1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "hw-ops.h"
19#include <linux/export.h>
20
21static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22					struct ath9k_tx_queue_info *qi)
23{
24	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28		ah->txurn_interrupt_mask);
29
30	ENABLE_REGWRITE_BUFFER(ah);
31
32	REG_WRITE(ah, AR_IMR_S0,
33		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35	REG_WRITE(ah, AR_IMR_S1,
36		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38
39	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42
43	REGWRITE_BUFFER_FLUSH(ah);
44}
45
46u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47{
48	return REG_READ(ah, AR_QTXDP(q));
49}
50EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51
52void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53{
54	REG_WRITE(ah, AR_QTXDP(q), txdp);
55}
56EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57
58void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59{
60	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62}
63EXPORT_SYMBOL(ath9k_hw_txstart);
64
65u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66{
67	u32 npend;
68
69	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70	if (npend == 0) {
71
72		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73			npend = 1;
74	}
75
76	return npend;
77}
78EXPORT_SYMBOL(ath9k_hw_numtxpending);
79
80/**
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82 *
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
85 *
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91 * first)
92 *
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
99 *
100 * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
104 */
105bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106{
107	u32 txcfg, curLevel, newLevel;
108
109	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110		return false;
111
112	ath9k_hw_disable_interrupts(ah);
113
114	txcfg = REG_READ(ah, AR_TXCFG);
115	curLevel = MS(txcfg, AR_FTRIG);
116	newLevel = curLevel;
117	if (bIncTrigLevel) {
118		if (curLevel < ah->config.max_txtrig_level)
119			newLevel++;
120	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121		newLevel--;
122	if (newLevel != curLevel)
123		REG_WRITE(ah, AR_TXCFG,
124			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125
126	ath9k_hw_enable_interrupts(ah);
127
128	ah->tx_trig_level = newLevel;
129
130	return newLevel != curLevel;
131}
132EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133
134void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135{
136	int maxdelay = 1000;
137	int i, q;
138
139	if (ah->curchan) {
140		if (IS_CHAN_HALF_RATE(ah->curchan))
141			maxdelay *= 2;
142		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143			maxdelay *= 4;
144	}
145
146	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147
148	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151
152	for (q = 0; q < AR_NUM_QCU; q++) {
153		for (i = 0; i < maxdelay; i++) {
154			if (i)
155				udelay(5);
156
157			if (!ath9k_hw_numtxpending(ah, q))
158				break;
159		}
160	}
161
162	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165
166	REG_WRITE(ah, AR_Q_TXD, 0);
167}
168EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169
170bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171{
172#define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
173#define ATH9K_TIME_QUANTUM		100     /* usec */
174	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175	int wait;
176
177	REG_WRITE(ah, AR_Q_TXD, 1 << q);
178
179	for (wait = wait_time; wait != 0; wait--) {
180		if (wait != wait_time)
181			udelay(ATH9K_TIME_QUANTUM);
182
183		if (ath9k_hw_numtxpending(ah, q) == 0)
184			break;
185	}
186
187	REG_WRITE(ah, AR_Q_TXD, 0);
188
189	return wait != 0;
190
191#undef ATH9K_TX_STOP_DMA_TIMEOUT
192#undef ATH9K_TIME_QUANTUM
193}
194EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195
196bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197			    const struct ath9k_tx_queue_info *qinfo)
198{
199	u32 cw;
200	struct ath_common *common = ath9k_hw_common(ah);
201	struct ath9k_tx_queue_info *qi;
202
203	qi = &ah->txq[q];
204	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205		ath_dbg(common, QUEUE,
206			"Set TXQ properties, inactive queue: %u\n", q);
207		return false;
208	}
209
210	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211
212	qi->tqi_ver = qinfo->tqi_ver;
213	qi->tqi_subtype = qinfo->tqi_subtype;
214	qi->tqi_qflags = qinfo->tqi_qflags;
215	qi->tqi_priority = qinfo->tqi_priority;
216	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218	else
219		qi->tqi_aifs = INIT_AIFS;
220	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221		cw = min(qinfo->tqi_cwmin, 1024U);
222		qi->tqi_cwmin = 1;
223		while (qi->tqi_cwmin < cw)
224			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225	} else
226		qi->tqi_cwmin = qinfo->tqi_cwmin;
227	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228		cw = min(qinfo->tqi_cwmax, 1024U);
229		qi->tqi_cwmax = 1;
230		while (qi->tqi_cwmax < cw)
231			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232	} else
233		qi->tqi_cwmax = INIT_CWMAX;
234
235	if (qinfo->tqi_shretry != 0)
236		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237	else
238		qi->tqi_shretry = INIT_SH_RETRY;
239	if (qinfo->tqi_lgretry != 0)
240		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241	else
242		qi->tqi_lgretry = INIT_LG_RETRY;
243	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245	qi->tqi_burstTime = qinfo->tqi_burstTime;
246	qi->tqi_readyTime = qinfo->tqi_readyTime;
247
248	switch (qinfo->tqi_subtype) {
249	case ATH9K_WME_UPSD:
250		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252		break;
253	default:
254		break;
255	}
256
257	return true;
258}
259EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260
261bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262			    struct ath9k_tx_queue_info *qinfo)
263{
264	struct ath_common *common = ath9k_hw_common(ah);
265	struct ath9k_tx_queue_info *qi;
266
267	qi = &ah->txq[q];
268	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269		ath_dbg(common, QUEUE,
270			"Get TXQ properties, inactive queue: %u\n", q);
271		return false;
272	}
273
274	qinfo->tqi_qflags = qi->tqi_qflags;
275	qinfo->tqi_ver = qi->tqi_ver;
276	qinfo->tqi_subtype = qi->tqi_subtype;
277	qinfo->tqi_qflags = qi->tqi_qflags;
278	qinfo->tqi_priority = qi->tqi_priority;
279	qinfo->tqi_aifs = qi->tqi_aifs;
280	qinfo->tqi_cwmin = qi->tqi_cwmin;
281	qinfo->tqi_cwmax = qi->tqi_cwmax;
282	qinfo->tqi_shretry = qi->tqi_shretry;
283	qinfo->tqi_lgretry = qi->tqi_lgretry;
284	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286	qinfo->tqi_burstTime = qi->tqi_burstTime;
287	qinfo->tqi_readyTime = qi->tqi_readyTime;
288
289	return true;
290}
291EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292
293int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294			  const struct ath9k_tx_queue_info *qinfo)
295{
296	struct ath_common *common = ath9k_hw_common(ah);
297	struct ath9k_tx_queue_info *qi;
298	int q;
299
300	switch (type) {
301	case ATH9K_TX_QUEUE_BEACON:
302		q = ATH9K_NUM_TX_QUEUES - 1;
303		break;
304	case ATH9K_TX_QUEUE_CAB:
305		q = ATH9K_NUM_TX_QUEUES - 2;
306		break;
307	case ATH9K_TX_QUEUE_PSPOLL:
308		q = 1;
309		break;
310	case ATH9K_TX_QUEUE_UAPSD:
311		q = ATH9K_NUM_TX_QUEUES - 3;
312		break;
313	case ATH9K_TX_QUEUE_DATA:
314		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
315			if (ah->txq[q].tqi_type ==
316			    ATH9K_TX_QUEUE_INACTIVE)
317				break;
318		if (q == ATH9K_NUM_TX_QUEUES) {
319			ath_err(common, "No available TX queue\n");
320			return -1;
321		}
322		break;
323	default:
324		ath_err(common, "Invalid TX queue type: %u\n", type);
325		return -1;
326	}
327
328	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
329
330	qi = &ah->txq[q];
331	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
332		ath_err(common, "TX queue: %u already active\n", q);
333		return -1;
334	}
335	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
336	qi->tqi_type = type;
337	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
338	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
339
340	return q;
341}
342EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
343
344static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
345{
346	ah->txok_interrupt_mask &= ~(1 << q);
347	ah->txerr_interrupt_mask &= ~(1 << q);
348	ah->txdesc_interrupt_mask &= ~(1 << q);
349	ah->txeol_interrupt_mask &= ~(1 << q);
350	ah->txurn_interrupt_mask &= ~(1 << q);
351}
352
353bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
354{
355	struct ath_common *common = ath9k_hw_common(ah);
356	struct ath9k_tx_queue_info *qi;
357
358	qi = &ah->txq[q];
359	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
360		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
361		return false;
362	}
363
364	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
365
366	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
367	ath9k_hw_clear_queue_interrupts(ah, q);
368	ath9k_hw_set_txq_interrupts(ah, qi);
369
370	return true;
371}
372EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
373
374bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
375{
376	struct ath_common *common = ath9k_hw_common(ah);
377	struct ath9k_tx_queue_info *qi;
378	u32 cwMin, chanCwMin, value;
379
380	qi = &ah->txq[q];
381	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
382		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
383		return true;
384	}
385
386	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
387
388	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
389		chanCwMin = INIT_CWMIN;
390
391		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
392	} else
393		cwMin = qi->tqi_cwmin;
394
395	ENABLE_REGWRITE_BUFFER(ah);
396
397	REG_WRITE(ah, AR_DLCL_IFS(q),
398		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
399		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
400		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
401
402	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
403		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
404		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
405		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
406
407	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
408
409	if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
410		REG_WRITE(ah, AR_DMISC(q),
411			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
412	else
413		REG_WRITE(ah, AR_DMISC(q),
414			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
415
416	if (qi->tqi_cbrPeriod) {
417		REG_WRITE(ah, AR_QCBRCFG(q),
418			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
419			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
420		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
421			    (qi->tqi_cbrOverflowLimit ?
422			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
423	}
424	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
425		REG_WRITE(ah, AR_QRDYTIMECFG(q),
426			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
427			  AR_Q_RDYTIMECFG_EN);
428	}
429
430	REG_WRITE(ah, AR_DCHNTIME(q),
431		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
432		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
433
434	if (qi->tqi_burstTime
435	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
436		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
437
438	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
439		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
440
441	REGWRITE_BUFFER_FLUSH(ah);
442
443	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
444		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
445
446	switch (qi->tqi_type) {
447	case ATH9K_TX_QUEUE_BEACON:
448		ENABLE_REGWRITE_BUFFER(ah);
449
450		REG_SET_BIT(ah, AR_QMISC(q),
451			    AR_Q_MISC_FSP_DBA_GATED
452			    | AR_Q_MISC_BEACON_USE
453			    | AR_Q_MISC_CBR_INCR_DIS1);
454
455		REG_SET_BIT(ah, AR_DMISC(q),
456			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
457			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
458			    | AR_D_MISC_BEACON_USE
459			    | AR_D_MISC_POST_FR_BKOFF_DIS);
460
461		REGWRITE_BUFFER_FLUSH(ah);
462
463		/*
464		 * cwmin and cwmax should be 0 for beacon queue
465		 * but not for IBSS as we would create an imbalance
466		 * on beaconing fairness for participating nodes.
467		 */
468		if (AR_SREV_9300_20_OR_LATER(ah) &&
469		    ah->opmode != NL80211_IFTYPE_ADHOC) {
470			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
471				  | SM(0, AR_D_LCL_IFS_CWMAX)
472				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
473		}
474		break;
475	case ATH9K_TX_QUEUE_CAB:
476		ENABLE_REGWRITE_BUFFER(ah);
477
478		REG_SET_BIT(ah, AR_QMISC(q),
479			    AR_Q_MISC_FSP_DBA_GATED
480			    | AR_Q_MISC_CBR_INCR_DIS1
481			    | AR_Q_MISC_CBR_INCR_DIS0);
482		value = (qi->tqi_readyTime -
483			 (ah->config.sw_beacon_response_time -
484			  ah->config.dma_beacon_response_time)) * 1024;
485		REG_WRITE(ah, AR_QRDYTIMECFG(q),
486			  value | AR_Q_RDYTIMECFG_EN);
487		REG_SET_BIT(ah, AR_DMISC(q),
488			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
489			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
490
491		REGWRITE_BUFFER_FLUSH(ah);
492
493		break;
494	case ATH9K_TX_QUEUE_PSPOLL:
495		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
496		break;
497	case ATH9K_TX_QUEUE_UAPSD:
498		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
499		break;
500	default:
501		break;
502	}
503
504	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
505		REG_SET_BIT(ah, AR_DMISC(q),
506			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
507			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
508			    AR_D_MISC_POST_FR_BKOFF_DIS);
509	}
510
511	if (AR_SREV_9300_20_OR_LATER(ah))
512		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
513
514	ath9k_hw_clear_queue_interrupts(ah, q);
515	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
516		ah->txok_interrupt_mask |= 1 << q;
517		ah->txerr_interrupt_mask |= 1 << q;
518	}
519	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
520		ah->txdesc_interrupt_mask |= 1 << q;
521	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
522		ah->txeol_interrupt_mask |= 1 << q;
523	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
524		ah->txurn_interrupt_mask |= 1 << q;
525	ath9k_hw_set_txq_interrupts(ah, qi);
526
527	return true;
528}
529EXPORT_SYMBOL(ath9k_hw_resettxqueue);
530
531int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
532			struct ath_rx_status *rs)
533{
534	struct ar5416_desc ads;
535	struct ar5416_desc *adsp = AR5416DESC(ds);
536	u32 phyerr;
537
538	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
539		return -EINPROGRESS;
540
541	ads.u.rx = adsp->u.rx;
542
543	rs->rs_status = 0;
544	rs->rs_flags = 0;
545	rs->flag = 0;
546
547	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
548	rs->rs_tstamp = ads.AR_RcvTimestamp;
549
550	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
551		rs->rs_rssi = ATH9K_RSSI_BAD;
552		rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
553		rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
554		rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
555		rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
556		rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
557		rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
558	} else {
559		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
560		rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
561						AR_RxRSSIAnt00);
562		rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
563						AR_RxRSSIAnt01);
564		rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
565						AR_RxRSSIAnt02);
566		rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
567						AR_RxRSSIAnt10);
568		rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
569						AR_RxRSSIAnt11);
570		rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
571						AR_RxRSSIAnt12);
572	}
573	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
574		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
575	else
576		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
577
578	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
579	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
580
581	rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
582	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
583	rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
584	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
585
586	/* directly mapped flags for ieee80211_rx_status */
587	rs->flag |=
588		(ads.ds_rxstatus3 & AR_GI) ? RX_FLAG_SHORT_GI : 0;
589	rs->flag |=
590		(ads.ds_rxstatus3 & AR_2040) ? RX_FLAG_40MHZ : 0;
591	if (AR_SREV_9280_20_OR_LATER(ah))
592		rs->flag |=
593			(ads.ds_rxstatus3 & AR_STBC) ?
594				/* we can only Nss=1 STBC */
595				(1 << RX_FLAG_STBC_SHIFT) : 0;
596
597	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
598		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
599	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
600		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
601	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
602		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
603
604	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
605		/*
606		 * Treat these errors as mutually exclusive to avoid spurious
607		 * extra error reports from the hardware. If a CRC error is
608		 * reported, then decryption and MIC errors are irrelevant,
609		 * the frame is going to be dropped either way
610		 */
611		if (ads.ds_rxstatus8 & AR_PHYErr) {
612			rs->rs_status |= ATH9K_RXERR_PHY;
613			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
614			rs->rs_phyerr = phyerr;
615		} else if (ads.ds_rxstatus8 & AR_CRCErr)
616			rs->rs_status |= ATH9K_RXERR_CRC;
617		else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
618			rs->rs_status |= ATH9K_RXERR_DECRYPT;
619		else if (ads.ds_rxstatus8 & AR_MichaelErr)
620			rs->rs_status |= ATH9K_RXERR_MIC;
621	} else {
622		if (ads.ds_rxstatus8 &
623		    (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
624			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
625
626		/* Only up to MCS16 supported, everything above is invalid */
627		if (rs->rs_rate >= 0x90)
628			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
629	}
630
631	if (ads.ds_rxstatus8 & AR_KeyMiss)
632		rs->rs_status |= ATH9K_RXERR_KEYMISS;
633
634	return 0;
635}
636EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
637
638/*
639 * This can stop or re-enables RX.
640 *
641 * If bool is set this will kill any frame which is currently being
642 * transferred between the MAC and baseband and also prevent any new
643 * frames from getting started.
644 */
645bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
646{
647	u32 reg;
648
649	if (set) {
650		REG_SET_BIT(ah, AR_DIAG_SW,
651			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
652
653		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
654				   0, AH_WAIT_TIMEOUT)) {
655			REG_CLR_BIT(ah, AR_DIAG_SW,
656				    (AR_DIAG_RX_DIS |
657				     AR_DIAG_RX_ABORT));
658
659			reg = REG_READ(ah, AR_OBS_BUS_1);
660			ath_err(ath9k_hw_common(ah),
661				"RX failed to go idle in 10 ms RXSM=0x%x\n",
662				reg);
663
664			return false;
665		}
666	} else {
667		REG_CLR_BIT(ah, AR_DIAG_SW,
668			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
669	}
670
671	return true;
672}
673EXPORT_SYMBOL(ath9k_hw_setrxabort);
674
675void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
676{
677	REG_WRITE(ah, AR_RXDP, rxdp);
678}
679EXPORT_SYMBOL(ath9k_hw_putrxbuf);
680
681void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
682{
683	ath9k_enable_mib_counters(ah);
684
685	ath9k_ani_reset(ah, is_scanning);
686
687	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
688}
689EXPORT_SYMBOL(ath9k_hw_startpcureceive);
690
691void ath9k_hw_abortpcurecv(struct ath_hw *ah)
692{
693	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
694
695	ath9k_hw_disable_mib_counters(ah);
696}
697EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
698
699bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
700{
701#define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
702	struct ath_common *common = ath9k_hw_common(ah);
703	u32 mac_status, last_mac_status = 0;
704	int i;
705
706	/* Enable access to the DMA observation bus */
707	REG_WRITE(ah, AR_MACMISC,
708		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
709		   (AR_MACMISC_MISC_OBS_BUS_1 <<
710		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
711
712	REG_WRITE(ah, AR_CR, AR_CR_RXD);
713
714	/* Wait for rx enable bit to go low */
715	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
716		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
717			break;
718
719		if (!AR_SREV_9300_20_OR_LATER(ah)) {
720			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
721			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
722				*reset = true;
723				break;
724			}
725
726			last_mac_status = mac_status;
727		}
728
729		udelay(AH_TIME_QUANTUM);
730	}
731
732	if (i == 0) {
733		ath_err(common,
734			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
735			AH_RX_STOP_DMA_TIMEOUT / 1000,
736			REG_READ(ah, AR_CR),
737			REG_READ(ah, AR_DIAG_SW),
738			REG_READ(ah, AR_DMADBG_7));
739		return false;
740	} else {
741		return true;
742	}
743
744#undef AH_RX_STOP_DMA_TIMEOUT
745}
746EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
747
748int ath9k_hw_beaconq_setup(struct ath_hw *ah)
749{
750	struct ath9k_tx_queue_info qi;
751
752	memset(&qi, 0, sizeof(qi));
753	qi.tqi_aifs = 1;
754	qi.tqi_cwmin = 0;
755	qi.tqi_cwmax = 0;
756
757	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
758		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
759
760	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
761}
762EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
763
764bool ath9k_hw_intrpend(struct ath_hw *ah)
765{
766	u32 host_isr;
767
768	if (AR_SREV_9100(ah))
769		return true;
770
771	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
772
773	if (((host_isr & AR_INTR_MAC_IRQ) ||
774	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
775	    (host_isr != AR_INTR_SPURIOUS))
776		return true;
777
778	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
779	if ((host_isr & AR_INTR_SYNC_DEFAULT)
780	    && (host_isr != AR_INTR_SPURIOUS))
781		return true;
782
783	return false;
784}
785EXPORT_SYMBOL(ath9k_hw_intrpend);
786
787void ath9k_hw_kill_interrupts(struct ath_hw *ah)
788{
789	struct ath_common *common = ath9k_hw_common(ah);
790
791	ath_dbg(common, INTERRUPT, "disable IER\n");
792	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
793	(void) REG_READ(ah, AR_IER);
794	if (!AR_SREV_9100(ah)) {
795		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
796		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
797
798		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
799		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
800	}
801}
802EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
803
804void ath9k_hw_disable_interrupts(struct ath_hw *ah)
805{
806	if (!(ah->imask & ATH9K_INT_GLOBAL))
807		atomic_set(&ah->intr_ref_cnt, -1);
808	else
809		atomic_dec(&ah->intr_ref_cnt);
810
811	ath9k_hw_kill_interrupts(ah);
812}
813EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
814
815void ath9k_hw_enable_interrupts(struct ath_hw *ah)
816{
817	struct ath_common *common = ath9k_hw_common(ah);
818	u32 sync_default = AR_INTR_SYNC_DEFAULT;
819	u32 async_mask;
820
821	if (!(ah->imask & ATH9K_INT_GLOBAL))
822		return;
823
824	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
825		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
826			atomic_read(&ah->intr_ref_cnt));
827		return;
828	}
829
830	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
831		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
832
833	async_mask = AR_INTR_MAC_IRQ;
834
835	if (ah->imask & ATH9K_INT_MCI)
836		async_mask |= AR_INTR_ASYNC_MASK_MCI;
837
838	ath_dbg(common, INTERRUPT, "enable IER\n");
839	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
840	if (!AR_SREV_9100(ah)) {
841		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
842		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
843
844		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
845		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
846	}
847	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
848		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
849}
850EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
851
852void ath9k_hw_set_interrupts(struct ath_hw *ah)
853{
854	enum ath9k_int ints = ah->imask;
855	u32 mask, mask2;
856	struct ath9k_hw_capabilities *pCap = &ah->caps;
857	struct ath_common *common = ath9k_hw_common(ah);
858
859	if (!(ints & ATH9K_INT_GLOBAL))
860		ath9k_hw_disable_interrupts(ah);
861
862	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
863
864	mask = ints & ATH9K_INT_COMMON;
865	mask2 = 0;
866
867	if (ints & ATH9K_INT_TX) {
868		if (ah->config.tx_intr_mitigation)
869			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
870		else {
871			if (ah->txok_interrupt_mask)
872				mask |= AR_IMR_TXOK;
873			if (ah->txdesc_interrupt_mask)
874				mask |= AR_IMR_TXDESC;
875		}
876		if (ah->txerr_interrupt_mask)
877			mask |= AR_IMR_TXERR;
878		if (ah->txeol_interrupt_mask)
879			mask |= AR_IMR_TXEOL;
880	}
881	if (ints & ATH9K_INT_RX) {
882		if (AR_SREV_9300_20_OR_LATER(ah)) {
883			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
884			if (ah->config.rx_intr_mitigation) {
885				mask &= ~AR_IMR_RXOK_LP;
886				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
887			} else {
888				mask |= AR_IMR_RXOK_LP;
889			}
890		} else {
891			if (ah->config.rx_intr_mitigation)
892				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
893			else
894				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
895		}
896		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
897			mask |= AR_IMR_GENTMR;
898	}
899
900	if (ints & ATH9K_INT_GENTIMER)
901		mask |= AR_IMR_GENTMR;
902
903	if (ints & (ATH9K_INT_BMISC)) {
904		mask |= AR_IMR_BCNMISC;
905		if (ints & ATH9K_INT_TIM)
906			mask2 |= AR_IMR_S2_TIM;
907		if (ints & ATH9K_INT_DTIM)
908			mask2 |= AR_IMR_S2_DTIM;
909		if (ints & ATH9K_INT_DTIMSYNC)
910			mask2 |= AR_IMR_S2_DTIMSYNC;
911		if (ints & ATH9K_INT_CABEND)
912			mask2 |= AR_IMR_S2_CABEND;
913		if (ints & ATH9K_INT_TSFOOR)
914			mask2 |= AR_IMR_S2_TSFOOR;
915	}
916
917	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
918		mask |= AR_IMR_BCNMISC;
919		if (ints & ATH9K_INT_GTT)
920			mask2 |= AR_IMR_S2_GTT;
921		if (ints & ATH9K_INT_CST)
922			mask2 |= AR_IMR_S2_CST;
923	}
924
925	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
926		if (ints & ATH9K_INT_BB_WATCHDOG) {
927			mask |= AR_IMR_BCNMISC;
928			mask2 |= AR_IMR_S2_BB_WATCHDOG;
929		}
930	}
931
932	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
933	REG_WRITE(ah, AR_IMR, mask);
934	ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
935			   AR_IMR_S2_DTIM |
936			   AR_IMR_S2_DTIMSYNC |
937			   AR_IMR_S2_CABEND |
938			   AR_IMR_S2_CABTO |
939			   AR_IMR_S2_TSFOOR |
940			   AR_IMR_S2_GTT |
941			   AR_IMR_S2_CST);
942
943	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
944		if (ints & ATH9K_INT_BB_WATCHDOG)
945			ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
946	}
947
948	ah->imrs2_reg |= mask2;
949	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
950
951	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
952		if (ints & ATH9K_INT_TIM_TIMER)
953			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
954		else
955			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
956	}
957
958	return;
959}
960EXPORT_SYMBOL(ath9k_hw_set_interrupts);
961
962#define ATH9K_HW_MAX_DCU       10
963#define ATH9K_HW_SLICE_PER_DCU 16
964#define ATH9K_HW_BIT_IN_SLICE  16
965void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
966{
967	int dcu_idx;
968	u32 filter;
969
970	for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
971		filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
972		filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
973		filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
974			     AR_D_TXBLK_WRITE_SLICE);
975		filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
976		ath_dbg(ath9k_hw_common(ah), PS,
977			"DCU%d staid %d set %d txfilter %08x\n",
978			dcu_idx, destidx, set, filter);
979		REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
980	}
981}
982EXPORT_SYMBOL(ath9k_hw_set_tx_filter);
983