1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/ipv6.h>
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
20#include <linux/cache.h>
21#include "net_driver.h"
22#include "efx.h"
23#include "io.h"
24#include "nic.h"
25#include "workarounds.h"
26#include "ef10_regs.h"
27
28#ifdef EFX_USE_PIO
29
30#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34#endif /* EFX_USE_PIO */
35
36static inline unsigned int
37efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38{
39	return tx_queue->insert_count & tx_queue->ptr_mask;
40}
41
42static inline struct efx_tx_buffer *
43__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44{
45	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46}
47
48static inline struct efx_tx_buffer *
49efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50{
51	struct efx_tx_buffer *buffer =
52		__efx_tx_queue_get_insert_buffer(tx_queue);
53
54	EFX_BUG_ON_PARANOID(buffer->len);
55	EFX_BUG_ON_PARANOID(buffer->flags);
56	EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58	return buffer;
59}
60
61static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62			       struct efx_tx_buffer *buffer,
63			       unsigned int *pkts_compl,
64			       unsigned int *bytes_compl)
65{
66	if (buffer->unmap_len) {
67		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71					 DMA_TO_DEVICE);
72		else
73			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74				       DMA_TO_DEVICE);
75		buffer->unmap_len = 0;
76	}
77
78	if (buffer->flags & EFX_TX_BUF_SKB) {
79		(*pkts_compl)++;
80		(*bytes_compl) += buffer->skb->len;
81		dev_consume_skb_any((struct sk_buff *)buffer->skb);
82		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83			   "TX queue %d transmission id %x complete\n",
84			   tx_queue->queue, tx_queue->read_count);
85	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
86		kfree(buffer->heap_buf);
87	}
88
89	buffer->len = 0;
90	buffer->flags = 0;
91}
92
93static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94			       struct sk_buff *skb);
95
96static inline unsigned
97efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98{
99	/* Depending on the NIC revision, we can use descriptor
100	 * lengths up to 8K or 8K-1.  However, since PCI Express
101	 * devices must split read requests at 4K boundaries, there is
102	 * little benefit from using descriptors that cross those
103	 * boundaries and we keep things simple by not doing so.
104	 */
105	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107	/* Work around hardware bug for unaligned buffers. */
108	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111	return len;
112}
113
114unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115{
116	/* Header and payload descriptor for each output segment, plus
117	 * one for every input fragment boundary within a segment
118	 */
119	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121	/* Possibly one more per segment for the alignment workaround,
122	 * or for option descriptors
123	 */
124	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125		max_descs += EFX_TSO_MAX_SEGS;
126
127	/* Possibly more for PCIe page boundaries within input fragments */
128	if (PAGE_SIZE > EFX_PAGE_SIZE)
129		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132	return max_descs;
133}
134
135static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136{
137	/* We need to consider both queues that the net core sees as one */
138	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139	struct efx_nic *efx = txq1->efx;
140	unsigned int fill_level;
141
142	fill_level = max(txq1->insert_count - txq1->old_read_count,
143			 txq2->insert_count - txq2->old_read_count);
144	if (likely(fill_level < efx->txq_stop_thresh))
145		return;
146
147	/* We used the stale old_read_count above, which gives us a
148	 * pessimistic estimate of the fill level (which may even
149	 * validly be >= efx->txq_entries).  Now try again using
150	 * read_count (more likely to be a cache miss).
151	 *
152	 * If we read read_count and then conditionally stop the
153	 * queue, it is possible for the completion path to race with
154	 * us and complete all outstanding descriptors in the middle,
155	 * after which there will be no more completions to wake it.
156	 * Therefore we stop the queue first, then read read_count
157	 * (with a memory barrier to ensure the ordering), then
158	 * restart the queue if the fill level turns out to be low
159	 * enough.
160	 */
161	netif_tx_stop_queue(txq1->core_txq);
162	smp_mb();
163	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165
166	fill_level = max(txq1->insert_count - txq1->old_read_count,
167			 txq2->insert_count - txq2->old_read_count);
168	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169	if (likely(fill_level < efx->txq_stop_thresh)) {
170		smp_mb();
171		if (likely(!efx->loopback_selftest))
172			netif_tx_start_queue(txq1->core_txq);
173	}
174}
175
176#ifdef EFX_USE_PIO
177
178struct efx_short_copy_buffer {
179	int used;
180	u8 buf[L1_CACHE_BYTES];
181};
182
183/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184 * Advances piobuf pointer. Leaves additional data in the copy buffer.
185 */
186static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187				    u8 *data, int len,
188				    struct efx_short_copy_buffer *copy_buf)
189{
190	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191
192	__iowrite64_copy(*piobuf, data, block_len >> 3);
193	*piobuf += block_len;
194	len -= block_len;
195
196	if (len) {
197		data += block_len;
198		BUG_ON(copy_buf->used);
199		BUG_ON(len > sizeof(copy_buf->buf));
200		memcpy(copy_buf->buf, data, len);
201		copy_buf->used = len;
202	}
203}
204
205/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206 * Advances piobuf pointer. Leaves additional data in the copy buffer.
207 */
208static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209				       u8 *data, int len,
210				       struct efx_short_copy_buffer *copy_buf)
211{
212	if (copy_buf->used) {
213		/* if the copy buffer is partially full, fill it up and write */
214		int copy_to_buf =
215			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216
217		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218		copy_buf->used += copy_to_buf;
219
220		/* if we didn't fill it up then we're done for now */
221		if (copy_buf->used < sizeof(copy_buf->buf))
222			return;
223
224		__iowrite64_copy(*piobuf, copy_buf->buf,
225				 sizeof(copy_buf->buf) >> 3);
226		*piobuf += sizeof(copy_buf->buf);
227		data += copy_to_buf;
228		len -= copy_to_buf;
229		copy_buf->used = 0;
230	}
231
232	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233}
234
235static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236				  struct efx_short_copy_buffer *copy_buf)
237{
238	/* if there's anything in it, write the whole buffer, including junk */
239	if (copy_buf->used)
240		__iowrite64_copy(piobuf, copy_buf->buf,
241				 sizeof(copy_buf->buf) >> 3);
242}
243
244/* Traverse skb structure and copy fragments in to PIO buffer.
245 * Advances piobuf pointer.
246 */
247static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248				     u8 __iomem **piobuf,
249				     struct efx_short_copy_buffer *copy_buf)
250{
251	int i;
252
253	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254				copy_buf);
255
256	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258		u8 *vaddr;
259
260		vaddr = kmap_atomic(skb_frag_page(f));
261
262		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263					   skb_frag_size(f), copy_buf);
264		kunmap_atomic(vaddr);
265	}
266
267	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268}
269
270static struct efx_tx_buffer *
271efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272{
273	struct efx_tx_buffer *buffer =
274		efx_tx_queue_get_insert_buffer(tx_queue);
275	u8 __iomem *piobuf = tx_queue->piobuf;
276
277	/* Copy to PIO buffer. Ensure the writes are padded to the end
278	 * of a cache line, as this is required for write-combining to be
279	 * effective on at least x86.
280	 */
281
282	if (skb_shinfo(skb)->nr_frags) {
283		/* The size of the copy buffer will ensure all writes
284		 * are the size of a cache line.
285		 */
286		struct efx_short_copy_buffer copy_buf;
287
288		copy_buf.used = 0;
289
290		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291					 &piobuf, &copy_buf);
292		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293	} else {
294		/* Pad the write to the size of a cache line.
295		 * We can do this because we know the skb_shared_info sruct is
296		 * after the source, and the destination buffer is big enough.
297		 */
298		BUILD_BUG_ON(L1_CACHE_BYTES >
299			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
300		__iowrite64_copy(tx_queue->piobuf, skb->data,
301				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
302	}
303
304	EFX_POPULATE_QWORD_5(buffer->option,
305			     ESF_DZ_TX_DESC_IS_OPT, 1,
306			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307			     ESF_DZ_TX_PIO_CONT, 0,
308			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309			     ESF_DZ_TX_PIO_BUF_ADDR,
310			     tx_queue->piobuf_offset);
311	++tx_queue->pio_packets;
312	++tx_queue->insert_count;
313	return buffer;
314}
315#endif /* EFX_USE_PIO */
316
317/*
318 * Add a socket buffer to a TX queue
319 *
320 * This maps all fragments of a socket buffer for DMA and adds them to
321 * the TX queue.  The queue's insert pointer will be incremented by
322 * the number of fragments in the socket buffer.
323 *
324 * If any DMA mapping fails, any mapped fragments will be unmapped,
325 * the queue's insert pointer will be restored to its original value.
326 *
327 * This function is split out from efx_hard_start_xmit to allow the
328 * loopback test to direct packets via specific TX queues.
329 *
330 * Returns NETDEV_TX_OK.
331 * You must hold netif_tx_lock() to call this function.
332 */
333netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
334{
335	struct efx_nic *efx = tx_queue->efx;
336	struct device *dma_dev = &efx->pci_dev->dev;
337	struct efx_tx_buffer *buffer;
338	unsigned int old_insert_count = tx_queue->insert_count;
339	skb_frag_t *fragment;
340	unsigned int len, unmap_len = 0;
341	dma_addr_t dma_addr, unmap_addr = 0;
342	unsigned int dma_len;
343	unsigned short dma_flags;
344	int i = 0;
345
346	if (skb_shinfo(skb)->gso_size)
347		return efx_enqueue_skb_tso(tx_queue, skb);
348
349	/* Get size of the initial fragment */
350	len = skb_headlen(skb);
351
352	/* Pad if necessary */
353	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
354		EFX_BUG_ON_PARANOID(skb->data_len);
355		len = 32 + 1;
356		if (skb_pad(skb, len - skb->len))
357			return NETDEV_TX_OK;
358	}
359
360	/* Consider using PIO for short packets */
361#ifdef EFX_USE_PIO
362	if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
363	    efx_nic_may_tx_pio(tx_queue)) {
364		buffer = efx_enqueue_skb_pio(tx_queue, skb);
365		dma_flags = EFX_TX_BUF_OPTION;
366		goto finish_packet;
367	}
368#endif
369
370	/* Map for DMA.  Use dma_map_single rather than dma_map_page
371	 * since this is more efficient on machines with sparse
372	 * memory.
373	 */
374	dma_flags = EFX_TX_BUF_MAP_SINGLE;
375	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
376
377	/* Process all fragments */
378	while (1) {
379		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
380			goto dma_err;
381
382		/* Store fields for marking in the per-fragment final
383		 * descriptor */
384		unmap_len = len;
385		unmap_addr = dma_addr;
386
387		/* Add to TX queue, splitting across DMA boundaries */
388		do {
389			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
390
391			dma_len = efx_max_tx_len(efx, dma_addr);
392			if (likely(dma_len >= len))
393				dma_len = len;
394
395			/* Fill out per descriptor fields */
396			buffer->len = dma_len;
397			buffer->dma_addr = dma_addr;
398			buffer->flags = EFX_TX_BUF_CONT;
399			len -= dma_len;
400			dma_addr += dma_len;
401			++tx_queue->insert_count;
402		} while (len);
403
404		/* Transfer ownership of the unmapping to the final buffer */
405		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
406		buffer->unmap_len = unmap_len;
407		buffer->dma_offset = buffer->dma_addr - unmap_addr;
408		unmap_len = 0;
409
410		/* Get address and size of next fragment */
411		if (i >= skb_shinfo(skb)->nr_frags)
412			break;
413		fragment = &skb_shinfo(skb)->frags[i];
414		len = skb_frag_size(fragment);
415		i++;
416		/* Map for DMA */
417		dma_flags = 0;
418		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
419					    DMA_TO_DEVICE);
420	}
421
422	/* Transfer ownership of the skb to the final buffer */
423#ifdef EFX_USE_PIO
424finish_packet:
425#endif
426	buffer->skb = skb;
427	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
428
429	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
430
431	efx_tx_maybe_stop_queue(tx_queue);
432
433	/* Pass off to hardware */
434	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
435		efx_nic_push_buffers(tx_queue);
436
437	tx_queue->tx_packets++;
438
439	return NETDEV_TX_OK;
440
441 dma_err:
442	netif_err(efx, tx_err, efx->net_dev,
443		  " TX queue %d could not map skb with %d bytes %d "
444		  "fragments for DMA\n", tx_queue->queue, skb->len,
445		  skb_shinfo(skb)->nr_frags + 1);
446
447	/* Mark the packet as transmitted, and free the SKB ourselves */
448	dev_kfree_skb_any(skb);
449
450	/* Work backwards until we hit the original insert pointer value */
451	while (tx_queue->insert_count != old_insert_count) {
452		unsigned int pkts_compl = 0, bytes_compl = 0;
453		--tx_queue->insert_count;
454		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
455		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
456	}
457
458	/* Free the fragment we were mid-way through pushing */
459	if (unmap_len) {
460		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
461			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
462					 DMA_TO_DEVICE);
463		else
464			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
465				       DMA_TO_DEVICE);
466	}
467
468	return NETDEV_TX_OK;
469}
470
471/* Remove packets from the TX queue
472 *
473 * This removes packets from the TX queue, up to and including the
474 * specified index.
475 */
476static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
477				unsigned int index,
478				unsigned int *pkts_compl,
479				unsigned int *bytes_compl)
480{
481	struct efx_nic *efx = tx_queue->efx;
482	unsigned int stop_index, read_ptr;
483
484	stop_index = (index + 1) & tx_queue->ptr_mask;
485	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
486
487	while (read_ptr != stop_index) {
488		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
489
490		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
491		    unlikely(buffer->len == 0)) {
492			netif_err(efx, tx_err, efx->net_dev,
493				  "TX queue %d spurious TX completion id %x\n",
494				  tx_queue->queue, read_ptr);
495			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
496			return;
497		}
498
499		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
500
501		++tx_queue->read_count;
502		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
503	}
504}
505
506/* Initiate a packet transmission.  We use one channel per CPU
507 * (sharing when we have more CPUs than channels).  On Falcon, the TX
508 * completion events will be directed back to the CPU that transmitted
509 * the packet, which should be cache-efficient.
510 *
511 * Context: non-blocking.
512 * Note that returning anything other than NETDEV_TX_OK will cause the
513 * OS to free the skb.
514 */
515netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
516				struct net_device *net_dev)
517{
518	struct efx_nic *efx = netdev_priv(net_dev);
519	struct efx_tx_queue *tx_queue;
520	unsigned index, type;
521
522	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
523
524	/* PTP "event" packet */
525	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
526	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
527		return efx_ptp_tx(efx, skb);
528	}
529
530	index = skb_get_queue_mapping(skb);
531	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
532	if (index >= efx->n_tx_channels) {
533		index -= efx->n_tx_channels;
534		type |= EFX_TXQ_TYPE_HIGHPRI;
535	}
536	tx_queue = efx_get_tx_queue(efx, index, type);
537
538	return efx_enqueue_skb(tx_queue, skb);
539}
540
541void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
542{
543	struct efx_nic *efx = tx_queue->efx;
544
545	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
546	tx_queue->core_txq =
547		netdev_get_tx_queue(efx->net_dev,
548				    tx_queue->queue / EFX_TXQ_TYPES +
549				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
550				     efx->n_tx_channels : 0));
551}
552
553int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
554{
555	struct efx_nic *efx = netdev_priv(net_dev);
556	struct efx_channel *channel;
557	struct efx_tx_queue *tx_queue;
558	unsigned tc;
559	int rc;
560
561	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
562		return -EINVAL;
563
564	if (num_tc == net_dev->num_tc)
565		return 0;
566
567	for (tc = 0; tc < num_tc; tc++) {
568		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
569		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
570	}
571
572	if (num_tc > net_dev->num_tc) {
573		/* Initialise high-priority queues as necessary */
574		efx_for_each_channel(channel, efx) {
575			efx_for_each_possible_channel_tx_queue(tx_queue,
576							       channel) {
577				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
578					continue;
579				if (!tx_queue->buffer) {
580					rc = efx_probe_tx_queue(tx_queue);
581					if (rc)
582						return rc;
583				}
584				if (!tx_queue->initialised)
585					efx_init_tx_queue(tx_queue);
586				efx_init_tx_queue_core_txq(tx_queue);
587			}
588		}
589	} else {
590		/* Reduce number of classes before number of queues */
591		net_dev->num_tc = num_tc;
592	}
593
594	rc = netif_set_real_num_tx_queues(net_dev,
595					  max_t(int, num_tc, 1) *
596					  efx->n_tx_channels);
597	if (rc)
598		return rc;
599
600	/* Do not destroy high-priority queues when they become
601	 * unused.  We would have to flush them first, and it is
602	 * fairly difficult to flush a subset of TX queues.  Leave
603	 * it to efx_fini_channels().
604	 */
605
606	net_dev->num_tc = num_tc;
607	return 0;
608}
609
610void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
611{
612	unsigned fill_level;
613	struct efx_nic *efx = tx_queue->efx;
614	struct efx_tx_queue *txq2;
615	unsigned int pkts_compl = 0, bytes_compl = 0;
616
617	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
618
619	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
620	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
621
622	if (pkts_compl > 1)
623		++tx_queue->merge_events;
624
625	/* See if we need to restart the netif queue.  This memory
626	 * barrier ensures that we write read_count (inside
627	 * efx_dequeue_buffers()) before reading the queue status.
628	 */
629	smp_mb();
630	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
631	    likely(efx->port_enabled) &&
632	    likely(netif_device_present(efx->net_dev))) {
633		txq2 = efx_tx_queue_partner(tx_queue);
634		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
635				 txq2->insert_count - txq2->read_count);
636		if (fill_level <= efx->txq_wake_thresh)
637			netif_tx_wake_queue(tx_queue->core_txq);
638	}
639
640	/* Check whether the hardware queue is now empty */
641	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
642		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
643		if (tx_queue->read_count == tx_queue->old_write_count) {
644			smp_mb();
645			tx_queue->empty_read_count =
646				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
647		}
648	}
649}
650
651/* Size of page-based TSO header buffers.  Larger blocks must be
652 * allocated from the heap.
653 */
654#define TSOH_STD_SIZE	128
655#define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
656
657/* At most half the descriptors in the queue at any time will refer to
658 * a TSO header buffer, since they must always be followed by a
659 * payload descriptor referring to an skb.
660 */
661static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
662{
663	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
664}
665
666int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
667{
668	struct efx_nic *efx = tx_queue->efx;
669	unsigned int entries;
670	int rc;
671
672	/* Create the smallest power-of-two aligned ring */
673	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
674	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
675	tx_queue->ptr_mask = entries - 1;
676
677	netif_dbg(efx, probe, efx->net_dev,
678		  "creating TX queue %d size %#x mask %#x\n",
679		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
680
681	/* Allocate software ring */
682	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
683				   GFP_KERNEL);
684	if (!tx_queue->buffer)
685		return -ENOMEM;
686
687	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
688		tx_queue->tsoh_page =
689			kcalloc(efx_tsoh_page_count(tx_queue),
690				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
691		if (!tx_queue->tsoh_page) {
692			rc = -ENOMEM;
693			goto fail1;
694		}
695	}
696
697	/* Allocate hardware ring */
698	rc = efx_nic_probe_tx(tx_queue);
699	if (rc)
700		goto fail2;
701
702	return 0;
703
704fail2:
705	kfree(tx_queue->tsoh_page);
706	tx_queue->tsoh_page = NULL;
707fail1:
708	kfree(tx_queue->buffer);
709	tx_queue->buffer = NULL;
710	return rc;
711}
712
713void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
714{
715	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
716		  "initialising TX queue %d\n", tx_queue->queue);
717
718	tx_queue->insert_count = 0;
719	tx_queue->write_count = 0;
720	tx_queue->old_write_count = 0;
721	tx_queue->read_count = 0;
722	tx_queue->old_read_count = 0;
723	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
724
725	/* Set up TX descriptor ring */
726	efx_nic_init_tx(tx_queue);
727
728	tx_queue->initialised = true;
729}
730
731void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
732{
733	struct efx_tx_buffer *buffer;
734
735	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
736		  "shutting down TX queue %d\n", tx_queue->queue);
737
738	if (!tx_queue->buffer)
739		return;
740
741	/* Free any buffers left in the ring */
742	while (tx_queue->read_count != tx_queue->write_count) {
743		unsigned int pkts_compl = 0, bytes_compl = 0;
744		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
745		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
746
747		++tx_queue->read_count;
748	}
749	netdev_tx_reset_queue(tx_queue->core_txq);
750}
751
752void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
753{
754	int i;
755
756	if (!tx_queue->buffer)
757		return;
758
759	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
760		  "destroying TX queue %d\n", tx_queue->queue);
761	efx_nic_remove_tx(tx_queue);
762
763	if (tx_queue->tsoh_page) {
764		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
765			efx_nic_free_buffer(tx_queue->efx,
766					    &tx_queue->tsoh_page[i]);
767		kfree(tx_queue->tsoh_page);
768		tx_queue->tsoh_page = NULL;
769	}
770
771	kfree(tx_queue->buffer);
772	tx_queue->buffer = NULL;
773}
774
775
776/* Efx TCP segmentation acceleration.
777 *
778 * Why?  Because by doing it here in the driver we can go significantly
779 * faster than the GSO.
780 *
781 * Requires TX checksum offload support.
782 */
783
784#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
785
786/**
787 * struct tso_state - TSO state for an SKB
788 * @out_len: Remaining length in current segment
789 * @seqnum: Current sequence number
790 * @ipv4_id: Current IPv4 ID, host endian
791 * @packet_space: Remaining space in current packet
792 * @dma_addr: DMA address of current position
793 * @in_len: Remaining length in current SKB fragment
794 * @unmap_len: Length of SKB fragment
795 * @unmap_addr: DMA address of SKB fragment
796 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
797 * @protocol: Network protocol (after any VLAN header)
798 * @ip_off: Offset of IP header
799 * @tcp_off: Offset of TCP header
800 * @header_len: Number of bytes of header
801 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
802 * @header_dma_addr: Header DMA address, when using option descriptors
803 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
804 *	descriptors
805 *
806 * The state used during segmentation.  It is put into this data structure
807 * just to make it easy to pass into inline functions.
808 */
809struct tso_state {
810	/* Output position */
811	unsigned out_len;
812	unsigned seqnum;
813	u16 ipv4_id;
814	unsigned packet_space;
815
816	/* Input position */
817	dma_addr_t dma_addr;
818	unsigned in_len;
819	unsigned unmap_len;
820	dma_addr_t unmap_addr;
821	unsigned short dma_flags;
822
823	__be16 protocol;
824	unsigned int ip_off;
825	unsigned int tcp_off;
826	unsigned header_len;
827	unsigned int ip_base_len;
828	dma_addr_t header_dma_addr;
829	unsigned int header_unmap_len;
830};
831
832
833/*
834 * Verify that our various assumptions about sk_buffs and the conditions
835 * under which TSO will be attempted hold true.  Return the protocol number.
836 */
837static __be16 efx_tso_check_protocol(struct sk_buff *skb)
838{
839	__be16 protocol = skb->protocol;
840
841	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
842			    protocol);
843	if (protocol == htons(ETH_P_8021Q)) {
844		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
845		protocol = veh->h_vlan_encapsulated_proto;
846	}
847
848	if (protocol == htons(ETH_P_IP)) {
849		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
850	} else {
851		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
852		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
853	}
854	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
855			     + (tcp_hdr(skb)->doff << 2u)) >
856			    skb_headlen(skb));
857
858	return protocol;
859}
860
861static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
862			       struct efx_tx_buffer *buffer, unsigned int len)
863{
864	u8 *result;
865
866	EFX_BUG_ON_PARANOID(buffer->len);
867	EFX_BUG_ON_PARANOID(buffer->flags);
868	EFX_BUG_ON_PARANOID(buffer->unmap_len);
869
870	if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
871		unsigned index =
872			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
873		struct efx_buffer *page_buf =
874			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
875		unsigned offset =
876			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
877
878		if (unlikely(!page_buf->addr) &&
879		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
880					 GFP_ATOMIC))
881			return NULL;
882
883		result = (u8 *)page_buf->addr + offset;
884		buffer->dma_addr = page_buf->dma_addr + offset;
885		buffer->flags = EFX_TX_BUF_CONT;
886	} else {
887		tx_queue->tso_long_headers++;
888
889		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
890		if (unlikely(!buffer->heap_buf))
891			return NULL;
892		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
893		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
894	}
895
896	buffer->len = len;
897
898	return result;
899}
900
901/**
902 * efx_tx_queue_insert - push descriptors onto the TX queue
903 * @tx_queue:		Efx TX queue
904 * @dma_addr:		DMA address of fragment
905 * @len:		Length of fragment
906 * @final_buffer:	The final buffer inserted into the queue
907 *
908 * Push descriptors onto the TX queue.
909 */
910static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
911				dma_addr_t dma_addr, unsigned len,
912				struct efx_tx_buffer **final_buffer)
913{
914	struct efx_tx_buffer *buffer;
915	struct efx_nic *efx = tx_queue->efx;
916	unsigned dma_len;
917
918	EFX_BUG_ON_PARANOID(len <= 0);
919
920	while (1) {
921		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
922		++tx_queue->insert_count;
923
924		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
925				    tx_queue->read_count >=
926				    efx->txq_entries);
927
928		buffer->dma_addr = dma_addr;
929
930		dma_len = efx_max_tx_len(efx, dma_addr);
931
932		/* If there is enough space to send then do so */
933		if (dma_len >= len)
934			break;
935
936		buffer->len = dma_len;
937		buffer->flags = EFX_TX_BUF_CONT;
938		dma_addr += dma_len;
939		len -= dma_len;
940	}
941
942	EFX_BUG_ON_PARANOID(!len);
943	buffer->len = len;
944	*final_buffer = buffer;
945}
946
947
948/*
949 * Put a TSO header into the TX queue.
950 *
951 * This is special-cased because we know that it is small enough to fit in
952 * a single fragment, and we know it doesn't cross a page boundary.  It
953 * also allows us to not worry about end-of-packet etc.
954 */
955static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
956			      struct efx_tx_buffer *buffer, u8 *header)
957{
958	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
959		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
960						  header, buffer->len,
961						  DMA_TO_DEVICE);
962		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
963					       buffer->dma_addr))) {
964			kfree(buffer->heap_buf);
965			buffer->len = 0;
966			buffer->flags = 0;
967			return -ENOMEM;
968		}
969		buffer->unmap_len = buffer->len;
970		buffer->dma_offset = 0;
971		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
972	}
973
974	++tx_queue->insert_count;
975	return 0;
976}
977
978
979/* Remove buffers put into a tx_queue.  None of the buffers must have
980 * an skb attached.
981 */
982static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
983			       unsigned int insert_count)
984{
985	struct efx_tx_buffer *buffer;
986
987	/* Work backwards until we hit the original insert pointer value */
988	while (tx_queue->insert_count != insert_count) {
989		--tx_queue->insert_count;
990		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
991		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
992	}
993}
994
995
996/* Parse the SKB header and initialise state. */
997static int tso_start(struct tso_state *st, struct efx_nic *efx,
998		     const struct sk_buff *skb)
999{
1000	bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1001	struct device *dma_dev = &efx->pci_dev->dev;
1002	unsigned int header_len, in_len;
1003	dma_addr_t dma_addr;
1004
1005	st->ip_off = skb_network_header(skb) - skb->data;
1006	st->tcp_off = skb_transport_header(skb) - skb->data;
1007	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1008	in_len = skb_headlen(skb) - header_len;
1009	st->header_len = header_len;
1010	st->in_len = in_len;
1011	if (st->protocol == htons(ETH_P_IP)) {
1012		st->ip_base_len = st->header_len - st->ip_off;
1013		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1014	} else {
1015		st->ip_base_len = st->header_len - st->tcp_off;
1016		st->ipv4_id = 0;
1017	}
1018	st->seqnum = ntohl(tcp_hdr(skb)->seq);
1019
1020	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1021	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1022	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1023
1024	st->out_len = skb->len - header_len;
1025
1026	if (!use_opt_desc) {
1027		st->header_unmap_len = 0;
1028
1029		if (likely(in_len == 0)) {
1030			st->dma_flags = 0;
1031			st->unmap_len = 0;
1032			return 0;
1033		}
1034
1035		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1036					  in_len, DMA_TO_DEVICE);
1037		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1038		st->dma_addr = dma_addr;
1039		st->unmap_addr = dma_addr;
1040		st->unmap_len = in_len;
1041	} else {
1042		dma_addr = dma_map_single(dma_dev, skb->data,
1043					  skb_headlen(skb), DMA_TO_DEVICE);
1044		st->header_dma_addr = dma_addr;
1045		st->header_unmap_len = skb_headlen(skb);
1046		st->dma_flags = 0;
1047		st->dma_addr = dma_addr + header_len;
1048		st->unmap_len = 0;
1049	}
1050
1051	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1052}
1053
1054static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1055			    skb_frag_t *frag)
1056{
1057	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1058					  skb_frag_size(frag), DMA_TO_DEVICE);
1059	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1060		st->dma_flags = 0;
1061		st->unmap_len = skb_frag_size(frag);
1062		st->in_len = skb_frag_size(frag);
1063		st->dma_addr = st->unmap_addr;
1064		return 0;
1065	}
1066	return -ENOMEM;
1067}
1068
1069
1070/**
1071 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1072 * @tx_queue:		Efx TX queue
1073 * @skb:		Socket buffer
1074 * @st:			TSO state
1075 *
1076 * Form descriptors for the current fragment, until we reach the end
1077 * of fragment or end-of-packet.
1078 */
1079static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1080					  const struct sk_buff *skb,
1081					  struct tso_state *st)
1082{
1083	struct efx_tx_buffer *buffer;
1084	int n;
1085
1086	if (st->in_len == 0)
1087		return;
1088	if (st->packet_space == 0)
1089		return;
1090
1091	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1092	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1093
1094	n = min(st->in_len, st->packet_space);
1095
1096	st->packet_space -= n;
1097	st->out_len -= n;
1098	st->in_len -= n;
1099
1100	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1101
1102	if (st->out_len == 0) {
1103		/* Transfer ownership of the skb */
1104		buffer->skb = skb;
1105		buffer->flags = EFX_TX_BUF_SKB;
1106	} else if (st->packet_space != 0) {
1107		buffer->flags = EFX_TX_BUF_CONT;
1108	}
1109
1110	if (st->in_len == 0) {
1111		/* Transfer ownership of the DMA mapping */
1112		buffer->unmap_len = st->unmap_len;
1113		buffer->dma_offset = buffer->unmap_len - buffer->len;
1114		buffer->flags |= st->dma_flags;
1115		st->unmap_len = 0;
1116	}
1117
1118	st->dma_addr += n;
1119}
1120
1121
1122/**
1123 * tso_start_new_packet - generate a new header and prepare for the new packet
1124 * @tx_queue:		Efx TX queue
1125 * @skb:		Socket buffer
1126 * @st:			TSO state
1127 *
1128 * Generate a new header and prepare for the new packet.  Return 0 on
1129 * success, or -%ENOMEM if failed to alloc header.
1130 */
1131static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1132				const struct sk_buff *skb,
1133				struct tso_state *st)
1134{
1135	struct efx_tx_buffer *buffer =
1136		efx_tx_queue_get_insert_buffer(tx_queue);
1137	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1138	u8 tcp_flags_clear;
1139
1140	if (!is_last) {
1141		st->packet_space = skb_shinfo(skb)->gso_size;
1142		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1143	} else {
1144		st->packet_space = st->out_len;
1145		tcp_flags_clear = 0x00;
1146	}
1147
1148	if (!st->header_unmap_len) {
1149		/* Allocate and insert a DMA-mapped header buffer. */
1150		struct tcphdr *tsoh_th;
1151		unsigned ip_length;
1152		u8 *header;
1153		int rc;
1154
1155		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1156		if (!header)
1157			return -ENOMEM;
1158
1159		tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1160
1161		/* Copy and update the headers. */
1162		memcpy(header, skb->data, st->header_len);
1163
1164		tsoh_th->seq = htonl(st->seqnum);
1165		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1166
1167		ip_length = st->ip_base_len + st->packet_space;
1168
1169		if (st->protocol == htons(ETH_P_IP)) {
1170			struct iphdr *tsoh_iph =
1171				(struct iphdr *)(header + st->ip_off);
1172
1173			tsoh_iph->tot_len = htons(ip_length);
1174			tsoh_iph->id = htons(st->ipv4_id);
1175		} else {
1176			struct ipv6hdr *tsoh_iph =
1177				(struct ipv6hdr *)(header + st->ip_off);
1178
1179			tsoh_iph->payload_len = htons(ip_length);
1180		}
1181
1182		rc = efx_tso_put_header(tx_queue, buffer, header);
1183		if (unlikely(rc))
1184			return rc;
1185	} else {
1186		/* Send the original headers with a TSO option descriptor
1187		 * in front
1188		 */
1189		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1190
1191		buffer->flags = EFX_TX_BUF_OPTION;
1192		buffer->len = 0;
1193		buffer->unmap_len = 0;
1194		EFX_POPULATE_QWORD_5(buffer->option,
1195				     ESF_DZ_TX_DESC_IS_OPT, 1,
1196				     ESF_DZ_TX_OPTION_TYPE,
1197				     ESE_DZ_TX_OPTION_DESC_TSO,
1198				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1199				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1200				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1201		++tx_queue->insert_count;
1202
1203		/* We mapped the headers in tso_start().  Unmap them
1204		 * when the last segment is completed.
1205		 */
1206		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1207		buffer->dma_addr = st->header_dma_addr;
1208		buffer->len = st->header_len;
1209		if (is_last) {
1210			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1211			buffer->unmap_len = st->header_unmap_len;
1212			buffer->dma_offset = 0;
1213			/* Ensure we only unmap them once in case of a
1214			 * later DMA mapping error and rollback
1215			 */
1216			st->header_unmap_len = 0;
1217		} else {
1218			buffer->flags = EFX_TX_BUF_CONT;
1219			buffer->unmap_len = 0;
1220		}
1221		++tx_queue->insert_count;
1222	}
1223
1224	st->seqnum += skb_shinfo(skb)->gso_size;
1225
1226	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1227	++st->ipv4_id;
1228
1229	++tx_queue->tso_packets;
1230
1231	++tx_queue->tx_packets;
1232
1233	return 0;
1234}
1235
1236
1237/**
1238 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1239 * @tx_queue:		Efx TX queue
1240 * @skb:		Socket buffer
1241 *
1242 * Context: You must hold netif_tx_lock() to call this function.
1243 *
1244 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1245 * @skb was not enqueued.  In all cases @skb is consumed.  Return
1246 * %NETDEV_TX_OK.
1247 */
1248static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1249			       struct sk_buff *skb)
1250{
1251	struct efx_nic *efx = tx_queue->efx;
1252	unsigned int old_insert_count = tx_queue->insert_count;
1253	int frag_i, rc;
1254	struct tso_state state;
1255
1256	/* Find the packet protocol and sanity-check it */
1257	state.protocol = efx_tso_check_protocol(skb);
1258
1259	rc = tso_start(&state, efx, skb);
1260	if (rc)
1261		goto mem_err;
1262
1263	if (likely(state.in_len == 0)) {
1264		/* Grab the first payload fragment. */
1265		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1266		frag_i = 0;
1267		rc = tso_get_fragment(&state, efx,
1268				      skb_shinfo(skb)->frags + frag_i);
1269		if (rc)
1270			goto mem_err;
1271	} else {
1272		/* Payload starts in the header area. */
1273		frag_i = -1;
1274	}
1275
1276	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1277		goto mem_err;
1278
1279	while (1) {
1280		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1281
1282		/* Move onto the next fragment? */
1283		if (state.in_len == 0) {
1284			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1285				/* End of payload reached. */
1286				break;
1287			rc = tso_get_fragment(&state, efx,
1288					      skb_shinfo(skb)->frags + frag_i);
1289			if (rc)
1290				goto mem_err;
1291		}
1292
1293		/* Start at new packet? */
1294		if (state.packet_space == 0 &&
1295		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1296			goto mem_err;
1297	}
1298
1299	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1300
1301	efx_tx_maybe_stop_queue(tx_queue);
1302
1303	/* Pass off to hardware */
1304	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
1305		efx_nic_push_buffers(tx_queue);
1306
1307	tx_queue->tso_bursts++;
1308	return NETDEV_TX_OK;
1309
1310 mem_err:
1311	netif_err(efx, tx_err, efx->net_dev,
1312		  "Out of memory for TSO headers, or DMA mapping error\n");
1313	dev_kfree_skb_any(skb);
1314
1315	/* Free the DMA mapping we were in the process of writing out */
1316	if (state.unmap_len) {
1317		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1318			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1319					 state.unmap_len, DMA_TO_DEVICE);
1320		else
1321			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1322				       state.unmap_len, DMA_TO_DEVICE);
1323	}
1324
1325	/* Free the header DMA mapping, if using option descriptors */
1326	if (state.header_unmap_len)
1327		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1328				 state.header_unmap_len, DMA_TO_DEVICE);
1329
1330	efx_enqueue_unwind(tx_queue, old_insert_count);
1331	return NETDEV_TX_OK;
1332}
1333