1/*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 .	Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 .	Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
22 .
23 . Information contained in this file was obtained from the LAN91C111
24 . manual from SMC.  To get a copy, if you really want one, you can find
25 . information under www.smsc.com.
26 .
27 . Authors
28 .	Erik Stahlman		<erik@vt.edu>
29 .	Daris A Nevil		<dnevil@snmc.com>
30 .	Nicolas Pitre 		<nico@fluxnic.net>
31 .
32 ---------------------------------------------------------------------------*/
33#ifndef _SMC91X_H_
34#define _SMC91X_H_
35
36#include <linux/smc91x.h>
37
38/*
39 * Define your architecture specific bus configuration parameters here.
40 */
41
42#if defined(CONFIG_ARCH_LUBBOCK) ||\
43    defined(CONFIG_MACH_MAINSTONE) ||\
44    defined(CONFIG_MACH_ZYLONITE) ||\
45    defined(CONFIG_MACH_LITTLETON) ||\
46    defined(CONFIG_MACH_ZYLONITE2) ||\
47    defined(CONFIG_ARCH_VIPER) ||\
48    defined(CONFIG_MACH_STARGATE2) ||\
49    defined(CONFIG_ARCH_VERSATILE)
50
51#include <asm/mach-types.h>
52
53/* Now the bus width is specified in the platform data
54 * pretend here to support all I/O access types
55 */
56#define SMC_CAN_USE_8BIT	1
57#define SMC_CAN_USE_16BIT	1
58#define SMC_CAN_USE_32BIT	1
59#define SMC_NOWAIT		1
60
61#define SMC_IO_SHIFT		(lp->io_shift)
62
63#define SMC_inb(a, r)		readb((a) + (r))
64#define SMC_inw(a, r)		readw((a) + (r))
65#define SMC_inl(a, r)		readl((a) + (r))
66#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
67#define SMC_outl(v, a, r)	writel(v, (a) + (r))
68#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
69#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
70#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
71#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
72#define SMC_IRQ_FLAGS		(-1)	/* from resource */
73
74/* We actually can't write halfwords properly if not word aligned */
75static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
76{
77	if ((machine_is_mainstone() || machine_is_stargate2()) && reg & 2) {
78		unsigned int v = val << 16;
79		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
80		writel(v, ioaddr + (reg & ~2));
81	} else {
82		writew(val, ioaddr + reg);
83	}
84}
85
86#elif defined(CONFIG_SA1100_PLEB)
87/* We can only do 16-bit reads and writes in the static memory space. */
88#define SMC_CAN_USE_8BIT	1
89#define SMC_CAN_USE_16BIT	1
90#define SMC_CAN_USE_32BIT	0
91#define SMC_IO_SHIFT		0
92#define SMC_NOWAIT		1
93
94#define SMC_inb(a, r)		readb((a) + (r))
95#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, (l))
96#define SMC_inw(a, r)		readw((a) + (r))
97#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
98#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
99#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, (l))
100#define SMC_outw(v, a, r)	writew(v, (a) + (r))
101#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
102
103#define SMC_IRQ_FLAGS		(-1)
104
105#elif defined(CONFIG_SA1100_ASSABET)
106
107#include <mach/neponset.h>
108
109/* We can only do 8-bit reads and writes in the static memory space. */
110#define SMC_CAN_USE_8BIT	1
111#define SMC_CAN_USE_16BIT	0
112#define SMC_CAN_USE_32BIT	0
113#define SMC_NOWAIT		1
114
115/* The first two address lines aren't connected... */
116#define SMC_IO_SHIFT		2
117
118#define SMC_inb(a, r)		readb((a) + (r))
119#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
120#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, (l))
121#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, (l))
122#define SMC_IRQ_FLAGS		(-1)	/* from resource */
123
124#elif	defined(CONFIG_MACH_LOGICPD_PXA270) ||	\
125	defined(CONFIG_MACH_NOMADIK_8815NHK)
126
127#define SMC_CAN_USE_8BIT	0
128#define SMC_CAN_USE_16BIT	1
129#define SMC_CAN_USE_32BIT	0
130#define SMC_IO_SHIFT		0
131#define SMC_NOWAIT		1
132
133#define SMC_inw(a, r)		readw((a) + (r))
134#define SMC_outw(v, a, r)	writew(v, (a) + (r))
135#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
136#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
137
138#elif	defined(CONFIG_ARCH_INNOKOM) || \
139	defined(CONFIG_ARCH_PXA_IDP) || \
140	defined(CONFIG_ARCH_RAMSES) || \
141	defined(CONFIG_ARCH_PCM027)
142
143#define SMC_CAN_USE_8BIT	1
144#define SMC_CAN_USE_16BIT	1
145#define SMC_CAN_USE_32BIT	1
146#define SMC_IO_SHIFT		0
147#define SMC_NOWAIT		1
148#define SMC_USE_PXA_DMA		1
149
150#define SMC_inb(a, r)		readb((a) + (r))
151#define SMC_inw(a, r)		readw((a) + (r))
152#define SMC_inl(a, r)		readl((a) + (r))
153#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
154#define SMC_outl(v, a, r)	writel(v, (a) + (r))
155#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
156#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
157#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
158#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
159#define SMC_IRQ_FLAGS		(-1)	/* from resource */
160
161/* We actually can't write halfwords properly if not word aligned */
162static inline void
163SMC_outw(u16 val, void __iomem *ioaddr, int reg)
164{
165	if (reg & 2) {
166		unsigned int v = val << 16;
167		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
168		writel(v, ioaddr + (reg & ~2));
169	} else {
170		writew(val, ioaddr + reg);
171	}
172}
173
174#elif	defined(CONFIG_SH_SH4202_MICRODEV)
175
176#define SMC_CAN_USE_8BIT	0
177#define SMC_CAN_USE_16BIT	1
178#define SMC_CAN_USE_32BIT	0
179
180#define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
181#define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
182#define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
183#define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
184#define SMC_outw(v, a, r)	outw(v, (a) + (r) - 0xa0000000)
185#define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
186#define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
187#define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
188#define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
189#define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
190
191#define SMC_IRQ_FLAGS		(0)
192
193#elif   defined(CONFIG_M32R)
194
195#define SMC_CAN_USE_8BIT	0
196#define SMC_CAN_USE_16BIT	1
197#define SMC_CAN_USE_32BIT	0
198
199#define SMC_inb(a, r)		inb(((u32)a) + (r))
200#define SMC_inw(a, r)		inw(((u32)a) + (r))
201#define SMC_outb(v, a, r)	outb(v, ((u32)a) + (r))
202#define SMC_outw(v, a, r)	outw(v, ((u32)a) + (r))
203#define SMC_insw(a, r, p, l)	insw(((u32)a) + (r), p, l)
204#define SMC_outsw(a, r, p, l)	outsw(((u32)a) + (r), p, l)
205
206#define SMC_IRQ_FLAGS		(0)
207
208#define RPC_LSA_DEFAULT		RPC_LED_TX_RX
209#define RPC_LSB_DEFAULT		RPC_LED_100_10
210
211#elif defined(CONFIG_MN10300)
212
213/*
214 * MN10300/AM33 configuration
215 */
216
217#include <unit/smc91111.h>
218
219#elif defined(CONFIG_ARCH_MSM)
220
221#define SMC_CAN_USE_8BIT	0
222#define SMC_CAN_USE_16BIT	1
223#define SMC_CAN_USE_32BIT	0
224#define SMC_NOWAIT		1
225
226#define SMC_inw(a, r)		readw((a) + (r))
227#define SMC_outw(v, a, r)	writew(v, (a) + (r))
228#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
229#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
230
231#define SMC_IRQ_FLAGS		IRQF_TRIGGER_HIGH
232
233#elif defined(CONFIG_COLDFIRE)
234
235#define SMC_CAN_USE_8BIT	0
236#define SMC_CAN_USE_16BIT	1
237#define SMC_CAN_USE_32BIT	0
238#define SMC_NOWAIT		1
239
240static inline void mcf_insw(void *a, unsigned char *p, int l)
241{
242	u16 *wp = (u16 *) p;
243	while (l-- > 0)
244		*wp++ = readw(a);
245}
246
247static inline void mcf_outsw(void *a, unsigned char *p, int l)
248{
249	u16 *wp = (u16 *) p;
250	while (l-- > 0)
251		writew(*wp++, a);
252}
253
254#define SMC_inw(a, r)		_swapw(readw((a) + (r)))
255#define SMC_outw(v, a, r)	writew(_swapw(v), (a) + (r))
256#define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
257#define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
258
259#define SMC_IRQ_FLAGS		0
260
261#else
262
263/*
264 * Default configuration
265 */
266
267#define SMC_CAN_USE_8BIT	1
268#define SMC_CAN_USE_16BIT	1
269#define SMC_CAN_USE_32BIT	1
270#define SMC_NOWAIT		1
271
272#define SMC_IO_SHIFT		(lp->io_shift)
273
274#define SMC_inb(a, r)		ioread8((a) + (r))
275#define SMC_inw(a, r)		ioread16((a) + (r))
276#define SMC_inl(a, r)		ioread32((a) + (r))
277#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
278#define SMC_outw(v, a, r)	iowrite16(v, (a) + (r))
279#define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
280#define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
281#define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
282#define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
283#define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
284
285#define RPC_LSA_DEFAULT		RPC_LED_100_10
286#define RPC_LSB_DEFAULT		RPC_LED_TX_RX
287
288#endif
289
290
291/* store this information for the driver.. */
292struct smc_local {
293	/*
294	 * If I have to wait until memory is available to send a
295	 * packet, I will store the skbuff here, until I get the
296	 * desired memory.  Then, I'll send it out and free it.
297	 */
298	struct sk_buff *pending_tx_skb;
299	struct tasklet_struct tx_task;
300
301	struct gpio_desc *power_gpio;
302	struct gpio_desc *reset_gpio;
303
304	/* version/revision of the SMC91x chip */
305	int	version;
306
307	/* Contains the current active transmission mode */
308	int	tcr_cur_mode;
309
310	/* Contains the current active receive mode */
311	int	rcr_cur_mode;
312
313	/* Contains the current active receive/phy mode */
314	int	rpc_cur_mode;
315	int	ctl_rfduplx;
316	int	ctl_rspeed;
317
318	u32	msg_enable;
319	u32	phy_type;
320	struct mii_if_info mii;
321
322	/* work queue */
323	struct work_struct phy_configure;
324	struct net_device *dev;
325	int	work_pending;
326
327	spinlock_t lock;
328
329#ifdef CONFIG_ARCH_PXA
330	/* DMA needs the physical address of the chip */
331	u_long physaddr;
332	struct device *device;
333#endif
334	void __iomem *base;
335	void __iomem *datacs;
336
337	/* the low address lines on some platforms aren't connected... */
338	int	io_shift;
339
340	struct smc91x_platdata cfg;
341};
342
343#define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
344#define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
345#define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
346
347#ifdef CONFIG_ARCH_PXA
348/*
349 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
350 * always happening in irq context so no need to worry about races.  TX is
351 * different and probably not worth it for that reason, and not as critical
352 * as RX which can overrun memory and lose packets.
353 */
354#include <linux/dma-mapping.h>
355#include <mach/dma.h>
356
357#ifdef SMC_insl
358#undef SMC_insl
359#define SMC_insl(a, r, p, l) \
360	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
361static inline void
362smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
363		 u_char *buf, int len)
364{
365	u_long physaddr = lp->physaddr;
366	dma_addr_t dmabuf;
367
368	/* fallback if no DMA available */
369	if (dma == (unsigned char)-1) {
370		readsl(ioaddr + reg, buf, len);
371		return;
372	}
373
374	/* 64 bit alignment is required for memory to memory DMA */
375	if ((long)buf & 4) {
376		*((u32 *)buf) = SMC_inl(ioaddr, reg);
377		buf += 4;
378		len--;
379	}
380
381	len *= 4;
382	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
383	DCSR(dma) = DCSR_NODESC;
384	DTADR(dma) = dmabuf;
385	DSADR(dma) = physaddr + reg;
386	DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
387		     DCMD_WIDTH4 | (DCMD_LENGTH & len));
388	DCSR(dma) = DCSR_NODESC | DCSR_RUN;
389	while (!(DCSR(dma) & DCSR_STOPSTATE))
390		cpu_relax();
391	DCSR(dma) = 0;
392	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
393}
394#endif
395
396#ifdef SMC_insw
397#undef SMC_insw
398#define SMC_insw(a, r, p, l) \
399	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
400static inline void
401smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
402		 u_char *buf, int len)
403{
404	u_long physaddr = lp->physaddr;
405	dma_addr_t dmabuf;
406
407	/* fallback if no DMA available */
408	if (dma == (unsigned char)-1) {
409		readsw(ioaddr + reg, buf, len);
410		return;
411	}
412
413	/* 64 bit alignment is required for memory to memory DMA */
414	while ((long)buf & 6) {
415		*((u16 *)buf) = SMC_inw(ioaddr, reg);
416		buf += 2;
417		len--;
418	}
419
420	len *= 2;
421	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
422	DCSR(dma) = DCSR_NODESC;
423	DTADR(dma) = dmabuf;
424	DSADR(dma) = physaddr + reg;
425	DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
426		     DCMD_WIDTH2 | (DCMD_LENGTH & len));
427	DCSR(dma) = DCSR_NODESC | DCSR_RUN;
428	while (!(DCSR(dma) & DCSR_STOPSTATE))
429		cpu_relax();
430	DCSR(dma) = 0;
431	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
432}
433#endif
434
435static void
436smc_pxa_dma_irq(int dma, void *dummy)
437{
438	DCSR(dma) = 0;
439}
440#endif  /* CONFIG_ARCH_PXA */
441
442
443/*
444 * Everything a particular hardware setup needs should have been defined
445 * at this point.  Add stubs for the undefined cases, mainly to avoid
446 * compilation warnings since they'll be optimized away, or to prevent buggy
447 * use of them.
448 */
449
450#if ! SMC_CAN_USE_32BIT
451#define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
452#define SMC_outl(x, ioaddr, reg)	BUG()
453#define SMC_insl(a, r, p, l)		BUG()
454#define SMC_outsl(a, r, p, l)		BUG()
455#endif
456
457#if !defined(SMC_insl) || !defined(SMC_outsl)
458#define SMC_insl(a, r, p, l)		BUG()
459#define SMC_outsl(a, r, p, l)		BUG()
460#endif
461
462#if ! SMC_CAN_USE_16BIT
463
464/*
465 * Any 16-bit access is performed with two 8-bit accesses if the hardware
466 * can't do it directly. Most registers are 16-bit so those are mandatory.
467 */
468#define SMC_outw(x, ioaddr, reg)					\
469	do {								\
470		unsigned int __val16 = (x);				\
471		SMC_outb( __val16, ioaddr, reg );			\
472		SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
473	} while (0)
474#define SMC_inw(ioaddr, reg)						\
475	({								\
476		unsigned int __val16;					\
477		__val16 =  SMC_inb( ioaddr, reg );			\
478		__val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
479		__val16;						\
480	})
481
482#define SMC_insw(a, r, p, l)		BUG()
483#define SMC_outsw(a, r, p, l)		BUG()
484
485#endif
486
487#if !defined(SMC_insw) || !defined(SMC_outsw)
488#define SMC_insw(a, r, p, l)		BUG()
489#define SMC_outsw(a, r, p, l)		BUG()
490#endif
491
492#if ! SMC_CAN_USE_8BIT
493#define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
494#define SMC_outb(x, ioaddr, reg)	BUG()
495#define SMC_insb(a, r, p, l)		BUG()
496#define SMC_outsb(a, r, p, l)		BUG()
497#endif
498
499#if !defined(SMC_insb) || !defined(SMC_outsb)
500#define SMC_insb(a, r, p, l)		BUG()
501#define SMC_outsb(a, r, p, l)		BUG()
502#endif
503
504#ifndef SMC_CAN_USE_DATACS
505#define SMC_CAN_USE_DATACS	0
506#endif
507
508#ifndef SMC_IO_SHIFT
509#define SMC_IO_SHIFT	0
510#endif
511
512#ifndef	SMC_IRQ_FLAGS
513#define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
514#endif
515
516#ifndef SMC_INTERRUPT_PREAMBLE
517#define SMC_INTERRUPT_PREAMBLE
518#endif
519
520
521/* Because of bank switching, the LAN91x uses only 16 I/O ports */
522#define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
523#define SMC_DATA_EXTENT (4)
524
525/*
526 . Bank Select Register:
527 .
528 .		yyyy yyyy 0000 00xx
529 .		xx 		= bank number
530 .		yyyy yyyy	= 0x33, for identification purposes.
531*/
532#define BANK_SELECT		(14 << SMC_IO_SHIFT)
533
534
535// Transmit Control Register
536/* BANK 0  */
537#define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
538#define TCR_ENABLE	0x0001	// When 1 we can transmit
539#define TCR_LOOP	0x0002	// Controls output pin LBK
540#define TCR_FORCOL	0x0004	// When 1 will force a collision
541#define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
542#define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
543#define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
544#define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
545#define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
546#define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
547#define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
548
549#define TCR_CLEAR	0	/* do NOTHING */
550/* the default settings for the TCR register : */
551#define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
552
553
554// EPH Status Register
555/* BANK 0  */
556#define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
557#define ES_TX_SUC	0x0001	// Last TX was successful
558#define ES_SNGL_COL	0x0002	// Single collision detected for last tx
559#define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
560#define ES_LTX_MULT	0x0008	// Last tx was a multicast
561#define ES_16COL	0x0010	// 16 Collisions Reached
562#define ES_SQET		0x0020	// Signal Quality Error Test
563#define ES_LTXBRD	0x0040	// Last tx was a broadcast
564#define ES_TXDEFR	0x0080	// Transmit Deferred
565#define ES_LATCOL	0x0200	// Late collision detected on last tx
566#define ES_LOSTCARR	0x0400	// Lost Carrier Sense
567#define ES_EXC_DEF	0x0800	// Excessive Deferral
568#define ES_CTR_ROL	0x1000	// Counter Roll Over indication
569#define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
570#define ES_TXUNRN	0x8000	// Tx Underrun
571
572
573// Receive Control Register
574/* BANK 0  */
575#define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
576#define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
577#define RCR_PRMS	0x0002	// Enable promiscuous mode
578#define RCR_ALMUL	0x0004	// When set accepts all multicast frames
579#define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
580#define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
581#define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
582#define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
583#define RCR_SOFTRST	0x8000 	// resets the chip
584
585/* the normal settings for the RCR register : */
586#define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
587#define RCR_CLEAR	0x0	// set it to a base state
588
589
590// Counter Register
591/* BANK 0  */
592#define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
593
594
595// Memory Information Register
596/* BANK 0  */
597#define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
598
599
600// Receive/Phy Control Register
601/* BANK 0  */
602#define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
603#define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
604#define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
605#define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
606#define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
607#define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
608
609#ifndef RPC_LSA_DEFAULT
610#define RPC_LSA_DEFAULT	RPC_LED_100
611#endif
612#ifndef RPC_LSB_DEFAULT
613#define RPC_LSB_DEFAULT RPC_LED_FD
614#endif
615
616#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
617
618
619/* Bank 0 0x0C is reserved */
620
621// Bank Select Register
622/* All Banks */
623#define BSR_REG		0x000E
624
625
626// Configuration Reg
627/* BANK 1 */
628#define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
629#define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
630#define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
631#define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
632#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
633
634// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
635#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
636
637
638// Base Address Register
639/* BANK 1 */
640#define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
641
642
643// Individual Address Registers
644/* BANK 1 */
645#define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
646#define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
647#define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
648
649
650// General Purpose Register
651/* BANK 1 */
652#define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
653
654
655// Control Register
656/* BANK 1 */
657#define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
658#define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
659#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
660#define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
661#define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
662#define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
663#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
664#define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
665#define CTL_STORE	0x0001 // When set stores registers into EEPROM
666
667
668// MMU Command Register
669/* BANK 2 */
670#define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
671#define MC_BUSY		1	// When 1 the last release has not completed
672#define MC_NOP		(0<<5)	// No Op
673#define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
674#define MC_RESET	(2<<5)	// Reset MMU to initial state
675#define MC_REMOVE	(3<<5) 	// Remove the current rx packet
676#define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
677#define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
678#define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
679#define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
680
681
682// Packet Number Register
683/* BANK 2 */
684#define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
685
686
687// Allocation Result Register
688/* BANK 2 */
689#define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
690#define AR_FAILED	0x80	// Alocation Failed
691
692
693// TX FIFO Ports Register
694/* BANK 2 */
695#define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
696#define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
697
698// RX FIFO Ports Register
699/* BANK 2 */
700#define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
701#define RXFIFO_REMPTY	0x80	// RX FIFO Empty
702
703#define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
704
705// Pointer Register
706/* BANK 2 */
707#define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
708#define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
709#define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
710#define PTR_READ	0x2000 // When 1 the operation is a read
711
712
713// Data Register
714/* BANK 2 */
715#define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
716
717
718// Interrupt Status/Acknowledge Register
719/* BANK 2 */
720#define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
721
722
723// Interrupt Mask Register
724/* BANK 2 */
725#define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
726#define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
727#define IM_ERCV_INT	0x40 // Early Receive Interrupt
728#define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
729#define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
730#define IM_ALLOC_INT	0x08 // Set when allocation request is completed
731#define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
732#define IM_TX_INT	0x02 // Transmit Interrupt
733#define IM_RCV_INT	0x01 // Receive Interrupt
734
735
736// Multicast Table Registers
737/* BANK 3 */
738#define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
739#define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
740#define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
741#define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
742
743
744// Management Interface Register (MII)
745/* BANK 3 */
746#define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
747#define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
748#define MII_MDOE	0x0008 // MII Output Enable
749#define MII_MCLK	0x0004 // MII Clock, pin MDCLK
750#define MII_MDI		0x0002 // MII Input, pin MDI
751#define MII_MDO		0x0001 // MII Output, pin MDO
752
753
754// Revision Register
755/* BANK 3 */
756/* ( hi: chip id   low: rev # ) */
757#define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
758
759
760// Early RCV Register
761/* BANK 3 */
762/* this is NOT on SMC9192 */
763#define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
764#define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
765#define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
766
767
768// External Register
769/* BANK 7 */
770#define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
771
772
773#define CHIP_9192	3
774#define CHIP_9194	4
775#define CHIP_9195	5
776#define CHIP_9196	6
777#define CHIP_91100	7
778#define CHIP_91100FD	8
779#define CHIP_91111FD	9
780
781static const char * chip_ids[ 16 ] =  {
782	NULL, NULL, NULL,
783	/* 3 */ "SMC91C90/91C92",
784	/* 4 */ "SMC91C94",
785	/* 5 */ "SMC91C95",
786	/* 6 */ "SMC91C96",
787	/* 7 */ "SMC91C100",
788	/* 8 */ "SMC91C100FD",
789	/* 9 */ "SMC91C11xFD",
790	NULL, NULL, NULL,
791	NULL, NULL, NULL};
792
793
794/*
795 . Receive status bits
796*/
797#define RS_ALGNERR	0x8000
798#define RS_BRODCAST	0x4000
799#define RS_BADCRC	0x2000
800#define RS_ODDFRAME	0x1000
801#define RS_TOOLONG	0x0800
802#define RS_TOOSHORT	0x0400
803#define RS_MULTICAST	0x0001
804#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
805
806
807/*
808 * PHY IDs
809 *  LAN83C183 == LAN91C111 Internal PHY
810 */
811#define PHY_LAN83C183	0x0016f840
812#define PHY_LAN83C180	0x02821c50
813
814/*
815 * PHY Register Addresses (LAN91C111 Internal PHY)
816 *
817 * Generic PHY registers can be found in <linux/mii.h>
818 *
819 * These phy registers are specific to our on-board phy.
820 */
821
822// PHY Configuration Register 1
823#define PHY_CFG1_REG		0x10
824#define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
825#define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
826#define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
827#define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
828#define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
829#define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
830#define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
831#define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
832#define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
833#define PHY_CFG1_TLVL_MASK	0x003C
834#define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
835
836
837// PHY Configuration Register 2
838#define PHY_CFG2_REG		0x11
839#define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
840#define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
841#define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
842#define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
843
844// PHY Status Output (and Interrupt status) Register
845#define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
846#define PHY_INT_INT		0x8000	// 1=bits have changed since last read
847#define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
848#define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
849#define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
850#define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
851#define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
852#define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
853#define PHY_INT_JAB		0x0100	// 1=Jabber detected
854#define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
855#define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
856
857// PHY Interrupt/Status Mask Register
858#define PHY_MASK_REG		0x13	// Interrupt Mask
859// Uses the same bit definitions as PHY_INT_REG
860
861
862/*
863 * SMC91C96 ethernet config and status registers.
864 * These are in the "attribute" space.
865 */
866#define ECOR			0x8000
867#define ECOR_RESET		0x80
868#define ECOR_LEVEL_IRQ		0x40
869#define ECOR_WR_ATTRIB		0x04
870#define ECOR_ENABLE		0x01
871
872#define ECSR			0x8002
873#define ECSR_IOIS8		0x20
874#define ECSR_PWRDWN		0x04
875#define ECSR_INT		0x02
876
877#define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
878
879
880/*
881 * Macros to abstract register access according to the data bus
882 * capabilities.  Please use those and not the in/out primitives.
883 * Note: the following macros do *not* select the bank -- this must
884 * be done separately as needed in the main code.  The SMC_REG() macro
885 * only uses the bank argument for debugging purposes (when enabled).
886 *
887 * Note: despite inline functions being safer, everything leading to this
888 * should preferably be macros to let BUG() display the line number in
889 * the core source code since we're interested in the top call site
890 * not in any inline function location.
891 */
892
893#if SMC_DEBUG > 0
894#define SMC_REG(lp, reg, bank)					\
895	({								\
896		int __b = SMC_CURRENT_BANK(lp);			\
897		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
898			pr_err("%s: bank reg screwed (0x%04x)\n",	\
899			       CARDNAME, __b);				\
900			BUG();						\
901		}							\
902		reg<<SMC_IO_SHIFT;					\
903	})
904#else
905#define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
906#endif
907
908/*
909 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
910 * aligned to a 32 bit boundary.  I tell you that does exist!
911 * Fortunately the affected register accesses can be easily worked around
912 * since we can write zeroes to the preceding 16 bits without adverse
913 * effects and use a 32-bit access.
914 *
915 * Enforce it on any 32-bit capable setup for now.
916 */
917#define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
918
919#define SMC_GET_PN(lp)						\
920	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
921				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
922
923#define SMC_SET_PN(lp, x)						\
924	do {								\
925		if (SMC_MUST_ALIGN_WRITE(lp))				\
926			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
927		else if (SMC_8BIT(lp))				\
928			SMC_outb(x, ioaddr, PN_REG(lp));		\
929		else							\
930			SMC_outw(x, ioaddr, PN_REG(lp));		\
931	} while (0)
932
933#define SMC_GET_AR(lp)						\
934	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
935				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
936
937#define SMC_GET_TXFIFO(lp)						\
938	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
939				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
940
941#define SMC_GET_RXFIFO(lp)						\
942	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
943				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
944
945#define SMC_GET_INT(lp)						\
946	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
947				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
948
949#define SMC_ACK_INT(lp, x)						\
950	do {								\
951		if (SMC_8BIT(lp))					\
952			SMC_outb(x, ioaddr, INT_REG(lp));		\
953		else {							\
954			unsigned long __flags;				\
955			int __mask;					\
956			local_irq_save(__flags);			\
957			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
958			SMC_outw(__mask | (x), ioaddr, INT_REG(lp));	\
959			local_irq_restore(__flags);			\
960		}							\
961	} while (0)
962
963#define SMC_GET_INT_MASK(lp)						\
964	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
965				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
966
967#define SMC_SET_INT_MASK(lp, x)					\
968	do {								\
969		if (SMC_8BIT(lp))					\
970			SMC_outb(x, ioaddr, IM_REG(lp));		\
971		else							\
972			SMC_outw((x) << 8, ioaddr, INT_REG(lp));	\
973	} while (0)
974
975#define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
976
977#define SMC_SELECT_BANK(lp, x)					\
978	do {								\
979		if (SMC_MUST_ALIGN_WRITE(lp))				\
980			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
981		else							\
982			SMC_outw(x, ioaddr, BANK_SELECT);		\
983	} while (0)
984
985#define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
986
987#define SMC_SET_BASE(lp, x)		SMC_outw(x, ioaddr, BASE_REG(lp))
988
989#define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
990
991#define SMC_SET_CONFIG(lp, x)	SMC_outw(x, ioaddr, CONFIG_REG(lp))
992
993#define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
994
995#define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
996
997#define SMC_SET_CTL(lp, x)		SMC_outw(x, ioaddr, CTL_REG(lp))
998
999#define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
1000
1001#define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
1002
1003#define SMC_SET_GP(lp, x)						\
1004	do {								\
1005		if (SMC_MUST_ALIGN_WRITE(lp))				\
1006			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
1007		else							\
1008			SMC_outw(x, ioaddr, GP_REG(lp));		\
1009	} while (0)
1010
1011#define SMC_SET_MII(lp, x)		SMC_outw(x, ioaddr, MII_REG(lp))
1012
1013#define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
1014
1015#define SMC_SET_MIR(lp, x)		SMC_outw(x, ioaddr, MIR_REG(lp))
1016
1017#define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
1018
1019#define SMC_SET_MMU_CMD(lp, x)	SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
1020
1021#define SMC_GET_FIFO(lp)		SMC_inw(ioaddr, FIFO_REG(lp))
1022
1023#define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
1024
1025#define SMC_SET_PTR(lp, x)						\
1026	do {								\
1027		if (SMC_MUST_ALIGN_WRITE(lp))				\
1028			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
1029		else							\
1030			SMC_outw(x, ioaddr, PTR_REG(lp));		\
1031	} while (0)
1032
1033#define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
1034
1035#define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
1036
1037#define SMC_SET_RCR(lp, x)		SMC_outw(x, ioaddr, RCR_REG(lp))
1038
1039#define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
1040
1041#define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
1042
1043#define SMC_SET_RPC(lp, x)						\
1044	do {								\
1045		if (SMC_MUST_ALIGN_WRITE(lp))				\
1046			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
1047		else							\
1048			SMC_outw(x, ioaddr, RPC_REG(lp));		\
1049	} while (0)
1050
1051#define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
1052
1053#define SMC_SET_TCR(lp, x)		SMC_outw(x, ioaddr, TCR_REG(lp))
1054
1055#ifndef SMC_GET_MAC_ADDR
1056#define SMC_GET_MAC_ADDR(lp, addr)					\
1057	do {								\
1058		unsigned int __v;					\
1059		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1060		addr[0] = __v; addr[1] = __v >> 8;			\
1061		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1062		addr[2] = __v; addr[3] = __v >> 8;			\
1063		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1064		addr[4] = __v; addr[5] = __v >> 8;			\
1065	} while (0)
1066#endif
1067
1068#define SMC_SET_MAC_ADDR(lp, addr)					\
1069	do {								\
1070		SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1071		SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1072		SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1073	} while (0)
1074
1075#define SMC_SET_MCAST(lp, x)						\
1076	do {								\
1077		const unsigned char *mt = (x);				\
1078		SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1079		SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1080		SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1081		SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1082	} while (0)
1083
1084#define SMC_PUT_PKT_HDR(lp, status, length)				\
1085	do {								\
1086		if (SMC_32BIT(lp))					\
1087			SMC_outl((status) | (length)<<16, ioaddr,	\
1088				 DATA_REG(lp));			\
1089		else {							\
1090			SMC_outw(status, ioaddr, DATA_REG(lp));	\
1091			SMC_outw(length, ioaddr, DATA_REG(lp));	\
1092		}							\
1093	} while (0)
1094
1095#define SMC_GET_PKT_HDR(lp, status, length)				\
1096	do {								\
1097		if (SMC_32BIT(lp)) {				\
1098			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1099			(status) = __val & 0xffff;			\
1100			(length) = __val >> 16;				\
1101		} else {						\
1102			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1103			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1104		}							\
1105	} while (0)
1106
1107#define SMC_PUSH_DATA(lp, p, l)					\
1108	do {								\
1109		if (SMC_32BIT(lp)) {				\
1110			void *__ptr = (p);				\
1111			int __len = (l);				\
1112			void __iomem *__ioaddr = ioaddr;		\
1113			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1114				__len -= 2;				\
1115				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1116				__ptr += 2;				\
1117			}						\
1118			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1119				__ioaddr = lp->datacs;			\
1120			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1121			if (__len & 2) {				\
1122				__ptr += (__len & ~3);			\
1123				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1124			}						\
1125		} else if (SMC_16BIT(lp))				\
1126			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1127		else if (SMC_8BIT(lp))				\
1128			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1129	} while (0)
1130
1131#define SMC_PULL_DATA(lp, p, l)					\
1132	do {								\
1133		if (SMC_32BIT(lp)) {				\
1134			void *__ptr = (p);				\
1135			int __len = (l);				\
1136			void __iomem *__ioaddr = ioaddr;		\
1137			if ((unsigned long)__ptr & 2) {			\
1138				/*					\
1139				 * We want 32bit alignment here.	\
1140				 * Since some buses perform a full	\
1141				 * 32bit fetch even for 16bit data	\
1142				 * we can't use SMC_inw() here.		\
1143				 * Back both source (on-chip) and	\
1144				 * destination pointers of 2 bytes.	\
1145				 * This is possible since the call to	\
1146				 * SMC_GET_PKT_HDR() already advanced	\
1147				 * the source pointer of 4 bytes, and	\
1148				 * the skb_reserve(skb, 2) advanced	\
1149				 * the destination pointer of 2 bytes.	\
1150				 */					\
1151				__ptr -= 2;				\
1152				__len += 2;				\
1153				SMC_SET_PTR(lp,			\
1154					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1155			}						\
1156			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1157				__ioaddr = lp->datacs;			\
1158			__len += 2;					\
1159			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1160		} else if (SMC_16BIT(lp))				\
1161			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1162		else if (SMC_8BIT(lp))				\
1163			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1164	} while (0)
1165
1166#endif  /* _SMC91X_H_ */
1167