1/*
2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5	<http://rt2x00.serialmonkey.com>
6
7	This program is free software; you can redistribute it and/or modify
8	it under the terms of the GNU General Public License as published by
9	the Free Software Foundation; either version 2 of the License, or
10	(at your option) any later version.
11
12	This program is distributed in the hope that it will be useful,
13	but WITHOUT ANY WARRANTY; without even the implied warranty of
14	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15	GNU General Public License for more details.
16
17	You should have received a copy of the GNU General Public License
18	along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21/*
22	Module: rt2x00
23	Abstract: rt2x00 global information.
24 */
25
26#ifndef RT2X00_H
27#define RT2X00_H
28
29#include <linux/bitops.h>
30#include <linux/interrupt.h>
31#include <linux/skbuff.h>
32#include <linux/workqueue.h>
33#include <linux/firmware.h>
34#include <linux/leds.h>
35#include <linux/mutex.h>
36#include <linux/etherdevice.h>
37#include <linux/input-polldev.h>
38#include <linux/kfifo.h>
39#include <linux/hrtimer.h>
40#include <linux/average.h>
41
42#include <net/mac80211.h>
43
44#include "rt2x00debug.h"
45#include "rt2x00dump.h"
46#include "rt2x00leds.h"
47#include "rt2x00reg.h"
48#include "rt2x00queue.h"
49
50/*
51 * Module information.
52 */
53#define DRV_VERSION	"2.3.0"
54#define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
55
56/* Debug definitions.
57 * Debug output has to be enabled during compile time.
58 */
59#ifdef CONFIG_RT2X00_DEBUG
60#define DEBUG
61#endif /* CONFIG_RT2X00_DEBUG */
62
63/* Utility printing macros
64 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
65 */
66#define rt2x00_probe_err(fmt, ...)					\
67	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
68	       __func__, ##__VA_ARGS__)
69#define rt2x00_err(dev, fmt, ...)					\
70	wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt,			\
71		  __func__, ##__VA_ARGS__)
72#define rt2x00_warn(dev, fmt, ...)					\
73	wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt,		\
74		   __func__, ##__VA_ARGS__)
75#define rt2x00_info(dev, fmt, ...)					\
76	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
77		   __func__, ##__VA_ARGS__)
78
79/* Various debug levels */
80#define rt2x00_dbg(dev, fmt, ...)					\
81	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
82		  __func__, ##__VA_ARGS__)
83#define rt2x00_eeprom_dbg(dev, fmt, ...)				\
84	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
85		  __func__, ##__VA_ARGS__)
86
87/*
88 * Duration calculations
89 * The rate variable passed is: 100kbs.
90 * To convert from bytes to bits we multiply size with 8,
91 * then the size is multiplied with 10 to make the
92 * real rate -> rate argument correction.
93 */
94#define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
95#define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
96
97/*
98 * Determine the number of L2 padding bytes required between the header and
99 * the payload.
100 */
101#define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
102
103/*
104 * Determine the alignment requirement,
105 * to make sure the 802.11 payload is padded to a 4-byte boundrary
106 * we must determine the address of the payload and calculate the
107 * amount of bytes needed to move the data.
108 */
109#define ALIGN_SIZE(__skb, __header) \
110	(  ((unsigned long)((__skb)->data + (__header))) & 3 )
111
112/*
113 * Constants for extra TX headroom for alignment purposes.
114 */
115#define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
116#define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
117
118/*
119 * Standard timing and size defines.
120 * These values should follow the ieee80211 specifications.
121 */
122#define ACK_SIZE		14
123#define IEEE80211_HEADER	24
124#define PLCP			48
125#define BEACON			100
126#define PREAMBLE		144
127#define SHORT_PREAMBLE		72
128#define SLOT_TIME		20
129#define SHORT_SLOT_TIME		9
130#define SIFS			10
131#define PIFS			( SIFS + SLOT_TIME )
132#define SHORT_PIFS		( SIFS + SHORT_SLOT_TIME )
133#define DIFS			( PIFS + SLOT_TIME )
134#define SHORT_DIFS		( SHORT_PIFS + SHORT_SLOT_TIME )
135#define EIFS			( SIFS + DIFS + \
136				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
137#define SHORT_EIFS		( SIFS + SHORT_DIFS + \
138				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
139
140enum rt2x00_chip_intf {
141	RT2X00_CHIP_INTF_PCI,
142	RT2X00_CHIP_INTF_PCIE,
143	RT2X00_CHIP_INTF_USB,
144	RT2X00_CHIP_INTF_SOC,
145};
146
147/*
148 * Chipset identification
149 * The chipset on the device is composed of a RT and RF chip.
150 * The chipset combination is important for determining device capabilities.
151 */
152struct rt2x00_chip {
153	u16 rt;
154#define RT2460		0x2460
155#define RT2560		0x2560
156#define RT2570		0x2570
157#define RT2661		0x2661
158#define RT2573		0x2573
159#define RT2860		0x2860	/* 2.4GHz */
160#define RT2872		0x2872	/* WSOC */
161#define RT2883		0x2883	/* WSOC */
162#define RT3070		0x3070
163#define RT3071		0x3071
164#define RT3090		0x3090	/* 2.4GHz PCIe */
165#define RT3290		0x3290
166#define RT3352		0x3352  /* WSOC */
167#define RT3390		0x3390
168#define RT3572		0x3572
169#define RT3593		0x3593
170#define RT3883		0x3883	/* WSOC */
171#define RT5390		0x5390  /* 2.4GHz */
172#define RT5392		0x5392  /* 2.4GHz */
173#define RT5592		0x5592
174
175	u16 rf;
176	u16 rev;
177
178	enum rt2x00_chip_intf intf;
179};
180
181/*
182 * RF register values that belong to a particular channel.
183 */
184struct rf_channel {
185	int channel;
186	u32 rf1;
187	u32 rf2;
188	u32 rf3;
189	u32 rf4;
190};
191
192/*
193 * Channel information structure
194 */
195struct channel_info {
196	unsigned int flags;
197#define GEOGRAPHY_ALLOWED	0x00000001
198
199	short max_power;
200	short default_power1;
201	short default_power2;
202	short default_power3;
203};
204
205/*
206 * Antenna setup values.
207 */
208struct antenna_setup {
209	enum antenna rx;
210	enum antenna tx;
211	u8 rx_chain_num;
212	u8 tx_chain_num;
213};
214
215/*
216 * Quality statistics about the currently active link.
217 */
218struct link_qual {
219	/*
220	 * Statistics required for Link tuning by driver
221	 * The rssi value is provided by rt2x00lib during the
222	 * link_tuner() callback function.
223	 * The false_cca field is filled during the link_stats()
224	 * callback function and could be used during the
225	 * link_tuner() callback function.
226	 */
227	int rssi;
228	int false_cca;
229
230	/*
231	 * VGC levels
232	 * Hardware driver will tune the VGC level during each call
233	 * to the link_tuner() callback function. This vgc_level is
234	 * is determined based on the link quality statistics like
235	 * average RSSI and the false CCA count.
236	 *
237	 * In some cases the drivers need to differentiate between
238	 * the currently "desired" VGC level and the level configured
239	 * in the hardware. The latter is important to reduce the
240	 * number of BBP register reads to reduce register access
241	 * overhead. For this reason we store both values here.
242	 */
243	u8 vgc_level;
244	u8 vgc_level_reg;
245
246	/*
247	 * Statistics required for Signal quality calculation.
248	 * These fields might be changed during the link_stats()
249	 * callback function.
250	 */
251	int rx_success;
252	int rx_failed;
253	int tx_success;
254	int tx_failed;
255};
256
257/*
258 * Antenna settings about the currently active link.
259 */
260struct link_ant {
261	/*
262	 * Antenna flags
263	 */
264	unsigned int flags;
265#define ANTENNA_RX_DIVERSITY	0x00000001
266#define ANTENNA_TX_DIVERSITY	0x00000002
267#define ANTENNA_MODE_SAMPLE	0x00000004
268
269	/*
270	 * Currently active TX/RX antenna setup.
271	 * When software diversity is used, this will indicate
272	 * which antenna is actually used at this time.
273	 */
274	struct antenna_setup active;
275
276	/*
277	 * RSSI history information for the antenna.
278	 * Used to determine when to switch antenna
279	 * when using software diversity.
280	 */
281	int rssi_history;
282
283	/*
284	 * Current RSSI average of the currently active antenna.
285	 * Similar to the avg_rssi in the link_qual structure
286	 * this value is updated by using the walking average.
287	 */
288	struct ewma rssi_ant;
289};
290
291/*
292 * To optimize the quality of the link we need to store
293 * the quality of received frames and periodically
294 * optimize the link.
295 */
296struct link {
297	/*
298	 * Link tuner counter
299	 * The number of times the link has been tuned
300	 * since the radio has been switched on.
301	 */
302	u32 count;
303
304	/*
305	 * Quality measurement values.
306	 */
307	struct link_qual qual;
308
309	/*
310	 * TX/RX antenna setup.
311	 */
312	struct link_ant ant;
313
314	/*
315	 * Currently active average RSSI value
316	 */
317	struct ewma avg_rssi;
318
319	/*
320	 * Work structure for scheduling periodic link tuning.
321	 */
322	struct delayed_work work;
323
324	/*
325	 * Work structure for scheduling periodic watchdog monitoring.
326	 * This work must be scheduled on the kernel workqueue, while
327	 * all other work structures must be queued on the mac80211
328	 * workqueue. This guarantees that the watchdog can schedule
329	 * other work structures and wait for their completion in order
330	 * to bring the device/driver back into the desired state.
331	 */
332	struct delayed_work watchdog_work;
333
334	/*
335	 * Work structure for scheduling periodic AGC adjustments.
336	 */
337	struct delayed_work agc_work;
338
339	/*
340	 * Work structure for scheduling periodic VCO calibration.
341	 */
342	struct delayed_work vco_work;
343};
344
345enum rt2x00_delayed_flags {
346	DELAYED_UPDATE_BEACON,
347};
348
349/*
350 * Interface structure
351 * Per interface configuration details, this structure
352 * is allocated as the private data for ieee80211_vif.
353 */
354struct rt2x00_intf {
355	/*
356	 * beacon->skb must be protected with the mutex.
357	 */
358	struct mutex beacon_skb_mutex;
359
360	/*
361	 * Entry in the beacon queue which belongs to
362	 * this interface. Each interface has its own
363	 * dedicated beacon entry.
364	 */
365	struct queue_entry *beacon;
366	bool enable_beacon;
367
368	/*
369	 * Actions that needed rescheduling.
370	 */
371	unsigned long delayed_flags;
372
373	/*
374	 * Software sequence counter, this is only required
375	 * for hardware which doesn't support hardware
376	 * sequence counting.
377	 */
378	atomic_t seqno;
379};
380
381static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
382{
383	return (struct rt2x00_intf *)vif->drv_priv;
384}
385
386/**
387 * struct hw_mode_spec: Hardware specifications structure
388 *
389 * Details about the supported modes, rates and channels
390 * of a particular chipset. This is used by rt2x00lib
391 * to build the ieee80211_hw_mode array for mac80211.
392 *
393 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
394 * @supported_rates: Rate types which are supported (CCK, OFDM).
395 * @num_channels: Number of supported channels. This is used as array size
396 *	for @tx_power_a, @tx_power_bg and @channels.
397 * @channels: Device/chipset specific channel values (See &struct rf_channel).
398 * @channels_info: Additional information for channels (See &struct channel_info).
399 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
400 */
401struct hw_mode_spec {
402	unsigned int supported_bands;
403#define SUPPORT_BAND_2GHZ	0x00000001
404#define SUPPORT_BAND_5GHZ	0x00000002
405
406	unsigned int supported_rates;
407#define SUPPORT_RATE_CCK	0x00000001
408#define SUPPORT_RATE_OFDM	0x00000002
409
410	unsigned int num_channels;
411	const struct rf_channel *channels;
412	const struct channel_info *channels_info;
413
414	struct ieee80211_sta_ht_cap ht;
415};
416
417/*
418 * Configuration structure wrapper around the
419 * mac80211 configuration structure.
420 * When mac80211 configures the driver, rt2x00lib
421 * can precalculate values which are equal for all
422 * rt2x00 drivers. Those values can be stored in here.
423 */
424struct rt2x00lib_conf {
425	struct ieee80211_conf *conf;
426
427	struct rf_channel rf;
428	struct channel_info channel;
429};
430
431/*
432 * Configuration structure for erp settings.
433 */
434struct rt2x00lib_erp {
435	int short_preamble;
436	int cts_protection;
437
438	u32 basic_rates;
439
440	int slot_time;
441
442	short sifs;
443	short pifs;
444	short difs;
445	short eifs;
446
447	u16 beacon_int;
448	u16 ht_opmode;
449};
450
451/*
452 * Configuration structure for hardware encryption.
453 */
454struct rt2x00lib_crypto {
455	enum cipher cipher;
456
457	enum set_key_cmd cmd;
458	const u8 *address;
459
460	u32 bssidx;
461
462	u8 key[16];
463	u8 tx_mic[8];
464	u8 rx_mic[8];
465
466	int wcid;
467};
468
469/*
470 * Configuration structure wrapper around the
471 * rt2x00 interface configuration handler.
472 */
473struct rt2x00intf_conf {
474	/*
475	 * Interface type
476	 */
477	enum nl80211_iftype type;
478
479	/*
480	 * TSF sync value, this is dependent on the operation type.
481	 */
482	enum tsf_sync sync;
483
484	/*
485	 * The MAC and BSSID addresses are simple array of bytes,
486	 * these arrays are little endian, so when sending the addresses
487	 * to the drivers, copy the it into a endian-signed variable.
488	 *
489	 * Note that all devices (except rt2500usb) have 32 bits
490	 * register word sizes. This means that whatever variable we
491	 * pass _must_ be a multiple of 32 bits. Otherwise the device
492	 * might not accept what we are sending to it.
493	 * This will also make it easier for the driver to write
494	 * the data to the device.
495	 */
496	__le32 mac[2];
497	__le32 bssid[2];
498};
499
500/*
501 * Private structure for storing STA details
502 * wcid: Wireless Client ID
503 */
504struct rt2x00_sta {
505	int wcid;
506};
507
508static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
509{
510	return (struct rt2x00_sta *)sta->drv_priv;
511}
512
513/*
514 * rt2x00lib callback functions.
515 */
516struct rt2x00lib_ops {
517	/*
518	 * Interrupt handlers.
519	 */
520	irq_handler_t irq_handler;
521
522	/*
523	 * TX status tasklet handler.
524	 */
525	void (*txstatus_tasklet) (unsigned long data);
526	void (*pretbtt_tasklet) (unsigned long data);
527	void (*tbtt_tasklet) (unsigned long data);
528	void (*rxdone_tasklet) (unsigned long data);
529	void (*autowake_tasklet) (unsigned long data);
530
531	/*
532	 * Device init handlers.
533	 */
534	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
535	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
536	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
537			       const u8 *data, const size_t len);
538	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
539			      const u8 *data, const size_t len);
540
541	/*
542	 * Device initialization/deinitialization handlers.
543	 */
544	int (*initialize) (struct rt2x00_dev *rt2x00dev);
545	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
546
547	/*
548	 * queue initialization handlers
549	 */
550	bool (*get_entry_state) (struct queue_entry *entry);
551	void (*clear_entry) (struct queue_entry *entry);
552
553	/*
554	 * Radio control handlers.
555	 */
556	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
557				 enum dev_state state);
558	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
559	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
560			    struct link_qual *qual);
561	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
562			     struct link_qual *qual);
563	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
564			    struct link_qual *qual, const u32 count);
565	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
566	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
567
568	/*
569	 * Data queue handlers.
570	 */
571	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
572	void (*start_queue) (struct data_queue *queue);
573	void (*kick_queue) (struct data_queue *queue);
574	void (*stop_queue) (struct data_queue *queue);
575	void (*flush_queue) (struct data_queue *queue, bool drop);
576	void (*tx_dma_done) (struct queue_entry *entry);
577
578	/*
579	 * TX control handlers
580	 */
581	void (*write_tx_desc) (struct queue_entry *entry,
582			       struct txentry_desc *txdesc);
583	void (*write_tx_data) (struct queue_entry *entry,
584			       struct txentry_desc *txdesc);
585	void (*write_beacon) (struct queue_entry *entry,
586			      struct txentry_desc *txdesc);
587	void (*clear_beacon) (struct queue_entry *entry);
588	int (*get_tx_data_len) (struct queue_entry *entry);
589
590	/*
591	 * RX control handlers
592	 */
593	void (*fill_rxdone) (struct queue_entry *entry,
594			     struct rxdone_entry_desc *rxdesc);
595
596	/*
597	 * Configuration handlers.
598	 */
599	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
600				  struct rt2x00lib_crypto *crypto,
601				  struct ieee80211_key_conf *key);
602	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
603				    struct rt2x00lib_crypto *crypto,
604				    struct ieee80211_key_conf *key);
605	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
606			       const unsigned int filter_flags);
607	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
608			     struct rt2x00_intf *intf,
609			     struct rt2x00intf_conf *conf,
610			     const unsigned int flags);
611#define CONFIG_UPDATE_TYPE		( 1 << 1 )
612#define CONFIG_UPDATE_MAC		( 1 << 2 )
613#define CONFIG_UPDATE_BSSID		( 1 << 3 )
614
615	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
616			    struct rt2x00lib_erp *erp,
617			    u32 changed);
618	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
619			    struct antenna_setup *ant);
620	void (*config) (struct rt2x00_dev *rt2x00dev,
621			struct rt2x00lib_conf *libconf,
622			const unsigned int changed_flags);
623	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
624			struct ieee80211_vif *vif,
625			struct ieee80211_sta *sta);
626	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
627			   int wcid);
628};
629
630/*
631 * rt2x00 driver callback operation structure.
632 */
633struct rt2x00_ops {
634	const char *name;
635	const unsigned int drv_data_size;
636	const unsigned int max_ap_intf;
637	const unsigned int eeprom_size;
638	const unsigned int rf_size;
639	const unsigned int tx_queues;
640	void (*queue_init)(struct data_queue *queue);
641	const struct rt2x00lib_ops *lib;
642	const void *drv;
643	const struct ieee80211_ops *hw;
644#ifdef CONFIG_RT2X00_LIB_DEBUGFS
645	const struct rt2x00debug *debugfs;
646#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
647};
648
649/*
650 * rt2x00 state flags
651 */
652enum rt2x00_state_flags {
653	/*
654	 * Device flags
655	 */
656	DEVICE_STATE_PRESENT,
657	DEVICE_STATE_REGISTERED_HW,
658	DEVICE_STATE_INITIALIZED,
659	DEVICE_STATE_STARTED,
660	DEVICE_STATE_ENABLED_RADIO,
661	DEVICE_STATE_SCANNING,
662
663	/*
664	 * Driver configuration
665	 */
666	CONFIG_CHANNEL_HT40,
667	CONFIG_POWERSAVING,
668	CONFIG_HT_DISABLED,
669	CONFIG_QOS_DISABLED,
670
671	/*
672	 * Mark we currently are sequentially reading TX_STA_FIFO register
673	 * FIXME: this is for only rt2800usb, should go to private data
674	 */
675	TX_STATUS_READING,
676};
677
678/*
679 * rt2x00 capability flags
680 */
681enum rt2x00_capability_flags {
682	/*
683	 * Requirements
684	 */
685	REQUIRE_FIRMWARE,
686	REQUIRE_BEACON_GUARD,
687	REQUIRE_ATIM_QUEUE,
688	REQUIRE_DMA,
689	REQUIRE_COPY_IV,
690	REQUIRE_L2PAD,
691	REQUIRE_TXSTATUS_FIFO,
692	REQUIRE_TASKLET_CONTEXT,
693	REQUIRE_SW_SEQNO,
694	REQUIRE_HT_TX_DESC,
695	REQUIRE_PS_AUTOWAKE,
696	REQUIRE_DELAYED_RFKILL,
697
698	/*
699	 * Capabilities
700	 */
701	CAPABILITY_HW_BUTTON,
702	CAPABILITY_HW_CRYPTO,
703	CAPABILITY_POWER_LIMIT,
704	CAPABILITY_CONTROL_FILTERS,
705	CAPABILITY_CONTROL_FILTER_PSPOLL,
706	CAPABILITY_PRE_TBTT_INTERRUPT,
707	CAPABILITY_LINK_TUNING,
708	CAPABILITY_FRAME_TYPE,
709	CAPABILITY_RF_SEQUENCE,
710	CAPABILITY_EXTERNAL_LNA_A,
711	CAPABILITY_EXTERNAL_LNA_BG,
712	CAPABILITY_DOUBLE_ANTENNA,
713	CAPABILITY_BT_COEXIST,
714	CAPABILITY_VCO_RECALIBRATION,
715};
716
717/*
718 * Interface combinations
719 */
720enum {
721	IF_COMB_AP = 0,
722	NUM_IF_COMB,
723};
724
725/*
726 * rt2x00 device structure.
727 */
728struct rt2x00_dev {
729	/*
730	 * Device structure.
731	 * The structure stored in here depends on the
732	 * system bus (PCI or USB).
733	 * When accessing this variable, the rt2x00dev_{pci,usb}
734	 * macros should be used for correct typecasting.
735	 */
736	struct device *dev;
737
738	/*
739	 * Callback functions.
740	 */
741	const struct rt2x00_ops *ops;
742
743	/*
744	 * Driver data.
745	 */
746	void *drv_data;
747
748	/*
749	 * IEEE80211 control structure.
750	 */
751	struct ieee80211_hw *hw;
752	struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
753	enum ieee80211_band curr_band;
754	int curr_freq;
755
756	/*
757	 * If enabled, the debugfs interface structures
758	 * required for deregistration of debugfs.
759	 */
760#ifdef CONFIG_RT2X00_LIB_DEBUGFS
761	struct rt2x00debug_intf *debugfs_intf;
762#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
763
764	/*
765	 * LED structure for changing the LED status
766	 * by mac8011 or the kernel.
767	 */
768#ifdef CONFIG_RT2X00_LIB_LEDS
769	struct rt2x00_led led_radio;
770	struct rt2x00_led led_assoc;
771	struct rt2x00_led led_qual;
772	u16 led_mcu_reg;
773#endif /* CONFIG_RT2X00_LIB_LEDS */
774
775	/*
776	 * Device state flags.
777	 * In these flags the current status is stored.
778	 * Access to these flags should occur atomically.
779	 */
780	unsigned long flags;
781
782	/*
783	 * Device capabiltiy flags.
784	 * In these flags the device/driver capabilities are stored.
785	 * Access to these flags should occur non-atomically.
786	 */
787	unsigned long cap_flags;
788
789	/*
790	 * Device information, Bus IRQ and name (PCI, SoC)
791	 */
792	int irq;
793	const char *name;
794
795	/*
796	 * Chipset identification.
797	 */
798	struct rt2x00_chip chip;
799
800	/*
801	 * hw capability specifications.
802	 */
803	struct hw_mode_spec spec;
804
805	/*
806	 * This is the default TX/RX antenna setup as indicated
807	 * by the device's EEPROM.
808	 */
809	struct antenna_setup default_ant;
810
811	/*
812	 * Register pointers
813	 * csr.base: CSR base register address. (PCI)
814	 * csr.cache: CSR cache for usb_control_msg. (USB)
815	 */
816	union csr {
817		void __iomem *base;
818		void *cache;
819	} csr;
820
821	/*
822	 * Mutex to protect register accesses.
823	 * For PCI and USB devices it protects against concurrent indirect
824	 * register access (BBP, RF, MCU) since accessing those
825	 * registers require multiple calls to the CSR registers.
826	 * For USB devices it also protects the csr_cache since that
827	 * field is used for normal CSR access and it cannot support
828	 * multiple callers simultaneously.
829	 */
830	struct mutex csr_mutex;
831
832	/*
833	 * Current packet filter configuration for the device.
834	 * This contains all currently active FIF_* flags send
835	 * to us by mac80211 during configure_filter().
836	 */
837	unsigned int packet_filter;
838
839	/*
840	 * Interface details:
841	 *  - Open ap interface count.
842	 *  - Open sta interface count.
843	 *  - Association count.
844	 *  - Beaconing enabled count.
845	 */
846	unsigned int intf_ap_count;
847	unsigned int intf_sta_count;
848	unsigned int intf_associated;
849	unsigned int intf_beaconing;
850
851	/*
852	 * Interface combinations
853	 */
854	struct ieee80211_iface_limit if_limits_ap;
855	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
856
857	/*
858	 * Link quality
859	 */
860	struct link link;
861
862	/*
863	 * EEPROM data.
864	 */
865	__le16 *eeprom;
866
867	/*
868	 * Active RF register values.
869	 * These are stored here so we don't need
870	 * to read the rf registers and can directly
871	 * use this value instead.
872	 * This field should be accessed by using
873	 * rt2x00_rf_read() and rt2x00_rf_write().
874	 */
875	u32 *rf;
876
877	/*
878	 * LNA gain
879	 */
880	short lna_gain;
881
882	/*
883	 * Current TX power value.
884	 */
885	u16 tx_power;
886
887	/*
888	 * Current retry values.
889	 */
890	u8 short_retry;
891	u8 long_retry;
892
893	/*
894	 * Rssi <-> Dbm offset
895	 */
896	u8 rssi_offset;
897
898	/*
899	 * Frequency offset.
900	 */
901	u8 freq_offset;
902
903	/*
904	 * Association id.
905	 */
906	u16 aid;
907
908	/*
909	 * Beacon interval.
910	 */
911	u16 beacon_int;
912
913	/**
914	 * Timestamp of last received beacon
915	 */
916	unsigned long last_beacon;
917
918	/*
919	 * Low level statistics which will have
920	 * to be kept up to date while device is running.
921	 */
922	struct ieee80211_low_level_stats low_level_stats;
923
924	/**
925	 * Work queue for all work which should not be placed
926	 * on the mac80211 workqueue (because of dependencies
927	 * between various work structures).
928	 */
929	struct workqueue_struct *workqueue;
930
931	/*
932	 * Scheduled work.
933	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
934	 * which means it cannot be placed on the hw->workqueue
935	 * due to RTNL locking requirements.
936	 */
937	struct work_struct intf_work;
938
939	/**
940	 * Scheduled work for TX/RX done handling (USB devices)
941	 */
942	struct work_struct rxdone_work;
943	struct work_struct txdone_work;
944
945	/*
946	 * Powersaving work
947	 */
948	struct delayed_work autowakeup_work;
949	struct work_struct sleep_work;
950
951	/*
952	 * Data queue arrays for RX, TX, Beacon and ATIM.
953	 */
954	unsigned int data_queues;
955	struct data_queue *rx;
956	struct data_queue *tx;
957	struct data_queue *bcn;
958	struct data_queue *atim;
959
960	/*
961	 * Firmware image.
962	 */
963	const struct firmware *fw;
964
965	/*
966	 * FIFO for storing tx status reports between isr and tasklet.
967	 */
968	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
969
970	/*
971	 * Timer to ensure tx status reports are read (rt2800usb).
972	 */
973	struct hrtimer txstatus_timer;
974
975	/*
976	 * Tasklet for processing tx status reports (rt2800pci).
977	 */
978	struct tasklet_struct txstatus_tasklet;
979	struct tasklet_struct pretbtt_tasklet;
980	struct tasklet_struct tbtt_tasklet;
981	struct tasklet_struct rxdone_tasklet;
982	struct tasklet_struct autowake_tasklet;
983
984	/*
985	 * Used for VCO periodic calibration.
986	 */
987	int rf_channel;
988
989	/*
990	 * Protect the interrupt mask register.
991	 */
992	spinlock_t irqmask_lock;
993
994	/*
995	 * List of BlockAckReq TX entries that need driver BlockAck processing.
996	 */
997	struct list_head bar_list;
998	spinlock_t bar_list_lock;
999
1000	/* Extra TX headroom required for alignment purposes. */
1001	unsigned int extra_tx_headroom;
1002};
1003
1004struct rt2x00_bar_list_entry {
1005	struct list_head list;
1006	struct rcu_head head;
1007
1008	struct queue_entry *entry;
1009	int block_acked;
1010
1011	/* Relevant parts of the IEEE80211 BAR header */
1012	__u8 ra[6];
1013	__u8 ta[6];
1014	__le16 control;
1015	__le16 start_seq_num;
1016};
1017
1018/*
1019 * Register defines.
1020 * Some registers require multiple attempts before success,
1021 * in those cases REGISTER_BUSY_COUNT attempts should be
1022 * taken with a REGISTER_BUSY_DELAY interval.
1023 */
1024#define REGISTER_BUSY_COUNT	100
1025#define REGISTER_BUSY_DELAY	100
1026
1027/*
1028 * Generic RF access.
1029 * The RF is being accessed by word index.
1030 */
1031static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1032				  const unsigned int word, u32 *data)
1033{
1034	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1035	*data = rt2x00dev->rf[word - 1];
1036}
1037
1038static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1039				   const unsigned int word, u32 data)
1040{
1041	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1042	rt2x00dev->rf[word - 1] = data;
1043}
1044
1045/*
1046 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1047 */
1048static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1049				       const unsigned int word)
1050{
1051	return (void *)&rt2x00dev->eeprom[word];
1052}
1053
1054static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1055				      const unsigned int word, u16 *data)
1056{
1057	*data = le16_to_cpu(rt2x00dev->eeprom[word]);
1058}
1059
1060static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1061				       const unsigned int word, u16 data)
1062{
1063	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1064}
1065
1066static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1067				    const unsigned int byte)
1068{
1069	return *(((u8 *)rt2x00dev->eeprom) + byte);
1070}
1071
1072/*
1073 * Chipset handlers
1074 */
1075static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1076				   const u16 rt, const u16 rf, const u16 rev)
1077{
1078	rt2x00dev->chip.rt = rt;
1079	rt2x00dev->chip.rf = rf;
1080	rt2x00dev->chip.rev = rev;
1081
1082	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1083		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1084		    rt2x00dev->chip.rev);
1085}
1086
1087static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1088				 const u16 rt, const u16 rev)
1089{
1090	rt2x00dev->chip.rt = rt;
1091	rt2x00dev->chip.rev = rev;
1092
1093	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1094		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1095}
1096
1097static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1098{
1099	rt2x00dev->chip.rf = rf;
1100
1101	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1102		    rt2x00dev->chip.rf);
1103}
1104
1105static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1106{
1107	return (rt2x00dev->chip.rt == rt);
1108}
1109
1110static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1111{
1112	return (rt2x00dev->chip.rf == rf);
1113}
1114
1115static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1116{
1117	return rt2x00dev->chip.rev;
1118}
1119
1120static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1121				 const u16 rt, const u16 rev)
1122{
1123	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1124}
1125
1126static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1127				    const u16 rt, const u16 rev)
1128{
1129	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1130}
1131
1132static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1133				     const u16 rt, const u16 rev)
1134{
1135	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1136}
1137
1138static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1139					enum rt2x00_chip_intf intf)
1140{
1141	rt2x00dev->chip.intf = intf;
1142}
1143
1144static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1145			       enum rt2x00_chip_intf intf)
1146{
1147	return (rt2x00dev->chip.intf == intf);
1148}
1149
1150static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1151{
1152	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1153	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1154}
1155
1156static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1157{
1158	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1159}
1160
1161static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1162{
1163	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1164}
1165
1166static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1167{
1168	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1169}
1170
1171/* Helpers for capability flags */
1172
1173static inline bool
1174rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1175		    enum rt2x00_capability_flags cap_flag)
1176{
1177	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1178}
1179
1180static inline bool
1181rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1182{
1183	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1184}
1185
1186static inline bool
1187rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1188{
1189	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1190}
1191
1192static inline bool
1193rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1194{
1195	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1196}
1197
1198static inline bool
1199rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1200{
1201	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1202}
1203
1204static inline bool
1205rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1206{
1207	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1208}
1209
1210static inline bool
1211rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1212{
1213	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1214}
1215
1216static inline bool
1217rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1218{
1219	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1220}
1221
1222static inline bool
1223rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1224{
1225	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1226}
1227
1228static inline bool
1229rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1230{
1231	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1232}
1233
1234static inline bool
1235rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1236{
1237	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1238}
1239
1240static inline bool
1241rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1242{
1243	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1244}
1245
1246static inline bool
1247rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1248{
1249	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1250}
1251
1252static inline bool
1253rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1254{
1255	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1256}
1257
1258/**
1259 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1260 * @entry: Pointer to &struct queue_entry
1261 *
1262 * Returns -ENOMEM if mapping fail, 0 otherwise.
1263 */
1264int rt2x00queue_map_txskb(struct queue_entry *entry);
1265
1266/**
1267 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1268 * @entry: Pointer to &struct queue_entry
1269 */
1270void rt2x00queue_unmap_skb(struct queue_entry *entry);
1271
1272/**
1273 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1274 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1275 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1276 *
1277 * Returns NULL for non tx queues.
1278 */
1279static inline struct data_queue *
1280rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1281			 const enum data_queue_qid queue)
1282{
1283	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1284		return &rt2x00dev->tx[queue];
1285
1286	if (queue == QID_ATIM)
1287		return rt2x00dev->atim;
1288
1289	return NULL;
1290}
1291
1292/**
1293 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1294 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1295 * @index: Index identifier for obtaining the correct index.
1296 */
1297struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1298					  enum queue_index index);
1299
1300/**
1301 * rt2x00queue_pause_queue - Pause a data queue
1302 * @queue: Pointer to &struct data_queue.
1303 *
1304 * This function will pause the data queue locally, preventing
1305 * new frames to be added to the queue (while the hardware is
1306 * still allowed to run).
1307 */
1308void rt2x00queue_pause_queue(struct data_queue *queue);
1309
1310/**
1311 * rt2x00queue_unpause_queue - unpause a data queue
1312 * @queue: Pointer to &struct data_queue.
1313 *
1314 * This function will unpause the data queue locally, allowing
1315 * new frames to be added to the queue again.
1316 */
1317void rt2x00queue_unpause_queue(struct data_queue *queue);
1318
1319/**
1320 * rt2x00queue_start_queue - Start a data queue
1321 * @queue: Pointer to &struct data_queue.
1322 *
1323 * This function will start handling all pending frames in the queue.
1324 */
1325void rt2x00queue_start_queue(struct data_queue *queue);
1326
1327/**
1328 * rt2x00queue_stop_queue - Halt a data queue
1329 * @queue: Pointer to &struct data_queue.
1330 *
1331 * This function will stop all pending frames in the queue.
1332 */
1333void rt2x00queue_stop_queue(struct data_queue *queue);
1334
1335/**
1336 * rt2x00queue_flush_queue - Flush a data queue
1337 * @queue: Pointer to &struct data_queue.
1338 * @drop: True to drop all pending frames.
1339 *
1340 * This function will flush the queue. After this call
1341 * the queue is guaranteed to be empty.
1342 */
1343void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1344
1345/**
1346 * rt2x00queue_start_queues - Start all data queues
1347 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1348 *
1349 * This function will loop through all available queues to start them
1350 */
1351void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1352
1353/**
1354 * rt2x00queue_stop_queues - Halt all data queues
1355 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1356 *
1357 * This function will loop through all available queues to stop
1358 * any pending frames.
1359 */
1360void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1361
1362/**
1363 * rt2x00queue_flush_queues - Flush all data queues
1364 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1365 * @drop: True to drop all pending frames.
1366 *
1367 * This function will loop through all available queues to flush
1368 * any pending frames.
1369 */
1370void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1371
1372/*
1373 * Debugfs handlers.
1374 */
1375/**
1376 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1377 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1378 * @type: The type of frame that is being dumped.
1379 * @skb: The skb containing the frame to be dumped.
1380 */
1381#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1382void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1383			    enum rt2x00_dump_type type, struct sk_buff *skb);
1384#else
1385static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1386					  enum rt2x00_dump_type type,
1387					  struct sk_buff *skb)
1388{
1389}
1390#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1391
1392/*
1393 * Utility functions.
1394 */
1395u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1396			 struct ieee80211_vif *vif);
1397
1398/*
1399 * Interrupt context handlers.
1400 */
1401void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1402void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1403void rt2x00lib_dmastart(struct queue_entry *entry);
1404void rt2x00lib_dmadone(struct queue_entry *entry);
1405void rt2x00lib_txdone(struct queue_entry *entry,
1406		      struct txdone_entry_desc *txdesc);
1407void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1408void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1409
1410/*
1411 * mac80211 handlers.
1412 */
1413void rt2x00mac_tx(struct ieee80211_hw *hw,
1414		  struct ieee80211_tx_control *control,
1415		  struct sk_buff *skb);
1416int rt2x00mac_start(struct ieee80211_hw *hw);
1417void rt2x00mac_stop(struct ieee80211_hw *hw);
1418int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1419			    struct ieee80211_vif *vif);
1420void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1421				struct ieee80211_vif *vif);
1422int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1423void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1424				unsigned int changed_flags,
1425				unsigned int *total_flags,
1426				u64 multicast);
1427int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1428		      bool set);
1429#ifdef CONFIG_RT2X00_LIB_CRYPTO
1430int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1431		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1432		      struct ieee80211_key_conf *key);
1433#else
1434#define rt2x00mac_set_key	NULL
1435#endif /* CONFIG_RT2X00_LIB_CRYPTO */
1436int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1437		      struct ieee80211_sta *sta);
1438int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1439			 struct ieee80211_sta *sta);
1440void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw);
1441void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw);
1442int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1443			struct ieee80211_low_level_stats *stats);
1444void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1445				struct ieee80211_vif *vif,
1446				struct ieee80211_bss_conf *bss_conf,
1447				u32 changes);
1448int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1449		      struct ieee80211_vif *vif, u16 queue,
1450		      const struct ieee80211_tx_queue_params *params);
1451void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1452void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1453		     u32 queues, bool drop);
1454int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1455int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1456void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1457			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1458bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1459
1460/*
1461 * Driver allocation handlers.
1462 */
1463int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1464void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1465#ifdef CONFIG_PM
1466int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1467int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1468#endif /* CONFIG_PM */
1469
1470#endif /* RT2X00_H */
1471