efx.c revision f8f3b5ae3ea45ef6b00b471fed0fc90552a3c4af
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/ethtool.h>
21#include <linux/topology.h>
22#include <linux/gfp.h>
23#include <linux/aer.h>
24#include <linux/interrupt.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28#include "selftest.h"
29
30#include "mcdi.h"
31#include "workarounds.h"
32
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42const char *const efx_loopback_mode_names[] = {
43	[LOOPBACK_NONE]		= "NONE",
44	[LOOPBACK_DATA]		= "DATAPATH",
45	[LOOPBACK_GMAC]		= "GMAC",
46	[LOOPBACK_XGMII]	= "XGMII",
47	[LOOPBACK_XGXS]		= "XGXS",
48	[LOOPBACK_XAUI]		= "XAUI",
49	[LOOPBACK_GMII]		= "GMII",
50	[LOOPBACK_SGMII]	= "SGMII",
51	[LOOPBACK_XGBR]		= "XGBR",
52	[LOOPBACK_XFI]		= "XFI",
53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57	[LOOPBACK_GPHY]		= "GPHY",
58	[LOOPBACK_PHYXS]	= "PHYXS",
59	[LOOPBACK_PCS]		= "PCS",
60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61	[LOOPBACK_XPORT]	= "XPORT",
62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66	[LOOPBACK_GMII_WS]	= "GMII_WS",
67	[LOOPBACK_XFI_WS]	= "XFI_WS",
68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70};
71
72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73const char *const efx_reset_type_names[] = {
74	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
75	[RESET_TYPE_ALL]                = "ALL",
76	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
77	[RESET_TYPE_WORLD]              = "WORLD",
78	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79	[RESET_TYPE_DISABLE]            = "DISABLE",
80	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86	[RESET_TYPE_MC_BIST]		= "MC_BIST",
87};
88
89/* Reset workqueue. If any NIC has a hardware failure then a reset will be
90 * queued onto this work queue. This is not a per-nic work queue, because
91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 */
93static struct workqueue_struct *reset_workqueue;
94
95/* How often and how many times to poll for a reset while waiting for a
96 * BIST that another function started to complete.
97 */
98#define BIST_WAIT_DELAY_MS	100
99#define BIST_WAIT_DELAY_COUNT	100
100
101/**************************************************************************
102 *
103 * Configurable values
104 *
105 *************************************************************************/
106
107/*
108 * Use separate channels for TX and RX events
109 *
110 * Set this to 1 to use separate channels for TX and RX. It allows us
111 * to control interrupt affinity separately for TX and RX.
112 *
113 * This is only used in MSI-X interrupt mode
114 */
115static bool separate_tx_channels;
116module_param(separate_tx_channels, bool, 0444);
117MODULE_PARM_DESC(separate_tx_channels,
118		 "Use separate channels for TX and RX");
119
120/* This is the weight assigned to each of the (per-channel) virtual
121 * NAPI devices.
122 */
123static int napi_weight = 64;
124
125/* This is the time (in jiffies) between invocations of the hardware
126 * monitor.
127 * On Falcon-based NICs, this will:
128 * - Check the on-board hardware monitor;
129 * - Poll the link state and reconfigure the hardware as necessary.
130 * On Siena-based NICs for power systems with EEH support, this will give EEH a
131 * chance to start.
132 */
133static unsigned int efx_monitor_interval = 1 * HZ;
134
135/* Initial interrupt moderation settings.  They can be modified after
136 * module load with ethtool.
137 *
138 * The default for RX should strike a balance between increasing the
139 * round-trip latency and reducing overhead.
140 */
141static unsigned int rx_irq_mod_usec = 60;
142
143/* Initial interrupt moderation settings.  They can be modified after
144 * module load with ethtool.
145 *
146 * This default is chosen to ensure that a 10G link does not go idle
147 * while a TX queue is stopped after it has become full.  A queue is
148 * restarted when it drops below half full.  The time this takes (assuming
149 * worst case 3 descriptors per packet and 1024 descriptors) is
150 *   512 / 3 * 1.2 = 205 usec.
151 */
152static unsigned int tx_irq_mod_usec = 150;
153
154/* This is the first interrupt mode to try out of:
155 * 0 => MSI-X
156 * 1 => MSI
157 * 2 => legacy
158 */
159static unsigned int interrupt_mode;
160
161/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
162 * i.e. the number of CPUs among which we may distribute simultaneous
163 * interrupt handling.
164 *
165 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166 * The default (0) means to assign an interrupt to each core.
167 */
168static unsigned int rss_cpus;
169module_param(rss_cpus, uint, 0444);
170MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
171
172static bool phy_flash_cfg;
173module_param(phy_flash_cfg, bool, 0644);
174MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
175
176static unsigned irq_adapt_low_thresh = 8000;
177module_param(irq_adapt_low_thresh, uint, 0644);
178MODULE_PARM_DESC(irq_adapt_low_thresh,
179		 "Threshold score for reducing IRQ moderation");
180
181static unsigned irq_adapt_high_thresh = 16000;
182module_param(irq_adapt_high_thresh, uint, 0644);
183MODULE_PARM_DESC(irq_adapt_high_thresh,
184		 "Threshold score for increasing IRQ moderation");
185
186static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
187			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
188			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
189			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
190module_param(debug, uint, 0);
191MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
192
193/**************************************************************************
194 *
195 * Utility functions and prototypes
196 *
197 *************************************************************************/
198
199static int efx_soft_enable_interrupts(struct efx_nic *efx);
200static void efx_soft_disable_interrupts(struct efx_nic *efx);
201static void efx_remove_channel(struct efx_channel *channel);
202static void efx_remove_channels(struct efx_nic *efx);
203static const struct efx_channel_type efx_default_channel_type;
204static void efx_remove_port(struct efx_nic *efx);
205static void efx_init_napi_channel(struct efx_channel *channel);
206static void efx_fini_napi(struct efx_nic *efx);
207static void efx_fini_napi_channel(struct efx_channel *channel);
208static void efx_fini_struct(struct efx_nic *efx);
209static void efx_start_all(struct efx_nic *efx);
210static void efx_stop_all(struct efx_nic *efx);
211
212#define EFX_ASSERT_RESET_SERIALISED(efx)		\
213	do {						\
214		if ((efx->state == STATE_READY) ||	\
215		    (efx->state == STATE_RECOVERY) ||	\
216		    (efx->state == STATE_DISABLED))	\
217			ASSERT_RTNL();			\
218	} while (0)
219
220static int efx_check_disabled(struct efx_nic *efx)
221{
222	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223		netif_err(efx, drv, efx->net_dev,
224			  "device is disabled due to earlier errors\n");
225		return -EIO;
226	}
227	return 0;
228}
229
230/**************************************************************************
231 *
232 * Event queue processing
233 *
234 *************************************************************************/
235
236/* Process channel's event queue
237 *
238 * This function is responsible for processing the event queue of a
239 * single channel.  The caller must guarantee that this function will
240 * never be concurrently called more than once on the same channel,
241 * though different channels may be being processed concurrently.
242 */
243static int efx_process_channel(struct efx_channel *channel, int budget)
244{
245	int spent;
246
247	if (unlikely(!channel->enabled))
248		return 0;
249
250	spent = efx_nic_process_eventq(channel, budget);
251	if (spent && efx_channel_has_rx_queue(channel)) {
252		struct efx_rx_queue *rx_queue =
253			efx_channel_get_rx_queue(channel);
254
255		efx_rx_flush_packet(channel);
256		efx_fast_push_rx_descriptors(rx_queue, true);
257	}
258
259	return spent;
260}
261
262/* NAPI poll handler
263 *
264 * NAPI guarantees serialisation of polls of the same device, which
265 * provides the guarantee required by efx_process_channel().
266 */
267static int efx_poll(struct napi_struct *napi, int budget)
268{
269	struct efx_channel *channel =
270		container_of(napi, struct efx_channel, napi_str);
271	struct efx_nic *efx = channel->efx;
272	int spent;
273
274	netif_vdbg(efx, intr, efx->net_dev,
275		   "channel %d NAPI poll executing on CPU %d\n",
276		   channel->channel, raw_smp_processor_id());
277
278	spent = efx_process_channel(channel, budget);
279
280	if (spent < budget) {
281		if (efx_channel_has_rx_queue(channel) &&
282		    efx->irq_rx_adaptive &&
283		    unlikely(++channel->irq_count == 1000)) {
284			if (unlikely(channel->irq_mod_score <
285				     irq_adapt_low_thresh)) {
286				if (channel->irq_moderation > 1) {
287					channel->irq_moderation -= 1;
288					efx->type->push_irq_moderation(channel);
289				}
290			} else if (unlikely(channel->irq_mod_score >
291					    irq_adapt_high_thresh)) {
292				if (channel->irq_moderation <
293				    efx->irq_rx_moderation) {
294					channel->irq_moderation += 1;
295					efx->type->push_irq_moderation(channel);
296				}
297			}
298			channel->irq_count = 0;
299			channel->irq_mod_score = 0;
300		}
301
302		efx_filter_rfs_expire(channel);
303
304		/* There is no race here; although napi_disable() will
305		 * only wait for napi_complete(), this isn't a problem
306		 * since efx_nic_eventq_read_ack() will have no effect if
307		 * interrupts have already been disabled.
308		 */
309		napi_complete(napi);
310		efx_nic_eventq_read_ack(channel);
311	}
312
313	return spent;
314}
315
316/* Create event queue
317 * Event queue memory allocations are done only once.  If the channel
318 * is reset, the memory buffer will be reused; this guards against
319 * errors during channel reset and also simplifies interrupt handling.
320 */
321static int efx_probe_eventq(struct efx_channel *channel)
322{
323	struct efx_nic *efx = channel->efx;
324	unsigned long entries;
325
326	netif_dbg(efx, probe, efx->net_dev,
327		  "chan %d create event queue\n", channel->channel);
328
329	/* Build an event queue with room for one event per tx and rx buffer,
330	 * plus some extra for link state events and MCDI completions. */
331	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
332	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
333	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
334
335	return efx_nic_probe_eventq(channel);
336}
337
338/* Prepare channel's event queue */
339static int efx_init_eventq(struct efx_channel *channel)
340{
341	struct efx_nic *efx = channel->efx;
342	int rc;
343
344	EFX_WARN_ON_PARANOID(channel->eventq_init);
345
346	netif_dbg(efx, drv, efx->net_dev,
347		  "chan %d init event queue\n", channel->channel);
348
349	rc = efx_nic_init_eventq(channel);
350	if (rc == 0) {
351		efx->type->push_irq_moderation(channel);
352		channel->eventq_read_ptr = 0;
353		channel->eventq_init = true;
354	}
355	return rc;
356}
357
358/* Enable event queue processing and NAPI */
359static void efx_start_eventq(struct efx_channel *channel)
360{
361	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
362		  "chan %d start event queue\n", channel->channel);
363
364	/* Make sure the NAPI handler sees the enabled flag set */
365	channel->enabled = true;
366	smp_wmb();
367
368	napi_enable(&channel->napi_str);
369	efx_nic_eventq_read_ack(channel);
370}
371
372/* Disable event queue processing and NAPI */
373static void efx_stop_eventq(struct efx_channel *channel)
374{
375	if (!channel->enabled)
376		return;
377
378	napi_disable(&channel->napi_str);
379	channel->enabled = false;
380}
381
382static void efx_fini_eventq(struct efx_channel *channel)
383{
384	if (!channel->eventq_init)
385		return;
386
387	netif_dbg(channel->efx, drv, channel->efx->net_dev,
388		  "chan %d fini event queue\n", channel->channel);
389
390	efx_nic_fini_eventq(channel);
391	channel->eventq_init = false;
392}
393
394static void efx_remove_eventq(struct efx_channel *channel)
395{
396	netif_dbg(channel->efx, drv, channel->efx->net_dev,
397		  "chan %d remove event queue\n", channel->channel);
398
399	efx_nic_remove_eventq(channel);
400}
401
402/**************************************************************************
403 *
404 * Channel handling
405 *
406 *************************************************************************/
407
408/* Allocate and initialise a channel structure. */
409static struct efx_channel *
410efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
411{
412	struct efx_channel *channel;
413	struct efx_rx_queue *rx_queue;
414	struct efx_tx_queue *tx_queue;
415	int j;
416
417	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
418	if (!channel)
419		return NULL;
420
421	channel->efx = efx;
422	channel->channel = i;
423	channel->type = &efx_default_channel_type;
424
425	for (j = 0; j < EFX_TXQ_TYPES; j++) {
426		tx_queue = &channel->tx_queue[j];
427		tx_queue->efx = efx;
428		tx_queue->queue = i * EFX_TXQ_TYPES + j;
429		tx_queue->channel = channel;
430	}
431
432	rx_queue = &channel->rx_queue;
433	rx_queue->efx = efx;
434	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
435		    (unsigned long)rx_queue);
436
437	return channel;
438}
439
440/* Allocate and initialise a channel structure, copying parameters
441 * (but not resources) from an old channel structure.
442 */
443static struct efx_channel *
444efx_copy_channel(const struct efx_channel *old_channel)
445{
446	struct efx_channel *channel;
447	struct efx_rx_queue *rx_queue;
448	struct efx_tx_queue *tx_queue;
449	int j;
450
451	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
452	if (!channel)
453		return NULL;
454
455	*channel = *old_channel;
456
457	channel->napi_dev = NULL;
458	memset(&channel->eventq, 0, sizeof(channel->eventq));
459
460	for (j = 0; j < EFX_TXQ_TYPES; j++) {
461		tx_queue = &channel->tx_queue[j];
462		if (tx_queue->channel)
463			tx_queue->channel = channel;
464		tx_queue->buffer = NULL;
465		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466	}
467
468	rx_queue = &channel->rx_queue;
469	rx_queue->buffer = NULL;
470	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472		    (unsigned long)rx_queue);
473
474	return channel;
475}
476
477static int efx_probe_channel(struct efx_channel *channel)
478{
479	struct efx_tx_queue *tx_queue;
480	struct efx_rx_queue *rx_queue;
481	int rc;
482
483	netif_dbg(channel->efx, probe, channel->efx->net_dev,
484		  "creating channel %d\n", channel->channel);
485
486	rc = channel->type->pre_probe(channel);
487	if (rc)
488		goto fail;
489
490	rc = efx_probe_eventq(channel);
491	if (rc)
492		goto fail;
493
494	efx_for_each_channel_tx_queue(tx_queue, channel) {
495		rc = efx_probe_tx_queue(tx_queue);
496		if (rc)
497			goto fail;
498	}
499
500	efx_for_each_channel_rx_queue(rx_queue, channel) {
501		rc = efx_probe_rx_queue(rx_queue);
502		if (rc)
503			goto fail;
504	}
505
506	channel->n_rx_frm_trunc = 0;
507
508	return 0;
509
510fail:
511	efx_remove_channel(channel);
512	return rc;
513}
514
515static void
516efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
517{
518	struct efx_nic *efx = channel->efx;
519	const char *type;
520	int number;
521
522	number = channel->channel;
523	if (efx->tx_channel_offset == 0) {
524		type = "";
525	} else if (channel->channel < efx->tx_channel_offset) {
526		type = "-rx";
527	} else {
528		type = "-tx";
529		number -= efx->tx_channel_offset;
530	}
531	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
532}
533
534static void efx_set_channel_names(struct efx_nic *efx)
535{
536	struct efx_channel *channel;
537
538	efx_for_each_channel(channel, efx)
539		channel->type->get_name(channel,
540					efx->msi_context[channel->channel].name,
541					sizeof(efx->msi_context[0].name));
542}
543
544static int efx_probe_channels(struct efx_nic *efx)
545{
546	struct efx_channel *channel;
547	int rc;
548
549	/* Restart special buffer allocation */
550	efx->next_buffer_table = 0;
551
552	/* Probe channels in reverse, so that any 'extra' channels
553	 * use the start of the buffer table. This allows the traffic
554	 * channels to be resized without moving them or wasting the
555	 * entries before them.
556	 */
557	efx_for_each_channel_rev(channel, efx) {
558		rc = efx_probe_channel(channel);
559		if (rc) {
560			netif_err(efx, probe, efx->net_dev,
561				  "failed to create channel %d\n",
562				  channel->channel);
563			goto fail;
564		}
565	}
566	efx_set_channel_names(efx);
567
568	return 0;
569
570fail:
571	efx_remove_channels(efx);
572	return rc;
573}
574
575/* Channels are shutdown and reinitialised whilst the NIC is running
576 * to propagate configuration changes (mtu, checksum offload), or
577 * to clear hardware error conditions
578 */
579static void efx_start_datapath(struct efx_nic *efx)
580{
581	bool old_rx_scatter = efx->rx_scatter;
582	struct efx_tx_queue *tx_queue;
583	struct efx_rx_queue *rx_queue;
584	struct efx_channel *channel;
585	size_t rx_buf_len;
586
587	/* Calculate the rx buffer allocation parameters required to
588	 * support the current MTU, including padding for header
589	 * alignment and overruns.
590	 */
591	efx->rx_dma_len = (efx->rx_prefix_size +
592			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
593			   efx->type->rx_buffer_padding);
594	rx_buf_len = (sizeof(struct efx_rx_page_state) +
595		      efx->rx_ip_align + efx->rx_dma_len);
596	if (rx_buf_len <= PAGE_SIZE) {
597		efx->rx_scatter = efx->type->always_rx_scatter;
598		efx->rx_buffer_order = 0;
599	} else if (efx->type->can_rx_scatter) {
600		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
601		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
602			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
603				       EFX_RX_BUF_ALIGNMENT) >
604			     PAGE_SIZE);
605		efx->rx_scatter = true;
606		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
607		efx->rx_buffer_order = 0;
608	} else {
609		efx->rx_scatter = false;
610		efx->rx_buffer_order = get_order(rx_buf_len);
611	}
612
613	efx_rx_config_page_split(efx);
614	if (efx->rx_buffer_order)
615		netif_dbg(efx, drv, efx->net_dev,
616			  "RX buf len=%u; page order=%u batch=%u\n",
617			  efx->rx_dma_len, efx->rx_buffer_order,
618			  efx->rx_pages_per_batch);
619	else
620		netif_dbg(efx, drv, efx->net_dev,
621			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
622			  efx->rx_dma_len, efx->rx_page_buf_step,
623			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
624
625	/* RX filters may also have scatter-enabled flags */
626	if (efx->rx_scatter != old_rx_scatter)
627		efx->type->filter_update_rx_scatter(efx);
628
629	/* We must keep at least one descriptor in a TX ring empty.
630	 * We could avoid this when the queue size does not exactly
631	 * match the hardware ring size, but it's not that important.
632	 * Therefore we stop the queue when one more skb might fill
633	 * the ring completely.  We wake it when half way back to
634	 * empty.
635	 */
636	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
637	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
638
639	/* Initialise the channels */
640	efx_for_each_channel(channel, efx) {
641		efx_for_each_channel_tx_queue(tx_queue, channel) {
642			efx_init_tx_queue(tx_queue);
643			atomic_inc(&efx->active_queues);
644		}
645
646		efx_for_each_channel_rx_queue(rx_queue, channel) {
647			efx_init_rx_queue(rx_queue);
648			atomic_inc(&efx->active_queues);
649			efx_stop_eventq(channel);
650			efx_fast_push_rx_descriptors(rx_queue, false);
651			efx_start_eventq(channel);
652		}
653
654		WARN_ON(channel->rx_pkt_n_frags);
655	}
656
657	efx_ptp_start_datapath(efx);
658
659	if (netif_device_present(efx->net_dev))
660		netif_tx_wake_all_queues(efx->net_dev);
661}
662
663static void efx_stop_datapath(struct efx_nic *efx)
664{
665	struct efx_channel *channel;
666	struct efx_tx_queue *tx_queue;
667	struct efx_rx_queue *rx_queue;
668	int rc;
669
670	EFX_ASSERT_RESET_SERIALISED(efx);
671	BUG_ON(efx->port_enabled);
672
673	efx_ptp_stop_datapath(efx);
674
675	/* Stop RX refill */
676	efx_for_each_channel(channel, efx) {
677		efx_for_each_channel_rx_queue(rx_queue, channel)
678			rx_queue->refill_enabled = false;
679	}
680
681	efx_for_each_channel(channel, efx) {
682		/* RX packet processing is pipelined, so wait for the
683		 * NAPI handler to complete.  At least event queue 0
684		 * might be kept active by non-data events, so don't
685		 * use napi_synchronize() but actually disable NAPI
686		 * temporarily.
687		 */
688		if (efx_channel_has_rx_queue(channel)) {
689			efx_stop_eventq(channel);
690			efx_start_eventq(channel);
691		}
692	}
693
694	rc = efx->type->fini_dmaq(efx);
695	if (rc && EFX_WORKAROUND_7803(efx)) {
696		/* Schedule a reset to recover from the flush failure. The
697		 * descriptor caches reference memory we're about to free,
698		 * but falcon_reconfigure_mac_wrapper() won't reconnect
699		 * the MACs because of the pending reset.
700		 */
701		netif_err(efx, drv, efx->net_dev,
702			  "Resetting to recover from flush failure\n");
703		efx_schedule_reset(efx, RESET_TYPE_ALL);
704	} else if (rc) {
705		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
706	} else {
707		netif_dbg(efx, drv, efx->net_dev,
708			  "successfully flushed all queues\n");
709	}
710
711	efx_for_each_channel(channel, efx) {
712		efx_for_each_channel_rx_queue(rx_queue, channel)
713			efx_fini_rx_queue(rx_queue);
714		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
715			efx_fini_tx_queue(tx_queue);
716	}
717}
718
719static void efx_remove_channel(struct efx_channel *channel)
720{
721	struct efx_tx_queue *tx_queue;
722	struct efx_rx_queue *rx_queue;
723
724	netif_dbg(channel->efx, drv, channel->efx->net_dev,
725		  "destroy chan %d\n", channel->channel);
726
727	efx_for_each_channel_rx_queue(rx_queue, channel)
728		efx_remove_rx_queue(rx_queue);
729	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
730		efx_remove_tx_queue(tx_queue);
731	efx_remove_eventq(channel);
732	channel->type->post_remove(channel);
733}
734
735static void efx_remove_channels(struct efx_nic *efx)
736{
737	struct efx_channel *channel;
738
739	efx_for_each_channel(channel, efx)
740		efx_remove_channel(channel);
741}
742
743int
744efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
745{
746	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
747	u32 old_rxq_entries, old_txq_entries;
748	unsigned i, next_buffer_table = 0;
749	int rc, rc2;
750
751	rc = efx_check_disabled(efx);
752	if (rc)
753		return rc;
754
755	/* Not all channels should be reallocated. We must avoid
756	 * reallocating their buffer table entries.
757	 */
758	efx_for_each_channel(channel, efx) {
759		struct efx_rx_queue *rx_queue;
760		struct efx_tx_queue *tx_queue;
761
762		if (channel->type->copy)
763			continue;
764		next_buffer_table = max(next_buffer_table,
765					channel->eventq.index +
766					channel->eventq.entries);
767		efx_for_each_channel_rx_queue(rx_queue, channel)
768			next_buffer_table = max(next_buffer_table,
769						rx_queue->rxd.index +
770						rx_queue->rxd.entries);
771		efx_for_each_channel_tx_queue(tx_queue, channel)
772			next_buffer_table = max(next_buffer_table,
773						tx_queue->txd.index +
774						tx_queue->txd.entries);
775	}
776
777	efx_device_detach_sync(efx);
778	efx_stop_all(efx);
779	efx_soft_disable_interrupts(efx);
780
781	/* Clone channels (where possible) */
782	memset(other_channel, 0, sizeof(other_channel));
783	for (i = 0; i < efx->n_channels; i++) {
784		channel = efx->channel[i];
785		if (channel->type->copy)
786			channel = channel->type->copy(channel);
787		if (!channel) {
788			rc = -ENOMEM;
789			goto out;
790		}
791		other_channel[i] = channel;
792	}
793
794	/* Swap entry counts and channel pointers */
795	old_rxq_entries = efx->rxq_entries;
796	old_txq_entries = efx->txq_entries;
797	efx->rxq_entries = rxq_entries;
798	efx->txq_entries = txq_entries;
799	for (i = 0; i < efx->n_channels; i++) {
800		channel = efx->channel[i];
801		efx->channel[i] = other_channel[i];
802		other_channel[i] = channel;
803	}
804
805	/* Restart buffer table allocation */
806	efx->next_buffer_table = next_buffer_table;
807
808	for (i = 0; i < efx->n_channels; i++) {
809		channel = efx->channel[i];
810		if (!channel->type->copy)
811			continue;
812		rc = efx_probe_channel(channel);
813		if (rc)
814			goto rollback;
815		efx_init_napi_channel(efx->channel[i]);
816	}
817
818out:
819	/* Destroy unused channel structures */
820	for (i = 0; i < efx->n_channels; i++) {
821		channel = other_channel[i];
822		if (channel && channel->type->copy) {
823			efx_fini_napi_channel(channel);
824			efx_remove_channel(channel);
825			kfree(channel);
826		}
827	}
828
829	rc2 = efx_soft_enable_interrupts(efx);
830	if (rc2) {
831		rc = rc ? rc : rc2;
832		netif_err(efx, drv, efx->net_dev,
833			  "unable to restart interrupts on channel reallocation\n");
834		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
835	} else {
836		efx_start_all(efx);
837		netif_device_attach(efx->net_dev);
838	}
839	return rc;
840
841rollback:
842	/* Swap back */
843	efx->rxq_entries = old_rxq_entries;
844	efx->txq_entries = old_txq_entries;
845	for (i = 0; i < efx->n_channels; i++) {
846		channel = efx->channel[i];
847		efx->channel[i] = other_channel[i];
848		other_channel[i] = channel;
849	}
850	goto out;
851}
852
853void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
854{
855	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
856}
857
858static const struct efx_channel_type efx_default_channel_type = {
859	.pre_probe		= efx_channel_dummy_op_int,
860	.post_remove		= efx_channel_dummy_op_void,
861	.get_name		= efx_get_channel_name,
862	.copy			= efx_copy_channel,
863	.keep_eventq		= false,
864};
865
866int efx_channel_dummy_op_int(struct efx_channel *channel)
867{
868	return 0;
869}
870
871void efx_channel_dummy_op_void(struct efx_channel *channel)
872{
873}
874
875/**************************************************************************
876 *
877 * Port handling
878 *
879 **************************************************************************/
880
881/* This ensures that the kernel is kept informed (via
882 * netif_carrier_on/off) of the link status, and also maintains the
883 * link status's stop on the port's TX queue.
884 */
885void efx_link_status_changed(struct efx_nic *efx)
886{
887	struct efx_link_state *link_state = &efx->link_state;
888
889	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
890	 * that no events are triggered between unregister_netdev() and the
891	 * driver unloading. A more general condition is that NETDEV_CHANGE
892	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
893	if (!netif_running(efx->net_dev))
894		return;
895
896	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
897		efx->n_link_state_changes++;
898
899		if (link_state->up)
900			netif_carrier_on(efx->net_dev);
901		else
902			netif_carrier_off(efx->net_dev);
903	}
904
905	/* Status message for kernel log */
906	if (link_state->up)
907		netif_info(efx, link, efx->net_dev,
908			   "link up at %uMbps %s-duplex (MTU %d)\n",
909			   link_state->speed, link_state->fd ? "full" : "half",
910			   efx->net_dev->mtu);
911	else
912		netif_info(efx, link, efx->net_dev, "link down\n");
913}
914
915void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
916{
917	efx->link_advertising = advertising;
918	if (advertising) {
919		if (advertising & ADVERTISED_Pause)
920			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
921		else
922			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
923		if (advertising & ADVERTISED_Asym_Pause)
924			efx->wanted_fc ^= EFX_FC_TX;
925	}
926}
927
928void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
929{
930	efx->wanted_fc = wanted_fc;
931	if (efx->link_advertising) {
932		if (wanted_fc & EFX_FC_RX)
933			efx->link_advertising |= (ADVERTISED_Pause |
934						  ADVERTISED_Asym_Pause);
935		else
936			efx->link_advertising &= ~(ADVERTISED_Pause |
937						   ADVERTISED_Asym_Pause);
938		if (wanted_fc & EFX_FC_TX)
939			efx->link_advertising ^= ADVERTISED_Asym_Pause;
940	}
941}
942
943static void efx_fini_port(struct efx_nic *efx);
944
945/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
946 * the MAC appropriately. All other PHY configuration changes are pushed
947 * through phy_op->set_settings(), and pushed asynchronously to the MAC
948 * through efx_monitor().
949 *
950 * Callers must hold the mac_lock
951 */
952int __efx_reconfigure_port(struct efx_nic *efx)
953{
954	enum efx_phy_mode phy_mode;
955	int rc;
956
957	WARN_ON(!mutex_is_locked(&efx->mac_lock));
958
959	/* Disable PHY transmit in mac level loopbacks */
960	phy_mode = efx->phy_mode;
961	if (LOOPBACK_INTERNAL(efx))
962		efx->phy_mode |= PHY_MODE_TX_DISABLED;
963	else
964		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
965
966	rc = efx->type->reconfigure_port(efx);
967
968	if (rc)
969		efx->phy_mode = phy_mode;
970
971	return rc;
972}
973
974/* Reinitialise the MAC to pick up new PHY settings, even if the port is
975 * disabled. */
976int efx_reconfigure_port(struct efx_nic *efx)
977{
978	int rc;
979
980	EFX_ASSERT_RESET_SERIALISED(efx);
981
982	mutex_lock(&efx->mac_lock);
983	rc = __efx_reconfigure_port(efx);
984	mutex_unlock(&efx->mac_lock);
985
986	return rc;
987}
988
989/* Asynchronous work item for changing MAC promiscuity and multicast
990 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
991 * MAC directly. */
992static void efx_mac_work(struct work_struct *data)
993{
994	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
995
996	mutex_lock(&efx->mac_lock);
997	if (efx->port_enabled)
998		efx->type->reconfigure_mac(efx);
999	mutex_unlock(&efx->mac_lock);
1000}
1001
1002static int efx_probe_port(struct efx_nic *efx)
1003{
1004	int rc;
1005
1006	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1007
1008	if (phy_flash_cfg)
1009		efx->phy_mode = PHY_MODE_SPECIAL;
1010
1011	/* Connect up MAC/PHY operations table */
1012	rc = efx->type->probe_port(efx);
1013	if (rc)
1014		return rc;
1015
1016	/* Initialise MAC address to permanent address */
1017	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1018
1019	return 0;
1020}
1021
1022static int efx_init_port(struct efx_nic *efx)
1023{
1024	int rc;
1025
1026	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1027
1028	mutex_lock(&efx->mac_lock);
1029
1030	rc = efx->phy_op->init(efx);
1031	if (rc)
1032		goto fail1;
1033
1034	efx->port_initialized = true;
1035
1036	/* Reconfigure the MAC before creating dma queues (required for
1037	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1038	efx->type->reconfigure_mac(efx);
1039
1040	/* Ensure the PHY advertises the correct flow control settings */
1041	rc = efx->phy_op->reconfigure(efx);
1042	if (rc)
1043		goto fail2;
1044
1045	mutex_unlock(&efx->mac_lock);
1046	return 0;
1047
1048fail2:
1049	efx->phy_op->fini(efx);
1050fail1:
1051	mutex_unlock(&efx->mac_lock);
1052	return rc;
1053}
1054
1055static void efx_start_port(struct efx_nic *efx)
1056{
1057	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1058	BUG_ON(efx->port_enabled);
1059
1060	mutex_lock(&efx->mac_lock);
1061	efx->port_enabled = true;
1062
1063	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1064	 * and then cancelled by efx_flush_all() */
1065	efx->type->reconfigure_mac(efx);
1066
1067	mutex_unlock(&efx->mac_lock);
1068}
1069
1070/* Prevent efx_mac_work() and efx_monitor() from working */
1071static void efx_stop_port(struct efx_nic *efx)
1072{
1073	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1074
1075	mutex_lock(&efx->mac_lock);
1076	efx->port_enabled = false;
1077	mutex_unlock(&efx->mac_lock);
1078
1079	/* Serialise against efx_set_multicast_list() */
1080	netif_addr_lock_bh(efx->net_dev);
1081	netif_addr_unlock_bh(efx->net_dev);
1082}
1083
1084static void efx_fini_port(struct efx_nic *efx)
1085{
1086	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1087
1088	if (!efx->port_initialized)
1089		return;
1090
1091	efx->phy_op->fini(efx);
1092	efx->port_initialized = false;
1093
1094	efx->link_state.up = false;
1095	efx_link_status_changed(efx);
1096}
1097
1098static void efx_remove_port(struct efx_nic *efx)
1099{
1100	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1101
1102	efx->type->remove_port(efx);
1103}
1104
1105/**************************************************************************
1106 *
1107 * NIC handling
1108 *
1109 **************************************************************************/
1110
1111/* This configures the PCI device to enable I/O and DMA. */
1112static int efx_init_io(struct efx_nic *efx)
1113{
1114	struct pci_dev *pci_dev = efx->pci_dev;
1115	dma_addr_t dma_mask = efx->type->max_dma_mask;
1116	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1117	int rc;
1118
1119	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1120
1121	rc = pci_enable_device(pci_dev);
1122	if (rc) {
1123		netif_err(efx, probe, efx->net_dev,
1124			  "failed to enable PCI device\n");
1125		goto fail1;
1126	}
1127
1128	pci_set_master(pci_dev);
1129
1130	/* Set the PCI DMA mask.  Try all possibilities from our
1131	 * genuine mask down to 32 bits, because some architectures
1132	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1133	 * masks event though they reject 46 bit masks.
1134	 */
1135	while (dma_mask > 0x7fffffffUL) {
1136		if (dma_supported(&pci_dev->dev, dma_mask)) {
1137			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1138			if (rc == 0)
1139				break;
1140		}
1141		dma_mask >>= 1;
1142	}
1143	if (rc) {
1144		netif_err(efx, probe, efx->net_dev,
1145			  "could not find a suitable DMA mask\n");
1146		goto fail2;
1147	}
1148	netif_dbg(efx, probe, efx->net_dev,
1149		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1150
1151	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1152	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1153	if (rc) {
1154		netif_err(efx, probe, efx->net_dev,
1155			  "request for memory BAR failed\n");
1156		rc = -EIO;
1157		goto fail3;
1158	}
1159	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1160	if (!efx->membase) {
1161		netif_err(efx, probe, efx->net_dev,
1162			  "could not map memory BAR at %llx+%x\n",
1163			  (unsigned long long)efx->membase_phys, mem_map_size);
1164		rc = -ENOMEM;
1165		goto fail4;
1166	}
1167	netif_dbg(efx, probe, efx->net_dev,
1168		  "memory BAR at %llx+%x (virtual %p)\n",
1169		  (unsigned long long)efx->membase_phys, mem_map_size,
1170		  efx->membase);
1171
1172	return 0;
1173
1174 fail4:
1175	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1176 fail3:
1177	efx->membase_phys = 0;
1178 fail2:
1179	pci_disable_device(efx->pci_dev);
1180 fail1:
1181	return rc;
1182}
1183
1184static void efx_fini_io(struct efx_nic *efx)
1185{
1186	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1187
1188	if (efx->membase) {
1189		iounmap(efx->membase);
1190		efx->membase = NULL;
1191	}
1192
1193	if (efx->membase_phys) {
1194		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1195		efx->membase_phys = 0;
1196	}
1197
1198	pci_disable_device(efx->pci_dev);
1199}
1200
1201static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1202{
1203	cpumask_var_t thread_mask;
1204	unsigned int count;
1205	int cpu;
1206
1207	if (rss_cpus) {
1208		count = rss_cpus;
1209	} else {
1210		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1211			netif_warn(efx, probe, efx->net_dev,
1212				   "RSS disabled due to allocation failure\n");
1213			return 1;
1214		}
1215
1216		count = 0;
1217		for_each_online_cpu(cpu) {
1218			if (!cpumask_test_cpu(cpu, thread_mask)) {
1219				++count;
1220				cpumask_or(thread_mask, thread_mask,
1221					   topology_thread_cpumask(cpu));
1222			}
1223		}
1224
1225		free_cpumask_var(thread_mask);
1226	}
1227
1228	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1229	 * table entries that are inaccessible to VFs
1230	 */
1231	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1232	    count > efx_vf_size(efx)) {
1233		netif_warn(efx, probe, efx->net_dev,
1234			   "Reducing number of RSS channels from %u to %u for "
1235			   "VF support. Increase vf-msix-limit to use more "
1236			   "channels on the PF.\n",
1237			   count, efx_vf_size(efx));
1238		count = efx_vf_size(efx);
1239	}
1240
1241	return count;
1242}
1243
1244/* Probe the number and type of interrupts we are able to obtain, and
1245 * the resulting numbers of channels and RX queues.
1246 */
1247static int efx_probe_interrupts(struct efx_nic *efx)
1248{
1249	unsigned int extra_channels = 0;
1250	unsigned int i, j;
1251	int rc;
1252
1253	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1254		if (efx->extra_channel_type[i])
1255			++extra_channels;
1256
1257	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1258		struct msix_entry xentries[EFX_MAX_CHANNELS];
1259		unsigned int n_channels;
1260
1261		n_channels = efx_wanted_parallelism(efx);
1262		if (separate_tx_channels)
1263			n_channels *= 2;
1264		n_channels += extra_channels;
1265		n_channels = min(n_channels, efx->max_channels);
1266
1267		for (i = 0; i < n_channels; i++)
1268			xentries[i].entry = i;
1269		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1270		if (rc > 0) {
1271			netif_err(efx, drv, efx->net_dev,
1272				  "WARNING: Insufficient MSI-X vectors"
1273				  " available (%d < %u).\n", rc, n_channels);
1274			netif_err(efx, drv, efx->net_dev,
1275				  "WARNING: Performance may be reduced.\n");
1276			EFX_BUG_ON_PARANOID(rc >= n_channels);
1277			n_channels = rc;
1278			rc = pci_enable_msix(efx->pci_dev, xentries,
1279					     n_channels);
1280		}
1281
1282		if (rc == 0) {
1283			efx->n_channels = n_channels;
1284			if (n_channels > extra_channels)
1285				n_channels -= extra_channels;
1286			if (separate_tx_channels) {
1287				efx->n_tx_channels = max(n_channels / 2, 1U);
1288				efx->n_rx_channels = max(n_channels -
1289							 efx->n_tx_channels,
1290							 1U);
1291			} else {
1292				efx->n_tx_channels = n_channels;
1293				efx->n_rx_channels = n_channels;
1294			}
1295			for (i = 0; i < efx->n_channels; i++)
1296				efx_get_channel(efx, i)->irq =
1297					xentries[i].vector;
1298		} else {
1299			/* Fall back to single channel MSI */
1300			efx->interrupt_mode = EFX_INT_MODE_MSI;
1301			netif_err(efx, drv, efx->net_dev,
1302				  "could not enable MSI-X\n");
1303		}
1304	}
1305
1306	/* Try single interrupt MSI */
1307	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1308		efx->n_channels = 1;
1309		efx->n_rx_channels = 1;
1310		efx->n_tx_channels = 1;
1311		rc = pci_enable_msi(efx->pci_dev);
1312		if (rc == 0) {
1313			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1314		} else {
1315			netif_err(efx, drv, efx->net_dev,
1316				  "could not enable MSI\n");
1317			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1318		}
1319	}
1320
1321	/* Assume legacy interrupts */
1322	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1323		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1324		efx->n_rx_channels = 1;
1325		efx->n_tx_channels = 1;
1326		efx->legacy_irq = efx->pci_dev->irq;
1327	}
1328
1329	/* Assign extra channels if possible */
1330	j = efx->n_channels;
1331	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1332		if (!efx->extra_channel_type[i])
1333			continue;
1334		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1335		    efx->n_channels <= extra_channels) {
1336			efx->extra_channel_type[i]->handle_no_channel(efx);
1337		} else {
1338			--j;
1339			efx_get_channel(efx, j)->type =
1340				efx->extra_channel_type[i];
1341		}
1342	}
1343
1344	/* RSS might be usable on VFs even if it is disabled on the PF */
1345	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1346			   efx->n_rx_channels : efx_vf_size(efx));
1347
1348	return 0;
1349}
1350
1351static int efx_soft_enable_interrupts(struct efx_nic *efx)
1352{
1353	struct efx_channel *channel, *end_channel;
1354	int rc;
1355
1356	BUG_ON(efx->state == STATE_DISABLED);
1357
1358	efx->irq_soft_enabled = true;
1359	smp_wmb();
1360
1361	efx_for_each_channel(channel, efx) {
1362		if (!channel->type->keep_eventq) {
1363			rc = efx_init_eventq(channel);
1364			if (rc)
1365				goto fail;
1366		}
1367		efx_start_eventq(channel);
1368	}
1369
1370	efx_mcdi_mode_event(efx);
1371
1372	return 0;
1373fail:
1374	end_channel = channel;
1375	efx_for_each_channel(channel, efx) {
1376		if (channel == end_channel)
1377			break;
1378		efx_stop_eventq(channel);
1379		if (!channel->type->keep_eventq)
1380			efx_fini_eventq(channel);
1381	}
1382
1383	return rc;
1384}
1385
1386static void efx_soft_disable_interrupts(struct efx_nic *efx)
1387{
1388	struct efx_channel *channel;
1389
1390	if (efx->state == STATE_DISABLED)
1391		return;
1392
1393	efx_mcdi_mode_poll(efx);
1394
1395	efx->irq_soft_enabled = false;
1396	smp_wmb();
1397
1398	if (efx->legacy_irq)
1399		synchronize_irq(efx->legacy_irq);
1400
1401	efx_for_each_channel(channel, efx) {
1402		if (channel->irq)
1403			synchronize_irq(channel->irq);
1404
1405		efx_stop_eventq(channel);
1406		if (!channel->type->keep_eventq)
1407			efx_fini_eventq(channel);
1408	}
1409
1410	/* Flush the asynchronous MCDI request queue */
1411	efx_mcdi_flush_async(efx);
1412}
1413
1414static int efx_enable_interrupts(struct efx_nic *efx)
1415{
1416	struct efx_channel *channel, *end_channel;
1417	int rc;
1418
1419	BUG_ON(efx->state == STATE_DISABLED);
1420
1421	if (efx->eeh_disabled_legacy_irq) {
1422		enable_irq(efx->legacy_irq);
1423		efx->eeh_disabled_legacy_irq = false;
1424	}
1425
1426	efx->type->irq_enable_master(efx);
1427
1428	efx_for_each_channel(channel, efx) {
1429		if (channel->type->keep_eventq) {
1430			rc = efx_init_eventq(channel);
1431			if (rc)
1432				goto fail;
1433		}
1434	}
1435
1436	rc = efx_soft_enable_interrupts(efx);
1437	if (rc)
1438		goto fail;
1439
1440	return 0;
1441
1442fail:
1443	end_channel = channel;
1444	efx_for_each_channel(channel, efx) {
1445		if (channel == end_channel)
1446			break;
1447		if (channel->type->keep_eventq)
1448			efx_fini_eventq(channel);
1449	}
1450
1451	efx->type->irq_disable_non_ev(efx);
1452
1453	return rc;
1454}
1455
1456static void efx_disable_interrupts(struct efx_nic *efx)
1457{
1458	struct efx_channel *channel;
1459
1460	efx_soft_disable_interrupts(efx);
1461
1462	efx_for_each_channel(channel, efx) {
1463		if (channel->type->keep_eventq)
1464			efx_fini_eventq(channel);
1465	}
1466
1467	efx->type->irq_disable_non_ev(efx);
1468}
1469
1470static void efx_remove_interrupts(struct efx_nic *efx)
1471{
1472	struct efx_channel *channel;
1473
1474	/* Remove MSI/MSI-X interrupts */
1475	efx_for_each_channel(channel, efx)
1476		channel->irq = 0;
1477	pci_disable_msi(efx->pci_dev);
1478	pci_disable_msix(efx->pci_dev);
1479
1480	/* Remove legacy interrupt */
1481	efx->legacy_irq = 0;
1482}
1483
1484static void efx_set_channels(struct efx_nic *efx)
1485{
1486	struct efx_channel *channel;
1487	struct efx_tx_queue *tx_queue;
1488
1489	efx->tx_channel_offset =
1490		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1491
1492	/* We need to mark which channels really have RX and TX
1493	 * queues, and adjust the TX queue numbers if we have separate
1494	 * RX-only and TX-only channels.
1495	 */
1496	efx_for_each_channel(channel, efx) {
1497		if (channel->channel < efx->n_rx_channels)
1498			channel->rx_queue.core_index = channel->channel;
1499		else
1500			channel->rx_queue.core_index = -1;
1501
1502		efx_for_each_channel_tx_queue(tx_queue, channel)
1503			tx_queue->queue -= (efx->tx_channel_offset *
1504					    EFX_TXQ_TYPES);
1505	}
1506}
1507
1508static int efx_probe_nic(struct efx_nic *efx)
1509{
1510	size_t i;
1511	int rc;
1512
1513	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1514
1515	/* Carry out hardware-type specific initialisation */
1516	rc = efx->type->probe(efx);
1517	if (rc)
1518		return rc;
1519
1520	/* Determine the number of channels and queues by trying to hook
1521	 * in MSI-X interrupts. */
1522	rc = efx_probe_interrupts(efx);
1523	if (rc)
1524		goto fail1;
1525
1526	rc = efx->type->dimension_resources(efx);
1527	if (rc)
1528		goto fail2;
1529
1530	if (efx->n_channels > 1)
1531		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1532	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1533		efx->rx_indir_table[i] =
1534			ethtool_rxfh_indir_default(i, efx->rss_spread);
1535
1536	efx_set_channels(efx);
1537	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1538	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1539
1540	/* Initialise the interrupt moderation settings */
1541	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1542				true);
1543
1544	return 0;
1545
1546fail2:
1547	efx_remove_interrupts(efx);
1548fail1:
1549	efx->type->remove(efx);
1550	return rc;
1551}
1552
1553static void efx_remove_nic(struct efx_nic *efx)
1554{
1555	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1556
1557	efx_remove_interrupts(efx);
1558	efx->type->remove(efx);
1559}
1560
1561static int efx_probe_filters(struct efx_nic *efx)
1562{
1563	int rc;
1564
1565	spin_lock_init(&efx->filter_lock);
1566
1567	rc = efx->type->filter_table_probe(efx);
1568	if (rc)
1569		return rc;
1570
1571#ifdef CONFIG_RFS_ACCEL
1572	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1573		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1574					   sizeof(*efx->rps_flow_id),
1575					   GFP_KERNEL);
1576		if (!efx->rps_flow_id) {
1577			efx->type->filter_table_remove(efx);
1578			return -ENOMEM;
1579		}
1580	}
1581#endif
1582
1583	return 0;
1584}
1585
1586static void efx_remove_filters(struct efx_nic *efx)
1587{
1588#ifdef CONFIG_RFS_ACCEL
1589	kfree(efx->rps_flow_id);
1590#endif
1591	efx->type->filter_table_remove(efx);
1592}
1593
1594static void efx_restore_filters(struct efx_nic *efx)
1595{
1596	efx->type->filter_table_restore(efx);
1597}
1598
1599/**************************************************************************
1600 *
1601 * NIC startup/shutdown
1602 *
1603 *************************************************************************/
1604
1605static int efx_probe_all(struct efx_nic *efx)
1606{
1607	int rc;
1608
1609	rc = efx_probe_nic(efx);
1610	if (rc) {
1611		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1612		goto fail1;
1613	}
1614
1615	rc = efx_probe_port(efx);
1616	if (rc) {
1617		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1618		goto fail2;
1619	}
1620
1621	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1622	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1623		rc = -EINVAL;
1624		goto fail3;
1625	}
1626	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1627
1628	rc = efx_probe_filters(efx);
1629	if (rc) {
1630		netif_err(efx, probe, efx->net_dev,
1631			  "failed to create filter tables\n");
1632		goto fail3;
1633	}
1634
1635	rc = efx_probe_channels(efx);
1636	if (rc)
1637		goto fail4;
1638
1639	return 0;
1640
1641 fail4:
1642	efx_remove_filters(efx);
1643 fail3:
1644	efx_remove_port(efx);
1645 fail2:
1646	efx_remove_nic(efx);
1647 fail1:
1648	return rc;
1649}
1650
1651/* If the interface is supposed to be running but is not, start
1652 * the hardware and software data path, regular activity for the port
1653 * (MAC statistics, link polling, etc.) and schedule the port to be
1654 * reconfigured.  Interrupts must already be enabled.  This function
1655 * is safe to call multiple times, so long as the NIC is not disabled.
1656 * Requires the RTNL lock.
1657 */
1658static void efx_start_all(struct efx_nic *efx)
1659{
1660	EFX_ASSERT_RESET_SERIALISED(efx);
1661	BUG_ON(efx->state == STATE_DISABLED);
1662
1663	/* Check that it is appropriate to restart the interface. All
1664	 * of these flags are safe to read under just the rtnl lock */
1665	if (efx->port_enabled || !netif_running(efx->net_dev))
1666		return;
1667
1668	efx_start_port(efx);
1669	efx_start_datapath(efx);
1670
1671	/* Start the hardware monitor if there is one */
1672	if (efx->type->monitor != NULL)
1673		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1674				   efx_monitor_interval);
1675
1676	/* If link state detection is normally event-driven, we have
1677	 * to poll now because we could have missed a change
1678	 */
1679	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1680		mutex_lock(&efx->mac_lock);
1681		if (efx->phy_op->poll(efx))
1682			efx_link_status_changed(efx);
1683		mutex_unlock(&efx->mac_lock);
1684	}
1685
1686	efx->type->start_stats(efx);
1687	efx->type->pull_stats(efx);
1688	spin_lock_bh(&efx->stats_lock);
1689	efx->type->update_stats(efx, NULL, NULL);
1690	spin_unlock_bh(&efx->stats_lock);
1691}
1692
1693/* Flush all delayed work. Should only be called when no more delayed work
1694 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1695 * since we're holding the rtnl_lock at this point. */
1696static void efx_flush_all(struct efx_nic *efx)
1697{
1698	/* Make sure the hardware monitor and event self-test are stopped */
1699	cancel_delayed_work_sync(&efx->monitor_work);
1700	efx_selftest_async_cancel(efx);
1701	/* Stop scheduled port reconfigurations */
1702	cancel_work_sync(&efx->mac_work);
1703}
1704
1705/* Quiesce the hardware and software data path, and regular activity
1706 * for the port without bringing the link down.  Safe to call multiple
1707 * times with the NIC in almost any state, but interrupts should be
1708 * enabled.  Requires the RTNL lock.
1709 */
1710static void efx_stop_all(struct efx_nic *efx)
1711{
1712	EFX_ASSERT_RESET_SERIALISED(efx);
1713
1714	/* port_enabled can be read safely under the rtnl lock */
1715	if (!efx->port_enabled)
1716		return;
1717
1718	/* update stats before we go down so we can accurately count
1719	 * rx_nodesc_drops
1720	 */
1721	efx->type->pull_stats(efx);
1722	spin_lock_bh(&efx->stats_lock);
1723	efx->type->update_stats(efx, NULL, NULL);
1724	spin_unlock_bh(&efx->stats_lock);
1725	efx->type->stop_stats(efx);
1726	efx_stop_port(efx);
1727
1728	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1729	efx_flush_all(efx);
1730
1731	/* Stop the kernel transmit interface.  This is only valid if
1732	 * the device is stopped or detached; otherwise the watchdog
1733	 * may fire immediately.
1734	 */
1735	WARN_ON(netif_running(efx->net_dev) &&
1736		netif_device_present(efx->net_dev));
1737	netif_tx_disable(efx->net_dev);
1738
1739	efx_stop_datapath(efx);
1740}
1741
1742static void efx_remove_all(struct efx_nic *efx)
1743{
1744	efx_remove_channels(efx);
1745	efx_remove_filters(efx);
1746	efx_remove_port(efx);
1747	efx_remove_nic(efx);
1748}
1749
1750/**************************************************************************
1751 *
1752 * Interrupt moderation
1753 *
1754 **************************************************************************/
1755
1756static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1757{
1758	if (usecs == 0)
1759		return 0;
1760	if (usecs * 1000 < quantum_ns)
1761		return 1; /* never round down to 0 */
1762	return usecs * 1000 / quantum_ns;
1763}
1764
1765/* Set interrupt moderation parameters */
1766int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1767			    unsigned int rx_usecs, bool rx_adaptive,
1768			    bool rx_may_override_tx)
1769{
1770	struct efx_channel *channel;
1771	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1772						efx->timer_quantum_ns,
1773						1000);
1774	unsigned int tx_ticks;
1775	unsigned int rx_ticks;
1776
1777	EFX_ASSERT_RESET_SERIALISED(efx);
1778
1779	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1780		return -EINVAL;
1781
1782	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1783	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1784
1785	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1786	    !rx_may_override_tx) {
1787		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1788			  "RX and TX IRQ moderation must be equal\n");
1789		return -EINVAL;
1790	}
1791
1792	efx->irq_rx_adaptive = rx_adaptive;
1793	efx->irq_rx_moderation = rx_ticks;
1794	efx_for_each_channel(channel, efx) {
1795		if (efx_channel_has_rx_queue(channel))
1796			channel->irq_moderation = rx_ticks;
1797		else if (efx_channel_has_tx_queues(channel))
1798			channel->irq_moderation = tx_ticks;
1799	}
1800
1801	return 0;
1802}
1803
1804void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1805			    unsigned int *rx_usecs, bool *rx_adaptive)
1806{
1807	/* We must round up when converting ticks to microseconds
1808	 * because we round down when converting the other way.
1809	 */
1810
1811	*rx_adaptive = efx->irq_rx_adaptive;
1812	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1813				 efx->timer_quantum_ns,
1814				 1000);
1815
1816	/* If channels are shared between RX and TX, so is IRQ
1817	 * moderation.  Otherwise, IRQ moderation is the same for all
1818	 * TX channels and is not adaptive.
1819	 */
1820	if (efx->tx_channel_offset == 0)
1821		*tx_usecs = *rx_usecs;
1822	else
1823		*tx_usecs = DIV_ROUND_UP(
1824			efx->channel[efx->tx_channel_offset]->irq_moderation *
1825			efx->timer_quantum_ns,
1826			1000);
1827}
1828
1829/**************************************************************************
1830 *
1831 * Hardware monitor
1832 *
1833 **************************************************************************/
1834
1835/* Run periodically off the general workqueue */
1836static void efx_monitor(struct work_struct *data)
1837{
1838	struct efx_nic *efx = container_of(data, struct efx_nic,
1839					   monitor_work.work);
1840
1841	netif_vdbg(efx, timer, efx->net_dev,
1842		   "hardware monitor executing on CPU %d\n",
1843		   raw_smp_processor_id());
1844	BUG_ON(efx->type->monitor == NULL);
1845
1846	/* If the mac_lock is already held then it is likely a port
1847	 * reconfiguration is already in place, which will likely do
1848	 * most of the work of monitor() anyway. */
1849	if (mutex_trylock(&efx->mac_lock)) {
1850		if (efx->port_enabled)
1851			efx->type->monitor(efx);
1852		mutex_unlock(&efx->mac_lock);
1853	}
1854
1855	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1856			   efx_monitor_interval);
1857}
1858
1859/**************************************************************************
1860 *
1861 * ioctls
1862 *
1863 *************************************************************************/
1864
1865/* Net device ioctl
1866 * Context: process, rtnl_lock() held.
1867 */
1868static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1869{
1870	struct efx_nic *efx = netdev_priv(net_dev);
1871	struct mii_ioctl_data *data = if_mii(ifr);
1872
1873	if (cmd == SIOCSHWTSTAMP)
1874		return efx_ptp_set_ts_config(efx, ifr);
1875	if (cmd == SIOCGHWTSTAMP)
1876		return efx_ptp_get_ts_config(efx, ifr);
1877
1878	/* Convert phy_id from older PRTAD/DEVAD format */
1879	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1880	    (data->phy_id & 0xfc00) == 0x0400)
1881		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1882
1883	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1884}
1885
1886/**************************************************************************
1887 *
1888 * NAPI interface
1889 *
1890 **************************************************************************/
1891
1892static void efx_init_napi_channel(struct efx_channel *channel)
1893{
1894	struct efx_nic *efx = channel->efx;
1895
1896	channel->napi_dev = efx->net_dev;
1897	netif_napi_add(channel->napi_dev, &channel->napi_str,
1898		       efx_poll, napi_weight);
1899}
1900
1901static void efx_init_napi(struct efx_nic *efx)
1902{
1903	struct efx_channel *channel;
1904
1905	efx_for_each_channel(channel, efx)
1906		efx_init_napi_channel(channel);
1907}
1908
1909static void efx_fini_napi_channel(struct efx_channel *channel)
1910{
1911	if (channel->napi_dev)
1912		netif_napi_del(&channel->napi_str);
1913	channel->napi_dev = NULL;
1914}
1915
1916static void efx_fini_napi(struct efx_nic *efx)
1917{
1918	struct efx_channel *channel;
1919
1920	efx_for_each_channel(channel, efx)
1921		efx_fini_napi_channel(channel);
1922}
1923
1924/**************************************************************************
1925 *
1926 * Kernel netpoll interface
1927 *
1928 *************************************************************************/
1929
1930#ifdef CONFIG_NET_POLL_CONTROLLER
1931
1932/* Although in the common case interrupts will be disabled, this is not
1933 * guaranteed. However, all our work happens inside the NAPI callback,
1934 * so no locking is required.
1935 */
1936static void efx_netpoll(struct net_device *net_dev)
1937{
1938	struct efx_nic *efx = netdev_priv(net_dev);
1939	struct efx_channel *channel;
1940
1941	efx_for_each_channel(channel, efx)
1942		efx_schedule_channel(channel);
1943}
1944
1945#endif
1946
1947/**************************************************************************
1948 *
1949 * Kernel net device interface
1950 *
1951 *************************************************************************/
1952
1953/* Context: process, rtnl_lock() held. */
1954static int efx_net_open(struct net_device *net_dev)
1955{
1956	struct efx_nic *efx = netdev_priv(net_dev);
1957	int rc;
1958
1959	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1960		  raw_smp_processor_id());
1961
1962	rc = efx_check_disabled(efx);
1963	if (rc)
1964		return rc;
1965	if (efx->phy_mode & PHY_MODE_SPECIAL)
1966		return -EBUSY;
1967	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1968		return -EIO;
1969
1970	/* Notify the kernel of the link state polled during driver load,
1971	 * before the monitor starts running */
1972	efx_link_status_changed(efx);
1973
1974	efx_start_all(efx);
1975	efx_selftest_async_start(efx);
1976	return 0;
1977}
1978
1979/* Context: process, rtnl_lock() held.
1980 * Note that the kernel will ignore our return code; this method
1981 * should really be a void.
1982 */
1983static int efx_net_stop(struct net_device *net_dev)
1984{
1985	struct efx_nic *efx = netdev_priv(net_dev);
1986
1987	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1988		  raw_smp_processor_id());
1989
1990	/* Stop the device and flush all the channels */
1991	efx_stop_all(efx);
1992
1993	return 0;
1994}
1995
1996/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1997static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1998					       struct rtnl_link_stats64 *stats)
1999{
2000	struct efx_nic *efx = netdev_priv(net_dev);
2001
2002	spin_lock_bh(&efx->stats_lock);
2003	efx->type->update_stats(efx, NULL, stats);
2004	spin_unlock_bh(&efx->stats_lock);
2005
2006	return stats;
2007}
2008
2009/* Context: netif_tx_lock held, BHs disabled. */
2010static void efx_watchdog(struct net_device *net_dev)
2011{
2012	struct efx_nic *efx = netdev_priv(net_dev);
2013
2014	netif_err(efx, tx_err, efx->net_dev,
2015		  "TX stuck with port_enabled=%d: resetting channels\n",
2016		  efx->port_enabled);
2017
2018	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2019}
2020
2021
2022/* Context: process, rtnl_lock() held. */
2023static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2024{
2025	struct efx_nic *efx = netdev_priv(net_dev);
2026	int rc;
2027
2028	rc = efx_check_disabled(efx);
2029	if (rc)
2030		return rc;
2031	if (new_mtu > EFX_MAX_MTU)
2032		return -EINVAL;
2033
2034	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2035
2036	efx_device_detach_sync(efx);
2037	efx_stop_all(efx);
2038
2039	mutex_lock(&efx->mac_lock);
2040	net_dev->mtu = new_mtu;
2041	efx->type->reconfigure_mac(efx);
2042	mutex_unlock(&efx->mac_lock);
2043
2044	efx_start_all(efx);
2045	netif_device_attach(efx->net_dev);
2046	return 0;
2047}
2048
2049static int efx_set_mac_address(struct net_device *net_dev, void *data)
2050{
2051	struct efx_nic *efx = netdev_priv(net_dev);
2052	struct sockaddr *addr = data;
2053	char *new_addr = addr->sa_data;
2054
2055	if (!is_valid_ether_addr(new_addr)) {
2056		netif_err(efx, drv, efx->net_dev,
2057			  "invalid ethernet MAC address requested: %pM\n",
2058			  new_addr);
2059		return -EADDRNOTAVAIL;
2060	}
2061
2062	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2063	efx_sriov_mac_address_changed(efx);
2064
2065	/* Reconfigure the MAC */
2066	mutex_lock(&efx->mac_lock);
2067	efx->type->reconfigure_mac(efx);
2068	mutex_unlock(&efx->mac_lock);
2069
2070	return 0;
2071}
2072
2073/* Context: netif_addr_lock held, BHs disabled. */
2074static void efx_set_rx_mode(struct net_device *net_dev)
2075{
2076	struct efx_nic *efx = netdev_priv(net_dev);
2077
2078	if (efx->port_enabled)
2079		queue_work(efx->workqueue, &efx->mac_work);
2080	/* Otherwise efx_start_port() will do this */
2081}
2082
2083static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2084{
2085	struct efx_nic *efx = netdev_priv(net_dev);
2086
2087	/* If disabling RX n-tuple filtering, clear existing filters */
2088	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2089		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2090
2091	return 0;
2092}
2093
2094static const struct net_device_ops efx_farch_netdev_ops = {
2095	.ndo_open		= efx_net_open,
2096	.ndo_stop		= efx_net_stop,
2097	.ndo_get_stats64	= efx_net_stats,
2098	.ndo_tx_timeout		= efx_watchdog,
2099	.ndo_start_xmit		= efx_hard_start_xmit,
2100	.ndo_validate_addr	= eth_validate_addr,
2101	.ndo_do_ioctl		= efx_ioctl,
2102	.ndo_change_mtu		= efx_change_mtu,
2103	.ndo_set_mac_address	= efx_set_mac_address,
2104	.ndo_set_rx_mode	= efx_set_rx_mode,
2105	.ndo_set_features	= efx_set_features,
2106#ifdef CONFIG_SFC_SRIOV
2107	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2108	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2109	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2110	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2111#endif
2112#ifdef CONFIG_NET_POLL_CONTROLLER
2113	.ndo_poll_controller = efx_netpoll,
2114#endif
2115	.ndo_setup_tc		= efx_setup_tc,
2116#ifdef CONFIG_RFS_ACCEL
2117	.ndo_rx_flow_steer	= efx_filter_rfs,
2118#endif
2119};
2120
2121static const struct net_device_ops efx_ef10_netdev_ops = {
2122	.ndo_open		= efx_net_open,
2123	.ndo_stop		= efx_net_stop,
2124	.ndo_get_stats64	= efx_net_stats,
2125	.ndo_tx_timeout		= efx_watchdog,
2126	.ndo_start_xmit		= efx_hard_start_xmit,
2127	.ndo_validate_addr	= eth_validate_addr,
2128	.ndo_do_ioctl		= efx_ioctl,
2129	.ndo_change_mtu		= efx_change_mtu,
2130	.ndo_set_mac_address	= efx_set_mac_address,
2131	.ndo_set_rx_mode	= efx_set_rx_mode,
2132	.ndo_set_features	= efx_set_features,
2133#ifdef CONFIG_NET_POLL_CONTROLLER
2134	.ndo_poll_controller	= efx_netpoll,
2135#endif
2136#ifdef CONFIG_RFS_ACCEL
2137	.ndo_rx_flow_steer	= efx_filter_rfs,
2138#endif
2139};
2140
2141static void efx_update_name(struct efx_nic *efx)
2142{
2143	strcpy(efx->name, efx->net_dev->name);
2144	efx_mtd_rename(efx);
2145	efx_set_channel_names(efx);
2146}
2147
2148static int efx_netdev_event(struct notifier_block *this,
2149			    unsigned long event, void *ptr)
2150{
2151	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2152
2153	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2154	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2155	    event == NETDEV_CHANGENAME)
2156		efx_update_name(netdev_priv(net_dev));
2157
2158	return NOTIFY_DONE;
2159}
2160
2161static struct notifier_block efx_netdev_notifier = {
2162	.notifier_call = efx_netdev_event,
2163};
2164
2165static ssize_t
2166show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2167{
2168	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2169	return sprintf(buf, "%d\n", efx->phy_type);
2170}
2171static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2172
2173static int efx_register_netdev(struct efx_nic *efx)
2174{
2175	struct net_device *net_dev = efx->net_dev;
2176	struct efx_channel *channel;
2177	int rc;
2178
2179	net_dev->watchdog_timeo = 5 * HZ;
2180	net_dev->irq = efx->pci_dev->irq;
2181	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2182		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2183		net_dev->priv_flags |= IFF_UNICAST_FLT;
2184	} else {
2185		net_dev->netdev_ops = &efx_farch_netdev_ops;
2186	}
2187	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2188	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2189
2190	rtnl_lock();
2191
2192	/* Enable resets to be scheduled and check whether any were
2193	 * already requested.  If so, the NIC is probably hosed so we
2194	 * abort.
2195	 */
2196	efx->state = STATE_READY;
2197	smp_mb(); /* ensure we change state before checking reset_pending */
2198	if (efx->reset_pending) {
2199		netif_err(efx, probe, efx->net_dev,
2200			  "aborting probe due to scheduled reset\n");
2201		rc = -EIO;
2202		goto fail_locked;
2203	}
2204
2205	rc = dev_alloc_name(net_dev, net_dev->name);
2206	if (rc < 0)
2207		goto fail_locked;
2208	efx_update_name(efx);
2209
2210	/* Always start with carrier off; PHY events will detect the link */
2211	netif_carrier_off(net_dev);
2212
2213	rc = register_netdevice(net_dev);
2214	if (rc)
2215		goto fail_locked;
2216
2217	efx_for_each_channel(channel, efx) {
2218		struct efx_tx_queue *tx_queue;
2219		efx_for_each_channel_tx_queue(tx_queue, channel)
2220			efx_init_tx_queue_core_txq(tx_queue);
2221	}
2222
2223	rtnl_unlock();
2224
2225	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2226	if (rc) {
2227		netif_err(efx, drv, efx->net_dev,
2228			  "failed to init net dev attributes\n");
2229		goto fail_registered;
2230	}
2231
2232	return 0;
2233
2234fail_registered:
2235	rtnl_lock();
2236	unregister_netdevice(net_dev);
2237fail_locked:
2238	efx->state = STATE_UNINIT;
2239	rtnl_unlock();
2240	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2241	return rc;
2242}
2243
2244static void efx_unregister_netdev(struct efx_nic *efx)
2245{
2246	if (!efx->net_dev)
2247		return;
2248
2249	BUG_ON(netdev_priv(efx->net_dev) != efx);
2250
2251	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2252	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2253
2254	rtnl_lock();
2255	unregister_netdevice(efx->net_dev);
2256	efx->state = STATE_UNINIT;
2257	rtnl_unlock();
2258}
2259
2260/**************************************************************************
2261 *
2262 * Device reset and suspend
2263 *
2264 **************************************************************************/
2265
2266/* Tears down the entire software state and most of the hardware state
2267 * before reset.  */
2268void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2269{
2270	EFX_ASSERT_RESET_SERIALISED(efx);
2271
2272	efx_stop_all(efx);
2273	efx_disable_interrupts(efx);
2274
2275	mutex_lock(&efx->mac_lock);
2276	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2277		efx->phy_op->fini(efx);
2278	efx->type->fini(efx);
2279}
2280
2281/* This function will always ensure that the locks acquired in
2282 * efx_reset_down() are released. A failure return code indicates
2283 * that we were unable to reinitialise the hardware, and the
2284 * driver should be disabled. If ok is false, then the rx and tx
2285 * engines are not restarted, pending a RESET_DISABLE. */
2286int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2287{
2288	int rc;
2289
2290	EFX_ASSERT_RESET_SERIALISED(efx);
2291
2292	rc = efx->type->init(efx);
2293	if (rc) {
2294		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2295		goto fail;
2296	}
2297
2298	if (!ok)
2299		goto fail;
2300
2301	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2302		rc = efx->phy_op->init(efx);
2303		if (rc)
2304			goto fail;
2305		if (efx->phy_op->reconfigure(efx))
2306			netif_err(efx, drv, efx->net_dev,
2307				  "could not restore PHY settings\n");
2308	}
2309
2310	rc = efx_enable_interrupts(efx);
2311	if (rc)
2312		goto fail;
2313	efx_restore_filters(efx);
2314	efx_sriov_reset(efx);
2315
2316	mutex_unlock(&efx->mac_lock);
2317
2318	efx_start_all(efx);
2319
2320	return 0;
2321
2322fail:
2323	efx->port_initialized = false;
2324
2325	mutex_unlock(&efx->mac_lock);
2326
2327	return rc;
2328}
2329
2330/* Reset the NIC using the specified method.  Note that the reset may
2331 * fail, in which case the card will be left in an unusable state.
2332 *
2333 * Caller must hold the rtnl_lock.
2334 */
2335int efx_reset(struct efx_nic *efx, enum reset_type method)
2336{
2337	int rc, rc2;
2338	bool disabled;
2339
2340	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2341		   RESET_TYPE(method));
2342
2343	efx_device_detach_sync(efx);
2344	efx_reset_down(efx, method);
2345
2346	rc = efx->type->reset(efx, method);
2347	if (rc) {
2348		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2349		goto out;
2350	}
2351
2352	/* Clear flags for the scopes we covered.  We assume the NIC and
2353	 * driver are now quiescent so that there is no race here.
2354	 */
2355	efx->reset_pending &= -(1 << (method + 1));
2356
2357	/* Reinitialise bus-mastering, which may have been turned off before
2358	 * the reset was scheduled. This is still appropriate, even in the
2359	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2360	 * can respond to requests. */
2361	pci_set_master(efx->pci_dev);
2362
2363out:
2364	/* Leave device stopped if necessary */
2365	disabled = rc ||
2366		method == RESET_TYPE_DISABLE ||
2367		method == RESET_TYPE_RECOVER_OR_DISABLE;
2368	rc2 = efx_reset_up(efx, method, !disabled);
2369	if (rc2) {
2370		disabled = true;
2371		if (!rc)
2372			rc = rc2;
2373	}
2374
2375	if (disabled) {
2376		dev_close(efx->net_dev);
2377		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2378		efx->state = STATE_DISABLED;
2379	} else {
2380		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2381		netif_device_attach(efx->net_dev);
2382	}
2383	return rc;
2384}
2385
2386/* Try recovery mechanisms.
2387 * For now only EEH is supported.
2388 * Returns 0 if the recovery mechanisms are unsuccessful.
2389 * Returns a non-zero value otherwise.
2390 */
2391int efx_try_recovery(struct efx_nic *efx)
2392{
2393#ifdef CONFIG_EEH
2394	/* A PCI error can occur and not be seen by EEH because nothing
2395	 * happens on the PCI bus. In this case the driver may fail and
2396	 * schedule a 'recover or reset', leading to this recovery handler.
2397	 * Manually call the eeh failure check function.
2398	 */
2399	struct eeh_dev *eehdev =
2400		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2401
2402	if (eeh_dev_check_failure(eehdev)) {
2403		/* The EEH mechanisms will handle the error and reset the
2404		 * device if necessary.
2405		 */
2406		return 1;
2407	}
2408#endif
2409	return 0;
2410}
2411
2412static void efx_wait_for_bist_end(struct efx_nic *efx)
2413{
2414	int i;
2415
2416	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2417		if (efx_mcdi_poll_reboot(efx))
2418			goto out;
2419		msleep(BIST_WAIT_DELAY_MS);
2420	}
2421
2422	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2423out:
2424	/* Either way unset the BIST flag. If we found no reboot we probably
2425	 * won't recover, but we should try.
2426	 */
2427	efx->mc_bist_for_other_fn = false;
2428}
2429
2430/* The worker thread exists so that code that cannot sleep can
2431 * schedule a reset for later.
2432 */
2433static void efx_reset_work(struct work_struct *data)
2434{
2435	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2436	unsigned long pending;
2437	enum reset_type method;
2438
2439	pending = ACCESS_ONCE(efx->reset_pending);
2440	method = fls(pending) - 1;
2441
2442	if (method == RESET_TYPE_MC_BIST)
2443		efx_wait_for_bist_end(efx);
2444
2445	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2446	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2447	    efx_try_recovery(efx))
2448		return;
2449
2450	if (!pending)
2451		return;
2452
2453	rtnl_lock();
2454
2455	/* We checked the state in efx_schedule_reset() but it may
2456	 * have changed by now.  Now that we have the RTNL lock,
2457	 * it cannot change again.
2458	 */
2459	if (efx->state == STATE_READY)
2460		(void)efx_reset(efx, method);
2461
2462	rtnl_unlock();
2463}
2464
2465void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2466{
2467	enum reset_type method;
2468
2469	if (efx->state == STATE_RECOVERY) {
2470		netif_dbg(efx, drv, efx->net_dev,
2471			  "recovering: skip scheduling %s reset\n",
2472			  RESET_TYPE(type));
2473		return;
2474	}
2475
2476	switch (type) {
2477	case RESET_TYPE_INVISIBLE:
2478	case RESET_TYPE_ALL:
2479	case RESET_TYPE_RECOVER_OR_ALL:
2480	case RESET_TYPE_WORLD:
2481	case RESET_TYPE_DISABLE:
2482	case RESET_TYPE_RECOVER_OR_DISABLE:
2483	case RESET_TYPE_MC_BIST:
2484		method = type;
2485		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2486			  RESET_TYPE(method));
2487		break;
2488	default:
2489		method = efx->type->map_reset_reason(type);
2490		netif_dbg(efx, drv, efx->net_dev,
2491			  "scheduling %s reset for %s\n",
2492			  RESET_TYPE(method), RESET_TYPE(type));
2493		break;
2494	}
2495
2496	set_bit(method, &efx->reset_pending);
2497	smp_mb(); /* ensure we change reset_pending before checking state */
2498
2499	/* If we're not READY then just leave the flags set as the cue
2500	 * to abort probing or reschedule the reset later.
2501	 */
2502	if (ACCESS_ONCE(efx->state) != STATE_READY)
2503		return;
2504
2505	/* efx_process_channel() will no longer read events once a
2506	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2507	efx_mcdi_mode_poll(efx);
2508
2509	queue_work(reset_workqueue, &efx->reset_work);
2510}
2511
2512/**************************************************************************
2513 *
2514 * List of NICs we support
2515 *
2516 **************************************************************************/
2517
2518/* PCI device ID table */
2519static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2520	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2521		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2522	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2523	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2524		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2525	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2526	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2527	 .driver_data = (unsigned long) &siena_a0_nic_type},
2528	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2529	 .driver_data = (unsigned long) &siena_a0_nic_type},
2530	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2531	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2532	{0}			/* end of list */
2533};
2534
2535/**************************************************************************
2536 *
2537 * Dummy PHY/MAC operations
2538 *
2539 * Can be used for some unimplemented operations
2540 * Needed so all function pointers are valid and do not have to be tested
2541 * before use
2542 *
2543 **************************************************************************/
2544int efx_port_dummy_op_int(struct efx_nic *efx)
2545{
2546	return 0;
2547}
2548void efx_port_dummy_op_void(struct efx_nic *efx) {}
2549
2550static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2551{
2552	return false;
2553}
2554
2555static const struct efx_phy_operations efx_dummy_phy_operations = {
2556	.init		 = efx_port_dummy_op_int,
2557	.reconfigure	 = efx_port_dummy_op_int,
2558	.poll		 = efx_port_dummy_op_poll,
2559	.fini		 = efx_port_dummy_op_void,
2560};
2561
2562/**************************************************************************
2563 *
2564 * Data housekeeping
2565 *
2566 **************************************************************************/
2567
2568/* This zeroes out and then fills in the invariants in a struct
2569 * efx_nic (including all sub-structures).
2570 */
2571static int efx_init_struct(struct efx_nic *efx,
2572			   struct pci_dev *pci_dev, struct net_device *net_dev)
2573{
2574	int i;
2575
2576	/* Initialise common structures */
2577	spin_lock_init(&efx->biu_lock);
2578#ifdef CONFIG_SFC_MTD
2579	INIT_LIST_HEAD(&efx->mtd_list);
2580#endif
2581	INIT_WORK(&efx->reset_work, efx_reset_work);
2582	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2583	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2584	efx->pci_dev = pci_dev;
2585	efx->msg_enable = debug;
2586	efx->state = STATE_UNINIT;
2587	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2588
2589	efx->net_dev = net_dev;
2590	efx->rx_prefix_size = efx->type->rx_prefix_size;
2591	efx->rx_ip_align =
2592		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2593	efx->rx_packet_hash_offset =
2594		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2595	spin_lock_init(&efx->stats_lock);
2596	mutex_init(&efx->mac_lock);
2597	efx->phy_op = &efx_dummy_phy_operations;
2598	efx->mdio.dev = net_dev;
2599	INIT_WORK(&efx->mac_work, efx_mac_work);
2600	init_waitqueue_head(&efx->flush_wq);
2601
2602	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2603		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2604		if (!efx->channel[i])
2605			goto fail;
2606		efx->msi_context[i].efx = efx;
2607		efx->msi_context[i].index = i;
2608	}
2609
2610	/* Higher numbered interrupt modes are less capable! */
2611	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2612				  interrupt_mode);
2613
2614	/* Would be good to use the net_dev name, but we're too early */
2615	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2616		 pci_name(pci_dev));
2617	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2618	if (!efx->workqueue)
2619		goto fail;
2620
2621	return 0;
2622
2623fail:
2624	efx_fini_struct(efx);
2625	return -ENOMEM;
2626}
2627
2628static void efx_fini_struct(struct efx_nic *efx)
2629{
2630	int i;
2631
2632	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2633		kfree(efx->channel[i]);
2634
2635	if (efx->workqueue) {
2636		destroy_workqueue(efx->workqueue);
2637		efx->workqueue = NULL;
2638	}
2639}
2640
2641/**************************************************************************
2642 *
2643 * PCI interface
2644 *
2645 **************************************************************************/
2646
2647/* Main body of final NIC shutdown code
2648 * This is called only at module unload (or hotplug removal).
2649 */
2650static void efx_pci_remove_main(struct efx_nic *efx)
2651{
2652	/* Flush reset_work. It can no longer be scheduled since we
2653	 * are not READY.
2654	 */
2655	BUG_ON(efx->state == STATE_READY);
2656	cancel_work_sync(&efx->reset_work);
2657
2658	efx_disable_interrupts(efx);
2659	efx_nic_fini_interrupt(efx);
2660	efx_fini_port(efx);
2661	efx->type->fini(efx);
2662	efx_fini_napi(efx);
2663	efx_remove_all(efx);
2664}
2665
2666/* Final NIC shutdown
2667 * This is called only at module unload (or hotplug removal).
2668 */
2669static void efx_pci_remove(struct pci_dev *pci_dev)
2670{
2671	struct efx_nic *efx;
2672
2673	efx = pci_get_drvdata(pci_dev);
2674	if (!efx)
2675		return;
2676
2677	/* Mark the NIC as fini, then stop the interface */
2678	rtnl_lock();
2679	dev_close(efx->net_dev);
2680	efx_disable_interrupts(efx);
2681	rtnl_unlock();
2682
2683	efx_sriov_fini(efx);
2684	efx_unregister_netdev(efx);
2685
2686	efx_mtd_remove(efx);
2687
2688	efx_pci_remove_main(efx);
2689
2690	efx_fini_io(efx);
2691	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2692
2693	efx_fini_struct(efx);
2694	pci_set_drvdata(pci_dev, NULL);
2695	free_netdev(efx->net_dev);
2696
2697	pci_disable_pcie_error_reporting(pci_dev);
2698};
2699
2700/* NIC VPD information
2701 * Called during probe to display the part number of the
2702 * installed NIC.  VPD is potentially very large but this should
2703 * always appear within the first 512 bytes.
2704 */
2705#define SFC_VPD_LEN 512
2706static void efx_print_product_vpd(struct efx_nic *efx)
2707{
2708	struct pci_dev *dev = efx->pci_dev;
2709	char vpd_data[SFC_VPD_LEN];
2710	ssize_t vpd_size;
2711	int i, j;
2712
2713	/* Get the vpd data from the device */
2714	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2715	if (vpd_size <= 0) {
2716		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2717		return;
2718	}
2719
2720	/* Get the Read only section */
2721	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2722	if (i < 0) {
2723		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2724		return;
2725	}
2726
2727	j = pci_vpd_lrdt_size(&vpd_data[i]);
2728	i += PCI_VPD_LRDT_TAG_SIZE;
2729	if (i + j > vpd_size)
2730		j = vpd_size - i;
2731
2732	/* Get the Part number */
2733	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2734	if (i < 0) {
2735		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2736		return;
2737	}
2738
2739	j = pci_vpd_info_field_size(&vpd_data[i]);
2740	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2741	if (i + j > vpd_size) {
2742		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2743		return;
2744	}
2745
2746	netif_info(efx, drv, efx->net_dev,
2747		   "Part Number : %.*s\n", j, &vpd_data[i]);
2748}
2749
2750
2751/* Main body of NIC initialisation
2752 * This is called at module load (or hotplug insertion, theoretically).
2753 */
2754static int efx_pci_probe_main(struct efx_nic *efx)
2755{
2756	int rc;
2757
2758	/* Do start-of-day initialisation */
2759	rc = efx_probe_all(efx);
2760	if (rc)
2761		goto fail1;
2762
2763	efx_init_napi(efx);
2764
2765	rc = efx->type->init(efx);
2766	if (rc) {
2767		netif_err(efx, probe, efx->net_dev,
2768			  "failed to initialise NIC\n");
2769		goto fail3;
2770	}
2771
2772	rc = efx_init_port(efx);
2773	if (rc) {
2774		netif_err(efx, probe, efx->net_dev,
2775			  "failed to initialise port\n");
2776		goto fail4;
2777	}
2778
2779	rc = efx_nic_init_interrupt(efx);
2780	if (rc)
2781		goto fail5;
2782	rc = efx_enable_interrupts(efx);
2783	if (rc)
2784		goto fail6;
2785
2786	return 0;
2787
2788 fail6:
2789	efx_nic_fini_interrupt(efx);
2790 fail5:
2791	efx_fini_port(efx);
2792 fail4:
2793	efx->type->fini(efx);
2794 fail3:
2795	efx_fini_napi(efx);
2796	efx_remove_all(efx);
2797 fail1:
2798	return rc;
2799}
2800
2801/* NIC initialisation
2802 *
2803 * This is called at module load (or hotplug insertion,
2804 * theoretically).  It sets up PCI mappings, resets the NIC,
2805 * sets up and registers the network devices with the kernel and hooks
2806 * the interrupt service routine.  It does not prepare the device for
2807 * transmission; this is left to the first time one of the network
2808 * interfaces is brought up (i.e. efx_net_open).
2809 */
2810static int efx_pci_probe(struct pci_dev *pci_dev,
2811			 const struct pci_device_id *entry)
2812{
2813	struct net_device *net_dev;
2814	struct efx_nic *efx;
2815	int rc;
2816
2817	/* Allocate and initialise a struct net_device and struct efx_nic */
2818	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2819				     EFX_MAX_RX_QUEUES);
2820	if (!net_dev)
2821		return -ENOMEM;
2822	efx = netdev_priv(net_dev);
2823	efx->type = (const struct efx_nic_type *) entry->driver_data;
2824	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2825			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2826			      NETIF_F_RXCSUM);
2827	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2828		net_dev->features |= NETIF_F_TSO6;
2829	/* Mask for features that also apply to VLAN devices */
2830	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2831				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2832				   NETIF_F_RXCSUM);
2833	/* All offloads can be toggled */
2834	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2835	pci_set_drvdata(pci_dev, efx);
2836	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2837	rc = efx_init_struct(efx, pci_dev, net_dev);
2838	if (rc)
2839		goto fail1;
2840
2841	netif_info(efx, probe, efx->net_dev,
2842		   "Solarflare NIC detected\n");
2843
2844	efx_print_product_vpd(efx);
2845
2846	/* Set up basic I/O (BAR mappings etc) */
2847	rc = efx_init_io(efx);
2848	if (rc)
2849		goto fail2;
2850
2851	rc = efx_pci_probe_main(efx);
2852	if (rc)
2853		goto fail3;
2854
2855	rc = efx_register_netdev(efx);
2856	if (rc)
2857		goto fail4;
2858
2859	rc = efx_sriov_init(efx);
2860	if (rc)
2861		netif_err(efx, probe, efx->net_dev,
2862			  "SR-IOV can't be enabled rc %d\n", rc);
2863
2864	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2865
2866	/* Try to create MTDs, but allow this to fail */
2867	rtnl_lock();
2868	rc = efx_mtd_probe(efx);
2869	rtnl_unlock();
2870	if (rc)
2871		netif_warn(efx, probe, efx->net_dev,
2872			   "failed to create MTDs (%d)\n", rc);
2873
2874	rc = pci_enable_pcie_error_reporting(pci_dev);
2875	if (rc && rc != -EINVAL)
2876		netif_warn(efx, probe, efx->net_dev,
2877			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2878
2879	return 0;
2880
2881 fail4:
2882	efx_pci_remove_main(efx);
2883 fail3:
2884	efx_fini_io(efx);
2885 fail2:
2886	efx_fini_struct(efx);
2887 fail1:
2888	pci_set_drvdata(pci_dev, NULL);
2889	WARN_ON(rc > 0);
2890	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2891	free_netdev(net_dev);
2892	return rc;
2893}
2894
2895static int efx_pm_freeze(struct device *dev)
2896{
2897	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2898
2899	rtnl_lock();
2900
2901	if (efx->state != STATE_DISABLED) {
2902		efx->state = STATE_UNINIT;
2903
2904		efx_device_detach_sync(efx);
2905
2906		efx_stop_all(efx);
2907		efx_disable_interrupts(efx);
2908	}
2909
2910	rtnl_unlock();
2911
2912	return 0;
2913}
2914
2915static int efx_pm_thaw(struct device *dev)
2916{
2917	int rc;
2918	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2919
2920	rtnl_lock();
2921
2922	if (efx->state != STATE_DISABLED) {
2923		rc = efx_enable_interrupts(efx);
2924		if (rc)
2925			goto fail;
2926
2927		mutex_lock(&efx->mac_lock);
2928		efx->phy_op->reconfigure(efx);
2929		mutex_unlock(&efx->mac_lock);
2930
2931		efx_start_all(efx);
2932
2933		netif_device_attach(efx->net_dev);
2934
2935		efx->state = STATE_READY;
2936
2937		efx->type->resume_wol(efx);
2938	}
2939
2940	rtnl_unlock();
2941
2942	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2943	queue_work(reset_workqueue, &efx->reset_work);
2944
2945	return 0;
2946
2947fail:
2948	rtnl_unlock();
2949
2950	return rc;
2951}
2952
2953static int efx_pm_poweroff(struct device *dev)
2954{
2955	struct pci_dev *pci_dev = to_pci_dev(dev);
2956	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2957
2958	efx->type->fini(efx);
2959
2960	efx->reset_pending = 0;
2961
2962	pci_save_state(pci_dev);
2963	return pci_set_power_state(pci_dev, PCI_D3hot);
2964}
2965
2966/* Used for both resume and restore */
2967static int efx_pm_resume(struct device *dev)
2968{
2969	struct pci_dev *pci_dev = to_pci_dev(dev);
2970	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2971	int rc;
2972
2973	rc = pci_set_power_state(pci_dev, PCI_D0);
2974	if (rc)
2975		return rc;
2976	pci_restore_state(pci_dev);
2977	rc = pci_enable_device(pci_dev);
2978	if (rc)
2979		return rc;
2980	pci_set_master(efx->pci_dev);
2981	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2982	if (rc)
2983		return rc;
2984	rc = efx->type->init(efx);
2985	if (rc)
2986		return rc;
2987	rc = efx_pm_thaw(dev);
2988	return rc;
2989}
2990
2991static int efx_pm_suspend(struct device *dev)
2992{
2993	int rc;
2994
2995	efx_pm_freeze(dev);
2996	rc = efx_pm_poweroff(dev);
2997	if (rc)
2998		efx_pm_resume(dev);
2999	return rc;
3000}
3001
3002static const struct dev_pm_ops efx_pm_ops = {
3003	.suspend	= efx_pm_suspend,
3004	.resume		= efx_pm_resume,
3005	.freeze		= efx_pm_freeze,
3006	.thaw		= efx_pm_thaw,
3007	.poweroff	= efx_pm_poweroff,
3008	.restore	= efx_pm_resume,
3009};
3010
3011/* A PCI error affecting this device was detected.
3012 * At this point MMIO and DMA may be disabled.
3013 * Stop the software path and request a slot reset.
3014 */
3015static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3016					      enum pci_channel_state state)
3017{
3018	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3019	struct efx_nic *efx = pci_get_drvdata(pdev);
3020
3021	if (state == pci_channel_io_perm_failure)
3022		return PCI_ERS_RESULT_DISCONNECT;
3023
3024	rtnl_lock();
3025
3026	if (efx->state != STATE_DISABLED) {
3027		efx->state = STATE_RECOVERY;
3028		efx->reset_pending = 0;
3029
3030		efx_device_detach_sync(efx);
3031
3032		efx_stop_all(efx);
3033		efx_disable_interrupts(efx);
3034
3035		status = PCI_ERS_RESULT_NEED_RESET;
3036	} else {
3037		/* If the interface is disabled we don't want to do anything
3038		 * with it.
3039		 */
3040		status = PCI_ERS_RESULT_RECOVERED;
3041	}
3042
3043	rtnl_unlock();
3044
3045	pci_disable_device(pdev);
3046
3047	return status;
3048}
3049
3050/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3051static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3052{
3053	struct efx_nic *efx = pci_get_drvdata(pdev);
3054	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3055	int rc;
3056
3057	if (pci_enable_device(pdev)) {
3058		netif_err(efx, hw, efx->net_dev,
3059			  "Cannot re-enable PCI device after reset.\n");
3060		status =  PCI_ERS_RESULT_DISCONNECT;
3061	}
3062
3063	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3064	if (rc) {
3065		netif_err(efx, hw, efx->net_dev,
3066		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3067		/* Non-fatal error. Continue. */
3068	}
3069
3070	return status;
3071}
3072
3073/* Perform the actual reset and resume I/O operations. */
3074static void efx_io_resume(struct pci_dev *pdev)
3075{
3076	struct efx_nic *efx = pci_get_drvdata(pdev);
3077	int rc;
3078
3079	rtnl_lock();
3080
3081	if (efx->state == STATE_DISABLED)
3082		goto out;
3083
3084	rc = efx_reset(efx, RESET_TYPE_ALL);
3085	if (rc) {
3086		netif_err(efx, hw, efx->net_dev,
3087			  "efx_reset failed after PCI error (%d)\n", rc);
3088	} else {
3089		efx->state = STATE_READY;
3090		netif_dbg(efx, hw, efx->net_dev,
3091			  "Done resetting and resuming IO after PCI error.\n");
3092	}
3093
3094out:
3095	rtnl_unlock();
3096}
3097
3098/* For simplicity and reliability, we always require a slot reset and try to
3099 * reset the hardware when a pci error affecting the device is detected.
3100 * We leave both the link_reset and mmio_enabled callback unimplemented:
3101 * with our request for slot reset the mmio_enabled callback will never be
3102 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3103 */
3104static struct pci_error_handlers efx_err_handlers = {
3105	.error_detected = efx_io_error_detected,
3106	.slot_reset	= efx_io_slot_reset,
3107	.resume		= efx_io_resume,
3108};
3109
3110static struct pci_driver efx_pci_driver = {
3111	.name		= KBUILD_MODNAME,
3112	.id_table	= efx_pci_table,
3113	.probe		= efx_pci_probe,
3114	.remove		= efx_pci_remove,
3115	.driver.pm	= &efx_pm_ops,
3116	.err_handler	= &efx_err_handlers,
3117};
3118
3119/**************************************************************************
3120 *
3121 * Kernel module interface
3122 *
3123 *************************************************************************/
3124
3125module_param(interrupt_mode, uint, 0444);
3126MODULE_PARM_DESC(interrupt_mode,
3127		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3128
3129static int __init efx_init_module(void)
3130{
3131	int rc;
3132
3133	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3134
3135	rc = register_netdevice_notifier(&efx_netdev_notifier);
3136	if (rc)
3137		goto err_notifier;
3138
3139	rc = efx_init_sriov();
3140	if (rc)
3141		goto err_sriov;
3142
3143	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3144	if (!reset_workqueue) {
3145		rc = -ENOMEM;
3146		goto err_reset;
3147	}
3148
3149	rc = pci_register_driver(&efx_pci_driver);
3150	if (rc < 0)
3151		goto err_pci;
3152
3153	return 0;
3154
3155 err_pci:
3156	destroy_workqueue(reset_workqueue);
3157 err_reset:
3158	efx_fini_sriov();
3159 err_sriov:
3160	unregister_netdevice_notifier(&efx_netdev_notifier);
3161 err_notifier:
3162	return rc;
3163}
3164
3165static void __exit efx_exit_module(void)
3166{
3167	printk(KERN_INFO "Solarflare NET driver unloading\n");
3168
3169	pci_unregister_driver(&efx_pci_driver);
3170	destroy_workqueue(reset_workqueue);
3171	efx_fini_sriov();
3172	unregister_netdevice_notifier(&efx_netdev_notifier);
3173
3174}
3175
3176module_init(efx_init_module);
3177module_exit(efx_exit_module);
3178
3179MODULE_AUTHOR("Solarflare Communications and "
3180	      "Michael Brown <mbrown@fensystems.co.uk>");
3181MODULE_DESCRIPTION("Solarflare Communications network driver");
3182MODULE_LICENSE("GPL");
3183MODULE_DEVICE_TABLE(pci, efx_pci_table);
3184