",
68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70};
71
72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73const char *const efx_reset_type_names[] = {
74	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
75	[RESET_TYPE_ALL]                = "ALL",
76	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
77	[RESET_TYPE_WORLD]              = "WORLD",
78	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79	[RESET_TYPE_MC_BIST]		= "MC_BIST",
80	[RESET_TYPE_DISABLE]            = "DISABLE",
81	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
82	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
83	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
84	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
85	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
86	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
87	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
88};
89
90/* Reset workqueue. If any NIC has a hardware failure then a reset will be
91 * queued onto this work queue. This is not a per-nic work queue, because
92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
93 */
94static struct workqueue_struct *reset_workqueue;
95
96/* How often and how many times to poll for a reset while waiting for a
97 * BIST that another function started to complete.
98 */
99#define BIST_WAIT_DELAY_MS	100
100#define BIST_WAIT_DELAY_COUNT	100
101
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
108/*
109 * Use separate channels for TX and RX events
110 *
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
113 *
114 * This is only used in MSI-X interrupt mode
115 */
116static bool separate_tx_channels;
117module_param(separate_tx_channels, bool, 0444);
118MODULE_PARM_DESC(separate_tx_channels,
119		 "Use separate channels for TX and RX");
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor.
128 * On Falcon-based NICs, this will:
129 * - Check the on-board hardware monitor;
130 * - Poll the link state and reconfigure the hardware as necessary.
131 * On Siena-based NICs for power systems with EEH support, this will give EEH a
132 * chance to start.
133 */
134static unsigned int efx_monitor_interval = 1 * HZ;
135
136/* Initial interrupt moderation settings.  They can be modified after
137 * module load with ethtool.
138 *
139 * The default for RX should strike a balance between increasing the
140 * round-trip latency and reducing overhead.
141 */
142static unsigned int rx_irq_mod_usec = 60;
143
144/* Initial interrupt moderation settings.  They can be modified after
145 * module load with ethtool.
146 *
147 * This default is chosen to ensure that a 10G link does not go idle
148 * while a TX queue is stopped after it has become full.  A queue is
149 * restarted when it drops below half full.  The time this takes (assuming
150 * worst case 3 descriptors per packet and 1024 descriptors) is
151 *   512 / 3 * 1.2 = 205 usec.
152 */
153static unsigned int tx_irq_mod_usec = 150;
154
155/* This is the first interrupt mode to try out of:
156 * 0 => MSI-X
157 * 1 => MSI
158 * 2 => legacy
159 */
160static unsigned int interrupt_mode;
161
162/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
163 * i.e. the number of CPUs among which we may distribute simultaneous
164 * interrupt handling.
165 *
166 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
167 * The default (0) means to assign an interrupt to each core.
168 */
169static unsigned int rss_cpus;
170module_param(rss_cpus, uint, 0444);
171MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
172
173static bool phy_flash_cfg;
174module_param(phy_flash_cfg, bool, 0644);
175MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
176
177static unsigned irq_adapt_low_thresh = 8000;
178module_param(irq_adapt_low_thresh, uint, 0644);
179MODULE_PARM_DESC(irq_adapt_low_thresh,
180		 "Threshold score for reducing IRQ moderation");
181
182static unsigned irq_adapt_high_thresh = 16000;
183module_param(irq_adapt_high_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_high_thresh,
185		 "Threshold score for increasing IRQ moderation");
186
187static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
188			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
189			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
190			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
191module_param(debug, uint, 0);
192MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
193
194/**************************************************************************
195 *
196 * Utility functions and prototypes
197 *
198 *************************************************************************/
199
200static int efx_soft_enable_interrupts(struct efx_nic *efx);
201static void efx_soft_disable_interrupts(struct efx_nic *efx);
202static void efx_remove_channel(struct efx_channel *channel);
203static void efx_remove_channels(struct efx_nic *efx);
204static const struct efx_channel_type efx_default_channel_type;
205static void efx_remove_port(struct efx_nic *efx);
206static void efx_init_napi_channel(struct efx_channel *channel);
207static void efx_fini_napi(struct efx_nic *efx);
208static void efx_fini_napi_channel(struct efx_channel *channel);
209static void efx_fini_struct(struct efx_nic *efx);
210static void efx_start_all(struct efx_nic *efx);
211static void efx_stop_all(struct efx_nic *efx);
212
213#define EFX_ASSERT_RESET_SERIALISED(efx)		\
214	do {						\
215		if ((efx->state == STATE_READY) ||	\
216		    (efx->state == STATE_RECOVERY) ||	\
217		    (efx->state == STATE_DISABLED))	\
218			ASSERT_RTNL();			\
219	} while (0)
220
221static int efx_check_disabled(struct efx_nic *efx)
222{
223	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
224		netif_err(efx, drv, efx->net_dev,
225			  "device is disabled due to earlier errors\n");
226		return -EIO;
227	}
228	return 0;
229}
230
231/**************************************************************************
232 *
233 * Event queue processing
234 *
235 *************************************************************************/
236
237/* Process channel's event queue
238 *
239 * This function is responsible for processing the event queue of a
240 * single channel.  The caller must guarantee that this function will
241 * never be concurrently called more than once on the same channel,
242 * though different channels may be being processed concurrently.
243 */
244static int efx_process_channel(struct efx_channel *channel, int budget)
245{
246	int spent;
247
248	if (unlikely(!channel->enabled))
249		return 0;
250
251	spent = efx_nic_process_eventq(channel, budget);
252	if (spent && efx_channel_has_rx_queue(channel)) {
253		struct efx_rx_queue *rx_queue =
254			efx_channel_get_rx_queue(channel);
255
256		efx_rx_flush_packet(channel);
257		efx_fast_push_rx_descriptors(rx_queue, true);
258	}
259
260	return spent;
261}
262
263/* NAPI poll handler
264 *
265 * NAPI guarantees serialisation of polls of the same device, which
266 * provides the guarantee required by efx_process_channel().
267 */
268static int efx_poll(struct napi_struct *napi, int budget)
269{
270	struct efx_channel *channel =
271		container_of(napi, struct efx_channel, napi_str);
272	struct efx_nic *efx = channel->efx;
273	int spent;
274
275	if (!efx_channel_lock_napi(channel))
276		return budget;
277
278	netif_vdbg(efx, intr, efx->net_dev,
279		   "channel %d NAPI poll executing on CPU %d\n",
280		   channel->channel, raw_smp_processor_id());
281
282	spent = efx_process_channel(channel, budget);
283
284	if (spent < budget) {
285		if (efx_channel_has_rx_queue(channel) &&
286		    efx->irq_rx_adaptive &&
287		    unlikely(++channel->irq_count == 1000)) {
288			if (unlikely(channel->irq_mod_score <
289				     irq_adapt_low_thresh)) {
290				if (channel->irq_moderation > 1) {
291					channel->irq_moderation -= 1;
292					efx->type->push_irq_moderation(channel);
293				}
294			} else if (unlikely(channel->irq_mod_score >
295					    irq_adapt_high_thresh)) {
296				if (channel->irq_moderation <
297				    efx->irq_rx_moderation) {
298					channel->irq_moderation += 1;
299					efx->type->push_irq_moderation(channel);
300				}
301			}
302			channel->irq_count = 0;
303			channel->irq_mod_score = 0;
304		}
305
306		efx_filter_rfs_expire(channel);
307
308		/* There is no race here; although napi_disable() will
309		 * only wait for napi_complete(), this isn't a problem
310		 * since efx_nic_eventq_read_ack() will have no effect if
311		 * interrupts have already been disabled.
312		 */
313		napi_complete(napi);
314		efx_nic_eventq_read_ack(channel);
315	}
316
317	efx_channel_unlock_napi(channel);
318	return spent;
319}
320
321/* Create event queue
322 * Event queue memory allocations are done only once.  If the channel
323 * is reset, the memory buffer will be reused; this guards against
324 * errors during channel reset and also simplifies interrupt handling.
325 */
326static int efx_probe_eventq(struct efx_channel *channel)
327{
328	struct efx_nic *efx = channel->efx;
329	unsigned long entries;
330
331	netif_dbg(efx, probe, efx->net_dev,
332		  "chan %d create event queue\n", channel->channel);
333
334	/* Build an event queue with room for one event per tx and rx buffer,
335	 * plus some extra for link state events and MCDI completions. */
336	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
337	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
338	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
339
340	return efx_nic_probe_eventq(channel);
341}
342
343/* Prepare channel's event queue */
344static int efx_init_eventq(struct efx_channel *channel)
345{
346	struct efx_nic *efx = channel->efx;
347	int rc;
348
349	EFX_WARN_ON_PARANOID(channel->eventq_init);
350
351	netif_dbg(efx, drv, efx->net_dev,
352		  "chan %d init event queue\n", channel->channel);
353
354	rc = efx_nic_init_eventq(channel);
355	if (rc == 0) {
356		efx->type->push_irq_moderation(channel);
357		channel->eventq_read_ptr = 0;
358		channel->eventq_init = true;
359	}
360	return rc;
361}
362
363/* Enable event queue processing and NAPI */
364void efx_start_eventq(struct efx_channel *channel)
365{
366	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
367		  "chan %d start event queue\n", channel->channel);
368
369	/* Make sure the NAPI handler sees the enabled flag set */
370	channel->enabled = true;
371	smp_wmb();
372
373	efx_channel_enable(channel);
374	napi_enable(&channel->napi_str);
375	efx_nic_eventq_read_ack(channel);
376}
377
378/* Disable event queue processing and NAPI */
379void efx_stop_eventq(struct efx_channel *channel)
380{
381	if (!channel->enabled)
382		return;
383
384	napi_disable(&channel->napi_str);
385	while (!efx_channel_disable(channel))
386		usleep_range(1000, 20000);
387	channel->enabled = false;
388}
389
390static void efx_fini_eventq(struct efx_channel *channel)
391{
392	if (!channel->eventq_init)
393		return;
394
395	netif_dbg(channel->efx, drv, channel->efx->net_dev,
396		  "chan %d fini event queue\n", channel->channel);
397
398	efx_nic_fini_eventq(channel);
399	channel->eventq_init = false;
400}
401
402static void efx_remove_eventq(struct efx_channel *channel)
403{
404	netif_dbg(channel->efx, drv, channel->efx->net_dev,
405		  "chan %d remove event queue\n", channel->channel);
406
407	efx_nic_remove_eventq(channel);
408}
409
410/**************************************************************************
411 *
412 * Channel handling
413 *
414 *************************************************************************/
415
416/* Allocate and initialise a channel structure. */
417static struct efx_channel *
418efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
419{
420	struct efx_channel *channel;
421	struct efx_rx_queue *rx_queue;
422	struct efx_tx_queue *tx_queue;
423	int j;
424
425	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
426	if (!channel)
427		return NULL;
428
429	channel->efx = efx;
430	channel->channel = i;
431	channel->type = &efx_default_channel_type;
432
433	for (j = 0; j < EFX_TXQ_TYPES; j++) {
434		tx_queue = &channel->tx_queue[j];
435		tx_queue->efx = efx;
436		tx_queue->queue = i * EFX_TXQ_TYPES + j;
437		tx_queue->channel = channel;
438	}
439
440	rx_queue = &channel->rx_queue;
441	rx_queue->efx = efx;
442	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
443		    (unsigned long)rx_queue);
444
445	return channel;
446}
447
448/* Allocate and initialise a channel structure, copying parameters
449 * (but not resources) from an old channel structure.
450 */
451static struct efx_channel *
452efx_copy_channel(const struct efx_channel *old_channel)
453{
454	struct efx_channel *channel;
455	struct efx_rx_queue *rx_queue;
456	struct efx_tx_queue *tx_queue;
457	int j;
458
459	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460	if (!channel)
461		return NULL;
462
463	*channel = *old_channel;
464
465	channel->napi_dev = NULL;
466	memset(&channel->eventq, 0, sizeof(channel->eventq));
467
468	for (j = 0; j < EFX_TXQ_TYPES; j++) {
469		tx_queue = &channel->tx_queue[j];
470		if (tx_queue->channel)
471			tx_queue->channel = channel;
472		tx_queue->buffer = NULL;
473		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
474	}
475
476	rx_queue = &channel->rx_queue;
477	rx_queue->buffer = NULL;
478	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
479	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
480		    (unsigned long)rx_queue);
481
482	return channel;
483}
484
485static int efx_probe_channel(struct efx_channel *channel)
486{
487	struct efx_tx_queue *tx_queue;
488	struct efx_rx_queue *rx_queue;
489	int rc;
490
491	netif_dbg(channel->efx, probe, channel->efx->net_dev,
492		  "creating channel %d\n", channel->channel);
493
494	rc = channel->type->pre_probe(channel);
495	if (rc)
496		goto fail;
497
498	rc = efx_probe_eventq(channel);
499	if (rc)
500		goto fail;
501
502	efx_for_each_channel_tx_queue(tx_queue, channel) {
503		rc = efx_probe_tx_queue(tx_queue);
504		if (rc)
505			goto fail;
506	}
507
508	efx_for_each_channel_rx_queue(rx_queue, channel) {
509		rc = efx_probe_rx_queue(rx_queue);
510		if (rc)
511			goto fail;
512	}
513
514	return 0;
515
516fail:
517	efx_remove_channel(channel);
518	return rc;
519}
520
521static void
522efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
523{
524	struct efx_nic *efx = channel->efx;
525	const char *type;
526	int number;
527
528	number = channel->channel;
529	if (efx->tx_channel_offset == 0) {
530		type = "";
531	} else if (channel->channel < efx->tx_channel_offset) {
532		type = "-rx";
533	} else {
534		type = "-tx";
535		number -= efx->tx_channel_offset;
536	}
537	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
538}
539
540static void efx_set_channel_names(struct efx_nic *efx)
541{
542	struct efx_channel *channel;
543
544	efx_for_each_channel(channel, efx)
545		channel->type->get_name(channel,
546					efx->msi_context[channel->channel].name,
547					sizeof(efx->msi_context[0].name));
548}
549
550static int efx_probe_channels(struct efx_nic *efx)
551{
552	struct efx_channel *channel;
553	int rc;
554
555	/* Restart special buffer allocation */
556	efx->next_buffer_table = 0;
557
558	/* Probe channels in reverse, so that any 'extra' channels
559	 * use the start of the buffer table. This allows the traffic
560	 * channels to be resized without moving them or wasting the
561	 * entries before them.
562	 */
563	efx_for_each_channel_rev(channel, efx) {
564		rc = efx_probe_channel(channel);
565		if (rc) {
566			netif_err(efx, probe, efx->net_dev,
567				  "failed to create channel %d\n",
568				  channel->channel);
569			goto fail;
570		}
571	}
572	efx_set_channel_names(efx);
573
574	return 0;
575
576fail:
577	efx_remove_channels(efx);
578	return rc;
579}
580
581/* Channels are shutdown and reinitialised whilst the NIC is running
582 * to propagate configuration changes (mtu, checksum offload), or
583 * to clear hardware error conditions
584 */
585static void efx_start_datapath(struct efx_nic *efx)
586{
587	bool old_rx_scatter = efx->rx_scatter;
588	struct efx_tx_queue *tx_queue;
589	struct efx_rx_queue *rx_queue;
590	struct efx_channel *channel;
591	size_t rx_buf_len;
592
593	/* Calculate the rx buffer allocation parameters required to
594	 * support the current MTU, including padding for header
595	 * alignment and overruns.
596	 */
597	efx->rx_dma_len = (efx->rx_prefix_size +
598			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
599			   efx->type->rx_buffer_padding);
600	rx_buf_len = (sizeof(struct efx_rx_page_state) +
601		      efx->rx_ip_align + efx->rx_dma_len);
602	if (rx_buf_len <= PAGE_SIZE) {
603		efx->rx_scatter = efx->type->always_rx_scatter;
604		efx->rx_buffer_order = 0;
605	} else if (efx->type->can_rx_scatter) {
606		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
607		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
608			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
609				       EFX_RX_BUF_ALIGNMENT) >
610			     PAGE_SIZE);
611		efx->rx_scatter = true;
612		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
613		efx->rx_buffer_order = 0;
614	} else {
615		efx->rx_scatter = false;
616		efx->rx_buffer_order = get_order(rx_buf_len);
617	}
618
619	efx_rx_config_page_split(efx);
620	if (efx->rx_buffer_order)
621		netif_dbg(efx, drv, efx->net_dev,
622			  "RX buf len=%u; page order=%u batch=%u\n",
623			  efx->rx_dma_len, efx->rx_buffer_order,
624			  efx->rx_pages_per_batch);
625	else
626		netif_dbg(efx, drv, efx->net_dev,
627			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
628			  efx->rx_dma_len, efx->rx_page_buf_step,
629			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
630
631	/* RX filters may also have scatter-enabled flags */
632	if (efx->rx_scatter != old_rx_scatter)
633		efx->type->filter_update_rx_scatter(efx);
634
635	/* We must keep at least one descriptor in a TX ring empty.
636	 * We could avoid this when the queue size does not exactly
637	 * match the hardware ring size, but it's not that important.
638	 * Therefore we stop the queue when one more skb might fill
639	 * the ring completely.  We wake it when half way back to
640	 * empty.
641	 */
642	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
643	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
644
645	/* Initialise the channels */
646	efx_for_each_channel(channel, efx) {
647		efx_for_each_channel_tx_queue(tx_queue, channel) {
648			efx_init_tx_queue(tx_queue);
649			atomic_inc(&efx->active_queues);
650		}
651
652		efx_for_each_channel_rx_queue(rx_queue, channel) {
653			efx_init_rx_queue(rx_queue);
654			atomic_inc(&efx->active_queues);
655			efx_stop_eventq(channel);
656			efx_fast_push_rx_descriptors(rx_queue, false);
657			efx_start_eventq(channel);
658		}
659
660		WARN_ON(channel->rx_pkt_n_frags);
661	}
662
663	efx_ptp_start_datapath(efx);
664
665	if (netif_device_present(efx->net_dev))
666		netif_tx_wake_all_queues(efx->net_dev);
667}
668
669static void efx_stop_datapath(struct efx_nic *efx)
670{
671	struct efx_channel *channel;
672	struct efx_tx_queue *tx_queue;
673	struct efx_rx_queue *rx_queue;
674	int rc;
675
676	EFX_ASSERT_RESET_SERIALISED(efx);
677	BUG_ON(efx->port_enabled);
678
679	efx_ptp_stop_datapath(efx);
680
681	/* Stop RX refill */
682	efx_for_each_channel(channel, efx) {
683		efx_for_each_channel_rx_queue(rx_queue, channel)
684			rx_queue->refill_enabled = false;
685	}
686
687	efx_for_each_channel(channel, efx) {
688		/* RX packet processing is pipelined, so wait for the
689		 * NAPI handler to complete.  At least event queue 0
690		 * might be kept active by non-data events, so don't
691		 * use napi_synchronize() but actually disable NAPI
692		 * temporarily.
693		 */
694		if (efx_channel_has_rx_queue(channel)) {
695			efx_stop_eventq(channel);
696			efx_start_eventq(channel);
697		}
698	}
699
700	rc = efx->type->fini_dmaq(efx);
701	if (rc && EFX_WORKAROUND_7803(efx)) {
702		/* Schedule a reset to recover from the flush failure. The
703		 * descriptor caches reference memory we're about to free,
704		 * but falcon_reconfigure_mac_wrapper() won't reconnect
705		 * the MACs because of the pending reset.
706		 */
707		netif_err(efx, drv, efx->net_dev,
708			  "Resetting to recover from flush failure\n");
709		efx_schedule_reset(efx, RESET_TYPE_ALL);
710	} else if (rc) {
711		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
712	} else {
713		netif_dbg(efx, drv, efx->net_dev,
714			  "successfully flushed all queues\n");
715	}
716
717	efx_for_each_channel(channel, efx) {
718		efx_for_each_channel_rx_queue(rx_queue, channel)
719			efx_fini_rx_queue(rx_queue);
720		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721			efx_fini_tx_queue(tx_queue);
722	}
723}
724
725static void efx_remove_channel(struct efx_channel *channel)
726{
727	struct efx_tx_queue *tx_queue;
728	struct efx_rx_queue *rx_queue;
729
730	netif_dbg(channel->efx, drv, channel->efx->net_dev,
731		  "destroy chan %d\n", channel->channel);
732
733	efx_for_each_channel_rx_queue(rx_queue, channel)
734		efx_remove_rx_queue(rx_queue);
735	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
736		efx_remove_tx_queue(tx_queue);
737	efx_remove_eventq(channel);
738	channel->type->post_remove(channel);
739}
740
741static void efx_remove_channels(struct efx_nic *efx)
742{
743	struct efx_channel *channel;
744
745	efx_for_each_channel(channel, efx)
746		efx_remove_channel(channel);
747}
748
749int
750efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
751{
752	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
753	u32 old_rxq_entries, old_txq_entries;
754	unsigned i, next_buffer_table = 0;
755	int rc, rc2;
756
757	rc = efx_check_disabled(efx);
758	if (rc)
759		return rc;
760
761	/* Not all channels should be reallocated. We must avoid
762	 * reallocating their buffer table entries.
763	 */
764	efx_for_each_channel(channel, efx) {
765		struct efx_rx_queue *rx_queue;
766		struct efx_tx_queue *tx_queue;
767
768		if (channel->type->copy)
769			continue;
770		next_buffer_table = max(next_buffer_table,
771					channel->eventq.index +
772					channel->eventq.entries);
773		efx_for_each_channel_rx_queue(rx_queue, channel)
774			next_buffer_table = max(next_buffer_table,
775						rx_queue->rxd.index +
776						rx_queue->rxd.entries);
777		efx_for_each_channel_tx_queue(tx_queue, channel)
778			next_buffer_table = max(next_buffer_table,
779						tx_queue->txd.index +
780						tx_queue->txd.entries);
781	}
782
783	efx_device_detach_sync(efx);
784	efx_stop_all(efx);
785	efx_soft_disable_interrupts(efx);
786
787	/* Clone channels (where possible) */
788	memset(other_channel, 0, sizeof(other_channel));
789	for (i = 0; i < efx->n_channels; i++) {
790		channel = efx->channel[i];
791		if (channel->type->copy)
792			channel = channel->type->copy(channel);
793		if (!channel) {
794			rc = -ENOMEM;
795			goto out;
796		}
797		other_channel[i] = channel;
798	}
799
800	/* Swap entry counts and channel pointers */
801	old_rxq_entries = efx->rxq_entries;
802	old_txq_entries = efx->txq_entries;
803	efx->rxq_entries = rxq_entries;
804	efx->txq_entries = txq_entries;
805	for (i = 0; i < efx->n_channels; i++) {
806		channel = efx->channel[i];
807		efx->channel[i] = other_channel[i];
808		other_channel[i] = channel;
809	}
810
811	/* Restart buffer table allocation */
812	efx->next_buffer_table = next_buffer_table;
813
814	for (i = 0; i < efx->n_channels; i++) {
815		channel = efx->channel[i];
816		if (!channel->type->copy)
817			continue;
818		rc = efx_probe_channel(channel);
819		if (rc)
820			goto rollback;
821		efx_init_napi_channel(efx->channel[i]);
822	}
823
824out:
825	/* Destroy unused channel structures */
826	for (i = 0; i < efx->n_channels; i++) {
827		channel = other_channel[i];
828		if (channel && channel->type->copy) {
829			efx_fini_napi_channel(channel);
830			efx_remove_channel(channel);
831			kfree(channel);
832		}
833	}
834
835	rc2 = efx_soft_enable_interrupts(efx);
836	if (rc2) {
837		rc = rc ? rc : rc2;
838		netif_err(efx, drv, efx->net_dev,
839			  "unable to restart interrupts on channel reallocation\n");
840		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
841	} else {
842		efx_start_all(efx);
843		netif_device_attach(efx->net_dev);
844	}
845	return rc;
846
847rollback:
848	/* Swap back */
849	efx->rxq_entries = old_rxq_entries;
850	efx->txq_entries = old_txq_entries;
851	for (i = 0; i < efx->n_channels; i++) {
852		channel = efx->channel[i];
853		efx->channel[i] = other_channel[i];
854		other_channel[i] = channel;
855	}
856	goto out;
857}
858
859void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
860{
861	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
862}
863
864static const struct efx_channel_type efx_default_channel_type = {
865	.pre_probe		= efx_channel_dummy_op_int,
866	.post_remove		= efx_channel_dummy_op_void,
867	.get_name		= efx_get_channel_name,
868	.copy			= efx_copy_channel,
869	.keep_eventq		= false,
870};
871
872int efx_channel_dummy_op_int(struct efx_channel *channel)
873{
874	return 0;
875}
876
877void efx_channel_dummy_op_void(struct efx_channel *channel)
878{
879}
880
881/**************************************************************************
882 *
883 * Port handling
884 *
885 **************************************************************************/
886
887/* This ensures that the kernel is kept informed (via
888 * netif_carrier_on/off) of the link status, and also maintains the
889 * link status's stop on the port's TX queue.
890 */
891void efx_link_status_changed(struct efx_nic *efx)
892{
893	struct efx_link_state *link_state = &efx->link_state;
894
895	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
896	 * that no events are triggered between unregister_netdev() and the
897	 * driver unloading. A more general condition is that NETDEV_CHANGE
898	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
899	if (!netif_running(efx->net_dev))
900		return;
901
902	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
903		efx->n_link_state_changes++;
904
905		if (link_state->up)
906			netif_carrier_on(efx->net_dev);
907		else
908			netif_carrier_off(efx->net_dev);
909	}
910
911	/* Status message for kernel log */
912	if (link_state->up)
913		netif_info(efx, link, efx->net_dev,
914			   "link up at %uMbps %s-duplex (MTU %d)\n",
915			   link_state->speed, link_state->fd ? "full" : "half",
916			   efx->net_dev->mtu);
917	else
918		netif_info(efx, link, efx->net_dev, "link down\n");
919}
920
921void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
922{
923	efx->link_advertising = advertising;
924	if (advertising) {
925		if (advertising & ADVERTISED_Pause)
926			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
927		else
928			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
929		if (advertising & ADVERTISED_Asym_Pause)
930			efx->wanted_fc ^= EFX_FC_TX;
931	}
932}
933
934void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
935{
936	efx->wanted_fc = wanted_fc;
937	if (efx->link_advertising) {
938		if (wanted_fc & EFX_FC_RX)
939			efx->link_advertising |= (ADVERTISED_Pause |
940						  ADVERTISED_Asym_Pause);
941		else
942			efx->link_advertising &= ~(ADVERTISED_Pause |
943						   ADVERTISED_Asym_Pause);
944		if (wanted_fc & EFX_FC_TX)
945			efx->link_advertising ^= ADVERTISED_Asym_Pause;
946	}
947}
948
949static void efx_fini_port(struct efx_nic *efx);
950
951/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
952 * the MAC appropriately. All other PHY configuration changes are pushed
953 * through phy_op->set_settings(), and pushed asynchronously to the MAC
954 * through efx_monitor().
955 *
956 * Callers must hold the mac_lock
957 */
958int __efx_reconfigure_port(struct efx_nic *efx)
959{
960	enum efx_phy_mode phy_mode;
961	int rc;
962
963	WARN_ON(!mutex_is_locked(&efx->mac_lock));
964
965	/* Disable PHY transmit in mac level loopbacks */
966	phy_mode = efx->phy_mode;
967	if (LOOPBACK_INTERNAL(efx))
968		efx->phy_mode |= PHY_MODE_TX_DISABLED;
969	else
970		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
971
972	rc = efx->type->reconfigure_port(efx);
973
974	if (rc)
975		efx->phy_mode = phy_mode;
976
977	return rc;
978}
979
980/* Reinitialise the MAC to pick up new PHY settings, even if the port is
981 * disabled. */
982int efx_reconfigure_port(struct efx_nic *efx)
983{
984	int rc;
985
986	EFX_ASSERT_RESET_SERIALISED(efx);
987
988	mutex_lock(&efx->mac_lock);
989	rc = __efx_reconfigure_port(efx);
990	mutex_unlock(&efx->mac_lock);
991
992	return rc;
993}
994
995/* Asynchronous work item for changing MAC promiscuity and multicast
996 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
997 * MAC directly. */
998static void efx_mac_work(struct work_struct *data)
999{
1000	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1001
1002	mutex_lock(&efx->mac_lock);
1003	if (efx->port_enabled)
1004		efx->type->reconfigure_mac(efx);
1005	mutex_unlock(&efx->mac_lock);
1006}
1007
1008static int efx_probe_port(struct efx_nic *efx)
1009{
1010	int rc;
1011
1012	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1013
1014	if (phy_flash_cfg)
1015		efx->phy_mode = PHY_MODE_SPECIAL;
1016
1017	/* Connect up MAC/PHY operations table */
1018	rc = efx->type->probe_port(efx);
1019	if (rc)
1020		return rc;
1021
1022	/* Initialise MAC address to permanent address */
1023	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1024
1025	return 0;
1026}
1027
1028static int efx_init_port(struct efx_nic *efx)
1029{
1030	int rc;
1031
1032	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1033
1034	mutex_lock(&efx->mac_lock);
1035
1036	rc = efx->phy_op->init(efx);
1037	if (rc)
1038		goto fail1;
1039
1040	efx->port_initialized = true;
1041
1042	/* Reconfigure the MAC before creating dma queues (required for
1043	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1044	efx->type->reconfigure_mac(efx);
1045
1046	/* Ensure the PHY advertises the correct flow control settings */
1047	rc = efx->phy_op->reconfigure(efx);
1048	if (rc)
1049		goto fail2;
1050
1051	mutex_unlock(&efx->mac_lock);
1052	return 0;
1053
1054fail2:
1055	efx->phy_op->fini(efx);
1056fail1:
1057	mutex_unlock(&efx->mac_lock);
1058	return rc;
1059}
1060
1061static void efx_start_port(struct efx_nic *efx)
1062{
1063	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1064	BUG_ON(efx->port_enabled);
1065
1066	mutex_lock(&efx->mac_lock);
1067	efx->port_enabled = true;
1068
1069	/* Ensure MAC ingress/egress is enabled */
1070	efx->type->reconfigure_mac(efx);
1071
1072	mutex_unlock(&efx->mac_lock);
1073}
1074
1075/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1076 * and the async self-test, wait for them to finish and prevent them
1077 * being scheduled again.  This doesn't cover online resets, which
1078 * should only be cancelled when removing the device.
1079 */
1080static void efx_stop_port(struct efx_nic *efx)
1081{
1082	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1083
1084	EFX_ASSERT_RESET_SERIALISED(efx);
1085
1086	mutex_lock(&efx->mac_lock);
1087	efx->port_enabled = false;
1088	mutex_unlock(&efx->mac_lock);
1089
1090	/* Serialise against efx_set_multicast_list() */
1091	netif_addr_lock_bh(efx->net_dev);
1092	netif_addr_unlock_bh(efx->net_dev);
1093
1094	cancel_delayed_work_sync(&efx->monitor_work);
1095	efx_selftest_async_cancel(efx);
1096	cancel_work_sync(&efx->mac_work);
1097}
1098
1099static void efx_fini_port(struct efx_nic *efx)
1100{
1101	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1102
1103	if (!efx->port_initialized)
1104		return;
1105
1106	efx->phy_op->fini(efx);
1107	efx->port_initialized = false;
1108
1109	efx->link_state.up = false;
1110	efx_link_status_changed(efx);
1111}
1112
1113static void efx_remove_port(struct efx_nic *efx)
1114{
1115	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1116
1117	efx->type->remove_port(efx);
1118}
1119
1120/**************************************************************************
1121 *
1122 * NIC handling
1123 *
1124 **************************************************************************/
1125
1126static LIST_HEAD(efx_primary_list);
1127static LIST_HEAD(efx_unassociated_list);
1128
1129static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1130{
1131	return left->type == right->type &&
1132		left->vpd_sn && right->vpd_sn &&
1133		!strcmp(left->vpd_sn, right->vpd_sn);
1134}
1135
1136static void efx_associate(struct efx_nic *efx)
1137{
1138	struct efx_nic *other, *next;
1139
1140	if (efx->primary == efx) {
1141		/* Adding primary function; look for secondaries */
1142
1143		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1144		list_add_tail(&efx->node, &efx_primary_list);
1145
1146		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1147					 node) {
1148			if (efx_same_controller(efx, other)) {
1149				list_del(&other->node);
1150				netif_dbg(other, probe, other->net_dev,
1151					  "moving to secondary list of %s %s\n",
1152					  pci_name(efx->pci_dev),
1153					  efx->net_dev->name);
1154				list_add_tail(&other->node,
1155					      &efx->secondary_list);
1156				other->primary = efx;
1157			}
1158		}
1159	} else {
1160		/* Adding secondary function; look for primary */
1161
1162		list_for_each_entry(other, &efx_primary_list, node) {
1163			if (efx_same_controller(efx, other)) {
1164				netif_dbg(efx, probe, efx->net_dev,
1165					  "adding to secondary list of %s %s\n",
1166					  pci_name(other->pci_dev),
1167					  other->net_dev->name);
1168				list_add_tail(&efx->node,
1169					      &other->secondary_list);
1170				efx->primary = other;
1171				return;
1172			}
1173		}
1174
1175		netif_dbg(efx, probe, efx->net_dev,
1176			  "adding to unassociated list\n");
1177		list_add_tail(&efx->node, &efx_unassociated_list);
1178	}
1179}
1180
1181static void efx_dissociate(struct efx_nic *efx)
1182{
1183	struct efx_nic *other, *next;
1184
1185	list_del(&efx->node);
1186	efx->primary = NULL;
1187
1188	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1189		list_del(&other->node);
1190		netif_dbg(other, probe, other->net_dev,
1191			  "moving to unassociated list\n");
1192		list_add_tail(&other->node, &efx_unassociated_list);
1193		other->primary = NULL;
1194	}
1195}
1196
1197/* This configures the PCI device to enable I/O and DMA. */
1198static int efx_init_io(struct efx_nic *efx)
1199{
1200	struct pci_dev *pci_dev = efx->pci_dev;
1201	dma_addr_t dma_mask = efx->type->max_dma_mask;
1202	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1203	int rc;
1204
1205	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1206
1207	rc = pci_enable_device(pci_dev);
1208	if (rc) {
1209		netif_err(efx, probe, efx->net_dev,
1210			  "failed to enable PCI device\n");
1211		goto fail1;
1212	}
1213
1214	pci_set_master(pci_dev);
1215
1216	/* Set the PCI DMA mask.  Try all possibilities from our
1217	 * genuine mask down to 32 bits, because some architectures
1218	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1219	 * masks event though they reject 46 bit masks.
1220	 */
1221	while (dma_mask > 0x7fffffffUL) {
1222		if (dma_supported(&pci_dev->dev, dma_mask)) {
1223			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1224			if (rc == 0)
1225				break;
1226		}
1227		dma_mask >>= 1;
1228	}
1229	if (rc) {
1230		netif_err(efx, probe, efx->net_dev,
1231			  "could not find a suitable DMA mask\n");
1232		goto fail2;
1233	}
1234	netif_dbg(efx, probe, efx->net_dev,
1235		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1236
1237	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1238	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1239	if (rc) {
1240		netif_err(efx, probe, efx->net_dev,
1241			  "request for memory BAR failed\n");
1242		rc = -EIO;
1243		goto fail3;
1244	}
1245	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1246	if (!efx->membase) {
1247		netif_err(efx, probe, efx->net_dev,
1248			  "could not map memory BAR at %llx+%x\n",
1249			  (unsigned long long)efx->membase_phys, mem_map_size);
1250		rc = -ENOMEM;
1251		goto fail4;
1252	}
1253	netif_dbg(efx, probe, efx->net_dev,
1254		  "memory BAR at %llx+%x (virtual %p)\n",
1255		  (unsigned long long)efx->membase_phys, mem_map_size,
1256		  efx->membase);
1257
1258	return 0;
1259
1260 fail4:
1261	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1262 fail3:
1263	efx->membase_phys = 0;
1264 fail2:
1265	pci_disable_device(efx->pci_dev);
1266 fail1:
1267	return rc;
1268}
1269
1270static void efx_fini_io(struct efx_nic *efx)
1271{
1272	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1273
1274	if (efx->membase) {
1275		iounmap(efx->membase);
1276		efx->membase = NULL;
1277	}
1278
1279	if (efx->membase_phys) {
1280		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1281		efx->membase_phys = 0;
1282	}
1283
1284	pci_disable_device(efx->pci_dev);
1285}
1286
1287static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1288{
1289	cpumask_var_t thread_mask;
1290	unsigned int count;
1291	int cpu;
1292
1293	if (rss_cpus) {
1294		count = rss_cpus;
1295	} else {
1296		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1297			netif_warn(efx, probe, efx->net_dev,
1298				   "RSS disabled due to allocation failure\n");
1299			return 1;
1300		}
1301
1302		count = 0;
1303		for_each_online_cpu(cpu) {
1304			if (!cpumask_test_cpu(cpu, thread_mask)) {
1305				++count;
1306				cpumask_or(thread_mask, thread_mask,
1307					   topology_thread_cpumask(cpu));
1308			}
1309		}
1310
1311		free_cpumask_var(thread_mask);
1312	}
1313
1314	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1315	 * table entries that are inaccessible to VFs
1316	 */
1317	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1318	    count > efx_vf_size(efx)) {
1319		netif_warn(efx, probe, efx->net_dev,
1320			   "Reducing number of RSS channels from %u to %u for "
1321			   "VF support. Increase vf-msix-limit to use more "
1322			   "channels on the PF.\n",
1323			   count, efx_vf_size(efx));
1324		count = efx_vf_size(efx);
1325	}
1326
1327	return count;
1328}
1329
1330/* Probe the number and type of interrupts we are able to obtain, and
1331 * the resulting numbers of channels and RX queues.
1332 */
1333static int efx_probe_interrupts(struct efx_nic *efx)
1334{
1335	unsigned int extra_channels = 0;
1336	unsigned int i, j;
1337	int rc;
1338
1339	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1340		if (efx->extra_channel_type[i])
1341			++extra_channels;
1342
1343	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1344		struct msix_entry xentries[EFX_MAX_CHANNELS];
1345		unsigned int n_channels;
1346
1347		n_channels = efx_wanted_parallelism(efx);
1348		if (separate_tx_channels)
1349			n_channels *= 2;
1350		n_channels += extra_channels;
1351		n_channels = min(n_channels, efx->max_channels);
1352
1353		for (i = 0; i < n_channels; i++)
1354			xentries[i].entry = i;
1355		rc = pci_enable_msix_range(efx->pci_dev,
1356					   xentries, 1, n_channels);
1357		if (rc < 0) {
1358			/* Fall back to single channel MSI */
1359			efx->interrupt_mode = EFX_INT_MODE_MSI;
1360			netif_err(efx, drv, efx->net_dev,
1361				  "could not enable MSI-X\n");
1362		} else if (rc < n_channels) {
1363			netif_err(efx, drv, efx->net_dev,
1364				  "WARNING: Insufficient MSI-X vectors"
1365				  " available (%d < %u).\n", rc, n_channels);
1366			netif_err(efx, drv, efx->net_dev,
1367				  "WARNING: Performance may be reduced.\n");
1368			n_channels = rc;
1369		}
1370
1371		if (rc > 0) {
1372			efx->n_channels = n_channels;
1373			if (n_channels > extra_channels)
1374				n_channels -= extra_channels;
1375			if (separate_tx_channels) {
1376				efx->n_tx_channels = max(n_channels / 2, 1U);
1377				efx->n_rx_channels = max(n_channels -
1378							 efx->n_tx_channels,
1379							 1U);
1380			} else {
1381				efx->n_tx_channels = n_channels;
1382				efx->n_rx_channels = n_channels;
1383			}
1384			for (i = 0; i < efx->n_channels; i++)
1385				efx_get_channel(efx, i)->irq =
1386					xentries[i].vector;
1387		}
1388	}
1389
1390	/* Try single interrupt MSI */
1391	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1392		efx->n_channels = 1;
1393		efx->n_rx_channels = 1;
1394		efx->n_tx_channels = 1;
1395		rc = pci_enable_msi(efx->pci_dev);
1396		if (rc == 0) {
1397			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1398		} else {
1399			netif_err(efx, drv, efx->net_dev,
1400				  "could not enable MSI\n");
1401			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1402		}
1403	}
1404
1405	/* Assume legacy interrupts */
1406	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1407		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1408		efx->n_rx_channels = 1;
1409		efx->n_tx_channels = 1;
1410		efx->legacy_irq = efx->pci_dev->irq;
1411	}
1412
1413	/* Assign extra channels if possible */
1414	j = efx->n_channels;
1415	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1416		if (!efx->extra_channel_type[i])
1417			continue;
1418		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1419		    efx->n_channels <= extra_channels) {
1420			efx->extra_channel_type[i]->handle_no_channel(efx);
1421		} else {
1422			--j;
1423			efx_get_channel(efx, j)->type =
1424				efx->extra_channel_type[i];
1425		}
1426	}
1427
1428	/* RSS might be usable on VFs even if it is disabled on the PF */
1429	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1430			   efx->n_rx_channels : efx_vf_size(efx));
1431
1432	return 0;
1433}
1434
1435static int efx_soft_enable_interrupts(struct efx_nic *efx)
1436{
1437	struct efx_channel *channel, *end_channel;
1438	int rc;
1439
1440	BUG_ON(efx->state == STATE_DISABLED);
1441
1442	efx->irq_soft_enabled = true;
1443	smp_wmb();
1444
1445	efx_for_each_channel(channel, efx) {
1446		if (!channel->type->keep_eventq) {
1447			rc = efx_init_eventq(channel);
1448			if (rc)
1449				goto fail;
1450		}
1451		efx_start_eventq(channel);
1452	}
1453
1454	efx_mcdi_mode_event(efx);
1455
1456	return 0;
1457fail:
1458	end_channel = channel;
1459	efx_for_each_channel(channel, efx) {
1460		if (channel == end_channel)
1461			break;
1462		efx_stop_eventq(channel);
1463		if (!channel->type->keep_eventq)
1464			efx_fini_eventq(channel);
1465	}
1466
1467	return rc;
1468}
1469
1470static void efx_soft_disable_interrupts(struct efx_nic *efx)
1471{
1472	struct efx_channel *channel;
1473
1474	if (efx->state == STATE_DISABLED)
1475		return;
1476
1477	efx_mcdi_mode_poll(efx);
1478
1479	efx->irq_soft_enabled = false;
1480	smp_wmb();
1481
1482	if (efx->legacy_irq)
1483		synchronize_irq(efx->legacy_irq);
1484
1485	efx_for_each_channel(channel, efx) {
1486		if (channel->irq)
1487			synchronize_irq(channel->irq);
1488
1489		efx_stop_eventq(channel);
1490		if (!channel->type->keep_eventq)
1491			efx_fini_eventq(channel);
1492	}
1493
1494	/* Flush the asynchronous MCDI request queue */
1495	efx_mcdi_flush_async(efx);
1496}
1497
1498static int efx_enable_interrupts(struct efx_nic *efx)
1499{
1500	struct efx_channel *channel, *end_channel;
1501	int rc;
1502
1503	BUG_ON(efx->state == STATE_DISABLED);
1504
1505	if (efx->eeh_disabled_legacy_irq) {
1506		enable_irq(efx->legacy_irq);
1507		efx->eeh_disabled_legacy_irq = false;
1508	}
1509
1510	efx->type->irq_enable_master(efx);
1511
1512	efx_for_each_channel(channel, efx) {
1513		if (channel->type->keep_eventq) {
1514			rc = efx_init_eventq(channel);
1515			if (rc)
1516				goto fail;
1517		}
1518	}
1519
1520	rc = efx_soft_enable_interrupts(efx);
1521	if (rc)
1522		goto fail;
1523
1524	return 0;
1525
1526fail:
1527	end_channel = channel;
1528	efx_for_each_channel(channel, efx) {
1529		if (channel == end_channel)
1530			break;
1531		if (channel->type->keep_eventq)
1532			efx_fini_eventq(channel);
1533	}
1534
1535	efx->type->irq_disable_non_ev(efx);
1536
1537	return rc;
1538}
1539
1540static void efx_disable_interrupts(struct efx_nic *efx)
1541{
1542	struct efx_channel *channel;
1543
1544	efx_soft_disable_interrupts(efx);
1545
1546	efx_for_each_channel(channel, efx) {
1547		if (channel->type->keep_eventq)
1548			efx_fini_eventq(channel);
1549	}
1550
1551	efx->type->irq_disable_non_ev(efx);
1552}
1553
1554static void efx_remove_interrupts(struct efx_nic *efx)
1555{
1556	struct efx_channel *channel;
1557
1558	/* Remove MSI/MSI-X interrupts */
1559	efx_for_each_channel(channel, efx)
1560		channel->irq = 0;
1561	pci_disable_msi(efx->pci_dev);
1562	pci_disable_msix(efx->pci_dev);
1563
1564	/* Remove legacy interrupt */
1565	efx->legacy_irq = 0;
1566}
1567
1568static void efx_set_channels(struct efx_nic *efx)
1569{
1570	struct efx_channel *channel;
1571	struct efx_tx_queue *tx_queue;
1572
1573	efx->tx_channel_offset =
1574		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1575
1576	/* We need to mark which channels really have RX and TX
1577	 * queues, and adjust the TX queue numbers if we have separate
1578	 * RX-only and TX-only channels.
1579	 */
1580	efx_for_each_channel(channel, efx) {
1581		if (channel->channel < efx->n_rx_channels)
1582			channel->rx_queue.core_index = channel->channel;
1583		else
1584			channel->rx_queue.core_index = -1;
1585
1586		efx_for_each_channel_tx_queue(tx_queue, channel)
1587			tx_queue->queue -= (efx->tx_channel_offset *
1588					    EFX_TXQ_TYPES);
1589	}
1590}
1591
1592static int efx_probe_nic(struct efx_nic *efx)
1593{
1594	size_t i;
1595	int rc;
1596
1597	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1598
1599	/* Carry out hardware-type specific initialisation */
1600	rc = efx->type->probe(efx);
1601	if (rc)
1602		return rc;
1603
1604	/* Determine the number of channels and queues by trying to hook
1605	 * in MSI-X interrupts. */
1606	rc = efx_probe_interrupts(efx);
1607	if (rc)
1608		goto fail1;
1609
1610	efx_set_channels(efx);
1611
1612	rc = efx->type->dimension_resources(efx);
1613	if (rc)
1614		goto fail2;
1615
1616	if (efx->n_channels > 1)
1617		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1618	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1619		efx->rx_indir_table[i] =
1620			ethtool_rxfh_indir_default(i, efx->rss_spread);
1621
1622	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1623	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1624
1625	/* Initialise the interrupt moderation settings */
1626	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1627				true);
1628
1629	return 0;
1630
1631fail2:
1632	efx_remove_interrupts(efx);
1633fail1:
1634	efx->type->remove(efx);
1635	return rc;
1636}
1637
1638static void efx_remove_nic(struct efx_nic *efx)
1639{
1640	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1641
1642	efx_remove_interrupts(efx);
1643	efx->type->remove(efx);
1644}
1645
1646static int efx_probe_filters(struct efx_nic *efx)
1647{
1648	int rc;
1649
1650	spin_lock_init(&efx->filter_lock);
1651
1652	rc = efx->type->filter_table_probe(efx);
1653	if (rc)
1654		return rc;
1655
1656#ifdef CONFIG_RFS_ACCEL
1657	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1658		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1659					   sizeof(*efx->rps_flow_id),
1660					   GFP_KERNEL);
1661		if (!efx->rps_flow_id) {
1662			efx->type->filter_table_remove(efx);
1663			return -ENOMEM;
1664		}
1665	}
1666#endif
1667
1668	return 0;
1669}
1670
1671static void efx_remove_filters(struct efx_nic *efx)
1672{
1673#ifdef CONFIG_RFS_ACCEL
1674	kfree(efx->rps_flow_id);
1675#endif
1676	efx->type->filter_table_remove(efx);
1677}
1678
1679static void efx_restore_filters(struct efx_nic *efx)
1680{
1681	efx->type->filter_table_restore(efx);
1682}
1683
1684/**************************************************************************
1685 *
1686 * NIC startup/shutdown
1687 *
1688 *************************************************************************/
1689
1690static int efx_probe_all(struct efx_nic *efx)
1691{
1692	int rc;
1693
1694	rc = efx_probe_nic(efx);
1695	if (rc) {
1696		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1697		goto fail1;
1698	}
1699
1700	rc = efx_probe_port(efx);
1701	if (rc) {
1702		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1703		goto fail2;
1704	}
1705
1706	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1707	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1708		rc = -EINVAL;
1709		goto fail3;
1710	}
1711	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1712
1713	rc = efx_probe_filters(efx);
1714	if (rc) {
1715		netif_err(efx, probe, efx->net_dev,
1716			  "failed to create filter tables\n");
1717		goto fail3;
1718	}
1719
1720	rc = efx_probe_channels(efx);
1721	if (rc)
1722		goto fail4;
1723
1724	return 0;
1725
1726 fail4:
1727	efx_remove_filters(efx);
1728 fail3:
1729	efx_remove_port(efx);
1730 fail2:
1731	efx_remove_nic(efx);
1732 fail1:
1733	return rc;
1734}
1735
1736/* If the interface is supposed to be running but is not, start
1737 * the hardware and software data path, regular activity for the port
1738 * (MAC statistics, link polling, etc.) and schedule the port to be
1739 * reconfigured.  Interrupts must already be enabled.  This function
1740 * is safe to call multiple times, so long as the NIC is not disabled.
1741 * Requires the RTNL lock.
1742 */
1743static void efx_start_all(struct efx_nic *efx)
1744{
1745	EFX_ASSERT_RESET_SERIALISED(efx);
1746	BUG_ON(efx->state == STATE_DISABLED);
1747
1748	/* Check that it is appropriate to restart the interface. All
1749	 * of these flags are safe to read under just the rtnl lock */
1750	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1751	    efx->reset_pending)
1752		return;
1753
1754	efx_start_port(efx);
1755	efx_start_datapath(efx);
1756
1757	/* Start the hardware monitor if there is one */
1758	if (efx->type->monitor != NULL)
1759		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1760				   efx_monitor_interval);
1761
1762	/* If link state detection is normally event-driven, we have
1763	 * to poll now because we could have missed a change
1764	 */
1765	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1766		mutex_lock(&efx->mac_lock);
1767		if (efx->phy_op->poll(efx))
1768			efx_link_status_changed(efx);
1769		mutex_unlock(&efx->mac_lock);
1770	}
1771
1772	efx->type->start_stats(efx);
1773	efx->type->pull_stats(efx);
1774	spin_lock_bh(&efx->stats_lock);
1775	efx->type->update_stats(efx, NULL, NULL);
1776	spin_unlock_bh(&efx->stats_lock);
1777}
1778
1779/* Quiesce the hardware and software data path, and regular activity
1780 * for the port without bringing the link down.  Safe to call multiple
1781 * times with the NIC in almost any state, but interrupts should be
1782 * enabled.  Requires the RTNL lock.
1783 */
1784static void efx_stop_all(struct efx_nic *efx)
1785{
1786	EFX_ASSERT_RESET_SERIALISED(efx);
1787
1788	/* port_enabled can be read safely under the rtnl lock */
1789	if (!efx->port_enabled)
1790		return;
1791
1792	/* update stats before we go down so we can accurately count
1793	 * rx_nodesc_drops
1794	 */
1795	efx->type->pull_stats(efx);
1796	spin_lock_bh(&efx->stats_lock);
1797	efx->type->update_stats(efx, NULL, NULL);
1798	spin_unlock_bh(&efx->stats_lock);
1799	efx->type->stop_stats(efx);
1800	efx_stop_port(efx);
1801
1802	/* Stop the kernel transmit interface.  This is only valid if
1803	 * the device is stopped or detached; otherwise the watchdog
1804	 * may fire immediately.
1805	 */
1806	WARN_ON(netif_running(efx->net_dev) &&
1807		netif_device_present(efx->net_dev));
1808	netif_tx_disable(efx->net_dev);
1809
1810	efx_stop_datapath(efx);
1811}
1812
1813static void efx_remove_all(struct efx_nic *efx)
1814{
1815	efx_remove_channels(efx);
1816	efx_remove_filters(efx);
1817	efx_remove_port(efx);
1818	efx_remove_nic(efx);
1819}
1820
1821/**************************************************************************
1822 *
1823 * Interrupt moderation
1824 *
1825 **************************************************************************/
1826
1827static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1828{
1829	if (usecs == 0)
1830		return 0;
1831	if (usecs * 1000 < quantum_ns)
1832		return 1; /* never round down to 0 */
1833	return usecs * 1000 / quantum_ns;
1834}
1835
1836/* Set interrupt moderation parameters */
1837int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1838			    unsigned int rx_usecs, bool rx_adaptive,
1839			    bool rx_may_override_tx)
1840{
1841	struct efx_channel *channel;
1842	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1843						efx->timer_quantum_ns,
1844						1000);
1845	unsigned int tx_ticks;
1846	unsigned int rx_ticks;
1847
1848	EFX_ASSERT_RESET_SERIALISED(efx);
1849
1850	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1851		return -EINVAL;
1852
1853	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1854	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1855
1856	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1857	    !rx_may_override_tx) {
1858		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1859			  "RX and TX IRQ moderation must be equal\n");
1860		return -EINVAL;
1861	}
1862
1863	efx->irq_rx_adaptive = rx_adaptive;
1864	efx->irq_rx_moderation = rx_ticks;
1865	efx_for_each_channel(channel, efx) {
1866		if (efx_channel_has_rx_queue(channel))
1867			channel->irq_moderation = rx_ticks;
1868		else if (efx_channel_has_tx_queues(channel))
1869			channel->irq_moderation = tx_ticks;
1870	}
1871
1872	return 0;
1873}
1874
1875void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1876			    unsigned int *rx_usecs, bool *rx_adaptive)
1877{
1878	/* We must round up when converting ticks to microseconds
1879	 * because we round down when converting the other way.
1880	 */
1881
1882	*rx_adaptive = efx->irq_rx_adaptive;
1883	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1884				 efx->timer_quantum_ns,
1885				 1000);
1886
1887	/* If channels are shared between RX and TX, so is IRQ
1888	 * moderation.  Otherwise, IRQ moderation is the same for all
1889	 * TX channels and is not adaptive.
1890	 */
1891	if (efx->tx_channel_offset == 0)
1892		*tx_usecs = *rx_usecs;
1893	else
1894		*tx_usecs = DIV_ROUND_UP(
1895			efx->channel[efx->tx_channel_offset]->irq_moderation *
1896			efx->timer_quantum_ns,
1897			1000);
1898}
1899
1900/**************************************************************************
1901 *
1902 * Hardware monitor
1903 *
1904 **************************************************************************/
1905
1906/* Run periodically off the general workqueue */
1907static void efx_monitor(struct work_struct *data)
1908{
1909	struct efx_nic *efx = container_of(data, struct efx_nic,
1910					   monitor_work.work);
1911
1912	netif_vdbg(efx, timer, efx->net_dev,
1913		   "hardware monitor executing on CPU %d\n",
1914		   raw_smp_processor_id());
1915	BUG_ON(efx->type->monitor == NULL);
1916
1917	/* If the mac_lock is already held then it is likely a port
1918	 * reconfiguration is already in place, which will likely do
1919	 * most of the work of monitor() anyway. */
1920	if (mutex_trylock(&efx->mac_lock)) {
1921		if (efx->port_enabled)
1922			efx->type->monitor(efx);
1923		mutex_unlock(&efx->mac_lock);
1924	}
1925
1926	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1927			   efx_monitor_interval);
1928}
1929
1930/**************************************************************************
1931 *
1932 * ioctls
1933 *
1934 *************************************************************************/
1935
1936/* Net device ioctl
1937 * Context: process, rtnl_lock() held.
1938 */
1939static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1940{
1941	struct efx_nic *efx = netdev_priv(net_dev);
1942	struct mii_ioctl_data *data = if_mii(ifr);
1943
1944	if (cmd == SIOCSHWTSTAMP)
1945		return efx_ptp_set_ts_config(efx, ifr);
1946	if (cmd == SIOCGHWTSTAMP)
1947		return efx_ptp_get_ts_config(efx, ifr);
1948
1949	/* Convert phy_id from older PRTAD/DEVAD format */
1950	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1951	    (data->phy_id & 0xfc00) == 0x0400)
1952		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1953
1954	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1955}
1956
1957/**************************************************************************
1958 *
1959 * NAPI interface
1960 *
1961 **************************************************************************/
1962
1963static void efx_init_napi_channel(struct efx_channel *channel)
1964{
1965	struct efx_nic *efx = channel->efx;
1966
1967	channel->napi_dev = efx->net_dev;
1968	netif_napi_add(channel->napi_dev, &channel->napi_str,
1969		       efx_poll, napi_weight);
1970	napi_hash_add(&channel->napi_str);
1971	efx_channel_init_lock(channel);
1972}
1973
1974static void efx_init_napi(struct efx_nic *efx)
1975{
1976	struct efx_channel *channel;
1977
1978	efx_for_each_channel(channel, efx)
1979		efx_init_napi_channel(channel);
1980}
1981
1982static void efx_fini_napi_channel(struct efx_channel *channel)
1983{
1984	if (channel->napi_dev) {
1985		netif_napi_del(&channel->napi_str);
1986		napi_hash_del(&channel->napi_str);
1987	}
1988	channel->napi_dev = NULL;
1989}
1990
1991static void efx_fini_napi(struct efx_nic *efx)
1992{
1993	struct efx_channel *channel;
1994
1995	efx_for_each_channel(channel, efx)
1996		efx_fini_napi_channel(channel);
1997}
1998
1999/**************************************************************************
2000 *
2001 * Kernel netpoll interface
2002 *
2003 *************************************************************************/
2004
2005#ifdef CONFIG_NET_POLL_CONTROLLER
2006
2007/* Although in the common case interrupts will be disabled, this is not
2008 * guaranteed. However, all our work happens inside the NAPI callback,
2009 * so no locking is required.
2010 */
2011static void efx_netpoll(struct net_device *net_dev)
2012{
2013	struct efx_nic *efx = netdev_priv(net_dev);
2014	struct efx_channel *channel;
2015
2016	efx_for_each_channel(channel, efx)
2017		efx_schedule_channel(channel);
2018}
2019
2020#endif
2021
2022#ifdef CONFIG_NET_RX_BUSY_POLL
2023static int efx_busy_poll(struct napi_struct *napi)
2024{
2025	struct efx_channel *channel =
2026		container_of(napi, struct efx_channel, napi_str);
2027	struct efx_nic *efx = channel->efx;
2028	int budget = 4;
2029	int old_rx_packets, rx_packets;
2030
2031	if (!netif_running(efx->net_dev))
2032		return LL_FLUSH_FAILED;
2033
2034	if (!efx_channel_lock_poll(channel))
2035		return LL_FLUSH_BUSY;
2036
2037	old_rx_packets = channel->rx_queue.rx_packets;
2038	efx_process_channel(channel, budget);
2039
2040	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2041
2042	/* There is no race condition with NAPI here.
2043	 * NAPI will automatically be rescheduled if it yielded during busy
2044	 * polling, because it was not able to take the lock and thus returned
2045	 * the full budget.
2046	 */
2047	efx_channel_unlock_poll(channel);
2048
2049	return rx_packets;
2050}
2051#endif
2052
2053/**************************************************************************
2054 *
2055 * Kernel net device interface
2056 *
2057 *************************************************************************/
2058
2059/* Context: process, rtnl_lock() held. */
2060static int efx_net_open(struct net_device *net_dev)
2061{
2062	struct efx_nic *efx = netdev_priv(net_dev);
2063	int rc;
2064
2065	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2066		  raw_smp_processor_id());
2067
2068	rc = efx_check_disabled(efx);
2069	if (rc)
2070		return rc;
2071	if (efx->phy_mode & PHY_MODE_SPECIAL)
2072		return -EBUSY;
2073	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2074		return -EIO;
2075
2076	/* Notify the kernel of the link state polled during driver load,
2077	 * before the monitor starts running */
2078	efx_link_status_changed(efx);
2079
2080	efx_start_all(efx);
2081	efx_selftest_async_start(efx);
2082	return 0;
2083}
2084
2085/* Context: process, rtnl_lock() held.
2086 * Note that the kernel will ignore our return code; this method
2087 * should really be a void.
2088 */
2089static int efx_net_stop(struct net_device *net_dev)
2090{
2091	struct efx_nic *efx = netdev_priv(net_dev);
2092
2093	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2094		  raw_smp_processor_id());
2095
2096	/* Stop the device and flush all the channels */
2097	efx_stop_all(efx);
2098
2099	return 0;
2100}
2101
2102/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2103static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2104					       struct rtnl_link_stats64 *stats)
2105{
2106	struct efx_nic *efx = netdev_priv(net_dev);
2107
2108	spin_lock_bh(&efx->stats_lock);
2109	efx->type->update_stats(efx, NULL, stats);
2110	spin_unlock_bh(&efx->stats_lock);
2111
2112	return stats;
2113}
2114
2115/* Context: netif_tx_lock held, BHs disabled. */
2116static void efx_watchdog(struct net_device *net_dev)
2117{
2118	struct efx_nic *efx = netdev_priv(net_dev);
2119
2120	netif_err(efx, tx_err, efx->net_dev,
2121		  "TX stuck with port_enabled=%d: resetting channels\n",
2122		  efx->port_enabled);
2123
2124	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2125}
2126
2127
2128/* Context: process, rtnl_lock() held. */
2129static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2130{
2131	struct efx_nic *efx = netdev_priv(net_dev);
2132	int rc;
2133
2134	rc = efx_check_disabled(efx);
2135	if (rc)
2136		return rc;
2137	if (new_mtu > EFX_MAX_MTU)
2138		return -EINVAL;
2139
2140	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2141
2142	efx_device_detach_sync(efx);
2143	efx_stop_all(efx);
2144
2145	mutex_lock(&efx->mac_lock);
2146	net_dev->mtu = new_mtu;
2147	efx->type->reconfigure_mac(efx);
2148	mutex_unlock(&efx->mac_lock);
2149
2150	efx_start_all(efx);
2151	netif_device_attach(efx->net_dev);
2152	return 0;
2153}
2154
2155static int efx_set_mac_address(struct net_device *net_dev, void *data)
2156{
2157	struct efx_nic *efx = netdev_priv(net_dev);
2158	struct sockaddr *addr = data;
2159	u8 *new_addr = addr->sa_data;
2160
2161	if (!is_valid_ether_addr(new_addr)) {
2162		netif_err(efx, drv, efx->net_dev,
2163			  "invalid ethernet MAC address requested: %pM\n",
2164			  new_addr);
2165		return -EADDRNOTAVAIL;
2166	}
2167
2168	ether_addr_copy(net_dev->dev_addr, new_addr);
2169	efx_sriov_mac_address_changed(efx);
2170
2171	/* Reconfigure the MAC */
2172	mutex_lock(&efx->mac_lock);
2173	efx->type->reconfigure_mac(efx);
2174	mutex_unlock(&efx->mac_lock);
2175
2176	return 0;
2177}
2178
2179/* Context: netif_addr_lock held, BHs disabled. */
2180static void efx_set_rx_mode(struct net_device *net_dev)
2181{
2182	struct efx_nic *efx = netdev_priv(net_dev);
2183
2184	if (efx->port_enabled)
2185		queue_work(efx->workqueue, &efx->mac_work);
2186	/* Otherwise efx_start_port() will do this */
2187}
2188
2189static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2190{
2191	struct efx_nic *efx = netdev_priv(net_dev);
2192
2193	/* If disabling RX n-tuple filtering, clear existing filters */
2194	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2195		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2196
2197	return 0;
2198}
2199
2200static const struct net_device_ops efx_farch_netdev_ops = {
2201	.ndo_open		= efx_net_open,
2202	.ndo_stop		= efx_net_stop,
2203	.ndo_get_stats64	= efx_net_stats,
2204	.ndo_tx_timeout		= efx_watchdog,
2205	.ndo_start_xmit		= efx_hard_start_xmit,
2206	.ndo_validate_addr	= eth_validate_addr,
2207	.ndo_do_ioctl		= efx_ioctl,
2208	.ndo_change_mtu		= efx_change_mtu,
2209	.ndo_set_mac_address	= efx_set_mac_address,
2210	.ndo_set_rx_mode	= efx_set_rx_mode,
2211	.ndo_set_features	= efx_set_features,
2212#ifdef CONFIG_SFC_SRIOV
2213	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2214	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2215	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2216	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2217#endif
2218#ifdef CONFIG_NET_POLL_CONTROLLER
2219	.ndo_poll_controller = efx_netpoll,
2220#endif
2221	.ndo_setup_tc		= efx_setup_tc,
2222#ifdef CONFIG_NET_RX_BUSY_POLL
2223	.ndo_busy_poll		= efx_busy_poll,
2224#endif
2225#ifdef CONFIG_RFS_ACCEL
2226	.ndo_rx_flow_steer	= efx_filter_rfs,
2227#endif
2228};
2229
2230static const struct net_device_ops efx_ef10_netdev_ops = {
2231	.ndo_open		= efx_net_open,
2232	.ndo_stop		= efx_net_stop,
2233	.ndo_get_stats64	= efx_net_stats,
2234	.ndo_tx_timeout		= efx_watchdog,
2235	.ndo_start_xmit		= efx_hard_start_xmit,
2236	.ndo_validate_addr	= eth_validate_addr,
2237	.ndo_do_ioctl		= efx_ioctl,
2238	.ndo_change_mtu		= efx_change_mtu,
2239	.ndo_set_mac_address	= efx_set_mac_address,
2240	.ndo_set_rx_mode	= efx_set_rx_mode,
2241	.ndo_set_features	= efx_set_features,
2242#ifdef CONFIG_NET_POLL_CONTROLLER
2243	.ndo_poll_controller	= efx_netpoll,
2244#endif
2245#ifdef CONFIG_NET_RX_BUSY_POLL
2246	.ndo_busy_poll		= efx_busy_poll,
2247#endif
2248#ifdef CONFIG_RFS_ACCEL
2249	.ndo_rx_flow_steer	= efx_filter_rfs,
2250#endif
2251};
2252
2253static void efx_update_name(struct efx_nic *efx)
2254{
2255	strcpy(efx->name, efx->net_dev->name);
2256	efx_mtd_rename(efx);
2257	efx_set_channel_names(efx);
2258}
2259
2260static int efx_netdev_event(struct notifier_block *this,
2261			    unsigned long event, void *ptr)
2262{
2263	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2264
2265	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2266	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2267	    event == NETDEV_CHANGENAME)
2268		efx_update_name(netdev_priv(net_dev));
2269
2270	return NOTIFY_DONE;
2271}
2272
2273static struct notifier_block efx_netdev_notifier = {
2274	.notifier_call = efx_netdev_event,
2275};
2276
2277static ssize_t
2278show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2279{
2280	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2281	return sprintf(buf, "%d\n", efx->phy_type);
2282}
2283static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2284
2285static int efx_register_netdev(struct efx_nic *efx)
2286{
2287	struct net_device *net_dev = efx->net_dev;
2288	struct efx_channel *channel;
2289	int rc;
2290
2291	net_dev->watchdog_timeo = 5 * HZ;
2292	net_dev->irq = efx->pci_dev->irq;
2293	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2294		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2295		net_dev->priv_flags |= IFF_UNICAST_FLT;
2296	} else {
2297		net_dev->netdev_ops = &efx_farch_netdev_ops;
2298	}
2299	net_dev->ethtool_ops = &efx_ethtool_ops;
2300	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2301
2302	rtnl_lock();
2303
2304	/* Enable resets to be scheduled and check whether any were
2305	 * already requested.  If so, the NIC is probably hosed so we
2306	 * abort.
2307	 */
2308	efx->state = STATE_READY;
2309	smp_mb(); /* ensure we change state before checking reset_pending */
2310	if (efx->reset_pending) {
2311		netif_err(efx, probe, efx->net_dev,
2312			  "aborting probe due to scheduled reset\n");
2313		rc = -EIO;
2314		goto fail_locked;
2315	}
2316
2317	rc = dev_alloc_name(net_dev, net_dev->name);
2318	if (rc < 0)
2319		goto fail_locked;
2320	efx_update_name(efx);
2321
2322	/* Always start with carrier off; PHY events will detect the link */
2323	netif_carrier_off(net_dev);
2324
2325	rc = register_netdevice(net_dev);
2326	if (rc)
2327		goto fail_locked;
2328
2329	efx_for_each_channel(channel, efx) {
2330		struct efx_tx_queue *tx_queue;
2331		efx_for_each_channel_tx_queue(tx_queue, channel)
2332			efx_init_tx_queue_core_txq(tx_queue);
2333	}
2334
2335	efx_associate(efx);
2336
2337	rtnl_unlock();
2338
2339	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2340	if (rc) {
2341		netif_err(efx, drv, efx->net_dev,
2342			  "failed to init net dev attributes\n");
2343		goto fail_registered;
2344	}
2345
2346	return 0;
2347
2348fail_registered:
2349	rtnl_lock();
2350	efx_dissociate(efx);
2351	unregister_netdevice(net_dev);
2352fail_locked:
2353	efx->state = STATE_UNINIT;
2354	rtnl_unlock();
2355	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2356	return rc;
2357}
2358
2359static void efx_unregister_netdev(struct efx_nic *efx)
2360{
2361	if (!efx->net_dev)
2362		return;
2363
2364	BUG_ON(netdev_priv(efx->net_dev) != efx);
2365
2366	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2367	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2368
2369	rtnl_lock();
2370	unregister_netdevice(efx->net_dev);
2371	efx->state = STATE_UNINIT;
2372	rtnl_unlock();
2373}
2374
2375/**************************************************************************
2376 *
2377 * Device reset and suspend
2378 *
2379 **************************************************************************/
2380
2381/* Tears down the entire software state and most of the hardware state
2382 * before reset.  */
2383void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2384{
2385	EFX_ASSERT_RESET_SERIALISED(efx);
2386
2387	if (method == RESET_TYPE_MCDI_TIMEOUT)
2388		efx->type->prepare_flr(efx);
2389
2390	efx_stop_all(efx);
2391	efx_disable_interrupts(efx);
2392
2393	mutex_lock(&efx->mac_lock);
2394	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2395		efx->phy_op->fini(efx);
2396	efx->type->fini(efx);
2397}
2398
2399/* This function will always ensure that the locks acquired in
2400 * efx_reset_down() are released. A failure return code indicates
2401 * that we were unable to reinitialise the hardware, and the
2402 * driver should be disabled. If ok is false, then the rx and tx
2403 * engines are not restarted, pending a RESET_DISABLE. */
2404int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2405{
2406	int rc;
2407
2408	EFX_ASSERT_RESET_SERIALISED(efx);
2409
2410	if (method == RESET_TYPE_MCDI_TIMEOUT)
2411		efx->type->finish_flr(efx);
2412
2413	/* Ensure that SRAM is initialised even if we're disabling the device */
2414	rc = efx->type->init(efx);
2415	if (rc) {
2416		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2417		goto fail;
2418	}
2419
2420	if (!ok)
2421		goto fail;
2422
2423	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2424		rc = efx->phy_op->init(efx);
2425		if (rc)
2426			goto fail;
2427		if (efx->phy_op->reconfigure(efx))
2428			netif_err(efx, drv, efx->net_dev,
2429				  "could not restore PHY settings\n");
2430	}
2431
2432	rc = efx_enable_interrupts(efx);
2433	if (rc)
2434		goto fail;
2435	efx_restore_filters(efx);
2436	efx_sriov_reset(efx);
2437
2438	mutex_unlock(&efx->mac_lock);
2439
2440	efx_start_all(efx);
2441
2442	return 0;
2443
2444fail:
2445	efx->port_initialized = false;
2446
2447	mutex_unlock(&efx->mac_lock);
2448
2449	return rc;
2450}
2451
2452/* Reset the NIC using the specified method.  Note that the reset may
2453 * fail, in which case the card will be left in an unusable state.
2454 *
2455 * Caller must hold the rtnl_lock.
2456 */
2457int efx_reset(struct efx_nic *efx, enum reset_type method)
2458{
2459	int rc, rc2;
2460	bool disabled;
2461
2462	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2463		   RESET_TYPE(method));
2464
2465	efx_device_detach_sync(efx);
2466	efx_reset_down(efx, method);
2467
2468	rc = efx->type->reset(efx, method);
2469	if (rc) {
2470		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2471		goto out;
2472	}
2473
2474	/* Clear flags for the scopes we covered.  We assume the NIC and
2475	 * driver are now quiescent so that there is no race here.
2476	 */
2477	if (method < RESET_TYPE_MAX_METHOD)
2478		efx->reset_pending &= -(1 << (method + 1));
2479	else /* it doesn't fit into the well-ordered scope hierarchy */
2480		__clear_bit(method, &efx->reset_pending);
2481
2482	/* Reinitialise bus-mastering, which may have been turned off before
2483	 * the reset was scheduled. This is still appropriate, even in the
2484	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2485	 * can respond to requests. */
2486	pci_set_master(efx->pci_dev);
2487
2488out:
2489	/* Leave device stopped if necessary */
2490	disabled = rc ||
2491		method == RESET_TYPE_DISABLE ||
2492		method == RESET_TYPE_RECOVER_OR_DISABLE;
2493	rc2 = efx_reset_up(efx, method, !disabled);
2494	if (rc2) {
2495		disabled = true;
2496		if (!rc)
2497			rc = rc2;
2498	}
2499
2500	if (disabled) {
2501		dev_close(efx->net_dev);
2502		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2503		efx->state = STATE_DISABLED;
2504	} else {
2505		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2506		netif_device_attach(efx->net_dev);
2507	}
2508	return rc;
2509}
2510
2511/* Try recovery mechanisms.
2512 * For now only EEH is supported.
2513 * Returns 0 if the recovery mechanisms are unsuccessful.
2514 * Returns a non-zero value otherwise.
2515 */
2516int efx_try_recovery(struct efx_nic *efx)
2517{
2518#ifdef CONFIG_EEH
2519	/* A PCI error can occur and not be seen by EEH because nothing
2520	 * happens on the PCI bus. In this case the driver may fail and
2521	 * schedule a 'recover or reset', leading to this recovery handler.
2522	 * Manually call the eeh failure check function.
2523	 */
2524	struct eeh_dev *eehdev =
2525		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2526
2527	if (eeh_dev_check_failure(eehdev)) {
2528		/* The EEH mechanisms will handle the error and reset the
2529		 * device if necessary.
2530		 */
2531		return 1;
2532	}
2533#endif
2534	return 0;
2535}
2536
2537static void efx_wait_for_bist_end(struct efx_nic *efx)
2538{
2539	int i;
2540
2541	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2542		if (efx_mcdi_poll_reboot(efx))
2543			goto out;
2544		msleep(BIST_WAIT_DELAY_MS);
2545	}
2546
2547	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2548out:
2549	/* Either way unset the BIST flag. If we found no reboot we probably
2550	 * won't recover, but we should try.
2551	 */
2552	efx->mc_bist_for_other_fn = false;
2553}
2554
2555/* The worker thread exists so that code that cannot sleep can
2556 * schedule a reset for later.
2557 */
2558static void efx_reset_work(struct work_struct *data)
2559{
2560	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2561	unsigned long pending;
2562	enum reset_type method;
2563
2564	pending = ACCESS_ONCE(efx->reset_pending);
2565	method = fls(pending) - 1;
2566
2567	if (method == RESET_TYPE_MC_BIST)
2568		efx_wait_for_bist_end(efx);
2569
2570	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2571	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2572	    efx_try_recovery(efx))
2573		return;
2574
2575	if (!pending)
2576		return;
2577
2578	rtnl_lock();
2579
2580	/* We checked the state in efx_schedule_reset() but it may
2581	 * have changed by now.  Now that we have the RTNL lock,
2582	 * it cannot change again.
2583	 */
2584	if (efx->state == STATE_READY)
2585		(void)efx_reset(efx, method);
2586
2587	rtnl_unlock();
2588}
2589
2590void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2591{
2592	enum reset_type method;
2593
2594	if (efx->state == STATE_RECOVERY) {
2595		netif_dbg(efx, drv, efx->net_dev,
2596			  "recovering: skip scheduling %s reset\n",
2597			  RESET_TYPE(type));
2598		return;
2599	}
2600
2601	switch (type) {
2602	case RESET_TYPE_INVISIBLE:
2603	case RESET_TYPE_ALL:
2604	case RESET_TYPE_RECOVER_OR_ALL:
2605	case RESET_TYPE_WORLD:
2606	case RESET_TYPE_DISABLE:
2607	case RESET_TYPE_RECOVER_OR_DISABLE:
2608	case RESET_TYPE_MC_BIST:
2609	case RESET_TYPE_MCDI_TIMEOUT:
2610		method = type;
2611		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2612			  RESET_TYPE(method));
2613		break;
2614	default:
2615		method = efx->type->map_reset_reason(type);
2616		netif_dbg(efx, drv, efx->net_dev,
2617			  "scheduling %s reset for %s\n",
2618			  RESET_TYPE(method), RESET_TYPE(type));
2619		break;
2620	}
2621
2622	set_bit(method, &efx->reset_pending);
2623	smp_mb(); /* ensure we change reset_pending before checking state */
2624
2625	/* If we're not READY then just leave the flags set as the cue
2626	 * to abort probing or reschedule the reset later.
2627	 */
2628	if (ACCESS_ONCE(efx->state) != STATE_READY)
2629		return;
2630
2631	/* efx_process_channel() will no longer read events once a
2632	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2633	efx_mcdi_mode_poll(efx);
2634
2635	queue_work(reset_workqueue, &efx->reset_work);
2636}
2637
2638/**************************************************************************
2639 *
2640 * List of NICs we support
2641 *
2642 **************************************************************************/
2643
2644/* PCI device ID table */
2645static const struct pci_device_id efx_pci_table[] = {
2646	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2647		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2648	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2649	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2650		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2651	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2652	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2653	 .driver_data = (unsigned long) &siena_a0_nic_type},
2654	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2655	 .driver_data = (unsigned long) &siena_a0_nic_type},
2656	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2657	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2658	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2659	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2660	{0}			/* end of list */
2661};
2662
2663/**************************************************************************
2664 *
2665 * Dummy PHY/MAC operations
2666 *
2667 * Can be used for some unimplemented operations
2668 * Needed so all function pointers are valid and do not have to be tested
2669 * before use
2670 *
2671 **************************************************************************/
2672int efx_port_dummy_op_int(struct efx_nic *efx)
2673{
2674	return 0;
2675}
2676void efx_port_dummy_op_void(struct efx_nic *efx) {}
2677
2678static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2679{
2680	return false;
2681}
2682
2683static const struct efx_phy_operations efx_dummy_phy_operations = {
2684	.init		 = efx_port_dummy_op_int,
2685	.reconfigure	 = efx_port_dummy_op_int,
2686	.poll		 = efx_port_dummy_op_poll,
2687	.fini		 = efx_port_dummy_op_void,
2688};
2689
2690/**************************************************************************
2691 *
2692 * Data housekeeping
2693 *
2694 **************************************************************************/
2695
2696/* This zeroes out and then fills in the invariants in a struct
2697 * efx_nic (including all sub-structures).
2698 */
2699static int efx_init_struct(struct efx_nic *efx,
2700			   struct pci_dev *pci_dev, struct net_device *net_dev)
2701{
2702	int i;
2703
2704	/* Initialise common structures */
2705	INIT_LIST_HEAD(&efx->node);
2706	INIT_LIST_HEAD(&efx->secondary_list);
2707	spin_lock_init(&efx->biu_lock);
2708#ifdef CONFIG_SFC_MTD
2709	INIT_LIST_HEAD(&efx->mtd_list);
2710#endif
2711	INIT_WORK(&efx->reset_work, efx_reset_work);
2712	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2713	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2714	efx->pci_dev = pci_dev;
2715	efx->msg_enable = debug;
2716	efx->state = STATE_UNINIT;
2717	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2718
2719	efx->net_dev = net_dev;
2720	efx->rx_prefix_size = efx->type->rx_prefix_size;
2721	efx->rx_ip_align =
2722		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2723	efx->rx_packet_hash_offset =
2724		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2725	efx->rx_packet_ts_offset =
2726		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2727	spin_lock_init(&efx->stats_lock);
2728	mutex_init(&efx->mac_lock);
2729	efx->phy_op = &efx_dummy_phy_operations;
2730	efx->mdio.dev = net_dev;
2731	INIT_WORK(&efx->mac_work, efx_mac_work);
2732	init_waitqueue_head(&efx->flush_wq);
2733
2734	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2735		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2736		if (!efx->channel[i])
2737			goto fail;
2738		efx->msi_context[i].efx = efx;
2739		efx->msi_context[i].index = i;
2740	}
2741
2742	/* Higher numbered interrupt modes are less capable! */
2743	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2744				  interrupt_mode);
2745
2746	/* Would be good to use the net_dev name, but we're too early */
2747	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2748		 pci_name(pci_dev));
2749	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2750	if (!efx->workqueue)
2751		goto fail;
2752
2753	return 0;
2754
2755fail:
2756	efx_fini_struct(efx);
2757	return -ENOMEM;
2758}
2759
2760static void efx_fini_struct(struct efx_nic *efx)
2761{
2762	int i;
2763
2764	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2765		kfree(efx->channel[i]);
2766
2767	kfree(efx->vpd_sn);
2768
2769	if (efx->workqueue) {
2770		destroy_workqueue(efx->workqueue);
2771		efx->workqueue = NULL;
2772	}
2773}
2774
2775void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2776{
2777	u64 n_rx_nodesc_trunc = 0;
2778	struct efx_channel *channel;
2779
2780	efx_for_each_channel(channel, efx)
2781		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2782	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2783	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2784}
2785
2786/**************************************************************************
2787 *
2788 * PCI interface
2789 *
2790 **************************************************************************/
2791
2792/* Main body of final NIC shutdown code
2793 * This is called only at module unload (or hotplug removal).
2794 */
2795static void efx_pci_remove_main(struct efx_nic *efx)
2796{
2797	/* Flush reset_work. It can no longer be scheduled since we
2798	 * are not READY.
2799	 */
2800	BUG_ON(efx->state == STATE_READY);
2801	cancel_work_sync(&efx->reset_work);
2802
2803	efx_disable_interrupts(efx);
2804	efx_nic_fini_interrupt(efx);
2805	efx_fini_port(efx);
2806	efx->type->fini(efx);
2807	efx_fini_napi(efx);
2808	efx_remove_all(efx);
2809}
2810
2811/* Final NIC shutdown
2812 * This is called only at module unload (or hotplug removal).
2813 */
2814static void efx_pci_remove(struct pci_dev *pci_dev)
2815{
2816	struct efx_nic *efx;
2817
2818	efx = pci_get_drvdata(pci_dev);
2819	if (!efx)
2820		return;
2821
2822	/* Mark the NIC as fini, then stop the interface */
2823	rtnl_lock();
2824	efx_dissociate(efx);
2825	dev_close(efx->net_dev);
2826	efx_disable_interrupts(efx);
2827	rtnl_unlock();
2828
2829	efx_sriov_fini(efx);
2830	efx_unregister_netdev(efx);
2831
2832	efx_mtd_remove(efx);
2833
2834	efx_pci_remove_main(efx);
2835
2836	efx_fini_io(efx);
2837	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2838
2839	efx_fini_struct(efx);
2840	free_netdev(efx->net_dev);
2841
2842	pci_disable_pcie_error_reporting(pci_dev);
2843};
2844
2845/* NIC VPD information
2846 * Called during probe to display the part number of the
2847 * installed NIC.  VPD is potentially very large but this should
2848 * always appear within the first 512 bytes.
2849 */
2850#define SFC_VPD_LEN 512
2851static void efx_probe_vpd_strings(struct efx_nic *efx)
2852{
2853	struct pci_dev *dev = efx->pci_dev;
2854	char vpd_data[SFC_VPD_LEN];
2855	ssize_t vpd_size;
2856	int ro_start, ro_size, i, j;
2857
2858	/* Get the vpd data from the device */
2859	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2860	if (vpd_size <= 0) {
2861		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2862		return;
2863	}
2864
2865	/* Get the Read only section */
2866	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2867	if (ro_start < 0) {
2868		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2869		return;
2870	}
2871
2872	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2873	j = ro_size;
2874	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2875	if (i + j > vpd_size)
2876		j = vpd_size - i;
2877
2878	/* Get the Part number */
2879	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2880	if (i < 0) {
2881		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2882		return;
2883	}
2884
2885	j = pci_vpd_info_field_size(&vpd_data[i]);
2886	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2887	if (i + j > vpd_size) {
2888		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2889		return;
2890	}
2891
2892	netif_info(efx, drv, efx->net_dev,
2893		   "Part Number : %.*s\n", j, &vpd_data[i]);
2894
2895	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2896	j = ro_size;
2897	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2898	if (i < 0) {
2899		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2900		return;
2901	}
2902
2903	j = pci_vpd_info_field_size(&vpd_data[i]);
2904	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2905	if (i + j > vpd_size) {
2906		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2907		return;
2908	}
2909
2910	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2911	if (!efx->vpd_sn)
2912		return;
2913
2914	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2915}
2916
2917
2918/* Main body of NIC initialisation
2919 * This is called at module load (or hotplug insertion, theoretically).
2920 */
2921static int efx_pci_probe_main(struct efx_nic *efx)
2922{
2923	int rc;
2924
2925	/* Do start-of-day initialisation */
2926	rc = efx_probe_all(efx);
2927	if (rc)
2928		goto fail1;
2929
2930	efx_init_napi(efx);
2931
2932	rc = efx->type->init(efx);
2933	if (rc) {
2934		netif_err(efx, probe, efx->net_dev,
2935			  "failed to initialise NIC\n");
2936		goto fail3;
2937	}
2938
2939	rc = efx_init_port(efx);
2940	if (rc) {
2941		netif_err(efx, probe, efx->net_dev,
2942			  "failed to initialise port\n");
2943		goto fail4;
2944	}
2945
2946	rc = efx_nic_init_interrupt(efx);
2947	if (rc)
2948		goto fail5;
2949	rc = efx_enable_interrupts(efx);
2950	if (rc)
2951		goto fail6;
2952
2953	return 0;
2954
2955 fail6:
2956	efx_nic_fini_interrupt(efx);
2957 fail5:
2958	efx_fini_port(efx);
2959 fail4:
2960	efx->type->fini(efx);
2961 fail3:
2962	efx_fini_napi(efx);
2963	efx_remove_all(efx);
2964 fail1:
2965	return rc;
2966}
2967
2968/* NIC initialisation
2969 *
2970 * This is called at module load (or hotplug insertion,
2971 * theoretically).  It sets up PCI mappings, resets the NIC,
2972 * sets up and registers the network devices with the kernel and hooks
2973 * the interrupt service routine.  It does not prepare the device for
2974 * transmission; this is left to the first time one of the network
2975 * interfaces is brought up (i.e. efx_net_open).
2976 */
2977static int efx_pci_probe(struct pci_dev *pci_dev,
2978			 const struct pci_device_id *entry)
2979{
2980	struct net_device *net_dev;
2981	struct efx_nic *efx;
2982	int rc;
2983
2984	/* Allocate and initialise a struct net_device and struct efx_nic */
2985	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2986				     EFX_MAX_RX_QUEUES);
2987	if (!net_dev)
2988		return -ENOMEM;
2989	efx = netdev_priv(net_dev);
2990	efx->type = (const struct efx_nic_type *) entry->driver_data;
2991	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2992			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2993			      NETIF_F_RXCSUM);
2994	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2995		net_dev->features |= NETIF_F_TSO6;
2996	/* Mask for features that also apply to VLAN devices */
2997	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2998				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2999				   NETIF_F_RXCSUM);
3000	/* All offloads can be toggled */
3001	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3002	pci_set_drvdata(pci_dev, efx);
3003	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3004	rc = efx_init_struct(efx, pci_dev, net_dev);
3005	if (rc)
3006		goto fail1;
3007
3008	netif_info(efx, probe, efx->net_dev,
3009		   "Solarflare NIC detected\n");
3010
3011	efx_probe_vpd_strings(efx);
3012
3013	/* Set up basic I/O (BAR mappings etc) */
3014	rc = efx_init_io(efx);
3015	if (rc)
3016		goto fail2;
3017
3018	rc = efx_pci_probe_main(efx);
3019	if (rc)
3020		goto fail3;
3021
3022	rc = efx_register_netdev(efx);
3023	if (rc)
3024		goto fail4;
3025
3026	rc = efx_sriov_init(efx);
3027	if (rc)
3028		netif_err(efx, probe, efx->net_dev,
3029			  "SR-IOV can't be enabled rc %d\n", rc);
3030
3031	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3032
3033	/* Try to create MTDs, but allow this to fail */
3034	rtnl_lock();
3035	rc = efx_mtd_probe(efx);
3036	rtnl_unlock();
3037	if (rc)
3038		netif_warn(efx, probe, efx->net_dev,
3039			   "failed to create MTDs (%d)\n", rc);
3040
3041	rc = pci_enable_pcie_error_reporting(pci_dev);
3042	if (rc && rc != -EINVAL)
3043		netif_warn(efx, probe, efx->net_dev,
3044			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3045
3046	return 0;
3047
3048 fail4:
3049	efx_pci_remove_main(efx);
3050 fail3:
3051	efx_fini_io(efx);
3052 fail2:
3053	efx_fini_struct(efx);
3054 fail1:
3055	WARN_ON(rc > 0);
3056	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3057	free_netdev(net_dev);
3058	return rc;
3059}
3060
3061static int efx_pm_freeze(struct device *dev)
3062{
3063	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3064
3065	rtnl_lock();
3066
3067	if (efx->state != STATE_DISABLED) {
3068		efx->state = STATE_UNINIT;
3069
3070		efx_device_detach_sync(efx);
3071
3072		efx_stop_all(efx);
3073		efx_disable_interrupts(efx);
3074	}
3075
3076	rtnl_unlock();
3077
3078	return 0;
3079}
3080
3081static int efx_pm_thaw(struct device *dev)
3082{
3083	int rc;
3084	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3085
3086	rtnl_lock();
3087
3088	if (efx->state != STATE_DISABLED) {
3089		rc = efx_enable_interrupts(efx);
3090		if (rc)
3091			goto fail;
3092
3093		mutex_lock(&efx->mac_lock);
3094		efx->phy_op->reconfigure(efx);
3095		mutex_unlock(&efx->mac_lock);
3096
3097		efx_start_all(efx);
3098
3099		netif_device_attach(efx->net_dev);
3100
3101		efx->state = STATE_READY;
3102
3103		efx->type->resume_wol(efx);
3104	}
3105
3106	rtnl_unlock();
3107
3108	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3109	queue_work(reset_workqueue, &efx->reset_work);
3110
3111	return 0;
3112
3113fail:
3114	rtnl_unlock();
3115
3116	return rc;
3117}
3118
3119static int efx_pm_poweroff(struct device *dev)
3120{
3121	struct pci_dev *pci_dev = to_pci_dev(dev);
3122	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3123
3124	efx->type->fini(efx);
3125
3126	efx->reset_pending = 0;
3127
3128	pci_save_state(pci_dev);
3129	return pci_set_power_state(pci_dev, PCI_D3hot);
3130}
3131
3132/* Used for both resume and restore */
3133static int efx_pm_resume(struct device *dev)
3134{
3135	struct pci_dev *pci_dev = to_pci_dev(dev);
3136	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3137	int rc;
3138
3139	rc = pci_set_power_state(pci_dev, PCI_D0);
3140	if (rc)
3141		return rc;
3142	pci_restore_state(pci_dev);
3143	rc = pci_enable_device(pci_dev);
3144	if (rc)
3145		return rc;
3146	pci_set_master(efx->pci_dev);
3147	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3148	if (rc)
3149		return rc;
3150	rc = efx->type->init(efx);
3151	if (rc)
3152		return rc;
3153	rc = efx_pm_thaw(dev);
3154	return rc;
3155}
3156
3157static int efx_pm_suspend(struct device *dev)
3158{
3159	int rc;
3160
3161	efx_pm_freeze(dev);
3162	rc = efx_pm_poweroff(dev);
3163	if (rc)
3164		efx_pm_resume(dev);
3165	return rc;
3166}
3167
3168static const struct dev_pm_ops efx_pm_ops = {
3169	.suspend	= efx_pm_suspend,
3170	.resume		= efx_pm_resume,
3171	.freeze		= efx_pm_freeze,
3172	.thaw		= efx_pm_thaw,
3173	.poweroff	= efx_pm_poweroff,
3174	.restore	= efx_pm_resume,
3175};
3176
3177/* A PCI error affecting this device was detected.
3178 * At this point MMIO and DMA may be disabled.
3179 * Stop the software path and request a slot reset.
3180 */
3181static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3182					      enum pci_channel_state state)
3183{
3184	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3185	struct efx_nic *efx = pci_get_drvdata(pdev);
3186
3187	if (state == pci_channel_io_perm_failure)
3188		return PCI_ERS_RESULT_DISCONNECT;
3189
3190	rtnl_lock();
3191
3192	if (efx->state != STATE_DISABLED) {
3193		efx->state = STATE_RECOVERY;
3194		efx->reset_pending = 0;
3195
3196		efx_device_detach_sync(efx);
3197
3198		efx_stop_all(efx);
3199		efx_disable_interrupts(efx);
3200
3201		status = PCI_ERS_RESULT_NEED_RESET;
3202	} else {
3203		/* If the interface is disabled we don't want to do anything
3204		 * with it.
3205		 */
3206		status = PCI_ERS_RESULT_RECOVERED;
3207	}
3208
3209	rtnl_unlock();
3210
3211	pci_disable_device(pdev);
3212
3213	return status;
3214}
3215
3216/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3217static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3218{
3219	struct efx_nic *efx = pci_get_drvdata(pdev);
3220	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3221	int rc;
3222
3223	if (pci_enable_device(pdev)) {
3224		netif_err(efx, hw, efx->net_dev,
3225			  "Cannot re-enable PCI device after reset.\n");
3226		status =  PCI_ERS_RESULT_DISCONNECT;
3227	}
3228
3229	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3230	if (rc) {
3231		netif_err(efx, hw, efx->net_dev,
3232		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3233		/* Non-fatal error. Continue. */
3234	}
3235
3236	return status;
3237}
3238
3239/* Perform the actual reset and resume I/O operations. */
3240static void efx_io_resume(struct pci_dev *pdev)
3241{
3242	struct efx_nic *efx = pci_get_drvdata(pdev);
3243	int rc;
3244
3245	rtnl_lock();
3246
3247	if (efx->state == STATE_DISABLED)
3248		goto out;
3249
3250	rc = efx_reset(efx, RESET_TYPE_ALL);
3251	if (rc) {
3252		netif_err(efx, hw, efx->net_dev,
3253			  "efx_reset failed after PCI error (%d)\n", rc);
3254	} else {
3255		efx->state = STATE_READY;
3256		netif_dbg(efx, hw, efx->net_dev,
3257			  "Done resetting and resuming IO after PCI error.\n");
3258	}
3259
3260out:
3261	rtnl_unlock();
3262}
3263
3264/* For simplicity and reliability, we always require a slot reset and try to
3265 * reset the hardware when a pci error affecting the device is detected.
3266 * We leave both the link_reset and mmio_enabled callback unimplemented:
3267 * with our request for slot reset the mmio_enabled callback will never be
3268 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3269 */
3270static struct pci_error_handlers efx_err_handlers = {
3271	.error_detected = efx_io_error_detected,
3272	.slot_reset	= efx_io_slot_reset,
3273	.resume		= efx_io_resume,
3274};
3275
3276static struct pci_driver efx_pci_driver = {
3277	.name		= KBUILD_MODNAME,
3278	.id_table	= efx_pci_table,
3279	.probe		= efx_pci_probe,
3280	.remove		= efx_pci_remove,
3281	.driver.pm	= &efx_pm_ops,
3282	.err_handler	= &efx_err_handlers,
3283};
3284
3285/**************************************************************************
3286 *
3287 * Kernel module interface
3288 *
3289 *************************************************************************/
3290
3291module_param(interrupt_mode, uint, 0444);
3292MODULE_PARM_DESC(interrupt_mode,
3293		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3294
3295static int __init efx_init_module(void)
3296{
3297	int rc;
3298
3299	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3300
3301	rc = register_netdevice_notifier(&efx_netdev_notifier);
3302	if (rc)
3303		goto err_notifier;
3304
3305	rc = efx_init_sriov();
3306	if (rc)
3307		goto err_sriov;
3308
3309	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3310	if (!reset_workqueue) {
3311		rc = -ENOMEM;
3312		goto err_reset;
3313	}
3314
3315	rc = pci_register_driver(&efx_pci_driver);
3316	if (rc < 0)
3317		goto err_pci;
3318
3319	return 0;
3320
3321 err_pci:
3322	destroy_workqueue(reset_workqueue);
3323 err_reset:
3324	efx_fini_sriov();
3325 err_sriov:
3326	unregister_netdevice_notifier(&efx_netdev_notifier);
3327 err_notifier:
3328	return rc;
3329}
3330
3331static void __exit efx_exit_module(void)
3332{
3333	printk(KERN_INFO "Solarflare NET driver unloading\n");
3334
3335	pci_unregister_driver(&efx_pci_driver);
3336	destroy_workqueue(reset_workqueue);
3337	efx_fini_sriov();
3338	unregister_netdevice_notifier(&efx_netdev_notifier);
3339
3340}
3341
3342module_init(efx_init_module);
3343module_exit(efx_exit_module);
3344
3345MODULE_AUTHOR("Solarflare Communications and "
3346	      "Michael Brown <mbrown@fensystems.co.uk>");
3347MODULE_DESCRIPTION("Solarflare network driver");
3348MODULE_LICENSE("GPL");
3349MODULE_DEVICE_TABLE(pci, efx_pci_table);
3350