net_driver.h revision 58f7e57d11b99575ddb0a3ee9baf7551f10bc3dd
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11/* Common definitions for all Efx net driver code */
12
13#ifndef EFX_NET_DRIVER_H
14#define EFX_NET_DRIVER_H
15
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/if_vlan.h>
20#include <linux/timer.h>
21#include <linux/mdio.h>
22#include <linux/list.h>
23#include <linux/pci.h>
24#include <linux/device.h>
25#include <linux/highmem.h>
26#include <linux/workqueue.h>
27#include <linux/mutex.h>
28#include <linux/vmalloc.h>
29#include <linux/i2c.h>
30
31#include "enum.h"
32#include "bitfield.h"
33
34/**************************************************************************
35 *
36 * Build definitions
37 *
38 **************************************************************************/
39
40#define EFX_DRIVER_VERSION	"3.1"
41
42#ifdef DEBUG
43#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
44#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
45#else
46#define EFX_BUG_ON_PARANOID(x) do {} while (0)
47#define EFX_WARN_ON_PARANOID(x) do {} while (0)
48#endif
49
50/**************************************************************************
51 *
52 * Efx data structures
53 *
54 **************************************************************************/
55
56#define EFX_MAX_CHANNELS 32U
57#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
58#define EFX_EXTRA_CHANNEL_IOV	0
59#define EFX_MAX_EXTRA_CHANNELS	1U
60
61/* Checksum generation is a per-queue option in hardware, so each
62 * queue visible to the networking core is backed by two hardware TX
63 * queues. */
64#define EFX_MAX_TX_TC		2
65#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
66#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
67#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
68#define EFX_TXQ_TYPES		4
69#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
70
71/**
72 * struct efx_special_buffer - An Efx special buffer
73 * @addr: CPU base address of the buffer
74 * @dma_addr: DMA base address of the buffer
75 * @len: Buffer length, in bytes
76 * @index: Buffer index within controller;s buffer table
77 * @entries: Number of buffer table entries
78 *
79 * Special buffers are used for the event queues and the TX and RX
80 * descriptor queues for each channel.  They are *not* used for the
81 * actual transmit and receive buffers.
82 */
83struct efx_special_buffer {
84	void *addr;
85	dma_addr_t dma_addr;
86	unsigned int len;
87	unsigned int index;
88	unsigned int entries;
89};
90
91/**
92 * struct efx_tx_buffer - An Efx TX buffer
93 * @skb: The associated socket buffer.
94 *	Set only on the final fragment of a packet; %NULL for all other
95 *	fragments.  When this fragment completes, then we can free this
96 *	skb.
97 * @tsoh: The associated TSO header structure, or %NULL if this
98 *	buffer is not a TSO header.
99 * @dma_addr: DMA address of the fragment.
100 * @len: Length of this fragment.
101 *	This field is zero when the queue slot is empty.
102 * @continuation: True if this fragment is not the end of a packet.
103 * @unmap_single: True if pci_unmap_single should be used.
104 * @unmap_len: Length of this fragment to unmap
105 */
106struct efx_tx_buffer {
107	const struct sk_buff *skb;
108	struct efx_tso_header *tsoh;
109	dma_addr_t dma_addr;
110	unsigned short len;
111	bool continuation;
112	bool unmap_single;
113	unsigned short unmap_len;
114};
115
116/**
117 * struct efx_tx_queue - An Efx TX queue
118 *
119 * This is a ring buffer of TX fragments.
120 * Since the TX completion path always executes on the same
121 * CPU and the xmit path can operate on different CPUs,
122 * performance is increased by ensuring that the completion
123 * path and the xmit path operate on different cache lines.
124 * This is particularly important if the xmit path is always
125 * executing on one CPU which is different from the completion
126 * path.  There is also a cache line for members which are
127 * read but not written on the fast path.
128 *
129 * @efx: The associated Efx NIC
130 * @queue: DMA queue number
131 * @channel: The associated channel
132 * @core_txq: The networking core TX queue structure
133 * @buffer: The software buffer ring
134 * @txd: The hardware descriptor ring
135 * @ptr_mask: The size of the ring minus 1.
136 * @initialised: Has hardware queue been initialised?
137 * @read_count: Current read pointer.
138 *	This is the number of buffers that have been removed from both rings.
139 * @old_write_count: The value of @write_count when last checked.
140 *	This is here for performance reasons.  The xmit path will
141 *	only get the up-to-date value of @write_count if this
142 *	variable indicates that the queue is empty.  This is to
143 *	avoid cache-line ping-pong between the xmit path and the
144 *	completion path.
145 * @insert_count: Current insert pointer
146 *	This is the number of buffers that have been added to the
147 *	software ring.
148 * @write_count: Current write pointer
149 *	This is the number of buffers that have been added to the
150 *	hardware ring.
151 * @old_read_count: The value of read_count when last checked.
152 *	This is here for performance reasons.  The xmit path will
153 *	only get the up-to-date value of read_count if this
154 *	variable indicates that the queue is full.  This is to
155 *	avoid cache-line ping-pong between the xmit path and the
156 *	completion path.
157 * @tso_headers_free: A list of TSO headers allocated for this TX queue
158 *	that are not in use, and so available for new TSO sends. The list
159 *	is protected by the TX queue lock.
160 * @tso_bursts: Number of times TSO xmit invoked by kernel
161 * @tso_long_headers: Number of packets with headers too long for standard
162 *	blocks
163 * @tso_packets: Number of packets via the TSO xmit path
164 * @pushes: Number of times the TX push feature has been used
165 * @empty_read_count: If the completion path has seen the queue as empty
166 *	and the transmission path has not yet checked this, the value of
167 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
168 */
169struct efx_tx_queue {
170	/* Members which don't change on the fast path */
171	struct efx_nic *efx ____cacheline_aligned_in_smp;
172	unsigned queue;
173	struct efx_channel *channel;
174	struct netdev_queue *core_txq;
175	struct efx_tx_buffer *buffer;
176	struct efx_special_buffer txd;
177	unsigned int ptr_mask;
178	bool initialised;
179
180	/* Members used mainly on the completion path */
181	unsigned int read_count ____cacheline_aligned_in_smp;
182	unsigned int old_write_count;
183
184	/* Members used only on the xmit path */
185	unsigned int insert_count ____cacheline_aligned_in_smp;
186	unsigned int write_count;
187	unsigned int old_read_count;
188	struct efx_tso_header *tso_headers_free;
189	unsigned int tso_bursts;
190	unsigned int tso_long_headers;
191	unsigned int tso_packets;
192	unsigned int pushes;
193
194	/* Members shared between paths and sometimes updated */
195	unsigned int empty_read_count ____cacheline_aligned_in_smp;
196#define EFX_EMPTY_COUNT_VALID 0x80000000
197};
198
199/**
200 * struct efx_rx_buffer - An Efx RX data buffer
201 * @dma_addr: DMA base address of the buffer
202 * @skb: The associated socket buffer. Valid iff !(@flags & %EFX_RX_BUF_PAGE).
203 *	Will be %NULL if the buffer slot is currently free.
204 * @page: The associated page buffer. Valif iff @flags & %EFX_RX_BUF_PAGE.
205 *	Will be %NULL if the buffer slot is currently free.
206 * @len: Buffer length, in bytes.
207 * @flags: Flags for buffer and packet state.
208 */
209struct efx_rx_buffer {
210	dma_addr_t dma_addr;
211	union {
212		struct sk_buff *skb;
213		struct page *page;
214	} u;
215	unsigned int len;
216	u16 flags;
217};
218#define EFX_RX_BUF_PAGE		0x0001
219#define EFX_RX_PKT_CSUMMED	0x0002
220#define EFX_RX_PKT_DISCARD	0x0004
221
222/**
223 * struct efx_rx_page_state - Page-based rx buffer state
224 *
225 * Inserted at the start of every page allocated for receive buffers.
226 * Used to facilitate sharing dma mappings between recycled rx buffers
227 * and those passed up to the kernel.
228 *
229 * @refcnt: Number of struct efx_rx_buffer's referencing this page.
230 *	When refcnt falls to zero, the page is unmapped for dma
231 * @dma_addr: The dma address of this page.
232 */
233struct efx_rx_page_state {
234	unsigned refcnt;
235	dma_addr_t dma_addr;
236
237	unsigned int __pad[0] ____cacheline_aligned;
238};
239
240/**
241 * struct efx_rx_queue - An Efx RX queue
242 * @efx: The associated Efx NIC
243 * @buffer: The software buffer ring
244 * @rxd: The hardware descriptor ring
245 * @ptr_mask: The size of the ring minus 1.
246 * @enabled: Receive queue enabled indicator.
247 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
248 *	@rxq_flush_pending.
249 * @added_count: Number of buffers added to the receive queue.
250 * @notified_count: Number of buffers given to NIC (<= @added_count).
251 * @removed_count: Number of buffers removed from the receive queue.
252 * @max_fill: RX descriptor maximum fill level (<= ring size)
253 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
254 *	(<= @max_fill)
255 * @fast_fill_limit: The level to which a fast fill will fill
256 *	(@fast_fill_trigger <= @fast_fill_limit <= @max_fill)
257 * @min_fill: RX descriptor minimum non-zero fill level.
258 *	This records the minimum fill level observed when a ring
259 *	refill was triggered.
260 * @alloc_page_count: RX allocation strategy counter.
261 * @alloc_skb_count: RX allocation strategy counter.
262 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
263 */
264struct efx_rx_queue {
265	struct efx_nic *efx;
266	struct efx_rx_buffer *buffer;
267	struct efx_special_buffer rxd;
268	unsigned int ptr_mask;
269	bool enabled;
270	bool flush_pending;
271
272	int added_count;
273	int notified_count;
274	int removed_count;
275	unsigned int max_fill;
276	unsigned int fast_fill_trigger;
277	unsigned int fast_fill_limit;
278	unsigned int min_fill;
279	unsigned int min_overfill;
280	unsigned int alloc_page_count;
281	unsigned int alloc_skb_count;
282	struct timer_list slow_fill;
283	unsigned int slow_fill_count;
284};
285
286/**
287 * struct efx_buffer - An Efx general-purpose buffer
288 * @addr: host base address of the buffer
289 * @dma_addr: DMA base address of the buffer
290 * @len: Buffer length, in bytes
291 *
292 * The NIC uses these buffers for its interrupt status registers and
293 * MAC stats dumps.
294 */
295struct efx_buffer {
296	void *addr;
297	dma_addr_t dma_addr;
298	unsigned int len;
299};
300
301
302enum efx_rx_alloc_method {
303	RX_ALLOC_METHOD_AUTO = 0,
304	RX_ALLOC_METHOD_SKB = 1,
305	RX_ALLOC_METHOD_PAGE = 2,
306};
307
308/**
309 * struct efx_channel - An Efx channel
310 *
311 * A channel comprises an event queue, at least one TX queue, at least
312 * one RX queue, and an associated tasklet for processing the event
313 * queue.
314 *
315 * @efx: Associated Efx NIC
316 * @channel: Channel instance number
317 * @type: Channel type definition
318 * @enabled: Channel enabled indicator
319 * @irq: IRQ number (MSI and MSI-X only)
320 * @irq_moderation: IRQ moderation value (in hardware ticks)
321 * @napi_dev: Net device used with NAPI
322 * @napi_str: NAPI control structure
323 * @work_pending: Is work pending via NAPI?
324 * @eventq: Event queue buffer
325 * @eventq_mask: Event queue pointer mask
326 * @eventq_read_ptr: Event queue read pointer
327 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
328 * @irq_count: Number of IRQs since last adaptive moderation decision
329 * @irq_mod_score: IRQ moderation score
330 * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
331 *	and diagnostic counters
332 * @rx_alloc_push_pages: RX allocation method currently in use for pushing
333 *	descriptors
334 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
335 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
336 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
337 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
338 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
339 * @n_rx_overlength: Count of RX_OVERLENGTH errors
340 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
341 * @rx_queue: RX queue for this channel
342 * @tx_queue: TX queues for this channel
343 */
344struct efx_channel {
345	struct efx_nic *efx;
346	int channel;
347	const struct efx_channel_type *type;
348	bool enabled;
349	int irq;
350	unsigned int irq_moderation;
351	struct net_device *napi_dev;
352	struct napi_struct napi_str;
353	bool work_pending;
354	struct efx_special_buffer eventq;
355	unsigned int eventq_mask;
356	unsigned int eventq_read_ptr;
357	int event_test_cpu;
358
359	unsigned int irq_count;
360	unsigned int irq_mod_score;
361#ifdef CONFIG_RFS_ACCEL
362	unsigned int rfs_filters_added;
363#endif
364
365	int rx_alloc_level;
366	int rx_alloc_push_pages;
367
368	unsigned n_rx_tobe_disc;
369	unsigned n_rx_ip_hdr_chksum_err;
370	unsigned n_rx_tcp_udp_chksum_err;
371	unsigned n_rx_mcast_mismatch;
372	unsigned n_rx_frm_trunc;
373	unsigned n_rx_overlength;
374	unsigned n_skbuff_leaks;
375
376	/* Used to pipeline received packets in order to optimise memory
377	 * access with prefetches.
378	 */
379	struct efx_rx_buffer *rx_pkt;
380
381	struct efx_rx_queue rx_queue;
382	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
383};
384
385/**
386 * struct efx_channel_type - distinguishes traffic and extra channels
387 * @handle_no_channel: Handle failure to allocate an extra channel
388 * @pre_probe: Set up extra state prior to initialisation
389 * @post_remove: Tear down extra state after finalisation, if allocated.
390 *	May be called on channels that have not been probed.
391 * @get_name: Generate the channel's name (used for its IRQ handler)
392 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
393 *	reallocation is not supported.
394 * @keep_eventq: Flag for whether event queue should be kept initialised
395 *	while the device is stopped
396 */
397struct efx_channel_type {
398	void (*handle_no_channel)(struct efx_nic *);
399	int (*pre_probe)(struct efx_channel *);
400	void (*get_name)(struct efx_channel *, char *buf, size_t len);
401	struct efx_channel *(*copy)(const struct efx_channel *);
402	bool keep_eventq;
403};
404
405enum efx_led_mode {
406	EFX_LED_OFF	= 0,
407	EFX_LED_ON	= 1,
408	EFX_LED_DEFAULT	= 2
409};
410
411#define STRING_TABLE_LOOKUP(val, member) \
412	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
413
414extern const char *const efx_loopback_mode_names[];
415extern const unsigned int efx_loopback_mode_max;
416#define LOOPBACK_MODE(efx) \
417	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
418
419extern const char *const efx_reset_type_names[];
420extern const unsigned int efx_reset_type_max;
421#define RESET_TYPE(type) \
422	STRING_TABLE_LOOKUP(type, efx_reset_type)
423
424enum efx_int_mode {
425	/* Be careful if altering to correct macro below */
426	EFX_INT_MODE_MSIX = 0,
427	EFX_INT_MODE_MSI = 1,
428	EFX_INT_MODE_LEGACY = 2,
429	EFX_INT_MODE_MAX	/* Insert any new items before this */
430};
431#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
432
433enum nic_state {
434	STATE_INIT = 0,
435	STATE_RUNNING = 1,
436	STATE_FINI = 2,
437	STATE_DISABLED = 3,
438	STATE_MAX,
439};
440
441/*
442 * Alignment of page-allocated RX buffers
443 *
444 * Controls the number of bytes inserted at the start of an RX buffer.
445 * This is the equivalent of NET_IP_ALIGN [which controls the alignment
446 * of the skb->head for hardware DMA].
447 */
448#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
449#define EFX_PAGE_IP_ALIGN 0
450#else
451#define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
452#endif
453
454/*
455 * Alignment of the skb->head which wraps a page-allocated RX buffer
456 *
457 * The skb allocated to wrap an rx_buffer can have this alignment. Since
458 * the data is memcpy'd from the rx_buf, it does not need to be equal to
459 * EFX_PAGE_IP_ALIGN.
460 */
461#define EFX_PAGE_SKB_ALIGN 2
462
463/* Forward declaration */
464struct efx_nic;
465
466/* Pseudo bit-mask flow control field */
467#define EFX_FC_RX	FLOW_CTRL_RX
468#define EFX_FC_TX	FLOW_CTRL_TX
469#define EFX_FC_AUTO	4
470
471/**
472 * struct efx_link_state - Current state of the link
473 * @up: Link is up
474 * @fd: Link is full-duplex
475 * @fc: Actual flow control flags
476 * @speed: Link speed (Mbps)
477 */
478struct efx_link_state {
479	bool up;
480	bool fd;
481	u8 fc;
482	unsigned int speed;
483};
484
485static inline bool efx_link_state_equal(const struct efx_link_state *left,
486					const struct efx_link_state *right)
487{
488	return left->up == right->up && left->fd == right->fd &&
489		left->fc == right->fc && left->speed == right->speed;
490}
491
492/**
493 * struct efx_phy_operations - Efx PHY operations table
494 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
495 *	efx->loopback_modes.
496 * @init: Initialise PHY
497 * @fini: Shut down PHY
498 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
499 * @poll: Update @link_state and report whether it changed.
500 *	Serialised by the mac_lock.
501 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
502 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
503 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
504 *	(only needed where AN bit is set in mmds)
505 * @test_alive: Test that PHY is 'alive' (online)
506 * @test_name: Get the name of a PHY-specific test/result
507 * @run_tests: Run tests and record results as appropriate (offline).
508 *	Flags are the ethtool tests flags.
509 */
510struct efx_phy_operations {
511	int (*probe) (struct efx_nic *efx);
512	int (*init) (struct efx_nic *efx);
513	void (*fini) (struct efx_nic *efx);
514	void (*remove) (struct efx_nic *efx);
515	int (*reconfigure) (struct efx_nic *efx);
516	bool (*poll) (struct efx_nic *efx);
517	void (*get_settings) (struct efx_nic *efx,
518			      struct ethtool_cmd *ecmd);
519	int (*set_settings) (struct efx_nic *efx,
520			     struct ethtool_cmd *ecmd);
521	void (*set_npage_adv) (struct efx_nic *efx, u32);
522	int (*test_alive) (struct efx_nic *efx);
523	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
524	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
525};
526
527/**
528 * @enum efx_phy_mode - PHY operating mode flags
529 * @PHY_MODE_NORMAL: on and should pass traffic
530 * @PHY_MODE_TX_DISABLED: on with TX disabled
531 * @PHY_MODE_LOW_POWER: set to low power through MDIO
532 * @PHY_MODE_OFF: switched off through external control
533 * @PHY_MODE_SPECIAL: on but will not pass traffic
534 */
535enum efx_phy_mode {
536	PHY_MODE_NORMAL		= 0,
537	PHY_MODE_TX_DISABLED	= 1,
538	PHY_MODE_LOW_POWER	= 2,
539	PHY_MODE_OFF		= 4,
540	PHY_MODE_SPECIAL	= 8,
541};
542
543static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
544{
545	return !!(mode & ~PHY_MODE_TX_DISABLED);
546}
547
548/*
549 * Efx extended statistics
550 *
551 * Not all statistics are provided by all supported MACs.  The purpose
552 * is this structure is to contain the raw statistics provided by each
553 * MAC.
554 */
555struct efx_mac_stats {
556	u64 tx_bytes;
557	u64 tx_good_bytes;
558	u64 tx_bad_bytes;
559	u64 tx_packets;
560	u64 tx_bad;
561	u64 tx_pause;
562	u64 tx_control;
563	u64 tx_unicast;
564	u64 tx_multicast;
565	u64 tx_broadcast;
566	u64 tx_lt64;
567	u64 tx_64;
568	u64 tx_65_to_127;
569	u64 tx_128_to_255;
570	u64 tx_256_to_511;
571	u64 tx_512_to_1023;
572	u64 tx_1024_to_15xx;
573	u64 tx_15xx_to_jumbo;
574	u64 tx_gtjumbo;
575	u64 tx_collision;
576	u64 tx_single_collision;
577	u64 tx_multiple_collision;
578	u64 tx_excessive_collision;
579	u64 tx_deferred;
580	u64 tx_late_collision;
581	u64 tx_excessive_deferred;
582	u64 tx_non_tcpudp;
583	u64 tx_mac_src_error;
584	u64 tx_ip_src_error;
585	u64 rx_bytes;
586	u64 rx_good_bytes;
587	u64 rx_bad_bytes;
588	u64 rx_packets;
589	u64 rx_good;
590	u64 rx_bad;
591	u64 rx_pause;
592	u64 rx_control;
593	u64 rx_unicast;
594	u64 rx_multicast;
595	u64 rx_broadcast;
596	u64 rx_lt64;
597	u64 rx_64;
598	u64 rx_65_to_127;
599	u64 rx_128_to_255;
600	u64 rx_256_to_511;
601	u64 rx_512_to_1023;
602	u64 rx_1024_to_15xx;
603	u64 rx_15xx_to_jumbo;
604	u64 rx_gtjumbo;
605	u64 rx_bad_lt64;
606	u64 rx_bad_64_to_15xx;
607	u64 rx_bad_15xx_to_jumbo;
608	u64 rx_bad_gtjumbo;
609	u64 rx_overflow;
610	u64 rx_missed;
611	u64 rx_false_carrier;
612	u64 rx_symbol_error;
613	u64 rx_align_error;
614	u64 rx_length_error;
615	u64 rx_internal_error;
616	u64 rx_good_lt64;
617};
618
619/* Number of bits used in a multicast filter hash address */
620#define EFX_MCAST_HASH_BITS 8
621
622/* Number of (single-bit) entries in a multicast filter hash */
623#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
624
625/* An Efx multicast filter hash */
626union efx_multicast_hash {
627	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
628	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
629};
630
631struct efx_filter_state;
632struct efx_vf;
633struct vfdi_status;
634
635/**
636 * struct efx_nic - an Efx NIC
637 * @name: Device name (net device name or bus id before net device registered)
638 * @pci_dev: The PCI device
639 * @type: Controller type attributes
640 * @legacy_irq: IRQ number
641 * @legacy_irq_enabled: Are IRQs enabled on NIC (INT_EN_KER register)?
642 * @workqueue: Workqueue for port reconfigures and the HW monitor.
643 *	Work items do not hold and must not acquire RTNL.
644 * @workqueue_name: Name of workqueue
645 * @reset_work: Scheduled reset workitem
646 * @membase_phys: Memory BAR value as physical address
647 * @membase: Memory BAR value
648 * @interrupt_mode: Interrupt mode
649 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
650 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
651 * @irq_rx_moderation: IRQ moderation time for RX event queues
652 * @msg_enable: Log message enable flags
653 * @state: Device state flag. Serialised by the rtnl_lock.
654 * @reset_pending: Bitmask for pending resets
655 * @tx_queue: TX DMA queues
656 * @rx_queue: RX DMA queues
657 * @channel: Channels
658 * @channel_name: Names for channels and their IRQs
659 * @extra_channel_types: Types of extra (non-traffic) channels that
660 *	should be allocated for this NIC
661 * @rxq_entries: Size of receive queues requested by user.
662 * @txq_entries: Size of transmit queues requested by user.
663 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
664 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
665 * @sram_lim_qw: Qword address limit of SRAM
666 * @next_buffer_table: First available buffer table id
667 * @n_channels: Number of channels in use
668 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
669 * @n_tx_channels: Number of channels used for TX
670 * @rx_buffer_len: RX buffer length
671 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
672 * @rx_hash_key: Toeplitz hash key for RSS
673 * @rx_indir_table: Indirection table for RSS
674 * @int_error_count: Number of internal errors seen recently
675 * @int_error_expire: Time at which error count will be expired
676 * @irq_status: Interrupt status buffer
677 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
678 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
679 * @selftest_work: Work item for asynchronous self-test
680 * @mtd_list: List of MTDs attached to the NIC
681 * @nic_data: Hardware dependent state
682 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
683 *	efx_monitor() and efx_reconfigure_port()
684 * @port_enabled: Port enabled indicator.
685 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
686 *	efx_mac_work() with kernel interfaces. Safe to read under any
687 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
688 *	be held to modify it.
689 * @port_initialized: Port initialized?
690 * @net_dev: Operating system network device. Consider holding the rtnl lock
691 * @stats_buffer: DMA buffer for statistics
692 * @phy_type: PHY type
693 * @phy_op: PHY interface
694 * @phy_data: PHY private data (including PHY-specific stats)
695 * @mdio: PHY MDIO interface
696 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
697 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
698 * @link_advertising: Autonegotiation advertising flags
699 * @link_state: Current state of the link
700 * @n_link_state_changes: Number of times the link has changed state
701 * @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
702 * @multicast_hash: Multicast hash table
703 * @wanted_fc: Wanted flow control flags
704 * @fc_disable: When non-zero flow control is disabled. Typically used to
705 *	ensure that network back pressure doesn't delay dma queue flushes.
706 *	Serialised by the rtnl lock.
707 * @mac_work: Work item for changing MAC promiscuity and multicast hash
708 * @loopback_mode: Loopback status
709 * @loopback_modes: Supported loopback mode bitmask
710 * @loopback_selftest: Offline self-test private state
711 * @drain_pending: Count of RX and TX queues that haven't been flushed and drained.
712 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
713 *	Decremented when the efx_flush_rx_queue() is called.
714 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
715 *	completed (either success or failure). Not used when MCDI is used to
716 *	flush receive queues.
717 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
718 * @vf: Array of &struct efx_vf objects.
719 * @vf_count: Number of VFs intended to be enabled.
720 * @vf_init_count: Number of VFs that have been fully initialised.
721 * @vi_scale: log2 number of vnics per VF.
722 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
723 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
724 * @local_addr_list: List of local addresses. Protected by %local_lock.
725 * @local_page_list: List of DMA addressable pages used to broadcast
726 *	%local_addr_list. Protected by %local_lock.
727 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
728 * @peer_work: Work item to broadcast peer addresses to VMs.
729 * @monitor_work: Hardware monitor workitem
730 * @biu_lock: BIU (bus interface unit) lock
731 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
732 *	field is used by efx_test_interrupts() to verify that an
733 *	interrupt has occurred.
734 * @n_rx_nodesc_drop_cnt: RX no descriptor drop count
735 * @mac_stats: MAC statistics. These include all statistics the MACs
736 *	can provide.  Generic code converts these into a standard
737 *	&struct net_device_stats.
738 * @stats_lock: Statistics update lock. Serialises statistics fetches
739 *	and access to @mac_stats.
740 *
741 * This is stored in the private area of the &struct net_device.
742 */
743struct efx_nic {
744	/* The following fields should be written very rarely */
745
746	char name[IFNAMSIZ];
747	struct pci_dev *pci_dev;
748	const struct efx_nic_type *type;
749	int legacy_irq;
750	bool legacy_irq_enabled;
751	struct workqueue_struct *workqueue;
752	char workqueue_name[16];
753	struct work_struct reset_work;
754	resource_size_t membase_phys;
755	void __iomem *membase;
756
757	enum efx_int_mode interrupt_mode;
758	unsigned int timer_quantum_ns;
759	bool irq_rx_adaptive;
760	unsigned int irq_rx_moderation;
761	u32 msg_enable;
762
763	enum nic_state state;
764	unsigned long reset_pending;
765
766	struct efx_channel *channel[EFX_MAX_CHANNELS];
767	char channel_name[EFX_MAX_CHANNELS][IFNAMSIZ + 6];
768	const struct efx_channel_type *
769	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
770
771	unsigned rxq_entries;
772	unsigned txq_entries;
773	unsigned tx_dc_base;
774	unsigned rx_dc_base;
775	unsigned sram_lim_qw;
776	unsigned next_buffer_table;
777	unsigned n_channels;
778	unsigned n_rx_channels;
779	unsigned rss_spread;
780	unsigned tx_channel_offset;
781	unsigned n_tx_channels;
782	unsigned int rx_buffer_len;
783	unsigned int rx_buffer_order;
784	u8 rx_hash_key[40];
785	u32 rx_indir_table[128];
786
787	unsigned int_error_count;
788	unsigned long int_error_expire;
789
790	struct efx_buffer irq_status;
791	unsigned irq_zero_count;
792	unsigned irq_level;
793	struct delayed_work selftest_work;
794
795#ifdef CONFIG_SFC_MTD
796	struct list_head mtd_list;
797#endif
798
799	void *nic_data;
800
801	struct mutex mac_lock;
802	struct work_struct mac_work;
803	bool port_enabled;
804
805	bool port_initialized;
806	struct net_device *net_dev;
807
808	struct efx_buffer stats_buffer;
809
810	unsigned int phy_type;
811	const struct efx_phy_operations *phy_op;
812	void *phy_data;
813	struct mdio_if_info mdio;
814	unsigned int mdio_bus;
815	enum efx_phy_mode phy_mode;
816
817	u32 link_advertising;
818	struct efx_link_state link_state;
819	unsigned int n_link_state_changes;
820
821	bool promiscuous;
822	union efx_multicast_hash multicast_hash;
823	u8 wanted_fc;
824	unsigned fc_disable;
825
826	atomic_t rx_reset;
827	enum efx_loopback_mode loopback_mode;
828	u64 loopback_modes;
829
830	void *loopback_selftest;
831
832	struct efx_filter_state *filter_state;
833
834	atomic_t drain_pending;
835	atomic_t rxq_flush_pending;
836	atomic_t rxq_flush_outstanding;
837	wait_queue_head_t flush_wq;
838
839#ifdef CONFIG_SFC_SRIOV
840	struct efx_channel *vfdi_channel;
841	struct efx_vf *vf;
842	unsigned vf_count;
843	unsigned vf_init_count;
844	unsigned vi_scale;
845	unsigned vf_buftbl_base;
846	struct efx_buffer vfdi_status;
847	struct list_head local_addr_list;
848	struct list_head local_page_list;
849	struct mutex local_lock;
850	struct work_struct peer_work;
851#endif
852
853	/* The following fields may be written more often */
854
855	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
856	spinlock_t biu_lock;
857	int last_irq_cpu;
858	unsigned n_rx_nodesc_drop_cnt;
859	struct efx_mac_stats mac_stats;
860	spinlock_t stats_lock;
861};
862
863static inline int efx_dev_registered(struct efx_nic *efx)
864{
865	return efx->net_dev->reg_state == NETREG_REGISTERED;
866}
867
868static inline unsigned int efx_port_num(struct efx_nic *efx)
869{
870	return efx->net_dev->dev_id;
871}
872
873/**
874 * struct efx_nic_type - Efx device type definition
875 * @probe: Probe the controller
876 * @remove: Free resources allocated by probe()
877 * @init: Initialise the controller
878 * @dimension_resources: Dimension controller resources (buffer table,
879 *	and VIs once the available interrupt resources are clear)
880 * @fini: Shut down the controller
881 * @monitor: Periodic function for polling link state and hardware monitor
882 * @map_reset_reason: Map ethtool reset reason to a reset method
883 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
884 * @reset: Reset the controller hardware and possibly the PHY.  This will
885 *	be called while the controller is uninitialised.
886 * @probe_port: Probe the MAC and PHY
887 * @remove_port: Free resources allocated by probe_port()
888 * @handle_global_event: Handle a "global" event (may be %NULL)
889 * @prepare_flush: Prepare the hardware for flushing the DMA queues
890 * @update_stats: Update statistics not provided by event handling
891 * @start_stats: Start the regular fetching of statistics
892 * @stop_stats: Stop the regular fetching of statistics
893 * @set_id_led: Set state of identifying LED or revert to automatic function
894 * @push_irq_moderation: Apply interrupt moderation value
895 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
896 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
897 *	to the hardware.  Serialised by the mac_lock.
898 * @check_mac_fault: Check MAC fault state. True if fault present.
899 * @get_wol: Get WoL configuration from driver state
900 * @set_wol: Push WoL configuration to the NIC
901 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
902 * @test_registers: Test read/write functionality of control registers
903 * @test_nvram: Test validity of NVRAM contents
904 * @revision: Hardware architecture revision
905 * @mem_map_size: Memory BAR mapped size
906 * @txd_ptr_tbl_base: TX descriptor ring base address
907 * @rxd_ptr_tbl_base: RX descriptor ring base address
908 * @buf_tbl_base: Buffer table base address
909 * @evq_ptr_tbl_base: Event queue pointer table base address
910 * @evq_rptr_tbl_base: Event queue read-pointer table base address
911 * @max_dma_mask: Maximum possible DMA mask
912 * @rx_buffer_hash_size: Size of hash at start of RX buffer
913 * @rx_buffer_padding: Size of padding at end of RX buffer
914 * @max_interrupt_mode: Highest capability interrupt mode supported
915 *	from &enum efx_init_mode.
916 * @phys_addr_channels: Number of channels with physically addressed
917 *	descriptors
918 * @timer_period_max: Maximum period of interrupt timer (in ticks)
919 * @offload_features: net_device feature flags for protocol offload
920 *	features implemented in hardware
921 */
922struct efx_nic_type {
923	int (*probe)(struct efx_nic *efx);
924	void (*remove)(struct efx_nic *efx);
925	int (*init)(struct efx_nic *efx);
926	void (*dimension_resources)(struct efx_nic *efx);
927	void (*fini)(struct efx_nic *efx);
928	void (*monitor)(struct efx_nic *efx);
929	enum reset_type (*map_reset_reason)(enum reset_type reason);
930	int (*map_reset_flags)(u32 *flags);
931	int (*reset)(struct efx_nic *efx, enum reset_type method);
932	int (*probe_port)(struct efx_nic *efx);
933	void (*remove_port)(struct efx_nic *efx);
934	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
935	void (*prepare_flush)(struct efx_nic *efx);
936	void (*update_stats)(struct efx_nic *efx);
937	void (*start_stats)(struct efx_nic *efx);
938	void (*stop_stats)(struct efx_nic *efx);
939	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
940	void (*push_irq_moderation)(struct efx_channel *channel);
941	int (*reconfigure_port)(struct efx_nic *efx);
942	int (*reconfigure_mac)(struct efx_nic *efx);
943	bool (*check_mac_fault)(struct efx_nic *efx);
944	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
945	int (*set_wol)(struct efx_nic *efx, u32 type);
946	void (*resume_wol)(struct efx_nic *efx);
947	int (*test_registers)(struct efx_nic *efx);
948	int (*test_nvram)(struct efx_nic *efx);
949
950	int revision;
951	unsigned int mem_map_size;
952	unsigned int txd_ptr_tbl_base;
953	unsigned int rxd_ptr_tbl_base;
954	unsigned int buf_tbl_base;
955	unsigned int evq_ptr_tbl_base;
956	unsigned int evq_rptr_tbl_base;
957	u64 max_dma_mask;
958	unsigned int rx_buffer_hash_size;
959	unsigned int rx_buffer_padding;
960	unsigned int max_interrupt_mode;
961	unsigned int phys_addr_channels;
962	unsigned int timer_period_max;
963	netdev_features_t offload_features;
964};
965
966/**************************************************************************
967 *
968 * Prototypes and inline functions
969 *
970 *************************************************************************/
971
972static inline struct efx_channel *
973efx_get_channel(struct efx_nic *efx, unsigned index)
974{
975	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
976	return efx->channel[index];
977}
978
979/* Iterate over all used channels */
980#define efx_for_each_channel(_channel, _efx)				\
981	for (_channel = (_efx)->channel[0];				\
982	     _channel;							\
983	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
984		     (_efx)->channel[_channel->channel + 1] : NULL)
985
986/* Iterate over all used channels in reverse */
987#define efx_for_each_channel_rev(_channel, _efx)			\
988	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
989	     _channel;							\
990	     _channel = _channel->channel ?				\
991		     (_efx)->channel[_channel->channel - 1] : NULL)
992
993static inline struct efx_tx_queue *
994efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
995{
996	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
997			    type >= EFX_TXQ_TYPES);
998	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
999}
1000
1001static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1002{
1003	return channel->channel - channel->efx->tx_channel_offset <
1004		channel->efx->n_tx_channels;
1005}
1006
1007static inline struct efx_tx_queue *
1008efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1009{
1010	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1011			    type >= EFX_TXQ_TYPES);
1012	return &channel->tx_queue[type];
1013}
1014
1015static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1016{
1017	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1018		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1019}
1020
1021/* Iterate over all TX queues belonging to a channel */
1022#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1023	if (!efx_channel_has_tx_queues(_channel))			\
1024		;							\
1025	else								\
1026		for (_tx_queue = (_channel)->tx_queue;			\
1027		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1028			     efx_tx_queue_used(_tx_queue);		\
1029		     _tx_queue++)
1030
1031/* Iterate over all possible TX queues belonging to a channel */
1032#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1033	if (!efx_channel_has_tx_queues(_channel))			\
1034		;							\
1035	else								\
1036		for (_tx_queue = (_channel)->tx_queue;			\
1037		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1038		     _tx_queue++)
1039
1040static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1041{
1042	return channel->channel < channel->efx->n_rx_channels;
1043}
1044
1045static inline struct efx_rx_queue *
1046efx_channel_get_rx_queue(struct efx_channel *channel)
1047{
1048	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1049	return &channel->rx_queue;
1050}
1051
1052/* Iterate over all RX queues belonging to a channel */
1053#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1054	if (!efx_channel_has_rx_queue(_channel))			\
1055		;							\
1056	else								\
1057		for (_rx_queue = &(_channel)->rx_queue;			\
1058		     _rx_queue;						\
1059		     _rx_queue = NULL)
1060
1061static inline struct efx_channel *
1062efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1063{
1064	return container_of(rx_queue, struct efx_channel, rx_queue);
1065}
1066
1067static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1068{
1069	return efx_rx_queue_channel(rx_queue)->channel;
1070}
1071
1072/* Returns a pointer to the specified receive buffer in the RX
1073 * descriptor queue.
1074 */
1075static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1076						  unsigned int index)
1077{
1078	return &rx_queue->buffer[index];
1079}
1080
1081/* Set bit in a little-endian bitfield */
1082static inline void set_bit_le(unsigned nr, unsigned char *addr)
1083{
1084	addr[nr / 8] |= (1 << (nr % 8));
1085}
1086
1087/* Clear bit in a little-endian bitfield */
1088static inline void clear_bit_le(unsigned nr, unsigned char *addr)
1089{
1090	addr[nr / 8] &= ~(1 << (nr % 8));
1091}
1092
1093
1094/**
1095 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1096 *
1097 * This calculates the maximum frame length that will be used for a
1098 * given MTU.  The frame length will be equal to the MTU plus a
1099 * constant amount of header space and padding.  This is the quantity
1100 * that the net driver will program into the MAC as the maximum frame
1101 * length.
1102 *
1103 * The 10G MAC requires 8-byte alignment on the frame
1104 * length, so we round up to the nearest 8.
1105 *
1106 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1107 * XGMII cycle).  If the frame length reaches the maximum value in the
1108 * same cycle, the XMAC can miss the IPG altogether.  We work around
1109 * this by adding a further 16 bytes.
1110 */
1111#define EFX_MAX_FRAME_LEN(mtu) \
1112	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1113
1114
1115#endif /* EFX_NET_DRIVER_H */
1116