efx.c revision 460eeaa03c5c0af32a388337a6e1f0f1acd043ce
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
22#include <linux/topology.h>
23#include <linux/gfp.h>
24#include <linux/cpu_rmap.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28#include "selftest.h"
29
30#include "mcdi.h"
31#include "workarounds.h"
32
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42const char *const efx_loopback_mode_names[] = {
43	[LOOPBACK_NONE]		= "NONE",
44	[LOOPBACK_DATA]		= "DATAPATH",
45	[LOOPBACK_GMAC]		= "GMAC",
46	[LOOPBACK_XGMII]	= "XGMII",
47	[LOOPBACK_XGXS]		= "XGXS",
48	[LOOPBACK_XAUI]		= "XAUI",
49	[LOOPBACK_GMII]		= "GMII",
50	[LOOPBACK_SGMII]	= "SGMII",
51	[LOOPBACK_XGBR]		= "XGBR",
52	[LOOPBACK_XFI]		= "XFI",
53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57	[LOOPBACK_GPHY]		= "GPHY",
58	[LOOPBACK_PHYXS]	= "PHYXS",
59	[LOOPBACK_PCS]		= "PCS",
60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61	[LOOPBACK_XPORT]	= "XPORT",
62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66	[LOOPBACK_GMII_WS]	= "GMII_WS",
67	[LOOPBACK_XFI_WS]	= "XFI_WS",
68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70};
71
72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73const char *const efx_reset_type_names[] = {
74	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
75	[RESET_TYPE_ALL]           = "ALL",
76	[RESET_TYPE_WORLD]         = "WORLD",
77	[RESET_TYPE_DISABLE]       = "DISABLE",
78	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
79	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
80	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
81	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
82	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
83	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85};
86
87#define EFX_MAX_MTU (9 * 1024)
88
89/* Reset workqueue. If any NIC has a hardware failure then a reset will be
90 * queued onto this work queue. This is not a per-nic work queue, because
91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 */
93static struct workqueue_struct *reset_workqueue;
94
95/**************************************************************************
96 *
97 * Configurable values
98 *
99 *************************************************************************/
100
101/*
102 * Use separate channels for TX and RX events
103 *
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
106 *
107 * This is only used in MSI-X interrupt mode
108 */
109static unsigned int separate_tx_channels;
110module_param(separate_tx_channels, uint, 0444);
111MODULE_PARM_DESC(separate_tx_channels,
112		 "Use separate channels for TX and RX");
113
114/* This is the weight assigned to each of the (per-channel) virtual
115 * NAPI devices.
116 */
117static int napi_weight = 64;
118
119/* This is the time (in jiffies) between invocations of the hardware
120 * monitor.  On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
123 */
124static unsigned int efx_monitor_interval = 1 * HZ;
125
126/* Initial interrupt moderation settings.  They can be modified after
127 * module load with ethtool.
128 *
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
131 */
132static unsigned int rx_irq_mod_usec = 60;
133
134/* Initial interrupt moderation settings.  They can be modified after
135 * module load with ethtool.
136 *
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full.  A queue is
139 * restarted when it drops below half full.  The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 *   512 / 3 * 1.2 = 205 usec.
142 */
143static unsigned int tx_irq_mod_usec = 150;
144
145/* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
149 */
150static unsigned int interrupt_mode;
151
152/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
155 *
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each core.
158 */
159static unsigned int rss_cpus;
160module_param(rss_cpus, uint, 0444);
161MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162
163static int phy_flash_cfg;
164module_param(phy_flash_cfg, int, 0644);
165MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166
167static unsigned irq_adapt_low_thresh = 8000;
168module_param(irq_adapt_low_thresh, uint, 0644);
169MODULE_PARM_DESC(irq_adapt_low_thresh,
170		 "Threshold score for reducing IRQ moderation");
171
172static unsigned irq_adapt_high_thresh = 16000;
173module_param(irq_adapt_high_thresh, uint, 0644);
174MODULE_PARM_DESC(irq_adapt_high_thresh,
175		 "Threshold score for increasing IRQ moderation");
176
177static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
178			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
179			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
180			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
181module_param(debug, uint, 0);
182MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
183
184/**************************************************************************
185 *
186 * Utility functions and prototypes
187 *
188 *************************************************************************/
189
190static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
191static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
192static void efx_remove_channel(struct efx_channel *channel);
193static void efx_remove_channels(struct efx_nic *efx);
194static const struct efx_channel_type efx_default_channel_type;
195static void efx_remove_port(struct efx_nic *efx);
196static void efx_init_napi_channel(struct efx_channel *channel);
197static void efx_fini_napi(struct efx_nic *efx);
198static void efx_fini_napi_channel(struct efx_channel *channel);
199static void efx_fini_struct(struct efx_nic *efx);
200static void efx_start_all(struct efx_nic *efx);
201static void efx_stop_all(struct efx_nic *efx);
202
203#define EFX_ASSERT_RESET_SERIALISED(efx)		\
204	do {						\
205		if ((efx->state == STATE_RUNNING) ||	\
206		    (efx->state == STATE_DISABLED))	\
207			ASSERT_RTNL();			\
208	} while (0)
209
210/**************************************************************************
211 *
212 * Event queue processing
213 *
214 *************************************************************************/
215
216/* Process channel's event queue
217 *
218 * This function is responsible for processing the event queue of a
219 * single channel.  The caller must guarantee that this function will
220 * never be concurrently called more than once on the same channel,
221 * though different channels may be being processed concurrently.
222 */
223static int efx_process_channel(struct efx_channel *channel, int budget)
224{
225	int spent;
226
227	if (unlikely(!channel->enabled))
228		return 0;
229
230	spent = efx_nic_process_eventq(channel, budget);
231	if (spent && efx_channel_has_rx_queue(channel)) {
232		struct efx_rx_queue *rx_queue =
233			efx_channel_get_rx_queue(channel);
234
235		/* Deliver last RX packet. */
236		if (channel->rx_pkt) {
237			__efx_rx_packet(channel, channel->rx_pkt);
238			channel->rx_pkt = NULL;
239		}
240		if (rx_queue->enabled) {
241			efx_rx_strategy(channel);
242			efx_fast_push_rx_descriptors(rx_queue);
243		}
244	}
245
246	return spent;
247}
248
249/* Mark channel as finished processing
250 *
251 * Note that since we will not receive further interrupts for this
252 * channel before we finish processing and call the eventq_read_ack()
253 * method, there is no need to use the interrupt hold-off timers.
254 */
255static inline void efx_channel_processed(struct efx_channel *channel)
256{
257	/* The interrupt handler for this channel may set work_pending
258	 * as soon as we acknowledge the events we've seen.  Make sure
259	 * it's cleared before then. */
260	channel->work_pending = false;
261	smp_wmb();
262
263	efx_nic_eventq_read_ack(channel);
264}
265
266/* NAPI poll handler
267 *
268 * NAPI guarantees serialisation of polls of the same device, which
269 * provides the guarantee required by efx_process_channel().
270 */
271static int efx_poll(struct napi_struct *napi, int budget)
272{
273	struct efx_channel *channel =
274		container_of(napi, struct efx_channel, napi_str);
275	struct efx_nic *efx = channel->efx;
276	int spent;
277
278	netif_vdbg(efx, intr, efx->net_dev,
279		   "channel %d NAPI poll executing on CPU %d\n",
280		   channel->channel, raw_smp_processor_id());
281
282	spent = efx_process_channel(channel, budget);
283
284	if (spent < budget) {
285		if (efx_channel_has_rx_queue(channel) &&
286		    efx->irq_rx_adaptive &&
287		    unlikely(++channel->irq_count == 1000)) {
288			if (unlikely(channel->irq_mod_score <
289				     irq_adapt_low_thresh)) {
290				if (channel->irq_moderation > 1) {
291					channel->irq_moderation -= 1;
292					efx->type->push_irq_moderation(channel);
293				}
294			} else if (unlikely(channel->irq_mod_score >
295					    irq_adapt_high_thresh)) {
296				if (channel->irq_moderation <
297				    efx->irq_rx_moderation) {
298					channel->irq_moderation += 1;
299					efx->type->push_irq_moderation(channel);
300				}
301			}
302			channel->irq_count = 0;
303			channel->irq_mod_score = 0;
304		}
305
306		efx_filter_rfs_expire(channel);
307
308		/* There is no race here; although napi_disable() will
309		 * only wait for napi_complete(), this isn't a problem
310		 * since efx_channel_processed() will have no effect if
311		 * interrupts have already been disabled.
312		 */
313		napi_complete(napi);
314		efx_channel_processed(channel);
315	}
316
317	return spent;
318}
319
320/* Process the eventq of the specified channel immediately on this CPU
321 *
322 * Disable hardware generated interrupts, wait for any existing
323 * processing to finish, then directly poll (and ack ) the eventq.
324 * Finally reenable NAPI and interrupts.
325 *
326 * This is for use only during a loopback self-test.  It must not
327 * deliver any packets up the stack as this can result in deadlock.
328 */
329void efx_process_channel_now(struct efx_channel *channel)
330{
331	struct efx_nic *efx = channel->efx;
332
333	BUG_ON(channel->channel >= efx->n_channels);
334	BUG_ON(!channel->enabled);
335	BUG_ON(!efx->loopback_selftest);
336
337	/* Disable interrupts and wait for ISRs to complete */
338	efx_nic_disable_interrupts(efx);
339	if (efx->legacy_irq) {
340		synchronize_irq(efx->legacy_irq);
341		efx->legacy_irq_enabled = false;
342	}
343	if (channel->irq)
344		synchronize_irq(channel->irq);
345
346	/* Wait for any NAPI processing to complete */
347	napi_disable(&channel->napi_str);
348
349	/* Poll the channel */
350	efx_process_channel(channel, channel->eventq_mask + 1);
351
352	/* Ack the eventq. This may cause an interrupt to be generated
353	 * when they are reenabled */
354	efx_channel_processed(channel);
355
356	napi_enable(&channel->napi_str);
357	if (efx->legacy_irq)
358		efx->legacy_irq_enabled = true;
359	efx_nic_enable_interrupts(efx);
360}
361
362/* Create event queue
363 * Event queue memory allocations are done only once.  If the channel
364 * is reset, the memory buffer will be reused; this guards against
365 * errors during channel reset and also simplifies interrupt handling.
366 */
367static int efx_probe_eventq(struct efx_channel *channel)
368{
369	struct efx_nic *efx = channel->efx;
370	unsigned long entries;
371
372	netif_dbg(efx, probe, efx->net_dev,
373		  "chan %d create event queue\n", channel->channel);
374
375	/* Build an event queue with room for one event per tx and rx buffer,
376	 * plus some extra for link state events and MCDI completions. */
377	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
378	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
379	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
380
381	return efx_nic_probe_eventq(channel);
382}
383
384/* Prepare channel's event queue */
385static void efx_init_eventq(struct efx_channel *channel)
386{
387	netif_dbg(channel->efx, drv, channel->efx->net_dev,
388		  "chan %d init event queue\n", channel->channel);
389
390	channel->eventq_read_ptr = 0;
391
392	efx_nic_init_eventq(channel);
393}
394
395/* Enable event queue processing and NAPI */
396static void efx_start_eventq(struct efx_channel *channel)
397{
398	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
399		  "chan %d start event queue\n", channel->channel);
400
401	/* The interrupt handler for this channel may set work_pending
402	 * as soon as we enable it.  Make sure it's cleared before
403	 * then.  Similarly, make sure it sees the enabled flag set.
404	 */
405	channel->work_pending = false;
406	channel->enabled = true;
407	smp_wmb();
408
409	napi_enable(&channel->napi_str);
410	efx_nic_eventq_read_ack(channel);
411}
412
413/* Disable event queue processing and NAPI */
414static void efx_stop_eventq(struct efx_channel *channel)
415{
416	if (!channel->enabled)
417		return;
418
419	napi_disable(&channel->napi_str);
420	channel->enabled = false;
421}
422
423static void efx_fini_eventq(struct efx_channel *channel)
424{
425	netif_dbg(channel->efx, drv, channel->efx->net_dev,
426		  "chan %d fini event queue\n", channel->channel);
427
428	efx_nic_fini_eventq(channel);
429}
430
431static void efx_remove_eventq(struct efx_channel *channel)
432{
433	netif_dbg(channel->efx, drv, channel->efx->net_dev,
434		  "chan %d remove event queue\n", channel->channel);
435
436	efx_nic_remove_eventq(channel);
437}
438
439/**************************************************************************
440 *
441 * Channel handling
442 *
443 *************************************************************************/
444
445/* Allocate and initialise a channel structure. */
446static struct efx_channel *
447efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
448{
449	struct efx_channel *channel;
450	struct efx_rx_queue *rx_queue;
451	struct efx_tx_queue *tx_queue;
452	int j;
453
454	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
455	if (!channel)
456		return NULL;
457
458	channel->efx = efx;
459	channel->channel = i;
460	channel->type = &efx_default_channel_type;
461
462	for (j = 0; j < EFX_TXQ_TYPES; j++) {
463		tx_queue = &channel->tx_queue[j];
464		tx_queue->efx = efx;
465		tx_queue->queue = i * EFX_TXQ_TYPES + j;
466		tx_queue->channel = channel;
467	}
468
469	rx_queue = &channel->rx_queue;
470	rx_queue->efx = efx;
471	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472		    (unsigned long)rx_queue);
473
474	return channel;
475}
476
477/* Allocate and initialise a channel structure, copying parameters
478 * (but not resources) from an old channel structure.
479 */
480static struct efx_channel *
481efx_copy_channel(const struct efx_channel *old_channel)
482{
483	struct efx_channel *channel;
484	struct efx_rx_queue *rx_queue;
485	struct efx_tx_queue *tx_queue;
486	int j;
487
488	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
489	if (!channel)
490		return NULL;
491
492	*channel = *old_channel;
493
494	channel->napi_dev = NULL;
495	memset(&channel->eventq, 0, sizeof(channel->eventq));
496
497	for (j = 0; j < EFX_TXQ_TYPES; j++) {
498		tx_queue = &channel->tx_queue[j];
499		if (tx_queue->channel)
500			tx_queue->channel = channel;
501		tx_queue->buffer = NULL;
502		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
503	}
504
505	rx_queue = &channel->rx_queue;
506	rx_queue->buffer = NULL;
507	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
508	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
509		    (unsigned long)rx_queue);
510
511	return channel;
512}
513
514static int efx_probe_channel(struct efx_channel *channel)
515{
516	struct efx_tx_queue *tx_queue;
517	struct efx_rx_queue *rx_queue;
518	int rc;
519
520	netif_dbg(channel->efx, probe, channel->efx->net_dev,
521		  "creating channel %d\n", channel->channel);
522
523	rc = channel->type->pre_probe(channel);
524	if (rc)
525		goto fail;
526
527	rc = efx_probe_eventq(channel);
528	if (rc)
529		goto fail;
530
531	efx_for_each_channel_tx_queue(tx_queue, channel) {
532		rc = efx_probe_tx_queue(tx_queue);
533		if (rc)
534			goto fail;
535	}
536
537	efx_for_each_channel_rx_queue(rx_queue, channel) {
538		rc = efx_probe_rx_queue(rx_queue);
539		if (rc)
540			goto fail;
541	}
542
543	channel->n_rx_frm_trunc = 0;
544
545	return 0;
546
547fail:
548	efx_remove_channel(channel);
549	return rc;
550}
551
552static void
553efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
554{
555	struct efx_nic *efx = channel->efx;
556	const char *type;
557	int number;
558
559	number = channel->channel;
560	if (efx->tx_channel_offset == 0) {
561		type = "";
562	} else if (channel->channel < efx->tx_channel_offset) {
563		type = "-rx";
564	} else {
565		type = "-tx";
566		number -= efx->tx_channel_offset;
567	}
568	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
569}
570
571static void efx_set_channel_names(struct efx_nic *efx)
572{
573	struct efx_channel *channel;
574
575	efx_for_each_channel(channel, efx)
576		channel->type->get_name(channel,
577					efx->channel_name[channel->channel],
578					sizeof(efx->channel_name[0]));
579}
580
581static int efx_probe_channels(struct efx_nic *efx)
582{
583	struct efx_channel *channel;
584	int rc;
585
586	/* Restart special buffer allocation */
587	efx->next_buffer_table = 0;
588
589	/* Probe channels in reverse, so that any 'extra' channels
590	 * use the start of the buffer table. This allows the traffic
591	 * channels to be resized without moving them or wasting the
592	 * entries before them.
593	 */
594	efx_for_each_channel_rev(channel, efx) {
595		rc = efx_probe_channel(channel);
596		if (rc) {
597			netif_err(efx, probe, efx->net_dev,
598				  "failed to create channel %d\n",
599				  channel->channel);
600			goto fail;
601		}
602	}
603	efx_set_channel_names(efx);
604
605	return 0;
606
607fail:
608	efx_remove_channels(efx);
609	return rc;
610}
611
612/* Channels are shutdown and reinitialised whilst the NIC is running
613 * to propagate configuration changes (mtu, checksum offload), or
614 * to clear hardware error conditions
615 */
616static void efx_start_datapath(struct efx_nic *efx)
617{
618	struct efx_tx_queue *tx_queue;
619	struct efx_rx_queue *rx_queue;
620	struct efx_channel *channel;
621
622	/* Calculate the rx buffer allocation parameters required to
623	 * support the current MTU, including padding for header
624	 * alignment and overruns.
625	 */
626	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
627			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
628			      efx->type->rx_buffer_hash_size +
629			      efx->type->rx_buffer_padding);
630	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
631					 sizeof(struct efx_rx_page_state));
632
633	/* Initialise the channels */
634	efx_for_each_channel(channel, efx) {
635		efx_for_each_channel_tx_queue(tx_queue, channel)
636			efx_init_tx_queue(tx_queue);
637
638		/* The rx buffer allocation strategy is MTU dependent */
639		efx_rx_strategy(channel);
640
641		efx_for_each_channel_rx_queue(rx_queue, channel) {
642			efx_init_rx_queue(rx_queue);
643			efx_nic_generate_fill_event(rx_queue);
644		}
645
646		WARN_ON(channel->rx_pkt != NULL);
647		efx_rx_strategy(channel);
648	}
649
650	if (netif_device_present(efx->net_dev))
651		netif_tx_wake_all_queues(efx->net_dev);
652}
653
654static void efx_stop_datapath(struct efx_nic *efx)
655{
656	struct efx_channel *channel;
657	struct efx_tx_queue *tx_queue;
658	struct efx_rx_queue *rx_queue;
659	int rc;
660
661	EFX_ASSERT_RESET_SERIALISED(efx);
662	BUG_ON(efx->port_enabled);
663
664	rc = efx_nic_flush_queues(efx);
665	if (rc && EFX_WORKAROUND_7803(efx)) {
666		/* Schedule a reset to recover from the flush failure. The
667		 * descriptor caches reference memory we're about to free,
668		 * but falcon_reconfigure_mac_wrapper() won't reconnect
669		 * the MACs because of the pending reset. */
670		netif_err(efx, drv, efx->net_dev,
671			  "Resetting to recover from flush failure\n");
672		efx_schedule_reset(efx, RESET_TYPE_ALL);
673	} else if (rc) {
674		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
675	} else {
676		netif_dbg(efx, drv, efx->net_dev,
677			  "successfully flushed all queues\n");
678	}
679
680	efx_for_each_channel(channel, efx) {
681		/* RX packet processing is pipelined, so wait for the
682		 * NAPI handler to complete.  At least event queue 0
683		 * might be kept active by non-data events, so don't
684		 * use napi_synchronize() but actually disable NAPI
685		 * temporarily.
686		 */
687		if (efx_channel_has_rx_queue(channel)) {
688			efx_stop_eventq(channel);
689			efx_start_eventq(channel);
690		}
691
692		efx_for_each_channel_rx_queue(rx_queue, channel)
693			efx_fini_rx_queue(rx_queue);
694		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
695			efx_fini_tx_queue(tx_queue);
696	}
697}
698
699static void efx_remove_channel(struct efx_channel *channel)
700{
701	struct efx_tx_queue *tx_queue;
702	struct efx_rx_queue *rx_queue;
703
704	netif_dbg(channel->efx, drv, channel->efx->net_dev,
705		  "destroy chan %d\n", channel->channel);
706
707	efx_for_each_channel_rx_queue(rx_queue, channel)
708		efx_remove_rx_queue(rx_queue);
709	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
710		efx_remove_tx_queue(tx_queue);
711	efx_remove_eventq(channel);
712}
713
714static void efx_remove_channels(struct efx_nic *efx)
715{
716	struct efx_channel *channel;
717
718	efx_for_each_channel(channel, efx)
719		efx_remove_channel(channel);
720}
721
722int
723efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
724{
725	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
726	u32 old_rxq_entries, old_txq_entries;
727	unsigned i, next_buffer_table = 0;
728	int rc = 0;
729
730	/* Not all channels should be reallocated. We must avoid
731	 * reallocating their buffer table entries.
732	 */
733	efx_for_each_channel(channel, efx) {
734		struct efx_rx_queue *rx_queue;
735		struct efx_tx_queue *tx_queue;
736
737		if (channel->type->copy)
738			continue;
739		next_buffer_table = max(next_buffer_table,
740					channel->eventq.index +
741					channel->eventq.entries);
742		efx_for_each_channel_rx_queue(rx_queue, channel)
743			next_buffer_table = max(next_buffer_table,
744						rx_queue->rxd.index +
745						rx_queue->rxd.entries);
746		efx_for_each_channel_tx_queue(tx_queue, channel)
747			next_buffer_table = max(next_buffer_table,
748						tx_queue->txd.index +
749						tx_queue->txd.entries);
750	}
751
752	efx_stop_all(efx);
753	efx_stop_interrupts(efx, true);
754
755	/* Clone channels (where possible) */
756	memset(other_channel, 0, sizeof(other_channel));
757	for (i = 0; i < efx->n_channels; i++) {
758		channel = efx->channel[i];
759		if (channel->type->copy)
760			channel = channel->type->copy(channel);
761		if (!channel) {
762			rc = -ENOMEM;
763			goto out;
764		}
765		other_channel[i] = channel;
766	}
767
768	/* Swap entry counts and channel pointers */
769	old_rxq_entries = efx->rxq_entries;
770	old_txq_entries = efx->txq_entries;
771	efx->rxq_entries = rxq_entries;
772	efx->txq_entries = txq_entries;
773	for (i = 0; i < efx->n_channels; i++) {
774		channel = efx->channel[i];
775		efx->channel[i] = other_channel[i];
776		other_channel[i] = channel;
777	}
778
779	/* Restart buffer table allocation */
780	efx->next_buffer_table = next_buffer_table;
781
782	for (i = 0; i < efx->n_channels; i++) {
783		channel = efx->channel[i];
784		if (!channel->type->copy)
785			continue;
786		rc = efx_probe_channel(channel);
787		if (rc)
788			goto rollback;
789		efx_init_napi_channel(efx->channel[i]);
790	}
791
792out:
793	/* Destroy unused channel structures */
794	for (i = 0; i < efx->n_channels; i++) {
795		channel = other_channel[i];
796		if (channel && channel->type->copy) {
797			efx_fini_napi_channel(channel);
798			efx_remove_channel(channel);
799			kfree(channel);
800		}
801	}
802
803	efx_start_interrupts(efx, true);
804	efx_start_all(efx);
805	return rc;
806
807rollback:
808	/* Swap back */
809	efx->rxq_entries = old_rxq_entries;
810	efx->txq_entries = old_txq_entries;
811	for (i = 0; i < efx->n_channels; i++) {
812		channel = efx->channel[i];
813		efx->channel[i] = other_channel[i];
814		other_channel[i] = channel;
815	}
816	goto out;
817}
818
819void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
820{
821	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
822}
823
824static const struct efx_channel_type efx_default_channel_type = {
825	.pre_probe		= efx_channel_dummy_op_int,
826	.get_name		= efx_get_channel_name,
827	.copy			= efx_copy_channel,
828	.keep_eventq		= false,
829};
830
831int efx_channel_dummy_op_int(struct efx_channel *channel)
832{
833	return 0;
834}
835
836/**************************************************************************
837 *
838 * Port handling
839 *
840 **************************************************************************/
841
842/* This ensures that the kernel is kept informed (via
843 * netif_carrier_on/off) of the link status, and also maintains the
844 * link status's stop on the port's TX queue.
845 */
846void efx_link_status_changed(struct efx_nic *efx)
847{
848	struct efx_link_state *link_state = &efx->link_state;
849
850	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
851	 * that no events are triggered between unregister_netdev() and the
852	 * driver unloading. A more general condition is that NETDEV_CHANGE
853	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
854	if (!netif_running(efx->net_dev))
855		return;
856
857	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
858		efx->n_link_state_changes++;
859
860		if (link_state->up)
861			netif_carrier_on(efx->net_dev);
862		else
863			netif_carrier_off(efx->net_dev);
864	}
865
866	/* Status message for kernel log */
867	if (link_state->up)
868		netif_info(efx, link, efx->net_dev,
869			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
870			   link_state->speed, link_state->fd ? "full" : "half",
871			   efx->net_dev->mtu,
872			   (efx->promiscuous ? " [PROMISC]" : ""));
873	else
874		netif_info(efx, link, efx->net_dev, "link down\n");
875}
876
877void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
878{
879	efx->link_advertising = advertising;
880	if (advertising) {
881		if (advertising & ADVERTISED_Pause)
882			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
883		else
884			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
885		if (advertising & ADVERTISED_Asym_Pause)
886			efx->wanted_fc ^= EFX_FC_TX;
887	}
888}
889
890void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
891{
892	efx->wanted_fc = wanted_fc;
893	if (efx->link_advertising) {
894		if (wanted_fc & EFX_FC_RX)
895			efx->link_advertising |= (ADVERTISED_Pause |
896						  ADVERTISED_Asym_Pause);
897		else
898			efx->link_advertising &= ~(ADVERTISED_Pause |
899						   ADVERTISED_Asym_Pause);
900		if (wanted_fc & EFX_FC_TX)
901			efx->link_advertising ^= ADVERTISED_Asym_Pause;
902	}
903}
904
905static void efx_fini_port(struct efx_nic *efx);
906
907/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
908 * the MAC appropriately. All other PHY configuration changes are pushed
909 * through phy_op->set_settings(), and pushed asynchronously to the MAC
910 * through efx_monitor().
911 *
912 * Callers must hold the mac_lock
913 */
914int __efx_reconfigure_port(struct efx_nic *efx)
915{
916	enum efx_phy_mode phy_mode;
917	int rc;
918
919	WARN_ON(!mutex_is_locked(&efx->mac_lock));
920
921	/* Serialise the promiscuous flag with efx_set_rx_mode. */
922	netif_addr_lock_bh(efx->net_dev);
923	netif_addr_unlock_bh(efx->net_dev);
924
925	/* Disable PHY transmit in mac level loopbacks */
926	phy_mode = efx->phy_mode;
927	if (LOOPBACK_INTERNAL(efx))
928		efx->phy_mode |= PHY_MODE_TX_DISABLED;
929	else
930		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
931
932	rc = efx->type->reconfigure_port(efx);
933
934	if (rc)
935		efx->phy_mode = phy_mode;
936
937	return rc;
938}
939
940/* Reinitialise the MAC to pick up new PHY settings, even if the port is
941 * disabled. */
942int efx_reconfigure_port(struct efx_nic *efx)
943{
944	int rc;
945
946	EFX_ASSERT_RESET_SERIALISED(efx);
947
948	mutex_lock(&efx->mac_lock);
949	rc = __efx_reconfigure_port(efx);
950	mutex_unlock(&efx->mac_lock);
951
952	return rc;
953}
954
955/* Asynchronous work item for changing MAC promiscuity and multicast
956 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
957 * MAC directly. */
958static void efx_mac_work(struct work_struct *data)
959{
960	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
961
962	mutex_lock(&efx->mac_lock);
963	if (efx->port_enabled)
964		efx->type->reconfigure_mac(efx);
965	mutex_unlock(&efx->mac_lock);
966}
967
968static int efx_probe_port(struct efx_nic *efx)
969{
970	int rc;
971
972	netif_dbg(efx, probe, efx->net_dev, "create port\n");
973
974	if (phy_flash_cfg)
975		efx->phy_mode = PHY_MODE_SPECIAL;
976
977	/* Connect up MAC/PHY operations table */
978	rc = efx->type->probe_port(efx);
979	if (rc)
980		return rc;
981
982	/* Initialise MAC address to permanent address */
983	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
984
985	return 0;
986}
987
988static int efx_init_port(struct efx_nic *efx)
989{
990	int rc;
991
992	netif_dbg(efx, drv, efx->net_dev, "init port\n");
993
994	mutex_lock(&efx->mac_lock);
995
996	rc = efx->phy_op->init(efx);
997	if (rc)
998		goto fail1;
999
1000	efx->port_initialized = true;
1001
1002	/* Reconfigure the MAC before creating dma queues (required for
1003	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1004	efx->type->reconfigure_mac(efx);
1005
1006	/* Ensure the PHY advertises the correct flow control settings */
1007	rc = efx->phy_op->reconfigure(efx);
1008	if (rc)
1009		goto fail2;
1010
1011	mutex_unlock(&efx->mac_lock);
1012	return 0;
1013
1014fail2:
1015	efx->phy_op->fini(efx);
1016fail1:
1017	mutex_unlock(&efx->mac_lock);
1018	return rc;
1019}
1020
1021static void efx_start_port(struct efx_nic *efx)
1022{
1023	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1024	BUG_ON(efx->port_enabled);
1025
1026	mutex_lock(&efx->mac_lock);
1027	efx->port_enabled = true;
1028
1029	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1030	 * and then cancelled by efx_flush_all() */
1031	efx->type->reconfigure_mac(efx);
1032
1033	mutex_unlock(&efx->mac_lock);
1034}
1035
1036/* Prevent efx_mac_work() and efx_monitor() from working */
1037static void efx_stop_port(struct efx_nic *efx)
1038{
1039	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1040
1041	mutex_lock(&efx->mac_lock);
1042	efx->port_enabled = false;
1043	mutex_unlock(&efx->mac_lock);
1044
1045	/* Serialise against efx_set_multicast_list() */
1046	netif_addr_lock_bh(efx->net_dev);
1047	netif_addr_unlock_bh(efx->net_dev);
1048}
1049
1050static void efx_fini_port(struct efx_nic *efx)
1051{
1052	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1053
1054	if (!efx->port_initialized)
1055		return;
1056
1057	efx->phy_op->fini(efx);
1058	efx->port_initialized = false;
1059
1060	efx->link_state.up = false;
1061	efx_link_status_changed(efx);
1062}
1063
1064static void efx_remove_port(struct efx_nic *efx)
1065{
1066	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1067
1068	efx->type->remove_port(efx);
1069}
1070
1071/**************************************************************************
1072 *
1073 * NIC handling
1074 *
1075 **************************************************************************/
1076
1077/* This configures the PCI device to enable I/O and DMA. */
1078static int efx_init_io(struct efx_nic *efx)
1079{
1080	struct pci_dev *pci_dev = efx->pci_dev;
1081	dma_addr_t dma_mask = efx->type->max_dma_mask;
1082	int rc;
1083
1084	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1085
1086	rc = pci_enable_device(pci_dev);
1087	if (rc) {
1088		netif_err(efx, probe, efx->net_dev,
1089			  "failed to enable PCI device\n");
1090		goto fail1;
1091	}
1092
1093	pci_set_master(pci_dev);
1094
1095	/* Set the PCI DMA mask.  Try all possibilities from our
1096	 * genuine mask down to 32 bits, because some architectures
1097	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1098	 * masks event though they reject 46 bit masks.
1099	 */
1100	while (dma_mask > 0x7fffffffUL) {
1101		if (pci_dma_supported(pci_dev, dma_mask)) {
1102			rc = pci_set_dma_mask(pci_dev, dma_mask);
1103			if (rc == 0)
1104				break;
1105		}
1106		dma_mask >>= 1;
1107	}
1108	if (rc) {
1109		netif_err(efx, probe, efx->net_dev,
1110			  "could not find a suitable DMA mask\n");
1111		goto fail2;
1112	}
1113	netif_dbg(efx, probe, efx->net_dev,
1114		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1115	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1116	if (rc) {
1117		/* pci_set_consistent_dma_mask() is not *allowed* to
1118		 * fail with a mask that pci_set_dma_mask() accepted,
1119		 * but just in case...
1120		 */
1121		netif_err(efx, probe, efx->net_dev,
1122			  "failed to set consistent DMA mask\n");
1123		goto fail2;
1124	}
1125
1126	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1127	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1128	if (rc) {
1129		netif_err(efx, probe, efx->net_dev,
1130			  "request for memory BAR failed\n");
1131		rc = -EIO;
1132		goto fail3;
1133	}
1134	efx->membase = ioremap_nocache(efx->membase_phys,
1135				       efx->type->mem_map_size);
1136	if (!efx->membase) {
1137		netif_err(efx, probe, efx->net_dev,
1138			  "could not map memory BAR at %llx+%x\n",
1139			  (unsigned long long)efx->membase_phys,
1140			  efx->type->mem_map_size);
1141		rc = -ENOMEM;
1142		goto fail4;
1143	}
1144	netif_dbg(efx, probe, efx->net_dev,
1145		  "memory BAR at %llx+%x (virtual %p)\n",
1146		  (unsigned long long)efx->membase_phys,
1147		  efx->type->mem_map_size, efx->membase);
1148
1149	return 0;
1150
1151 fail4:
1152	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1153 fail3:
1154	efx->membase_phys = 0;
1155 fail2:
1156	pci_disable_device(efx->pci_dev);
1157 fail1:
1158	return rc;
1159}
1160
1161static void efx_fini_io(struct efx_nic *efx)
1162{
1163	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1164
1165	if (efx->membase) {
1166		iounmap(efx->membase);
1167		efx->membase = NULL;
1168	}
1169
1170	if (efx->membase_phys) {
1171		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1172		efx->membase_phys = 0;
1173	}
1174
1175	pci_disable_device(efx->pci_dev);
1176}
1177
1178static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1179{
1180	cpumask_var_t thread_mask;
1181	unsigned int count;
1182	int cpu;
1183
1184	if (rss_cpus) {
1185		count = rss_cpus;
1186	} else {
1187		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1188			netif_warn(efx, probe, efx->net_dev,
1189				   "RSS disabled due to allocation failure\n");
1190			return 1;
1191		}
1192
1193		count = 0;
1194		for_each_online_cpu(cpu) {
1195			if (!cpumask_test_cpu(cpu, thread_mask)) {
1196				++count;
1197				cpumask_or(thread_mask, thread_mask,
1198					   topology_thread_cpumask(cpu));
1199			}
1200		}
1201
1202		free_cpumask_var(thread_mask);
1203	}
1204
1205	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1206	 * table entries that are inaccessible to VFs
1207	 */
1208	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1209	    count > efx_vf_size(efx)) {
1210		netif_warn(efx, probe, efx->net_dev,
1211			   "Reducing number of RSS channels from %u to %u for "
1212			   "VF support. Increase vf-msix-limit to use more "
1213			   "channels on the PF.\n",
1214			   count, efx_vf_size(efx));
1215		count = efx_vf_size(efx);
1216	}
1217
1218	return count;
1219}
1220
1221static int
1222efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1223{
1224#ifdef CONFIG_RFS_ACCEL
1225	unsigned int i;
1226	int rc;
1227
1228	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1229	if (!efx->net_dev->rx_cpu_rmap)
1230		return -ENOMEM;
1231	for (i = 0; i < efx->n_rx_channels; i++) {
1232		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1233				      xentries[i].vector);
1234		if (rc) {
1235			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1236			efx->net_dev->rx_cpu_rmap = NULL;
1237			return rc;
1238		}
1239	}
1240#endif
1241	return 0;
1242}
1243
1244/* Probe the number and type of interrupts we are able to obtain, and
1245 * the resulting numbers of channels and RX queues.
1246 */
1247static int efx_probe_interrupts(struct efx_nic *efx)
1248{
1249	unsigned int max_channels =
1250		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1251	unsigned int extra_channels = 0;
1252	unsigned int i, j;
1253	int rc;
1254
1255	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1256		if (efx->extra_channel_type[i])
1257			++extra_channels;
1258
1259	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1260		struct msix_entry xentries[EFX_MAX_CHANNELS];
1261		unsigned int n_channels;
1262
1263		n_channels = efx_wanted_parallelism(efx);
1264		if (separate_tx_channels)
1265			n_channels *= 2;
1266		n_channels += extra_channels;
1267		n_channels = min(n_channels, max_channels);
1268
1269		for (i = 0; i < n_channels; i++)
1270			xentries[i].entry = i;
1271		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1272		if (rc > 0) {
1273			netif_err(efx, drv, efx->net_dev,
1274				  "WARNING: Insufficient MSI-X vectors"
1275				  " available (%d < %u).\n", rc, n_channels);
1276			netif_err(efx, drv, efx->net_dev,
1277				  "WARNING: Performance may be reduced.\n");
1278			EFX_BUG_ON_PARANOID(rc >= n_channels);
1279			n_channels = rc;
1280			rc = pci_enable_msix(efx->pci_dev, xentries,
1281					     n_channels);
1282		}
1283
1284		if (rc == 0) {
1285			efx->n_channels = n_channels;
1286			if (n_channels > extra_channels)
1287				n_channels -= extra_channels;
1288			if (separate_tx_channels) {
1289				efx->n_tx_channels = max(n_channels / 2, 1U);
1290				efx->n_rx_channels = max(n_channels -
1291							 efx->n_tx_channels,
1292							 1U);
1293			} else {
1294				efx->n_tx_channels = n_channels;
1295				efx->n_rx_channels = n_channels;
1296			}
1297			rc = efx_init_rx_cpu_rmap(efx, xentries);
1298			if (rc) {
1299				pci_disable_msix(efx->pci_dev);
1300				return rc;
1301			}
1302			for (i = 0; i < efx->n_channels; i++)
1303				efx_get_channel(efx, i)->irq =
1304					xentries[i].vector;
1305		} else {
1306			/* Fall back to single channel MSI */
1307			efx->interrupt_mode = EFX_INT_MODE_MSI;
1308			netif_err(efx, drv, efx->net_dev,
1309				  "could not enable MSI-X\n");
1310		}
1311	}
1312
1313	/* Try single interrupt MSI */
1314	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1315		efx->n_channels = 1;
1316		efx->n_rx_channels = 1;
1317		efx->n_tx_channels = 1;
1318		rc = pci_enable_msi(efx->pci_dev);
1319		if (rc == 0) {
1320			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1321		} else {
1322			netif_err(efx, drv, efx->net_dev,
1323				  "could not enable MSI\n");
1324			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1325		}
1326	}
1327
1328	/* Assume legacy interrupts */
1329	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1330		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1331		efx->n_rx_channels = 1;
1332		efx->n_tx_channels = 1;
1333		efx->legacy_irq = efx->pci_dev->irq;
1334	}
1335
1336	/* Assign extra channels if possible */
1337	j = efx->n_channels;
1338	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1339		if (!efx->extra_channel_type[i])
1340			continue;
1341		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1342		    efx->n_channels <= extra_channels) {
1343			efx->extra_channel_type[i]->handle_no_channel(efx);
1344		} else {
1345			--j;
1346			efx_get_channel(efx, j)->type =
1347				efx->extra_channel_type[i];
1348		}
1349	}
1350
1351	/* RSS might be usable on VFs even if it is disabled on the PF */
1352	efx->rss_spread = (efx->n_rx_channels > 1 ?
1353			   efx->n_rx_channels : efx_vf_size(efx));
1354
1355	return 0;
1356}
1357
1358/* Enable interrupts, then probe and start the event queues */
1359static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1360{
1361	struct efx_channel *channel;
1362
1363	if (efx->legacy_irq)
1364		efx->legacy_irq_enabled = true;
1365	efx_nic_enable_interrupts(efx);
1366
1367	efx_for_each_channel(channel, efx) {
1368		if (!channel->type->keep_eventq || !may_keep_eventq)
1369			efx_init_eventq(channel);
1370		efx_start_eventq(channel);
1371	}
1372
1373	efx_mcdi_mode_event(efx);
1374}
1375
1376static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1377{
1378	struct efx_channel *channel;
1379
1380	efx_mcdi_mode_poll(efx);
1381
1382	efx_nic_disable_interrupts(efx);
1383	if (efx->legacy_irq) {
1384		synchronize_irq(efx->legacy_irq);
1385		efx->legacy_irq_enabled = false;
1386	}
1387
1388	efx_for_each_channel(channel, efx) {
1389		if (channel->irq)
1390			synchronize_irq(channel->irq);
1391
1392		efx_stop_eventq(channel);
1393		if (!channel->type->keep_eventq || !may_keep_eventq)
1394			efx_fini_eventq(channel);
1395	}
1396}
1397
1398static void efx_remove_interrupts(struct efx_nic *efx)
1399{
1400	struct efx_channel *channel;
1401
1402	/* Remove MSI/MSI-X interrupts */
1403	efx_for_each_channel(channel, efx)
1404		channel->irq = 0;
1405	pci_disable_msi(efx->pci_dev);
1406	pci_disable_msix(efx->pci_dev);
1407
1408	/* Remove legacy interrupt */
1409	efx->legacy_irq = 0;
1410}
1411
1412static void efx_set_channels(struct efx_nic *efx)
1413{
1414	struct efx_channel *channel;
1415	struct efx_tx_queue *tx_queue;
1416
1417	efx->tx_channel_offset =
1418		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1419
1420	/* We need to adjust the TX queue numbers if we have separate
1421	 * RX-only and TX-only channels.
1422	 */
1423	efx_for_each_channel(channel, efx) {
1424		efx_for_each_channel_tx_queue(tx_queue, channel)
1425			tx_queue->queue -= (efx->tx_channel_offset *
1426					    EFX_TXQ_TYPES);
1427	}
1428}
1429
1430static int efx_probe_nic(struct efx_nic *efx)
1431{
1432	size_t i;
1433	int rc;
1434
1435	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1436
1437	/* Carry out hardware-type specific initialisation */
1438	rc = efx->type->probe(efx);
1439	if (rc)
1440		return rc;
1441
1442	/* Determine the number of channels and queues by trying to hook
1443	 * in MSI-X interrupts. */
1444	rc = efx_probe_interrupts(efx);
1445	if (rc)
1446		goto fail;
1447
1448	efx->type->dimension_resources(efx);
1449
1450	if (efx->n_channels > 1)
1451		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1452	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1453		efx->rx_indir_table[i] =
1454			ethtool_rxfh_indir_default(i, efx->rss_spread);
1455
1456	efx_set_channels(efx);
1457	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1458	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1459
1460	/* Initialise the interrupt moderation settings */
1461	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1462				true);
1463
1464	return 0;
1465
1466fail:
1467	efx->type->remove(efx);
1468	return rc;
1469}
1470
1471static void efx_remove_nic(struct efx_nic *efx)
1472{
1473	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1474
1475	efx_remove_interrupts(efx);
1476	efx->type->remove(efx);
1477}
1478
1479/**************************************************************************
1480 *
1481 * NIC startup/shutdown
1482 *
1483 *************************************************************************/
1484
1485static int efx_probe_all(struct efx_nic *efx)
1486{
1487	int rc;
1488
1489	rc = efx_probe_nic(efx);
1490	if (rc) {
1491		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1492		goto fail1;
1493	}
1494
1495	rc = efx_probe_port(efx);
1496	if (rc) {
1497		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1498		goto fail2;
1499	}
1500
1501	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1502
1503	rc = efx_probe_filters(efx);
1504	if (rc) {
1505		netif_err(efx, probe, efx->net_dev,
1506			  "failed to create filter tables\n");
1507		goto fail3;
1508	}
1509
1510	rc = efx_probe_channels(efx);
1511	if (rc)
1512		goto fail4;
1513
1514	return 0;
1515
1516 fail4:
1517	efx_remove_filters(efx);
1518 fail3:
1519	efx_remove_port(efx);
1520 fail2:
1521	efx_remove_nic(efx);
1522 fail1:
1523	return rc;
1524}
1525
1526/* Called after previous invocation(s) of efx_stop_all, restarts the port,
1527 * kernel transmit queues and NAPI processing, and ensures that the port is
1528 * scheduled to be reconfigured. This function is safe to call multiple
1529 * times when the NIC is in any state.
1530 */
1531static void efx_start_all(struct efx_nic *efx)
1532{
1533	EFX_ASSERT_RESET_SERIALISED(efx);
1534
1535	/* Check that it is appropriate to restart the interface. All
1536	 * of these flags are safe to read under just the rtnl lock */
1537	if (efx->port_enabled)
1538		return;
1539	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1540		return;
1541	if (!netif_running(efx->net_dev))
1542		return;
1543
1544	efx_start_port(efx);
1545	efx_start_datapath(efx);
1546
1547	/* Start the hardware monitor if there is one. Otherwise (we're link
1548	 * event driven), we have to poll the PHY because after an event queue
1549	 * flush, we could have a missed a link state change */
1550	if (efx->type->monitor != NULL) {
1551		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1552				   efx_monitor_interval);
1553	} else {
1554		mutex_lock(&efx->mac_lock);
1555		if (efx->phy_op->poll(efx))
1556			efx_link_status_changed(efx);
1557		mutex_unlock(&efx->mac_lock);
1558	}
1559
1560	efx->type->start_stats(efx);
1561}
1562
1563/* Flush all delayed work. Should only be called when no more delayed work
1564 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1565 * since we're holding the rtnl_lock at this point. */
1566static void efx_flush_all(struct efx_nic *efx)
1567{
1568	/* Make sure the hardware monitor and event self-test are stopped */
1569	cancel_delayed_work_sync(&efx->monitor_work);
1570	efx_selftest_async_cancel(efx);
1571	/* Stop scheduled port reconfigurations */
1572	cancel_work_sync(&efx->mac_work);
1573}
1574
1575/* Quiesce hardware and software without bringing the link down.
1576 * Safe to call multiple times, when the nic and interface is in any
1577 * state. The caller is guaranteed to subsequently be in a position
1578 * to modify any hardware and software state they see fit without
1579 * taking locks. */
1580static void efx_stop_all(struct efx_nic *efx)
1581{
1582	EFX_ASSERT_RESET_SERIALISED(efx);
1583
1584	/* port_enabled can be read safely under the rtnl lock */
1585	if (!efx->port_enabled)
1586		return;
1587
1588	efx->type->stop_stats(efx);
1589	efx_stop_port(efx);
1590
1591	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1592	efx_flush_all(efx);
1593
1594	/* Stop the kernel transmit interface late, so the watchdog
1595	 * timer isn't ticking over the flush */
1596	netif_tx_disable(efx->net_dev);
1597
1598	efx_stop_datapath(efx);
1599}
1600
1601static void efx_remove_all(struct efx_nic *efx)
1602{
1603	efx_remove_channels(efx);
1604	efx_remove_filters(efx);
1605	efx_remove_port(efx);
1606	efx_remove_nic(efx);
1607}
1608
1609/**************************************************************************
1610 *
1611 * Interrupt moderation
1612 *
1613 **************************************************************************/
1614
1615static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1616{
1617	if (usecs == 0)
1618		return 0;
1619	if (usecs * 1000 < quantum_ns)
1620		return 1; /* never round down to 0 */
1621	return usecs * 1000 / quantum_ns;
1622}
1623
1624/* Set interrupt moderation parameters */
1625int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1626			    unsigned int rx_usecs, bool rx_adaptive,
1627			    bool rx_may_override_tx)
1628{
1629	struct efx_channel *channel;
1630	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1631						efx->timer_quantum_ns,
1632						1000);
1633	unsigned int tx_ticks;
1634	unsigned int rx_ticks;
1635
1636	EFX_ASSERT_RESET_SERIALISED(efx);
1637
1638	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1639		return -EINVAL;
1640
1641	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1642	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1643
1644	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1645	    !rx_may_override_tx) {
1646		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1647			  "RX and TX IRQ moderation must be equal\n");
1648		return -EINVAL;
1649	}
1650
1651	efx->irq_rx_adaptive = rx_adaptive;
1652	efx->irq_rx_moderation = rx_ticks;
1653	efx_for_each_channel(channel, efx) {
1654		if (efx_channel_has_rx_queue(channel))
1655			channel->irq_moderation = rx_ticks;
1656		else if (efx_channel_has_tx_queues(channel))
1657			channel->irq_moderation = tx_ticks;
1658	}
1659
1660	return 0;
1661}
1662
1663void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1664			    unsigned int *rx_usecs, bool *rx_adaptive)
1665{
1666	/* We must round up when converting ticks to microseconds
1667	 * because we round down when converting the other way.
1668	 */
1669
1670	*rx_adaptive = efx->irq_rx_adaptive;
1671	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1672				 efx->timer_quantum_ns,
1673				 1000);
1674
1675	/* If channels are shared between RX and TX, so is IRQ
1676	 * moderation.  Otherwise, IRQ moderation is the same for all
1677	 * TX channels and is not adaptive.
1678	 */
1679	if (efx->tx_channel_offset == 0)
1680		*tx_usecs = *rx_usecs;
1681	else
1682		*tx_usecs = DIV_ROUND_UP(
1683			efx->channel[efx->tx_channel_offset]->irq_moderation *
1684			efx->timer_quantum_ns,
1685			1000);
1686}
1687
1688/**************************************************************************
1689 *
1690 * Hardware monitor
1691 *
1692 **************************************************************************/
1693
1694/* Run periodically off the general workqueue */
1695static void efx_monitor(struct work_struct *data)
1696{
1697	struct efx_nic *efx = container_of(data, struct efx_nic,
1698					   monitor_work.work);
1699
1700	netif_vdbg(efx, timer, efx->net_dev,
1701		   "hardware monitor executing on CPU %d\n",
1702		   raw_smp_processor_id());
1703	BUG_ON(efx->type->monitor == NULL);
1704
1705	/* If the mac_lock is already held then it is likely a port
1706	 * reconfiguration is already in place, which will likely do
1707	 * most of the work of monitor() anyway. */
1708	if (mutex_trylock(&efx->mac_lock)) {
1709		if (efx->port_enabled)
1710			efx->type->monitor(efx);
1711		mutex_unlock(&efx->mac_lock);
1712	}
1713
1714	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1715			   efx_monitor_interval);
1716}
1717
1718/**************************************************************************
1719 *
1720 * ioctls
1721 *
1722 *************************************************************************/
1723
1724/* Net device ioctl
1725 * Context: process, rtnl_lock() held.
1726 */
1727static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1728{
1729	struct efx_nic *efx = netdev_priv(net_dev);
1730	struct mii_ioctl_data *data = if_mii(ifr);
1731
1732	EFX_ASSERT_RESET_SERIALISED(efx);
1733
1734	/* Convert phy_id from older PRTAD/DEVAD format */
1735	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1736	    (data->phy_id & 0xfc00) == 0x0400)
1737		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1738
1739	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1740}
1741
1742/**************************************************************************
1743 *
1744 * NAPI interface
1745 *
1746 **************************************************************************/
1747
1748static void efx_init_napi_channel(struct efx_channel *channel)
1749{
1750	struct efx_nic *efx = channel->efx;
1751
1752	channel->napi_dev = efx->net_dev;
1753	netif_napi_add(channel->napi_dev, &channel->napi_str,
1754		       efx_poll, napi_weight);
1755}
1756
1757static void efx_init_napi(struct efx_nic *efx)
1758{
1759	struct efx_channel *channel;
1760
1761	efx_for_each_channel(channel, efx)
1762		efx_init_napi_channel(channel);
1763}
1764
1765static void efx_fini_napi_channel(struct efx_channel *channel)
1766{
1767	if (channel->napi_dev)
1768		netif_napi_del(&channel->napi_str);
1769	channel->napi_dev = NULL;
1770}
1771
1772static void efx_fini_napi(struct efx_nic *efx)
1773{
1774	struct efx_channel *channel;
1775
1776	efx_for_each_channel(channel, efx)
1777		efx_fini_napi_channel(channel);
1778}
1779
1780/**************************************************************************
1781 *
1782 * Kernel netpoll interface
1783 *
1784 *************************************************************************/
1785
1786#ifdef CONFIG_NET_POLL_CONTROLLER
1787
1788/* Although in the common case interrupts will be disabled, this is not
1789 * guaranteed. However, all our work happens inside the NAPI callback,
1790 * so no locking is required.
1791 */
1792static void efx_netpoll(struct net_device *net_dev)
1793{
1794	struct efx_nic *efx = netdev_priv(net_dev);
1795	struct efx_channel *channel;
1796
1797	efx_for_each_channel(channel, efx)
1798		efx_schedule_channel(channel);
1799}
1800
1801#endif
1802
1803/**************************************************************************
1804 *
1805 * Kernel net device interface
1806 *
1807 *************************************************************************/
1808
1809/* Context: process, rtnl_lock() held. */
1810static int efx_net_open(struct net_device *net_dev)
1811{
1812	struct efx_nic *efx = netdev_priv(net_dev);
1813	EFX_ASSERT_RESET_SERIALISED(efx);
1814
1815	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1816		  raw_smp_processor_id());
1817
1818	if (efx->state == STATE_DISABLED)
1819		return -EIO;
1820	if (efx->phy_mode & PHY_MODE_SPECIAL)
1821		return -EBUSY;
1822	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1823		return -EIO;
1824
1825	/* Notify the kernel of the link state polled during driver load,
1826	 * before the monitor starts running */
1827	efx_link_status_changed(efx);
1828
1829	efx_start_all(efx);
1830	efx_selftest_async_start(efx);
1831	return 0;
1832}
1833
1834/* Context: process, rtnl_lock() held.
1835 * Note that the kernel will ignore our return code; this method
1836 * should really be a void.
1837 */
1838static int efx_net_stop(struct net_device *net_dev)
1839{
1840	struct efx_nic *efx = netdev_priv(net_dev);
1841
1842	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1843		  raw_smp_processor_id());
1844
1845	if (efx->state != STATE_DISABLED) {
1846		/* Stop the device and flush all the channels */
1847		efx_stop_all(efx);
1848	}
1849
1850	return 0;
1851}
1852
1853/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1854static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1855					       struct rtnl_link_stats64 *stats)
1856{
1857	struct efx_nic *efx = netdev_priv(net_dev);
1858	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1859
1860	spin_lock_bh(&efx->stats_lock);
1861
1862	efx->type->update_stats(efx);
1863
1864	stats->rx_packets = mac_stats->rx_packets;
1865	stats->tx_packets = mac_stats->tx_packets;
1866	stats->rx_bytes = mac_stats->rx_bytes;
1867	stats->tx_bytes = mac_stats->tx_bytes;
1868	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1869	stats->multicast = mac_stats->rx_multicast;
1870	stats->collisions = mac_stats->tx_collision;
1871	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1872				   mac_stats->rx_length_error);
1873	stats->rx_crc_errors = mac_stats->rx_bad;
1874	stats->rx_frame_errors = mac_stats->rx_align_error;
1875	stats->rx_fifo_errors = mac_stats->rx_overflow;
1876	stats->rx_missed_errors = mac_stats->rx_missed;
1877	stats->tx_window_errors = mac_stats->tx_late_collision;
1878
1879	stats->rx_errors = (stats->rx_length_errors +
1880			    stats->rx_crc_errors +
1881			    stats->rx_frame_errors +
1882			    mac_stats->rx_symbol_error);
1883	stats->tx_errors = (stats->tx_window_errors +
1884			    mac_stats->tx_bad);
1885
1886	spin_unlock_bh(&efx->stats_lock);
1887
1888	return stats;
1889}
1890
1891/* Context: netif_tx_lock held, BHs disabled. */
1892static void efx_watchdog(struct net_device *net_dev)
1893{
1894	struct efx_nic *efx = netdev_priv(net_dev);
1895
1896	netif_err(efx, tx_err, efx->net_dev,
1897		  "TX stuck with port_enabled=%d: resetting channels\n",
1898		  efx->port_enabled);
1899
1900	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1901}
1902
1903
1904/* Context: process, rtnl_lock() held. */
1905static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1906{
1907	struct efx_nic *efx = netdev_priv(net_dev);
1908
1909	EFX_ASSERT_RESET_SERIALISED(efx);
1910
1911	if (new_mtu > EFX_MAX_MTU)
1912		return -EINVAL;
1913
1914	efx_stop_all(efx);
1915
1916	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1917
1918	mutex_lock(&efx->mac_lock);
1919	/* Reconfigure the MAC before enabling the dma queues so that
1920	 * the RX buffers don't overflow */
1921	net_dev->mtu = new_mtu;
1922	efx->type->reconfigure_mac(efx);
1923	mutex_unlock(&efx->mac_lock);
1924
1925	efx_start_all(efx);
1926	return 0;
1927}
1928
1929static int efx_set_mac_address(struct net_device *net_dev, void *data)
1930{
1931	struct efx_nic *efx = netdev_priv(net_dev);
1932	struct sockaddr *addr = data;
1933	char *new_addr = addr->sa_data;
1934
1935	EFX_ASSERT_RESET_SERIALISED(efx);
1936
1937	if (!is_valid_ether_addr(new_addr)) {
1938		netif_err(efx, drv, efx->net_dev,
1939			  "invalid ethernet MAC address requested: %pM\n",
1940			  new_addr);
1941		return -EADDRNOTAVAIL;
1942	}
1943
1944	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1945	efx_sriov_mac_address_changed(efx);
1946
1947	/* Reconfigure the MAC */
1948	mutex_lock(&efx->mac_lock);
1949	efx->type->reconfigure_mac(efx);
1950	mutex_unlock(&efx->mac_lock);
1951
1952	return 0;
1953}
1954
1955/* Context: netif_addr_lock held, BHs disabled. */
1956static void efx_set_rx_mode(struct net_device *net_dev)
1957{
1958	struct efx_nic *efx = netdev_priv(net_dev);
1959	struct netdev_hw_addr *ha;
1960	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1961	u32 crc;
1962	int bit;
1963
1964	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1965
1966	/* Build multicast hash table */
1967	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1968		memset(mc_hash, 0xff, sizeof(*mc_hash));
1969	} else {
1970		memset(mc_hash, 0x00, sizeof(*mc_hash));
1971		netdev_for_each_mc_addr(ha, net_dev) {
1972			crc = ether_crc_le(ETH_ALEN, ha->addr);
1973			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1974			set_bit_le(bit, mc_hash->byte);
1975		}
1976
1977		/* Broadcast packets go through the multicast hash filter.
1978		 * ether_crc_le() of the broadcast address is 0xbe2612ff
1979		 * so we always add bit 0xff to the mask.
1980		 */
1981		set_bit_le(0xff, mc_hash->byte);
1982	}
1983
1984	if (efx->port_enabled)
1985		queue_work(efx->workqueue, &efx->mac_work);
1986	/* Otherwise efx_start_port() will do this */
1987}
1988
1989static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1990{
1991	struct efx_nic *efx = netdev_priv(net_dev);
1992
1993	/* If disabling RX n-tuple filtering, clear existing filters */
1994	if (net_dev->features & ~data & NETIF_F_NTUPLE)
1995		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1996
1997	return 0;
1998}
1999
2000static const struct net_device_ops efx_netdev_ops = {
2001	.ndo_open		= efx_net_open,
2002	.ndo_stop		= efx_net_stop,
2003	.ndo_get_stats64	= efx_net_stats,
2004	.ndo_tx_timeout		= efx_watchdog,
2005	.ndo_start_xmit		= efx_hard_start_xmit,
2006	.ndo_validate_addr	= eth_validate_addr,
2007	.ndo_do_ioctl		= efx_ioctl,
2008	.ndo_change_mtu		= efx_change_mtu,
2009	.ndo_set_mac_address	= efx_set_mac_address,
2010	.ndo_set_rx_mode	= efx_set_rx_mode,
2011	.ndo_set_features	= efx_set_features,
2012#ifdef CONFIG_SFC_SRIOV
2013	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2014	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2015	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2016	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2017#endif
2018#ifdef CONFIG_NET_POLL_CONTROLLER
2019	.ndo_poll_controller = efx_netpoll,
2020#endif
2021	.ndo_setup_tc		= efx_setup_tc,
2022#ifdef CONFIG_RFS_ACCEL
2023	.ndo_rx_flow_steer	= efx_filter_rfs,
2024#endif
2025};
2026
2027static void efx_update_name(struct efx_nic *efx)
2028{
2029	strcpy(efx->name, efx->net_dev->name);
2030	efx_mtd_rename(efx);
2031	efx_set_channel_names(efx);
2032}
2033
2034static int efx_netdev_event(struct notifier_block *this,
2035			    unsigned long event, void *ptr)
2036{
2037	struct net_device *net_dev = ptr;
2038
2039	if (net_dev->netdev_ops == &efx_netdev_ops &&
2040	    event == NETDEV_CHANGENAME)
2041		efx_update_name(netdev_priv(net_dev));
2042
2043	return NOTIFY_DONE;
2044}
2045
2046static struct notifier_block efx_netdev_notifier = {
2047	.notifier_call = efx_netdev_event,
2048};
2049
2050static ssize_t
2051show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2052{
2053	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2054	return sprintf(buf, "%d\n", efx->phy_type);
2055}
2056static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
2057
2058static int efx_register_netdev(struct efx_nic *efx)
2059{
2060	struct net_device *net_dev = efx->net_dev;
2061	struct efx_channel *channel;
2062	int rc;
2063
2064	net_dev->watchdog_timeo = 5 * HZ;
2065	net_dev->irq = efx->pci_dev->irq;
2066	net_dev->netdev_ops = &efx_netdev_ops;
2067	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2068
2069	rtnl_lock();
2070
2071	rc = dev_alloc_name(net_dev, net_dev->name);
2072	if (rc < 0)
2073		goto fail_locked;
2074	efx_update_name(efx);
2075
2076	rc = register_netdevice(net_dev);
2077	if (rc)
2078		goto fail_locked;
2079
2080	efx_for_each_channel(channel, efx) {
2081		struct efx_tx_queue *tx_queue;
2082		efx_for_each_channel_tx_queue(tx_queue, channel)
2083			efx_init_tx_queue_core_txq(tx_queue);
2084	}
2085
2086	/* Always start with carrier off; PHY events will detect the link */
2087	netif_carrier_off(net_dev);
2088
2089	rtnl_unlock();
2090
2091	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2092	if (rc) {
2093		netif_err(efx, drv, efx->net_dev,
2094			  "failed to init net dev attributes\n");
2095		goto fail_registered;
2096	}
2097
2098	return 0;
2099
2100fail_locked:
2101	rtnl_unlock();
2102	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2103	return rc;
2104
2105fail_registered:
2106	unregister_netdev(net_dev);
2107	return rc;
2108}
2109
2110static void efx_unregister_netdev(struct efx_nic *efx)
2111{
2112	struct efx_channel *channel;
2113	struct efx_tx_queue *tx_queue;
2114
2115	if (!efx->net_dev)
2116		return;
2117
2118	BUG_ON(netdev_priv(efx->net_dev) != efx);
2119
2120	/* Free up any skbs still remaining. This has to happen before
2121	 * we try to unregister the netdev as running their destructors
2122	 * may be needed to get the device ref. count to 0. */
2123	efx_for_each_channel(channel, efx) {
2124		efx_for_each_channel_tx_queue(tx_queue, channel)
2125			efx_release_tx_buffers(tx_queue);
2126	}
2127
2128	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2129	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2130	unregister_netdev(efx->net_dev);
2131}
2132
2133/**************************************************************************
2134 *
2135 * Device reset and suspend
2136 *
2137 **************************************************************************/
2138
2139/* Tears down the entire software state and most of the hardware state
2140 * before reset.  */
2141void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2142{
2143	EFX_ASSERT_RESET_SERIALISED(efx);
2144
2145	efx_stop_all(efx);
2146	mutex_lock(&efx->mac_lock);
2147
2148	efx_stop_interrupts(efx, false);
2149	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2150		efx->phy_op->fini(efx);
2151	efx->type->fini(efx);
2152}
2153
2154/* This function will always ensure that the locks acquired in
2155 * efx_reset_down() are released. A failure return code indicates
2156 * that we were unable to reinitialise the hardware, and the
2157 * driver should be disabled. If ok is false, then the rx and tx
2158 * engines are not restarted, pending a RESET_DISABLE. */
2159int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2160{
2161	int rc;
2162
2163	EFX_ASSERT_RESET_SERIALISED(efx);
2164
2165	rc = efx->type->init(efx);
2166	if (rc) {
2167		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2168		goto fail;
2169	}
2170
2171	if (!ok)
2172		goto fail;
2173
2174	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2175		rc = efx->phy_op->init(efx);
2176		if (rc)
2177			goto fail;
2178		if (efx->phy_op->reconfigure(efx))
2179			netif_err(efx, drv, efx->net_dev,
2180				  "could not restore PHY settings\n");
2181	}
2182
2183	efx->type->reconfigure_mac(efx);
2184
2185	efx_start_interrupts(efx, false);
2186	efx_restore_filters(efx);
2187	efx_sriov_reset(efx);
2188
2189	mutex_unlock(&efx->mac_lock);
2190
2191	efx_start_all(efx);
2192
2193	return 0;
2194
2195fail:
2196	efx->port_initialized = false;
2197
2198	mutex_unlock(&efx->mac_lock);
2199
2200	return rc;
2201}
2202
2203/* Reset the NIC using the specified method.  Note that the reset may
2204 * fail, in which case the card will be left in an unusable state.
2205 *
2206 * Caller must hold the rtnl_lock.
2207 */
2208int efx_reset(struct efx_nic *efx, enum reset_type method)
2209{
2210	int rc, rc2;
2211	bool disabled;
2212
2213	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2214		   RESET_TYPE(method));
2215
2216	netif_device_detach(efx->net_dev);
2217	efx_reset_down(efx, method);
2218
2219	rc = efx->type->reset(efx, method);
2220	if (rc) {
2221		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2222		goto out;
2223	}
2224
2225	/* Clear flags for the scopes we covered.  We assume the NIC and
2226	 * driver are now quiescent so that there is no race here.
2227	 */
2228	efx->reset_pending &= -(1 << (method + 1));
2229
2230	/* Reinitialise bus-mastering, which may have been turned off before
2231	 * the reset was scheduled. This is still appropriate, even in the
2232	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2233	 * can respond to requests. */
2234	pci_set_master(efx->pci_dev);
2235
2236out:
2237	/* Leave device stopped if necessary */
2238	disabled = rc || method == RESET_TYPE_DISABLE;
2239	rc2 = efx_reset_up(efx, method, !disabled);
2240	if (rc2) {
2241		disabled = true;
2242		if (!rc)
2243			rc = rc2;
2244	}
2245
2246	if (disabled) {
2247		dev_close(efx->net_dev);
2248		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2249		efx->state = STATE_DISABLED;
2250	} else {
2251		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2252		netif_device_attach(efx->net_dev);
2253	}
2254	return rc;
2255}
2256
2257/* The worker thread exists so that code that cannot sleep can
2258 * schedule a reset for later.
2259 */
2260static void efx_reset_work(struct work_struct *data)
2261{
2262	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2263	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2264
2265	if (!pending)
2266		return;
2267
2268	/* If we're not RUNNING then don't reset. Leave the reset_pending
2269	 * flags set so that efx_pci_probe_main will be retried */
2270	if (efx->state != STATE_RUNNING) {
2271		netif_info(efx, drv, efx->net_dev,
2272			   "scheduled reset quenched. NIC not RUNNING\n");
2273		return;
2274	}
2275
2276	rtnl_lock();
2277	(void)efx_reset(efx, fls(pending) - 1);
2278	rtnl_unlock();
2279}
2280
2281void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2282{
2283	enum reset_type method;
2284
2285	switch (type) {
2286	case RESET_TYPE_INVISIBLE:
2287	case RESET_TYPE_ALL:
2288	case RESET_TYPE_WORLD:
2289	case RESET_TYPE_DISABLE:
2290		method = type;
2291		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2292			  RESET_TYPE(method));
2293		break;
2294	default:
2295		method = efx->type->map_reset_reason(type);
2296		netif_dbg(efx, drv, efx->net_dev,
2297			  "scheduling %s reset for %s\n",
2298			  RESET_TYPE(method), RESET_TYPE(type));
2299		break;
2300	}
2301
2302	set_bit(method, &efx->reset_pending);
2303
2304	/* efx_process_channel() will no longer read events once a
2305	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2306	efx_mcdi_mode_poll(efx);
2307
2308	queue_work(reset_workqueue, &efx->reset_work);
2309}
2310
2311/**************************************************************************
2312 *
2313 * List of NICs we support
2314 *
2315 **************************************************************************/
2316
2317/* PCI device ID table */
2318static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2319	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2320		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2321	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2322	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2323		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2324	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2325	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2326	 .driver_data = (unsigned long) &siena_a0_nic_type},
2327	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2328	 .driver_data = (unsigned long) &siena_a0_nic_type},
2329	{0}			/* end of list */
2330};
2331
2332/**************************************************************************
2333 *
2334 * Dummy PHY/MAC operations
2335 *
2336 * Can be used for some unimplemented operations
2337 * Needed so all function pointers are valid and do not have to be tested
2338 * before use
2339 *
2340 **************************************************************************/
2341int efx_port_dummy_op_int(struct efx_nic *efx)
2342{
2343	return 0;
2344}
2345void efx_port_dummy_op_void(struct efx_nic *efx) {}
2346
2347static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2348{
2349	return false;
2350}
2351
2352static const struct efx_phy_operations efx_dummy_phy_operations = {
2353	.init		 = efx_port_dummy_op_int,
2354	.reconfigure	 = efx_port_dummy_op_int,
2355	.poll		 = efx_port_dummy_op_poll,
2356	.fini		 = efx_port_dummy_op_void,
2357};
2358
2359/**************************************************************************
2360 *
2361 * Data housekeeping
2362 *
2363 **************************************************************************/
2364
2365/* This zeroes out and then fills in the invariants in a struct
2366 * efx_nic (including all sub-structures).
2367 */
2368static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2369			   struct pci_dev *pci_dev, struct net_device *net_dev)
2370{
2371	int i;
2372
2373	/* Initialise common structures */
2374	memset(efx, 0, sizeof(*efx));
2375	spin_lock_init(&efx->biu_lock);
2376#ifdef CONFIG_SFC_MTD
2377	INIT_LIST_HEAD(&efx->mtd_list);
2378#endif
2379	INIT_WORK(&efx->reset_work, efx_reset_work);
2380	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2381	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2382	efx->pci_dev = pci_dev;
2383	efx->msg_enable = debug;
2384	efx->state = STATE_INIT;
2385	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2386
2387	efx->net_dev = net_dev;
2388	spin_lock_init(&efx->stats_lock);
2389	mutex_init(&efx->mac_lock);
2390	efx->phy_op = &efx_dummy_phy_operations;
2391	efx->mdio.dev = net_dev;
2392	INIT_WORK(&efx->mac_work, efx_mac_work);
2393	init_waitqueue_head(&efx->flush_wq);
2394
2395	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2396		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2397		if (!efx->channel[i])
2398			goto fail;
2399	}
2400
2401	efx->type = type;
2402
2403	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2404
2405	/* Higher numbered interrupt modes are less capable! */
2406	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2407				  interrupt_mode);
2408
2409	/* Would be good to use the net_dev name, but we're too early */
2410	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2411		 pci_name(pci_dev));
2412	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2413	if (!efx->workqueue)
2414		goto fail;
2415
2416	return 0;
2417
2418fail:
2419	efx_fini_struct(efx);
2420	return -ENOMEM;
2421}
2422
2423static void efx_fini_struct(struct efx_nic *efx)
2424{
2425	int i;
2426
2427	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2428		kfree(efx->channel[i]);
2429
2430	if (efx->workqueue) {
2431		destroy_workqueue(efx->workqueue);
2432		efx->workqueue = NULL;
2433	}
2434}
2435
2436/**************************************************************************
2437 *
2438 * PCI interface
2439 *
2440 **************************************************************************/
2441
2442/* Main body of final NIC shutdown code
2443 * This is called only at module unload (or hotplug removal).
2444 */
2445static void efx_pci_remove_main(struct efx_nic *efx)
2446{
2447#ifdef CONFIG_RFS_ACCEL
2448	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2449	efx->net_dev->rx_cpu_rmap = NULL;
2450#endif
2451	efx_stop_interrupts(efx, false);
2452	efx_nic_fini_interrupt(efx);
2453	efx_fini_port(efx);
2454	efx->type->fini(efx);
2455	efx_fini_napi(efx);
2456	efx_remove_all(efx);
2457}
2458
2459/* Final NIC shutdown
2460 * This is called only at module unload (or hotplug removal).
2461 */
2462static void efx_pci_remove(struct pci_dev *pci_dev)
2463{
2464	struct efx_nic *efx;
2465
2466	efx = pci_get_drvdata(pci_dev);
2467	if (!efx)
2468		return;
2469
2470	/* Mark the NIC as fini, then stop the interface */
2471	rtnl_lock();
2472	efx->state = STATE_FINI;
2473	dev_close(efx->net_dev);
2474
2475	/* Allow any queued efx_resets() to complete */
2476	rtnl_unlock();
2477
2478	efx_stop_interrupts(efx, false);
2479	efx_sriov_fini(efx);
2480	efx_unregister_netdev(efx);
2481
2482	efx_mtd_remove(efx);
2483
2484	/* Wait for any scheduled resets to complete. No more will be
2485	 * scheduled from this point because efx_stop_all() has been
2486	 * called, we are no longer registered with driverlink, and
2487	 * the net_device's have been removed. */
2488	cancel_work_sync(&efx->reset_work);
2489
2490	efx_pci_remove_main(efx);
2491
2492	efx_fini_io(efx);
2493	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2494
2495	pci_set_drvdata(pci_dev, NULL);
2496	efx_fini_struct(efx);
2497	free_netdev(efx->net_dev);
2498};
2499
2500/* NIC VPD information
2501 * Called during probe to display the part number of the
2502 * installed NIC.  VPD is potentially very large but this should
2503 * always appear within the first 512 bytes.
2504 */
2505#define SFC_VPD_LEN 512
2506static void efx_print_product_vpd(struct efx_nic *efx)
2507{
2508	struct pci_dev *dev = efx->pci_dev;
2509	char vpd_data[SFC_VPD_LEN];
2510	ssize_t vpd_size;
2511	int i, j;
2512
2513	/* Get the vpd data from the device */
2514	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2515	if (vpd_size <= 0) {
2516		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2517		return;
2518	}
2519
2520	/* Get the Read only section */
2521	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2522	if (i < 0) {
2523		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2524		return;
2525	}
2526
2527	j = pci_vpd_lrdt_size(&vpd_data[i]);
2528	i += PCI_VPD_LRDT_TAG_SIZE;
2529	if (i + j > vpd_size)
2530		j = vpd_size - i;
2531
2532	/* Get the Part number */
2533	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2534	if (i < 0) {
2535		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2536		return;
2537	}
2538
2539	j = pci_vpd_info_field_size(&vpd_data[i]);
2540	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2541	if (i + j > vpd_size) {
2542		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2543		return;
2544	}
2545
2546	netif_info(efx, drv, efx->net_dev,
2547		   "Part Number : %.*s\n", j, &vpd_data[i]);
2548}
2549
2550
2551/* Main body of NIC initialisation
2552 * This is called at module load (or hotplug insertion, theoretically).
2553 */
2554static int efx_pci_probe_main(struct efx_nic *efx)
2555{
2556	int rc;
2557
2558	/* Do start-of-day initialisation */
2559	rc = efx_probe_all(efx);
2560	if (rc)
2561		goto fail1;
2562
2563	efx_init_napi(efx);
2564
2565	rc = efx->type->init(efx);
2566	if (rc) {
2567		netif_err(efx, probe, efx->net_dev,
2568			  "failed to initialise NIC\n");
2569		goto fail3;
2570	}
2571
2572	rc = efx_init_port(efx);
2573	if (rc) {
2574		netif_err(efx, probe, efx->net_dev,
2575			  "failed to initialise port\n");
2576		goto fail4;
2577	}
2578
2579	rc = efx_nic_init_interrupt(efx);
2580	if (rc)
2581		goto fail5;
2582	efx_start_interrupts(efx, false);
2583
2584	return 0;
2585
2586 fail5:
2587	efx_fini_port(efx);
2588 fail4:
2589	efx->type->fini(efx);
2590 fail3:
2591	efx_fini_napi(efx);
2592	efx_remove_all(efx);
2593 fail1:
2594	return rc;
2595}
2596
2597/* NIC initialisation
2598 *
2599 * This is called at module load (or hotplug insertion,
2600 * theoretically).  It sets up PCI mappings, resets the NIC,
2601 * sets up and registers the network devices with the kernel and hooks
2602 * the interrupt service routine.  It does not prepare the device for
2603 * transmission; this is left to the first time one of the network
2604 * interfaces is brought up (i.e. efx_net_open).
2605 */
2606static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2607				   const struct pci_device_id *entry)
2608{
2609	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2610	struct net_device *net_dev;
2611	struct efx_nic *efx;
2612	int rc;
2613
2614	/* Allocate and initialise a struct net_device and struct efx_nic */
2615	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2616				     EFX_MAX_RX_QUEUES);
2617	if (!net_dev)
2618		return -ENOMEM;
2619	net_dev->features |= (type->offload_features | NETIF_F_SG |
2620			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2621			      NETIF_F_RXCSUM);
2622	if (type->offload_features & NETIF_F_V6_CSUM)
2623		net_dev->features |= NETIF_F_TSO6;
2624	/* Mask for features that also apply to VLAN devices */
2625	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2626				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2627				   NETIF_F_RXCSUM);
2628	/* All offloads can be toggled */
2629	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2630	efx = netdev_priv(net_dev);
2631	pci_set_drvdata(pci_dev, efx);
2632	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2633	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2634	if (rc)
2635		goto fail1;
2636
2637	netif_info(efx, probe, efx->net_dev,
2638		   "Solarflare NIC detected\n");
2639
2640	efx_print_product_vpd(efx);
2641
2642	/* Set up basic I/O (BAR mappings etc) */
2643	rc = efx_init_io(efx);
2644	if (rc)
2645		goto fail2;
2646
2647	rc = efx_pci_probe_main(efx);
2648
2649	/* Serialise against efx_reset(). No more resets will be
2650	 * scheduled since efx_stop_all() has been called, and we have
2651	 * not and never have been registered.
2652	 */
2653	cancel_work_sync(&efx->reset_work);
2654
2655	if (rc)
2656		goto fail3;
2657
2658	/* If there was a scheduled reset during probe, the NIC is
2659	 * probably hosed anyway.
2660	 */
2661	if (efx->reset_pending) {
2662		rc = -EIO;
2663		goto fail4;
2664	}
2665
2666	/* Switch to the running state before we expose the device to the OS,
2667	 * so that dev_open()|efx_start_all() will actually start the device */
2668	efx->state = STATE_RUNNING;
2669
2670	rc = efx_register_netdev(efx);
2671	if (rc)
2672		goto fail4;
2673
2674	rc = efx_sriov_init(efx);
2675	if (rc)
2676		netif_err(efx, probe, efx->net_dev,
2677			  "SR-IOV can't be enabled rc %d\n", rc);
2678
2679	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2680
2681	/* Try to create MTDs, but allow this to fail */
2682	rtnl_lock();
2683	rc = efx_mtd_probe(efx);
2684	rtnl_unlock();
2685	if (rc)
2686		netif_warn(efx, probe, efx->net_dev,
2687			   "failed to create MTDs (%d)\n", rc);
2688
2689	return 0;
2690
2691 fail4:
2692	efx_pci_remove_main(efx);
2693 fail3:
2694	efx_fini_io(efx);
2695 fail2:
2696	efx_fini_struct(efx);
2697 fail1:
2698	WARN_ON(rc > 0);
2699	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2700	free_netdev(net_dev);
2701	return rc;
2702}
2703
2704static int efx_pm_freeze(struct device *dev)
2705{
2706	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2707
2708	efx->state = STATE_FINI;
2709
2710	netif_device_detach(efx->net_dev);
2711
2712	efx_stop_all(efx);
2713	efx_stop_interrupts(efx, false);
2714
2715	return 0;
2716}
2717
2718static int efx_pm_thaw(struct device *dev)
2719{
2720	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2721
2722	efx->state = STATE_INIT;
2723
2724	efx_start_interrupts(efx, false);
2725
2726	mutex_lock(&efx->mac_lock);
2727	efx->phy_op->reconfigure(efx);
2728	mutex_unlock(&efx->mac_lock);
2729
2730	efx_start_all(efx);
2731
2732	netif_device_attach(efx->net_dev);
2733
2734	efx->state = STATE_RUNNING;
2735
2736	efx->type->resume_wol(efx);
2737
2738	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2739	queue_work(reset_workqueue, &efx->reset_work);
2740
2741	return 0;
2742}
2743
2744static int efx_pm_poweroff(struct device *dev)
2745{
2746	struct pci_dev *pci_dev = to_pci_dev(dev);
2747	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2748
2749	efx->type->fini(efx);
2750
2751	efx->reset_pending = 0;
2752
2753	pci_save_state(pci_dev);
2754	return pci_set_power_state(pci_dev, PCI_D3hot);
2755}
2756
2757/* Used for both resume and restore */
2758static int efx_pm_resume(struct device *dev)
2759{
2760	struct pci_dev *pci_dev = to_pci_dev(dev);
2761	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2762	int rc;
2763
2764	rc = pci_set_power_state(pci_dev, PCI_D0);
2765	if (rc)
2766		return rc;
2767	pci_restore_state(pci_dev);
2768	rc = pci_enable_device(pci_dev);
2769	if (rc)
2770		return rc;
2771	pci_set_master(efx->pci_dev);
2772	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2773	if (rc)
2774		return rc;
2775	rc = efx->type->init(efx);
2776	if (rc)
2777		return rc;
2778	efx_pm_thaw(dev);
2779	return 0;
2780}
2781
2782static int efx_pm_suspend(struct device *dev)
2783{
2784	int rc;
2785
2786	efx_pm_freeze(dev);
2787	rc = efx_pm_poweroff(dev);
2788	if (rc)
2789		efx_pm_resume(dev);
2790	return rc;
2791}
2792
2793static const struct dev_pm_ops efx_pm_ops = {
2794	.suspend	= efx_pm_suspend,
2795	.resume		= efx_pm_resume,
2796	.freeze		= efx_pm_freeze,
2797	.thaw		= efx_pm_thaw,
2798	.poweroff	= efx_pm_poweroff,
2799	.restore	= efx_pm_resume,
2800};
2801
2802static struct pci_driver efx_pci_driver = {
2803	.name		= KBUILD_MODNAME,
2804	.id_table	= efx_pci_table,
2805	.probe		= efx_pci_probe,
2806	.remove		= efx_pci_remove,
2807	.driver.pm	= &efx_pm_ops,
2808};
2809
2810/**************************************************************************
2811 *
2812 * Kernel module interface
2813 *
2814 *************************************************************************/
2815
2816module_param(interrupt_mode, uint, 0444);
2817MODULE_PARM_DESC(interrupt_mode,
2818		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2819
2820static int __init efx_init_module(void)
2821{
2822	int rc;
2823
2824	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2825
2826	rc = register_netdevice_notifier(&efx_netdev_notifier);
2827	if (rc)
2828		goto err_notifier;
2829
2830	rc = efx_init_sriov();
2831	if (rc)
2832		goto err_sriov;
2833
2834	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2835	if (!reset_workqueue) {
2836		rc = -ENOMEM;
2837		goto err_reset;
2838	}
2839
2840	rc = pci_register_driver(&efx_pci_driver);
2841	if (rc < 0)
2842		goto err_pci;
2843
2844	return 0;
2845
2846 err_pci:
2847	destroy_workqueue(reset_workqueue);
2848 err_reset:
2849	efx_fini_sriov();
2850 err_sriov:
2851	unregister_netdevice_notifier(&efx_netdev_notifier);
2852 err_notifier:
2853	return rc;
2854}
2855
2856static void __exit efx_exit_module(void)
2857{
2858	printk(KERN_INFO "Solarflare NET driver unloading\n");
2859
2860	pci_unregister_driver(&efx_pci_driver);
2861	destroy_workqueue(reset_workqueue);
2862	efx_fini_sriov();
2863	unregister_netdevice_notifier(&efx_netdev_notifier);
2864
2865}
2866
2867module_init(efx_init_module);
2868module_exit(efx_exit_module);
2869
2870MODULE_AUTHOR("Solarflare Communications and "
2871	      "Michael Brown <mbrown@fensystems.co.uk>");
2872MODULE_DESCRIPTION("Solarflare Communications network driver");
2873MODULE_LICENSE("GPL");
2874MODULE_DEVICE_TABLE(pci, efx_pci_table);
2875