efx.c revision 2ec030144f648a6dd208f95f55ece212f1b72771
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/ethtool.h>
21#include <linux/topology.h>
22#include <linux/gfp.h>
23#include <linux/aer.h>
24#include <linux/interrupt.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28#include "selftest.h"
29
30#include "mcdi.h"
31#include "workarounds.h"
32
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42const char *const efx_loopback_mode_names[] = {
43	[LOOPBACK_NONE]		= "NONE",
44	[LOOPBACK_DATA]		= "DATAPATH",
45	[LOOPBACK_GMAC]		= "GMAC",
46	[LOOPBACK_XGMII]	= "XGMII",
47	[LOOPBACK_XGXS]		= "XGXS",
48	[LOOPBACK_XAUI]		= "XAUI",
49	[LOOPBACK_GMII]		= "GMII",
50	[LOOPBACK_SGMII]	= "SGMII",
51	[LOOPBACK_XGBR]		= "XGBR",
52	[LOOPBACK_XFI]		= "XFI",
53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57	[LOOPBACK_GPHY]		= "GPHY",
58	[LOOPBACK_PHYXS]	= "PHYXS",
59	[LOOPBACK_PCS]		= "PCS",
60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61	[LOOPBACK_XPORT]	= "XPORT",
62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66	[LOOPBACK_GMII_WS]	= "GMII_WS",
67	[LOOPBACK_XFI_WS]	= "XFI_WS",
68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70};
71
72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73const char *const efx_reset_type_names[] = {
74	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
75	[RESET_TYPE_ALL]                = "ALL",
76	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
77	[RESET_TYPE_WORLD]              = "WORLD",
78	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79	[RESET_TYPE_DISABLE]            = "DISABLE",
80	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86};
87
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100/*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108static bool separate_tx_channels;
109module_param(separate_tx_channels, bool, 0444);
110MODULE_PARM_DESC(separate_tx_channels,
111		 "Use separate channels for TX and RX");
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
119 * monitor.
120 * On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
123 * On Siena-based NICs for power systems with EEH support, this will give EEH a
124 * chance to start.
125 */
126static unsigned int efx_monitor_interval = 1 * HZ;
127
128/* Initial interrupt moderation settings.  They can be modified after
129 * module load with ethtool.
130 *
131 * The default for RX should strike a balance between increasing the
132 * round-trip latency and reducing overhead.
133 */
134static unsigned int rx_irq_mod_usec = 60;
135
136/* Initial interrupt moderation settings.  They can be modified after
137 * module load with ethtool.
138 *
139 * This default is chosen to ensure that a 10G link does not go idle
140 * while a TX queue is stopped after it has become full.  A queue is
141 * restarted when it drops below half full.  The time this takes (assuming
142 * worst case 3 descriptors per packet and 1024 descriptors) is
143 *   512 / 3 * 1.2 = 205 usec.
144 */
145static unsigned int tx_irq_mod_usec = 150;
146
147/* This is the first interrupt mode to try out of:
148 * 0 => MSI-X
149 * 1 => MSI
150 * 2 => legacy
151 */
152static unsigned int interrupt_mode;
153
154/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
155 * i.e. the number of CPUs among which we may distribute simultaneous
156 * interrupt handling.
157 *
158 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159 * The default (0) means to assign an interrupt to each core.
160 */
161static unsigned int rss_cpus;
162module_param(rss_cpus, uint, 0444);
163MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
164
165static bool phy_flash_cfg;
166module_param(phy_flash_cfg, bool, 0644);
167MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
168
169static unsigned irq_adapt_low_thresh = 8000;
170module_param(irq_adapt_low_thresh, uint, 0644);
171MODULE_PARM_DESC(irq_adapt_low_thresh,
172		 "Threshold score for reducing IRQ moderation");
173
174static unsigned irq_adapt_high_thresh = 16000;
175module_param(irq_adapt_high_thresh, uint, 0644);
176MODULE_PARM_DESC(irq_adapt_high_thresh,
177		 "Threshold score for increasing IRQ moderation");
178
179static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
180			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
181			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
182			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
183module_param(debug, uint, 0);
184MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
185
186/**************************************************************************
187 *
188 * Utility functions and prototypes
189 *
190 *************************************************************************/
191
192static int efx_soft_enable_interrupts(struct efx_nic *efx);
193static void efx_soft_disable_interrupts(struct efx_nic *efx);
194static void efx_remove_channel(struct efx_channel *channel);
195static void efx_remove_channels(struct efx_nic *efx);
196static const struct efx_channel_type efx_default_channel_type;
197static void efx_remove_port(struct efx_nic *efx);
198static void efx_init_napi_channel(struct efx_channel *channel);
199static void efx_fini_napi(struct efx_nic *efx);
200static void efx_fini_napi_channel(struct efx_channel *channel);
201static void efx_fini_struct(struct efx_nic *efx);
202static void efx_start_all(struct efx_nic *efx);
203static void efx_stop_all(struct efx_nic *efx);
204
205#define EFX_ASSERT_RESET_SERIALISED(efx)		\
206	do {						\
207		if ((efx->state == STATE_READY) ||	\
208		    (efx->state == STATE_RECOVERY) ||	\
209		    (efx->state == STATE_DISABLED))	\
210			ASSERT_RTNL();			\
211	} while (0)
212
213static int efx_check_disabled(struct efx_nic *efx)
214{
215	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216		netif_err(efx, drv, efx->net_dev,
217			  "device is disabled due to earlier errors\n");
218		return -EIO;
219	}
220	return 0;
221}
222
223/**************************************************************************
224 *
225 * Event queue processing
226 *
227 *************************************************************************/
228
229/* Process channel's event queue
230 *
231 * This function is responsible for processing the event queue of a
232 * single channel.  The caller must guarantee that this function will
233 * never be concurrently called more than once on the same channel,
234 * though different channels may be being processed concurrently.
235 */
236static int efx_process_channel(struct efx_channel *channel, int budget)
237{
238	int spent;
239
240	if (unlikely(!channel->enabled))
241		return 0;
242
243	spent = efx_nic_process_eventq(channel, budget);
244	if (spent && efx_channel_has_rx_queue(channel)) {
245		struct efx_rx_queue *rx_queue =
246			efx_channel_get_rx_queue(channel);
247
248		efx_rx_flush_packet(channel);
249		efx_fast_push_rx_descriptors(rx_queue);
250	}
251
252	return spent;
253}
254
255/* NAPI poll handler
256 *
257 * NAPI guarantees serialisation of polls of the same device, which
258 * provides the guarantee required by efx_process_channel().
259 */
260static int efx_poll(struct napi_struct *napi, int budget)
261{
262	struct efx_channel *channel =
263		container_of(napi, struct efx_channel, napi_str);
264	struct efx_nic *efx = channel->efx;
265	int spent;
266
267	netif_vdbg(efx, intr, efx->net_dev,
268		   "channel %d NAPI poll executing on CPU %d\n",
269		   channel->channel, raw_smp_processor_id());
270
271	spent = efx_process_channel(channel, budget);
272
273	if (spent < budget) {
274		if (efx_channel_has_rx_queue(channel) &&
275		    efx->irq_rx_adaptive &&
276		    unlikely(++channel->irq_count == 1000)) {
277			if (unlikely(channel->irq_mod_score <
278				     irq_adapt_low_thresh)) {
279				if (channel->irq_moderation > 1) {
280					channel->irq_moderation -= 1;
281					efx->type->push_irq_moderation(channel);
282				}
283			} else if (unlikely(channel->irq_mod_score >
284					    irq_adapt_high_thresh)) {
285				if (channel->irq_moderation <
286				    efx->irq_rx_moderation) {
287					channel->irq_moderation += 1;
288					efx->type->push_irq_moderation(channel);
289				}
290			}
291			channel->irq_count = 0;
292			channel->irq_mod_score = 0;
293		}
294
295		efx_filter_rfs_expire(channel);
296
297		/* There is no race here; although napi_disable() will
298		 * only wait for napi_complete(), this isn't a problem
299		 * since efx_nic_eventq_read_ack() will have no effect if
300		 * interrupts have already been disabled.
301		 */
302		napi_complete(napi);
303		efx_nic_eventq_read_ack(channel);
304	}
305
306	return spent;
307}
308
309/* Create event queue
310 * Event queue memory allocations are done only once.  If the channel
311 * is reset, the memory buffer will be reused; this guards against
312 * errors during channel reset and also simplifies interrupt handling.
313 */
314static int efx_probe_eventq(struct efx_channel *channel)
315{
316	struct efx_nic *efx = channel->efx;
317	unsigned long entries;
318
319	netif_dbg(efx, probe, efx->net_dev,
320		  "chan %d create event queue\n", channel->channel);
321
322	/* Build an event queue with room for one event per tx and rx buffer,
323	 * plus some extra for link state events and MCDI completions. */
324	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
325	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
326	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
327
328	return efx_nic_probe_eventq(channel);
329}
330
331/* Prepare channel's event queue */
332static int efx_init_eventq(struct efx_channel *channel)
333{
334	struct efx_nic *efx = channel->efx;
335	int rc;
336
337	EFX_WARN_ON_PARANOID(channel->eventq_init);
338
339	netif_dbg(efx, drv, efx->net_dev,
340		  "chan %d init event queue\n", channel->channel);
341
342	rc = efx_nic_init_eventq(channel);
343	if (rc == 0) {
344		efx->type->push_irq_moderation(channel);
345		channel->eventq_read_ptr = 0;
346		channel->eventq_init = true;
347	}
348	return rc;
349}
350
351/* Enable event queue processing and NAPI */
352static void efx_start_eventq(struct efx_channel *channel)
353{
354	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
355		  "chan %d start event queue\n", channel->channel);
356
357	/* Make sure the NAPI handler sees the enabled flag set */
358	channel->enabled = true;
359	smp_wmb();
360
361	napi_enable(&channel->napi_str);
362	efx_nic_eventq_read_ack(channel);
363}
364
365/* Disable event queue processing and NAPI */
366static void efx_stop_eventq(struct efx_channel *channel)
367{
368	if (!channel->enabled)
369		return;
370
371	napi_disable(&channel->napi_str);
372	channel->enabled = false;
373}
374
375static void efx_fini_eventq(struct efx_channel *channel)
376{
377	if (!channel->eventq_init)
378		return;
379
380	netif_dbg(channel->efx, drv, channel->efx->net_dev,
381		  "chan %d fini event queue\n", channel->channel);
382
383	efx_nic_fini_eventq(channel);
384	channel->eventq_init = false;
385}
386
387static void efx_remove_eventq(struct efx_channel *channel)
388{
389	netif_dbg(channel->efx, drv, channel->efx->net_dev,
390		  "chan %d remove event queue\n", channel->channel);
391
392	efx_nic_remove_eventq(channel);
393}
394
395/**************************************************************************
396 *
397 * Channel handling
398 *
399 *************************************************************************/
400
401/* Allocate and initialise a channel structure. */
402static struct efx_channel *
403efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
404{
405	struct efx_channel *channel;
406	struct efx_rx_queue *rx_queue;
407	struct efx_tx_queue *tx_queue;
408	int j;
409
410	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
411	if (!channel)
412		return NULL;
413
414	channel->efx = efx;
415	channel->channel = i;
416	channel->type = &efx_default_channel_type;
417
418	for (j = 0; j < EFX_TXQ_TYPES; j++) {
419		tx_queue = &channel->tx_queue[j];
420		tx_queue->efx = efx;
421		tx_queue->queue = i * EFX_TXQ_TYPES + j;
422		tx_queue->channel = channel;
423	}
424
425	rx_queue = &channel->rx_queue;
426	rx_queue->efx = efx;
427	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
428		    (unsigned long)rx_queue);
429
430	return channel;
431}
432
433/* Allocate and initialise a channel structure, copying parameters
434 * (but not resources) from an old channel structure.
435 */
436static struct efx_channel *
437efx_copy_channel(const struct efx_channel *old_channel)
438{
439	struct efx_channel *channel;
440	struct efx_rx_queue *rx_queue;
441	struct efx_tx_queue *tx_queue;
442	int j;
443
444	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
445	if (!channel)
446		return NULL;
447
448	*channel = *old_channel;
449
450	channel->napi_dev = NULL;
451	memset(&channel->eventq, 0, sizeof(channel->eventq));
452
453	for (j = 0; j < EFX_TXQ_TYPES; j++) {
454		tx_queue = &channel->tx_queue[j];
455		if (tx_queue->channel)
456			tx_queue->channel = channel;
457		tx_queue->buffer = NULL;
458		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
459	}
460
461	rx_queue = &channel->rx_queue;
462	rx_queue->buffer = NULL;
463	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
464	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
465		    (unsigned long)rx_queue);
466
467	return channel;
468}
469
470static int efx_probe_channel(struct efx_channel *channel)
471{
472	struct efx_tx_queue *tx_queue;
473	struct efx_rx_queue *rx_queue;
474	int rc;
475
476	netif_dbg(channel->efx, probe, channel->efx->net_dev,
477		  "creating channel %d\n", channel->channel);
478
479	rc = channel->type->pre_probe(channel);
480	if (rc)
481		goto fail;
482
483	rc = efx_probe_eventq(channel);
484	if (rc)
485		goto fail;
486
487	efx_for_each_channel_tx_queue(tx_queue, channel) {
488		rc = efx_probe_tx_queue(tx_queue);
489		if (rc)
490			goto fail;
491	}
492
493	efx_for_each_channel_rx_queue(rx_queue, channel) {
494		rc = efx_probe_rx_queue(rx_queue);
495		if (rc)
496			goto fail;
497	}
498
499	channel->n_rx_frm_trunc = 0;
500
501	return 0;
502
503fail:
504	efx_remove_channel(channel);
505	return rc;
506}
507
508static void
509efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
510{
511	struct efx_nic *efx = channel->efx;
512	const char *type;
513	int number;
514
515	number = channel->channel;
516	if (efx->tx_channel_offset == 0) {
517		type = "";
518	} else if (channel->channel < efx->tx_channel_offset) {
519		type = "-rx";
520	} else {
521		type = "-tx";
522		number -= efx->tx_channel_offset;
523	}
524	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
525}
526
527static void efx_set_channel_names(struct efx_nic *efx)
528{
529	struct efx_channel *channel;
530
531	efx_for_each_channel(channel, efx)
532		channel->type->get_name(channel,
533					efx->msi_context[channel->channel].name,
534					sizeof(efx->msi_context[0].name));
535}
536
537static int efx_probe_channels(struct efx_nic *efx)
538{
539	struct efx_channel *channel;
540	int rc;
541
542	/* Restart special buffer allocation */
543	efx->next_buffer_table = 0;
544
545	/* Probe channels in reverse, so that any 'extra' channels
546	 * use the start of the buffer table. This allows the traffic
547	 * channels to be resized without moving them or wasting the
548	 * entries before them.
549	 */
550	efx_for_each_channel_rev(channel, efx) {
551		rc = efx_probe_channel(channel);
552		if (rc) {
553			netif_err(efx, probe, efx->net_dev,
554				  "failed to create channel %d\n",
555				  channel->channel);
556			goto fail;
557		}
558	}
559	efx_set_channel_names(efx);
560
561	return 0;
562
563fail:
564	efx_remove_channels(efx);
565	return rc;
566}
567
568/* Channels are shutdown and reinitialised whilst the NIC is running
569 * to propagate configuration changes (mtu, checksum offload), or
570 * to clear hardware error conditions
571 */
572static void efx_start_datapath(struct efx_nic *efx)
573{
574	bool old_rx_scatter = efx->rx_scatter;
575	struct efx_tx_queue *tx_queue;
576	struct efx_rx_queue *rx_queue;
577	struct efx_channel *channel;
578	size_t rx_buf_len;
579
580	/* Calculate the rx buffer allocation parameters required to
581	 * support the current MTU, including padding for header
582	 * alignment and overruns.
583	 */
584	efx->rx_dma_len = (efx->rx_prefix_size +
585			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
586			   efx->type->rx_buffer_padding);
587	rx_buf_len = (sizeof(struct efx_rx_page_state) +
588		      efx->rx_ip_align + efx->rx_dma_len);
589	if (rx_buf_len <= PAGE_SIZE) {
590		efx->rx_scatter = efx->type->always_rx_scatter;
591		efx->rx_buffer_order = 0;
592	} else if (efx->type->can_rx_scatter) {
593		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
594		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
595			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
596				       EFX_RX_BUF_ALIGNMENT) >
597			     PAGE_SIZE);
598		efx->rx_scatter = true;
599		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
600		efx->rx_buffer_order = 0;
601	} else {
602		efx->rx_scatter = false;
603		efx->rx_buffer_order = get_order(rx_buf_len);
604	}
605
606	efx_rx_config_page_split(efx);
607	if (efx->rx_buffer_order)
608		netif_dbg(efx, drv, efx->net_dev,
609			  "RX buf len=%u; page order=%u batch=%u\n",
610			  efx->rx_dma_len, efx->rx_buffer_order,
611			  efx->rx_pages_per_batch);
612	else
613		netif_dbg(efx, drv, efx->net_dev,
614			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
615			  efx->rx_dma_len, efx->rx_page_buf_step,
616			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
617
618	/* RX filters may also have scatter-enabled flags */
619	if (efx->rx_scatter != old_rx_scatter)
620		efx->type->filter_update_rx_scatter(efx);
621
622	/* We must keep at least one descriptor in a TX ring empty.
623	 * We could avoid this when the queue size does not exactly
624	 * match the hardware ring size, but it's not that important.
625	 * Therefore we stop the queue when one more skb might fill
626	 * the ring completely.  We wake it when half way back to
627	 * empty.
628	 */
629	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
630	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
631
632	/* Initialise the channels */
633	efx_for_each_channel(channel, efx) {
634		efx_for_each_channel_tx_queue(tx_queue, channel) {
635			efx_init_tx_queue(tx_queue);
636			atomic_inc(&efx->active_queues);
637		}
638
639		efx_for_each_channel_rx_queue(rx_queue, channel) {
640			efx_init_rx_queue(rx_queue);
641			atomic_inc(&efx->active_queues);
642			efx_nic_generate_fill_event(rx_queue);
643		}
644
645		WARN_ON(channel->rx_pkt_n_frags);
646	}
647
648	efx_ptp_start_datapath(efx);
649
650	if (netif_device_present(efx->net_dev))
651		netif_tx_wake_all_queues(efx->net_dev);
652}
653
654static void efx_stop_datapath(struct efx_nic *efx)
655{
656	struct efx_channel *channel;
657	struct efx_tx_queue *tx_queue;
658	struct efx_rx_queue *rx_queue;
659	int rc;
660
661	EFX_ASSERT_RESET_SERIALISED(efx);
662	BUG_ON(efx->port_enabled);
663
664	efx_ptp_stop_datapath(efx);
665
666	/* Stop RX refill */
667	efx_for_each_channel(channel, efx) {
668		efx_for_each_channel_rx_queue(rx_queue, channel)
669			rx_queue->refill_enabled = false;
670	}
671
672	efx_for_each_channel(channel, efx) {
673		/* RX packet processing is pipelined, so wait for the
674		 * NAPI handler to complete.  At least event queue 0
675		 * might be kept active by non-data events, so don't
676		 * use napi_synchronize() but actually disable NAPI
677		 * temporarily.
678		 */
679		if (efx_channel_has_rx_queue(channel)) {
680			efx_stop_eventq(channel);
681			efx_start_eventq(channel);
682		}
683	}
684
685	rc = efx->type->fini_dmaq(efx);
686	if (rc && EFX_WORKAROUND_7803(efx)) {
687		/* Schedule a reset to recover from the flush failure. The
688		 * descriptor caches reference memory we're about to free,
689		 * but falcon_reconfigure_mac_wrapper() won't reconnect
690		 * the MACs because of the pending reset.
691		 */
692		netif_err(efx, drv, efx->net_dev,
693			  "Resetting to recover from flush failure\n");
694		efx_schedule_reset(efx, RESET_TYPE_ALL);
695	} else if (rc) {
696		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
697	} else {
698		netif_dbg(efx, drv, efx->net_dev,
699			  "successfully flushed all queues\n");
700	}
701
702	efx_for_each_channel(channel, efx) {
703		efx_for_each_channel_rx_queue(rx_queue, channel)
704			efx_fini_rx_queue(rx_queue);
705		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
706			efx_fini_tx_queue(tx_queue);
707	}
708}
709
710static void efx_remove_channel(struct efx_channel *channel)
711{
712	struct efx_tx_queue *tx_queue;
713	struct efx_rx_queue *rx_queue;
714
715	netif_dbg(channel->efx, drv, channel->efx->net_dev,
716		  "destroy chan %d\n", channel->channel);
717
718	efx_for_each_channel_rx_queue(rx_queue, channel)
719		efx_remove_rx_queue(rx_queue);
720	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721		efx_remove_tx_queue(tx_queue);
722	efx_remove_eventq(channel);
723	channel->type->post_remove(channel);
724}
725
726static void efx_remove_channels(struct efx_nic *efx)
727{
728	struct efx_channel *channel;
729
730	efx_for_each_channel(channel, efx)
731		efx_remove_channel(channel);
732}
733
734int
735efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
736{
737	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
738	u32 old_rxq_entries, old_txq_entries;
739	unsigned i, next_buffer_table = 0;
740	int rc, rc2;
741
742	rc = efx_check_disabled(efx);
743	if (rc)
744		return rc;
745
746	/* Not all channels should be reallocated. We must avoid
747	 * reallocating their buffer table entries.
748	 */
749	efx_for_each_channel(channel, efx) {
750		struct efx_rx_queue *rx_queue;
751		struct efx_tx_queue *tx_queue;
752
753		if (channel->type->copy)
754			continue;
755		next_buffer_table = max(next_buffer_table,
756					channel->eventq.index +
757					channel->eventq.entries);
758		efx_for_each_channel_rx_queue(rx_queue, channel)
759			next_buffer_table = max(next_buffer_table,
760						rx_queue->rxd.index +
761						rx_queue->rxd.entries);
762		efx_for_each_channel_tx_queue(tx_queue, channel)
763			next_buffer_table = max(next_buffer_table,
764						tx_queue->txd.index +
765						tx_queue->txd.entries);
766	}
767
768	efx_device_detach_sync(efx);
769	efx_stop_all(efx);
770	efx_soft_disable_interrupts(efx);
771
772	/* Clone channels (where possible) */
773	memset(other_channel, 0, sizeof(other_channel));
774	for (i = 0; i < efx->n_channels; i++) {
775		channel = efx->channel[i];
776		if (channel->type->copy)
777			channel = channel->type->copy(channel);
778		if (!channel) {
779			rc = -ENOMEM;
780			goto out;
781		}
782		other_channel[i] = channel;
783	}
784
785	/* Swap entry counts and channel pointers */
786	old_rxq_entries = efx->rxq_entries;
787	old_txq_entries = efx->txq_entries;
788	efx->rxq_entries = rxq_entries;
789	efx->txq_entries = txq_entries;
790	for (i = 0; i < efx->n_channels; i++) {
791		channel = efx->channel[i];
792		efx->channel[i] = other_channel[i];
793		other_channel[i] = channel;
794	}
795
796	/* Restart buffer table allocation */
797	efx->next_buffer_table = next_buffer_table;
798
799	for (i = 0; i < efx->n_channels; i++) {
800		channel = efx->channel[i];
801		if (!channel->type->copy)
802			continue;
803		rc = efx_probe_channel(channel);
804		if (rc)
805			goto rollback;
806		efx_init_napi_channel(efx->channel[i]);
807	}
808
809out:
810	/* Destroy unused channel structures */
811	for (i = 0; i < efx->n_channels; i++) {
812		channel = other_channel[i];
813		if (channel && channel->type->copy) {
814			efx_fini_napi_channel(channel);
815			efx_remove_channel(channel);
816			kfree(channel);
817		}
818	}
819
820	rc2 = efx_soft_enable_interrupts(efx);
821	if (rc2) {
822		rc = rc ? rc : rc2;
823		netif_err(efx, drv, efx->net_dev,
824			  "unable to restart interrupts on channel reallocation\n");
825		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
826	} else {
827		efx_start_all(efx);
828		netif_device_attach(efx->net_dev);
829	}
830	return rc;
831
832rollback:
833	/* Swap back */
834	efx->rxq_entries = old_rxq_entries;
835	efx->txq_entries = old_txq_entries;
836	for (i = 0; i < efx->n_channels; i++) {
837		channel = efx->channel[i];
838		efx->channel[i] = other_channel[i];
839		other_channel[i] = channel;
840	}
841	goto out;
842}
843
844void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
845{
846	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
847}
848
849static const struct efx_channel_type efx_default_channel_type = {
850	.pre_probe		= efx_channel_dummy_op_int,
851	.post_remove		= efx_channel_dummy_op_void,
852	.get_name		= efx_get_channel_name,
853	.copy			= efx_copy_channel,
854	.keep_eventq		= false,
855};
856
857int efx_channel_dummy_op_int(struct efx_channel *channel)
858{
859	return 0;
860}
861
862void efx_channel_dummy_op_void(struct efx_channel *channel)
863{
864}
865
866/**************************************************************************
867 *
868 * Port handling
869 *
870 **************************************************************************/
871
872/* This ensures that the kernel is kept informed (via
873 * netif_carrier_on/off) of the link status, and also maintains the
874 * link status's stop on the port's TX queue.
875 */
876void efx_link_status_changed(struct efx_nic *efx)
877{
878	struct efx_link_state *link_state = &efx->link_state;
879
880	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
881	 * that no events are triggered between unregister_netdev() and the
882	 * driver unloading. A more general condition is that NETDEV_CHANGE
883	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
884	if (!netif_running(efx->net_dev))
885		return;
886
887	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
888		efx->n_link_state_changes++;
889
890		if (link_state->up)
891			netif_carrier_on(efx->net_dev);
892		else
893			netif_carrier_off(efx->net_dev);
894	}
895
896	/* Status message for kernel log */
897	if (link_state->up)
898		netif_info(efx, link, efx->net_dev,
899			   "link up at %uMbps %s-duplex (MTU %d)\n",
900			   link_state->speed, link_state->fd ? "full" : "half",
901			   efx->net_dev->mtu);
902	else
903		netif_info(efx, link, efx->net_dev, "link down\n");
904}
905
906void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
907{
908	efx->link_advertising = advertising;
909	if (advertising) {
910		if (advertising & ADVERTISED_Pause)
911			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
912		else
913			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
914		if (advertising & ADVERTISED_Asym_Pause)
915			efx->wanted_fc ^= EFX_FC_TX;
916	}
917}
918
919void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
920{
921	efx->wanted_fc = wanted_fc;
922	if (efx->link_advertising) {
923		if (wanted_fc & EFX_FC_RX)
924			efx->link_advertising |= (ADVERTISED_Pause |
925						  ADVERTISED_Asym_Pause);
926		else
927			efx->link_advertising &= ~(ADVERTISED_Pause |
928						   ADVERTISED_Asym_Pause);
929		if (wanted_fc & EFX_FC_TX)
930			efx->link_advertising ^= ADVERTISED_Asym_Pause;
931	}
932}
933
934static void efx_fini_port(struct efx_nic *efx);
935
936/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
937 * the MAC appropriately. All other PHY configuration changes are pushed
938 * through phy_op->set_settings(), and pushed asynchronously to the MAC
939 * through efx_monitor().
940 *
941 * Callers must hold the mac_lock
942 */
943int __efx_reconfigure_port(struct efx_nic *efx)
944{
945	enum efx_phy_mode phy_mode;
946	int rc;
947
948	WARN_ON(!mutex_is_locked(&efx->mac_lock));
949
950	/* Disable PHY transmit in mac level loopbacks */
951	phy_mode = efx->phy_mode;
952	if (LOOPBACK_INTERNAL(efx))
953		efx->phy_mode |= PHY_MODE_TX_DISABLED;
954	else
955		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
956
957	rc = efx->type->reconfigure_port(efx);
958
959	if (rc)
960		efx->phy_mode = phy_mode;
961
962	return rc;
963}
964
965/* Reinitialise the MAC to pick up new PHY settings, even if the port is
966 * disabled. */
967int efx_reconfigure_port(struct efx_nic *efx)
968{
969	int rc;
970
971	EFX_ASSERT_RESET_SERIALISED(efx);
972
973	mutex_lock(&efx->mac_lock);
974	rc = __efx_reconfigure_port(efx);
975	mutex_unlock(&efx->mac_lock);
976
977	return rc;
978}
979
980/* Asynchronous work item for changing MAC promiscuity and multicast
981 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
982 * MAC directly. */
983static void efx_mac_work(struct work_struct *data)
984{
985	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
986
987	mutex_lock(&efx->mac_lock);
988	if (efx->port_enabled)
989		efx->type->reconfigure_mac(efx);
990	mutex_unlock(&efx->mac_lock);
991}
992
993static int efx_probe_port(struct efx_nic *efx)
994{
995	int rc;
996
997	netif_dbg(efx, probe, efx->net_dev, "create port\n");
998
999	if (phy_flash_cfg)
1000		efx->phy_mode = PHY_MODE_SPECIAL;
1001
1002	/* Connect up MAC/PHY operations table */
1003	rc = efx->type->probe_port(efx);
1004	if (rc)
1005		return rc;
1006
1007	/* Initialise MAC address to permanent address */
1008	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1009
1010	return 0;
1011}
1012
1013static int efx_init_port(struct efx_nic *efx)
1014{
1015	int rc;
1016
1017	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1018
1019	mutex_lock(&efx->mac_lock);
1020
1021	rc = efx->phy_op->init(efx);
1022	if (rc)
1023		goto fail1;
1024
1025	efx->port_initialized = true;
1026
1027	/* Reconfigure the MAC before creating dma queues (required for
1028	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1029	efx->type->reconfigure_mac(efx);
1030
1031	/* Ensure the PHY advertises the correct flow control settings */
1032	rc = efx->phy_op->reconfigure(efx);
1033	if (rc)
1034		goto fail2;
1035
1036	mutex_unlock(&efx->mac_lock);
1037	return 0;
1038
1039fail2:
1040	efx->phy_op->fini(efx);
1041fail1:
1042	mutex_unlock(&efx->mac_lock);
1043	return rc;
1044}
1045
1046static void efx_start_port(struct efx_nic *efx)
1047{
1048	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1049	BUG_ON(efx->port_enabled);
1050
1051	mutex_lock(&efx->mac_lock);
1052	efx->port_enabled = true;
1053
1054	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1055	 * and then cancelled by efx_flush_all() */
1056	efx->type->reconfigure_mac(efx);
1057
1058	mutex_unlock(&efx->mac_lock);
1059}
1060
1061/* Prevent efx_mac_work() and efx_monitor() from working */
1062static void efx_stop_port(struct efx_nic *efx)
1063{
1064	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1065
1066	mutex_lock(&efx->mac_lock);
1067	efx->port_enabled = false;
1068	mutex_unlock(&efx->mac_lock);
1069
1070	/* Serialise against efx_set_multicast_list() */
1071	netif_addr_lock_bh(efx->net_dev);
1072	netif_addr_unlock_bh(efx->net_dev);
1073}
1074
1075static void efx_fini_port(struct efx_nic *efx)
1076{
1077	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1078
1079	if (!efx->port_initialized)
1080		return;
1081
1082	efx->phy_op->fini(efx);
1083	efx->port_initialized = false;
1084
1085	efx->link_state.up = false;
1086	efx_link_status_changed(efx);
1087}
1088
1089static void efx_remove_port(struct efx_nic *efx)
1090{
1091	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1092
1093	efx->type->remove_port(efx);
1094}
1095
1096/**************************************************************************
1097 *
1098 * NIC handling
1099 *
1100 **************************************************************************/
1101
1102/* This configures the PCI device to enable I/O and DMA. */
1103static int efx_init_io(struct efx_nic *efx)
1104{
1105	struct pci_dev *pci_dev = efx->pci_dev;
1106	dma_addr_t dma_mask = efx->type->max_dma_mask;
1107	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1108	int rc;
1109
1110	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1111
1112	rc = pci_enable_device(pci_dev);
1113	if (rc) {
1114		netif_err(efx, probe, efx->net_dev,
1115			  "failed to enable PCI device\n");
1116		goto fail1;
1117	}
1118
1119	pci_set_master(pci_dev);
1120
1121	/* Set the PCI DMA mask.  Try all possibilities from our
1122	 * genuine mask down to 32 bits, because some architectures
1123	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1124	 * masks event though they reject 46 bit masks.
1125	 */
1126	while (dma_mask > 0x7fffffffUL) {
1127		if (dma_supported(&pci_dev->dev, dma_mask)) {
1128			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1129			if (rc == 0)
1130				break;
1131		}
1132		dma_mask >>= 1;
1133	}
1134	if (rc) {
1135		netif_err(efx, probe, efx->net_dev,
1136			  "could not find a suitable DMA mask\n");
1137		goto fail2;
1138	}
1139	netif_dbg(efx, probe, efx->net_dev,
1140		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1141
1142	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1143	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1144	if (rc) {
1145		netif_err(efx, probe, efx->net_dev,
1146			  "request for memory BAR failed\n");
1147		rc = -EIO;
1148		goto fail3;
1149	}
1150	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1151	if (!efx->membase) {
1152		netif_err(efx, probe, efx->net_dev,
1153			  "could not map memory BAR at %llx+%x\n",
1154			  (unsigned long long)efx->membase_phys, mem_map_size);
1155		rc = -ENOMEM;
1156		goto fail4;
1157	}
1158	netif_dbg(efx, probe, efx->net_dev,
1159		  "memory BAR at %llx+%x (virtual %p)\n",
1160		  (unsigned long long)efx->membase_phys, mem_map_size,
1161		  efx->membase);
1162
1163	return 0;
1164
1165 fail4:
1166	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1167 fail3:
1168	efx->membase_phys = 0;
1169 fail2:
1170	pci_disable_device(efx->pci_dev);
1171 fail1:
1172	return rc;
1173}
1174
1175static void efx_fini_io(struct efx_nic *efx)
1176{
1177	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1178
1179	if (efx->membase) {
1180		iounmap(efx->membase);
1181		efx->membase = NULL;
1182	}
1183
1184	if (efx->membase_phys) {
1185		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1186		efx->membase_phys = 0;
1187	}
1188
1189	pci_disable_device(efx->pci_dev);
1190}
1191
1192static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1193{
1194	cpumask_var_t thread_mask;
1195	unsigned int count;
1196	int cpu;
1197
1198	if (rss_cpus) {
1199		count = rss_cpus;
1200	} else {
1201		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1202			netif_warn(efx, probe, efx->net_dev,
1203				   "RSS disabled due to allocation failure\n");
1204			return 1;
1205		}
1206
1207		count = 0;
1208		for_each_online_cpu(cpu) {
1209			if (!cpumask_test_cpu(cpu, thread_mask)) {
1210				++count;
1211				cpumask_or(thread_mask, thread_mask,
1212					   topology_thread_cpumask(cpu));
1213			}
1214		}
1215
1216		free_cpumask_var(thread_mask);
1217	}
1218
1219	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1220	 * table entries that are inaccessible to VFs
1221	 */
1222	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1223	    count > efx_vf_size(efx)) {
1224		netif_warn(efx, probe, efx->net_dev,
1225			   "Reducing number of RSS channels from %u to %u for "
1226			   "VF support. Increase vf-msix-limit to use more "
1227			   "channels on the PF.\n",
1228			   count, efx_vf_size(efx));
1229		count = efx_vf_size(efx);
1230	}
1231
1232	return count;
1233}
1234
1235/* Probe the number and type of interrupts we are able to obtain, and
1236 * the resulting numbers of channels and RX queues.
1237 */
1238static int efx_probe_interrupts(struct efx_nic *efx)
1239{
1240	unsigned int extra_channels = 0;
1241	unsigned int i, j;
1242	int rc;
1243
1244	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1245		if (efx->extra_channel_type[i])
1246			++extra_channels;
1247
1248	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1249		struct msix_entry xentries[EFX_MAX_CHANNELS];
1250		unsigned int n_channels;
1251
1252		n_channels = efx_wanted_parallelism(efx);
1253		if (separate_tx_channels)
1254			n_channels *= 2;
1255		n_channels += extra_channels;
1256		n_channels = min(n_channels, efx->max_channels);
1257
1258		for (i = 0; i < n_channels; i++)
1259			xentries[i].entry = i;
1260		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1261		if (rc > 0) {
1262			netif_err(efx, drv, efx->net_dev,
1263				  "WARNING: Insufficient MSI-X vectors"
1264				  " available (%d < %u).\n", rc, n_channels);
1265			netif_err(efx, drv, efx->net_dev,
1266				  "WARNING: Performance may be reduced.\n");
1267			EFX_BUG_ON_PARANOID(rc >= n_channels);
1268			n_channels = rc;
1269			rc = pci_enable_msix(efx->pci_dev, xentries,
1270					     n_channels);
1271		}
1272
1273		if (rc == 0) {
1274			efx->n_channels = n_channels;
1275			if (n_channels > extra_channels)
1276				n_channels -= extra_channels;
1277			if (separate_tx_channels) {
1278				efx->n_tx_channels = max(n_channels / 2, 1U);
1279				efx->n_rx_channels = max(n_channels -
1280							 efx->n_tx_channels,
1281							 1U);
1282			} else {
1283				efx->n_tx_channels = n_channels;
1284				efx->n_rx_channels = n_channels;
1285			}
1286			for (i = 0; i < efx->n_channels; i++)
1287				efx_get_channel(efx, i)->irq =
1288					xentries[i].vector;
1289		} else {
1290			/* Fall back to single channel MSI */
1291			efx->interrupt_mode = EFX_INT_MODE_MSI;
1292			netif_err(efx, drv, efx->net_dev,
1293				  "could not enable MSI-X\n");
1294		}
1295	}
1296
1297	/* Try single interrupt MSI */
1298	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1299		efx->n_channels = 1;
1300		efx->n_rx_channels = 1;
1301		efx->n_tx_channels = 1;
1302		rc = pci_enable_msi(efx->pci_dev);
1303		if (rc == 0) {
1304			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1305		} else {
1306			netif_err(efx, drv, efx->net_dev,
1307				  "could not enable MSI\n");
1308			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1309		}
1310	}
1311
1312	/* Assume legacy interrupts */
1313	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1314		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1315		efx->n_rx_channels = 1;
1316		efx->n_tx_channels = 1;
1317		efx->legacy_irq = efx->pci_dev->irq;
1318	}
1319
1320	/* Assign extra channels if possible */
1321	j = efx->n_channels;
1322	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1323		if (!efx->extra_channel_type[i])
1324			continue;
1325		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1326		    efx->n_channels <= extra_channels) {
1327			efx->extra_channel_type[i]->handle_no_channel(efx);
1328		} else {
1329			--j;
1330			efx_get_channel(efx, j)->type =
1331				efx->extra_channel_type[i];
1332		}
1333	}
1334
1335	/* RSS might be usable on VFs even if it is disabled on the PF */
1336	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1337			   efx->n_rx_channels : efx_vf_size(efx));
1338
1339	return 0;
1340}
1341
1342static int efx_soft_enable_interrupts(struct efx_nic *efx)
1343{
1344	struct efx_channel *channel, *end_channel;
1345	int rc;
1346
1347	BUG_ON(efx->state == STATE_DISABLED);
1348
1349	efx->irq_soft_enabled = true;
1350	smp_wmb();
1351
1352	efx_for_each_channel(channel, efx) {
1353		if (!channel->type->keep_eventq) {
1354			rc = efx_init_eventq(channel);
1355			if (rc)
1356				goto fail;
1357		}
1358		efx_start_eventq(channel);
1359	}
1360
1361	efx_mcdi_mode_event(efx);
1362
1363	return 0;
1364fail:
1365	end_channel = channel;
1366	efx_for_each_channel(channel, efx) {
1367		if (channel == end_channel)
1368			break;
1369		efx_stop_eventq(channel);
1370		if (!channel->type->keep_eventq)
1371			efx_fini_eventq(channel);
1372	}
1373
1374	return rc;
1375}
1376
1377static void efx_soft_disable_interrupts(struct efx_nic *efx)
1378{
1379	struct efx_channel *channel;
1380
1381	if (efx->state == STATE_DISABLED)
1382		return;
1383
1384	efx_mcdi_mode_poll(efx);
1385
1386	efx->irq_soft_enabled = false;
1387	smp_wmb();
1388
1389	if (efx->legacy_irq)
1390		synchronize_irq(efx->legacy_irq);
1391
1392	efx_for_each_channel(channel, efx) {
1393		if (channel->irq)
1394			synchronize_irq(channel->irq);
1395
1396		efx_stop_eventq(channel);
1397		if (!channel->type->keep_eventq)
1398			efx_fini_eventq(channel);
1399	}
1400
1401	/* Flush the asynchronous MCDI request queue */
1402	efx_mcdi_flush_async(efx);
1403}
1404
1405static int efx_enable_interrupts(struct efx_nic *efx)
1406{
1407	struct efx_channel *channel, *end_channel;
1408	int rc;
1409
1410	BUG_ON(efx->state == STATE_DISABLED);
1411
1412	if (efx->eeh_disabled_legacy_irq) {
1413		enable_irq(efx->legacy_irq);
1414		efx->eeh_disabled_legacy_irq = false;
1415	}
1416
1417	efx->type->irq_enable_master(efx);
1418
1419	efx_for_each_channel(channel, efx) {
1420		if (channel->type->keep_eventq) {
1421			rc = efx_init_eventq(channel);
1422			if (rc)
1423				goto fail;
1424		}
1425	}
1426
1427	rc = efx_soft_enable_interrupts(efx);
1428	if (rc)
1429		goto fail;
1430
1431	return 0;
1432
1433fail:
1434	end_channel = channel;
1435	efx_for_each_channel(channel, efx) {
1436		if (channel == end_channel)
1437			break;
1438		if (channel->type->keep_eventq)
1439			efx_fini_eventq(channel);
1440	}
1441
1442	efx->type->irq_disable_non_ev(efx);
1443
1444	return rc;
1445}
1446
1447static void efx_disable_interrupts(struct efx_nic *efx)
1448{
1449	struct efx_channel *channel;
1450
1451	efx_soft_disable_interrupts(efx);
1452
1453	efx_for_each_channel(channel, efx) {
1454		if (channel->type->keep_eventq)
1455			efx_fini_eventq(channel);
1456	}
1457
1458	efx->type->irq_disable_non_ev(efx);
1459}
1460
1461static void efx_remove_interrupts(struct efx_nic *efx)
1462{
1463	struct efx_channel *channel;
1464
1465	/* Remove MSI/MSI-X interrupts */
1466	efx_for_each_channel(channel, efx)
1467		channel->irq = 0;
1468	pci_disable_msi(efx->pci_dev);
1469	pci_disable_msix(efx->pci_dev);
1470
1471	/* Remove legacy interrupt */
1472	efx->legacy_irq = 0;
1473}
1474
1475static void efx_set_channels(struct efx_nic *efx)
1476{
1477	struct efx_channel *channel;
1478	struct efx_tx_queue *tx_queue;
1479
1480	efx->tx_channel_offset =
1481		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1482
1483	/* We need to mark which channels really have RX and TX
1484	 * queues, and adjust the TX queue numbers if we have separate
1485	 * RX-only and TX-only channels.
1486	 */
1487	efx_for_each_channel(channel, efx) {
1488		if (channel->channel < efx->n_rx_channels)
1489			channel->rx_queue.core_index = channel->channel;
1490		else
1491			channel->rx_queue.core_index = -1;
1492
1493		efx_for_each_channel_tx_queue(tx_queue, channel)
1494			tx_queue->queue -= (efx->tx_channel_offset *
1495					    EFX_TXQ_TYPES);
1496	}
1497}
1498
1499static int efx_probe_nic(struct efx_nic *efx)
1500{
1501	size_t i;
1502	int rc;
1503
1504	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1505
1506	/* Carry out hardware-type specific initialisation */
1507	rc = efx->type->probe(efx);
1508	if (rc)
1509		return rc;
1510
1511	/* Determine the number of channels and queues by trying to hook
1512	 * in MSI-X interrupts. */
1513	rc = efx_probe_interrupts(efx);
1514	if (rc)
1515		goto fail1;
1516
1517	rc = efx->type->dimension_resources(efx);
1518	if (rc)
1519		goto fail2;
1520
1521	if (efx->n_channels > 1)
1522		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1523	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1524		efx->rx_indir_table[i] =
1525			ethtool_rxfh_indir_default(i, efx->rss_spread);
1526
1527	efx_set_channels(efx);
1528	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1529	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1530
1531	/* Initialise the interrupt moderation settings */
1532	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1533				true);
1534
1535	return 0;
1536
1537fail2:
1538	efx_remove_interrupts(efx);
1539fail1:
1540	efx->type->remove(efx);
1541	return rc;
1542}
1543
1544static void efx_remove_nic(struct efx_nic *efx)
1545{
1546	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1547
1548	efx_remove_interrupts(efx);
1549	efx->type->remove(efx);
1550}
1551
1552static int efx_probe_filters(struct efx_nic *efx)
1553{
1554	int rc;
1555
1556	spin_lock_init(&efx->filter_lock);
1557
1558	rc = efx->type->filter_table_probe(efx);
1559	if (rc)
1560		return rc;
1561
1562#ifdef CONFIG_RFS_ACCEL
1563	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1564		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1565					   sizeof(*efx->rps_flow_id),
1566					   GFP_KERNEL);
1567		if (!efx->rps_flow_id) {
1568			efx->type->filter_table_remove(efx);
1569			return -ENOMEM;
1570		}
1571	}
1572#endif
1573
1574	return 0;
1575}
1576
1577static void efx_remove_filters(struct efx_nic *efx)
1578{
1579#ifdef CONFIG_RFS_ACCEL
1580	kfree(efx->rps_flow_id);
1581#endif
1582	efx->type->filter_table_remove(efx);
1583}
1584
1585static void efx_restore_filters(struct efx_nic *efx)
1586{
1587	efx->type->filter_table_restore(efx);
1588}
1589
1590/**************************************************************************
1591 *
1592 * NIC startup/shutdown
1593 *
1594 *************************************************************************/
1595
1596static int efx_probe_all(struct efx_nic *efx)
1597{
1598	int rc;
1599
1600	rc = efx_probe_nic(efx);
1601	if (rc) {
1602		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1603		goto fail1;
1604	}
1605
1606	rc = efx_probe_port(efx);
1607	if (rc) {
1608		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1609		goto fail2;
1610	}
1611
1612	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1613	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1614		rc = -EINVAL;
1615		goto fail3;
1616	}
1617	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1618
1619	rc = efx_probe_filters(efx);
1620	if (rc) {
1621		netif_err(efx, probe, efx->net_dev,
1622			  "failed to create filter tables\n");
1623		goto fail3;
1624	}
1625
1626	rc = efx_probe_channels(efx);
1627	if (rc)
1628		goto fail4;
1629
1630	return 0;
1631
1632 fail4:
1633	efx_remove_filters(efx);
1634 fail3:
1635	efx_remove_port(efx);
1636 fail2:
1637	efx_remove_nic(efx);
1638 fail1:
1639	return rc;
1640}
1641
1642/* If the interface is supposed to be running but is not, start
1643 * the hardware and software data path, regular activity for the port
1644 * (MAC statistics, link polling, etc.) and schedule the port to be
1645 * reconfigured.  Interrupts must already be enabled.  This function
1646 * is safe to call multiple times, so long as the NIC is not disabled.
1647 * Requires the RTNL lock.
1648 */
1649static void efx_start_all(struct efx_nic *efx)
1650{
1651	EFX_ASSERT_RESET_SERIALISED(efx);
1652	BUG_ON(efx->state == STATE_DISABLED);
1653
1654	/* Check that it is appropriate to restart the interface. All
1655	 * of these flags are safe to read under just the rtnl lock */
1656	if (efx->port_enabled || !netif_running(efx->net_dev))
1657		return;
1658
1659	efx_start_port(efx);
1660	efx_start_datapath(efx);
1661
1662	/* Start the hardware monitor if there is one */
1663	if (efx->type->monitor != NULL)
1664		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1665				   efx_monitor_interval);
1666
1667	/* If link state detection is normally event-driven, we have
1668	 * to poll now because we could have missed a change
1669	 */
1670	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1671		mutex_lock(&efx->mac_lock);
1672		if (efx->phy_op->poll(efx))
1673			efx_link_status_changed(efx);
1674		mutex_unlock(&efx->mac_lock);
1675	}
1676
1677	efx->type->start_stats(efx);
1678}
1679
1680/* Flush all delayed work. Should only be called when no more delayed work
1681 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1682 * since we're holding the rtnl_lock at this point. */
1683static void efx_flush_all(struct efx_nic *efx)
1684{
1685	/* Make sure the hardware monitor and event self-test are stopped */
1686	cancel_delayed_work_sync(&efx->monitor_work);
1687	efx_selftest_async_cancel(efx);
1688	/* Stop scheduled port reconfigurations */
1689	cancel_work_sync(&efx->mac_work);
1690}
1691
1692/* Quiesce the hardware and software data path, and regular activity
1693 * for the port without bringing the link down.  Safe to call multiple
1694 * times with the NIC in almost any state, but interrupts should be
1695 * enabled.  Requires the RTNL lock.
1696 */
1697static void efx_stop_all(struct efx_nic *efx)
1698{
1699	EFX_ASSERT_RESET_SERIALISED(efx);
1700
1701	/* port_enabled can be read safely under the rtnl lock */
1702	if (!efx->port_enabled)
1703		return;
1704
1705	efx->type->stop_stats(efx);
1706	efx_stop_port(efx);
1707
1708	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1709	efx_flush_all(efx);
1710
1711	/* Stop the kernel transmit interface.  This is only valid if
1712	 * the device is stopped or detached; otherwise the watchdog
1713	 * may fire immediately.
1714	 */
1715	WARN_ON(netif_running(efx->net_dev) &&
1716		netif_device_present(efx->net_dev));
1717	netif_tx_disable(efx->net_dev);
1718
1719	efx_stop_datapath(efx);
1720}
1721
1722static void efx_remove_all(struct efx_nic *efx)
1723{
1724	efx_remove_channels(efx);
1725	efx_remove_filters(efx);
1726	efx_remove_port(efx);
1727	efx_remove_nic(efx);
1728}
1729
1730/**************************************************************************
1731 *
1732 * Interrupt moderation
1733 *
1734 **************************************************************************/
1735
1736static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1737{
1738	if (usecs == 0)
1739		return 0;
1740	if (usecs * 1000 < quantum_ns)
1741		return 1; /* never round down to 0 */
1742	return usecs * 1000 / quantum_ns;
1743}
1744
1745/* Set interrupt moderation parameters */
1746int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1747			    unsigned int rx_usecs, bool rx_adaptive,
1748			    bool rx_may_override_tx)
1749{
1750	struct efx_channel *channel;
1751	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1752						efx->timer_quantum_ns,
1753						1000);
1754	unsigned int tx_ticks;
1755	unsigned int rx_ticks;
1756
1757	EFX_ASSERT_RESET_SERIALISED(efx);
1758
1759	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1760		return -EINVAL;
1761
1762	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1763	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1764
1765	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1766	    !rx_may_override_tx) {
1767		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1768			  "RX and TX IRQ moderation must be equal\n");
1769		return -EINVAL;
1770	}
1771
1772	efx->irq_rx_adaptive = rx_adaptive;
1773	efx->irq_rx_moderation = rx_ticks;
1774	efx_for_each_channel(channel, efx) {
1775		if (efx_channel_has_rx_queue(channel))
1776			channel->irq_moderation = rx_ticks;
1777		else if (efx_channel_has_tx_queues(channel))
1778			channel->irq_moderation = tx_ticks;
1779	}
1780
1781	return 0;
1782}
1783
1784void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1785			    unsigned int *rx_usecs, bool *rx_adaptive)
1786{
1787	/* We must round up when converting ticks to microseconds
1788	 * because we round down when converting the other way.
1789	 */
1790
1791	*rx_adaptive = efx->irq_rx_adaptive;
1792	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1793				 efx->timer_quantum_ns,
1794				 1000);
1795
1796	/* If channels are shared between RX and TX, so is IRQ
1797	 * moderation.  Otherwise, IRQ moderation is the same for all
1798	 * TX channels and is not adaptive.
1799	 */
1800	if (efx->tx_channel_offset == 0)
1801		*tx_usecs = *rx_usecs;
1802	else
1803		*tx_usecs = DIV_ROUND_UP(
1804			efx->channel[efx->tx_channel_offset]->irq_moderation *
1805			efx->timer_quantum_ns,
1806			1000);
1807}
1808
1809/**************************************************************************
1810 *
1811 * Hardware monitor
1812 *
1813 **************************************************************************/
1814
1815/* Run periodically off the general workqueue */
1816static void efx_monitor(struct work_struct *data)
1817{
1818	struct efx_nic *efx = container_of(data, struct efx_nic,
1819					   monitor_work.work);
1820
1821	netif_vdbg(efx, timer, efx->net_dev,
1822		   "hardware monitor executing on CPU %d\n",
1823		   raw_smp_processor_id());
1824	BUG_ON(efx->type->monitor == NULL);
1825
1826	/* If the mac_lock is already held then it is likely a port
1827	 * reconfiguration is already in place, which will likely do
1828	 * most of the work of monitor() anyway. */
1829	if (mutex_trylock(&efx->mac_lock)) {
1830		if (efx->port_enabled)
1831			efx->type->monitor(efx);
1832		mutex_unlock(&efx->mac_lock);
1833	}
1834
1835	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1836			   efx_monitor_interval);
1837}
1838
1839/**************************************************************************
1840 *
1841 * ioctls
1842 *
1843 *************************************************************************/
1844
1845/* Net device ioctl
1846 * Context: process, rtnl_lock() held.
1847 */
1848static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1849{
1850	struct efx_nic *efx = netdev_priv(net_dev);
1851	struct mii_ioctl_data *data = if_mii(ifr);
1852
1853	if (cmd == SIOCSHWTSTAMP)
1854		return efx_ptp_ioctl(efx, ifr, cmd);
1855
1856	/* Convert phy_id from older PRTAD/DEVAD format */
1857	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1858	    (data->phy_id & 0xfc00) == 0x0400)
1859		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1860
1861	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1862}
1863
1864/**************************************************************************
1865 *
1866 * NAPI interface
1867 *
1868 **************************************************************************/
1869
1870static void efx_init_napi_channel(struct efx_channel *channel)
1871{
1872	struct efx_nic *efx = channel->efx;
1873
1874	channel->napi_dev = efx->net_dev;
1875	netif_napi_add(channel->napi_dev, &channel->napi_str,
1876		       efx_poll, napi_weight);
1877}
1878
1879static void efx_init_napi(struct efx_nic *efx)
1880{
1881	struct efx_channel *channel;
1882
1883	efx_for_each_channel(channel, efx)
1884		efx_init_napi_channel(channel);
1885}
1886
1887static void efx_fini_napi_channel(struct efx_channel *channel)
1888{
1889	if (channel->napi_dev)
1890		netif_napi_del(&channel->napi_str);
1891	channel->napi_dev = NULL;
1892}
1893
1894static void efx_fini_napi(struct efx_nic *efx)
1895{
1896	struct efx_channel *channel;
1897
1898	efx_for_each_channel(channel, efx)
1899		efx_fini_napi_channel(channel);
1900}
1901
1902/**************************************************************************
1903 *
1904 * Kernel netpoll interface
1905 *
1906 *************************************************************************/
1907
1908#ifdef CONFIG_NET_POLL_CONTROLLER
1909
1910/* Although in the common case interrupts will be disabled, this is not
1911 * guaranteed. However, all our work happens inside the NAPI callback,
1912 * so no locking is required.
1913 */
1914static void efx_netpoll(struct net_device *net_dev)
1915{
1916	struct efx_nic *efx = netdev_priv(net_dev);
1917	struct efx_channel *channel;
1918
1919	efx_for_each_channel(channel, efx)
1920		efx_schedule_channel(channel);
1921}
1922
1923#endif
1924
1925/**************************************************************************
1926 *
1927 * Kernel net device interface
1928 *
1929 *************************************************************************/
1930
1931/* Context: process, rtnl_lock() held. */
1932static int efx_net_open(struct net_device *net_dev)
1933{
1934	struct efx_nic *efx = netdev_priv(net_dev);
1935	int rc;
1936
1937	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1938		  raw_smp_processor_id());
1939
1940	rc = efx_check_disabled(efx);
1941	if (rc)
1942		return rc;
1943	if (efx->phy_mode & PHY_MODE_SPECIAL)
1944		return -EBUSY;
1945	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1946		return -EIO;
1947
1948	/* Notify the kernel of the link state polled during driver load,
1949	 * before the monitor starts running */
1950	efx_link_status_changed(efx);
1951
1952	efx_start_all(efx);
1953	efx_selftest_async_start(efx);
1954	return 0;
1955}
1956
1957/* Context: process, rtnl_lock() held.
1958 * Note that the kernel will ignore our return code; this method
1959 * should really be a void.
1960 */
1961static int efx_net_stop(struct net_device *net_dev)
1962{
1963	struct efx_nic *efx = netdev_priv(net_dev);
1964
1965	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1966		  raw_smp_processor_id());
1967
1968	/* Stop the device and flush all the channels */
1969	efx_stop_all(efx);
1970
1971	return 0;
1972}
1973
1974/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1975static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1976					       struct rtnl_link_stats64 *stats)
1977{
1978	struct efx_nic *efx = netdev_priv(net_dev);
1979
1980	spin_lock_bh(&efx->stats_lock);
1981	efx->type->update_stats(efx, NULL, stats);
1982	spin_unlock_bh(&efx->stats_lock);
1983
1984	return stats;
1985}
1986
1987/* Context: netif_tx_lock held, BHs disabled. */
1988static void efx_watchdog(struct net_device *net_dev)
1989{
1990	struct efx_nic *efx = netdev_priv(net_dev);
1991
1992	netif_err(efx, tx_err, efx->net_dev,
1993		  "TX stuck with port_enabled=%d: resetting channels\n",
1994		  efx->port_enabled);
1995
1996	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1997}
1998
1999
2000/* Context: process, rtnl_lock() held. */
2001static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2002{
2003	struct efx_nic *efx = netdev_priv(net_dev);
2004	int rc;
2005
2006	rc = efx_check_disabled(efx);
2007	if (rc)
2008		return rc;
2009	if (new_mtu > EFX_MAX_MTU)
2010		return -EINVAL;
2011
2012	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2013
2014	efx_device_detach_sync(efx);
2015	efx_stop_all(efx);
2016
2017	mutex_lock(&efx->mac_lock);
2018	net_dev->mtu = new_mtu;
2019	efx->type->reconfigure_mac(efx);
2020	mutex_unlock(&efx->mac_lock);
2021
2022	efx_start_all(efx);
2023	netif_device_attach(efx->net_dev);
2024	return 0;
2025}
2026
2027static int efx_set_mac_address(struct net_device *net_dev, void *data)
2028{
2029	struct efx_nic *efx = netdev_priv(net_dev);
2030	struct sockaddr *addr = data;
2031	char *new_addr = addr->sa_data;
2032
2033	if (!is_valid_ether_addr(new_addr)) {
2034		netif_err(efx, drv, efx->net_dev,
2035			  "invalid ethernet MAC address requested: %pM\n",
2036			  new_addr);
2037		return -EADDRNOTAVAIL;
2038	}
2039
2040	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2041	efx_sriov_mac_address_changed(efx);
2042
2043	/* Reconfigure the MAC */
2044	mutex_lock(&efx->mac_lock);
2045	efx->type->reconfigure_mac(efx);
2046	mutex_unlock(&efx->mac_lock);
2047
2048	return 0;
2049}
2050
2051/* Context: netif_addr_lock held, BHs disabled. */
2052static void efx_set_rx_mode(struct net_device *net_dev)
2053{
2054	struct efx_nic *efx = netdev_priv(net_dev);
2055
2056	if (efx->port_enabled)
2057		queue_work(efx->workqueue, &efx->mac_work);
2058	/* Otherwise efx_start_port() will do this */
2059}
2060
2061static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2062{
2063	struct efx_nic *efx = netdev_priv(net_dev);
2064
2065	/* If disabling RX n-tuple filtering, clear existing filters */
2066	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2067		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2068
2069	return 0;
2070}
2071
2072static const struct net_device_ops efx_farch_netdev_ops = {
2073	.ndo_open		= efx_net_open,
2074	.ndo_stop		= efx_net_stop,
2075	.ndo_get_stats64	= efx_net_stats,
2076	.ndo_tx_timeout		= efx_watchdog,
2077	.ndo_start_xmit		= efx_hard_start_xmit,
2078	.ndo_validate_addr	= eth_validate_addr,
2079	.ndo_do_ioctl		= efx_ioctl,
2080	.ndo_change_mtu		= efx_change_mtu,
2081	.ndo_set_mac_address	= efx_set_mac_address,
2082	.ndo_set_rx_mode	= efx_set_rx_mode,
2083	.ndo_set_features	= efx_set_features,
2084#ifdef CONFIG_SFC_SRIOV
2085	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2086	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2087	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2088	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2089#endif
2090#ifdef CONFIG_NET_POLL_CONTROLLER
2091	.ndo_poll_controller = efx_netpoll,
2092#endif
2093	.ndo_setup_tc		= efx_setup_tc,
2094#ifdef CONFIG_RFS_ACCEL
2095	.ndo_rx_flow_steer	= efx_filter_rfs,
2096#endif
2097};
2098
2099static const struct net_device_ops efx_ef10_netdev_ops = {
2100	.ndo_open		= efx_net_open,
2101	.ndo_stop		= efx_net_stop,
2102	.ndo_get_stats64	= efx_net_stats,
2103	.ndo_tx_timeout		= efx_watchdog,
2104	.ndo_start_xmit		= efx_hard_start_xmit,
2105	.ndo_validate_addr	= eth_validate_addr,
2106	.ndo_do_ioctl		= efx_ioctl,
2107	.ndo_change_mtu		= efx_change_mtu,
2108	.ndo_set_mac_address	= efx_set_mac_address,
2109	.ndo_set_rx_mode	= efx_set_rx_mode,
2110	.ndo_set_features	= efx_set_features,
2111#ifdef CONFIG_NET_POLL_CONTROLLER
2112	.ndo_poll_controller	= efx_netpoll,
2113#endif
2114#ifdef CONFIG_RFS_ACCEL
2115	.ndo_rx_flow_steer	= efx_filter_rfs,
2116#endif
2117};
2118
2119static void efx_update_name(struct efx_nic *efx)
2120{
2121	strcpy(efx->name, efx->net_dev->name);
2122	efx_mtd_rename(efx);
2123	efx_set_channel_names(efx);
2124}
2125
2126static int efx_netdev_event(struct notifier_block *this,
2127			    unsigned long event, void *ptr)
2128{
2129	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2130
2131	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2132	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2133	    event == NETDEV_CHANGENAME)
2134		efx_update_name(netdev_priv(net_dev));
2135
2136	return NOTIFY_DONE;
2137}
2138
2139static struct notifier_block efx_netdev_notifier = {
2140	.notifier_call = efx_netdev_event,
2141};
2142
2143static ssize_t
2144show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2145{
2146	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2147	return sprintf(buf, "%d\n", efx->phy_type);
2148}
2149static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2150
2151static int efx_register_netdev(struct efx_nic *efx)
2152{
2153	struct net_device *net_dev = efx->net_dev;
2154	struct efx_channel *channel;
2155	int rc;
2156
2157	net_dev->watchdog_timeo = 5 * HZ;
2158	net_dev->irq = efx->pci_dev->irq;
2159	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2160		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2161		net_dev->priv_flags |= IFF_UNICAST_FLT;
2162	} else {
2163		net_dev->netdev_ops = &efx_farch_netdev_ops;
2164	}
2165	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2166	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2167
2168	rtnl_lock();
2169
2170	/* Enable resets to be scheduled and check whether any were
2171	 * already requested.  If so, the NIC is probably hosed so we
2172	 * abort.
2173	 */
2174	efx->state = STATE_READY;
2175	smp_mb(); /* ensure we change state before checking reset_pending */
2176	if (efx->reset_pending) {
2177		netif_err(efx, probe, efx->net_dev,
2178			  "aborting probe due to scheduled reset\n");
2179		rc = -EIO;
2180		goto fail_locked;
2181	}
2182
2183	rc = dev_alloc_name(net_dev, net_dev->name);
2184	if (rc < 0)
2185		goto fail_locked;
2186	efx_update_name(efx);
2187
2188	/* Always start with carrier off; PHY events will detect the link */
2189	netif_carrier_off(net_dev);
2190
2191	rc = register_netdevice(net_dev);
2192	if (rc)
2193		goto fail_locked;
2194
2195	efx_for_each_channel(channel, efx) {
2196		struct efx_tx_queue *tx_queue;
2197		efx_for_each_channel_tx_queue(tx_queue, channel)
2198			efx_init_tx_queue_core_txq(tx_queue);
2199	}
2200
2201	rtnl_unlock();
2202
2203	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2204	if (rc) {
2205		netif_err(efx, drv, efx->net_dev,
2206			  "failed to init net dev attributes\n");
2207		goto fail_registered;
2208	}
2209
2210	return 0;
2211
2212fail_registered:
2213	rtnl_lock();
2214	unregister_netdevice(net_dev);
2215fail_locked:
2216	efx->state = STATE_UNINIT;
2217	rtnl_unlock();
2218	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2219	return rc;
2220}
2221
2222static void efx_unregister_netdev(struct efx_nic *efx)
2223{
2224	if (!efx->net_dev)
2225		return;
2226
2227	BUG_ON(netdev_priv(efx->net_dev) != efx);
2228
2229	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2230	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2231
2232	rtnl_lock();
2233	unregister_netdevice(efx->net_dev);
2234	efx->state = STATE_UNINIT;
2235	rtnl_unlock();
2236}
2237
2238/**************************************************************************
2239 *
2240 * Device reset and suspend
2241 *
2242 **************************************************************************/
2243
2244/* Tears down the entire software state and most of the hardware state
2245 * before reset.  */
2246void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2247{
2248	EFX_ASSERT_RESET_SERIALISED(efx);
2249
2250	efx_stop_all(efx);
2251	efx_disable_interrupts(efx);
2252
2253	mutex_lock(&efx->mac_lock);
2254	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2255		efx->phy_op->fini(efx);
2256	efx->type->fini(efx);
2257}
2258
2259/* This function will always ensure that the locks acquired in
2260 * efx_reset_down() are released. A failure return code indicates
2261 * that we were unable to reinitialise the hardware, and the
2262 * driver should be disabled. If ok is false, then the rx and tx
2263 * engines are not restarted, pending a RESET_DISABLE. */
2264int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2265{
2266	int rc;
2267
2268	EFX_ASSERT_RESET_SERIALISED(efx);
2269
2270	rc = efx->type->init(efx);
2271	if (rc) {
2272		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2273		goto fail;
2274	}
2275
2276	if (!ok)
2277		goto fail;
2278
2279	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2280		rc = efx->phy_op->init(efx);
2281		if (rc)
2282			goto fail;
2283		if (efx->phy_op->reconfigure(efx))
2284			netif_err(efx, drv, efx->net_dev,
2285				  "could not restore PHY settings\n");
2286	}
2287
2288	rc = efx_enable_interrupts(efx);
2289	if (rc)
2290		goto fail;
2291	efx_restore_filters(efx);
2292	efx_sriov_reset(efx);
2293
2294	mutex_unlock(&efx->mac_lock);
2295
2296	efx_start_all(efx);
2297
2298	return 0;
2299
2300fail:
2301	efx->port_initialized = false;
2302
2303	mutex_unlock(&efx->mac_lock);
2304
2305	return rc;
2306}
2307
2308/* Reset the NIC using the specified method.  Note that the reset may
2309 * fail, in which case the card will be left in an unusable state.
2310 *
2311 * Caller must hold the rtnl_lock.
2312 */
2313int efx_reset(struct efx_nic *efx, enum reset_type method)
2314{
2315	int rc, rc2;
2316	bool disabled;
2317
2318	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2319		   RESET_TYPE(method));
2320
2321	efx_device_detach_sync(efx);
2322	efx_reset_down(efx, method);
2323
2324	rc = efx->type->reset(efx, method);
2325	if (rc) {
2326		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2327		goto out;
2328	}
2329
2330	/* Clear flags for the scopes we covered.  We assume the NIC and
2331	 * driver are now quiescent so that there is no race here.
2332	 */
2333	efx->reset_pending &= -(1 << (method + 1));
2334
2335	/* Reinitialise bus-mastering, which may have been turned off before
2336	 * the reset was scheduled. This is still appropriate, even in the
2337	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2338	 * can respond to requests. */
2339	pci_set_master(efx->pci_dev);
2340
2341out:
2342	/* Leave device stopped if necessary */
2343	disabled = rc ||
2344		method == RESET_TYPE_DISABLE ||
2345		method == RESET_TYPE_RECOVER_OR_DISABLE;
2346	rc2 = efx_reset_up(efx, method, !disabled);
2347	if (rc2) {
2348		disabled = true;
2349		if (!rc)
2350			rc = rc2;
2351	}
2352
2353	if (disabled) {
2354		dev_close(efx->net_dev);
2355		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2356		efx->state = STATE_DISABLED;
2357	} else {
2358		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2359		netif_device_attach(efx->net_dev);
2360	}
2361	return rc;
2362}
2363
2364/* Try recovery mechanisms.
2365 * For now only EEH is supported.
2366 * Returns 0 if the recovery mechanisms are unsuccessful.
2367 * Returns a non-zero value otherwise.
2368 */
2369int efx_try_recovery(struct efx_nic *efx)
2370{
2371#ifdef CONFIG_EEH
2372	/* A PCI error can occur and not be seen by EEH because nothing
2373	 * happens on the PCI bus. In this case the driver may fail and
2374	 * schedule a 'recover or reset', leading to this recovery handler.
2375	 * Manually call the eeh failure check function.
2376	 */
2377	struct eeh_dev *eehdev =
2378		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2379
2380	if (eeh_dev_check_failure(eehdev)) {
2381		/* The EEH mechanisms will handle the error and reset the
2382		 * device if necessary.
2383		 */
2384		return 1;
2385	}
2386#endif
2387	return 0;
2388}
2389
2390/* The worker thread exists so that code that cannot sleep can
2391 * schedule a reset for later.
2392 */
2393static void efx_reset_work(struct work_struct *data)
2394{
2395	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2396	unsigned long pending;
2397	enum reset_type method;
2398
2399	pending = ACCESS_ONCE(efx->reset_pending);
2400	method = fls(pending) - 1;
2401
2402	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2403	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2404	    efx_try_recovery(efx))
2405		return;
2406
2407	if (!pending)
2408		return;
2409
2410	rtnl_lock();
2411
2412	/* We checked the state in efx_schedule_reset() but it may
2413	 * have changed by now.  Now that we have the RTNL lock,
2414	 * it cannot change again.
2415	 */
2416	if (efx->state == STATE_READY)
2417		(void)efx_reset(efx, method);
2418
2419	rtnl_unlock();
2420}
2421
2422void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2423{
2424	enum reset_type method;
2425
2426	if (efx->state == STATE_RECOVERY) {
2427		netif_dbg(efx, drv, efx->net_dev,
2428			  "recovering: skip scheduling %s reset\n",
2429			  RESET_TYPE(type));
2430		return;
2431	}
2432
2433	switch (type) {
2434	case RESET_TYPE_INVISIBLE:
2435	case RESET_TYPE_ALL:
2436	case RESET_TYPE_RECOVER_OR_ALL:
2437	case RESET_TYPE_WORLD:
2438	case RESET_TYPE_DISABLE:
2439	case RESET_TYPE_RECOVER_OR_DISABLE:
2440		method = type;
2441		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2442			  RESET_TYPE(method));
2443		break;
2444	default:
2445		method = efx->type->map_reset_reason(type);
2446		netif_dbg(efx, drv, efx->net_dev,
2447			  "scheduling %s reset for %s\n",
2448			  RESET_TYPE(method), RESET_TYPE(type));
2449		break;
2450	}
2451
2452	set_bit(method, &efx->reset_pending);
2453	smp_mb(); /* ensure we change reset_pending before checking state */
2454
2455	/* If we're not READY then just leave the flags set as the cue
2456	 * to abort probing or reschedule the reset later.
2457	 */
2458	if (ACCESS_ONCE(efx->state) != STATE_READY)
2459		return;
2460
2461	/* efx_process_channel() will no longer read events once a
2462	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2463	efx_mcdi_mode_poll(efx);
2464
2465	queue_work(reset_workqueue, &efx->reset_work);
2466}
2467
2468/**************************************************************************
2469 *
2470 * List of NICs we support
2471 *
2472 **************************************************************************/
2473
2474/* PCI device ID table */
2475static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2476	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2477		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2478	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2479	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2480		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2481	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2482	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2483	 .driver_data = (unsigned long) &siena_a0_nic_type},
2484	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2485	 .driver_data = (unsigned long) &siena_a0_nic_type},
2486	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2487	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2488	{0}			/* end of list */
2489};
2490
2491/**************************************************************************
2492 *
2493 * Dummy PHY/MAC operations
2494 *
2495 * Can be used for some unimplemented operations
2496 * Needed so all function pointers are valid and do not have to be tested
2497 * before use
2498 *
2499 **************************************************************************/
2500int efx_port_dummy_op_int(struct efx_nic *efx)
2501{
2502	return 0;
2503}
2504void efx_port_dummy_op_void(struct efx_nic *efx) {}
2505
2506static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2507{
2508	return false;
2509}
2510
2511static const struct efx_phy_operations efx_dummy_phy_operations = {
2512	.init		 = efx_port_dummy_op_int,
2513	.reconfigure	 = efx_port_dummy_op_int,
2514	.poll		 = efx_port_dummy_op_poll,
2515	.fini		 = efx_port_dummy_op_void,
2516};
2517
2518/**************************************************************************
2519 *
2520 * Data housekeeping
2521 *
2522 **************************************************************************/
2523
2524/* This zeroes out and then fills in the invariants in a struct
2525 * efx_nic (including all sub-structures).
2526 */
2527static int efx_init_struct(struct efx_nic *efx,
2528			   struct pci_dev *pci_dev, struct net_device *net_dev)
2529{
2530	int i;
2531
2532	/* Initialise common structures */
2533	spin_lock_init(&efx->biu_lock);
2534#ifdef CONFIG_SFC_MTD
2535	INIT_LIST_HEAD(&efx->mtd_list);
2536#endif
2537	INIT_WORK(&efx->reset_work, efx_reset_work);
2538	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2539	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2540	efx->pci_dev = pci_dev;
2541	efx->msg_enable = debug;
2542	efx->state = STATE_UNINIT;
2543	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2544
2545	efx->net_dev = net_dev;
2546	efx->rx_prefix_size = efx->type->rx_prefix_size;
2547	efx->rx_ip_align =
2548		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2549	efx->rx_packet_hash_offset =
2550		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2551	spin_lock_init(&efx->stats_lock);
2552	mutex_init(&efx->mac_lock);
2553	efx->phy_op = &efx_dummy_phy_operations;
2554	efx->mdio.dev = net_dev;
2555	INIT_WORK(&efx->mac_work, efx_mac_work);
2556	init_waitqueue_head(&efx->flush_wq);
2557
2558	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2559		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2560		if (!efx->channel[i])
2561			goto fail;
2562		efx->msi_context[i].efx = efx;
2563		efx->msi_context[i].index = i;
2564	}
2565
2566	/* Higher numbered interrupt modes are less capable! */
2567	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2568				  interrupt_mode);
2569
2570	/* Would be good to use the net_dev name, but we're too early */
2571	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2572		 pci_name(pci_dev));
2573	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2574	if (!efx->workqueue)
2575		goto fail;
2576
2577	return 0;
2578
2579fail:
2580	efx_fini_struct(efx);
2581	return -ENOMEM;
2582}
2583
2584static void efx_fini_struct(struct efx_nic *efx)
2585{
2586	int i;
2587
2588	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2589		kfree(efx->channel[i]);
2590
2591	if (efx->workqueue) {
2592		destroy_workqueue(efx->workqueue);
2593		efx->workqueue = NULL;
2594	}
2595}
2596
2597/**************************************************************************
2598 *
2599 * PCI interface
2600 *
2601 **************************************************************************/
2602
2603/* Main body of final NIC shutdown code
2604 * This is called only at module unload (or hotplug removal).
2605 */
2606static void efx_pci_remove_main(struct efx_nic *efx)
2607{
2608	/* Flush reset_work. It can no longer be scheduled since we
2609	 * are not READY.
2610	 */
2611	BUG_ON(efx->state == STATE_READY);
2612	cancel_work_sync(&efx->reset_work);
2613
2614	efx_disable_interrupts(efx);
2615	efx_nic_fini_interrupt(efx);
2616	efx_fini_port(efx);
2617	efx->type->fini(efx);
2618	efx_fini_napi(efx);
2619	efx_remove_all(efx);
2620}
2621
2622/* Final NIC shutdown
2623 * This is called only at module unload (or hotplug removal).
2624 */
2625static void efx_pci_remove(struct pci_dev *pci_dev)
2626{
2627	struct efx_nic *efx;
2628
2629	efx = pci_get_drvdata(pci_dev);
2630	if (!efx)
2631		return;
2632
2633	/* Mark the NIC as fini, then stop the interface */
2634	rtnl_lock();
2635	dev_close(efx->net_dev);
2636	efx_disable_interrupts(efx);
2637	rtnl_unlock();
2638
2639	efx_sriov_fini(efx);
2640	efx_unregister_netdev(efx);
2641
2642	efx_mtd_remove(efx);
2643
2644	efx_pci_remove_main(efx);
2645
2646	efx_fini_io(efx);
2647	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2648
2649	efx_fini_struct(efx);
2650	pci_set_drvdata(pci_dev, NULL);
2651	free_netdev(efx->net_dev);
2652
2653	pci_disable_pcie_error_reporting(pci_dev);
2654};
2655
2656/* NIC VPD information
2657 * Called during probe to display the part number of the
2658 * installed NIC.  VPD is potentially very large but this should
2659 * always appear within the first 512 bytes.
2660 */
2661#define SFC_VPD_LEN 512
2662static void efx_print_product_vpd(struct efx_nic *efx)
2663{
2664	struct pci_dev *dev = efx->pci_dev;
2665	char vpd_data[SFC_VPD_LEN];
2666	ssize_t vpd_size;
2667	int i, j;
2668
2669	/* Get the vpd data from the device */
2670	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2671	if (vpd_size <= 0) {
2672		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2673		return;
2674	}
2675
2676	/* Get the Read only section */
2677	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2678	if (i < 0) {
2679		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2680		return;
2681	}
2682
2683	j = pci_vpd_lrdt_size(&vpd_data[i]);
2684	i += PCI_VPD_LRDT_TAG_SIZE;
2685	if (i + j > vpd_size)
2686		j = vpd_size - i;
2687
2688	/* Get the Part number */
2689	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2690	if (i < 0) {
2691		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2692		return;
2693	}
2694
2695	j = pci_vpd_info_field_size(&vpd_data[i]);
2696	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2697	if (i + j > vpd_size) {
2698		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2699		return;
2700	}
2701
2702	netif_info(efx, drv, efx->net_dev,
2703		   "Part Number : %.*s\n", j, &vpd_data[i]);
2704}
2705
2706
2707/* Main body of NIC initialisation
2708 * This is called at module load (or hotplug insertion, theoretically).
2709 */
2710static int efx_pci_probe_main(struct efx_nic *efx)
2711{
2712	int rc;
2713
2714	/* Do start-of-day initialisation */
2715	rc = efx_probe_all(efx);
2716	if (rc)
2717		goto fail1;
2718
2719	efx_init_napi(efx);
2720
2721	rc = efx->type->init(efx);
2722	if (rc) {
2723		netif_err(efx, probe, efx->net_dev,
2724			  "failed to initialise NIC\n");
2725		goto fail3;
2726	}
2727
2728	rc = efx_init_port(efx);
2729	if (rc) {
2730		netif_err(efx, probe, efx->net_dev,
2731			  "failed to initialise port\n");
2732		goto fail4;
2733	}
2734
2735	rc = efx_nic_init_interrupt(efx);
2736	if (rc)
2737		goto fail5;
2738	rc = efx_enable_interrupts(efx);
2739	if (rc)
2740		goto fail6;
2741
2742	return 0;
2743
2744 fail6:
2745	efx_nic_fini_interrupt(efx);
2746 fail5:
2747	efx_fini_port(efx);
2748 fail4:
2749	efx->type->fini(efx);
2750 fail3:
2751	efx_fini_napi(efx);
2752	efx_remove_all(efx);
2753 fail1:
2754	return rc;
2755}
2756
2757/* NIC initialisation
2758 *
2759 * This is called at module load (or hotplug insertion,
2760 * theoretically).  It sets up PCI mappings, resets the NIC,
2761 * sets up and registers the network devices with the kernel and hooks
2762 * the interrupt service routine.  It does not prepare the device for
2763 * transmission; this is left to the first time one of the network
2764 * interfaces is brought up (i.e. efx_net_open).
2765 */
2766static int efx_pci_probe(struct pci_dev *pci_dev,
2767			 const struct pci_device_id *entry)
2768{
2769	struct net_device *net_dev;
2770	struct efx_nic *efx;
2771	int rc;
2772
2773	/* Allocate and initialise a struct net_device and struct efx_nic */
2774	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2775				     EFX_MAX_RX_QUEUES);
2776	if (!net_dev)
2777		return -ENOMEM;
2778	efx = netdev_priv(net_dev);
2779	efx->type = (const struct efx_nic_type *) entry->driver_data;
2780	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2781			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2782			      NETIF_F_RXCSUM);
2783	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2784		net_dev->features |= NETIF_F_TSO6;
2785	/* Mask for features that also apply to VLAN devices */
2786	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2787				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2788				   NETIF_F_RXCSUM);
2789	/* All offloads can be toggled */
2790	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2791	pci_set_drvdata(pci_dev, efx);
2792	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2793	rc = efx_init_struct(efx, pci_dev, net_dev);
2794	if (rc)
2795		goto fail1;
2796
2797	netif_info(efx, probe, efx->net_dev,
2798		   "Solarflare NIC detected\n");
2799
2800	efx_print_product_vpd(efx);
2801
2802	/* Set up basic I/O (BAR mappings etc) */
2803	rc = efx_init_io(efx);
2804	if (rc)
2805		goto fail2;
2806
2807	rc = efx_pci_probe_main(efx);
2808	if (rc)
2809		goto fail3;
2810
2811	rc = efx_register_netdev(efx);
2812	if (rc)
2813		goto fail4;
2814
2815	rc = efx_sriov_init(efx);
2816	if (rc)
2817		netif_err(efx, probe, efx->net_dev,
2818			  "SR-IOV can't be enabled rc %d\n", rc);
2819
2820	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2821
2822	/* Try to create MTDs, but allow this to fail */
2823	rtnl_lock();
2824	rc = efx_mtd_probe(efx);
2825	rtnl_unlock();
2826	if (rc)
2827		netif_warn(efx, probe, efx->net_dev,
2828			   "failed to create MTDs (%d)\n", rc);
2829
2830	rc = pci_enable_pcie_error_reporting(pci_dev);
2831	if (rc && rc != -EINVAL)
2832		netif_warn(efx, probe, efx->net_dev,
2833			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2834
2835	return 0;
2836
2837 fail4:
2838	efx_pci_remove_main(efx);
2839 fail3:
2840	efx_fini_io(efx);
2841 fail2:
2842	efx_fini_struct(efx);
2843 fail1:
2844	pci_set_drvdata(pci_dev, NULL);
2845	WARN_ON(rc > 0);
2846	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2847	free_netdev(net_dev);
2848	return rc;
2849}
2850
2851static int efx_pm_freeze(struct device *dev)
2852{
2853	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2854
2855	rtnl_lock();
2856
2857	if (efx->state != STATE_DISABLED) {
2858		efx->state = STATE_UNINIT;
2859
2860		efx_device_detach_sync(efx);
2861
2862		efx_stop_all(efx);
2863		efx_disable_interrupts(efx);
2864	}
2865
2866	rtnl_unlock();
2867
2868	return 0;
2869}
2870
2871static int efx_pm_thaw(struct device *dev)
2872{
2873	int rc;
2874	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2875
2876	rtnl_lock();
2877
2878	if (efx->state != STATE_DISABLED) {
2879		rc = efx_enable_interrupts(efx);
2880		if (rc)
2881			goto fail;
2882
2883		mutex_lock(&efx->mac_lock);
2884		efx->phy_op->reconfigure(efx);
2885		mutex_unlock(&efx->mac_lock);
2886
2887		efx_start_all(efx);
2888
2889		netif_device_attach(efx->net_dev);
2890
2891		efx->state = STATE_READY;
2892
2893		efx->type->resume_wol(efx);
2894	}
2895
2896	rtnl_unlock();
2897
2898	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2899	queue_work(reset_workqueue, &efx->reset_work);
2900
2901	return 0;
2902
2903fail:
2904	rtnl_unlock();
2905
2906	return rc;
2907}
2908
2909static int efx_pm_poweroff(struct device *dev)
2910{
2911	struct pci_dev *pci_dev = to_pci_dev(dev);
2912	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2913
2914	efx->type->fini(efx);
2915
2916	efx->reset_pending = 0;
2917
2918	pci_save_state(pci_dev);
2919	return pci_set_power_state(pci_dev, PCI_D3hot);
2920}
2921
2922/* Used for both resume and restore */
2923static int efx_pm_resume(struct device *dev)
2924{
2925	struct pci_dev *pci_dev = to_pci_dev(dev);
2926	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2927	int rc;
2928
2929	rc = pci_set_power_state(pci_dev, PCI_D0);
2930	if (rc)
2931		return rc;
2932	pci_restore_state(pci_dev);
2933	rc = pci_enable_device(pci_dev);
2934	if (rc)
2935		return rc;
2936	pci_set_master(efx->pci_dev);
2937	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2938	if (rc)
2939		return rc;
2940	rc = efx->type->init(efx);
2941	if (rc)
2942		return rc;
2943	rc = efx_pm_thaw(dev);
2944	return rc;
2945}
2946
2947static int efx_pm_suspend(struct device *dev)
2948{
2949	int rc;
2950
2951	efx_pm_freeze(dev);
2952	rc = efx_pm_poweroff(dev);
2953	if (rc)
2954		efx_pm_resume(dev);
2955	return rc;
2956}
2957
2958static const struct dev_pm_ops efx_pm_ops = {
2959	.suspend	= efx_pm_suspend,
2960	.resume		= efx_pm_resume,
2961	.freeze		= efx_pm_freeze,
2962	.thaw		= efx_pm_thaw,
2963	.poweroff	= efx_pm_poweroff,
2964	.restore	= efx_pm_resume,
2965};
2966
2967/* A PCI error affecting this device was detected.
2968 * At this point MMIO and DMA may be disabled.
2969 * Stop the software path and request a slot reset.
2970 */
2971static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
2972					      enum pci_channel_state state)
2973{
2974	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
2975	struct efx_nic *efx = pci_get_drvdata(pdev);
2976
2977	if (state == pci_channel_io_perm_failure)
2978		return PCI_ERS_RESULT_DISCONNECT;
2979
2980	rtnl_lock();
2981
2982	if (efx->state != STATE_DISABLED) {
2983		efx->state = STATE_RECOVERY;
2984		efx->reset_pending = 0;
2985
2986		efx_device_detach_sync(efx);
2987
2988		efx_stop_all(efx);
2989		efx_disable_interrupts(efx);
2990
2991		status = PCI_ERS_RESULT_NEED_RESET;
2992	} else {
2993		/* If the interface is disabled we don't want to do anything
2994		 * with it.
2995		 */
2996		status = PCI_ERS_RESULT_RECOVERED;
2997	}
2998
2999	rtnl_unlock();
3000
3001	pci_disable_device(pdev);
3002
3003	return status;
3004}
3005
3006/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3007static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3008{
3009	struct efx_nic *efx = pci_get_drvdata(pdev);
3010	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3011	int rc;
3012
3013	if (pci_enable_device(pdev)) {
3014		netif_err(efx, hw, efx->net_dev,
3015			  "Cannot re-enable PCI device after reset.\n");
3016		status =  PCI_ERS_RESULT_DISCONNECT;
3017	}
3018
3019	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3020	if (rc) {
3021		netif_err(efx, hw, efx->net_dev,
3022		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3023		/* Non-fatal error. Continue. */
3024	}
3025
3026	return status;
3027}
3028
3029/* Perform the actual reset and resume I/O operations. */
3030static void efx_io_resume(struct pci_dev *pdev)
3031{
3032	struct efx_nic *efx = pci_get_drvdata(pdev);
3033	int rc;
3034
3035	rtnl_lock();
3036
3037	if (efx->state == STATE_DISABLED)
3038		goto out;
3039
3040	rc = efx_reset(efx, RESET_TYPE_ALL);
3041	if (rc) {
3042		netif_err(efx, hw, efx->net_dev,
3043			  "efx_reset failed after PCI error (%d)\n", rc);
3044	} else {
3045		efx->state = STATE_READY;
3046		netif_dbg(efx, hw, efx->net_dev,
3047			  "Done resetting and resuming IO after PCI error.\n");
3048	}
3049
3050out:
3051	rtnl_unlock();
3052}
3053
3054/* For simplicity and reliability, we always require a slot reset and try to
3055 * reset the hardware when a pci error affecting the device is detected.
3056 * We leave both the link_reset and mmio_enabled callback unimplemented:
3057 * with our request for slot reset the mmio_enabled callback will never be
3058 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3059 */
3060static struct pci_error_handlers efx_err_handlers = {
3061	.error_detected = efx_io_error_detected,
3062	.slot_reset	= efx_io_slot_reset,
3063	.resume		= efx_io_resume,
3064};
3065
3066static struct pci_driver efx_pci_driver = {
3067	.name		= KBUILD_MODNAME,
3068	.id_table	= efx_pci_table,
3069	.probe		= efx_pci_probe,
3070	.remove		= efx_pci_remove,
3071	.driver.pm	= &efx_pm_ops,
3072	.err_handler	= &efx_err_handlers,
3073};
3074
3075/**************************************************************************
3076 *
3077 * Kernel module interface
3078 *
3079 *************************************************************************/
3080
3081module_param(interrupt_mode, uint, 0444);
3082MODULE_PARM_DESC(interrupt_mode,
3083		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3084
3085static int __init efx_init_module(void)
3086{
3087	int rc;
3088
3089	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3090
3091	rc = register_netdevice_notifier(&efx_netdev_notifier);
3092	if (rc)
3093		goto err_notifier;
3094
3095	rc = efx_init_sriov();
3096	if (rc)
3097		goto err_sriov;
3098
3099	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3100	if (!reset_workqueue) {
3101		rc = -ENOMEM;
3102		goto err_reset;
3103	}
3104
3105	rc = pci_register_driver(&efx_pci_driver);
3106	if (rc < 0)
3107		goto err_pci;
3108
3109	return 0;
3110
3111 err_pci:
3112	destroy_workqueue(reset_workqueue);
3113 err_reset:
3114	efx_fini_sriov();
3115 err_sriov:
3116	unregister_netdevice_notifier(&efx_netdev_notifier);
3117 err_notifier:
3118	return rc;
3119}
3120
3121static void __exit efx_exit_module(void)
3122{
3123	printk(KERN_INFO "Solarflare NET driver unloading\n");
3124
3125	pci_unregister_driver(&efx_pci_driver);
3126	destroy_workqueue(reset_workqueue);
3127	efx_fini_sriov();
3128	unregister_netdevice_notifier(&efx_netdev_notifier);
3129
3130}
3131
3132module_init(efx_init_module);
3133module_exit(efx_exit_module);
3134
3135MODULE_AUTHOR("Solarflare Communications and "
3136	      "Michael Brown <mbrown@fensystems.co.uk>");
3137MODULE_DESCRIPTION("Solarflare Communications network driver");
3138MODULE_LICENSE("GPL");
3139MODULE_DEVICE_TABLE(pci, efx_pci_table);
3140