efx.c revision 3166950070ce6b9d1443758d82c0a42779a02153
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/ethtool.h>
21#include <linux/topology.h>
22#include <linux/gfp.h>
23#include <linux/aer.h>
24#include <linux/interrupt.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28#include "selftest.h"
29
30#include "mcdi.h"
31#include "workarounds.h"
32
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42const char *const efx_loopback_mode_names[] = {
43	[LOOPBACK_NONE]		= "NONE",
44	[LOOPBACK_DATA]		= "DATAPATH",
45	[LOOPBACK_GMAC]		= "GMAC",
46	[LOOPBACK_XGMII]	= "XGMII",
47	[LOOPBACK_XGXS]		= "XGXS",
48	[LOOPBACK_XAUI]		= "XAUI",
49	[LOOPBACK_GMII]		= "GMII",
50	[LOOPBACK_SGMII]	= "SGMII",
51	[LOOPBACK_XGBR]		= "XGBR",
52	[LOOPBACK_XFI]		= "XFI",
53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57	[LOOPBACK_GPHY]		= "GPHY",
58	[LOOPBACK_PHYXS]	= "PHYXS",
59	[LOOPBACK_PCS]		= "PCS",
60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61	[LOOPBACK_XPORT]	= "XPORT",
62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66	[LOOPBACK_GMII_WS]	= "GMII_WS",
67	[LOOPBACK_XFI_WS]	= "XFI_WS",
68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70};
71
72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73const char *const efx_reset_type_names[] = {
74	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
75	[RESET_TYPE_ALL]                = "ALL",
76	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
77	[RESET_TYPE_WORLD]              = "WORLD",
78	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79	[RESET_TYPE_DISABLE]            = "DISABLE",
80	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86};
87
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100/*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108static bool separate_tx_channels;
109module_param(separate_tx_channels, bool, 0444);
110MODULE_PARM_DESC(separate_tx_channels,
111		 "Use separate channels for TX and RX");
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
119 * monitor.
120 * On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
123 * On Siena-based NICs for power systems with EEH support, this will give EEH a
124 * chance to start.
125 */
126static unsigned int efx_monitor_interval = 1 * HZ;
127
128/* Initial interrupt moderation settings.  They can be modified after
129 * module load with ethtool.
130 *
131 * The default for RX should strike a balance between increasing the
132 * round-trip latency and reducing overhead.
133 */
134static unsigned int rx_irq_mod_usec = 60;
135
136/* Initial interrupt moderation settings.  They can be modified after
137 * module load with ethtool.
138 *
139 * This default is chosen to ensure that a 10G link does not go idle
140 * while a TX queue is stopped after it has become full.  A queue is
141 * restarted when it drops below half full.  The time this takes (assuming
142 * worst case 3 descriptors per packet and 1024 descriptors) is
143 *   512 / 3 * 1.2 = 205 usec.
144 */
145static unsigned int tx_irq_mod_usec = 150;
146
147/* This is the first interrupt mode to try out of:
148 * 0 => MSI-X
149 * 1 => MSI
150 * 2 => legacy
151 */
152static unsigned int interrupt_mode;
153
154/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
155 * i.e. the number of CPUs among which we may distribute simultaneous
156 * interrupt handling.
157 *
158 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159 * The default (0) means to assign an interrupt to each core.
160 */
161static unsigned int rss_cpus;
162module_param(rss_cpus, uint, 0444);
163MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
164
165static bool phy_flash_cfg;
166module_param(phy_flash_cfg, bool, 0644);
167MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
168
169static unsigned irq_adapt_low_thresh = 8000;
170module_param(irq_adapt_low_thresh, uint, 0644);
171MODULE_PARM_DESC(irq_adapt_low_thresh,
172		 "Threshold score for reducing IRQ moderation");
173
174static unsigned irq_adapt_high_thresh = 16000;
175module_param(irq_adapt_high_thresh, uint, 0644);
176MODULE_PARM_DESC(irq_adapt_high_thresh,
177		 "Threshold score for increasing IRQ moderation");
178
179static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
180			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
181			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
182			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
183module_param(debug, uint, 0);
184MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
185
186/**************************************************************************
187 *
188 * Utility functions and prototypes
189 *
190 *************************************************************************/
191
192static int efx_soft_enable_interrupts(struct efx_nic *efx);
193static void efx_soft_disable_interrupts(struct efx_nic *efx);
194static void efx_remove_channel(struct efx_channel *channel);
195static void efx_remove_channels(struct efx_nic *efx);
196static const struct efx_channel_type efx_default_channel_type;
197static void efx_remove_port(struct efx_nic *efx);
198static void efx_init_napi_channel(struct efx_channel *channel);
199static void efx_fini_napi(struct efx_nic *efx);
200static void efx_fini_napi_channel(struct efx_channel *channel);
201static void efx_fini_struct(struct efx_nic *efx);
202static void efx_start_all(struct efx_nic *efx);
203static void efx_stop_all(struct efx_nic *efx);
204
205#define EFX_ASSERT_RESET_SERIALISED(efx)		\
206	do {						\
207		if ((efx->state == STATE_READY) ||	\
208		    (efx->state == STATE_RECOVERY) ||	\
209		    (efx->state == STATE_DISABLED))	\
210			ASSERT_RTNL();			\
211	} while (0)
212
213static int efx_check_disabled(struct efx_nic *efx)
214{
215	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216		netif_err(efx, drv, efx->net_dev,
217			  "device is disabled due to earlier errors\n");
218		return -EIO;
219	}
220	return 0;
221}
222
223/**************************************************************************
224 *
225 * Event queue processing
226 *
227 *************************************************************************/
228
229/* Process channel's event queue
230 *
231 * This function is responsible for processing the event queue of a
232 * single channel.  The caller must guarantee that this function will
233 * never be concurrently called more than once on the same channel,
234 * though different channels may be being processed concurrently.
235 */
236static int efx_process_channel(struct efx_channel *channel, int budget)
237{
238	int spent;
239
240	if (unlikely(!channel->enabled))
241		return 0;
242
243	spent = efx_nic_process_eventq(channel, budget);
244	if (spent && efx_channel_has_rx_queue(channel)) {
245		struct efx_rx_queue *rx_queue =
246			efx_channel_get_rx_queue(channel);
247
248		efx_rx_flush_packet(channel);
249		efx_fast_push_rx_descriptors(rx_queue);
250	}
251
252	return spent;
253}
254
255/* NAPI poll handler
256 *
257 * NAPI guarantees serialisation of polls of the same device, which
258 * provides the guarantee required by efx_process_channel().
259 */
260static int efx_poll(struct napi_struct *napi, int budget)
261{
262	struct efx_channel *channel =
263		container_of(napi, struct efx_channel, napi_str);
264	struct efx_nic *efx = channel->efx;
265	int spent;
266
267	netif_vdbg(efx, intr, efx->net_dev,
268		   "channel %d NAPI poll executing on CPU %d\n",
269		   channel->channel, raw_smp_processor_id());
270
271	spent = efx_process_channel(channel, budget);
272
273	if (spent < budget) {
274		if (efx_channel_has_rx_queue(channel) &&
275		    efx->irq_rx_adaptive &&
276		    unlikely(++channel->irq_count == 1000)) {
277			if (unlikely(channel->irq_mod_score <
278				     irq_adapt_low_thresh)) {
279				if (channel->irq_moderation > 1) {
280					channel->irq_moderation -= 1;
281					efx->type->push_irq_moderation(channel);
282				}
283			} else if (unlikely(channel->irq_mod_score >
284					    irq_adapt_high_thresh)) {
285				if (channel->irq_moderation <
286				    efx->irq_rx_moderation) {
287					channel->irq_moderation += 1;
288					efx->type->push_irq_moderation(channel);
289				}
290			}
291			channel->irq_count = 0;
292			channel->irq_mod_score = 0;
293		}
294
295		efx_filter_rfs_expire(channel);
296
297		/* There is no race here; although napi_disable() will
298		 * only wait for napi_complete(), this isn't a problem
299		 * since efx_nic_eventq_read_ack() will have no effect if
300		 * interrupts have already been disabled.
301		 */
302		napi_complete(napi);
303		efx_nic_eventq_read_ack(channel);
304	}
305
306	return spent;
307}
308
309/* Create event queue
310 * Event queue memory allocations are done only once.  If the channel
311 * is reset, the memory buffer will be reused; this guards against
312 * errors during channel reset and also simplifies interrupt handling.
313 */
314static int efx_probe_eventq(struct efx_channel *channel)
315{
316	struct efx_nic *efx = channel->efx;
317	unsigned long entries;
318
319	netif_dbg(efx, probe, efx->net_dev,
320		  "chan %d create event queue\n", channel->channel);
321
322	/* Build an event queue with room for one event per tx and rx buffer,
323	 * plus some extra for link state events and MCDI completions. */
324	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
325	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
326	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
327
328	return efx_nic_probe_eventq(channel);
329}
330
331/* Prepare channel's event queue */
332static int efx_init_eventq(struct efx_channel *channel)
333{
334	struct efx_nic *efx = channel->efx;
335	int rc;
336
337	EFX_WARN_ON_PARANOID(channel->eventq_init);
338
339	netif_dbg(efx, drv, efx->net_dev,
340		  "chan %d init event queue\n", channel->channel);
341
342	rc = efx_nic_init_eventq(channel);
343	if (rc == 0) {
344		efx->type->push_irq_moderation(channel);
345		channel->eventq_read_ptr = 0;
346		channel->eventq_init = true;
347	}
348	return rc;
349}
350
351/* Enable event queue processing and NAPI */
352static void efx_start_eventq(struct efx_channel *channel)
353{
354	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
355		  "chan %d start event queue\n", channel->channel);
356
357	/* Make sure the NAPI handler sees the enabled flag set */
358	channel->enabled = true;
359	smp_wmb();
360
361	napi_enable(&channel->napi_str);
362	efx_nic_eventq_read_ack(channel);
363}
364
365/* Disable event queue processing and NAPI */
366static void efx_stop_eventq(struct efx_channel *channel)
367{
368	if (!channel->enabled)
369		return;
370
371	napi_disable(&channel->napi_str);
372	channel->enabled = false;
373}
374
375static void efx_fini_eventq(struct efx_channel *channel)
376{
377	if (!channel->eventq_init)
378		return;
379
380	netif_dbg(channel->efx, drv, channel->efx->net_dev,
381		  "chan %d fini event queue\n", channel->channel);
382
383	efx_nic_fini_eventq(channel);
384	channel->eventq_init = false;
385}
386
387static void efx_remove_eventq(struct efx_channel *channel)
388{
389	netif_dbg(channel->efx, drv, channel->efx->net_dev,
390		  "chan %d remove event queue\n", channel->channel);
391
392	efx_nic_remove_eventq(channel);
393}
394
395/**************************************************************************
396 *
397 * Channel handling
398 *
399 *************************************************************************/
400
401/* Allocate and initialise a channel structure. */
402static struct efx_channel *
403efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
404{
405	struct efx_channel *channel;
406	struct efx_rx_queue *rx_queue;
407	struct efx_tx_queue *tx_queue;
408	int j;
409
410	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
411	if (!channel)
412		return NULL;
413
414	channel->efx = efx;
415	channel->channel = i;
416	channel->type = &efx_default_channel_type;
417
418	for (j = 0; j < EFX_TXQ_TYPES; j++) {
419		tx_queue = &channel->tx_queue[j];
420		tx_queue->efx = efx;
421		tx_queue->queue = i * EFX_TXQ_TYPES + j;
422		tx_queue->channel = channel;
423	}
424
425	rx_queue = &channel->rx_queue;
426	rx_queue->efx = efx;
427	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
428		    (unsigned long)rx_queue);
429
430	return channel;
431}
432
433/* Allocate and initialise a channel structure, copying parameters
434 * (but not resources) from an old channel structure.
435 */
436static struct efx_channel *
437efx_copy_channel(const struct efx_channel *old_channel)
438{
439	struct efx_channel *channel;
440	struct efx_rx_queue *rx_queue;
441	struct efx_tx_queue *tx_queue;
442	int j;
443
444	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
445	if (!channel)
446		return NULL;
447
448	*channel = *old_channel;
449
450	channel->napi_dev = NULL;
451	memset(&channel->eventq, 0, sizeof(channel->eventq));
452
453	for (j = 0; j < EFX_TXQ_TYPES; j++) {
454		tx_queue = &channel->tx_queue[j];
455		if (tx_queue->channel)
456			tx_queue->channel = channel;
457		tx_queue->buffer = NULL;
458		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
459	}
460
461	rx_queue = &channel->rx_queue;
462	rx_queue->buffer = NULL;
463	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
464	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
465		    (unsigned long)rx_queue);
466
467	return channel;
468}
469
470static int efx_probe_channel(struct efx_channel *channel)
471{
472	struct efx_tx_queue *tx_queue;
473	struct efx_rx_queue *rx_queue;
474	int rc;
475
476	netif_dbg(channel->efx, probe, channel->efx->net_dev,
477		  "creating channel %d\n", channel->channel);
478
479	rc = channel->type->pre_probe(channel);
480	if (rc)
481		goto fail;
482
483	rc = efx_probe_eventq(channel);
484	if (rc)
485		goto fail;
486
487	efx_for_each_channel_tx_queue(tx_queue, channel) {
488		rc = efx_probe_tx_queue(tx_queue);
489		if (rc)
490			goto fail;
491	}
492
493	efx_for_each_channel_rx_queue(rx_queue, channel) {
494		rc = efx_probe_rx_queue(rx_queue);
495		if (rc)
496			goto fail;
497	}
498
499	channel->n_rx_frm_trunc = 0;
500
501	return 0;
502
503fail:
504	efx_remove_channel(channel);
505	return rc;
506}
507
508static void
509efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
510{
511	struct efx_nic *efx = channel->efx;
512	const char *type;
513	int number;
514
515	number = channel->channel;
516	if (efx->tx_channel_offset == 0) {
517		type = "";
518	} else if (channel->channel < efx->tx_channel_offset) {
519		type = "-rx";
520	} else {
521		type = "-tx";
522		number -= efx->tx_channel_offset;
523	}
524	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
525}
526
527static void efx_set_channel_names(struct efx_nic *efx)
528{
529	struct efx_channel *channel;
530
531	efx_for_each_channel(channel, efx)
532		channel->type->get_name(channel,
533					efx->msi_context[channel->channel].name,
534					sizeof(efx->msi_context[0].name));
535}
536
537static int efx_probe_channels(struct efx_nic *efx)
538{
539	struct efx_channel *channel;
540	int rc;
541
542	/* Restart special buffer allocation */
543	efx->next_buffer_table = 0;
544
545	/* Probe channels in reverse, so that any 'extra' channels
546	 * use the start of the buffer table. This allows the traffic
547	 * channels to be resized without moving them or wasting the
548	 * entries before them.
549	 */
550	efx_for_each_channel_rev(channel, efx) {
551		rc = efx_probe_channel(channel);
552		if (rc) {
553			netif_err(efx, probe, efx->net_dev,
554				  "failed to create channel %d\n",
555				  channel->channel);
556			goto fail;
557		}
558	}
559	efx_set_channel_names(efx);
560
561	return 0;
562
563fail:
564	efx_remove_channels(efx);
565	return rc;
566}
567
568/* Channels are shutdown and reinitialised whilst the NIC is running
569 * to propagate configuration changes (mtu, checksum offload), or
570 * to clear hardware error conditions
571 */
572static void efx_start_datapath(struct efx_nic *efx)
573{
574	bool old_rx_scatter = efx->rx_scatter;
575	struct efx_tx_queue *tx_queue;
576	struct efx_rx_queue *rx_queue;
577	struct efx_channel *channel;
578	size_t rx_buf_len;
579
580	/* Calculate the rx buffer allocation parameters required to
581	 * support the current MTU, including padding for header
582	 * alignment and overruns.
583	 */
584	efx->rx_dma_len = (efx->rx_prefix_size +
585			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
586			   efx->type->rx_buffer_padding);
587	rx_buf_len = (sizeof(struct efx_rx_page_state) +
588		      NET_IP_ALIGN + efx->rx_dma_len);
589	if (rx_buf_len <= PAGE_SIZE) {
590		efx->rx_scatter = efx->type->always_rx_scatter;
591		efx->rx_buffer_order = 0;
592	} else if (efx->type->can_rx_scatter) {
593		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
594		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
595			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
596				       EFX_RX_BUF_ALIGNMENT) >
597			     PAGE_SIZE);
598		efx->rx_scatter = true;
599		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
600		efx->rx_buffer_order = 0;
601	} else {
602		efx->rx_scatter = false;
603		efx->rx_buffer_order = get_order(rx_buf_len);
604	}
605
606	efx_rx_config_page_split(efx);
607	if (efx->rx_buffer_order)
608		netif_dbg(efx, drv, efx->net_dev,
609			  "RX buf len=%u; page order=%u batch=%u\n",
610			  efx->rx_dma_len, efx->rx_buffer_order,
611			  efx->rx_pages_per_batch);
612	else
613		netif_dbg(efx, drv, efx->net_dev,
614			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
615			  efx->rx_dma_len, efx->rx_page_buf_step,
616			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
617
618	/* RX filters may also have scatter-enabled flags */
619	if (efx->rx_scatter != old_rx_scatter)
620		efx->type->filter_update_rx_scatter(efx);
621
622	/* We must keep at least one descriptor in a TX ring empty.
623	 * We could avoid this when the queue size does not exactly
624	 * match the hardware ring size, but it's not that important.
625	 * Therefore we stop the queue when one more skb might fill
626	 * the ring completely.  We wake it when half way back to
627	 * empty.
628	 */
629	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
630	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
631
632	/* Initialise the channels */
633	efx_for_each_channel(channel, efx) {
634		efx_for_each_channel_tx_queue(tx_queue, channel) {
635			efx_init_tx_queue(tx_queue);
636			atomic_inc(&efx->active_queues);
637		}
638
639		efx_for_each_channel_rx_queue(rx_queue, channel) {
640			efx_init_rx_queue(rx_queue);
641			atomic_inc(&efx->active_queues);
642			efx_nic_generate_fill_event(rx_queue);
643		}
644
645		WARN_ON(channel->rx_pkt_n_frags);
646	}
647
648	if (netif_device_present(efx->net_dev))
649		netif_tx_wake_all_queues(efx->net_dev);
650}
651
652static void efx_stop_datapath(struct efx_nic *efx)
653{
654	struct efx_channel *channel;
655	struct efx_tx_queue *tx_queue;
656	struct efx_rx_queue *rx_queue;
657	int rc;
658
659	EFX_ASSERT_RESET_SERIALISED(efx);
660	BUG_ON(efx->port_enabled);
661
662	/* Stop RX refill */
663	efx_for_each_channel(channel, efx) {
664		efx_for_each_channel_rx_queue(rx_queue, channel)
665			rx_queue->refill_enabled = false;
666	}
667
668	efx_for_each_channel(channel, efx) {
669		/* RX packet processing is pipelined, so wait for the
670		 * NAPI handler to complete.  At least event queue 0
671		 * might be kept active by non-data events, so don't
672		 * use napi_synchronize() but actually disable NAPI
673		 * temporarily.
674		 */
675		if (efx_channel_has_rx_queue(channel)) {
676			efx_stop_eventq(channel);
677			efx_start_eventq(channel);
678		}
679	}
680
681	rc = efx->type->fini_dmaq(efx);
682	if (rc && EFX_WORKAROUND_7803(efx)) {
683		/* Schedule a reset to recover from the flush failure. The
684		 * descriptor caches reference memory we're about to free,
685		 * but falcon_reconfigure_mac_wrapper() won't reconnect
686		 * the MACs because of the pending reset.
687		 */
688		netif_err(efx, drv, efx->net_dev,
689			  "Resetting to recover from flush failure\n");
690		efx_schedule_reset(efx, RESET_TYPE_ALL);
691	} else if (rc) {
692		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
693	} else {
694		netif_dbg(efx, drv, efx->net_dev,
695			  "successfully flushed all queues\n");
696	}
697
698	efx_for_each_channel(channel, efx) {
699		efx_for_each_channel_rx_queue(rx_queue, channel)
700			efx_fini_rx_queue(rx_queue);
701		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
702			efx_fini_tx_queue(tx_queue);
703	}
704}
705
706static void efx_remove_channel(struct efx_channel *channel)
707{
708	struct efx_tx_queue *tx_queue;
709	struct efx_rx_queue *rx_queue;
710
711	netif_dbg(channel->efx, drv, channel->efx->net_dev,
712		  "destroy chan %d\n", channel->channel);
713
714	efx_for_each_channel_rx_queue(rx_queue, channel)
715		efx_remove_rx_queue(rx_queue);
716	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
717		efx_remove_tx_queue(tx_queue);
718	efx_remove_eventq(channel);
719	channel->type->post_remove(channel);
720}
721
722static void efx_remove_channels(struct efx_nic *efx)
723{
724	struct efx_channel *channel;
725
726	efx_for_each_channel(channel, efx)
727		efx_remove_channel(channel);
728}
729
730int
731efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
732{
733	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
734	u32 old_rxq_entries, old_txq_entries;
735	unsigned i, next_buffer_table = 0;
736	int rc, rc2;
737
738	rc = efx_check_disabled(efx);
739	if (rc)
740		return rc;
741
742	/* Not all channels should be reallocated. We must avoid
743	 * reallocating their buffer table entries.
744	 */
745	efx_for_each_channel(channel, efx) {
746		struct efx_rx_queue *rx_queue;
747		struct efx_tx_queue *tx_queue;
748
749		if (channel->type->copy)
750			continue;
751		next_buffer_table = max(next_buffer_table,
752					channel->eventq.index +
753					channel->eventq.entries);
754		efx_for_each_channel_rx_queue(rx_queue, channel)
755			next_buffer_table = max(next_buffer_table,
756						rx_queue->rxd.index +
757						rx_queue->rxd.entries);
758		efx_for_each_channel_tx_queue(tx_queue, channel)
759			next_buffer_table = max(next_buffer_table,
760						tx_queue->txd.index +
761						tx_queue->txd.entries);
762	}
763
764	efx_device_detach_sync(efx);
765	efx_stop_all(efx);
766	efx_soft_disable_interrupts(efx);
767
768	/* Clone channels (where possible) */
769	memset(other_channel, 0, sizeof(other_channel));
770	for (i = 0; i < efx->n_channels; i++) {
771		channel = efx->channel[i];
772		if (channel->type->copy)
773			channel = channel->type->copy(channel);
774		if (!channel) {
775			rc = -ENOMEM;
776			goto out;
777		}
778		other_channel[i] = channel;
779	}
780
781	/* Swap entry counts and channel pointers */
782	old_rxq_entries = efx->rxq_entries;
783	old_txq_entries = efx->txq_entries;
784	efx->rxq_entries = rxq_entries;
785	efx->txq_entries = txq_entries;
786	for (i = 0; i < efx->n_channels; i++) {
787		channel = efx->channel[i];
788		efx->channel[i] = other_channel[i];
789		other_channel[i] = channel;
790	}
791
792	/* Restart buffer table allocation */
793	efx->next_buffer_table = next_buffer_table;
794
795	for (i = 0; i < efx->n_channels; i++) {
796		channel = efx->channel[i];
797		if (!channel->type->copy)
798			continue;
799		rc = efx_probe_channel(channel);
800		if (rc)
801			goto rollback;
802		efx_init_napi_channel(efx->channel[i]);
803	}
804
805out:
806	/* Destroy unused channel structures */
807	for (i = 0; i < efx->n_channels; i++) {
808		channel = other_channel[i];
809		if (channel && channel->type->copy) {
810			efx_fini_napi_channel(channel);
811			efx_remove_channel(channel);
812			kfree(channel);
813		}
814	}
815
816	rc2 = efx_soft_enable_interrupts(efx);
817	if (rc2) {
818		rc = rc ? rc : rc2;
819		netif_err(efx, drv, efx->net_dev,
820			  "unable to restart interrupts on channel reallocation\n");
821		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
822	} else {
823		efx_start_all(efx);
824		netif_device_attach(efx->net_dev);
825	}
826	return rc;
827
828rollback:
829	/* Swap back */
830	efx->rxq_entries = old_rxq_entries;
831	efx->txq_entries = old_txq_entries;
832	for (i = 0; i < efx->n_channels; i++) {
833		channel = efx->channel[i];
834		efx->channel[i] = other_channel[i];
835		other_channel[i] = channel;
836	}
837	goto out;
838}
839
840void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
841{
842	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
843}
844
845static const struct efx_channel_type efx_default_channel_type = {
846	.pre_probe		= efx_channel_dummy_op_int,
847	.post_remove		= efx_channel_dummy_op_void,
848	.get_name		= efx_get_channel_name,
849	.copy			= efx_copy_channel,
850	.keep_eventq		= false,
851};
852
853int efx_channel_dummy_op_int(struct efx_channel *channel)
854{
855	return 0;
856}
857
858void efx_channel_dummy_op_void(struct efx_channel *channel)
859{
860}
861
862/**************************************************************************
863 *
864 * Port handling
865 *
866 **************************************************************************/
867
868/* This ensures that the kernel is kept informed (via
869 * netif_carrier_on/off) of the link status, and also maintains the
870 * link status's stop on the port's TX queue.
871 */
872void efx_link_status_changed(struct efx_nic *efx)
873{
874	struct efx_link_state *link_state = &efx->link_state;
875
876	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
877	 * that no events are triggered between unregister_netdev() and the
878	 * driver unloading. A more general condition is that NETDEV_CHANGE
879	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
880	if (!netif_running(efx->net_dev))
881		return;
882
883	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
884		efx->n_link_state_changes++;
885
886		if (link_state->up)
887			netif_carrier_on(efx->net_dev);
888		else
889			netif_carrier_off(efx->net_dev);
890	}
891
892	/* Status message for kernel log */
893	if (link_state->up)
894		netif_info(efx, link, efx->net_dev,
895			   "link up at %uMbps %s-duplex (MTU %d)\n",
896			   link_state->speed, link_state->fd ? "full" : "half",
897			   efx->net_dev->mtu);
898	else
899		netif_info(efx, link, efx->net_dev, "link down\n");
900}
901
902void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
903{
904	efx->link_advertising = advertising;
905	if (advertising) {
906		if (advertising & ADVERTISED_Pause)
907			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
908		else
909			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
910		if (advertising & ADVERTISED_Asym_Pause)
911			efx->wanted_fc ^= EFX_FC_TX;
912	}
913}
914
915void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
916{
917	efx->wanted_fc = wanted_fc;
918	if (efx->link_advertising) {
919		if (wanted_fc & EFX_FC_RX)
920			efx->link_advertising |= (ADVERTISED_Pause |
921						  ADVERTISED_Asym_Pause);
922		else
923			efx->link_advertising &= ~(ADVERTISED_Pause |
924						   ADVERTISED_Asym_Pause);
925		if (wanted_fc & EFX_FC_TX)
926			efx->link_advertising ^= ADVERTISED_Asym_Pause;
927	}
928}
929
930static void efx_fini_port(struct efx_nic *efx);
931
932/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
933 * the MAC appropriately. All other PHY configuration changes are pushed
934 * through phy_op->set_settings(), and pushed asynchronously to the MAC
935 * through efx_monitor().
936 *
937 * Callers must hold the mac_lock
938 */
939int __efx_reconfigure_port(struct efx_nic *efx)
940{
941	enum efx_phy_mode phy_mode;
942	int rc;
943
944	WARN_ON(!mutex_is_locked(&efx->mac_lock));
945
946	/* Disable PHY transmit in mac level loopbacks */
947	phy_mode = efx->phy_mode;
948	if (LOOPBACK_INTERNAL(efx))
949		efx->phy_mode |= PHY_MODE_TX_DISABLED;
950	else
951		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
952
953	rc = efx->type->reconfigure_port(efx);
954
955	if (rc)
956		efx->phy_mode = phy_mode;
957
958	return rc;
959}
960
961/* Reinitialise the MAC to pick up new PHY settings, even if the port is
962 * disabled. */
963int efx_reconfigure_port(struct efx_nic *efx)
964{
965	int rc;
966
967	EFX_ASSERT_RESET_SERIALISED(efx);
968
969	mutex_lock(&efx->mac_lock);
970	rc = __efx_reconfigure_port(efx);
971	mutex_unlock(&efx->mac_lock);
972
973	return rc;
974}
975
976/* Asynchronous work item for changing MAC promiscuity and multicast
977 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
978 * MAC directly. */
979static void efx_mac_work(struct work_struct *data)
980{
981	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
982
983	mutex_lock(&efx->mac_lock);
984	if (efx->port_enabled)
985		efx->type->reconfigure_mac(efx);
986	mutex_unlock(&efx->mac_lock);
987}
988
989static int efx_probe_port(struct efx_nic *efx)
990{
991	int rc;
992
993	netif_dbg(efx, probe, efx->net_dev, "create port\n");
994
995	if (phy_flash_cfg)
996		efx->phy_mode = PHY_MODE_SPECIAL;
997
998	/* Connect up MAC/PHY operations table */
999	rc = efx->type->probe_port(efx);
1000	if (rc)
1001		return rc;
1002
1003	/* Initialise MAC address to permanent address */
1004	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1005
1006	return 0;
1007}
1008
1009static int efx_init_port(struct efx_nic *efx)
1010{
1011	int rc;
1012
1013	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1014
1015	mutex_lock(&efx->mac_lock);
1016
1017	rc = efx->phy_op->init(efx);
1018	if (rc)
1019		goto fail1;
1020
1021	efx->port_initialized = true;
1022
1023	/* Reconfigure the MAC before creating dma queues (required for
1024	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1025	efx->type->reconfigure_mac(efx);
1026
1027	/* Ensure the PHY advertises the correct flow control settings */
1028	rc = efx->phy_op->reconfigure(efx);
1029	if (rc)
1030		goto fail2;
1031
1032	mutex_unlock(&efx->mac_lock);
1033	return 0;
1034
1035fail2:
1036	efx->phy_op->fini(efx);
1037fail1:
1038	mutex_unlock(&efx->mac_lock);
1039	return rc;
1040}
1041
1042static void efx_start_port(struct efx_nic *efx)
1043{
1044	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1045	BUG_ON(efx->port_enabled);
1046
1047	mutex_lock(&efx->mac_lock);
1048	efx->port_enabled = true;
1049
1050	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1051	 * and then cancelled by efx_flush_all() */
1052	efx->type->reconfigure_mac(efx);
1053
1054	mutex_unlock(&efx->mac_lock);
1055}
1056
1057/* Prevent efx_mac_work() and efx_monitor() from working */
1058static void efx_stop_port(struct efx_nic *efx)
1059{
1060	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1061
1062	mutex_lock(&efx->mac_lock);
1063	efx->port_enabled = false;
1064	mutex_unlock(&efx->mac_lock);
1065
1066	/* Serialise against efx_set_multicast_list() */
1067	netif_addr_lock_bh(efx->net_dev);
1068	netif_addr_unlock_bh(efx->net_dev);
1069}
1070
1071static void efx_fini_port(struct efx_nic *efx)
1072{
1073	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1074
1075	if (!efx->port_initialized)
1076		return;
1077
1078	efx->phy_op->fini(efx);
1079	efx->port_initialized = false;
1080
1081	efx->link_state.up = false;
1082	efx_link_status_changed(efx);
1083}
1084
1085static void efx_remove_port(struct efx_nic *efx)
1086{
1087	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1088
1089	efx->type->remove_port(efx);
1090}
1091
1092/**************************************************************************
1093 *
1094 * NIC handling
1095 *
1096 **************************************************************************/
1097
1098/* This configures the PCI device to enable I/O and DMA. */
1099static int efx_init_io(struct efx_nic *efx)
1100{
1101	struct pci_dev *pci_dev = efx->pci_dev;
1102	dma_addr_t dma_mask = efx->type->max_dma_mask;
1103	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1104	int rc;
1105
1106	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1107
1108	rc = pci_enable_device(pci_dev);
1109	if (rc) {
1110		netif_err(efx, probe, efx->net_dev,
1111			  "failed to enable PCI device\n");
1112		goto fail1;
1113	}
1114
1115	pci_set_master(pci_dev);
1116
1117	/* Set the PCI DMA mask.  Try all possibilities from our
1118	 * genuine mask down to 32 bits, because some architectures
1119	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1120	 * masks event though they reject 46 bit masks.
1121	 */
1122	while (dma_mask > 0x7fffffffUL) {
1123		if (dma_supported(&pci_dev->dev, dma_mask)) {
1124			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1125			if (rc == 0)
1126				break;
1127		}
1128		dma_mask >>= 1;
1129	}
1130	if (rc) {
1131		netif_err(efx, probe, efx->net_dev,
1132			  "could not find a suitable DMA mask\n");
1133		goto fail2;
1134	}
1135	netif_dbg(efx, probe, efx->net_dev,
1136		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1137
1138	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1139	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1140	if (rc) {
1141		netif_err(efx, probe, efx->net_dev,
1142			  "request for memory BAR failed\n");
1143		rc = -EIO;
1144		goto fail3;
1145	}
1146	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1147	if (!efx->membase) {
1148		netif_err(efx, probe, efx->net_dev,
1149			  "could not map memory BAR at %llx+%x\n",
1150			  (unsigned long long)efx->membase_phys, mem_map_size);
1151		rc = -ENOMEM;
1152		goto fail4;
1153	}
1154	netif_dbg(efx, probe, efx->net_dev,
1155		  "memory BAR at %llx+%x (virtual %p)\n",
1156		  (unsigned long long)efx->membase_phys, mem_map_size,
1157		  efx->membase);
1158
1159	return 0;
1160
1161 fail4:
1162	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1163 fail3:
1164	efx->membase_phys = 0;
1165 fail2:
1166	pci_disable_device(efx->pci_dev);
1167 fail1:
1168	return rc;
1169}
1170
1171static void efx_fini_io(struct efx_nic *efx)
1172{
1173	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1174
1175	if (efx->membase) {
1176		iounmap(efx->membase);
1177		efx->membase = NULL;
1178	}
1179
1180	if (efx->membase_phys) {
1181		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1182		efx->membase_phys = 0;
1183	}
1184
1185	pci_disable_device(efx->pci_dev);
1186}
1187
1188static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1189{
1190	cpumask_var_t thread_mask;
1191	unsigned int count;
1192	int cpu;
1193
1194	if (rss_cpus) {
1195		count = rss_cpus;
1196	} else {
1197		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1198			netif_warn(efx, probe, efx->net_dev,
1199				   "RSS disabled due to allocation failure\n");
1200			return 1;
1201		}
1202
1203		count = 0;
1204		for_each_online_cpu(cpu) {
1205			if (!cpumask_test_cpu(cpu, thread_mask)) {
1206				++count;
1207				cpumask_or(thread_mask, thread_mask,
1208					   topology_thread_cpumask(cpu));
1209			}
1210		}
1211
1212		free_cpumask_var(thread_mask);
1213	}
1214
1215	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1216	 * table entries that are inaccessible to VFs
1217	 */
1218	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1219	    count > efx_vf_size(efx)) {
1220		netif_warn(efx, probe, efx->net_dev,
1221			   "Reducing number of RSS channels from %u to %u for "
1222			   "VF support. Increase vf-msix-limit to use more "
1223			   "channels on the PF.\n",
1224			   count, efx_vf_size(efx));
1225		count = efx_vf_size(efx);
1226	}
1227
1228	return count;
1229}
1230
1231/* Probe the number and type of interrupts we are able to obtain, and
1232 * the resulting numbers of channels and RX queues.
1233 */
1234static int efx_probe_interrupts(struct efx_nic *efx)
1235{
1236	unsigned int extra_channels = 0;
1237	unsigned int i, j;
1238	int rc;
1239
1240	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1241		if (efx->extra_channel_type[i])
1242			++extra_channels;
1243
1244	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1245		struct msix_entry xentries[EFX_MAX_CHANNELS];
1246		unsigned int n_channels;
1247
1248		n_channels = efx_wanted_parallelism(efx);
1249		if (separate_tx_channels)
1250			n_channels *= 2;
1251		n_channels += extra_channels;
1252		n_channels = min(n_channels, efx->max_channels);
1253
1254		for (i = 0; i < n_channels; i++)
1255			xentries[i].entry = i;
1256		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1257		if (rc > 0) {
1258			netif_err(efx, drv, efx->net_dev,
1259				  "WARNING: Insufficient MSI-X vectors"
1260				  " available (%d < %u).\n", rc, n_channels);
1261			netif_err(efx, drv, efx->net_dev,
1262				  "WARNING: Performance may be reduced.\n");
1263			EFX_BUG_ON_PARANOID(rc >= n_channels);
1264			n_channels = rc;
1265			rc = pci_enable_msix(efx->pci_dev, xentries,
1266					     n_channels);
1267		}
1268
1269		if (rc == 0) {
1270			efx->n_channels = n_channels;
1271			if (n_channels > extra_channels)
1272				n_channels -= extra_channels;
1273			if (separate_tx_channels) {
1274				efx->n_tx_channels = max(n_channels / 2, 1U);
1275				efx->n_rx_channels = max(n_channels -
1276							 efx->n_tx_channels,
1277							 1U);
1278			} else {
1279				efx->n_tx_channels = n_channels;
1280				efx->n_rx_channels = n_channels;
1281			}
1282			for (i = 0; i < efx->n_channels; i++)
1283				efx_get_channel(efx, i)->irq =
1284					xentries[i].vector;
1285		} else {
1286			/* Fall back to single channel MSI */
1287			efx->interrupt_mode = EFX_INT_MODE_MSI;
1288			netif_err(efx, drv, efx->net_dev,
1289				  "could not enable MSI-X\n");
1290		}
1291	}
1292
1293	/* Try single interrupt MSI */
1294	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1295		efx->n_channels = 1;
1296		efx->n_rx_channels = 1;
1297		efx->n_tx_channels = 1;
1298		rc = pci_enable_msi(efx->pci_dev);
1299		if (rc == 0) {
1300			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1301		} else {
1302			netif_err(efx, drv, efx->net_dev,
1303				  "could not enable MSI\n");
1304			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1305		}
1306	}
1307
1308	/* Assume legacy interrupts */
1309	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1310		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1311		efx->n_rx_channels = 1;
1312		efx->n_tx_channels = 1;
1313		efx->legacy_irq = efx->pci_dev->irq;
1314	}
1315
1316	/* Assign extra channels if possible */
1317	j = efx->n_channels;
1318	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1319		if (!efx->extra_channel_type[i])
1320			continue;
1321		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1322		    efx->n_channels <= extra_channels) {
1323			efx->extra_channel_type[i]->handle_no_channel(efx);
1324		} else {
1325			--j;
1326			efx_get_channel(efx, j)->type =
1327				efx->extra_channel_type[i];
1328		}
1329	}
1330
1331	/* RSS might be usable on VFs even if it is disabled on the PF */
1332	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1333			   efx->n_rx_channels : efx_vf_size(efx));
1334
1335	return 0;
1336}
1337
1338static int efx_soft_enable_interrupts(struct efx_nic *efx)
1339{
1340	struct efx_channel *channel, *end_channel;
1341	int rc;
1342
1343	BUG_ON(efx->state == STATE_DISABLED);
1344
1345	efx->irq_soft_enabled = true;
1346	smp_wmb();
1347
1348	efx_for_each_channel(channel, efx) {
1349		if (!channel->type->keep_eventq) {
1350			rc = efx_init_eventq(channel);
1351			if (rc)
1352				goto fail;
1353		}
1354		efx_start_eventq(channel);
1355	}
1356
1357	efx_mcdi_mode_event(efx);
1358
1359	return 0;
1360fail:
1361	end_channel = channel;
1362	efx_for_each_channel(channel, efx) {
1363		if (channel == end_channel)
1364			break;
1365		efx_stop_eventq(channel);
1366		if (!channel->type->keep_eventq)
1367			efx_fini_eventq(channel);
1368	}
1369
1370	return rc;
1371}
1372
1373static void efx_soft_disable_interrupts(struct efx_nic *efx)
1374{
1375	struct efx_channel *channel;
1376
1377	if (efx->state == STATE_DISABLED)
1378		return;
1379
1380	efx_mcdi_mode_poll(efx);
1381
1382	efx->irq_soft_enabled = false;
1383	smp_wmb();
1384
1385	if (efx->legacy_irq)
1386		synchronize_irq(efx->legacy_irq);
1387
1388	efx_for_each_channel(channel, efx) {
1389		if (channel->irq)
1390			synchronize_irq(channel->irq);
1391
1392		efx_stop_eventq(channel);
1393		if (!channel->type->keep_eventq)
1394			efx_fini_eventq(channel);
1395	}
1396
1397	/* Flush the asynchronous MCDI request queue */
1398	efx_mcdi_flush_async(efx);
1399}
1400
1401static int efx_enable_interrupts(struct efx_nic *efx)
1402{
1403	struct efx_channel *channel, *end_channel;
1404	int rc;
1405
1406	BUG_ON(efx->state == STATE_DISABLED);
1407
1408	if (efx->eeh_disabled_legacy_irq) {
1409		enable_irq(efx->legacy_irq);
1410		efx->eeh_disabled_legacy_irq = false;
1411	}
1412
1413	efx->type->irq_enable_master(efx);
1414
1415	efx_for_each_channel(channel, efx) {
1416		if (channel->type->keep_eventq) {
1417			rc = efx_init_eventq(channel);
1418			if (rc)
1419				goto fail;
1420		}
1421	}
1422
1423	rc = efx_soft_enable_interrupts(efx);
1424	if (rc)
1425		goto fail;
1426
1427	return 0;
1428
1429fail:
1430	end_channel = channel;
1431	efx_for_each_channel(channel, efx) {
1432		if (channel == end_channel)
1433			break;
1434		if (channel->type->keep_eventq)
1435			efx_fini_eventq(channel);
1436	}
1437
1438	efx->type->irq_disable_non_ev(efx);
1439
1440	return rc;
1441}
1442
1443static void efx_disable_interrupts(struct efx_nic *efx)
1444{
1445	struct efx_channel *channel;
1446
1447	efx_soft_disable_interrupts(efx);
1448
1449	efx_for_each_channel(channel, efx) {
1450		if (channel->type->keep_eventq)
1451			efx_fini_eventq(channel);
1452	}
1453
1454	efx->type->irq_disable_non_ev(efx);
1455}
1456
1457static void efx_remove_interrupts(struct efx_nic *efx)
1458{
1459	struct efx_channel *channel;
1460
1461	/* Remove MSI/MSI-X interrupts */
1462	efx_for_each_channel(channel, efx)
1463		channel->irq = 0;
1464	pci_disable_msi(efx->pci_dev);
1465	pci_disable_msix(efx->pci_dev);
1466
1467	/* Remove legacy interrupt */
1468	efx->legacy_irq = 0;
1469}
1470
1471static void efx_set_channels(struct efx_nic *efx)
1472{
1473	struct efx_channel *channel;
1474	struct efx_tx_queue *tx_queue;
1475
1476	efx->tx_channel_offset =
1477		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1478
1479	/* We need to mark which channels really have RX and TX
1480	 * queues, and adjust the TX queue numbers if we have separate
1481	 * RX-only and TX-only channels.
1482	 */
1483	efx_for_each_channel(channel, efx) {
1484		if (channel->channel < efx->n_rx_channels)
1485			channel->rx_queue.core_index = channel->channel;
1486		else
1487			channel->rx_queue.core_index = -1;
1488
1489		efx_for_each_channel_tx_queue(tx_queue, channel)
1490			tx_queue->queue -= (efx->tx_channel_offset *
1491					    EFX_TXQ_TYPES);
1492	}
1493}
1494
1495static int efx_probe_nic(struct efx_nic *efx)
1496{
1497	size_t i;
1498	int rc;
1499
1500	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1501
1502	/* Carry out hardware-type specific initialisation */
1503	rc = efx->type->probe(efx);
1504	if (rc)
1505		return rc;
1506
1507	/* Determine the number of channels and queues by trying to hook
1508	 * in MSI-X interrupts. */
1509	rc = efx_probe_interrupts(efx);
1510	if (rc)
1511		goto fail1;
1512
1513	rc = efx->type->dimension_resources(efx);
1514	if (rc)
1515		goto fail2;
1516
1517	if (efx->n_channels > 1)
1518		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1519	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1520		efx->rx_indir_table[i] =
1521			ethtool_rxfh_indir_default(i, efx->rss_spread);
1522
1523	efx_set_channels(efx);
1524	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1525	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1526
1527	/* Initialise the interrupt moderation settings */
1528	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1529				true);
1530
1531	return 0;
1532
1533fail2:
1534	efx_remove_interrupts(efx);
1535fail1:
1536	efx->type->remove(efx);
1537	return rc;
1538}
1539
1540static void efx_remove_nic(struct efx_nic *efx)
1541{
1542	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1543
1544	efx_remove_interrupts(efx);
1545	efx->type->remove(efx);
1546}
1547
1548static int efx_probe_filters(struct efx_nic *efx)
1549{
1550	int rc;
1551
1552	spin_lock_init(&efx->filter_lock);
1553
1554	rc = efx->type->filter_table_probe(efx);
1555	if (rc)
1556		return rc;
1557
1558#ifdef CONFIG_RFS_ACCEL
1559	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1560		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1561					   sizeof(*efx->rps_flow_id),
1562					   GFP_KERNEL);
1563		if (!efx->rps_flow_id) {
1564			efx->type->filter_table_remove(efx);
1565			return -ENOMEM;
1566		}
1567	}
1568#endif
1569
1570	return 0;
1571}
1572
1573static void efx_remove_filters(struct efx_nic *efx)
1574{
1575#ifdef CONFIG_RFS_ACCEL
1576	kfree(efx->rps_flow_id);
1577#endif
1578	efx->type->filter_table_remove(efx);
1579}
1580
1581static void efx_restore_filters(struct efx_nic *efx)
1582{
1583	efx->type->filter_table_restore(efx);
1584}
1585
1586/**************************************************************************
1587 *
1588 * NIC startup/shutdown
1589 *
1590 *************************************************************************/
1591
1592static int efx_probe_all(struct efx_nic *efx)
1593{
1594	int rc;
1595
1596	rc = efx_probe_nic(efx);
1597	if (rc) {
1598		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1599		goto fail1;
1600	}
1601
1602	rc = efx_probe_port(efx);
1603	if (rc) {
1604		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1605		goto fail2;
1606	}
1607
1608	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1609	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1610		rc = -EINVAL;
1611		goto fail3;
1612	}
1613	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1614
1615	rc = efx_probe_filters(efx);
1616	if (rc) {
1617		netif_err(efx, probe, efx->net_dev,
1618			  "failed to create filter tables\n");
1619		goto fail3;
1620	}
1621
1622	rc = efx_probe_channels(efx);
1623	if (rc)
1624		goto fail4;
1625
1626	return 0;
1627
1628 fail4:
1629	efx_remove_filters(efx);
1630 fail3:
1631	efx_remove_port(efx);
1632 fail2:
1633	efx_remove_nic(efx);
1634 fail1:
1635	return rc;
1636}
1637
1638/* If the interface is supposed to be running but is not, start
1639 * the hardware and software data path, regular activity for the port
1640 * (MAC statistics, link polling, etc.) and schedule the port to be
1641 * reconfigured.  Interrupts must already be enabled.  This function
1642 * is safe to call multiple times, so long as the NIC is not disabled.
1643 * Requires the RTNL lock.
1644 */
1645static void efx_start_all(struct efx_nic *efx)
1646{
1647	EFX_ASSERT_RESET_SERIALISED(efx);
1648	BUG_ON(efx->state == STATE_DISABLED);
1649
1650	/* Check that it is appropriate to restart the interface. All
1651	 * of these flags are safe to read under just the rtnl lock */
1652	if (efx->port_enabled || !netif_running(efx->net_dev))
1653		return;
1654
1655	efx_start_port(efx);
1656	efx_start_datapath(efx);
1657
1658	/* Start the hardware monitor if there is one */
1659	if (efx->type->monitor != NULL)
1660		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1661				   efx_monitor_interval);
1662
1663	/* If link state detection is normally event-driven, we have
1664	 * to poll now because we could have missed a change
1665	 */
1666	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1667		mutex_lock(&efx->mac_lock);
1668		if (efx->phy_op->poll(efx))
1669			efx_link_status_changed(efx);
1670		mutex_unlock(&efx->mac_lock);
1671	}
1672
1673	efx->type->start_stats(efx);
1674}
1675
1676/* Flush all delayed work. Should only be called when no more delayed work
1677 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1678 * since we're holding the rtnl_lock at this point. */
1679static void efx_flush_all(struct efx_nic *efx)
1680{
1681	/* Make sure the hardware monitor and event self-test are stopped */
1682	cancel_delayed_work_sync(&efx->monitor_work);
1683	efx_selftest_async_cancel(efx);
1684	/* Stop scheduled port reconfigurations */
1685	cancel_work_sync(&efx->mac_work);
1686}
1687
1688/* Quiesce the hardware and software data path, and regular activity
1689 * for the port without bringing the link down.  Safe to call multiple
1690 * times with the NIC in almost any state, but interrupts should be
1691 * enabled.  Requires the RTNL lock.
1692 */
1693static void efx_stop_all(struct efx_nic *efx)
1694{
1695	EFX_ASSERT_RESET_SERIALISED(efx);
1696
1697	/* port_enabled can be read safely under the rtnl lock */
1698	if (!efx->port_enabled)
1699		return;
1700
1701	efx->type->stop_stats(efx);
1702	efx_stop_port(efx);
1703
1704	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1705	efx_flush_all(efx);
1706
1707	/* Stop the kernel transmit interface.  This is only valid if
1708	 * the device is stopped or detached; otherwise the watchdog
1709	 * may fire immediately.
1710	 */
1711	WARN_ON(netif_running(efx->net_dev) &&
1712		netif_device_present(efx->net_dev));
1713	netif_tx_disable(efx->net_dev);
1714
1715	efx_stop_datapath(efx);
1716}
1717
1718static void efx_remove_all(struct efx_nic *efx)
1719{
1720	efx_remove_channels(efx);
1721	efx_remove_filters(efx);
1722	efx_remove_port(efx);
1723	efx_remove_nic(efx);
1724}
1725
1726/**************************************************************************
1727 *
1728 * Interrupt moderation
1729 *
1730 **************************************************************************/
1731
1732static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1733{
1734	if (usecs == 0)
1735		return 0;
1736	if (usecs * 1000 < quantum_ns)
1737		return 1; /* never round down to 0 */
1738	return usecs * 1000 / quantum_ns;
1739}
1740
1741/* Set interrupt moderation parameters */
1742int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1743			    unsigned int rx_usecs, bool rx_adaptive,
1744			    bool rx_may_override_tx)
1745{
1746	struct efx_channel *channel;
1747	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1748						efx->timer_quantum_ns,
1749						1000);
1750	unsigned int tx_ticks;
1751	unsigned int rx_ticks;
1752
1753	EFX_ASSERT_RESET_SERIALISED(efx);
1754
1755	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1756		return -EINVAL;
1757
1758	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1759	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1760
1761	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1762	    !rx_may_override_tx) {
1763		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1764			  "RX and TX IRQ moderation must be equal\n");
1765		return -EINVAL;
1766	}
1767
1768	efx->irq_rx_adaptive = rx_adaptive;
1769	efx->irq_rx_moderation = rx_ticks;
1770	efx_for_each_channel(channel, efx) {
1771		if (efx_channel_has_rx_queue(channel))
1772			channel->irq_moderation = rx_ticks;
1773		else if (efx_channel_has_tx_queues(channel))
1774			channel->irq_moderation = tx_ticks;
1775	}
1776
1777	return 0;
1778}
1779
1780void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1781			    unsigned int *rx_usecs, bool *rx_adaptive)
1782{
1783	/* We must round up when converting ticks to microseconds
1784	 * because we round down when converting the other way.
1785	 */
1786
1787	*rx_adaptive = efx->irq_rx_adaptive;
1788	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1789				 efx->timer_quantum_ns,
1790				 1000);
1791
1792	/* If channels are shared between RX and TX, so is IRQ
1793	 * moderation.  Otherwise, IRQ moderation is the same for all
1794	 * TX channels and is not adaptive.
1795	 */
1796	if (efx->tx_channel_offset == 0)
1797		*tx_usecs = *rx_usecs;
1798	else
1799		*tx_usecs = DIV_ROUND_UP(
1800			efx->channel[efx->tx_channel_offset]->irq_moderation *
1801			efx->timer_quantum_ns,
1802			1000);
1803}
1804
1805/**************************************************************************
1806 *
1807 * Hardware monitor
1808 *
1809 **************************************************************************/
1810
1811/* Run periodically off the general workqueue */
1812static void efx_monitor(struct work_struct *data)
1813{
1814	struct efx_nic *efx = container_of(data, struct efx_nic,
1815					   monitor_work.work);
1816
1817	netif_vdbg(efx, timer, efx->net_dev,
1818		   "hardware monitor executing on CPU %d\n",
1819		   raw_smp_processor_id());
1820	BUG_ON(efx->type->monitor == NULL);
1821
1822	/* If the mac_lock is already held then it is likely a port
1823	 * reconfiguration is already in place, which will likely do
1824	 * most of the work of monitor() anyway. */
1825	if (mutex_trylock(&efx->mac_lock)) {
1826		if (efx->port_enabled)
1827			efx->type->monitor(efx);
1828		mutex_unlock(&efx->mac_lock);
1829	}
1830
1831	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1832			   efx_monitor_interval);
1833}
1834
1835/**************************************************************************
1836 *
1837 * ioctls
1838 *
1839 *************************************************************************/
1840
1841/* Net device ioctl
1842 * Context: process, rtnl_lock() held.
1843 */
1844static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1845{
1846	struct efx_nic *efx = netdev_priv(net_dev);
1847	struct mii_ioctl_data *data = if_mii(ifr);
1848
1849	if (cmd == SIOCSHWTSTAMP)
1850		return efx_ptp_set_ts_config(efx, ifr);
1851	if (cmd == SIOCGHWTSTAMP)
1852		return efx_ptp_get_ts_config(efx, ifr);
1853
1854	/* Convert phy_id from older PRTAD/DEVAD format */
1855	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1856	    (data->phy_id & 0xfc00) == 0x0400)
1857		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1858
1859	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1860}
1861
1862/**************************************************************************
1863 *
1864 * NAPI interface
1865 *
1866 **************************************************************************/
1867
1868static void efx_init_napi_channel(struct efx_channel *channel)
1869{
1870	struct efx_nic *efx = channel->efx;
1871
1872	channel->napi_dev = efx->net_dev;
1873	netif_napi_add(channel->napi_dev, &channel->napi_str,
1874		       efx_poll, napi_weight);
1875}
1876
1877static void efx_init_napi(struct efx_nic *efx)
1878{
1879	struct efx_channel *channel;
1880
1881	efx_for_each_channel(channel, efx)
1882		efx_init_napi_channel(channel);
1883}
1884
1885static void efx_fini_napi_channel(struct efx_channel *channel)
1886{
1887	if (channel->napi_dev)
1888		netif_napi_del(&channel->napi_str);
1889	channel->napi_dev = NULL;
1890}
1891
1892static void efx_fini_napi(struct efx_nic *efx)
1893{
1894	struct efx_channel *channel;
1895
1896	efx_for_each_channel(channel, efx)
1897		efx_fini_napi_channel(channel);
1898}
1899
1900/**************************************************************************
1901 *
1902 * Kernel netpoll interface
1903 *
1904 *************************************************************************/
1905
1906#ifdef CONFIG_NET_POLL_CONTROLLER
1907
1908/* Although in the common case interrupts will be disabled, this is not
1909 * guaranteed. However, all our work happens inside the NAPI callback,
1910 * so no locking is required.
1911 */
1912static void efx_netpoll(struct net_device *net_dev)
1913{
1914	struct efx_nic *efx = netdev_priv(net_dev);
1915	struct efx_channel *channel;
1916
1917	efx_for_each_channel(channel, efx)
1918		efx_schedule_channel(channel);
1919}
1920
1921#endif
1922
1923/**************************************************************************
1924 *
1925 * Kernel net device interface
1926 *
1927 *************************************************************************/
1928
1929/* Context: process, rtnl_lock() held. */
1930static int efx_net_open(struct net_device *net_dev)
1931{
1932	struct efx_nic *efx = netdev_priv(net_dev);
1933	int rc;
1934
1935	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1936		  raw_smp_processor_id());
1937
1938	rc = efx_check_disabled(efx);
1939	if (rc)
1940		return rc;
1941	if (efx->phy_mode & PHY_MODE_SPECIAL)
1942		return -EBUSY;
1943	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1944		return -EIO;
1945
1946	/* Notify the kernel of the link state polled during driver load,
1947	 * before the monitor starts running */
1948	efx_link_status_changed(efx);
1949
1950	efx_start_all(efx);
1951	efx_selftest_async_start(efx);
1952	return 0;
1953}
1954
1955/* Context: process, rtnl_lock() held.
1956 * Note that the kernel will ignore our return code; this method
1957 * should really be a void.
1958 */
1959static int efx_net_stop(struct net_device *net_dev)
1960{
1961	struct efx_nic *efx = netdev_priv(net_dev);
1962
1963	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1964		  raw_smp_processor_id());
1965
1966	/* Stop the device and flush all the channels */
1967	efx_stop_all(efx);
1968
1969	return 0;
1970}
1971
1972/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1973static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1974					       struct rtnl_link_stats64 *stats)
1975{
1976	struct efx_nic *efx = netdev_priv(net_dev);
1977
1978	spin_lock_bh(&efx->stats_lock);
1979	efx->type->update_stats(efx, NULL, stats);
1980	spin_unlock_bh(&efx->stats_lock);
1981
1982	return stats;
1983}
1984
1985/* Context: netif_tx_lock held, BHs disabled. */
1986static void efx_watchdog(struct net_device *net_dev)
1987{
1988	struct efx_nic *efx = netdev_priv(net_dev);
1989
1990	netif_err(efx, tx_err, efx->net_dev,
1991		  "TX stuck with port_enabled=%d: resetting channels\n",
1992		  efx->port_enabled);
1993
1994	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1995}
1996
1997
1998/* Context: process, rtnl_lock() held. */
1999static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2000{
2001	struct efx_nic *efx = netdev_priv(net_dev);
2002	int rc;
2003
2004	rc = efx_check_disabled(efx);
2005	if (rc)
2006		return rc;
2007	if (new_mtu > EFX_MAX_MTU)
2008		return -EINVAL;
2009
2010	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2011
2012	efx_device_detach_sync(efx);
2013	efx_stop_all(efx);
2014
2015	mutex_lock(&efx->mac_lock);
2016	net_dev->mtu = new_mtu;
2017	efx->type->reconfigure_mac(efx);
2018	mutex_unlock(&efx->mac_lock);
2019
2020	efx_start_all(efx);
2021	netif_device_attach(efx->net_dev);
2022	return 0;
2023}
2024
2025static int efx_set_mac_address(struct net_device *net_dev, void *data)
2026{
2027	struct efx_nic *efx = netdev_priv(net_dev);
2028	struct sockaddr *addr = data;
2029	char *new_addr = addr->sa_data;
2030
2031	if (!is_valid_ether_addr(new_addr)) {
2032		netif_err(efx, drv, efx->net_dev,
2033			  "invalid ethernet MAC address requested: %pM\n",
2034			  new_addr);
2035		return -EADDRNOTAVAIL;
2036	}
2037
2038	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2039	efx_sriov_mac_address_changed(efx);
2040
2041	/* Reconfigure the MAC */
2042	mutex_lock(&efx->mac_lock);
2043	efx->type->reconfigure_mac(efx);
2044	mutex_unlock(&efx->mac_lock);
2045
2046	return 0;
2047}
2048
2049/* Context: netif_addr_lock held, BHs disabled. */
2050static void efx_set_rx_mode(struct net_device *net_dev)
2051{
2052	struct efx_nic *efx = netdev_priv(net_dev);
2053
2054	if (efx->port_enabled)
2055		queue_work(efx->workqueue, &efx->mac_work);
2056	/* Otherwise efx_start_port() will do this */
2057}
2058
2059static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2060{
2061	struct efx_nic *efx = netdev_priv(net_dev);
2062
2063	/* If disabling RX n-tuple filtering, clear existing filters */
2064	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2065		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2066
2067	return 0;
2068}
2069
2070static const struct net_device_ops efx_farch_netdev_ops = {
2071	.ndo_open		= efx_net_open,
2072	.ndo_stop		= efx_net_stop,
2073	.ndo_get_stats64	= efx_net_stats,
2074	.ndo_tx_timeout		= efx_watchdog,
2075	.ndo_start_xmit		= efx_hard_start_xmit,
2076	.ndo_validate_addr	= eth_validate_addr,
2077	.ndo_do_ioctl		= efx_ioctl,
2078	.ndo_change_mtu		= efx_change_mtu,
2079	.ndo_set_mac_address	= efx_set_mac_address,
2080	.ndo_set_rx_mode	= efx_set_rx_mode,
2081	.ndo_set_features	= efx_set_features,
2082#ifdef CONFIG_SFC_SRIOV
2083	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2084	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2085	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2086	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2087#endif
2088#ifdef CONFIG_NET_POLL_CONTROLLER
2089	.ndo_poll_controller = efx_netpoll,
2090#endif
2091	.ndo_setup_tc		= efx_setup_tc,
2092#ifdef CONFIG_RFS_ACCEL
2093	.ndo_rx_flow_steer	= efx_filter_rfs,
2094#endif
2095};
2096
2097static const struct net_device_ops efx_ef10_netdev_ops = {
2098	.ndo_open		= efx_net_open,
2099	.ndo_stop		= efx_net_stop,
2100	.ndo_get_stats64	= efx_net_stats,
2101	.ndo_tx_timeout		= efx_watchdog,
2102	.ndo_start_xmit		= efx_hard_start_xmit,
2103	.ndo_validate_addr	= eth_validate_addr,
2104	.ndo_do_ioctl		= efx_ioctl,
2105	.ndo_change_mtu		= efx_change_mtu,
2106	.ndo_set_mac_address	= efx_set_mac_address,
2107	.ndo_set_rx_mode	= efx_set_rx_mode,
2108	.ndo_set_features	= efx_set_features,
2109#ifdef CONFIG_NET_POLL_CONTROLLER
2110	.ndo_poll_controller	= efx_netpoll,
2111#endif
2112#ifdef CONFIG_RFS_ACCEL
2113	.ndo_rx_flow_steer	= efx_filter_rfs,
2114#endif
2115};
2116
2117static void efx_update_name(struct efx_nic *efx)
2118{
2119	strcpy(efx->name, efx->net_dev->name);
2120	efx_mtd_rename(efx);
2121	efx_set_channel_names(efx);
2122}
2123
2124static int efx_netdev_event(struct notifier_block *this,
2125			    unsigned long event, void *ptr)
2126{
2127	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2128
2129	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2130	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2131	    event == NETDEV_CHANGENAME)
2132		efx_update_name(netdev_priv(net_dev));
2133
2134	return NOTIFY_DONE;
2135}
2136
2137static struct notifier_block efx_netdev_notifier = {
2138	.notifier_call = efx_netdev_event,
2139};
2140
2141static ssize_t
2142show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2143{
2144	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2145	return sprintf(buf, "%d\n", efx->phy_type);
2146}
2147static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2148
2149static int efx_register_netdev(struct efx_nic *efx)
2150{
2151	struct net_device *net_dev = efx->net_dev;
2152	struct efx_channel *channel;
2153	int rc;
2154
2155	net_dev->watchdog_timeo = 5 * HZ;
2156	net_dev->irq = efx->pci_dev->irq;
2157	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2158		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2159		net_dev->priv_flags |= IFF_UNICAST_FLT;
2160	} else {
2161		net_dev->netdev_ops = &efx_farch_netdev_ops;
2162	}
2163	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2164	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2165
2166	rtnl_lock();
2167
2168	/* Enable resets to be scheduled and check whether any were
2169	 * already requested.  If so, the NIC is probably hosed so we
2170	 * abort.
2171	 */
2172	efx->state = STATE_READY;
2173	smp_mb(); /* ensure we change state before checking reset_pending */
2174	if (efx->reset_pending) {
2175		netif_err(efx, probe, efx->net_dev,
2176			  "aborting probe due to scheduled reset\n");
2177		rc = -EIO;
2178		goto fail_locked;
2179	}
2180
2181	rc = dev_alloc_name(net_dev, net_dev->name);
2182	if (rc < 0)
2183		goto fail_locked;
2184	efx_update_name(efx);
2185
2186	/* Always start with carrier off; PHY events will detect the link */
2187	netif_carrier_off(net_dev);
2188
2189	rc = register_netdevice(net_dev);
2190	if (rc)
2191		goto fail_locked;
2192
2193	efx_for_each_channel(channel, efx) {
2194		struct efx_tx_queue *tx_queue;
2195		efx_for_each_channel_tx_queue(tx_queue, channel)
2196			efx_init_tx_queue_core_txq(tx_queue);
2197	}
2198
2199	rtnl_unlock();
2200
2201	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2202	if (rc) {
2203		netif_err(efx, drv, efx->net_dev,
2204			  "failed to init net dev attributes\n");
2205		goto fail_registered;
2206	}
2207
2208	return 0;
2209
2210fail_registered:
2211	rtnl_lock();
2212	unregister_netdevice(net_dev);
2213fail_locked:
2214	efx->state = STATE_UNINIT;
2215	rtnl_unlock();
2216	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2217	return rc;
2218}
2219
2220static void efx_unregister_netdev(struct efx_nic *efx)
2221{
2222	if (!efx->net_dev)
2223		return;
2224
2225	BUG_ON(netdev_priv(efx->net_dev) != efx);
2226
2227	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2228	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2229
2230	rtnl_lock();
2231	unregister_netdevice(efx->net_dev);
2232	efx->state = STATE_UNINIT;
2233	rtnl_unlock();
2234}
2235
2236/**************************************************************************
2237 *
2238 * Device reset and suspend
2239 *
2240 **************************************************************************/
2241
2242/* Tears down the entire software state and most of the hardware state
2243 * before reset.  */
2244void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2245{
2246	EFX_ASSERT_RESET_SERIALISED(efx);
2247
2248	efx_stop_all(efx);
2249	efx_disable_interrupts(efx);
2250
2251	mutex_lock(&efx->mac_lock);
2252	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2253		efx->phy_op->fini(efx);
2254	efx->type->fini(efx);
2255}
2256
2257/* This function will always ensure that the locks acquired in
2258 * efx_reset_down() are released. A failure return code indicates
2259 * that we were unable to reinitialise the hardware, and the
2260 * driver should be disabled. If ok is false, then the rx and tx
2261 * engines are not restarted, pending a RESET_DISABLE. */
2262int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2263{
2264	int rc;
2265
2266	EFX_ASSERT_RESET_SERIALISED(efx);
2267
2268	rc = efx->type->init(efx);
2269	if (rc) {
2270		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2271		goto fail;
2272	}
2273
2274	if (!ok)
2275		goto fail;
2276
2277	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2278		rc = efx->phy_op->init(efx);
2279		if (rc)
2280			goto fail;
2281		if (efx->phy_op->reconfigure(efx))
2282			netif_err(efx, drv, efx->net_dev,
2283				  "could not restore PHY settings\n");
2284	}
2285
2286	rc = efx_enable_interrupts(efx);
2287	if (rc)
2288		goto fail;
2289	efx_restore_filters(efx);
2290	efx_sriov_reset(efx);
2291
2292	mutex_unlock(&efx->mac_lock);
2293
2294	efx_start_all(efx);
2295
2296	return 0;
2297
2298fail:
2299	efx->port_initialized = false;
2300
2301	mutex_unlock(&efx->mac_lock);
2302
2303	return rc;
2304}
2305
2306/* Reset the NIC using the specified method.  Note that the reset may
2307 * fail, in which case the card will be left in an unusable state.
2308 *
2309 * Caller must hold the rtnl_lock.
2310 */
2311int efx_reset(struct efx_nic *efx, enum reset_type method)
2312{
2313	int rc, rc2;
2314	bool disabled;
2315
2316	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2317		   RESET_TYPE(method));
2318
2319	efx_device_detach_sync(efx);
2320	efx_reset_down(efx, method);
2321
2322	rc = efx->type->reset(efx, method);
2323	if (rc) {
2324		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2325		goto out;
2326	}
2327
2328	/* Clear flags for the scopes we covered.  We assume the NIC and
2329	 * driver are now quiescent so that there is no race here.
2330	 */
2331	efx->reset_pending &= -(1 << (method + 1));
2332
2333	/* Reinitialise bus-mastering, which may have been turned off before
2334	 * the reset was scheduled. This is still appropriate, even in the
2335	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2336	 * can respond to requests. */
2337	pci_set_master(efx->pci_dev);
2338
2339out:
2340	/* Leave device stopped if necessary */
2341	disabled = rc ||
2342		method == RESET_TYPE_DISABLE ||
2343		method == RESET_TYPE_RECOVER_OR_DISABLE;
2344	rc2 = efx_reset_up(efx, method, !disabled);
2345	if (rc2) {
2346		disabled = true;
2347		if (!rc)
2348			rc = rc2;
2349	}
2350
2351	if (disabled) {
2352		dev_close(efx->net_dev);
2353		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2354		efx->state = STATE_DISABLED;
2355	} else {
2356		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2357		netif_device_attach(efx->net_dev);
2358	}
2359	return rc;
2360}
2361
2362/* Try recovery mechanisms.
2363 * For now only EEH is supported.
2364 * Returns 0 if the recovery mechanisms are unsuccessful.
2365 * Returns a non-zero value otherwise.
2366 */
2367int efx_try_recovery(struct efx_nic *efx)
2368{
2369#ifdef CONFIG_EEH
2370	/* A PCI error can occur and not be seen by EEH because nothing
2371	 * happens on the PCI bus. In this case the driver may fail and
2372	 * schedule a 'recover or reset', leading to this recovery handler.
2373	 * Manually call the eeh failure check function.
2374	 */
2375	struct eeh_dev *eehdev =
2376		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2377
2378	if (eeh_dev_check_failure(eehdev)) {
2379		/* The EEH mechanisms will handle the error and reset the
2380		 * device if necessary.
2381		 */
2382		return 1;
2383	}
2384#endif
2385	return 0;
2386}
2387
2388/* The worker thread exists so that code that cannot sleep can
2389 * schedule a reset for later.
2390 */
2391static void efx_reset_work(struct work_struct *data)
2392{
2393	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2394	unsigned long pending;
2395	enum reset_type method;
2396
2397	pending = ACCESS_ONCE(efx->reset_pending);
2398	method = fls(pending) - 1;
2399
2400	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2401	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2402	    efx_try_recovery(efx))
2403		return;
2404
2405	if (!pending)
2406		return;
2407
2408	rtnl_lock();
2409
2410	/* We checked the state in efx_schedule_reset() but it may
2411	 * have changed by now.  Now that we have the RTNL lock,
2412	 * it cannot change again.
2413	 */
2414	if (efx->state == STATE_READY)
2415		(void)efx_reset(efx, method);
2416
2417	rtnl_unlock();
2418}
2419
2420void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2421{
2422	enum reset_type method;
2423
2424	if (efx->state == STATE_RECOVERY) {
2425		netif_dbg(efx, drv, efx->net_dev,
2426			  "recovering: skip scheduling %s reset\n",
2427			  RESET_TYPE(type));
2428		return;
2429	}
2430
2431	switch (type) {
2432	case RESET_TYPE_INVISIBLE:
2433	case RESET_TYPE_ALL:
2434	case RESET_TYPE_RECOVER_OR_ALL:
2435	case RESET_TYPE_WORLD:
2436	case RESET_TYPE_DISABLE:
2437	case RESET_TYPE_RECOVER_OR_DISABLE:
2438		method = type;
2439		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2440			  RESET_TYPE(method));
2441		break;
2442	default:
2443		method = efx->type->map_reset_reason(type);
2444		netif_dbg(efx, drv, efx->net_dev,
2445			  "scheduling %s reset for %s\n",
2446			  RESET_TYPE(method), RESET_TYPE(type));
2447		break;
2448	}
2449
2450	set_bit(method, &efx->reset_pending);
2451	smp_mb(); /* ensure we change reset_pending before checking state */
2452
2453	/* If we're not READY then just leave the flags set as the cue
2454	 * to abort probing or reschedule the reset later.
2455	 */
2456	if (ACCESS_ONCE(efx->state) != STATE_READY)
2457		return;
2458
2459	/* efx_process_channel() will no longer read events once a
2460	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2461	efx_mcdi_mode_poll(efx);
2462
2463	queue_work(reset_workqueue, &efx->reset_work);
2464}
2465
2466/**************************************************************************
2467 *
2468 * List of NICs we support
2469 *
2470 **************************************************************************/
2471
2472/* PCI device ID table */
2473static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2474	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2475		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2476	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2477	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2478		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2479	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2480	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2481	 .driver_data = (unsigned long) &siena_a0_nic_type},
2482	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2483	 .driver_data = (unsigned long) &siena_a0_nic_type},
2484	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2485	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2486	{0}			/* end of list */
2487};
2488
2489/**************************************************************************
2490 *
2491 * Dummy PHY/MAC operations
2492 *
2493 * Can be used for some unimplemented operations
2494 * Needed so all function pointers are valid and do not have to be tested
2495 * before use
2496 *
2497 **************************************************************************/
2498int efx_port_dummy_op_int(struct efx_nic *efx)
2499{
2500	return 0;
2501}
2502void efx_port_dummy_op_void(struct efx_nic *efx) {}
2503
2504static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2505{
2506	return false;
2507}
2508
2509static const struct efx_phy_operations efx_dummy_phy_operations = {
2510	.init		 = efx_port_dummy_op_int,
2511	.reconfigure	 = efx_port_dummy_op_int,
2512	.poll		 = efx_port_dummy_op_poll,
2513	.fini		 = efx_port_dummy_op_void,
2514};
2515
2516/**************************************************************************
2517 *
2518 * Data housekeeping
2519 *
2520 **************************************************************************/
2521
2522/* This zeroes out and then fills in the invariants in a struct
2523 * efx_nic (including all sub-structures).
2524 */
2525static int efx_init_struct(struct efx_nic *efx,
2526			   struct pci_dev *pci_dev, struct net_device *net_dev)
2527{
2528	int i;
2529
2530	/* Initialise common structures */
2531	spin_lock_init(&efx->biu_lock);
2532#ifdef CONFIG_SFC_MTD
2533	INIT_LIST_HEAD(&efx->mtd_list);
2534#endif
2535	INIT_WORK(&efx->reset_work, efx_reset_work);
2536	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2537	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2538	efx->pci_dev = pci_dev;
2539	efx->msg_enable = debug;
2540	efx->state = STATE_UNINIT;
2541	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2542
2543	efx->net_dev = net_dev;
2544	efx->rx_prefix_size = efx->type->rx_prefix_size;
2545	efx->rx_packet_hash_offset =
2546		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2547	spin_lock_init(&efx->stats_lock);
2548	mutex_init(&efx->mac_lock);
2549	efx->phy_op = &efx_dummy_phy_operations;
2550	efx->mdio.dev = net_dev;
2551	INIT_WORK(&efx->mac_work, efx_mac_work);
2552	init_waitqueue_head(&efx->flush_wq);
2553
2554	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2555		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2556		if (!efx->channel[i])
2557			goto fail;
2558		efx->msi_context[i].efx = efx;
2559		efx->msi_context[i].index = i;
2560	}
2561
2562	/* Higher numbered interrupt modes are less capable! */
2563	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2564				  interrupt_mode);
2565
2566	/* Would be good to use the net_dev name, but we're too early */
2567	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2568		 pci_name(pci_dev));
2569	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2570	if (!efx->workqueue)
2571		goto fail;
2572
2573	return 0;
2574
2575fail:
2576	efx_fini_struct(efx);
2577	return -ENOMEM;
2578}
2579
2580static void efx_fini_struct(struct efx_nic *efx)
2581{
2582	int i;
2583
2584	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2585		kfree(efx->channel[i]);
2586
2587	if (efx->workqueue) {
2588		destroy_workqueue(efx->workqueue);
2589		efx->workqueue = NULL;
2590	}
2591}
2592
2593/**************************************************************************
2594 *
2595 * PCI interface
2596 *
2597 **************************************************************************/
2598
2599/* Main body of final NIC shutdown code
2600 * This is called only at module unload (or hotplug removal).
2601 */
2602static void efx_pci_remove_main(struct efx_nic *efx)
2603{
2604	/* Flush reset_work. It can no longer be scheduled since we
2605	 * are not READY.
2606	 */
2607	BUG_ON(efx->state == STATE_READY);
2608	cancel_work_sync(&efx->reset_work);
2609
2610	efx_disable_interrupts(efx);
2611	efx_nic_fini_interrupt(efx);
2612	efx_fini_port(efx);
2613	efx->type->fini(efx);
2614	efx_fini_napi(efx);
2615	efx_remove_all(efx);
2616}
2617
2618/* Final NIC shutdown
2619 * This is called only at module unload (or hotplug removal).
2620 */
2621static void efx_pci_remove(struct pci_dev *pci_dev)
2622{
2623	struct efx_nic *efx;
2624
2625	efx = pci_get_drvdata(pci_dev);
2626	if (!efx)
2627		return;
2628
2629	/* Mark the NIC as fini, then stop the interface */
2630	rtnl_lock();
2631	dev_close(efx->net_dev);
2632	efx_disable_interrupts(efx);
2633	rtnl_unlock();
2634
2635	efx_sriov_fini(efx);
2636	efx_unregister_netdev(efx);
2637
2638	efx_mtd_remove(efx);
2639
2640	efx_pci_remove_main(efx);
2641
2642	efx_fini_io(efx);
2643	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2644
2645	efx_fini_struct(efx);
2646	free_netdev(efx->net_dev);
2647
2648	pci_disable_pcie_error_reporting(pci_dev);
2649};
2650
2651/* NIC VPD information
2652 * Called during probe to display the part number of the
2653 * installed NIC.  VPD is potentially very large but this should
2654 * always appear within the first 512 bytes.
2655 */
2656#define SFC_VPD_LEN 512
2657static void efx_print_product_vpd(struct efx_nic *efx)
2658{
2659	struct pci_dev *dev = efx->pci_dev;
2660	char vpd_data[SFC_VPD_LEN];
2661	ssize_t vpd_size;
2662	int i, j;
2663
2664	/* Get the vpd data from the device */
2665	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2666	if (vpd_size <= 0) {
2667		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2668		return;
2669	}
2670
2671	/* Get the Read only section */
2672	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2673	if (i < 0) {
2674		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2675		return;
2676	}
2677
2678	j = pci_vpd_lrdt_size(&vpd_data[i]);
2679	i += PCI_VPD_LRDT_TAG_SIZE;
2680	if (i + j > vpd_size)
2681		j = vpd_size - i;
2682
2683	/* Get the Part number */
2684	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2685	if (i < 0) {
2686		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2687		return;
2688	}
2689
2690	j = pci_vpd_info_field_size(&vpd_data[i]);
2691	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2692	if (i + j > vpd_size) {
2693		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2694		return;
2695	}
2696
2697	netif_info(efx, drv, efx->net_dev,
2698		   "Part Number : %.*s\n", j, &vpd_data[i]);
2699}
2700
2701
2702/* Main body of NIC initialisation
2703 * This is called at module load (or hotplug insertion, theoretically).
2704 */
2705static int efx_pci_probe_main(struct efx_nic *efx)
2706{
2707	int rc;
2708
2709	/* Do start-of-day initialisation */
2710	rc = efx_probe_all(efx);
2711	if (rc)
2712		goto fail1;
2713
2714	efx_init_napi(efx);
2715
2716	rc = efx->type->init(efx);
2717	if (rc) {
2718		netif_err(efx, probe, efx->net_dev,
2719			  "failed to initialise NIC\n");
2720		goto fail3;
2721	}
2722
2723	rc = efx_init_port(efx);
2724	if (rc) {
2725		netif_err(efx, probe, efx->net_dev,
2726			  "failed to initialise port\n");
2727		goto fail4;
2728	}
2729
2730	rc = efx_nic_init_interrupt(efx);
2731	if (rc)
2732		goto fail5;
2733	rc = efx_enable_interrupts(efx);
2734	if (rc)
2735		goto fail6;
2736
2737	return 0;
2738
2739 fail6:
2740	efx_nic_fini_interrupt(efx);
2741 fail5:
2742	efx_fini_port(efx);
2743 fail4:
2744	efx->type->fini(efx);
2745 fail3:
2746	efx_fini_napi(efx);
2747	efx_remove_all(efx);
2748 fail1:
2749	return rc;
2750}
2751
2752/* NIC initialisation
2753 *
2754 * This is called at module load (or hotplug insertion,
2755 * theoretically).  It sets up PCI mappings, resets the NIC,
2756 * sets up and registers the network devices with the kernel and hooks
2757 * the interrupt service routine.  It does not prepare the device for
2758 * transmission; this is left to the first time one of the network
2759 * interfaces is brought up (i.e. efx_net_open).
2760 */
2761static int efx_pci_probe(struct pci_dev *pci_dev,
2762			 const struct pci_device_id *entry)
2763{
2764	struct net_device *net_dev;
2765	struct efx_nic *efx;
2766	int rc;
2767
2768	/* Allocate and initialise a struct net_device and struct efx_nic */
2769	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2770				     EFX_MAX_RX_QUEUES);
2771	if (!net_dev)
2772		return -ENOMEM;
2773	efx = netdev_priv(net_dev);
2774	efx->type = (const struct efx_nic_type *) entry->driver_data;
2775	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2776			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2777			      NETIF_F_RXCSUM);
2778	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2779		net_dev->features |= NETIF_F_TSO6;
2780	/* Mask for features that also apply to VLAN devices */
2781	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2782				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2783				   NETIF_F_RXCSUM);
2784	/* All offloads can be toggled */
2785	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2786	pci_set_drvdata(pci_dev, efx);
2787	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2788	rc = efx_init_struct(efx, pci_dev, net_dev);
2789	if (rc)
2790		goto fail1;
2791
2792	netif_info(efx, probe, efx->net_dev,
2793		   "Solarflare NIC detected\n");
2794
2795	efx_print_product_vpd(efx);
2796
2797	/* Set up basic I/O (BAR mappings etc) */
2798	rc = efx_init_io(efx);
2799	if (rc)
2800		goto fail2;
2801
2802	rc = efx_pci_probe_main(efx);
2803	if (rc)
2804		goto fail3;
2805
2806	rc = efx_register_netdev(efx);
2807	if (rc)
2808		goto fail4;
2809
2810	rc = efx_sriov_init(efx);
2811	if (rc)
2812		netif_err(efx, probe, efx->net_dev,
2813			  "SR-IOV can't be enabled rc %d\n", rc);
2814
2815	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2816
2817	/* Try to create MTDs, but allow this to fail */
2818	rtnl_lock();
2819	rc = efx_mtd_probe(efx);
2820	rtnl_unlock();
2821	if (rc)
2822		netif_warn(efx, probe, efx->net_dev,
2823			   "failed to create MTDs (%d)\n", rc);
2824
2825	rc = pci_enable_pcie_error_reporting(pci_dev);
2826	if (rc && rc != -EINVAL)
2827		netif_warn(efx, probe, efx->net_dev,
2828			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2829
2830	return 0;
2831
2832 fail4:
2833	efx_pci_remove_main(efx);
2834 fail3:
2835	efx_fini_io(efx);
2836 fail2:
2837	efx_fini_struct(efx);
2838 fail1:
2839	WARN_ON(rc > 0);
2840	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2841	free_netdev(net_dev);
2842	return rc;
2843}
2844
2845static int efx_pm_freeze(struct device *dev)
2846{
2847	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2848
2849	rtnl_lock();
2850
2851	if (efx->state != STATE_DISABLED) {
2852		efx->state = STATE_UNINIT;
2853
2854		efx_device_detach_sync(efx);
2855
2856		efx_stop_all(efx);
2857		efx_disable_interrupts(efx);
2858	}
2859
2860	rtnl_unlock();
2861
2862	return 0;
2863}
2864
2865static int efx_pm_thaw(struct device *dev)
2866{
2867	int rc;
2868	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2869
2870	rtnl_lock();
2871
2872	if (efx->state != STATE_DISABLED) {
2873		rc = efx_enable_interrupts(efx);
2874		if (rc)
2875			goto fail;
2876
2877		mutex_lock(&efx->mac_lock);
2878		efx->phy_op->reconfigure(efx);
2879		mutex_unlock(&efx->mac_lock);
2880
2881		efx_start_all(efx);
2882
2883		netif_device_attach(efx->net_dev);
2884
2885		efx->state = STATE_READY;
2886
2887		efx->type->resume_wol(efx);
2888	}
2889
2890	rtnl_unlock();
2891
2892	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2893	queue_work(reset_workqueue, &efx->reset_work);
2894
2895	return 0;
2896
2897fail:
2898	rtnl_unlock();
2899
2900	return rc;
2901}
2902
2903static int efx_pm_poweroff(struct device *dev)
2904{
2905	struct pci_dev *pci_dev = to_pci_dev(dev);
2906	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2907
2908	efx->type->fini(efx);
2909
2910	efx->reset_pending = 0;
2911
2912	pci_save_state(pci_dev);
2913	return pci_set_power_state(pci_dev, PCI_D3hot);
2914}
2915
2916/* Used for both resume and restore */
2917static int efx_pm_resume(struct device *dev)
2918{
2919	struct pci_dev *pci_dev = to_pci_dev(dev);
2920	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2921	int rc;
2922
2923	rc = pci_set_power_state(pci_dev, PCI_D0);
2924	if (rc)
2925		return rc;
2926	pci_restore_state(pci_dev);
2927	rc = pci_enable_device(pci_dev);
2928	if (rc)
2929		return rc;
2930	pci_set_master(efx->pci_dev);
2931	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2932	if (rc)
2933		return rc;
2934	rc = efx->type->init(efx);
2935	if (rc)
2936		return rc;
2937	rc = efx_pm_thaw(dev);
2938	return rc;
2939}
2940
2941static int efx_pm_suspend(struct device *dev)
2942{
2943	int rc;
2944
2945	efx_pm_freeze(dev);
2946	rc = efx_pm_poweroff(dev);
2947	if (rc)
2948		efx_pm_resume(dev);
2949	return rc;
2950}
2951
2952static const struct dev_pm_ops efx_pm_ops = {
2953	.suspend	= efx_pm_suspend,
2954	.resume		= efx_pm_resume,
2955	.freeze		= efx_pm_freeze,
2956	.thaw		= efx_pm_thaw,
2957	.poweroff	= efx_pm_poweroff,
2958	.restore	= efx_pm_resume,
2959};
2960
2961/* A PCI error affecting this device was detected.
2962 * At this point MMIO and DMA may be disabled.
2963 * Stop the software path and request a slot reset.
2964 */
2965static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
2966					      enum pci_channel_state state)
2967{
2968	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
2969	struct efx_nic *efx = pci_get_drvdata(pdev);
2970
2971	if (state == pci_channel_io_perm_failure)
2972		return PCI_ERS_RESULT_DISCONNECT;
2973
2974	rtnl_lock();
2975
2976	if (efx->state != STATE_DISABLED) {
2977		efx->state = STATE_RECOVERY;
2978		efx->reset_pending = 0;
2979
2980		efx_device_detach_sync(efx);
2981
2982		efx_stop_all(efx);
2983		efx_disable_interrupts(efx);
2984
2985		status = PCI_ERS_RESULT_NEED_RESET;
2986	} else {
2987		/* If the interface is disabled we don't want to do anything
2988		 * with it.
2989		 */
2990		status = PCI_ERS_RESULT_RECOVERED;
2991	}
2992
2993	rtnl_unlock();
2994
2995	pci_disable_device(pdev);
2996
2997	return status;
2998}
2999
3000/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3001static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3002{
3003	struct efx_nic *efx = pci_get_drvdata(pdev);
3004	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3005	int rc;
3006
3007	if (pci_enable_device(pdev)) {
3008		netif_err(efx, hw, efx->net_dev,
3009			  "Cannot re-enable PCI device after reset.\n");
3010		status =  PCI_ERS_RESULT_DISCONNECT;
3011	}
3012
3013	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3014	if (rc) {
3015		netif_err(efx, hw, efx->net_dev,
3016		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3017		/* Non-fatal error. Continue. */
3018	}
3019
3020	return status;
3021}
3022
3023/* Perform the actual reset and resume I/O operations. */
3024static void efx_io_resume(struct pci_dev *pdev)
3025{
3026	struct efx_nic *efx = pci_get_drvdata(pdev);
3027	int rc;
3028
3029	rtnl_lock();
3030
3031	if (efx->state == STATE_DISABLED)
3032		goto out;
3033
3034	rc = efx_reset(efx, RESET_TYPE_ALL);
3035	if (rc) {
3036		netif_err(efx, hw, efx->net_dev,
3037			  "efx_reset failed after PCI error (%d)\n", rc);
3038	} else {
3039		efx->state = STATE_READY;
3040		netif_dbg(efx, hw, efx->net_dev,
3041			  "Done resetting and resuming IO after PCI error.\n");
3042	}
3043
3044out:
3045	rtnl_unlock();
3046}
3047
3048/* For simplicity and reliability, we always require a slot reset and try to
3049 * reset the hardware when a pci error affecting the device is detected.
3050 * We leave both the link_reset and mmio_enabled callback unimplemented:
3051 * with our request for slot reset the mmio_enabled callback will never be
3052 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3053 */
3054static struct pci_error_handlers efx_err_handlers = {
3055	.error_detected = efx_io_error_detected,
3056	.slot_reset	= efx_io_slot_reset,
3057	.resume		= efx_io_resume,
3058};
3059
3060static struct pci_driver efx_pci_driver = {
3061	.name		= KBUILD_MODNAME,
3062	.id_table	= efx_pci_table,
3063	.probe		= efx_pci_probe,
3064	.remove		= efx_pci_remove,
3065	.driver.pm	= &efx_pm_ops,
3066	.err_handler	= &efx_err_handlers,
3067};
3068
3069/**************************************************************************
3070 *
3071 * Kernel module interface
3072 *
3073 *************************************************************************/
3074
3075module_param(interrupt_mode, uint, 0444);
3076MODULE_PARM_DESC(interrupt_mode,
3077		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3078
3079static int __init efx_init_module(void)
3080{
3081	int rc;
3082
3083	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3084
3085	rc = register_netdevice_notifier(&efx_netdev_notifier);
3086	if (rc)
3087		goto err_notifier;
3088
3089	rc = efx_init_sriov();
3090	if (rc)
3091		goto err_sriov;
3092
3093	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3094	if (!reset_workqueue) {
3095		rc = -ENOMEM;
3096		goto err_reset;
3097	}
3098
3099	rc = pci_register_driver(&efx_pci_driver);
3100	if (rc < 0)
3101		goto err_pci;
3102
3103	return 0;
3104
3105 err_pci:
3106	destroy_workqueue(reset_workqueue);
3107 err_reset:
3108	efx_fini_sriov();
3109 err_sriov:
3110	unregister_netdevice_notifier(&efx_netdev_notifier);
3111 err_notifier:
3112	return rc;
3113}
3114
3115static void __exit efx_exit_module(void)
3116{
3117	printk(KERN_INFO "Solarflare NET driver unloading\n");
3118
3119	pci_unregister_driver(&efx_pci_driver);
3120	destroy_workqueue(reset_workqueue);
3121	efx_fini_sriov();
3122	unregister_netdevice_notifier(&efx_netdev_notifier);
3123
3124}
3125
3126module_init(efx_init_module);
3127module_exit(efx_exit_module);
3128
3129MODULE_AUTHOR("Solarflare Communications and "
3130	      "Michael Brown <mbrown@fensystems.co.uk>");
3131MODULE_DESCRIPTION("Solarflare Communications network driver");
3132MODULE_LICENSE("GPL");
3133MODULE_DEVICE_TABLE(pci, efx_pci_table);
3134