efx.c revision b9cc977d9d4d1866ee83df38815f4b3b34d99dd9
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
22#include <linux/topology.h>
23#include <linux/gfp.h>
24#include <linux/cpu_rmap.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28#include "selftest.h"
29
30#include "mcdi.h"
31#include "workarounds.h"
32
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42const char *const efx_loopback_mode_names[] = {
43	[LOOPBACK_NONE]		= "NONE",
44	[LOOPBACK_DATA]		= "DATAPATH",
45	[LOOPBACK_GMAC]		= "GMAC",
46	[LOOPBACK_XGMII]	= "XGMII",
47	[LOOPBACK_XGXS]		= "XGXS",
48	[LOOPBACK_XAUI]		= "XAUI",
49	[LOOPBACK_GMII]		= "GMII",
50	[LOOPBACK_SGMII]	= "SGMII",
51	[LOOPBACK_XGBR]		= "XGBR",
52	[LOOPBACK_XFI]		= "XFI",
53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57	[LOOPBACK_GPHY]		= "GPHY",
58	[LOOPBACK_PHYXS]	= "PHYXS",
59	[LOOPBACK_PCS]		= "PCS",
60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61	[LOOPBACK_XPORT]	= "XPORT",
62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66	[LOOPBACK_GMII_WS]	= "GMII_WS",
67	[LOOPBACK_XFI_WS]	= "XFI_WS",
68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70};
71
72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73const char *const efx_reset_type_names[] = {
74	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
75	[RESET_TYPE_ALL]           = "ALL",
76	[RESET_TYPE_WORLD]         = "WORLD",
77	[RESET_TYPE_DISABLE]       = "DISABLE",
78	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
79	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
80	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
81	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
82	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
83	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85};
86
87#define EFX_MAX_MTU (9 * 1024)
88
89/* Reset workqueue. If any NIC has a hardware failure then a reset will be
90 * queued onto this work queue. This is not a per-nic work queue, because
91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 */
93static struct workqueue_struct *reset_workqueue;
94
95/**************************************************************************
96 *
97 * Configurable values
98 *
99 *************************************************************************/
100
101/*
102 * Use separate channels for TX and RX events
103 *
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
106 *
107 * This is only used in MSI-X interrupt mode
108 */
109static bool separate_tx_channels;
110module_param(separate_tx_channels, bool, 0444);
111MODULE_PARM_DESC(separate_tx_channels,
112		 "Use separate channels for TX and RX");
113
114/* This is the weight assigned to each of the (per-channel) virtual
115 * NAPI devices.
116 */
117static int napi_weight = 64;
118
119/* This is the time (in jiffies) between invocations of the hardware
120 * monitor.  On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
123 */
124static unsigned int efx_monitor_interval = 1 * HZ;
125
126/* Initial interrupt moderation settings.  They can be modified after
127 * module load with ethtool.
128 *
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
131 */
132static unsigned int rx_irq_mod_usec = 60;
133
134/* Initial interrupt moderation settings.  They can be modified after
135 * module load with ethtool.
136 *
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full.  A queue is
139 * restarted when it drops below half full.  The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 *   512 / 3 * 1.2 = 205 usec.
142 */
143static unsigned int tx_irq_mod_usec = 150;
144
145/* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
149 */
150static unsigned int interrupt_mode;
151
152/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
155 *
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each core.
158 */
159static unsigned int rss_cpus;
160module_param(rss_cpus, uint, 0444);
161MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162
163static bool phy_flash_cfg;
164module_param(phy_flash_cfg, bool, 0644);
165MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166
167static unsigned irq_adapt_low_thresh = 8000;
168module_param(irq_adapt_low_thresh, uint, 0644);
169MODULE_PARM_DESC(irq_adapt_low_thresh,
170		 "Threshold score for reducing IRQ moderation");
171
172static unsigned irq_adapt_high_thresh = 16000;
173module_param(irq_adapt_high_thresh, uint, 0644);
174MODULE_PARM_DESC(irq_adapt_high_thresh,
175		 "Threshold score for increasing IRQ moderation");
176
177static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
178			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
179			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
180			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
181module_param(debug, uint, 0);
182MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
183
184/**************************************************************************
185 *
186 * Utility functions and prototypes
187 *
188 *************************************************************************/
189
190static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
191static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
192static void efx_remove_channel(struct efx_channel *channel);
193static void efx_remove_channels(struct efx_nic *efx);
194static const struct efx_channel_type efx_default_channel_type;
195static void efx_remove_port(struct efx_nic *efx);
196static void efx_init_napi_channel(struct efx_channel *channel);
197static void efx_fini_napi(struct efx_nic *efx);
198static void efx_fini_napi_channel(struct efx_channel *channel);
199static void efx_fini_struct(struct efx_nic *efx);
200static void efx_start_all(struct efx_nic *efx);
201static void efx_stop_all(struct efx_nic *efx);
202
203#define EFX_ASSERT_RESET_SERIALISED(efx)		\
204	do {						\
205		if ((efx->state == STATE_READY) ||	\
206		    (efx->state == STATE_DISABLED))	\
207			ASSERT_RTNL();			\
208	} while (0)
209
210static int efx_check_disabled(struct efx_nic *efx)
211{
212	if (efx->state == STATE_DISABLED) {
213		netif_err(efx, drv, efx->net_dev,
214			  "device is disabled due to earlier errors\n");
215		return -EIO;
216	}
217	return 0;
218}
219
220/**************************************************************************
221 *
222 * Event queue processing
223 *
224 *************************************************************************/
225
226/* Process channel's event queue
227 *
228 * This function is responsible for processing the event queue of a
229 * single channel.  The caller must guarantee that this function will
230 * never be concurrently called more than once on the same channel,
231 * though different channels may be being processed concurrently.
232 */
233static int efx_process_channel(struct efx_channel *channel, int budget)
234{
235	int spent;
236
237	if (unlikely(!channel->enabled))
238		return 0;
239
240	spent = efx_nic_process_eventq(channel, budget);
241	if (spent && efx_channel_has_rx_queue(channel)) {
242		struct efx_rx_queue *rx_queue =
243			efx_channel_get_rx_queue(channel);
244
245		/* Deliver last RX packet. */
246		if (channel->rx_pkt) {
247			__efx_rx_packet(channel, channel->rx_pkt);
248			channel->rx_pkt = NULL;
249		}
250		if (rx_queue->enabled) {
251			efx_rx_strategy(channel);
252			efx_fast_push_rx_descriptors(rx_queue);
253		}
254	}
255
256	return spent;
257}
258
259/* Mark channel as finished processing
260 *
261 * Note that since we will not receive further interrupts for this
262 * channel before we finish processing and call the eventq_read_ack()
263 * method, there is no need to use the interrupt hold-off timers.
264 */
265static inline void efx_channel_processed(struct efx_channel *channel)
266{
267	/* The interrupt handler for this channel may set work_pending
268	 * as soon as we acknowledge the events we've seen.  Make sure
269	 * it's cleared before then. */
270	channel->work_pending = false;
271	smp_wmb();
272
273	efx_nic_eventq_read_ack(channel);
274}
275
276/* NAPI poll handler
277 *
278 * NAPI guarantees serialisation of polls of the same device, which
279 * provides the guarantee required by efx_process_channel().
280 */
281static int efx_poll(struct napi_struct *napi, int budget)
282{
283	struct efx_channel *channel =
284		container_of(napi, struct efx_channel, napi_str);
285	struct efx_nic *efx = channel->efx;
286	int spent;
287
288	netif_vdbg(efx, intr, efx->net_dev,
289		   "channel %d NAPI poll executing on CPU %d\n",
290		   channel->channel, raw_smp_processor_id());
291
292	spent = efx_process_channel(channel, budget);
293
294	if (spent < budget) {
295		if (efx_channel_has_rx_queue(channel) &&
296		    efx->irq_rx_adaptive &&
297		    unlikely(++channel->irq_count == 1000)) {
298			if (unlikely(channel->irq_mod_score <
299				     irq_adapt_low_thresh)) {
300				if (channel->irq_moderation > 1) {
301					channel->irq_moderation -= 1;
302					efx->type->push_irq_moderation(channel);
303				}
304			} else if (unlikely(channel->irq_mod_score >
305					    irq_adapt_high_thresh)) {
306				if (channel->irq_moderation <
307				    efx->irq_rx_moderation) {
308					channel->irq_moderation += 1;
309					efx->type->push_irq_moderation(channel);
310				}
311			}
312			channel->irq_count = 0;
313			channel->irq_mod_score = 0;
314		}
315
316		efx_filter_rfs_expire(channel);
317
318		/* There is no race here; although napi_disable() will
319		 * only wait for napi_complete(), this isn't a problem
320		 * since efx_channel_processed() will have no effect if
321		 * interrupts have already been disabled.
322		 */
323		napi_complete(napi);
324		efx_channel_processed(channel);
325	}
326
327	return spent;
328}
329
330/* Process the eventq of the specified channel immediately on this CPU
331 *
332 * Disable hardware generated interrupts, wait for any existing
333 * processing to finish, then directly poll (and ack ) the eventq.
334 * Finally reenable NAPI and interrupts.
335 *
336 * This is for use only during a loopback self-test.  It must not
337 * deliver any packets up the stack as this can result in deadlock.
338 */
339void efx_process_channel_now(struct efx_channel *channel)
340{
341	struct efx_nic *efx = channel->efx;
342
343	BUG_ON(channel->channel >= efx->n_channels);
344	BUG_ON(!channel->enabled);
345	BUG_ON(!efx->loopback_selftest);
346
347	/* Disable interrupts and wait for ISRs to complete */
348	efx_nic_disable_interrupts(efx);
349	if (efx->legacy_irq) {
350		synchronize_irq(efx->legacy_irq);
351		efx->legacy_irq_enabled = false;
352	}
353	if (channel->irq)
354		synchronize_irq(channel->irq);
355
356	/* Wait for any NAPI processing to complete */
357	napi_disable(&channel->napi_str);
358
359	/* Poll the channel */
360	efx_process_channel(channel, channel->eventq_mask + 1);
361
362	/* Ack the eventq. This may cause an interrupt to be generated
363	 * when they are reenabled */
364	efx_channel_processed(channel);
365
366	napi_enable(&channel->napi_str);
367	if (efx->legacy_irq)
368		efx->legacy_irq_enabled = true;
369	efx_nic_enable_interrupts(efx);
370}
371
372/* Create event queue
373 * Event queue memory allocations are done only once.  If the channel
374 * is reset, the memory buffer will be reused; this guards against
375 * errors during channel reset and also simplifies interrupt handling.
376 */
377static int efx_probe_eventq(struct efx_channel *channel)
378{
379	struct efx_nic *efx = channel->efx;
380	unsigned long entries;
381
382	netif_dbg(efx, probe, efx->net_dev,
383		  "chan %d create event queue\n", channel->channel);
384
385	/* Build an event queue with room for one event per tx and rx buffer,
386	 * plus some extra for link state events and MCDI completions. */
387	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
388	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
389	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
390
391	return efx_nic_probe_eventq(channel);
392}
393
394/* Prepare channel's event queue */
395static void efx_init_eventq(struct efx_channel *channel)
396{
397	netif_dbg(channel->efx, drv, channel->efx->net_dev,
398		  "chan %d init event queue\n", channel->channel);
399
400	channel->eventq_read_ptr = 0;
401
402	efx_nic_init_eventq(channel);
403}
404
405/* Enable event queue processing and NAPI */
406static void efx_start_eventq(struct efx_channel *channel)
407{
408	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
409		  "chan %d start event queue\n", channel->channel);
410
411	/* The interrupt handler for this channel may set work_pending
412	 * as soon as we enable it.  Make sure it's cleared before
413	 * then.  Similarly, make sure it sees the enabled flag set.
414	 */
415	channel->work_pending = false;
416	channel->enabled = true;
417	smp_wmb();
418
419	napi_enable(&channel->napi_str);
420	efx_nic_eventq_read_ack(channel);
421}
422
423/* Disable event queue processing and NAPI */
424static void efx_stop_eventq(struct efx_channel *channel)
425{
426	if (!channel->enabled)
427		return;
428
429	napi_disable(&channel->napi_str);
430	channel->enabled = false;
431}
432
433static void efx_fini_eventq(struct efx_channel *channel)
434{
435	netif_dbg(channel->efx, drv, channel->efx->net_dev,
436		  "chan %d fini event queue\n", channel->channel);
437
438	efx_nic_fini_eventq(channel);
439}
440
441static void efx_remove_eventq(struct efx_channel *channel)
442{
443	netif_dbg(channel->efx, drv, channel->efx->net_dev,
444		  "chan %d remove event queue\n", channel->channel);
445
446	efx_nic_remove_eventq(channel);
447}
448
449/**************************************************************************
450 *
451 * Channel handling
452 *
453 *************************************************************************/
454
455/* Allocate and initialise a channel structure. */
456static struct efx_channel *
457efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
458{
459	struct efx_channel *channel;
460	struct efx_rx_queue *rx_queue;
461	struct efx_tx_queue *tx_queue;
462	int j;
463
464	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
465	if (!channel)
466		return NULL;
467
468	channel->efx = efx;
469	channel->channel = i;
470	channel->type = &efx_default_channel_type;
471
472	for (j = 0; j < EFX_TXQ_TYPES; j++) {
473		tx_queue = &channel->tx_queue[j];
474		tx_queue->efx = efx;
475		tx_queue->queue = i * EFX_TXQ_TYPES + j;
476		tx_queue->channel = channel;
477	}
478
479	rx_queue = &channel->rx_queue;
480	rx_queue->efx = efx;
481	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
482		    (unsigned long)rx_queue);
483
484	return channel;
485}
486
487/* Allocate and initialise a channel structure, copying parameters
488 * (but not resources) from an old channel structure.
489 */
490static struct efx_channel *
491efx_copy_channel(const struct efx_channel *old_channel)
492{
493	struct efx_channel *channel;
494	struct efx_rx_queue *rx_queue;
495	struct efx_tx_queue *tx_queue;
496	int j;
497
498	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
499	if (!channel)
500		return NULL;
501
502	*channel = *old_channel;
503
504	channel->napi_dev = NULL;
505	memset(&channel->eventq, 0, sizeof(channel->eventq));
506
507	for (j = 0; j < EFX_TXQ_TYPES; j++) {
508		tx_queue = &channel->tx_queue[j];
509		if (tx_queue->channel)
510			tx_queue->channel = channel;
511		tx_queue->buffer = NULL;
512		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
513	}
514
515	rx_queue = &channel->rx_queue;
516	rx_queue->buffer = NULL;
517	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
518	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
519		    (unsigned long)rx_queue);
520
521	return channel;
522}
523
524static int efx_probe_channel(struct efx_channel *channel)
525{
526	struct efx_tx_queue *tx_queue;
527	struct efx_rx_queue *rx_queue;
528	int rc;
529
530	netif_dbg(channel->efx, probe, channel->efx->net_dev,
531		  "creating channel %d\n", channel->channel);
532
533	rc = channel->type->pre_probe(channel);
534	if (rc)
535		goto fail;
536
537	rc = efx_probe_eventq(channel);
538	if (rc)
539		goto fail;
540
541	efx_for_each_channel_tx_queue(tx_queue, channel) {
542		rc = efx_probe_tx_queue(tx_queue);
543		if (rc)
544			goto fail;
545	}
546
547	efx_for_each_channel_rx_queue(rx_queue, channel) {
548		rc = efx_probe_rx_queue(rx_queue);
549		if (rc)
550			goto fail;
551	}
552
553	channel->n_rx_frm_trunc = 0;
554
555	return 0;
556
557fail:
558	efx_remove_channel(channel);
559	return rc;
560}
561
562static void
563efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
564{
565	struct efx_nic *efx = channel->efx;
566	const char *type;
567	int number;
568
569	number = channel->channel;
570	if (efx->tx_channel_offset == 0) {
571		type = "";
572	} else if (channel->channel < efx->tx_channel_offset) {
573		type = "-rx";
574	} else {
575		type = "-tx";
576		number -= efx->tx_channel_offset;
577	}
578	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
579}
580
581static void efx_set_channel_names(struct efx_nic *efx)
582{
583	struct efx_channel *channel;
584
585	efx_for_each_channel(channel, efx)
586		channel->type->get_name(channel,
587					efx->channel_name[channel->channel],
588					sizeof(efx->channel_name[0]));
589}
590
591static int efx_probe_channels(struct efx_nic *efx)
592{
593	struct efx_channel *channel;
594	int rc;
595
596	/* Restart special buffer allocation */
597	efx->next_buffer_table = 0;
598
599	/* Probe channels in reverse, so that any 'extra' channels
600	 * use the start of the buffer table. This allows the traffic
601	 * channels to be resized without moving them or wasting the
602	 * entries before them.
603	 */
604	efx_for_each_channel_rev(channel, efx) {
605		rc = efx_probe_channel(channel);
606		if (rc) {
607			netif_err(efx, probe, efx->net_dev,
608				  "failed to create channel %d\n",
609				  channel->channel);
610			goto fail;
611		}
612	}
613	efx_set_channel_names(efx);
614
615	return 0;
616
617fail:
618	efx_remove_channels(efx);
619	return rc;
620}
621
622/* Channels are shutdown and reinitialised whilst the NIC is running
623 * to propagate configuration changes (mtu, checksum offload), or
624 * to clear hardware error conditions
625 */
626static void efx_start_datapath(struct efx_nic *efx)
627{
628	struct efx_tx_queue *tx_queue;
629	struct efx_rx_queue *rx_queue;
630	struct efx_channel *channel;
631
632	/* Calculate the rx buffer allocation parameters required to
633	 * support the current MTU, including padding for header
634	 * alignment and overruns.
635	 */
636	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
637			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
638			      efx->type->rx_buffer_hash_size +
639			      efx->type->rx_buffer_padding);
640	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
641					 sizeof(struct efx_rx_page_state));
642
643	/* We must keep at least one descriptor in a TX ring empty.
644	 * We could avoid this when the queue size does not exactly
645	 * match the hardware ring size, but it's not that important.
646	 * Therefore we stop the queue when one more skb might fill
647	 * the ring completely.  We wake it when half way back to
648	 * empty.
649	 */
650	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
651	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
652
653	/* Initialise the channels */
654	efx_for_each_channel(channel, efx) {
655		efx_for_each_channel_tx_queue(tx_queue, channel)
656			efx_init_tx_queue(tx_queue);
657
658		/* The rx buffer allocation strategy is MTU dependent */
659		efx_rx_strategy(channel);
660
661		efx_for_each_channel_rx_queue(rx_queue, channel) {
662			efx_init_rx_queue(rx_queue);
663			efx_nic_generate_fill_event(rx_queue);
664		}
665
666		WARN_ON(channel->rx_pkt != NULL);
667		efx_rx_strategy(channel);
668	}
669
670	if (netif_device_present(efx->net_dev))
671		netif_tx_wake_all_queues(efx->net_dev);
672}
673
674static void efx_stop_datapath(struct efx_nic *efx)
675{
676	struct efx_channel *channel;
677	struct efx_tx_queue *tx_queue;
678	struct efx_rx_queue *rx_queue;
679	struct pci_dev *dev = efx->pci_dev;
680	int rc;
681
682	EFX_ASSERT_RESET_SERIALISED(efx);
683	BUG_ON(efx->port_enabled);
684
685	/* Only perform flush if dma is enabled */
686	if (dev->is_busmaster) {
687		rc = efx_nic_flush_queues(efx);
688
689		if (rc && EFX_WORKAROUND_7803(efx)) {
690			/* Schedule a reset to recover from the flush failure. The
691			 * descriptor caches reference memory we're about to free,
692			 * but falcon_reconfigure_mac_wrapper() won't reconnect
693			 * the MACs because of the pending reset. */
694			netif_err(efx, drv, efx->net_dev,
695				  "Resetting to recover from flush failure\n");
696			efx_schedule_reset(efx, RESET_TYPE_ALL);
697		} else if (rc) {
698			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
699		} else {
700			netif_dbg(efx, drv, efx->net_dev,
701				  "successfully flushed all queues\n");
702		}
703	}
704
705	efx_for_each_channel(channel, efx) {
706		/* RX packet processing is pipelined, so wait for the
707		 * NAPI handler to complete.  At least event queue 0
708		 * might be kept active by non-data events, so don't
709		 * use napi_synchronize() but actually disable NAPI
710		 * temporarily.
711		 */
712		if (efx_channel_has_rx_queue(channel)) {
713			efx_stop_eventq(channel);
714			efx_start_eventq(channel);
715		}
716
717		efx_for_each_channel_rx_queue(rx_queue, channel)
718			efx_fini_rx_queue(rx_queue);
719		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
720			efx_fini_tx_queue(tx_queue);
721	}
722}
723
724static void efx_remove_channel(struct efx_channel *channel)
725{
726	struct efx_tx_queue *tx_queue;
727	struct efx_rx_queue *rx_queue;
728
729	netif_dbg(channel->efx, drv, channel->efx->net_dev,
730		  "destroy chan %d\n", channel->channel);
731
732	efx_for_each_channel_rx_queue(rx_queue, channel)
733		efx_remove_rx_queue(rx_queue);
734	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
735		efx_remove_tx_queue(tx_queue);
736	efx_remove_eventq(channel);
737	channel->type->post_remove(channel);
738}
739
740static void efx_remove_channels(struct efx_nic *efx)
741{
742	struct efx_channel *channel;
743
744	efx_for_each_channel(channel, efx)
745		efx_remove_channel(channel);
746}
747
748int
749efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
750{
751	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
752	u32 old_rxq_entries, old_txq_entries;
753	unsigned i, next_buffer_table = 0;
754	int rc;
755
756	rc = efx_check_disabled(efx);
757	if (rc)
758		return rc;
759
760	/* Not all channels should be reallocated. We must avoid
761	 * reallocating their buffer table entries.
762	 */
763	efx_for_each_channel(channel, efx) {
764		struct efx_rx_queue *rx_queue;
765		struct efx_tx_queue *tx_queue;
766
767		if (channel->type->copy)
768			continue;
769		next_buffer_table = max(next_buffer_table,
770					channel->eventq.index +
771					channel->eventq.entries);
772		efx_for_each_channel_rx_queue(rx_queue, channel)
773			next_buffer_table = max(next_buffer_table,
774						rx_queue->rxd.index +
775						rx_queue->rxd.entries);
776		efx_for_each_channel_tx_queue(tx_queue, channel)
777			next_buffer_table = max(next_buffer_table,
778						tx_queue->txd.index +
779						tx_queue->txd.entries);
780	}
781
782	efx_stop_all(efx);
783	efx_stop_interrupts(efx, true);
784
785	/* Clone channels (where possible) */
786	memset(other_channel, 0, sizeof(other_channel));
787	for (i = 0; i < efx->n_channels; i++) {
788		channel = efx->channel[i];
789		if (channel->type->copy)
790			channel = channel->type->copy(channel);
791		if (!channel) {
792			rc = -ENOMEM;
793			goto out;
794		}
795		other_channel[i] = channel;
796	}
797
798	/* Swap entry counts and channel pointers */
799	old_rxq_entries = efx->rxq_entries;
800	old_txq_entries = efx->txq_entries;
801	efx->rxq_entries = rxq_entries;
802	efx->txq_entries = txq_entries;
803	for (i = 0; i < efx->n_channels; i++) {
804		channel = efx->channel[i];
805		efx->channel[i] = other_channel[i];
806		other_channel[i] = channel;
807	}
808
809	/* Restart buffer table allocation */
810	efx->next_buffer_table = next_buffer_table;
811
812	for (i = 0; i < efx->n_channels; i++) {
813		channel = efx->channel[i];
814		if (!channel->type->copy)
815			continue;
816		rc = efx_probe_channel(channel);
817		if (rc)
818			goto rollback;
819		efx_init_napi_channel(efx->channel[i]);
820	}
821
822out:
823	/* Destroy unused channel structures */
824	for (i = 0; i < efx->n_channels; i++) {
825		channel = other_channel[i];
826		if (channel && channel->type->copy) {
827			efx_fini_napi_channel(channel);
828			efx_remove_channel(channel);
829			kfree(channel);
830		}
831	}
832
833	efx_start_interrupts(efx, true);
834	efx_start_all(efx);
835	return rc;
836
837rollback:
838	/* Swap back */
839	efx->rxq_entries = old_rxq_entries;
840	efx->txq_entries = old_txq_entries;
841	for (i = 0; i < efx->n_channels; i++) {
842		channel = efx->channel[i];
843		efx->channel[i] = other_channel[i];
844		other_channel[i] = channel;
845	}
846	goto out;
847}
848
849void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
850{
851	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
852}
853
854static const struct efx_channel_type efx_default_channel_type = {
855	.pre_probe		= efx_channel_dummy_op_int,
856	.post_remove		= efx_channel_dummy_op_void,
857	.get_name		= efx_get_channel_name,
858	.copy			= efx_copy_channel,
859	.keep_eventq		= false,
860};
861
862int efx_channel_dummy_op_int(struct efx_channel *channel)
863{
864	return 0;
865}
866
867void efx_channel_dummy_op_void(struct efx_channel *channel)
868{
869}
870
871/**************************************************************************
872 *
873 * Port handling
874 *
875 **************************************************************************/
876
877/* This ensures that the kernel is kept informed (via
878 * netif_carrier_on/off) of the link status, and also maintains the
879 * link status's stop on the port's TX queue.
880 */
881void efx_link_status_changed(struct efx_nic *efx)
882{
883	struct efx_link_state *link_state = &efx->link_state;
884
885	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
886	 * that no events are triggered between unregister_netdev() and the
887	 * driver unloading. A more general condition is that NETDEV_CHANGE
888	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
889	if (!netif_running(efx->net_dev))
890		return;
891
892	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
893		efx->n_link_state_changes++;
894
895		if (link_state->up)
896			netif_carrier_on(efx->net_dev);
897		else
898			netif_carrier_off(efx->net_dev);
899	}
900
901	/* Status message for kernel log */
902	if (link_state->up)
903		netif_info(efx, link, efx->net_dev,
904			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
905			   link_state->speed, link_state->fd ? "full" : "half",
906			   efx->net_dev->mtu,
907			   (efx->promiscuous ? " [PROMISC]" : ""));
908	else
909		netif_info(efx, link, efx->net_dev, "link down\n");
910}
911
912void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
913{
914	efx->link_advertising = advertising;
915	if (advertising) {
916		if (advertising & ADVERTISED_Pause)
917			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
918		else
919			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
920		if (advertising & ADVERTISED_Asym_Pause)
921			efx->wanted_fc ^= EFX_FC_TX;
922	}
923}
924
925void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
926{
927	efx->wanted_fc = wanted_fc;
928	if (efx->link_advertising) {
929		if (wanted_fc & EFX_FC_RX)
930			efx->link_advertising |= (ADVERTISED_Pause |
931						  ADVERTISED_Asym_Pause);
932		else
933			efx->link_advertising &= ~(ADVERTISED_Pause |
934						   ADVERTISED_Asym_Pause);
935		if (wanted_fc & EFX_FC_TX)
936			efx->link_advertising ^= ADVERTISED_Asym_Pause;
937	}
938}
939
940static void efx_fini_port(struct efx_nic *efx);
941
942/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
943 * the MAC appropriately. All other PHY configuration changes are pushed
944 * through phy_op->set_settings(), and pushed asynchronously to the MAC
945 * through efx_monitor().
946 *
947 * Callers must hold the mac_lock
948 */
949int __efx_reconfigure_port(struct efx_nic *efx)
950{
951	enum efx_phy_mode phy_mode;
952	int rc;
953
954	WARN_ON(!mutex_is_locked(&efx->mac_lock));
955
956	/* Serialise the promiscuous flag with efx_set_rx_mode. */
957	netif_addr_lock_bh(efx->net_dev);
958	netif_addr_unlock_bh(efx->net_dev);
959
960	/* Disable PHY transmit in mac level loopbacks */
961	phy_mode = efx->phy_mode;
962	if (LOOPBACK_INTERNAL(efx))
963		efx->phy_mode |= PHY_MODE_TX_DISABLED;
964	else
965		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
966
967	rc = efx->type->reconfigure_port(efx);
968
969	if (rc)
970		efx->phy_mode = phy_mode;
971
972	return rc;
973}
974
975/* Reinitialise the MAC to pick up new PHY settings, even if the port is
976 * disabled. */
977int efx_reconfigure_port(struct efx_nic *efx)
978{
979	int rc;
980
981	EFX_ASSERT_RESET_SERIALISED(efx);
982
983	mutex_lock(&efx->mac_lock);
984	rc = __efx_reconfigure_port(efx);
985	mutex_unlock(&efx->mac_lock);
986
987	return rc;
988}
989
990/* Asynchronous work item for changing MAC promiscuity and multicast
991 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
992 * MAC directly. */
993static void efx_mac_work(struct work_struct *data)
994{
995	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
996
997	mutex_lock(&efx->mac_lock);
998	if (efx->port_enabled)
999		efx->type->reconfigure_mac(efx);
1000	mutex_unlock(&efx->mac_lock);
1001}
1002
1003static int efx_probe_port(struct efx_nic *efx)
1004{
1005	int rc;
1006
1007	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1008
1009	if (phy_flash_cfg)
1010		efx->phy_mode = PHY_MODE_SPECIAL;
1011
1012	/* Connect up MAC/PHY operations table */
1013	rc = efx->type->probe_port(efx);
1014	if (rc)
1015		return rc;
1016
1017	/* Initialise MAC address to permanent address */
1018	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1019
1020	return 0;
1021}
1022
1023static int efx_init_port(struct efx_nic *efx)
1024{
1025	int rc;
1026
1027	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1028
1029	mutex_lock(&efx->mac_lock);
1030
1031	rc = efx->phy_op->init(efx);
1032	if (rc)
1033		goto fail1;
1034
1035	efx->port_initialized = true;
1036
1037	/* Reconfigure the MAC before creating dma queues (required for
1038	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1039	efx->type->reconfigure_mac(efx);
1040
1041	/* Ensure the PHY advertises the correct flow control settings */
1042	rc = efx->phy_op->reconfigure(efx);
1043	if (rc)
1044		goto fail2;
1045
1046	mutex_unlock(&efx->mac_lock);
1047	return 0;
1048
1049fail2:
1050	efx->phy_op->fini(efx);
1051fail1:
1052	mutex_unlock(&efx->mac_lock);
1053	return rc;
1054}
1055
1056static void efx_start_port(struct efx_nic *efx)
1057{
1058	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1059	BUG_ON(efx->port_enabled);
1060
1061	mutex_lock(&efx->mac_lock);
1062	efx->port_enabled = true;
1063
1064	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1065	 * and then cancelled by efx_flush_all() */
1066	efx->type->reconfigure_mac(efx);
1067
1068	mutex_unlock(&efx->mac_lock);
1069}
1070
1071/* Prevent efx_mac_work() and efx_monitor() from working */
1072static void efx_stop_port(struct efx_nic *efx)
1073{
1074	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1075
1076	mutex_lock(&efx->mac_lock);
1077	efx->port_enabled = false;
1078	mutex_unlock(&efx->mac_lock);
1079
1080	/* Serialise against efx_set_multicast_list() */
1081	netif_addr_lock_bh(efx->net_dev);
1082	netif_addr_unlock_bh(efx->net_dev);
1083}
1084
1085static void efx_fini_port(struct efx_nic *efx)
1086{
1087	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1088
1089	if (!efx->port_initialized)
1090		return;
1091
1092	efx->phy_op->fini(efx);
1093	efx->port_initialized = false;
1094
1095	efx->link_state.up = false;
1096	efx_link_status_changed(efx);
1097}
1098
1099static void efx_remove_port(struct efx_nic *efx)
1100{
1101	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1102
1103	efx->type->remove_port(efx);
1104}
1105
1106/**************************************************************************
1107 *
1108 * NIC handling
1109 *
1110 **************************************************************************/
1111
1112/* This configures the PCI device to enable I/O and DMA. */
1113static int efx_init_io(struct efx_nic *efx)
1114{
1115	struct pci_dev *pci_dev = efx->pci_dev;
1116	dma_addr_t dma_mask = efx->type->max_dma_mask;
1117	int rc;
1118
1119	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1120
1121	rc = pci_enable_device(pci_dev);
1122	if (rc) {
1123		netif_err(efx, probe, efx->net_dev,
1124			  "failed to enable PCI device\n");
1125		goto fail1;
1126	}
1127
1128	pci_set_master(pci_dev);
1129
1130	/* Set the PCI DMA mask.  Try all possibilities from our
1131	 * genuine mask down to 32 bits, because some architectures
1132	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1133	 * masks event though they reject 46 bit masks.
1134	 */
1135	while (dma_mask > 0x7fffffffUL) {
1136		if (dma_supported(&pci_dev->dev, dma_mask)) {
1137			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1138			if (rc == 0)
1139				break;
1140		}
1141		dma_mask >>= 1;
1142	}
1143	if (rc) {
1144		netif_err(efx, probe, efx->net_dev,
1145			  "could not find a suitable DMA mask\n");
1146		goto fail2;
1147	}
1148	netif_dbg(efx, probe, efx->net_dev,
1149		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1150	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1151	if (rc) {
1152		/* dma_set_coherent_mask() is not *allowed* to
1153		 * fail with a mask that dma_set_mask() accepted,
1154		 * but just in case...
1155		 */
1156		netif_err(efx, probe, efx->net_dev,
1157			  "failed to set consistent DMA mask\n");
1158		goto fail2;
1159	}
1160
1161	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1162	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1163	if (rc) {
1164		netif_err(efx, probe, efx->net_dev,
1165			  "request for memory BAR failed\n");
1166		rc = -EIO;
1167		goto fail3;
1168	}
1169	efx->membase = ioremap_nocache(efx->membase_phys,
1170				       efx->type->mem_map_size);
1171	if (!efx->membase) {
1172		netif_err(efx, probe, efx->net_dev,
1173			  "could not map memory BAR at %llx+%x\n",
1174			  (unsigned long long)efx->membase_phys,
1175			  efx->type->mem_map_size);
1176		rc = -ENOMEM;
1177		goto fail4;
1178	}
1179	netif_dbg(efx, probe, efx->net_dev,
1180		  "memory BAR at %llx+%x (virtual %p)\n",
1181		  (unsigned long long)efx->membase_phys,
1182		  efx->type->mem_map_size, efx->membase);
1183
1184	return 0;
1185
1186 fail4:
1187	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1188 fail3:
1189	efx->membase_phys = 0;
1190 fail2:
1191	pci_disable_device(efx->pci_dev);
1192 fail1:
1193	return rc;
1194}
1195
1196static void efx_fini_io(struct efx_nic *efx)
1197{
1198	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1199
1200	if (efx->membase) {
1201		iounmap(efx->membase);
1202		efx->membase = NULL;
1203	}
1204
1205	if (efx->membase_phys) {
1206		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1207		efx->membase_phys = 0;
1208	}
1209
1210	pci_disable_device(efx->pci_dev);
1211}
1212
1213static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1214{
1215	cpumask_var_t thread_mask;
1216	unsigned int count;
1217	int cpu;
1218
1219	if (rss_cpus) {
1220		count = rss_cpus;
1221	} else {
1222		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1223			netif_warn(efx, probe, efx->net_dev,
1224				   "RSS disabled due to allocation failure\n");
1225			return 1;
1226		}
1227
1228		count = 0;
1229		for_each_online_cpu(cpu) {
1230			if (!cpumask_test_cpu(cpu, thread_mask)) {
1231				++count;
1232				cpumask_or(thread_mask, thread_mask,
1233					   topology_thread_cpumask(cpu));
1234			}
1235		}
1236
1237		free_cpumask_var(thread_mask);
1238	}
1239
1240	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1241	 * table entries that are inaccessible to VFs
1242	 */
1243	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1244	    count > efx_vf_size(efx)) {
1245		netif_warn(efx, probe, efx->net_dev,
1246			   "Reducing number of RSS channels from %u to %u for "
1247			   "VF support. Increase vf-msix-limit to use more "
1248			   "channels on the PF.\n",
1249			   count, efx_vf_size(efx));
1250		count = efx_vf_size(efx);
1251	}
1252
1253	return count;
1254}
1255
1256static int
1257efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1258{
1259#ifdef CONFIG_RFS_ACCEL
1260	unsigned int i;
1261	int rc;
1262
1263	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1264	if (!efx->net_dev->rx_cpu_rmap)
1265		return -ENOMEM;
1266	for (i = 0; i < efx->n_rx_channels; i++) {
1267		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1268				      xentries[i].vector);
1269		if (rc) {
1270			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1271			efx->net_dev->rx_cpu_rmap = NULL;
1272			return rc;
1273		}
1274	}
1275#endif
1276	return 0;
1277}
1278
1279/* Probe the number and type of interrupts we are able to obtain, and
1280 * the resulting numbers of channels and RX queues.
1281 */
1282static int efx_probe_interrupts(struct efx_nic *efx)
1283{
1284	unsigned int max_channels =
1285		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1286	unsigned int extra_channels = 0;
1287	unsigned int i, j;
1288	int rc;
1289
1290	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1291		if (efx->extra_channel_type[i])
1292			++extra_channels;
1293
1294	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1295		struct msix_entry xentries[EFX_MAX_CHANNELS];
1296		unsigned int n_channels;
1297
1298		n_channels = efx_wanted_parallelism(efx);
1299		if (separate_tx_channels)
1300			n_channels *= 2;
1301		n_channels += extra_channels;
1302		n_channels = min(n_channels, max_channels);
1303
1304		for (i = 0; i < n_channels; i++)
1305			xentries[i].entry = i;
1306		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1307		if (rc > 0) {
1308			netif_err(efx, drv, efx->net_dev,
1309				  "WARNING: Insufficient MSI-X vectors"
1310				  " available (%d < %u).\n", rc, n_channels);
1311			netif_err(efx, drv, efx->net_dev,
1312				  "WARNING: Performance may be reduced.\n");
1313			EFX_BUG_ON_PARANOID(rc >= n_channels);
1314			n_channels = rc;
1315			rc = pci_enable_msix(efx->pci_dev, xentries,
1316					     n_channels);
1317		}
1318
1319		if (rc == 0) {
1320			efx->n_channels = n_channels;
1321			if (n_channels > extra_channels)
1322				n_channels -= extra_channels;
1323			if (separate_tx_channels) {
1324				efx->n_tx_channels = max(n_channels / 2, 1U);
1325				efx->n_rx_channels = max(n_channels -
1326							 efx->n_tx_channels,
1327							 1U);
1328			} else {
1329				efx->n_tx_channels = n_channels;
1330				efx->n_rx_channels = n_channels;
1331			}
1332			rc = efx_init_rx_cpu_rmap(efx, xentries);
1333			if (rc) {
1334				pci_disable_msix(efx->pci_dev);
1335				return rc;
1336			}
1337			for (i = 0; i < efx->n_channels; i++)
1338				efx_get_channel(efx, i)->irq =
1339					xentries[i].vector;
1340		} else {
1341			/* Fall back to single channel MSI */
1342			efx->interrupt_mode = EFX_INT_MODE_MSI;
1343			netif_err(efx, drv, efx->net_dev,
1344				  "could not enable MSI-X\n");
1345		}
1346	}
1347
1348	/* Try single interrupt MSI */
1349	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1350		efx->n_channels = 1;
1351		efx->n_rx_channels = 1;
1352		efx->n_tx_channels = 1;
1353		rc = pci_enable_msi(efx->pci_dev);
1354		if (rc == 0) {
1355			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1356		} else {
1357			netif_err(efx, drv, efx->net_dev,
1358				  "could not enable MSI\n");
1359			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1360		}
1361	}
1362
1363	/* Assume legacy interrupts */
1364	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1365		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1366		efx->n_rx_channels = 1;
1367		efx->n_tx_channels = 1;
1368		efx->legacy_irq = efx->pci_dev->irq;
1369	}
1370
1371	/* Assign extra channels if possible */
1372	j = efx->n_channels;
1373	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1374		if (!efx->extra_channel_type[i])
1375			continue;
1376		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1377		    efx->n_channels <= extra_channels) {
1378			efx->extra_channel_type[i]->handle_no_channel(efx);
1379		} else {
1380			--j;
1381			efx_get_channel(efx, j)->type =
1382				efx->extra_channel_type[i];
1383		}
1384	}
1385
1386	/* RSS might be usable on VFs even if it is disabled on the PF */
1387	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1388			   efx->n_rx_channels : efx_vf_size(efx));
1389
1390	return 0;
1391}
1392
1393/* Enable interrupts, then probe and start the event queues */
1394static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1395{
1396	struct efx_channel *channel;
1397
1398	BUG_ON(efx->state == STATE_DISABLED);
1399
1400	if (efx->legacy_irq)
1401		efx->legacy_irq_enabled = true;
1402	efx_nic_enable_interrupts(efx);
1403
1404	efx_for_each_channel(channel, efx) {
1405		if (!channel->type->keep_eventq || !may_keep_eventq)
1406			efx_init_eventq(channel);
1407		efx_start_eventq(channel);
1408	}
1409
1410	efx_mcdi_mode_event(efx);
1411}
1412
1413static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1414{
1415	struct efx_channel *channel;
1416
1417	if (efx->state == STATE_DISABLED)
1418		return;
1419
1420	efx_mcdi_mode_poll(efx);
1421
1422	efx_nic_disable_interrupts(efx);
1423	if (efx->legacy_irq) {
1424		synchronize_irq(efx->legacy_irq);
1425		efx->legacy_irq_enabled = false;
1426	}
1427
1428	efx_for_each_channel(channel, efx) {
1429		if (channel->irq)
1430			synchronize_irq(channel->irq);
1431
1432		efx_stop_eventq(channel);
1433		if (!channel->type->keep_eventq || !may_keep_eventq)
1434			efx_fini_eventq(channel);
1435	}
1436}
1437
1438static void efx_remove_interrupts(struct efx_nic *efx)
1439{
1440	struct efx_channel *channel;
1441
1442	/* Remove MSI/MSI-X interrupts */
1443	efx_for_each_channel(channel, efx)
1444		channel->irq = 0;
1445	pci_disable_msi(efx->pci_dev);
1446	pci_disable_msix(efx->pci_dev);
1447
1448	/* Remove legacy interrupt */
1449	efx->legacy_irq = 0;
1450}
1451
1452static void efx_set_channels(struct efx_nic *efx)
1453{
1454	struct efx_channel *channel;
1455	struct efx_tx_queue *tx_queue;
1456
1457	efx->tx_channel_offset =
1458		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1459
1460	/* We need to mark which channels really have RX and TX
1461	 * queues, and adjust the TX queue numbers if we have separate
1462	 * RX-only and TX-only channels.
1463	 */
1464	efx_for_each_channel(channel, efx) {
1465		if (channel->channel < efx->n_rx_channels)
1466			channel->rx_queue.core_index = channel->channel;
1467		else
1468			channel->rx_queue.core_index = -1;
1469
1470		efx_for_each_channel_tx_queue(tx_queue, channel)
1471			tx_queue->queue -= (efx->tx_channel_offset *
1472					    EFX_TXQ_TYPES);
1473	}
1474}
1475
1476static int efx_probe_nic(struct efx_nic *efx)
1477{
1478	size_t i;
1479	int rc;
1480
1481	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1482
1483	/* Carry out hardware-type specific initialisation */
1484	rc = efx->type->probe(efx);
1485	if (rc)
1486		return rc;
1487
1488	/* Determine the number of channels and queues by trying to hook
1489	 * in MSI-X interrupts. */
1490	rc = efx_probe_interrupts(efx);
1491	if (rc)
1492		goto fail;
1493
1494	efx->type->dimension_resources(efx);
1495
1496	if (efx->n_channels > 1)
1497		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1498	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1499		efx->rx_indir_table[i] =
1500			ethtool_rxfh_indir_default(i, efx->rss_spread);
1501
1502	efx_set_channels(efx);
1503	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1504	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1505
1506	/* Initialise the interrupt moderation settings */
1507	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1508				true);
1509
1510	return 0;
1511
1512fail:
1513	efx->type->remove(efx);
1514	return rc;
1515}
1516
1517static void efx_remove_nic(struct efx_nic *efx)
1518{
1519	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1520
1521	efx_remove_interrupts(efx);
1522	efx->type->remove(efx);
1523}
1524
1525/**************************************************************************
1526 *
1527 * NIC startup/shutdown
1528 *
1529 *************************************************************************/
1530
1531static int efx_probe_all(struct efx_nic *efx)
1532{
1533	int rc;
1534
1535	rc = efx_probe_nic(efx);
1536	if (rc) {
1537		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1538		goto fail1;
1539	}
1540
1541	rc = efx_probe_port(efx);
1542	if (rc) {
1543		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1544		goto fail2;
1545	}
1546
1547	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1548	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1549		rc = -EINVAL;
1550		goto fail3;
1551	}
1552	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1553
1554	rc = efx_probe_filters(efx);
1555	if (rc) {
1556		netif_err(efx, probe, efx->net_dev,
1557			  "failed to create filter tables\n");
1558		goto fail3;
1559	}
1560
1561	rc = efx_probe_channels(efx);
1562	if (rc)
1563		goto fail4;
1564
1565	return 0;
1566
1567 fail4:
1568	efx_remove_filters(efx);
1569 fail3:
1570	efx_remove_port(efx);
1571 fail2:
1572	efx_remove_nic(efx);
1573 fail1:
1574	return rc;
1575}
1576
1577/* If the interface is supposed to be running but is not, start
1578 * the hardware and software data path, regular activity for the port
1579 * (MAC statistics, link polling, etc.) and schedule the port to be
1580 * reconfigured.  Interrupts must already be enabled.  This function
1581 * is safe to call multiple times, so long as the NIC is not disabled.
1582 * Requires the RTNL lock.
1583 */
1584static void efx_start_all(struct efx_nic *efx)
1585{
1586	EFX_ASSERT_RESET_SERIALISED(efx);
1587	BUG_ON(efx->state == STATE_DISABLED);
1588
1589	/* Check that it is appropriate to restart the interface. All
1590	 * of these flags are safe to read under just the rtnl lock */
1591	if (efx->port_enabled || !netif_running(efx->net_dev))
1592		return;
1593
1594	efx_start_port(efx);
1595	efx_start_datapath(efx);
1596
1597	/* Start the hardware monitor if there is one. Otherwise (we're link
1598	 * event driven), we have to poll the PHY because after an event queue
1599	 * flush, we could have a missed a link state change */
1600	if (efx->type->monitor != NULL) {
1601		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1602				   efx_monitor_interval);
1603	} else {
1604		mutex_lock(&efx->mac_lock);
1605		if (efx->phy_op->poll(efx))
1606			efx_link_status_changed(efx);
1607		mutex_unlock(&efx->mac_lock);
1608	}
1609
1610	efx->type->start_stats(efx);
1611}
1612
1613/* Flush all delayed work. Should only be called when no more delayed work
1614 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1615 * since we're holding the rtnl_lock at this point. */
1616static void efx_flush_all(struct efx_nic *efx)
1617{
1618	/* Make sure the hardware monitor and event self-test are stopped */
1619	cancel_delayed_work_sync(&efx->monitor_work);
1620	efx_selftest_async_cancel(efx);
1621	/* Stop scheduled port reconfigurations */
1622	cancel_work_sync(&efx->mac_work);
1623}
1624
1625/* Quiesce the hardware and software data path, and regular activity
1626 * for the port without bringing the link down.  Safe to call multiple
1627 * times with the NIC in almost any state, but interrupts should be
1628 * enabled.  Requires the RTNL lock.
1629 */
1630static void efx_stop_all(struct efx_nic *efx)
1631{
1632	EFX_ASSERT_RESET_SERIALISED(efx);
1633
1634	/* port_enabled can be read safely under the rtnl lock */
1635	if (!efx->port_enabled)
1636		return;
1637
1638	efx->type->stop_stats(efx);
1639	efx_stop_port(efx);
1640
1641	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1642	efx_flush_all(efx);
1643
1644	/* Stop the kernel transmit interface late, so the watchdog
1645	 * timer isn't ticking over the flush */
1646	netif_tx_disable(efx->net_dev);
1647
1648	efx_stop_datapath(efx);
1649}
1650
1651static void efx_remove_all(struct efx_nic *efx)
1652{
1653	efx_remove_channels(efx);
1654	efx_remove_filters(efx);
1655	efx_remove_port(efx);
1656	efx_remove_nic(efx);
1657}
1658
1659/**************************************************************************
1660 *
1661 * Interrupt moderation
1662 *
1663 **************************************************************************/
1664
1665static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1666{
1667	if (usecs == 0)
1668		return 0;
1669	if (usecs * 1000 < quantum_ns)
1670		return 1; /* never round down to 0 */
1671	return usecs * 1000 / quantum_ns;
1672}
1673
1674/* Set interrupt moderation parameters */
1675int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1676			    unsigned int rx_usecs, bool rx_adaptive,
1677			    bool rx_may_override_tx)
1678{
1679	struct efx_channel *channel;
1680	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1681						efx->timer_quantum_ns,
1682						1000);
1683	unsigned int tx_ticks;
1684	unsigned int rx_ticks;
1685
1686	EFX_ASSERT_RESET_SERIALISED(efx);
1687
1688	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1689		return -EINVAL;
1690
1691	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1692	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1693
1694	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1695	    !rx_may_override_tx) {
1696		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1697			  "RX and TX IRQ moderation must be equal\n");
1698		return -EINVAL;
1699	}
1700
1701	efx->irq_rx_adaptive = rx_adaptive;
1702	efx->irq_rx_moderation = rx_ticks;
1703	efx_for_each_channel(channel, efx) {
1704		if (efx_channel_has_rx_queue(channel))
1705			channel->irq_moderation = rx_ticks;
1706		else if (efx_channel_has_tx_queues(channel))
1707			channel->irq_moderation = tx_ticks;
1708	}
1709
1710	return 0;
1711}
1712
1713void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1714			    unsigned int *rx_usecs, bool *rx_adaptive)
1715{
1716	/* We must round up when converting ticks to microseconds
1717	 * because we round down when converting the other way.
1718	 */
1719
1720	*rx_adaptive = efx->irq_rx_adaptive;
1721	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1722				 efx->timer_quantum_ns,
1723				 1000);
1724
1725	/* If channels are shared between RX and TX, so is IRQ
1726	 * moderation.  Otherwise, IRQ moderation is the same for all
1727	 * TX channels and is not adaptive.
1728	 */
1729	if (efx->tx_channel_offset == 0)
1730		*tx_usecs = *rx_usecs;
1731	else
1732		*tx_usecs = DIV_ROUND_UP(
1733			efx->channel[efx->tx_channel_offset]->irq_moderation *
1734			efx->timer_quantum_ns,
1735			1000);
1736}
1737
1738/**************************************************************************
1739 *
1740 * Hardware monitor
1741 *
1742 **************************************************************************/
1743
1744/* Run periodically off the general workqueue */
1745static void efx_monitor(struct work_struct *data)
1746{
1747	struct efx_nic *efx = container_of(data, struct efx_nic,
1748					   monitor_work.work);
1749
1750	netif_vdbg(efx, timer, efx->net_dev,
1751		   "hardware monitor executing on CPU %d\n",
1752		   raw_smp_processor_id());
1753	BUG_ON(efx->type->monitor == NULL);
1754
1755	/* If the mac_lock is already held then it is likely a port
1756	 * reconfiguration is already in place, which will likely do
1757	 * most of the work of monitor() anyway. */
1758	if (mutex_trylock(&efx->mac_lock)) {
1759		if (efx->port_enabled)
1760			efx->type->monitor(efx);
1761		mutex_unlock(&efx->mac_lock);
1762	}
1763
1764	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1765			   efx_monitor_interval);
1766}
1767
1768/**************************************************************************
1769 *
1770 * ioctls
1771 *
1772 *************************************************************************/
1773
1774/* Net device ioctl
1775 * Context: process, rtnl_lock() held.
1776 */
1777static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1778{
1779	struct efx_nic *efx = netdev_priv(net_dev);
1780	struct mii_ioctl_data *data = if_mii(ifr);
1781
1782	if (cmd == SIOCSHWTSTAMP)
1783		return efx_ptp_ioctl(efx, ifr, cmd);
1784
1785	/* Convert phy_id from older PRTAD/DEVAD format */
1786	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1787	    (data->phy_id & 0xfc00) == 0x0400)
1788		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1789
1790	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1791}
1792
1793/**************************************************************************
1794 *
1795 * NAPI interface
1796 *
1797 **************************************************************************/
1798
1799static void efx_init_napi_channel(struct efx_channel *channel)
1800{
1801	struct efx_nic *efx = channel->efx;
1802
1803	channel->napi_dev = efx->net_dev;
1804	netif_napi_add(channel->napi_dev, &channel->napi_str,
1805		       efx_poll, napi_weight);
1806}
1807
1808static void efx_init_napi(struct efx_nic *efx)
1809{
1810	struct efx_channel *channel;
1811
1812	efx_for_each_channel(channel, efx)
1813		efx_init_napi_channel(channel);
1814}
1815
1816static void efx_fini_napi_channel(struct efx_channel *channel)
1817{
1818	if (channel->napi_dev)
1819		netif_napi_del(&channel->napi_str);
1820	channel->napi_dev = NULL;
1821}
1822
1823static void efx_fini_napi(struct efx_nic *efx)
1824{
1825	struct efx_channel *channel;
1826
1827	efx_for_each_channel(channel, efx)
1828		efx_fini_napi_channel(channel);
1829}
1830
1831/**************************************************************************
1832 *
1833 * Kernel netpoll interface
1834 *
1835 *************************************************************************/
1836
1837#ifdef CONFIG_NET_POLL_CONTROLLER
1838
1839/* Although in the common case interrupts will be disabled, this is not
1840 * guaranteed. However, all our work happens inside the NAPI callback,
1841 * so no locking is required.
1842 */
1843static void efx_netpoll(struct net_device *net_dev)
1844{
1845	struct efx_nic *efx = netdev_priv(net_dev);
1846	struct efx_channel *channel;
1847
1848	efx_for_each_channel(channel, efx)
1849		efx_schedule_channel(channel);
1850}
1851
1852#endif
1853
1854/**************************************************************************
1855 *
1856 * Kernel net device interface
1857 *
1858 *************************************************************************/
1859
1860/* Context: process, rtnl_lock() held. */
1861static int efx_net_open(struct net_device *net_dev)
1862{
1863	struct efx_nic *efx = netdev_priv(net_dev);
1864	int rc;
1865
1866	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1867		  raw_smp_processor_id());
1868
1869	rc = efx_check_disabled(efx);
1870	if (rc)
1871		return rc;
1872	if (efx->phy_mode & PHY_MODE_SPECIAL)
1873		return -EBUSY;
1874	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1875		return -EIO;
1876
1877	/* Notify the kernel of the link state polled during driver load,
1878	 * before the monitor starts running */
1879	efx_link_status_changed(efx);
1880
1881	efx_start_all(efx);
1882	efx_selftest_async_start(efx);
1883	return 0;
1884}
1885
1886/* Context: process, rtnl_lock() held.
1887 * Note that the kernel will ignore our return code; this method
1888 * should really be a void.
1889 */
1890static int efx_net_stop(struct net_device *net_dev)
1891{
1892	struct efx_nic *efx = netdev_priv(net_dev);
1893
1894	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1895		  raw_smp_processor_id());
1896
1897	/* Stop the device and flush all the channels */
1898	efx_stop_all(efx);
1899
1900	return 0;
1901}
1902
1903/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1904static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1905					       struct rtnl_link_stats64 *stats)
1906{
1907	struct efx_nic *efx = netdev_priv(net_dev);
1908	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1909
1910	spin_lock_bh(&efx->stats_lock);
1911
1912	efx->type->update_stats(efx);
1913
1914	stats->rx_packets = mac_stats->rx_packets;
1915	stats->tx_packets = mac_stats->tx_packets;
1916	stats->rx_bytes = mac_stats->rx_bytes;
1917	stats->tx_bytes = mac_stats->tx_bytes;
1918	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1919	stats->multicast = mac_stats->rx_multicast;
1920	stats->collisions = mac_stats->tx_collision;
1921	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1922				   mac_stats->rx_length_error);
1923	stats->rx_crc_errors = mac_stats->rx_bad;
1924	stats->rx_frame_errors = mac_stats->rx_align_error;
1925	stats->rx_fifo_errors = mac_stats->rx_overflow;
1926	stats->rx_missed_errors = mac_stats->rx_missed;
1927	stats->tx_window_errors = mac_stats->tx_late_collision;
1928
1929	stats->rx_errors = (stats->rx_length_errors +
1930			    stats->rx_crc_errors +
1931			    stats->rx_frame_errors +
1932			    mac_stats->rx_symbol_error);
1933	stats->tx_errors = (stats->tx_window_errors +
1934			    mac_stats->tx_bad);
1935
1936	spin_unlock_bh(&efx->stats_lock);
1937
1938	return stats;
1939}
1940
1941/* Context: netif_tx_lock held, BHs disabled. */
1942static void efx_watchdog(struct net_device *net_dev)
1943{
1944	struct efx_nic *efx = netdev_priv(net_dev);
1945
1946	netif_err(efx, tx_err, efx->net_dev,
1947		  "TX stuck with port_enabled=%d: resetting channels\n",
1948		  efx->port_enabled);
1949
1950	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1951}
1952
1953
1954/* Context: process, rtnl_lock() held. */
1955static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1956{
1957	struct efx_nic *efx = netdev_priv(net_dev);
1958	int rc;
1959
1960	rc = efx_check_disabled(efx);
1961	if (rc)
1962		return rc;
1963	if (new_mtu > EFX_MAX_MTU)
1964		return -EINVAL;
1965
1966	efx_stop_all(efx);
1967
1968	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1969
1970	mutex_lock(&efx->mac_lock);
1971	net_dev->mtu = new_mtu;
1972	efx->type->reconfigure_mac(efx);
1973	mutex_unlock(&efx->mac_lock);
1974
1975	efx_start_all(efx);
1976	return 0;
1977}
1978
1979static int efx_set_mac_address(struct net_device *net_dev, void *data)
1980{
1981	struct efx_nic *efx = netdev_priv(net_dev);
1982	struct sockaddr *addr = data;
1983	char *new_addr = addr->sa_data;
1984
1985	if (!is_valid_ether_addr(new_addr)) {
1986		netif_err(efx, drv, efx->net_dev,
1987			  "invalid ethernet MAC address requested: %pM\n",
1988			  new_addr);
1989		return -EADDRNOTAVAIL;
1990	}
1991
1992	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1993	efx_sriov_mac_address_changed(efx);
1994
1995	/* Reconfigure the MAC */
1996	mutex_lock(&efx->mac_lock);
1997	efx->type->reconfigure_mac(efx);
1998	mutex_unlock(&efx->mac_lock);
1999
2000	return 0;
2001}
2002
2003/* Context: netif_addr_lock held, BHs disabled. */
2004static void efx_set_rx_mode(struct net_device *net_dev)
2005{
2006	struct efx_nic *efx = netdev_priv(net_dev);
2007	struct netdev_hw_addr *ha;
2008	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2009	u32 crc;
2010	int bit;
2011
2012	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2013
2014	/* Build multicast hash table */
2015	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2016		memset(mc_hash, 0xff, sizeof(*mc_hash));
2017	} else {
2018		memset(mc_hash, 0x00, sizeof(*mc_hash));
2019		netdev_for_each_mc_addr(ha, net_dev) {
2020			crc = ether_crc_le(ETH_ALEN, ha->addr);
2021			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2022			__set_bit_le(bit, mc_hash);
2023		}
2024
2025		/* Broadcast packets go through the multicast hash filter.
2026		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2027		 * so we always add bit 0xff to the mask.
2028		 */
2029		__set_bit_le(0xff, mc_hash);
2030	}
2031
2032	if (efx->port_enabled)
2033		queue_work(efx->workqueue, &efx->mac_work);
2034	/* Otherwise efx_start_port() will do this */
2035}
2036
2037static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2038{
2039	struct efx_nic *efx = netdev_priv(net_dev);
2040
2041	/* If disabling RX n-tuple filtering, clear existing filters */
2042	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2043		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2044
2045	return 0;
2046}
2047
2048static const struct net_device_ops efx_netdev_ops = {
2049	.ndo_open		= efx_net_open,
2050	.ndo_stop		= efx_net_stop,
2051	.ndo_get_stats64	= efx_net_stats,
2052	.ndo_tx_timeout		= efx_watchdog,
2053	.ndo_start_xmit		= efx_hard_start_xmit,
2054	.ndo_validate_addr	= eth_validate_addr,
2055	.ndo_do_ioctl		= efx_ioctl,
2056	.ndo_change_mtu		= efx_change_mtu,
2057	.ndo_set_mac_address	= efx_set_mac_address,
2058	.ndo_set_rx_mode	= efx_set_rx_mode,
2059	.ndo_set_features	= efx_set_features,
2060#ifdef CONFIG_SFC_SRIOV
2061	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2062	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2063	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2064	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2065#endif
2066#ifdef CONFIG_NET_POLL_CONTROLLER
2067	.ndo_poll_controller = efx_netpoll,
2068#endif
2069	.ndo_setup_tc		= efx_setup_tc,
2070#ifdef CONFIG_RFS_ACCEL
2071	.ndo_rx_flow_steer	= efx_filter_rfs,
2072#endif
2073};
2074
2075static void efx_update_name(struct efx_nic *efx)
2076{
2077	strcpy(efx->name, efx->net_dev->name);
2078	efx_mtd_rename(efx);
2079	efx_set_channel_names(efx);
2080}
2081
2082static int efx_netdev_event(struct notifier_block *this,
2083			    unsigned long event, void *ptr)
2084{
2085	struct net_device *net_dev = ptr;
2086
2087	if (net_dev->netdev_ops == &efx_netdev_ops &&
2088	    event == NETDEV_CHANGENAME)
2089		efx_update_name(netdev_priv(net_dev));
2090
2091	return NOTIFY_DONE;
2092}
2093
2094static struct notifier_block efx_netdev_notifier = {
2095	.notifier_call = efx_netdev_event,
2096};
2097
2098static ssize_t
2099show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2100{
2101	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2102	return sprintf(buf, "%d\n", efx->phy_type);
2103}
2104static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
2105
2106static int efx_register_netdev(struct efx_nic *efx)
2107{
2108	struct net_device *net_dev = efx->net_dev;
2109	struct efx_channel *channel;
2110	int rc;
2111
2112	net_dev->watchdog_timeo = 5 * HZ;
2113	net_dev->irq = efx->pci_dev->irq;
2114	net_dev->netdev_ops = &efx_netdev_ops;
2115	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2116	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2117
2118	rtnl_lock();
2119
2120	/* Enable resets to be scheduled and check whether any were
2121	 * already requested.  If so, the NIC is probably hosed so we
2122	 * abort.
2123	 */
2124	efx->state = STATE_READY;
2125	smp_mb(); /* ensure we change state before checking reset_pending */
2126	if (efx->reset_pending) {
2127		netif_err(efx, probe, efx->net_dev,
2128			  "aborting probe due to scheduled reset\n");
2129		rc = -EIO;
2130		goto fail_locked;
2131	}
2132
2133	rc = dev_alloc_name(net_dev, net_dev->name);
2134	if (rc < 0)
2135		goto fail_locked;
2136	efx_update_name(efx);
2137
2138	/* Always start with carrier off; PHY events will detect the link */
2139	netif_carrier_off(net_dev);
2140
2141	rc = register_netdevice(net_dev);
2142	if (rc)
2143		goto fail_locked;
2144
2145	efx_for_each_channel(channel, efx) {
2146		struct efx_tx_queue *tx_queue;
2147		efx_for_each_channel_tx_queue(tx_queue, channel)
2148			efx_init_tx_queue_core_txq(tx_queue);
2149	}
2150
2151	rtnl_unlock();
2152
2153	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2154	if (rc) {
2155		netif_err(efx, drv, efx->net_dev,
2156			  "failed to init net dev attributes\n");
2157		goto fail_registered;
2158	}
2159
2160	return 0;
2161
2162fail_registered:
2163	rtnl_lock();
2164	unregister_netdevice(net_dev);
2165fail_locked:
2166	efx->state = STATE_UNINIT;
2167	rtnl_unlock();
2168	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2169	return rc;
2170}
2171
2172static void efx_unregister_netdev(struct efx_nic *efx)
2173{
2174	struct efx_channel *channel;
2175	struct efx_tx_queue *tx_queue;
2176
2177	if (!efx->net_dev)
2178		return;
2179
2180	BUG_ON(netdev_priv(efx->net_dev) != efx);
2181
2182	/* Free up any skbs still remaining. This has to happen before
2183	 * we try to unregister the netdev as running their destructors
2184	 * may be needed to get the device ref. count to 0. */
2185	efx_for_each_channel(channel, efx) {
2186		efx_for_each_channel_tx_queue(tx_queue, channel)
2187			efx_release_tx_buffers(tx_queue);
2188	}
2189
2190	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2191	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2192
2193	rtnl_lock();
2194	unregister_netdevice(efx->net_dev);
2195	efx->state = STATE_UNINIT;
2196	rtnl_unlock();
2197}
2198
2199/**************************************************************************
2200 *
2201 * Device reset and suspend
2202 *
2203 **************************************************************************/
2204
2205/* Tears down the entire software state and most of the hardware state
2206 * before reset.  */
2207void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2208{
2209	EFX_ASSERT_RESET_SERIALISED(efx);
2210
2211	efx_stop_all(efx);
2212	efx_stop_interrupts(efx, false);
2213
2214	mutex_lock(&efx->mac_lock);
2215	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2216		efx->phy_op->fini(efx);
2217	efx->type->fini(efx);
2218}
2219
2220/* This function will always ensure that the locks acquired in
2221 * efx_reset_down() are released. A failure return code indicates
2222 * that we were unable to reinitialise the hardware, and the
2223 * driver should be disabled. If ok is false, then the rx and tx
2224 * engines are not restarted, pending a RESET_DISABLE. */
2225int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2226{
2227	int rc;
2228
2229	EFX_ASSERT_RESET_SERIALISED(efx);
2230
2231	rc = efx->type->init(efx);
2232	if (rc) {
2233		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2234		goto fail;
2235	}
2236
2237	if (!ok)
2238		goto fail;
2239
2240	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2241		rc = efx->phy_op->init(efx);
2242		if (rc)
2243			goto fail;
2244		if (efx->phy_op->reconfigure(efx))
2245			netif_err(efx, drv, efx->net_dev,
2246				  "could not restore PHY settings\n");
2247	}
2248
2249	efx->type->reconfigure_mac(efx);
2250
2251	efx_start_interrupts(efx, false);
2252	efx_restore_filters(efx);
2253	efx_sriov_reset(efx);
2254
2255	mutex_unlock(&efx->mac_lock);
2256
2257	efx_start_all(efx);
2258
2259	return 0;
2260
2261fail:
2262	efx->port_initialized = false;
2263
2264	mutex_unlock(&efx->mac_lock);
2265
2266	return rc;
2267}
2268
2269/* Reset the NIC using the specified method.  Note that the reset may
2270 * fail, in which case the card will be left in an unusable state.
2271 *
2272 * Caller must hold the rtnl_lock.
2273 */
2274int efx_reset(struct efx_nic *efx, enum reset_type method)
2275{
2276	int rc, rc2;
2277	bool disabled;
2278
2279	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2280		   RESET_TYPE(method));
2281
2282	efx_device_detach_sync(efx);
2283	efx_reset_down(efx, method);
2284
2285	rc = efx->type->reset(efx, method);
2286	if (rc) {
2287		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2288		goto out;
2289	}
2290
2291	/* Clear flags for the scopes we covered.  We assume the NIC and
2292	 * driver are now quiescent so that there is no race here.
2293	 */
2294	efx->reset_pending &= -(1 << (method + 1));
2295
2296	/* Reinitialise bus-mastering, which may have been turned off before
2297	 * the reset was scheduled. This is still appropriate, even in the
2298	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2299	 * can respond to requests. */
2300	pci_set_master(efx->pci_dev);
2301
2302out:
2303	/* Leave device stopped if necessary */
2304	disabled = rc || method == RESET_TYPE_DISABLE;
2305	rc2 = efx_reset_up(efx, method, !disabled);
2306	if (rc2) {
2307		disabled = true;
2308		if (!rc)
2309			rc = rc2;
2310	}
2311
2312	if (disabled) {
2313		dev_close(efx->net_dev);
2314		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2315		efx->state = STATE_DISABLED;
2316	} else {
2317		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2318		netif_device_attach(efx->net_dev);
2319	}
2320	return rc;
2321}
2322
2323/* The worker thread exists so that code that cannot sleep can
2324 * schedule a reset for later.
2325 */
2326static void efx_reset_work(struct work_struct *data)
2327{
2328	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2329	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2330
2331	if (!pending)
2332		return;
2333
2334	rtnl_lock();
2335
2336	/* We checked the state in efx_schedule_reset() but it may
2337	 * have changed by now.  Now that we have the RTNL lock,
2338	 * it cannot change again.
2339	 */
2340	if (efx->state == STATE_READY)
2341		(void)efx_reset(efx, fls(pending) - 1);
2342
2343	rtnl_unlock();
2344}
2345
2346void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2347{
2348	enum reset_type method;
2349
2350	switch (type) {
2351	case RESET_TYPE_INVISIBLE:
2352	case RESET_TYPE_ALL:
2353	case RESET_TYPE_WORLD:
2354	case RESET_TYPE_DISABLE:
2355		method = type;
2356		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2357			  RESET_TYPE(method));
2358		break;
2359	default:
2360		method = efx->type->map_reset_reason(type);
2361		netif_dbg(efx, drv, efx->net_dev,
2362			  "scheduling %s reset for %s\n",
2363			  RESET_TYPE(method), RESET_TYPE(type));
2364		break;
2365	}
2366
2367	set_bit(method, &efx->reset_pending);
2368	smp_mb(); /* ensure we change reset_pending before checking state */
2369
2370	/* If we're not READY then just leave the flags set as the cue
2371	 * to abort probing or reschedule the reset later.
2372	 */
2373	if (ACCESS_ONCE(efx->state) != STATE_READY)
2374		return;
2375
2376	/* efx_process_channel() will no longer read events once a
2377	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2378	efx_mcdi_mode_poll(efx);
2379
2380	queue_work(reset_workqueue, &efx->reset_work);
2381}
2382
2383/**************************************************************************
2384 *
2385 * List of NICs we support
2386 *
2387 **************************************************************************/
2388
2389/* PCI device ID table */
2390static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2391	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2392		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2393	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2394	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2395		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2396	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2397	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2398	 .driver_data = (unsigned long) &siena_a0_nic_type},
2399	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2400	 .driver_data = (unsigned long) &siena_a0_nic_type},
2401	{0}			/* end of list */
2402};
2403
2404/**************************************************************************
2405 *
2406 * Dummy PHY/MAC operations
2407 *
2408 * Can be used for some unimplemented operations
2409 * Needed so all function pointers are valid and do not have to be tested
2410 * before use
2411 *
2412 **************************************************************************/
2413int efx_port_dummy_op_int(struct efx_nic *efx)
2414{
2415	return 0;
2416}
2417void efx_port_dummy_op_void(struct efx_nic *efx) {}
2418
2419static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2420{
2421	return false;
2422}
2423
2424static const struct efx_phy_operations efx_dummy_phy_operations = {
2425	.init		 = efx_port_dummy_op_int,
2426	.reconfigure	 = efx_port_dummy_op_int,
2427	.poll		 = efx_port_dummy_op_poll,
2428	.fini		 = efx_port_dummy_op_void,
2429};
2430
2431/**************************************************************************
2432 *
2433 * Data housekeeping
2434 *
2435 **************************************************************************/
2436
2437/* This zeroes out and then fills in the invariants in a struct
2438 * efx_nic (including all sub-structures).
2439 */
2440static int efx_init_struct(struct efx_nic *efx,
2441			   struct pci_dev *pci_dev, struct net_device *net_dev)
2442{
2443	int i;
2444
2445	/* Initialise common structures */
2446	spin_lock_init(&efx->biu_lock);
2447#ifdef CONFIG_SFC_MTD
2448	INIT_LIST_HEAD(&efx->mtd_list);
2449#endif
2450	INIT_WORK(&efx->reset_work, efx_reset_work);
2451	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2452	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2453	efx->pci_dev = pci_dev;
2454	efx->msg_enable = debug;
2455	efx->state = STATE_UNINIT;
2456	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2457
2458	efx->net_dev = net_dev;
2459	spin_lock_init(&efx->stats_lock);
2460	mutex_init(&efx->mac_lock);
2461	efx->phy_op = &efx_dummy_phy_operations;
2462	efx->mdio.dev = net_dev;
2463	INIT_WORK(&efx->mac_work, efx_mac_work);
2464	init_waitqueue_head(&efx->flush_wq);
2465
2466	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2467		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2468		if (!efx->channel[i])
2469			goto fail;
2470	}
2471
2472	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2473
2474	/* Higher numbered interrupt modes are less capable! */
2475	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2476				  interrupt_mode);
2477
2478	/* Would be good to use the net_dev name, but we're too early */
2479	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2480		 pci_name(pci_dev));
2481	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2482	if (!efx->workqueue)
2483		goto fail;
2484
2485	return 0;
2486
2487fail:
2488	efx_fini_struct(efx);
2489	return -ENOMEM;
2490}
2491
2492static void efx_fini_struct(struct efx_nic *efx)
2493{
2494	int i;
2495
2496	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2497		kfree(efx->channel[i]);
2498
2499	if (efx->workqueue) {
2500		destroy_workqueue(efx->workqueue);
2501		efx->workqueue = NULL;
2502	}
2503}
2504
2505/**************************************************************************
2506 *
2507 * PCI interface
2508 *
2509 **************************************************************************/
2510
2511/* Main body of final NIC shutdown code
2512 * This is called only at module unload (or hotplug removal).
2513 */
2514static void efx_pci_remove_main(struct efx_nic *efx)
2515{
2516	/* Flush reset_work. It can no longer be scheduled since we
2517	 * are not READY.
2518	 */
2519	BUG_ON(efx->state == STATE_READY);
2520	cancel_work_sync(&efx->reset_work);
2521
2522#ifdef CONFIG_RFS_ACCEL
2523	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2524	efx->net_dev->rx_cpu_rmap = NULL;
2525#endif
2526	efx_stop_interrupts(efx, false);
2527	efx_nic_fini_interrupt(efx);
2528	efx_fini_port(efx);
2529	efx->type->fini(efx);
2530	efx_fini_napi(efx);
2531	efx_remove_all(efx);
2532}
2533
2534/* Final NIC shutdown
2535 * This is called only at module unload (or hotplug removal).
2536 */
2537static void efx_pci_remove(struct pci_dev *pci_dev)
2538{
2539	struct efx_nic *efx;
2540
2541	efx = pci_get_drvdata(pci_dev);
2542	if (!efx)
2543		return;
2544
2545	/* Mark the NIC as fini, then stop the interface */
2546	rtnl_lock();
2547	dev_close(efx->net_dev);
2548	efx_stop_interrupts(efx, false);
2549	rtnl_unlock();
2550
2551	efx_sriov_fini(efx);
2552	efx_unregister_netdev(efx);
2553
2554	efx_mtd_remove(efx);
2555
2556	efx_pci_remove_main(efx);
2557
2558	efx_fini_io(efx);
2559	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2560
2561	efx_fini_struct(efx);
2562	pci_set_drvdata(pci_dev, NULL);
2563	free_netdev(efx->net_dev);
2564};
2565
2566/* NIC VPD information
2567 * Called during probe to display the part number of the
2568 * installed NIC.  VPD is potentially very large but this should
2569 * always appear within the first 512 bytes.
2570 */
2571#define SFC_VPD_LEN 512
2572static void efx_print_product_vpd(struct efx_nic *efx)
2573{
2574	struct pci_dev *dev = efx->pci_dev;
2575	char vpd_data[SFC_VPD_LEN];
2576	ssize_t vpd_size;
2577	int i, j;
2578
2579	/* Get the vpd data from the device */
2580	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2581	if (vpd_size <= 0) {
2582		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2583		return;
2584	}
2585
2586	/* Get the Read only section */
2587	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2588	if (i < 0) {
2589		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2590		return;
2591	}
2592
2593	j = pci_vpd_lrdt_size(&vpd_data[i]);
2594	i += PCI_VPD_LRDT_TAG_SIZE;
2595	if (i + j > vpd_size)
2596		j = vpd_size - i;
2597
2598	/* Get the Part number */
2599	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2600	if (i < 0) {
2601		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2602		return;
2603	}
2604
2605	j = pci_vpd_info_field_size(&vpd_data[i]);
2606	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2607	if (i + j > vpd_size) {
2608		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2609		return;
2610	}
2611
2612	netif_info(efx, drv, efx->net_dev,
2613		   "Part Number : %.*s\n", j, &vpd_data[i]);
2614}
2615
2616
2617/* Main body of NIC initialisation
2618 * This is called at module load (or hotplug insertion, theoretically).
2619 */
2620static int efx_pci_probe_main(struct efx_nic *efx)
2621{
2622	int rc;
2623
2624	/* Do start-of-day initialisation */
2625	rc = efx_probe_all(efx);
2626	if (rc)
2627		goto fail1;
2628
2629	efx_init_napi(efx);
2630
2631	rc = efx->type->init(efx);
2632	if (rc) {
2633		netif_err(efx, probe, efx->net_dev,
2634			  "failed to initialise NIC\n");
2635		goto fail3;
2636	}
2637
2638	rc = efx_init_port(efx);
2639	if (rc) {
2640		netif_err(efx, probe, efx->net_dev,
2641			  "failed to initialise port\n");
2642		goto fail4;
2643	}
2644
2645	rc = efx_nic_init_interrupt(efx);
2646	if (rc)
2647		goto fail5;
2648	efx_start_interrupts(efx, false);
2649
2650	return 0;
2651
2652 fail5:
2653	efx_fini_port(efx);
2654 fail4:
2655	efx->type->fini(efx);
2656 fail3:
2657	efx_fini_napi(efx);
2658	efx_remove_all(efx);
2659 fail1:
2660	return rc;
2661}
2662
2663/* NIC initialisation
2664 *
2665 * This is called at module load (or hotplug insertion,
2666 * theoretically).  It sets up PCI mappings, resets the NIC,
2667 * sets up and registers the network devices with the kernel and hooks
2668 * the interrupt service routine.  It does not prepare the device for
2669 * transmission; this is left to the first time one of the network
2670 * interfaces is brought up (i.e. efx_net_open).
2671 */
2672static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2673				   const struct pci_device_id *entry)
2674{
2675	struct net_device *net_dev;
2676	struct efx_nic *efx;
2677	int rc;
2678
2679	/* Allocate and initialise a struct net_device and struct efx_nic */
2680	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2681				     EFX_MAX_RX_QUEUES);
2682	if (!net_dev)
2683		return -ENOMEM;
2684	efx = netdev_priv(net_dev);
2685	efx->type = (const struct efx_nic_type *) entry->driver_data;
2686	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2687			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2688			      NETIF_F_RXCSUM);
2689	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2690		net_dev->features |= NETIF_F_TSO6;
2691	/* Mask for features that also apply to VLAN devices */
2692	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2693				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2694				   NETIF_F_RXCSUM);
2695	/* All offloads can be toggled */
2696	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2697	pci_set_drvdata(pci_dev, efx);
2698	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2699	rc = efx_init_struct(efx, pci_dev, net_dev);
2700	if (rc)
2701		goto fail1;
2702
2703	netif_info(efx, probe, efx->net_dev,
2704		   "Solarflare NIC detected\n");
2705
2706	efx_print_product_vpd(efx);
2707
2708	/* Set up basic I/O (BAR mappings etc) */
2709	rc = efx_init_io(efx);
2710	if (rc)
2711		goto fail2;
2712
2713	rc = efx_pci_probe_main(efx);
2714	if (rc)
2715		goto fail3;
2716
2717	rc = efx_register_netdev(efx);
2718	if (rc)
2719		goto fail4;
2720
2721	rc = efx_sriov_init(efx);
2722	if (rc)
2723		netif_err(efx, probe, efx->net_dev,
2724			  "SR-IOV can't be enabled rc %d\n", rc);
2725
2726	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2727
2728	/* Try to create MTDs, but allow this to fail */
2729	rtnl_lock();
2730	rc = efx_mtd_probe(efx);
2731	rtnl_unlock();
2732	if (rc)
2733		netif_warn(efx, probe, efx->net_dev,
2734			   "failed to create MTDs (%d)\n", rc);
2735
2736	return 0;
2737
2738 fail4:
2739	efx_pci_remove_main(efx);
2740 fail3:
2741	efx_fini_io(efx);
2742 fail2:
2743	efx_fini_struct(efx);
2744 fail1:
2745	pci_set_drvdata(pci_dev, NULL);
2746	WARN_ON(rc > 0);
2747	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2748	free_netdev(net_dev);
2749	return rc;
2750}
2751
2752static int efx_pm_freeze(struct device *dev)
2753{
2754	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2755
2756	rtnl_lock();
2757
2758	if (efx->state != STATE_DISABLED) {
2759		efx->state = STATE_UNINIT;
2760
2761		efx_device_detach_sync(efx);
2762
2763		efx_stop_all(efx);
2764		efx_stop_interrupts(efx, false);
2765	}
2766
2767	rtnl_unlock();
2768
2769	return 0;
2770}
2771
2772static int efx_pm_thaw(struct device *dev)
2773{
2774	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2775
2776	rtnl_lock();
2777
2778	if (efx->state != STATE_DISABLED) {
2779		efx_start_interrupts(efx, false);
2780
2781		mutex_lock(&efx->mac_lock);
2782		efx->phy_op->reconfigure(efx);
2783		mutex_unlock(&efx->mac_lock);
2784
2785		efx_start_all(efx);
2786
2787		netif_device_attach(efx->net_dev);
2788
2789		efx->state = STATE_READY;
2790
2791		efx->type->resume_wol(efx);
2792	}
2793
2794	rtnl_unlock();
2795
2796	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2797	queue_work(reset_workqueue, &efx->reset_work);
2798
2799	return 0;
2800}
2801
2802static int efx_pm_poweroff(struct device *dev)
2803{
2804	struct pci_dev *pci_dev = to_pci_dev(dev);
2805	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2806
2807	efx->type->fini(efx);
2808
2809	efx->reset_pending = 0;
2810
2811	pci_save_state(pci_dev);
2812	return pci_set_power_state(pci_dev, PCI_D3hot);
2813}
2814
2815/* Used for both resume and restore */
2816static int efx_pm_resume(struct device *dev)
2817{
2818	struct pci_dev *pci_dev = to_pci_dev(dev);
2819	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2820	int rc;
2821
2822	rc = pci_set_power_state(pci_dev, PCI_D0);
2823	if (rc)
2824		return rc;
2825	pci_restore_state(pci_dev);
2826	rc = pci_enable_device(pci_dev);
2827	if (rc)
2828		return rc;
2829	pci_set_master(efx->pci_dev);
2830	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2831	if (rc)
2832		return rc;
2833	rc = efx->type->init(efx);
2834	if (rc)
2835		return rc;
2836	efx_pm_thaw(dev);
2837	return 0;
2838}
2839
2840static int efx_pm_suspend(struct device *dev)
2841{
2842	int rc;
2843
2844	efx_pm_freeze(dev);
2845	rc = efx_pm_poweroff(dev);
2846	if (rc)
2847		efx_pm_resume(dev);
2848	return rc;
2849}
2850
2851static const struct dev_pm_ops efx_pm_ops = {
2852	.suspend	= efx_pm_suspend,
2853	.resume		= efx_pm_resume,
2854	.freeze		= efx_pm_freeze,
2855	.thaw		= efx_pm_thaw,
2856	.poweroff	= efx_pm_poweroff,
2857	.restore	= efx_pm_resume,
2858};
2859
2860static struct pci_driver efx_pci_driver = {
2861	.name		= KBUILD_MODNAME,
2862	.id_table	= efx_pci_table,
2863	.probe		= efx_pci_probe,
2864	.remove		= efx_pci_remove,
2865	.driver.pm	= &efx_pm_ops,
2866};
2867
2868/**************************************************************************
2869 *
2870 * Kernel module interface
2871 *
2872 *************************************************************************/
2873
2874module_param(interrupt_mode, uint, 0444);
2875MODULE_PARM_DESC(interrupt_mode,
2876		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2877
2878static int __init efx_init_module(void)
2879{
2880	int rc;
2881
2882	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2883
2884	rc = register_netdevice_notifier(&efx_netdev_notifier);
2885	if (rc)
2886		goto err_notifier;
2887
2888	rc = efx_init_sriov();
2889	if (rc)
2890		goto err_sriov;
2891
2892	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2893	if (!reset_workqueue) {
2894		rc = -ENOMEM;
2895		goto err_reset;
2896	}
2897
2898	rc = pci_register_driver(&efx_pci_driver);
2899	if (rc < 0)
2900		goto err_pci;
2901
2902	return 0;
2903
2904 err_pci:
2905	destroy_workqueue(reset_workqueue);
2906 err_reset:
2907	efx_fini_sriov();
2908 err_sriov:
2909	unregister_netdevice_notifier(&efx_netdev_notifier);
2910 err_notifier:
2911	return rc;
2912}
2913
2914static void __exit efx_exit_module(void)
2915{
2916	printk(KERN_INFO "Solarflare NET driver unloading\n");
2917
2918	pci_unregister_driver(&efx_pci_driver);
2919	destroy_workqueue(reset_workqueue);
2920	efx_fini_sriov();
2921	unregister_netdevice_notifier(&efx_netdev_notifier);
2922
2923}
2924
2925module_init(efx_init_module);
2926module_exit(efx_exit_module);
2927
2928MODULE_AUTHOR("Solarflare Communications and "
2929	      "Michael Brown <mbrown@fensystems.co.uk>");
2930MODULE_DESCRIPTION("Solarflare Communications network driver");
2931MODULE_LICENSE("GPL");
2932MODULE_DEVICE_TABLE(pci, efx_pci_table);
2933