1/*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 *	Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 *	Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 *
24 * Arguments:
25 * 	io	= for the base address
26 *	irq	= for the IRQ
27 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
28 *
29 * original author:
30 * 	Erik Stahlman <erik@vt.edu>
31 *
32 * hardware multicast code:
33 *    Peter Cammaert <pc@denkart.be>
34 *
35 * contributors:
36 * 	Daris A Nevil <dnevil@snmc.com>
37 *      Nicolas Pitre <nico@fluxnic.net>
38 *	Russell King <rmk@arm.linux.org.uk>
39 *
40 * History:
41 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
42 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
43 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
44 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
45 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
46 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
47 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
48 *                                more bus abstraction, big cleanup, etc.
49 *   29/09/03  Russell King       - add driver model support
50 *                                - ethtool support
51 *                                - convert to use generic MII interface
52 *                                - add link up/down notification
53 *                                - don't try to handle full negotiation in
54 *                                  smc_phy_configure
55 *                                - clean up (and fix stack overrun) in PHY
56 *                                  MII read/write functions
57 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
58 */
59static const char version[] =
60	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61
62/* Debugging level */
63#ifndef SMC_DEBUG
64#define SMC_DEBUG		0
65#endif
66
67
68#include <linux/module.h>
69#include <linux/kernel.h>
70#include <linux/sched.h>
71#include <linux/delay.h>
72#include <linux/interrupt.h>
73#include <linux/irq.h>
74#include <linux/errno.h>
75#include <linux/ioport.h>
76#include <linux/crc32.h>
77#include <linux/platform_device.h>
78#include <linux/spinlock.h>
79#include <linux/ethtool.h>
80#include <linux/mii.h>
81#include <linux/workqueue.h>
82#include <linux/of.h>
83#include <linux/of_device.h>
84#include <linux/of_gpio.h>
85
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89
90#include <asm/io.h>
91
92#include "smc91x.h"
93
94#ifndef SMC_NOWAIT
95# define SMC_NOWAIT		0
96#endif
97static int nowait = SMC_NOWAIT;
98module_param(nowait, int, 0400);
99MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
100
101/*
102 * Transmit timeout, default 5 seconds.
103 */
104static int watchdog = 1000;
105module_param(watchdog, int, 0400);
106MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
107
108MODULE_LICENSE("GPL");
109MODULE_ALIAS("platform:smc91x");
110
111/*
112 * The internal workings of the driver.  If you are changing anything
113 * here with the SMC stuff, you should have the datasheet and know
114 * what you are doing.
115 */
116#define CARDNAME "smc91x"
117
118/*
119 * Use power-down feature of the chip
120 */
121#define POWER_DOWN		1
122
123/*
124 * Wait time for memory to be free.  This probably shouldn't be
125 * tuned that much, as waiting for this means nothing else happens
126 * in the system
127 */
128#define MEMORY_WAIT_TIME	16
129
130/*
131 * The maximum number of processing loops allowed for each call to the
132 * IRQ handler.
133 */
134#define MAX_IRQ_LOOPS		8
135
136/*
137 * This selects whether TX packets are sent one by one to the SMC91x internal
138 * memory and throttled until transmission completes.  This may prevent
139 * RX overruns a litle by keeping much of the memory free for RX packets
140 * but to the expense of reduced TX throughput and increased IRQ overhead.
141 * Note this is not a cure for a too slow data bus or too high IRQ latency.
142 */
143#define THROTTLE_TX_PKTS	0
144
145/*
146 * The MII clock high/low times.  2x this number gives the MII clock period
147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
148 */
149#define MII_DELAY		1
150
151#define DBG(n, dev, fmt, ...)					\
152	do {							\
153		if (SMC_DEBUG >= (n))				\
154			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
155	} while (0)
156
157#define PRINTK(dev, fmt, ...)					\
158	do {							\
159		if (SMC_DEBUG > 0)				\
160			netdev_info(dev, fmt, ##__VA_ARGS__);	\
161		else						\
162			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
163	} while (0)
164
165#if SMC_DEBUG > 3
166static void PRINT_PKT(u_char *buf, int length)
167{
168	int i;
169	int remainder;
170	int lines;
171
172	lines = length / 16;
173	remainder = length % 16;
174
175	for (i = 0; i < lines ; i ++) {
176		int cur;
177		printk(KERN_DEBUG);
178		for (cur = 0; cur < 8; cur++) {
179			u_char a, b;
180			a = *buf++;
181			b = *buf++;
182			pr_cont("%02x%02x ", a, b);
183		}
184		pr_cont("\n");
185	}
186	printk(KERN_DEBUG);
187	for (i = 0; i < remainder/2 ; i++) {
188		u_char a, b;
189		a = *buf++;
190		b = *buf++;
191		pr_cont("%02x%02x ", a, b);
192	}
193	pr_cont("\n");
194}
195#else
196static inline void PRINT_PKT(u_char *buf, int length) { }
197#endif
198
199
200/* this enables an interrupt in the interrupt mask register */
201#define SMC_ENABLE_INT(lp, x) do {					\
202	unsigned char mask;						\
203	unsigned long smc_enable_flags;					\
204	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
205	mask = SMC_GET_INT_MASK(lp);					\
206	mask |= (x);							\
207	SMC_SET_INT_MASK(lp, mask);					\
208	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
209} while (0)
210
211/* this disables an interrupt from the interrupt mask register */
212#define SMC_DISABLE_INT(lp, x) do {					\
213	unsigned char mask;						\
214	unsigned long smc_disable_flags;				\
215	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
216	mask = SMC_GET_INT_MASK(lp);					\
217	mask &= ~(x);							\
218	SMC_SET_INT_MASK(lp, mask);					\
219	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
220} while (0)
221
222/*
223 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
224 * if at all, but let's avoid deadlocking the system if the hardware
225 * decides to go south.
226 */
227#define SMC_WAIT_MMU_BUSY(lp) do {					\
228	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
229		unsigned long timeout = jiffies + 2;			\
230		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
231			if (time_after(jiffies, timeout)) {		\
232				netdev_dbg(dev, "timeout %s line %d\n",	\
233					   __FILE__, __LINE__);		\
234				break;					\
235			}						\
236			cpu_relax();					\
237		}							\
238	}								\
239} while (0)
240
241
242/*
243 * this does a soft reset on the device
244 */
245static void smc_reset(struct net_device *dev)
246{
247	struct smc_local *lp = netdev_priv(dev);
248	void __iomem *ioaddr = lp->base;
249	unsigned int ctl, cfg;
250	struct sk_buff *pending_skb;
251
252	DBG(2, dev, "%s\n", __func__);
253
254	/* Disable all interrupts, block TX tasklet */
255	spin_lock_irq(&lp->lock);
256	SMC_SELECT_BANK(lp, 2);
257	SMC_SET_INT_MASK(lp, 0);
258	pending_skb = lp->pending_tx_skb;
259	lp->pending_tx_skb = NULL;
260	spin_unlock_irq(&lp->lock);
261
262	/* free any pending tx skb */
263	if (pending_skb) {
264		dev_kfree_skb(pending_skb);
265		dev->stats.tx_errors++;
266		dev->stats.tx_aborted_errors++;
267	}
268
269	/*
270	 * This resets the registers mostly to defaults, but doesn't
271	 * affect EEPROM.  That seems unnecessary
272	 */
273	SMC_SELECT_BANK(lp, 0);
274	SMC_SET_RCR(lp, RCR_SOFTRST);
275
276	/*
277	 * Setup the Configuration Register
278	 * This is necessary because the CONFIG_REG is not affected
279	 * by a soft reset
280	 */
281	SMC_SELECT_BANK(lp, 1);
282
283	cfg = CONFIG_DEFAULT;
284
285	/*
286	 * Setup for fast accesses if requested.  If the card/system
287	 * can't handle it then there will be no recovery except for
288	 * a hard reset or power cycle
289	 */
290	if (lp->cfg.flags & SMC91X_NOWAIT)
291		cfg |= CONFIG_NO_WAIT;
292
293	/*
294	 * Release from possible power-down state
295	 * Configuration register is not affected by Soft Reset
296	 */
297	cfg |= CONFIG_EPH_POWER_EN;
298
299	SMC_SET_CONFIG(lp, cfg);
300
301	/* this should pause enough for the chip to be happy */
302	/*
303	 * elaborate?  What does the chip _need_? --jgarzik
304	 *
305	 * This seems to be undocumented, but something the original
306	 * driver(s) have always done.  Suspect undocumented timing
307	 * info/determined empirically. --rmk
308	 */
309	udelay(1);
310
311	/* Disable transmit and receive functionality */
312	SMC_SELECT_BANK(lp, 0);
313	SMC_SET_RCR(lp, RCR_CLEAR);
314	SMC_SET_TCR(lp, TCR_CLEAR);
315
316	SMC_SELECT_BANK(lp, 1);
317	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
318
319	/*
320	 * Set the control register to automatically release successfully
321	 * transmitted packets, to make the best use out of our limited
322	 * memory
323	 */
324	if(!THROTTLE_TX_PKTS)
325		ctl |= CTL_AUTO_RELEASE;
326	else
327		ctl &= ~CTL_AUTO_RELEASE;
328	SMC_SET_CTL(lp, ctl);
329
330	/* Reset the MMU */
331	SMC_SELECT_BANK(lp, 2);
332	SMC_SET_MMU_CMD(lp, MC_RESET);
333	SMC_WAIT_MMU_BUSY(lp);
334}
335
336/*
337 * Enable Interrupts, Receive, and Transmit
338 */
339static void smc_enable(struct net_device *dev)
340{
341	struct smc_local *lp = netdev_priv(dev);
342	void __iomem *ioaddr = lp->base;
343	int mask;
344
345	DBG(2, dev, "%s\n", __func__);
346
347	/* see the header file for options in TCR/RCR DEFAULT */
348	SMC_SELECT_BANK(lp, 0);
349	SMC_SET_TCR(lp, lp->tcr_cur_mode);
350	SMC_SET_RCR(lp, lp->rcr_cur_mode);
351
352	SMC_SELECT_BANK(lp, 1);
353	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
354
355	/* now, enable interrupts */
356	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
357	if (lp->version >= (CHIP_91100 << 4))
358		mask |= IM_MDINT;
359	SMC_SELECT_BANK(lp, 2);
360	SMC_SET_INT_MASK(lp, mask);
361
362	/*
363	 * From this point the register bank must _NOT_ be switched away
364	 * to something else than bank 2 without proper locking against
365	 * races with any tasklet or interrupt handlers until smc_shutdown()
366	 * or smc_reset() is called.
367	 */
368}
369
370/*
371 * this puts the device in an inactive state
372 */
373static void smc_shutdown(struct net_device *dev)
374{
375	struct smc_local *lp = netdev_priv(dev);
376	void __iomem *ioaddr = lp->base;
377	struct sk_buff *pending_skb;
378
379	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
380
381	/* no more interrupts for me */
382	spin_lock_irq(&lp->lock);
383	SMC_SELECT_BANK(lp, 2);
384	SMC_SET_INT_MASK(lp, 0);
385	pending_skb = lp->pending_tx_skb;
386	lp->pending_tx_skb = NULL;
387	spin_unlock_irq(&lp->lock);
388	if (pending_skb)
389		dev_kfree_skb(pending_skb);
390
391	/* and tell the card to stay away from that nasty outside world */
392	SMC_SELECT_BANK(lp, 0);
393	SMC_SET_RCR(lp, RCR_CLEAR);
394	SMC_SET_TCR(lp, TCR_CLEAR);
395
396#ifdef POWER_DOWN
397	/* finally, shut the chip down */
398	SMC_SELECT_BANK(lp, 1);
399	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
400#endif
401}
402
403/*
404 * This is the procedure to handle the receipt of a packet.
405 */
406static inline void  smc_rcv(struct net_device *dev)
407{
408	struct smc_local *lp = netdev_priv(dev);
409	void __iomem *ioaddr = lp->base;
410	unsigned int packet_number, status, packet_len;
411
412	DBG(3, dev, "%s\n", __func__);
413
414	packet_number = SMC_GET_RXFIFO(lp);
415	if (unlikely(packet_number & RXFIFO_REMPTY)) {
416		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
417		return;
418	}
419
420	/* read from start of packet */
421	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
422
423	/* First two words are status and packet length */
424	SMC_GET_PKT_HDR(lp, status, packet_len);
425	packet_len &= 0x07ff;  /* mask off top bits */
426	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
427	    packet_number, status, packet_len, packet_len);
428
429	back:
430	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
431		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
432			/* accept VLAN packets */
433			status &= ~RS_TOOLONG;
434			goto back;
435		}
436		if (packet_len < 6) {
437			/* bloody hardware */
438			netdev_err(dev, "fubar (rxlen %u status %x\n",
439				   packet_len, status);
440			status |= RS_TOOSHORT;
441		}
442		SMC_WAIT_MMU_BUSY(lp);
443		SMC_SET_MMU_CMD(lp, MC_RELEASE);
444		dev->stats.rx_errors++;
445		if (status & RS_ALGNERR)
446			dev->stats.rx_frame_errors++;
447		if (status & (RS_TOOSHORT | RS_TOOLONG))
448			dev->stats.rx_length_errors++;
449		if (status & RS_BADCRC)
450			dev->stats.rx_crc_errors++;
451	} else {
452		struct sk_buff *skb;
453		unsigned char *data;
454		unsigned int data_len;
455
456		/* set multicast stats */
457		if (status & RS_MULTICAST)
458			dev->stats.multicast++;
459
460		/*
461		 * Actual payload is packet_len - 6 (or 5 if odd byte).
462		 * We want skb_reserve(2) and the final ctrl word
463		 * (2 bytes, possibly containing the payload odd byte).
464		 * Furthermore, we add 2 bytes to allow rounding up to
465		 * multiple of 4 bytes on 32 bit buses.
466		 * Hence packet_len - 6 + 2 + 2 + 2.
467		 */
468		skb = netdev_alloc_skb(dev, packet_len);
469		if (unlikely(skb == NULL)) {
470			SMC_WAIT_MMU_BUSY(lp);
471			SMC_SET_MMU_CMD(lp, MC_RELEASE);
472			dev->stats.rx_dropped++;
473			return;
474		}
475
476		/* Align IP header to 32 bits */
477		skb_reserve(skb, 2);
478
479		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
480		if (lp->version == 0x90)
481			status |= RS_ODDFRAME;
482
483		/*
484		 * If odd length: packet_len - 5,
485		 * otherwise packet_len - 6.
486		 * With the trailing ctrl byte it's packet_len - 4.
487		 */
488		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
489		data = skb_put(skb, data_len);
490		SMC_PULL_DATA(lp, data, packet_len - 4);
491
492		SMC_WAIT_MMU_BUSY(lp);
493		SMC_SET_MMU_CMD(lp, MC_RELEASE);
494
495		PRINT_PKT(data, packet_len - 4);
496
497		skb->protocol = eth_type_trans(skb, dev);
498		netif_rx(skb);
499		dev->stats.rx_packets++;
500		dev->stats.rx_bytes += data_len;
501	}
502}
503
504#ifdef CONFIG_SMP
505/*
506 * On SMP we have the following problem:
507 *
508 * 	A = smc_hardware_send_pkt()
509 * 	B = smc_hard_start_xmit()
510 * 	C = smc_interrupt()
511 *
512 * A and B can never be executed simultaneously.  However, at least on UP,
513 * it is possible (and even desirable) for C to interrupt execution of
514 * A or B in order to have better RX reliability and avoid overruns.
515 * C, just like A and B, must have exclusive access to the chip and
516 * each of them must lock against any other concurrent access.
517 * Unfortunately this is not possible to have C suspend execution of A or
518 * B taking place on another CPU. On UP this is no an issue since A and B
519 * are run from softirq context and C from hard IRQ context, and there is
520 * no other CPU where concurrent access can happen.
521 * If ever there is a way to force at least B and C to always be executed
522 * on the same CPU then we could use read/write locks to protect against
523 * any other concurrent access and C would always interrupt B. But life
524 * isn't that easy in a SMP world...
525 */
526#define smc_special_trylock(lock, flags)				\
527({									\
528	int __ret;							\
529	local_irq_save(flags);						\
530	__ret = spin_trylock(lock);					\
531	if (!__ret)							\
532		local_irq_restore(flags);				\
533	__ret;								\
534})
535#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
536#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
537#else
538#define smc_special_trylock(lock, flags)	(flags == flags)
539#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
540#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
541#endif
542
543/*
544 * This is called to actually send a packet to the chip.
545 */
546static void smc_hardware_send_pkt(unsigned long data)
547{
548	struct net_device *dev = (struct net_device *)data;
549	struct smc_local *lp = netdev_priv(dev);
550	void __iomem *ioaddr = lp->base;
551	struct sk_buff *skb;
552	unsigned int packet_no, len;
553	unsigned char *buf;
554	unsigned long flags;
555
556	DBG(3, dev, "%s\n", __func__);
557
558	if (!smc_special_trylock(&lp->lock, flags)) {
559		netif_stop_queue(dev);
560		tasklet_schedule(&lp->tx_task);
561		return;
562	}
563
564	skb = lp->pending_tx_skb;
565	if (unlikely(!skb)) {
566		smc_special_unlock(&lp->lock, flags);
567		return;
568	}
569	lp->pending_tx_skb = NULL;
570
571	packet_no = SMC_GET_AR(lp);
572	if (unlikely(packet_no & AR_FAILED)) {
573		netdev_err(dev, "Memory allocation failed.\n");
574		dev->stats.tx_errors++;
575		dev->stats.tx_fifo_errors++;
576		smc_special_unlock(&lp->lock, flags);
577		goto done;
578	}
579
580	/* point to the beginning of the packet */
581	SMC_SET_PN(lp, packet_no);
582	SMC_SET_PTR(lp, PTR_AUTOINC);
583
584	buf = skb->data;
585	len = skb->len;
586	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
587	    packet_no, len, len, buf);
588	PRINT_PKT(buf, len);
589
590	/*
591	 * Send the packet length (+6 for status words, length, and ctl.
592	 * The card will pad to 64 bytes with zeroes if packet is too small.
593	 */
594	SMC_PUT_PKT_HDR(lp, 0, len + 6);
595
596	/* send the actual data */
597	SMC_PUSH_DATA(lp, buf, len & ~1);
598
599	/* Send final ctl word with the last byte if there is one */
600	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
601
602	/*
603	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
604	 * have the effect of having at most one packet queued for TX
605	 * in the chip's memory at all time.
606	 *
607	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
608	 * when memory allocation (MC_ALLOC) does not succeed right away.
609	 */
610	if (THROTTLE_TX_PKTS)
611		netif_stop_queue(dev);
612
613	/* queue the packet for TX */
614	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
615	smc_special_unlock(&lp->lock, flags);
616
617	dev->trans_start = jiffies;
618	dev->stats.tx_packets++;
619	dev->stats.tx_bytes += len;
620
621	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
622
623done:	if (!THROTTLE_TX_PKTS)
624		netif_wake_queue(dev);
625
626	dev_consume_skb_any(skb);
627}
628
629/*
630 * Since I am not sure if I will have enough room in the chip's ram
631 * to store the packet, I call this routine which either sends it
632 * now, or set the card to generates an interrupt when ready
633 * for the packet.
634 */
635static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
636{
637	struct smc_local *lp = netdev_priv(dev);
638	void __iomem *ioaddr = lp->base;
639	unsigned int numPages, poll_count, status;
640	unsigned long flags;
641
642	DBG(3, dev, "%s\n", __func__);
643
644	BUG_ON(lp->pending_tx_skb != NULL);
645
646	/*
647	 * The MMU wants the number of pages to be the number of 256 bytes
648	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
649	 *
650	 * The 91C111 ignores the size bits, but earlier models don't.
651	 *
652	 * Pkt size for allocating is data length +6 (for additional status
653	 * words, length and ctl)
654	 *
655	 * If odd size then last byte is included in ctl word.
656	 */
657	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
658	if (unlikely(numPages > 7)) {
659		netdev_warn(dev, "Far too big packet error.\n");
660		dev->stats.tx_errors++;
661		dev->stats.tx_dropped++;
662		dev_kfree_skb_any(skb);
663		return NETDEV_TX_OK;
664	}
665
666	smc_special_lock(&lp->lock, flags);
667
668	/* now, try to allocate the memory */
669	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
670
671	/*
672	 * Poll the chip for a short amount of time in case the
673	 * allocation succeeds quickly.
674	 */
675	poll_count = MEMORY_WAIT_TIME;
676	do {
677		status = SMC_GET_INT(lp);
678		if (status & IM_ALLOC_INT) {
679			SMC_ACK_INT(lp, IM_ALLOC_INT);
680  			break;
681		}
682   	} while (--poll_count);
683
684	smc_special_unlock(&lp->lock, flags);
685
686	lp->pending_tx_skb = skb;
687   	if (!poll_count) {
688		/* oh well, wait until the chip finds memory later */
689		netif_stop_queue(dev);
690		DBG(2, dev, "TX memory allocation deferred.\n");
691		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
692   	} else {
693		/*
694		 * Allocation succeeded: push packet to the chip's own memory
695		 * immediately.
696		 */
697		smc_hardware_send_pkt((unsigned long)dev);
698	}
699
700	return NETDEV_TX_OK;
701}
702
703/*
704 * This handles a TX interrupt, which is only called when:
705 * - a TX error occurred, or
706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
707 */
708static void smc_tx(struct net_device *dev)
709{
710	struct smc_local *lp = netdev_priv(dev);
711	void __iomem *ioaddr = lp->base;
712	unsigned int saved_packet, packet_no, tx_status, pkt_len;
713
714	DBG(3, dev, "%s\n", __func__);
715
716	/* If the TX FIFO is empty then nothing to do */
717	packet_no = SMC_GET_TXFIFO(lp);
718	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
719		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
720		return;
721	}
722
723	/* select packet to read from */
724	saved_packet = SMC_GET_PN(lp);
725	SMC_SET_PN(lp, packet_no);
726
727	/* read the first word (status word) from this packet */
728	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
729	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
730	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
731	    tx_status, packet_no);
732
733	if (!(tx_status & ES_TX_SUC))
734		dev->stats.tx_errors++;
735
736	if (tx_status & ES_LOSTCARR)
737		dev->stats.tx_carrier_errors++;
738
739	if (tx_status & (ES_LATCOL | ES_16COL)) {
740		PRINTK(dev, "%s occurred on last xmit\n",
741		       (tx_status & ES_LATCOL) ?
742			"late collision" : "too many collisions");
743		dev->stats.tx_window_errors++;
744		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
745			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
746		}
747	}
748
749	/* kill the packet */
750	SMC_WAIT_MMU_BUSY(lp);
751	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
752
753	/* Don't restore Packet Number Reg until busy bit is cleared */
754	SMC_WAIT_MMU_BUSY(lp);
755	SMC_SET_PN(lp, saved_packet);
756
757	/* re-enable transmit */
758	SMC_SELECT_BANK(lp, 0);
759	SMC_SET_TCR(lp, lp->tcr_cur_mode);
760	SMC_SELECT_BANK(lp, 2);
761}
762
763
764/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
765
766static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
767{
768	struct smc_local *lp = netdev_priv(dev);
769	void __iomem *ioaddr = lp->base;
770	unsigned int mii_reg, mask;
771
772	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
773	mii_reg |= MII_MDOE;
774
775	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
776		if (val & mask)
777			mii_reg |= MII_MDO;
778		else
779			mii_reg &= ~MII_MDO;
780
781		SMC_SET_MII(lp, mii_reg);
782		udelay(MII_DELAY);
783		SMC_SET_MII(lp, mii_reg | MII_MCLK);
784		udelay(MII_DELAY);
785	}
786}
787
788static unsigned int smc_mii_in(struct net_device *dev, int bits)
789{
790	struct smc_local *lp = netdev_priv(dev);
791	void __iomem *ioaddr = lp->base;
792	unsigned int mii_reg, mask, val;
793
794	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
795	SMC_SET_MII(lp, mii_reg);
796
797	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
798		if (SMC_GET_MII(lp) & MII_MDI)
799			val |= mask;
800
801		SMC_SET_MII(lp, mii_reg);
802		udelay(MII_DELAY);
803		SMC_SET_MII(lp, mii_reg | MII_MCLK);
804		udelay(MII_DELAY);
805	}
806
807	return val;
808}
809
810/*
811 * Reads a register from the MII Management serial interface
812 */
813static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
814{
815	struct smc_local *lp = netdev_priv(dev);
816	void __iomem *ioaddr = lp->base;
817	unsigned int phydata;
818
819	SMC_SELECT_BANK(lp, 3);
820
821	/* Idle - 32 ones */
822	smc_mii_out(dev, 0xffffffff, 32);
823
824	/* Start code (01) + read (10) + phyaddr + phyreg */
825	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
826
827	/* Turnaround (2bits) + phydata */
828	phydata = smc_mii_in(dev, 18);
829
830	/* Return to idle state */
831	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
832
833	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
834	    __func__, phyaddr, phyreg, phydata);
835
836	SMC_SELECT_BANK(lp, 2);
837	return phydata;
838}
839
840/*
841 * Writes a register to the MII Management serial interface
842 */
843static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
844			  int phydata)
845{
846	struct smc_local *lp = netdev_priv(dev);
847	void __iomem *ioaddr = lp->base;
848
849	SMC_SELECT_BANK(lp, 3);
850
851	/* Idle - 32 ones */
852	smc_mii_out(dev, 0xffffffff, 32);
853
854	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
855	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
856
857	/* Return to idle state */
858	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
859
860	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
861	    __func__, phyaddr, phyreg, phydata);
862
863	SMC_SELECT_BANK(lp, 2);
864}
865
866/*
867 * Finds and reports the PHY address
868 */
869static void smc_phy_detect(struct net_device *dev)
870{
871	struct smc_local *lp = netdev_priv(dev);
872	int phyaddr;
873
874	DBG(2, dev, "%s\n", __func__);
875
876	lp->phy_type = 0;
877
878	/*
879	 * Scan all 32 PHY addresses if necessary, starting at
880	 * PHY#1 to PHY#31, and then PHY#0 last.
881	 */
882	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
883		unsigned int id1, id2;
884
885		/* Read the PHY identifiers */
886		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
887		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
888
889		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
890		    id1, id2);
891
892		/* Make sure it is a valid identifier */
893		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
894		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
895			/* Save the PHY's address */
896			lp->mii.phy_id = phyaddr & 31;
897			lp->phy_type = id1 << 16 | id2;
898			break;
899		}
900	}
901}
902
903/*
904 * Sets the PHY to a configuration as determined by the user
905 */
906static int smc_phy_fixed(struct net_device *dev)
907{
908	struct smc_local *lp = netdev_priv(dev);
909	void __iomem *ioaddr = lp->base;
910	int phyaddr = lp->mii.phy_id;
911	int bmcr, cfg1;
912
913	DBG(3, dev, "%s\n", __func__);
914
915	/* Enter Link Disable state */
916	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
917	cfg1 |= PHY_CFG1_LNKDIS;
918	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
919
920	/*
921	 * Set our fixed capabilities
922	 * Disable auto-negotiation
923	 */
924	bmcr = 0;
925
926	if (lp->ctl_rfduplx)
927		bmcr |= BMCR_FULLDPLX;
928
929	if (lp->ctl_rspeed == 100)
930		bmcr |= BMCR_SPEED100;
931
932	/* Write our capabilities to the phy control register */
933	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
934
935	/* Re-Configure the Receive/Phy Control register */
936	SMC_SELECT_BANK(lp, 0);
937	SMC_SET_RPC(lp, lp->rpc_cur_mode);
938	SMC_SELECT_BANK(lp, 2);
939
940	return 1;
941}
942
943/**
944 * smc_phy_reset - reset the phy
945 * @dev: net device
946 * @phy: phy address
947 *
948 * Issue a software reset for the specified PHY and
949 * wait up to 100ms for the reset to complete.  We should
950 * not access the PHY for 50ms after issuing the reset.
951 *
952 * The time to wait appears to be dependent on the PHY.
953 *
954 * Must be called with lp->lock locked.
955 */
956static int smc_phy_reset(struct net_device *dev, int phy)
957{
958	struct smc_local *lp = netdev_priv(dev);
959	unsigned int bmcr;
960	int timeout;
961
962	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
963
964	for (timeout = 2; timeout; timeout--) {
965		spin_unlock_irq(&lp->lock);
966		msleep(50);
967		spin_lock_irq(&lp->lock);
968
969		bmcr = smc_phy_read(dev, phy, MII_BMCR);
970		if (!(bmcr & BMCR_RESET))
971			break;
972	}
973
974	return bmcr & BMCR_RESET;
975}
976
977/**
978 * smc_phy_powerdown - powerdown phy
979 * @dev: net device
980 *
981 * Power down the specified PHY
982 */
983static void smc_phy_powerdown(struct net_device *dev)
984{
985	struct smc_local *lp = netdev_priv(dev);
986	unsigned int bmcr;
987	int phy = lp->mii.phy_id;
988
989	if (lp->phy_type == 0)
990		return;
991
992	/* We need to ensure that no calls to smc_phy_configure are
993	   pending.
994	*/
995	cancel_work_sync(&lp->phy_configure);
996
997	bmcr = smc_phy_read(dev, phy, MII_BMCR);
998	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
999}
1000
1001/**
1002 * smc_phy_check_media - check the media status and adjust TCR
1003 * @dev: net device
1004 * @init: set true for initialisation
1005 *
1006 * Select duplex mode depending on negotiation state.  This
1007 * also updates our carrier state.
1008 */
1009static void smc_phy_check_media(struct net_device *dev, int init)
1010{
1011	struct smc_local *lp = netdev_priv(dev);
1012	void __iomem *ioaddr = lp->base;
1013
1014	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1015		/* duplex state has changed */
1016		if (lp->mii.full_duplex) {
1017			lp->tcr_cur_mode |= TCR_SWFDUP;
1018		} else {
1019			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1020		}
1021
1022		SMC_SELECT_BANK(lp, 0);
1023		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1024	}
1025}
1026
1027/*
1028 * Configures the specified PHY through the MII management interface
1029 * using Autonegotiation.
1030 * Calls smc_phy_fixed() if the user has requested a certain config.
1031 * If RPC ANEG bit is set, the media selection is dependent purely on
1032 * the selection by the MII (either in the MII BMCR reg or the result
1033 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1034 * is controlled by the RPC SPEED and RPC DPLX bits.
1035 */
1036static void smc_phy_configure(struct work_struct *work)
1037{
1038	struct smc_local *lp =
1039		container_of(work, struct smc_local, phy_configure);
1040	struct net_device *dev = lp->dev;
1041	void __iomem *ioaddr = lp->base;
1042	int phyaddr = lp->mii.phy_id;
1043	int my_phy_caps; /* My PHY capabilities */
1044	int my_ad_caps; /* My Advertised capabilities */
1045	int status;
1046
1047	DBG(3, dev, "smc_program_phy()\n");
1048
1049	spin_lock_irq(&lp->lock);
1050
1051	/*
1052	 * We should not be called if phy_type is zero.
1053	 */
1054	if (lp->phy_type == 0)
1055		goto smc_phy_configure_exit;
1056
1057	if (smc_phy_reset(dev, phyaddr)) {
1058		netdev_info(dev, "PHY reset timed out\n");
1059		goto smc_phy_configure_exit;
1060	}
1061
1062	/*
1063	 * Enable PHY Interrupts (for register 18)
1064	 * Interrupts listed here are disabled
1065	 */
1066	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1067		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1068		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1069		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1070
1071	/* Configure the Receive/Phy Control register */
1072	SMC_SELECT_BANK(lp, 0);
1073	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1074
1075	/* If the user requested no auto neg, then go set his request */
1076	if (lp->mii.force_media) {
1077		smc_phy_fixed(dev);
1078		goto smc_phy_configure_exit;
1079	}
1080
1081	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1082	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1083
1084	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1085		netdev_info(dev, "Auto negotiation NOT supported\n");
1086		smc_phy_fixed(dev);
1087		goto smc_phy_configure_exit;
1088	}
1089
1090	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1091
1092	if (my_phy_caps & BMSR_100BASE4)
1093		my_ad_caps |= ADVERTISE_100BASE4;
1094	if (my_phy_caps & BMSR_100FULL)
1095		my_ad_caps |= ADVERTISE_100FULL;
1096	if (my_phy_caps & BMSR_100HALF)
1097		my_ad_caps |= ADVERTISE_100HALF;
1098	if (my_phy_caps & BMSR_10FULL)
1099		my_ad_caps |= ADVERTISE_10FULL;
1100	if (my_phy_caps & BMSR_10HALF)
1101		my_ad_caps |= ADVERTISE_10HALF;
1102
1103	/* Disable capabilities not selected by our user */
1104	if (lp->ctl_rspeed != 100)
1105		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1106
1107	if (!lp->ctl_rfduplx)
1108		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1109
1110	/* Update our Auto-Neg Advertisement Register */
1111	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1112	lp->mii.advertising = my_ad_caps;
1113
1114	/*
1115	 * Read the register back.  Without this, it appears that when
1116	 * auto-negotiation is restarted, sometimes it isn't ready and
1117	 * the link does not come up.
1118	 */
1119	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1120
1121	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1122	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1123
1124	/* Restart auto-negotiation process in order to advertise my caps */
1125	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1126
1127	smc_phy_check_media(dev, 1);
1128
1129smc_phy_configure_exit:
1130	SMC_SELECT_BANK(lp, 2);
1131	spin_unlock_irq(&lp->lock);
1132}
1133
1134/*
1135 * smc_phy_interrupt
1136 *
1137 * Purpose:  Handle interrupts relating to PHY register 18. This is
1138 *  called from the "hard" interrupt handler under our private spinlock.
1139 */
1140static void smc_phy_interrupt(struct net_device *dev)
1141{
1142	struct smc_local *lp = netdev_priv(dev);
1143	int phyaddr = lp->mii.phy_id;
1144	int phy18;
1145
1146	DBG(2, dev, "%s\n", __func__);
1147
1148	if (lp->phy_type == 0)
1149		return;
1150
1151	for(;;) {
1152		smc_phy_check_media(dev, 0);
1153
1154		/* Read PHY Register 18, Status Output */
1155		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1156		if ((phy18 & PHY_INT_INT) == 0)
1157			break;
1158	}
1159}
1160
1161/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1162
1163static void smc_10bt_check_media(struct net_device *dev, int init)
1164{
1165	struct smc_local *lp = netdev_priv(dev);
1166	void __iomem *ioaddr = lp->base;
1167	unsigned int old_carrier, new_carrier;
1168
1169	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1170
1171	SMC_SELECT_BANK(lp, 0);
1172	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1173	SMC_SELECT_BANK(lp, 2);
1174
1175	if (init || (old_carrier != new_carrier)) {
1176		if (!new_carrier) {
1177			netif_carrier_off(dev);
1178		} else {
1179			netif_carrier_on(dev);
1180		}
1181		if (netif_msg_link(lp))
1182			netdev_info(dev, "link %s\n",
1183				    new_carrier ? "up" : "down");
1184	}
1185}
1186
1187static void smc_eph_interrupt(struct net_device *dev)
1188{
1189	struct smc_local *lp = netdev_priv(dev);
1190	void __iomem *ioaddr = lp->base;
1191	unsigned int ctl;
1192
1193	smc_10bt_check_media(dev, 0);
1194
1195	SMC_SELECT_BANK(lp, 1);
1196	ctl = SMC_GET_CTL(lp);
1197	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1198	SMC_SET_CTL(lp, ctl);
1199	SMC_SELECT_BANK(lp, 2);
1200}
1201
1202/*
1203 * This is the main routine of the driver, to handle the device when
1204 * it needs some attention.
1205 */
1206static irqreturn_t smc_interrupt(int irq, void *dev_id)
1207{
1208	struct net_device *dev = dev_id;
1209	struct smc_local *lp = netdev_priv(dev);
1210	void __iomem *ioaddr = lp->base;
1211	int status, mask, timeout, card_stats;
1212	int saved_pointer;
1213
1214	DBG(3, dev, "%s\n", __func__);
1215
1216	spin_lock(&lp->lock);
1217
1218	/* A preamble may be used when there is a potential race
1219	 * between the interruptible transmit functions and this
1220	 * ISR. */
1221	SMC_INTERRUPT_PREAMBLE;
1222
1223	saved_pointer = SMC_GET_PTR(lp);
1224	mask = SMC_GET_INT_MASK(lp);
1225	SMC_SET_INT_MASK(lp, 0);
1226
1227	/* set a timeout value, so I don't stay here forever */
1228	timeout = MAX_IRQ_LOOPS;
1229
1230	do {
1231		status = SMC_GET_INT(lp);
1232
1233		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1234		    status, mask,
1235		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1236		       meminfo = SMC_GET_MIR(lp);
1237		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1238		    SMC_GET_FIFO(lp));
1239
1240		status &= mask;
1241		if (!status)
1242			break;
1243
1244		if (status & IM_TX_INT) {
1245			/* do this before RX as it will free memory quickly */
1246			DBG(3, dev, "TX int\n");
1247			smc_tx(dev);
1248			SMC_ACK_INT(lp, IM_TX_INT);
1249			if (THROTTLE_TX_PKTS)
1250				netif_wake_queue(dev);
1251		} else if (status & IM_RCV_INT) {
1252			DBG(3, dev, "RX irq\n");
1253			smc_rcv(dev);
1254		} else if (status & IM_ALLOC_INT) {
1255			DBG(3, dev, "Allocation irq\n");
1256			tasklet_hi_schedule(&lp->tx_task);
1257			mask &= ~IM_ALLOC_INT;
1258		} else if (status & IM_TX_EMPTY_INT) {
1259			DBG(3, dev, "TX empty\n");
1260			mask &= ~IM_TX_EMPTY_INT;
1261
1262			/* update stats */
1263			SMC_SELECT_BANK(lp, 0);
1264			card_stats = SMC_GET_COUNTER(lp);
1265			SMC_SELECT_BANK(lp, 2);
1266
1267			/* single collisions */
1268			dev->stats.collisions += card_stats & 0xF;
1269			card_stats >>= 4;
1270
1271			/* multiple collisions */
1272			dev->stats.collisions += card_stats & 0xF;
1273		} else if (status & IM_RX_OVRN_INT) {
1274			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1275			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1276			       eph_st = SMC_GET_EPH_STATUS(lp);
1277			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1278			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1279			dev->stats.rx_errors++;
1280			dev->stats.rx_fifo_errors++;
1281		} else if (status & IM_EPH_INT) {
1282			smc_eph_interrupt(dev);
1283		} else if (status & IM_MDINT) {
1284			SMC_ACK_INT(lp, IM_MDINT);
1285			smc_phy_interrupt(dev);
1286		} else if (status & IM_ERCV_INT) {
1287			SMC_ACK_INT(lp, IM_ERCV_INT);
1288			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1289		}
1290	} while (--timeout);
1291
1292	/* restore register states */
1293	SMC_SET_PTR(lp, saved_pointer);
1294	SMC_SET_INT_MASK(lp, mask);
1295	spin_unlock(&lp->lock);
1296
1297#ifndef CONFIG_NET_POLL_CONTROLLER
1298	if (timeout == MAX_IRQ_LOOPS)
1299		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1300		       mask);
1301#endif
1302	DBG(3, dev, "Interrupt done (%d loops)\n",
1303	    MAX_IRQ_LOOPS - timeout);
1304
1305	/*
1306	 * We return IRQ_HANDLED unconditionally here even if there was
1307	 * nothing to do.  There is a possibility that a packet might
1308	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1309	 * but just before the CPU acknowledges the IRQ.
1310	 * Better take an unneeded IRQ in some occasions than complexifying
1311	 * the code for all cases.
1312	 */
1313	return IRQ_HANDLED;
1314}
1315
1316#ifdef CONFIG_NET_POLL_CONTROLLER
1317/*
1318 * Polling receive - used by netconsole and other diagnostic tools
1319 * to allow network i/o with interrupts disabled.
1320 */
1321static void smc_poll_controller(struct net_device *dev)
1322{
1323	disable_irq(dev->irq);
1324	smc_interrupt(dev->irq, dev);
1325	enable_irq(dev->irq);
1326}
1327#endif
1328
1329/* Our watchdog timed out. Called by the networking layer */
1330static void smc_timeout(struct net_device *dev)
1331{
1332	struct smc_local *lp = netdev_priv(dev);
1333	void __iomem *ioaddr = lp->base;
1334	int status, mask, eph_st, meminfo, fifo;
1335
1336	DBG(2, dev, "%s\n", __func__);
1337
1338	spin_lock_irq(&lp->lock);
1339	status = SMC_GET_INT(lp);
1340	mask = SMC_GET_INT_MASK(lp);
1341	fifo = SMC_GET_FIFO(lp);
1342	SMC_SELECT_BANK(lp, 0);
1343	eph_st = SMC_GET_EPH_STATUS(lp);
1344	meminfo = SMC_GET_MIR(lp);
1345	SMC_SELECT_BANK(lp, 2);
1346	spin_unlock_irq(&lp->lock);
1347	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1348	       status, mask, meminfo, fifo, eph_st);
1349
1350	smc_reset(dev);
1351	smc_enable(dev);
1352
1353	/*
1354	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1355	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1356	 * which calls schedule().  Hence we use a work queue.
1357	 */
1358	if (lp->phy_type != 0)
1359		schedule_work(&lp->phy_configure);
1360
1361	/* We can accept TX packets again */
1362	dev->trans_start = jiffies; /* prevent tx timeout */
1363	netif_wake_queue(dev);
1364}
1365
1366/*
1367 * This routine will, depending on the values passed to it,
1368 * either make it accept multicast packets, go into
1369 * promiscuous mode (for TCPDUMP and cousins) or accept
1370 * a select set of multicast packets
1371 */
1372static void smc_set_multicast_list(struct net_device *dev)
1373{
1374	struct smc_local *lp = netdev_priv(dev);
1375	void __iomem *ioaddr = lp->base;
1376	unsigned char multicast_table[8];
1377	int update_multicast = 0;
1378
1379	DBG(2, dev, "%s\n", __func__);
1380
1381	if (dev->flags & IFF_PROMISC) {
1382		DBG(2, dev, "RCR_PRMS\n");
1383		lp->rcr_cur_mode |= RCR_PRMS;
1384	}
1385
1386/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1387   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1388   when promiscuous mode is turned on.
1389*/
1390
1391	/*
1392	 * Here, I am setting this to accept all multicast packets.
1393	 * I don't need to zero the multicast table, because the flag is
1394	 * checked before the table is
1395	 */
1396	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1397		DBG(2, dev, "RCR_ALMUL\n");
1398		lp->rcr_cur_mode |= RCR_ALMUL;
1399	}
1400
1401	/*
1402	 * This sets the internal hardware table to filter out unwanted
1403	 * multicast packets before they take up memory.
1404	 *
1405	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1406	 * address are the offset into the table.  If that bit is 1, then the
1407	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1408	 *
1409	 * To use the 6 bits as an offset into the table, the high 3 bits are
1410	 * the number of the 8 bit register, while the low 3 bits are the bit
1411	 * within that register.
1412	 */
1413	else if (!netdev_mc_empty(dev)) {
1414		struct netdev_hw_addr *ha;
1415
1416		/* table for flipping the order of 3 bits */
1417		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1418
1419		/* start with a table of all zeros: reject all */
1420		memset(multicast_table, 0, sizeof(multicast_table));
1421
1422		netdev_for_each_mc_addr(ha, dev) {
1423			int position;
1424
1425			/* only use the low order bits */
1426			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1427
1428			/* do some messy swapping to put the bit in the right spot */
1429			multicast_table[invert3[position&7]] |=
1430				(1<<invert3[(position>>3)&7]);
1431		}
1432
1433		/* be sure I get rid of flags I might have set */
1434		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1435
1436		/* now, the table can be loaded into the chipset */
1437		update_multicast = 1;
1438	} else  {
1439		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1440		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1441
1442		/*
1443		 * since I'm disabling all multicast entirely, I need to
1444		 * clear the multicast list
1445		 */
1446		memset(multicast_table, 0, sizeof(multicast_table));
1447		update_multicast = 1;
1448	}
1449
1450	spin_lock_irq(&lp->lock);
1451	SMC_SELECT_BANK(lp, 0);
1452	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1453	if (update_multicast) {
1454		SMC_SELECT_BANK(lp, 3);
1455		SMC_SET_MCAST(lp, multicast_table);
1456	}
1457	SMC_SELECT_BANK(lp, 2);
1458	spin_unlock_irq(&lp->lock);
1459}
1460
1461
1462/*
1463 * Open and Initialize the board
1464 *
1465 * Set up everything, reset the card, etc..
1466 */
1467static int
1468smc_open(struct net_device *dev)
1469{
1470	struct smc_local *lp = netdev_priv(dev);
1471
1472	DBG(2, dev, "%s\n", __func__);
1473
1474	/* Setup the default Register Modes */
1475	lp->tcr_cur_mode = TCR_DEFAULT;
1476	lp->rcr_cur_mode = RCR_DEFAULT;
1477	lp->rpc_cur_mode = RPC_DEFAULT |
1478				lp->cfg.leda << RPC_LSXA_SHFT |
1479				lp->cfg.ledb << RPC_LSXB_SHFT;
1480
1481	/*
1482	 * If we are not using a MII interface, we need to
1483	 * monitor our own carrier signal to detect faults.
1484	 */
1485	if (lp->phy_type == 0)
1486		lp->tcr_cur_mode |= TCR_MON_CSN;
1487
1488	/* reset the hardware */
1489	smc_reset(dev);
1490	smc_enable(dev);
1491
1492	/* Configure the PHY, initialize the link state */
1493	if (lp->phy_type != 0)
1494		smc_phy_configure(&lp->phy_configure);
1495	else {
1496		spin_lock_irq(&lp->lock);
1497		smc_10bt_check_media(dev, 1);
1498		spin_unlock_irq(&lp->lock);
1499	}
1500
1501	netif_start_queue(dev);
1502	return 0;
1503}
1504
1505/*
1506 * smc_close
1507 *
1508 * this makes the board clean up everything that it can
1509 * and not talk to the outside world.   Caused by
1510 * an 'ifconfig ethX down'
1511 */
1512static int smc_close(struct net_device *dev)
1513{
1514	struct smc_local *lp = netdev_priv(dev);
1515
1516	DBG(2, dev, "%s\n", __func__);
1517
1518	netif_stop_queue(dev);
1519	netif_carrier_off(dev);
1520
1521	/* clear everything */
1522	smc_shutdown(dev);
1523	tasklet_kill(&lp->tx_task);
1524	smc_phy_powerdown(dev);
1525	return 0;
1526}
1527
1528/*
1529 * Ethtool support
1530 */
1531static int
1532smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1533{
1534	struct smc_local *lp = netdev_priv(dev);
1535	int ret;
1536
1537	cmd->maxtxpkt = 1;
1538	cmd->maxrxpkt = 1;
1539
1540	if (lp->phy_type != 0) {
1541		spin_lock_irq(&lp->lock);
1542		ret = mii_ethtool_gset(&lp->mii, cmd);
1543		spin_unlock_irq(&lp->lock);
1544	} else {
1545		cmd->supported = SUPPORTED_10baseT_Half |
1546				 SUPPORTED_10baseT_Full |
1547				 SUPPORTED_TP | SUPPORTED_AUI;
1548
1549		if (lp->ctl_rspeed == 10)
1550			ethtool_cmd_speed_set(cmd, SPEED_10);
1551		else if (lp->ctl_rspeed == 100)
1552			ethtool_cmd_speed_set(cmd, SPEED_100);
1553
1554		cmd->autoneg = AUTONEG_DISABLE;
1555		cmd->transceiver = XCVR_INTERNAL;
1556		cmd->port = 0;
1557		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1558
1559		ret = 0;
1560	}
1561
1562	return ret;
1563}
1564
1565static int
1566smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1567{
1568	struct smc_local *lp = netdev_priv(dev);
1569	int ret;
1570
1571	if (lp->phy_type != 0) {
1572		spin_lock_irq(&lp->lock);
1573		ret = mii_ethtool_sset(&lp->mii, cmd);
1574		spin_unlock_irq(&lp->lock);
1575	} else {
1576		if (cmd->autoneg != AUTONEG_DISABLE ||
1577		    cmd->speed != SPEED_10 ||
1578		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1579		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1580			return -EINVAL;
1581
1582//		lp->port = cmd->port;
1583		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1584
1585//		if (netif_running(dev))
1586//			smc_set_port(dev);
1587
1588		ret = 0;
1589	}
1590
1591	return ret;
1592}
1593
1594static void
1595smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1596{
1597	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1598	strlcpy(info->version, version, sizeof(info->version));
1599	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1600		sizeof(info->bus_info));
1601}
1602
1603static int smc_ethtool_nwayreset(struct net_device *dev)
1604{
1605	struct smc_local *lp = netdev_priv(dev);
1606	int ret = -EINVAL;
1607
1608	if (lp->phy_type != 0) {
1609		spin_lock_irq(&lp->lock);
1610		ret = mii_nway_restart(&lp->mii);
1611		spin_unlock_irq(&lp->lock);
1612	}
1613
1614	return ret;
1615}
1616
1617static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1618{
1619	struct smc_local *lp = netdev_priv(dev);
1620	return lp->msg_enable;
1621}
1622
1623static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1624{
1625	struct smc_local *lp = netdev_priv(dev);
1626	lp->msg_enable = level;
1627}
1628
1629static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1630{
1631	u16 ctl;
1632	struct smc_local *lp = netdev_priv(dev);
1633	void __iomem *ioaddr = lp->base;
1634
1635	spin_lock_irq(&lp->lock);
1636	/* load word into GP register */
1637	SMC_SELECT_BANK(lp, 1);
1638	SMC_SET_GP(lp, word);
1639	/* set the address to put the data in EEPROM */
1640	SMC_SELECT_BANK(lp, 2);
1641	SMC_SET_PTR(lp, addr);
1642	/* tell it to write */
1643	SMC_SELECT_BANK(lp, 1);
1644	ctl = SMC_GET_CTL(lp);
1645	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1646	/* wait for it to finish */
1647	do {
1648		udelay(1);
1649	} while (SMC_GET_CTL(lp) & CTL_STORE);
1650	/* clean up */
1651	SMC_SET_CTL(lp, ctl);
1652	SMC_SELECT_BANK(lp, 2);
1653	spin_unlock_irq(&lp->lock);
1654	return 0;
1655}
1656
1657static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1658{
1659	u16 ctl;
1660	struct smc_local *lp = netdev_priv(dev);
1661	void __iomem *ioaddr = lp->base;
1662
1663	spin_lock_irq(&lp->lock);
1664	/* set the EEPROM address to get the data from */
1665	SMC_SELECT_BANK(lp, 2);
1666	SMC_SET_PTR(lp, addr | PTR_READ);
1667	/* tell it to load */
1668	SMC_SELECT_BANK(lp, 1);
1669	SMC_SET_GP(lp, 0xffff);	/* init to known */
1670	ctl = SMC_GET_CTL(lp);
1671	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1672	/* wait for it to finish */
1673	do {
1674		udelay(1);
1675	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1676	/* read word from GP register */
1677	*word = SMC_GET_GP(lp);
1678	/* clean up */
1679	SMC_SET_CTL(lp, ctl);
1680	SMC_SELECT_BANK(lp, 2);
1681	spin_unlock_irq(&lp->lock);
1682	return 0;
1683}
1684
1685static int smc_ethtool_geteeprom_len(struct net_device *dev)
1686{
1687	return 0x23 * 2;
1688}
1689
1690static int smc_ethtool_geteeprom(struct net_device *dev,
1691		struct ethtool_eeprom *eeprom, u8 *data)
1692{
1693	int i;
1694	int imax;
1695
1696	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1697		eeprom->len, eeprom->offset, eeprom->offset);
1698	imax = smc_ethtool_geteeprom_len(dev);
1699	for (i = 0; i < eeprom->len; i += 2) {
1700		int ret;
1701		u16 wbuf;
1702		int offset = i + eeprom->offset;
1703		if (offset > imax)
1704			break;
1705		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1706		if (ret != 0)
1707			return ret;
1708		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1709		data[i] = (wbuf >> 8) & 0xff;
1710		data[i+1] = wbuf & 0xff;
1711	}
1712	return 0;
1713}
1714
1715static int smc_ethtool_seteeprom(struct net_device *dev,
1716		struct ethtool_eeprom *eeprom, u8 *data)
1717{
1718	int i;
1719	int imax;
1720
1721	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1722	    eeprom->len, eeprom->offset, eeprom->offset);
1723	imax = smc_ethtool_geteeprom_len(dev);
1724	for (i = 0; i < eeprom->len; i += 2) {
1725		int ret;
1726		u16 wbuf;
1727		int offset = i + eeprom->offset;
1728		if (offset > imax)
1729			break;
1730		wbuf = (data[i] << 8) | data[i + 1];
1731		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1732		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1733		if (ret != 0)
1734			return ret;
1735	}
1736	return 0;
1737}
1738
1739
1740static const struct ethtool_ops smc_ethtool_ops = {
1741	.get_settings	= smc_ethtool_getsettings,
1742	.set_settings	= smc_ethtool_setsettings,
1743	.get_drvinfo	= smc_ethtool_getdrvinfo,
1744
1745	.get_msglevel	= smc_ethtool_getmsglevel,
1746	.set_msglevel	= smc_ethtool_setmsglevel,
1747	.nway_reset	= smc_ethtool_nwayreset,
1748	.get_link	= ethtool_op_get_link,
1749	.get_eeprom_len = smc_ethtool_geteeprom_len,
1750	.get_eeprom	= smc_ethtool_geteeprom,
1751	.set_eeprom	= smc_ethtool_seteeprom,
1752};
1753
1754static const struct net_device_ops smc_netdev_ops = {
1755	.ndo_open		= smc_open,
1756	.ndo_stop		= smc_close,
1757	.ndo_start_xmit		= smc_hard_start_xmit,
1758	.ndo_tx_timeout		= smc_timeout,
1759	.ndo_set_rx_mode	= smc_set_multicast_list,
1760	.ndo_change_mtu		= eth_change_mtu,
1761	.ndo_validate_addr	= eth_validate_addr,
1762	.ndo_set_mac_address 	= eth_mac_addr,
1763#ifdef CONFIG_NET_POLL_CONTROLLER
1764	.ndo_poll_controller	= smc_poll_controller,
1765#endif
1766};
1767
1768/*
1769 * smc_findirq
1770 *
1771 * This routine has a simple purpose -- make the SMC chip generate an
1772 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1773 */
1774/*
1775 * does this still work?
1776 *
1777 * I just deleted auto_irq.c, since it was never built...
1778 *   --jgarzik
1779 */
1780static int smc_findirq(struct smc_local *lp)
1781{
1782	void __iomem *ioaddr = lp->base;
1783	int timeout = 20;
1784	unsigned long cookie;
1785
1786	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1787
1788	cookie = probe_irq_on();
1789
1790	/*
1791	 * What I try to do here is trigger an ALLOC_INT. This is done
1792	 * by allocating a small chunk of memory, which will give an interrupt
1793	 * when done.
1794	 */
1795	/* enable ALLOCation interrupts ONLY */
1796	SMC_SELECT_BANK(lp, 2);
1797	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1798
1799	/*
1800 	 * Allocate 512 bytes of memory.  Note that the chip was just
1801	 * reset so all the memory is available
1802	 */
1803	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1804
1805	/*
1806	 * Wait until positive that the interrupt has been generated
1807	 */
1808	do {
1809		int int_status;
1810		udelay(10);
1811		int_status = SMC_GET_INT(lp);
1812		if (int_status & IM_ALLOC_INT)
1813			break;		/* got the interrupt */
1814	} while (--timeout);
1815
1816	/*
1817	 * there is really nothing that I can do here if timeout fails,
1818	 * as autoirq_report will return a 0 anyway, which is what I
1819	 * want in this case.   Plus, the clean up is needed in both
1820	 * cases.
1821	 */
1822
1823	/* and disable all interrupts again */
1824	SMC_SET_INT_MASK(lp, 0);
1825
1826	/* and return what I found */
1827	return probe_irq_off(cookie);
1828}
1829
1830/*
1831 * Function: smc_probe(unsigned long ioaddr)
1832 *
1833 * Purpose:
1834 *	Tests to see if a given ioaddr points to an SMC91x chip.
1835 *	Returns a 0 on success
1836 *
1837 * Algorithm:
1838 *	(1) see if the high byte of BANK_SELECT is 0x33
1839 * 	(2) compare the ioaddr with the base register's address
1840 *	(3) see if I recognize the chip ID in the appropriate register
1841 *
1842 * Here I do typical initialization tasks.
1843 *
1844 * o  Initialize the structure if needed
1845 * o  print out my vanity message if not done so already
1846 * o  print out what type of hardware is detected
1847 * o  print out the ethernet address
1848 * o  find the IRQ
1849 * o  set up my private data
1850 * o  configure the dev structure with my subroutines
1851 * o  actually GRAB the irq.
1852 * o  GRAB the region
1853 */
1854static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1855		     unsigned long irq_flags)
1856{
1857	struct smc_local *lp = netdev_priv(dev);
1858	int retval;
1859	unsigned int val, revision_register;
1860	const char *version_string;
1861
1862	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1863
1864	/* First, see if the high byte is 0x33 */
1865	val = SMC_CURRENT_BANK(lp);
1866	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1867	    CARDNAME, val);
1868	if ((val & 0xFF00) != 0x3300) {
1869		if ((val & 0xFF) == 0x33) {
1870			netdev_warn(dev,
1871				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1872				    CARDNAME, ioaddr);
1873		}
1874		retval = -ENODEV;
1875		goto err_out;
1876	}
1877
1878	/*
1879	 * The above MIGHT indicate a device, but I need to write to
1880	 * further test this.
1881	 */
1882	SMC_SELECT_BANK(lp, 0);
1883	val = SMC_CURRENT_BANK(lp);
1884	if ((val & 0xFF00) != 0x3300) {
1885		retval = -ENODEV;
1886		goto err_out;
1887	}
1888
1889	/*
1890	 * well, we've already written once, so hopefully another
1891	 * time won't hurt.  This time, I need to switch the bank
1892	 * register to bank 1, so I can access the base address
1893	 * register
1894	 */
1895	SMC_SELECT_BANK(lp, 1);
1896	val = SMC_GET_BASE(lp);
1897	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1898	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1899		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1900			    CARDNAME, ioaddr, val);
1901	}
1902
1903	/*
1904	 * check if the revision register is something that I
1905	 * recognize.  These might need to be added to later,
1906	 * as future revisions could be added.
1907	 */
1908	SMC_SELECT_BANK(lp, 3);
1909	revision_register = SMC_GET_REV(lp);
1910	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1911	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1912	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1913		/* I don't recognize this chip, so... */
1914		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1915			    CARDNAME, ioaddr, revision_register);
1916
1917		retval = -ENODEV;
1918		goto err_out;
1919	}
1920
1921	/* At this point I'll assume that the chip is an SMC91x. */
1922	pr_info_once("%s\n", version);
1923
1924	/* fill in some of the fields */
1925	dev->base_addr = (unsigned long)ioaddr;
1926	lp->base = ioaddr;
1927	lp->version = revision_register & 0xff;
1928	spin_lock_init(&lp->lock);
1929
1930	/* Get the MAC address */
1931	SMC_SELECT_BANK(lp, 1);
1932	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1933
1934	/* now, reset the chip, and put it into a known state */
1935	smc_reset(dev);
1936
1937	/*
1938	 * If dev->irq is 0, then the device has to be banged on to see
1939	 * what the IRQ is.
1940	 *
1941	 * This banging doesn't always detect the IRQ, for unknown reasons.
1942	 * a workaround is to reset the chip and try again.
1943	 *
1944	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1945	 * be what is requested on the command line.   I don't do that, mostly
1946	 * because the card that I have uses a non-standard method of accessing
1947	 * the IRQs, and because this _should_ work in most configurations.
1948	 *
1949	 * Specifying an IRQ is done with the assumption that the user knows
1950	 * what (s)he is doing.  No checking is done!!!!
1951	 */
1952	if (dev->irq < 1) {
1953		int trials;
1954
1955		trials = 3;
1956		while (trials--) {
1957			dev->irq = smc_findirq(lp);
1958			if (dev->irq)
1959				break;
1960			/* kick the card and try again */
1961			smc_reset(dev);
1962		}
1963	}
1964	if (dev->irq == 0) {
1965		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1966		retval = -ENODEV;
1967		goto err_out;
1968	}
1969	dev->irq = irq_canonicalize(dev->irq);
1970
1971	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1972	dev->netdev_ops = &smc_netdev_ops;
1973	dev->ethtool_ops = &smc_ethtool_ops;
1974
1975	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1976	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1977	lp->dev = dev;
1978	lp->mii.phy_id_mask = 0x1f;
1979	lp->mii.reg_num_mask = 0x1f;
1980	lp->mii.force_media = 0;
1981	lp->mii.full_duplex = 0;
1982	lp->mii.dev = dev;
1983	lp->mii.mdio_read = smc_phy_read;
1984	lp->mii.mdio_write = smc_phy_write;
1985
1986	/*
1987	 * Locate the phy, if any.
1988	 */
1989	if (lp->version >= (CHIP_91100 << 4))
1990		smc_phy_detect(dev);
1991
1992	/* then shut everything down to save power */
1993	smc_shutdown(dev);
1994	smc_phy_powerdown(dev);
1995
1996	/* Set default parameters */
1997	lp->msg_enable = NETIF_MSG_LINK;
1998	lp->ctl_rfduplx = 0;
1999	lp->ctl_rspeed = 10;
2000
2001	if (lp->version >= (CHIP_91100 << 4)) {
2002		lp->ctl_rfduplx = 1;
2003		lp->ctl_rspeed = 100;
2004	}
2005
2006	/* Grab the IRQ */
2007	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2008      	if (retval)
2009      		goto err_out;
2010
2011#ifdef CONFIG_ARCH_PXA
2012#  ifdef SMC_USE_PXA_DMA
2013	lp->cfg.flags |= SMC91X_USE_DMA;
2014#  endif
2015	if (lp->cfg.flags & SMC91X_USE_DMA) {
2016		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2017					  smc_pxa_dma_irq, NULL);
2018		if (dma >= 0)
2019			dev->dma = dma;
2020	}
2021#endif
2022
2023	retval = register_netdev(dev);
2024	if (retval == 0) {
2025		/* now, print out the card info, in a short format.. */
2026		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2027			    version_string, revision_register & 0x0f,
2028			    lp->base, dev->irq);
2029
2030		if (dev->dma != (unsigned char)-1)
2031			pr_cont(" DMA %d", dev->dma);
2032
2033		pr_cont("%s%s\n",
2034			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2035			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2036
2037		if (!is_valid_ether_addr(dev->dev_addr)) {
2038			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2039		} else {
2040			/* Print the Ethernet address */
2041			netdev_info(dev, "Ethernet addr: %pM\n",
2042				    dev->dev_addr);
2043		}
2044
2045		if (lp->phy_type == 0) {
2046			PRINTK(dev, "No PHY found\n");
2047		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2048			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2049		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2050			PRINTK(dev, "PHY LAN83C180\n");
2051		}
2052	}
2053
2054err_out:
2055#ifdef CONFIG_ARCH_PXA
2056	if (retval && dev->dma != (unsigned char)-1)
2057		pxa_free_dma(dev->dma);
2058#endif
2059	return retval;
2060}
2061
2062static int smc_enable_device(struct platform_device *pdev)
2063{
2064	struct net_device *ndev = platform_get_drvdata(pdev);
2065	struct smc_local *lp = netdev_priv(ndev);
2066	unsigned long flags;
2067	unsigned char ecor, ecsr;
2068	void __iomem *addr;
2069	struct resource * res;
2070
2071	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2072	if (!res)
2073		return 0;
2074
2075	/*
2076	 * Map the attribute space.  This is overkill, but clean.
2077	 */
2078	addr = ioremap(res->start, ATTRIB_SIZE);
2079	if (!addr)
2080		return -ENOMEM;
2081
2082	/*
2083	 * Reset the device.  We must disable IRQs around this
2084	 * since a reset causes the IRQ line become active.
2085	 */
2086	local_irq_save(flags);
2087	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2088	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2089	readb(addr + (ECOR << SMC_IO_SHIFT));
2090
2091	/*
2092	 * Wait 100us for the chip to reset.
2093	 */
2094	udelay(100);
2095
2096	/*
2097	 * The device will ignore all writes to the enable bit while
2098	 * reset is asserted, even if the reset bit is cleared in the
2099	 * same write.  Must clear reset first, then enable the device.
2100	 */
2101	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2102	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2103
2104	/*
2105	 * Set the appropriate byte/word mode.
2106	 */
2107	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2108	if (!SMC_16BIT(lp))
2109		ecsr |= ECSR_IOIS8;
2110	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2111	local_irq_restore(flags);
2112
2113	iounmap(addr);
2114
2115	/*
2116	 * Wait for the chip to wake up.  We could poll the control
2117	 * register in the main register space, but that isn't mapped
2118	 * yet.  We know this is going to take 750us.
2119	 */
2120	msleep(1);
2121
2122	return 0;
2123}
2124
2125static int smc_request_attrib(struct platform_device *pdev,
2126			      struct net_device *ndev)
2127{
2128	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2129	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2130
2131	if (!res)
2132		return 0;
2133
2134	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2135		return -EBUSY;
2136
2137	return 0;
2138}
2139
2140static void smc_release_attrib(struct platform_device *pdev,
2141			       struct net_device *ndev)
2142{
2143	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2144	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2145
2146	if (res)
2147		release_mem_region(res->start, ATTRIB_SIZE);
2148}
2149
2150static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2151{
2152	if (SMC_CAN_USE_DATACS) {
2153		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2154		struct smc_local *lp = netdev_priv(ndev);
2155
2156		if (!res)
2157			return;
2158
2159		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2160			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2161				    CARDNAME);
2162			return;
2163		}
2164
2165		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2166	}
2167}
2168
2169static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2170{
2171	if (SMC_CAN_USE_DATACS) {
2172		struct smc_local *lp = netdev_priv(ndev);
2173		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2174
2175		if (lp->datacs)
2176			iounmap(lp->datacs);
2177
2178		lp->datacs = NULL;
2179
2180		if (res)
2181			release_mem_region(res->start, SMC_DATA_EXTENT);
2182	}
2183}
2184
2185#if IS_BUILTIN(CONFIG_OF)
2186static const struct of_device_id smc91x_match[] = {
2187	{ .compatible = "smsc,lan91c94", },
2188	{ .compatible = "smsc,lan91c111", },
2189	{},
2190};
2191MODULE_DEVICE_TABLE(of, smc91x_match);
2192
2193/**
2194 * of_try_set_control_gpio - configure a gpio if it exists
2195 */
2196static int try_toggle_control_gpio(struct device *dev,
2197				   struct gpio_desc **desc,
2198				   const char *name, int index,
2199				   int value, unsigned int nsdelay)
2200{
2201	struct gpio_desc *gpio = *desc;
2202	int res;
2203
2204	gpio = devm_gpiod_get_index(dev, name, index);
2205	if (IS_ERR(gpio)) {
2206		if (PTR_ERR(gpio) == -ENOENT) {
2207			*desc = NULL;
2208			return 0;
2209		}
2210
2211		return PTR_ERR(gpio);
2212	}
2213	res = gpiod_direction_output(gpio, !value);
2214	if (res) {
2215		dev_err(dev, "unable to toggle gpio %s: %i\n", name, res);
2216		devm_gpiod_put(dev, gpio);
2217		gpio = NULL;
2218		return res;
2219	}
2220	if (nsdelay)
2221		usleep_range(nsdelay, 2 * nsdelay);
2222	gpiod_set_value_cansleep(gpio, value);
2223	*desc = gpio;
2224
2225	return 0;
2226}
2227#endif
2228
2229/*
2230 * smc_init(void)
2231 *   Input parameters:
2232 *	dev->base_addr == 0, try to find all possible locations
2233 *	dev->base_addr > 0x1ff, this is the address to check
2234 *	dev->base_addr == <anything else>, return failure code
2235 *
2236 *   Output:
2237 *	0 --> there is a device
2238 *	anything else, error
2239 */
2240static int smc_drv_probe(struct platform_device *pdev)
2241{
2242	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2243	const struct of_device_id *match = NULL;
2244	struct smc_local *lp;
2245	struct net_device *ndev;
2246	struct resource *res;
2247	unsigned int __iomem *addr;
2248	unsigned long irq_flags = SMC_IRQ_FLAGS;
2249	unsigned long irq_resflags;
2250	int ret;
2251
2252	ndev = alloc_etherdev(sizeof(struct smc_local));
2253	if (!ndev) {
2254		ret = -ENOMEM;
2255		goto out;
2256	}
2257	SET_NETDEV_DEV(ndev, &pdev->dev);
2258
2259	/* get configuration from platform data, only allow use of
2260	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2261	 */
2262
2263	lp = netdev_priv(ndev);
2264	lp->cfg.flags = 0;
2265
2266	if (pd) {
2267		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2268		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2269	}
2270
2271#if IS_BUILTIN(CONFIG_OF)
2272	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2273	if (match) {
2274		struct device_node *np = pdev->dev.of_node;
2275		u32 val;
2276
2277		/* Optional pwrdwn GPIO configured? */
2278		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2279					      "power", 0, 0, 100);
2280		if (ret)
2281			return ret;
2282
2283		/*
2284		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2285		 * according to LAN91C96 datasheet page 14.
2286		 */
2287		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2288					      "reset", 0, 0, 100);
2289		if (ret)
2290			return ret;
2291
2292		/*
2293		 * Need to wait for optional EEPROM to load, max 750 us according
2294		 * to LAN91C96 datasheet page 55.
2295		 */
2296		if (lp->reset_gpio)
2297			usleep_range(750, 1000);
2298
2299		/* Combination of IO widths supported, default to 16-bit */
2300		if (!of_property_read_u32(np, "reg-io-width", &val)) {
2301			if (val & 1)
2302				lp->cfg.flags |= SMC91X_USE_8BIT;
2303			if ((val == 0) || (val & 2))
2304				lp->cfg.flags |= SMC91X_USE_16BIT;
2305			if (val & 4)
2306				lp->cfg.flags |= SMC91X_USE_32BIT;
2307		} else {
2308			lp->cfg.flags |= SMC91X_USE_16BIT;
2309		}
2310	}
2311#endif
2312
2313	if (!pd && !match) {
2314		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2315		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2316		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2317		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2318	}
2319
2320	if (!lp->cfg.leda && !lp->cfg.ledb) {
2321		lp->cfg.leda = RPC_LSA_DEFAULT;
2322		lp->cfg.ledb = RPC_LSB_DEFAULT;
2323	}
2324
2325	ndev->dma = (unsigned char)-1;
2326
2327	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2328	if (!res)
2329		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2330	if (!res) {
2331		ret = -ENODEV;
2332		goto out_free_netdev;
2333	}
2334
2335
2336	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2337		ret = -EBUSY;
2338		goto out_free_netdev;
2339	}
2340
2341	ndev->irq = platform_get_irq(pdev, 0);
2342	if (ndev->irq <= 0) {
2343		ret = -ENODEV;
2344		goto out_release_io;
2345	}
2346	/*
2347	 * If this platform does not specify any special irqflags, or if
2348	 * the resource supplies a trigger, override the irqflags with
2349	 * the trigger flags from the resource.
2350	 */
2351	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2352	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2353		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2354
2355	ret = smc_request_attrib(pdev, ndev);
2356	if (ret)
2357		goto out_release_io;
2358#if defined(CONFIG_SA1100_ASSABET)
2359	neponset_ncr_set(NCR_ENET_OSC_EN);
2360#endif
2361	platform_set_drvdata(pdev, ndev);
2362	ret = smc_enable_device(pdev);
2363	if (ret)
2364		goto out_release_attrib;
2365
2366	addr = ioremap(res->start, SMC_IO_EXTENT);
2367	if (!addr) {
2368		ret = -ENOMEM;
2369		goto out_release_attrib;
2370	}
2371
2372#ifdef CONFIG_ARCH_PXA
2373	{
2374		struct smc_local *lp = netdev_priv(ndev);
2375		lp->device = &pdev->dev;
2376		lp->physaddr = res->start;
2377	}
2378#endif
2379
2380	ret = smc_probe(ndev, addr, irq_flags);
2381	if (ret != 0)
2382		goto out_iounmap;
2383
2384	smc_request_datacs(pdev, ndev);
2385
2386	return 0;
2387
2388 out_iounmap:
2389	iounmap(addr);
2390 out_release_attrib:
2391	smc_release_attrib(pdev, ndev);
2392 out_release_io:
2393	release_mem_region(res->start, SMC_IO_EXTENT);
2394 out_free_netdev:
2395	free_netdev(ndev);
2396 out:
2397	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2398
2399	return ret;
2400}
2401
2402static int smc_drv_remove(struct platform_device *pdev)
2403{
2404	struct net_device *ndev = platform_get_drvdata(pdev);
2405	struct smc_local *lp = netdev_priv(ndev);
2406	struct resource *res;
2407
2408	unregister_netdev(ndev);
2409
2410	free_irq(ndev->irq, ndev);
2411
2412#ifdef CONFIG_ARCH_PXA
2413	if (ndev->dma != (unsigned char)-1)
2414		pxa_free_dma(ndev->dma);
2415#endif
2416	iounmap(lp->base);
2417
2418	smc_release_datacs(pdev,ndev);
2419	smc_release_attrib(pdev,ndev);
2420
2421	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2422	if (!res)
2423		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2424	release_mem_region(res->start, SMC_IO_EXTENT);
2425
2426	free_netdev(ndev);
2427
2428	return 0;
2429}
2430
2431static int smc_drv_suspend(struct device *dev)
2432{
2433	struct platform_device *pdev = to_platform_device(dev);
2434	struct net_device *ndev = platform_get_drvdata(pdev);
2435
2436	if (ndev) {
2437		if (netif_running(ndev)) {
2438			netif_device_detach(ndev);
2439			smc_shutdown(ndev);
2440			smc_phy_powerdown(ndev);
2441		}
2442	}
2443	return 0;
2444}
2445
2446static int smc_drv_resume(struct device *dev)
2447{
2448	struct platform_device *pdev = to_platform_device(dev);
2449	struct net_device *ndev = platform_get_drvdata(pdev);
2450
2451	if (ndev) {
2452		struct smc_local *lp = netdev_priv(ndev);
2453		smc_enable_device(pdev);
2454		if (netif_running(ndev)) {
2455			smc_reset(ndev);
2456			smc_enable(ndev);
2457			if (lp->phy_type != 0)
2458				smc_phy_configure(&lp->phy_configure);
2459			netif_device_attach(ndev);
2460		}
2461	}
2462	return 0;
2463}
2464
2465static struct dev_pm_ops smc_drv_pm_ops = {
2466	.suspend	= smc_drv_suspend,
2467	.resume		= smc_drv_resume,
2468};
2469
2470static struct platform_driver smc_driver = {
2471	.probe		= smc_drv_probe,
2472	.remove		= smc_drv_remove,
2473	.driver		= {
2474		.name	= CARDNAME,
2475		.owner	= THIS_MODULE,
2476		.pm	= &smc_drv_pm_ops,
2477		.of_match_table = of_match_ptr(smc91x_match),
2478	},
2479};
2480
2481module_platform_driver(smc_driver);
2482