1/*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Authors:
21 *	Jesse Barnes <jbarnes@virtuousgeek.org>
22 */
23
24/*
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point).  This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware.  It also provides a few tunables to control behavior.  Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
35 *
36 * The basic algorithm is driven by a 5s moving average of tempurature.  If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp.  Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
42 *
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware.  The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
47 *
48 * UNSUPPORTED:
49 *   - dual MCP configs
50 *
51 * TODO:
52 *   - handle CPU hotplug
53 *   - provide turbo enable/disable api
54 *
55 * Related documents:
56 *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57 *   - CDI 401376 - Ibex Peak EDS
58 *   - ref 26037, 26641 - IPS BIOS spec
59 *   - ref 26489 - Nehalem BIOS writer's guide
60 *   - ref 26921 - Ibex Peak BIOS Specification
61 */
62
63#include <linux/debugfs.h>
64#include <linux/delay.h>
65#include <linux/interrupt.h>
66#include <linux/kernel.h>
67#include <linux/kthread.h>
68#include <linux/module.h>
69#include <linux/pci.h>
70#include <linux/sched.h>
71#include <linux/seq_file.h>
72#include <linux/string.h>
73#include <linux/tick.h>
74#include <linux/timer.h>
75#include <linux/dmi.h>
76#include <drm/i915_drm.h>
77#include <asm/msr.h>
78#include <asm/processor.h>
79#include "intel_ips.h"
80
81#include <asm-generic/io-64-nonatomic-lo-hi.h>
82
83#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
84
85/*
86 * Package level MSRs for monitor/control
87 */
88#define PLATFORM_INFO	0xce
89#define   PLATFORM_TDP		(1<<29)
90#define   PLATFORM_RATIO	(1<<28)
91
92#define IA32_MISC_ENABLE	0x1a0
93#define   IA32_MISC_TURBO_EN	(1ULL<<38)
94
95#define TURBO_POWER_CURRENT_LIMIT	0x1ac
96#define   TURBO_TDC_OVR_EN	(1UL<<31)
97#define   TURBO_TDC_MASK	(0x000000007fff0000UL)
98#define   TURBO_TDC_SHIFT	(16)
99#define   TURBO_TDP_OVR_EN	(1UL<<15)
100#define   TURBO_TDP_MASK	(0x0000000000003fffUL)
101
102/*
103 * Core/thread MSRs for monitoring
104 */
105#define IA32_PERF_CTL		0x199
106#define   IA32_PERF_TURBO_DIS	(1ULL<<32)
107
108/*
109 * Thermal PCI device regs
110 */
111#define THM_CFG_TBAR	0x10
112#define THM_CFG_TBAR_HI	0x14
113
114#define THM_TSIU	0x00
115#define THM_TSE		0x01
116#define   TSE_EN	0xb8
117#define THM_TSS		0x02
118#define THM_TSTR	0x03
119#define THM_TSTTP	0x04
120#define THM_TSCO	0x08
121#define THM_TSES	0x0c
122#define THM_TSGPEN	0x0d
123#define   TSGPEN_HOT_LOHI	(1<<1)
124#define   TSGPEN_CRIT_LOHI	(1<<2)
125#define THM_TSPC	0x0e
126#define THM_PPEC	0x10
127#define THM_CTA		0x12
128#define THM_PTA		0x14
129#define   PTA_SLOPE_MASK	(0xff00)
130#define   PTA_SLOPE_SHIFT	8
131#define   PTA_OFFSET_MASK	(0x00ff)
132#define THM_MGTA	0x16
133#define   MGTA_SLOPE_MASK	(0xff00)
134#define   MGTA_SLOPE_SHIFT	8
135#define   MGTA_OFFSET_MASK	(0x00ff)
136#define THM_TRC		0x1a
137#define   TRC_CORE2_EN	(1<<15)
138#define   TRC_THM_EN	(1<<12)
139#define   TRC_C6_WAR	(1<<8)
140#define   TRC_CORE1_EN	(1<<7)
141#define   TRC_CORE_PWR	(1<<6)
142#define   TRC_PCH_EN	(1<<5)
143#define   TRC_MCH_EN	(1<<4)
144#define   TRC_DIMM4	(1<<3)
145#define   TRC_DIMM3	(1<<2)
146#define   TRC_DIMM2	(1<<1)
147#define   TRC_DIMM1	(1<<0)
148#define THM_TES		0x20
149#define THM_TEN		0x21
150#define   TEN_UPDATE_EN	1
151#define THM_PSC		0x24
152#define   PSC_NTG	(1<<0) /* No GFX turbo support */
153#define   PSC_NTPC	(1<<1) /* No CPU turbo support */
154#define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
155#define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
156#define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
157#define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
158#define   PSP_PBRT	(1<<4) /* BIOS run time support */
159#define THM_CTV1	0x30
160#define   CTV_TEMP_ERROR (1<<15)
161#define   CTV_TEMP_MASK	0x3f
162#define   CTV_
163#define THM_CTV2	0x32
164#define THM_CEC		0x34 /* undocumented power accumulator in joules */
165#define THM_AE		0x3f
166#define THM_HTS		0x50 /* 32 bits */
167#define   HTS_PCPL_MASK	(0x7fe00000)
168#define   HTS_PCPL_SHIFT 21
169#define   HTS_GPL_MASK  (0x001ff000)
170#define   HTS_GPL_SHIFT 12
171#define   HTS_PP_MASK	(0x00000c00)
172#define   HTS_PP_SHIFT  10
173#define   HTS_PP_DEF	0
174#define   HTS_PP_PROC	1
175#define   HTS_PP_BAL	2
176#define   HTS_PP_GFX	3
177#define   HTS_PCTD_DIS	(1<<9)
178#define   HTS_GTD_DIS	(1<<8)
179#define   HTS_PTL_MASK  (0x000000fe)
180#define   HTS_PTL_SHIFT 1
181#define   HTS_NVV	(1<<0)
182#define THM_HTSHI	0x54 /* 16 bits */
183#define   HTS2_PPL_MASK		(0x03ff)
184#define   HTS2_PRST_MASK	(0x3c00)
185#define   HTS2_PRST_SHIFT	10
186#define   HTS2_PRST_UNLOADED	0
187#define   HTS2_PRST_RUNNING	1
188#define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
189#define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
190#define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
191#define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
192#define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
193#define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
194#define THM_PTL		0x56
195#define THM_MGTV	0x58
196#define   TV_MASK	0x000000000000ff00
197#define   TV_SHIFT	8
198#define THM_PTV		0x60
199#define   PTV_MASK	0x00ff
200#define THM_MMGPC	0x64
201#define THM_MPPC	0x66
202#define THM_MPCPC	0x68
203#define THM_TSPIEN	0x82
204#define   TSPIEN_AUX_LOHI	(1<<0)
205#define   TSPIEN_HOT_LOHI	(1<<1)
206#define   TSPIEN_CRIT_LOHI	(1<<2)
207#define   TSPIEN_AUX2_LOHI	(1<<3)
208#define THM_TSLOCK	0x83
209#define THM_ATR		0x84
210#define THM_TOF		0x87
211#define THM_STS		0x98
212#define   STS_PCPL_MASK		(0x7fe00000)
213#define   STS_PCPL_SHIFT	21
214#define   STS_GPL_MASK		(0x001ff000)
215#define   STS_GPL_SHIFT		12
216#define   STS_PP_MASK		(0x00000c00)
217#define   STS_PP_SHIFT		10
218#define   STS_PP_DEF		0
219#define   STS_PP_PROC		1
220#define   STS_PP_BAL		2
221#define   STS_PP_GFX		3
222#define   STS_PCTD_DIS		(1<<9)
223#define   STS_GTD_DIS		(1<<8)
224#define   STS_PTL_MASK		(0x000000fe)
225#define   STS_PTL_SHIFT		1
226#define   STS_NVV		(1<<0)
227#define THM_SEC		0x9c
228#define   SEC_ACK	(1<<0)
229#define THM_TC3		0xa4
230#define THM_TC1		0xa8
231#define   STS_PPL_MASK		(0x0003ff00)
232#define   STS_PPL_SHIFT		16
233#define THM_TC2		0xac
234#define THM_DTV		0xb0
235#define THM_ITV		0xd8
236#define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
237#define   ITV_ME_SEQNO_SHIFT (16)
238#define   ITV_MCH_TEMP_MASK 0x0000ff00
239#define   ITV_MCH_TEMP_SHIFT (8)
240#define   ITV_PCH_TEMP_MASK 0x000000ff
241
242#define thm_readb(off) readb(ips->regmap + (off))
243#define thm_readw(off) readw(ips->regmap + (off))
244#define thm_readl(off) readl(ips->regmap + (off))
245#define thm_readq(off) readq(ips->regmap + (off))
246
247#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
248#define thm_writew(off, val) writew((val), ips->regmap + (off))
249#define thm_writel(off, val) writel((val), ips->regmap + (off))
250
251static const int IPS_ADJUST_PERIOD = 5000; /* ms */
252static bool late_i915_load = false;
253
254/* For initial average collection */
255static const int IPS_SAMPLE_PERIOD = 200; /* ms */
256static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
257#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
258
259/* Per-SKU limits */
260struct ips_mcp_limits {
261	int cpu_family;
262	int cpu_model; /* includes extended model... */
263	int mcp_power_limit; /* mW units */
264	int core_power_limit;
265	int mch_power_limit;
266	int core_temp_limit; /* degrees C */
267	int mch_temp_limit;
268};
269
270/* Max temps are -10 degrees C to avoid PROCHOT# */
271
272static struct ips_mcp_limits ips_sv_limits = {
273	.mcp_power_limit = 35000,
274	.core_power_limit = 29000,
275	.mch_power_limit = 20000,
276	.core_temp_limit = 95,
277	.mch_temp_limit = 90
278};
279
280static struct ips_mcp_limits ips_lv_limits = {
281	.mcp_power_limit = 25000,
282	.core_power_limit = 21000,
283	.mch_power_limit = 13000,
284	.core_temp_limit = 95,
285	.mch_temp_limit = 90
286};
287
288static struct ips_mcp_limits ips_ulv_limits = {
289	.mcp_power_limit = 18000,
290	.core_power_limit = 14000,
291	.mch_power_limit = 11000,
292	.core_temp_limit = 95,
293	.mch_temp_limit = 90
294};
295
296struct ips_driver {
297	struct pci_dev *dev;
298	void *regmap;
299	struct task_struct *monitor;
300	struct task_struct *adjust;
301	struct dentry *debug_root;
302
303	/* Average CPU core temps (all averages in .01 degrees C for precision) */
304	u16 ctv1_avg_temp;
305	u16 ctv2_avg_temp;
306	/* GMCH average */
307	u16 mch_avg_temp;
308	/* Average for the CPU (both cores?) */
309	u16 mcp_avg_temp;
310	/* Average power consumption (in mW) */
311	u32 cpu_avg_power;
312	u32 mch_avg_power;
313
314	/* Offset values */
315	u16 cta_val;
316	u16 pta_val;
317	u16 mgta_val;
318
319	/* Maximums & prefs, protected by turbo status lock */
320	spinlock_t turbo_status_lock;
321	u16 mcp_temp_limit;
322	u16 mcp_power_limit;
323	u16 core_power_limit;
324	u16 mch_power_limit;
325	bool cpu_turbo_enabled;
326	bool __cpu_turbo_on;
327	bool gpu_turbo_enabled;
328	bool __gpu_turbo_on;
329	bool gpu_preferred;
330	bool poll_turbo_status;
331	bool second_cpu;
332	bool turbo_toggle_allowed;
333	struct ips_mcp_limits *limits;
334
335	/* Optional MCH interfaces for if i915 is in use */
336	unsigned long (*read_mch_val)(void);
337	bool (*gpu_raise)(void);
338	bool (*gpu_lower)(void);
339	bool (*gpu_busy)(void);
340	bool (*gpu_turbo_disable)(void);
341
342	/* For restoration at unload */
343	u64 orig_turbo_limit;
344	u64 orig_turbo_ratios;
345};
346
347static bool
348ips_gpu_turbo_enabled(struct ips_driver *ips);
349
350/**
351 * ips_cpu_busy - is CPU busy?
352 * @ips: IPS driver struct
353 *
354 * Check CPU for load to see whether we should increase its thermal budget.
355 *
356 * RETURNS:
357 * True if the CPU could use more power, false otherwise.
358 */
359static bool ips_cpu_busy(struct ips_driver *ips)
360{
361	if ((avenrun[0] >> FSHIFT) > 1)
362		return true;
363
364	return false;
365}
366
367/**
368 * ips_cpu_raise - raise CPU power clamp
369 * @ips: IPS driver struct
370 *
371 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
372 * this platform.
373 *
374 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
375 * long as we haven't hit the TDP limit for the SKU).
376 */
377static void ips_cpu_raise(struct ips_driver *ips)
378{
379	u64 turbo_override;
380	u16 cur_tdp_limit, new_tdp_limit;
381
382	if (!ips->cpu_turbo_enabled)
383		return;
384
385	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
386
387	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
388	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
389
390	/* Clamp to SKU TDP limit */
391	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
392		new_tdp_limit = cur_tdp_limit;
393
394	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
395
396	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
397	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
398
399	turbo_override &= ~TURBO_TDP_MASK;
400	turbo_override |= new_tdp_limit;
401
402	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
403}
404
405/**
406 * ips_cpu_lower - lower CPU power clamp
407 * @ips: IPS driver struct
408 *
409 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
410 *
411 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
412 * as low as the platform limits will allow (though we could go lower there
413 * wouldn't be much point).
414 */
415static void ips_cpu_lower(struct ips_driver *ips)
416{
417	u64 turbo_override;
418	u16 cur_limit, new_limit;
419
420	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
421
422	cur_limit = turbo_override & TURBO_TDP_MASK;
423	new_limit = cur_limit - 8; /* 1W decrease */
424
425	/* Clamp to SKU TDP limit */
426	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
427		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
428
429	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
430
431	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
432	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
433
434	turbo_override &= ~TURBO_TDP_MASK;
435	turbo_override |= new_limit;
436
437	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
438}
439
440/**
441 * do_enable_cpu_turbo - internal turbo enable function
442 * @data: unused
443 *
444 * Internal function for actually updating MSRs.  When we enable/disable
445 * turbo, we need to do it on each CPU; this function is the one called
446 * by on_each_cpu() when needed.
447 */
448static void do_enable_cpu_turbo(void *data)
449{
450	u64 perf_ctl;
451
452	rdmsrl(IA32_PERF_CTL, perf_ctl);
453	if (perf_ctl & IA32_PERF_TURBO_DIS) {
454		perf_ctl &= ~IA32_PERF_TURBO_DIS;
455		wrmsrl(IA32_PERF_CTL, perf_ctl);
456	}
457}
458
459/**
460 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
461 * @ips: IPS driver struct
462 *
463 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
464 * all logical threads.
465 */
466static void ips_enable_cpu_turbo(struct ips_driver *ips)
467{
468	/* Already on, no need to mess with MSRs */
469	if (ips->__cpu_turbo_on)
470		return;
471
472	if (ips->turbo_toggle_allowed)
473		on_each_cpu(do_enable_cpu_turbo, ips, 1);
474
475	ips->__cpu_turbo_on = true;
476}
477
478/**
479 * do_disable_cpu_turbo - internal turbo disable function
480 * @data: unused
481 *
482 * Internal function for actually updating MSRs.  When we enable/disable
483 * turbo, we need to do it on each CPU; this function is the one called
484 * by on_each_cpu() when needed.
485 */
486static void do_disable_cpu_turbo(void *data)
487{
488	u64 perf_ctl;
489
490	rdmsrl(IA32_PERF_CTL, perf_ctl);
491	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
492		perf_ctl |= IA32_PERF_TURBO_DIS;
493		wrmsrl(IA32_PERF_CTL, perf_ctl);
494	}
495}
496
497/**
498 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
499 * @ips: IPS driver struct
500 *
501 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
502 * all logical threads.
503 */
504static void ips_disable_cpu_turbo(struct ips_driver *ips)
505{
506	/* Already off, leave it */
507	if (!ips->__cpu_turbo_on)
508		return;
509
510	if (ips->turbo_toggle_allowed)
511		on_each_cpu(do_disable_cpu_turbo, ips, 1);
512
513	ips->__cpu_turbo_on = false;
514}
515
516/**
517 * ips_gpu_busy - is GPU busy?
518 * @ips: IPS driver struct
519 *
520 * Check GPU for load to see whether we should increase its thermal budget.
521 * We need to call into the i915 driver in this case.
522 *
523 * RETURNS:
524 * True if the GPU could use more power, false otherwise.
525 */
526static bool ips_gpu_busy(struct ips_driver *ips)
527{
528	if (!ips_gpu_turbo_enabled(ips))
529		return false;
530
531	return ips->gpu_busy();
532}
533
534/**
535 * ips_gpu_raise - raise GPU power clamp
536 * @ips: IPS driver struct
537 *
538 * Raise the GPU frequency/power if possible.  We need to call into the
539 * i915 driver in this case.
540 */
541static void ips_gpu_raise(struct ips_driver *ips)
542{
543	if (!ips_gpu_turbo_enabled(ips))
544		return;
545
546	if (!ips->gpu_raise())
547		ips->gpu_turbo_enabled = false;
548
549	return;
550}
551
552/**
553 * ips_gpu_lower - lower GPU power clamp
554 * @ips: IPS driver struct
555 *
556 * Lower GPU frequency/power if possible.  Need to call i915.
557 */
558static void ips_gpu_lower(struct ips_driver *ips)
559{
560	if (!ips_gpu_turbo_enabled(ips))
561		return;
562
563	if (!ips->gpu_lower())
564		ips->gpu_turbo_enabled = false;
565
566	return;
567}
568
569/**
570 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
571 * @ips: IPS driver struct
572 *
573 * Call into the graphics driver indicating that it can safely use
574 * turbo mode.
575 */
576static void ips_enable_gpu_turbo(struct ips_driver *ips)
577{
578	if (ips->__gpu_turbo_on)
579		return;
580	ips->__gpu_turbo_on = true;
581}
582
583/**
584 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
585 * @ips: IPS driver struct
586 *
587 * Request that the graphics driver disable turbo mode.
588 */
589static void ips_disable_gpu_turbo(struct ips_driver *ips)
590{
591	/* Avoid calling i915 if turbo is already disabled */
592	if (!ips->__gpu_turbo_on)
593		return;
594
595	if (!ips->gpu_turbo_disable())
596		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
597	else
598		ips->__gpu_turbo_on = false;
599}
600
601/**
602 * mcp_exceeded - check whether we're outside our thermal & power limits
603 * @ips: IPS driver struct
604 *
605 * Check whether the MCP is over its thermal or power budget.
606 */
607static bool mcp_exceeded(struct ips_driver *ips)
608{
609	unsigned long flags;
610	bool ret = false;
611	u32 temp_limit;
612	u32 avg_power;
613
614	spin_lock_irqsave(&ips->turbo_status_lock, flags);
615
616	temp_limit = ips->mcp_temp_limit * 100;
617	if (ips->mcp_avg_temp > temp_limit)
618		ret = true;
619
620	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
621	if (avg_power > ips->mcp_power_limit)
622		ret = true;
623
624	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
625
626	return ret;
627}
628
629/**
630 * cpu_exceeded - check whether a CPU core is outside its limits
631 * @ips: IPS driver struct
632 * @cpu: CPU number to check
633 *
634 * Check a given CPU's average temp or power is over its limit.
635 */
636static bool cpu_exceeded(struct ips_driver *ips, int cpu)
637{
638	unsigned long flags;
639	int avg;
640	bool ret = false;
641
642	spin_lock_irqsave(&ips->turbo_status_lock, flags);
643	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
644	if (avg > (ips->limits->core_temp_limit * 100))
645		ret = true;
646	if (ips->cpu_avg_power > ips->core_power_limit * 100)
647		ret = true;
648	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
649
650	if (ret)
651		dev_info(&ips->dev->dev,
652			 "CPU power or thermal limit exceeded\n");
653
654	return ret;
655}
656
657/**
658 * mch_exceeded - check whether the GPU is over budget
659 * @ips: IPS driver struct
660 *
661 * Check the MCH temp & power against their maximums.
662 */
663static bool mch_exceeded(struct ips_driver *ips)
664{
665	unsigned long flags;
666	bool ret = false;
667
668	spin_lock_irqsave(&ips->turbo_status_lock, flags);
669	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
670		ret = true;
671	if (ips->mch_avg_power > ips->mch_power_limit)
672		ret = true;
673	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
674
675	return ret;
676}
677
678/**
679 * verify_limits - verify BIOS provided limits
680 * @ips: IPS structure
681 *
682 * BIOS can optionally provide non-default limits for power and temp.  Check
683 * them here and use the defaults if the BIOS values are not provided or
684 * are otherwise unusable.
685 */
686static void verify_limits(struct ips_driver *ips)
687{
688	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
689	    ips->mcp_power_limit > 35000)
690		ips->mcp_power_limit = ips->limits->mcp_power_limit;
691
692	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
693	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
694	    ips->mcp_temp_limit > 150)
695		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
696					  ips->limits->mch_temp_limit);
697}
698
699/**
700 * update_turbo_limits - get various limits & settings from regs
701 * @ips: IPS driver struct
702 *
703 * Update the IPS power & temp limits, along with turbo enable flags,
704 * based on latest register contents.
705 *
706 * Used at init time and for runtime BIOS support, which requires polling
707 * the regs for updates (as a result of AC->DC transition for example).
708 *
709 * LOCKING:
710 * Caller must hold turbo_status_lock (outside of init)
711 */
712static void update_turbo_limits(struct ips_driver *ips)
713{
714	u32 hts = thm_readl(THM_HTS);
715
716	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
717	/*
718	 * Disable turbo for now, until we can figure out why the power figures
719	 * are wrong
720	 */
721	ips->cpu_turbo_enabled = false;
722
723	if (ips->gpu_busy)
724		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
725
726	ips->core_power_limit = thm_readw(THM_MPCPC);
727	ips->mch_power_limit = thm_readw(THM_MMGPC);
728	ips->mcp_temp_limit = thm_readw(THM_PTL);
729	ips->mcp_power_limit = thm_readw(THM_MPPC);
730
731	verify_limits(ips);
732	/* Ignore BIOS CPU vs GPU pref */
733}
734
735/**
736 * ips_adjust - adjust power clamp based on thermal state
737 * @data: ips driver structure
738 *
739 * Wake up every 5s or so and check whether we should adjust the power clamp.
740 * Check CPU and GPU load to determine which needs adjustment.  There are
741 * several things to consider here:
742 *   - do we need to adjust up or down?
743 *   - is CPU busy?
744 *   - is GPU busy?
745 *   - is CPU in turbo?
746 *   - is GPU in turbo?
747 *   - is CPU or GPU preferred? (CPU is default)
748 *
749 * So, given the above, we do the following:
750 *   - up (TDP available)
751 *     - CPU not busy, GPU not busy - nothing
752 *     - CPU busy, GPU not busy - adjust CPU up
753 *     - CPU not busy, GPU busy - adjust GPU up
754 *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
755 *       non-preferred unit if necessary
756 *   - down (at TDP limit)
757 *     - adjust both CPU and GPU down if possible
758 *
759		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
760cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
761cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
762cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
763cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
764 *
765 */
766static int ips_adjust(void *data)
767{
768	struct ips_driver *ips = data;
769	unsigned long flags;
770
771	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
772
773	/*
774	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
775	 * often isn't recommended due to ME interaction.
776	 */
777	do {
778		bool cpu_busy = ips_cpu_busy(ips);
779		bool gpu_busy = ips_gpu_busy(ips);
780
781		spin_lock_irqsave(&ips->turbo_status_lock, flags);
782		if (ips->poll_turbo_status)
783			update_turbo_limits(ips);
784		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
785
786		/* Update turbo status if necessary */
787		if (ips->cpu_turbo_enabled)
788			ips_enable_cpu_turbo(ips);
789		else
790			ips_disable_cpu_turbo(ips);
791
792		if (ips->gpu_turbo_enabled)
793			ips_enable_gpu_turbo(ips);
794		else
795			ips_disable_gpu_turbo(ips);
796
797		/* We're outside our comfort zone, crank them down */
798		if (mcp_exceeded(ips)) {
799			ips_cpu_lower(ips);
800			ips_gpu_lower(ips);
801			goto sleep;
802		}
803
804		if (!cpu_exceeded(ips, 0) && cpu_busy)
805			ips_cpu_raise(ips);
806		else
807			ips_cpu_lower(ips);
808
809		if (!mch_exceeded(ips) && gpu_busy)
810			ips_gpu_raise(ips);
811		else
812			ips_gpu_lower(ips);
813
814sleep:
815		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
816	} while (!kthread_should_stop());
817
818	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
819
820	return 0;
821}
822
823/*
824 * Helpers for reading out temp/power values and calculating their
825 * averages for the decision making and monitoring functions.
826 */
827
828static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
829{
830	u64 total = 0;
831	int i;
832	u16 avg;
833
834	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
835		total += (u64)(array[i] * 100);
836
837	do_div(total, IPS_SAMPLE_COUNT);
838
839	avg = (u16)total;
840
841	return avg;
842}
843
844static u16 read_mgtv(struct ips_driver *ips)
845{
846	u16 ret;
847	u64 slope, offset;
848	u64 val;
849
850	val = thm_readq(THM_MGTV);
851	val = (val & TV_MASK) >> TV_SHIFT;
852
853	slope = offset = thm_readw(THM_MGTA);
854	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
855	offset = offset & MGTA_OFFSET_MASK;
856
857	ret = ((val * slope + 0x40) >> 7) + offset;
858
859	return 0; /* MCH temp reporting buggy */
860}
861
862static u16 read_ptv(struct ips_driver *ips)
863{
864	u16 val, slope, offset;
865
866	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
867	offset = ips->pta_val & PTA_OFFSET_MASK;
868
869	val = thm_readw(THM_PTV) & PTV_MASK;
870
871	return val;
872}
873
874static u16 read_ctv(struct ips_driver *ips, int cpu)
875{
876	int reg = cpu ? THM_CTV2 : THM_CTV1;
877	u16 val;
878
879	val = thm_readw(reg);
880	if (!(val & CTV_TEMP_ERROR))
881		val = (val) >> 6; /* discard fractional component */
882	else
883		val = 0;
884
885	return val;
886}
887
888static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
889{
890	u32 val;
891	u32 ret;
892
893	/*
894	 * CEC is in joules/65535.  Take difference over time to
895	 * get watts.
896	 */
897	val = thm_readl(THM_CEC);
898
899	/* period is in ms and we want mW */
900	ret = (((val - *last) * 1000) / period);
901	ret = (ret * 1000) / 65535;
902	*last = val;
903
904	return 0;
905}
906
907static const u16 temp_decay_factor = 2;
908static u16 update_average_temp(u16 avg, u16 val)
909{
910	u16 ret;
911
912	/* Multiply by 100 for extra precision */
913	ret = (val * 100 / temp_decay_factor) +
914		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
915	return ret;
916}
917
918static const u16 power_decay_factor = 2;
919static u16 update_average_power(u32 avg, u32 val)
920{
921	u32 ret;
922
923	ret = (val / power_decay_factor) +
924		(((power_decay_factor - 1) * avg) / power_decay_factor);
925
926	return ret;
927}
928
929static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
930{
931	u64 total = 0;
932	u32 avg;
933	int i;
934
935	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
936		total += array[i];
937
938	do_div(total, IPS_SAMPLE_COUNT);
939	avg = (u32)total;
940
941	return avg;
942}
943
944static void monitor_timeout(unsigned long arg)
945{
946	wake_up_process((struct task_struct *)arg);
947}
948
949/**
950 * ips_monitor - temp/power monitoring thread
951 * @data: ips driver structure
952 *
953 * This is the main function for the IPS driver.  It monitors power and
954 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
955 *
956 * We keep a 5s moving average of power consumption and tempurature.  Using
957 * that data, along with CPU vs GPU preference, we adjust the power clamps
958 * up or down.
959 */
960static int ips_monitor(void *data)
961{
962	struct ips_driver *ips = data;
963	struct timer_list timer;
964	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
965	int i;
966	u32 *cpu_samples, *mchp_samples, old_cpu_power;
967	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
968	u8 cur_seqno, last_seqno;
969
970	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
976	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
977			!cpu_samples || !mchp_samples) {
978		dev_err(&ips->dev->dev,
979			"failed to allocate sample array, ips disabled\n");
980		kfree(mcp_samples);
981		kfree(ctv1_samples);
982		kfree(ctv2_samples);
983		kfree(mch_samples);
984		kfree(cpu_samples);
985		kfree(mchp_samples);
986		return -ENOMEM;
987	}
988
989	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
990		ITV_ME_SEQNO_SHIFT;
991	seqno_timestamp = get_jiffies_64();
992
993	old_cpu_power = thm_readl(THM_CEC);
994	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
995
996	/* Collect an initial average */
997	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
998		u32 mchp, cpu_power;
999		u16 val;
1000
1001		mcp_samples[i] = read_ptv(ips);
1002
1003		val = read_ctv(ips, 0);
1004		ctv1_samples[i] = val;
1005
1006		val = read_ctv(ips, 1);
1007		ctv2_samples[i] = val;
1008
1009		val = read_mgtv(ips);
1010		mch_samples[i] = val;
1011
1012		cpu_power = get_cpu_power(ips, &old_cpu_power,
1013					  IPS_SAMPLE_PERIOD);
1014		cpu_samples[i] = cpu_power;
1015
1016		if (ips->read_mch_val) {
1017			mchp = ips->read_mch_val();
1018			mchp_samples[i] = mchp;
1019		}
1020
1021		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1022		if (kthread_should_stop())
1023			break;
1024	}
1025
1026	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1027	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1028	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1029	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1030	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1031	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1032	kfree(mcp_samples);
1033	kfree(ctv1_samples);
1034	kfree(ctv2_samples);
1035	kfree(mch_samples);
1036	kfree(cpu_samples);
1037	kfree(mchp_samples);
1038
1039	/* Start the adjustment thread now that we have data */
1040	wake_up_process(ips->adjust);
1041
1042	/*
1043	 * Ok, now we have an initial avg.  From here on out, we track the
1044	 * running avg using a decaying average calculation.  This allows
1045	 * us to reduce the sample frequency if the CPU and GPU are idle.
1046	 */
1047	old_cpu_power = thm_readl(THM_CEC);
1048	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1049	last_sample_period = IPS_SAMPLE_PERIOD;
1050
1051	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1052					(unsigned long)current);
1053	do {
1054		u32 cpu_val, mch_val;
1055		u16 val;
1056
1057		/* MCP itself */
1058		val = read_ptv(ips);
1059		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1060
1061		/* Processor 0 */
1062		val = read_ctv(ips, 0);
1063		ips->ctv1_avg_temp =
1064			update_average_temp(ips->ctv1_avg_temp, val);
1065		/* Power */
1066		cpu_val = get_cpu_power(ips, &old_cpu_power,
1067					last_sample_period);
1068		ips->cpu_avg_power =
1069			update_average_power(ips->cpu_avg_power, cpu_val);
1070
1071		if (ips->second_cpu) {
1072			/* Processor 1 */
1073			val = read_ctv(ips, 1);
1074			ips->ctv2_avg_temp =
1075				update_average_temp(ips->ctv2_avg_temp, val);
1076		}
1077
1078		/* MCH */
1079		val = read_mgtv(ips);
1080		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1081		/* Power */
1082		if (ips->read_mch_val) {
1083			mch_val = ips->read_mch_val();
1084			ips->mch_avg_power =
1085				update_average_power(ips->mch_avg_power,
1086						     mch_val);
1087		}
1088
1089		/*
1090		 * Make sure ME is updating thermal regs.
1091		 * Note:
1092		 * If it's been more than a second since the last update,
1093		 * the ME is probably hung.
1094		 */
1095		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1096			ITV_ME_SEQNO_SHIFT;
1097		if (cur_seqno == last_seqno &&
1098		    time_after(jiffies, seqno_timestamp + HZ)) {
1099			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1100		} else {
1101			seqno_timestamp = get_jiffies_64();
1102			last_seqno = cur_seqno;
1103		}
1104
1105		last_msecs = jiffies_to_msecs(jiffies);
1106		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1107
1108		__set_current_state(TASK_INTERRUPTIBLE);
1109		mod_timer(&timer, expire);
1110		schedule();
1111
1112		/* Calculate actual sample period for power averaging */
1113		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1114		if (!last_sample_period)
1115			last_sample_period = 1;
1116	} while (!kthread_should_stop());
1117
1118	del_timer_sync(&timer);
1119	destroy_timer_on_stack(&timer);
1120
1121	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1122
1123	return 0;
1124}
1125
1126#if 0
1127#define THM_DUMPW(reg) \
1128	{ \
1129	u16 val = thm_readw(reg); \
1130	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1131	}
1132#define THM_DUMPL(reg) \
1133	{ \
1134	u32 val = thm_readl(reg); \
1135	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1136	}
1137#define THM_DUMPQ(reg) \
1138	{ \
1139	u64 val = thm_readq(reg); \
1140	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1141	}
1142
1143static void dump_thermal_info(struct ips_driver *ips)
1144{
1145	u16 ptl;
1146
1147	ptl = thm_readw(THM_PTL);
1148	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1149
1150	THM_DUMPW(THM_CTA);
1151	THM_DUMPW(THM_TRC);
1152	THM_DUMPW(THM_CTV1);
1153	THM_DUMPL(THM_STS);
1154	THM_DUMPW(THM_PTV);
1155	THM_DUMPQ(THM_MGTV);
1156}
1157#endif
1158
1159/**
1160 * ips_irq_handler - handle temperature triggers and other IPS events
1161 * @irq: irq number
1162 * @arg: unused
1163 *
1164 * Handle temperature limit trigger events, generally by lowering the clamps.
1165 * If we're at a critical limit, we clamp back to the lowest possible value
1166 * to prevent emergency shutdown.
1167 */
1168static irqreturn_t ips_irq_handler(int irq, void *arg)
1169{
1170	struct ips_driver *ips = arg;
1171	u8 tses = thm_readb(THM_TSES);
1172	u8 tes = thm_readb(THM_TES);
1173
1174	if (!tses && !tes)
1175		return IRQ_NONE;
1176
1177	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1178	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1179
1180	/* STS update from EC? */
1181	if (tes & 1) {
1182		u32 sts, tc1;
1183
1184		sts = thm_readl(THM_STS);
1185		tc1 = thm_readl(THM_TC1);
1186
1187		if (sts & STS_NVV) {
1188			spin_lock(&ips->turbo_status_lock);
1189			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1190				STS_PCPL_SHIFT;
1191			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1192				STS_GPL_SHIFT;
1193			/* ignore EC CPU vs GPU pref */
1194			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1195			/*
1196			 * Disable turbo for now, until we can figure
1197			 * out why the power figures are wrong
1198			 */
1199			ips->cpu_turbo_enabled = false;
1200			if (ips->gpu_busy)
1201				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1202			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1203				STS_PTL_SHIFT;
1204			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1205				STS_PPL_SHIFT;
1206			verify_limits(ips);
1207			spin_unlock(&ips->turbo_status_lock);
1208
1209			thm_writeb(THM_SEC, SEC_ACK);
1210		}
1211		thm_writeb(THM_TES, tes);
1212	}
1213
1214	/* Thermal trip */
1215	if (tses) {
1216		dev_warn(&ips->dev->dev,
1217			 "thermal trip occurred, tses: 0x%04x\n", tses);
1218		thm_writeb(THM_TSES, tses);
1219	}
1220
1221	return IRQ_HANDLED;
1222}
1223
1224#ifndef CONFIG_DEBUG_FS
1225static void ips_debugfs_init(struct ips_driver *ips) { return; }
1226static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1227#else
1228
1229/* Expose current state and limits in debugfs if possible */
1230
1231struct ips_debugfs_node {
1232	struct ips_driver *ips;
1233	char *name;
1234	int (*show)(struct seq_file *m, void *data);
1235};
1236
1237static int show_cpu_temp(struct seq_file *m, void *data)
1238{
1239	struct ips_driver *ips = m->private;
1240
1241	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1242		   ips->ctv1_avg_temp % 100);
1243
1244	return 0;
1245}
1246
1247static int show_cpu_power(struct seq_file *m, void *data)
1248{
1249	struct ips_driver *ips = m->private;
1250
1251	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1252
1253	return 0;
1254}
1255
1256static int show_cpu_clamp(struct seq_file *m, void *data)
1257{
1258	u64 turbo_override;
1259	int tdp, tdc;
1260
1261	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1262
1263	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1264	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1265
1266	/* Convert to .1W/A units */
1267	tdp = tdp * 10 / 8;
1268	tdc = tdc * 10 / 8;
1269
1270	/* Watts Amperes */
1271	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1272		   tdc / 10, tdc % 10);
1273
1274	return 0;
1275}
1276
1277static int show_mch_temp(struct seq_file *m, void *data)
1278{
1279	struct ips_driver *ips = m->private;
1280
1281	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1282		   ips->mch_avg_temp % 100);
1283
1284	return 0;
1285}
1286
1287static int show_mch_power(struct seq_file *m, void *data)
1288{
1289	struct ips_driver *ips = m->private;
1290
1291	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1292
1293	return 0;
1294}
1295
1296static struct ips_debugfs_node ips_debug_files[] = {
1297	{ NULL, "cpu_temp", show_cpu_temp },
1298	{ NULL, "cpu_power", show_cpu_power },
1299	{ NULL, "cpu_clamp", show_cpu_clamp },
1300	{ NULL, "mch_temp", show_mch_temp },
1301	{ NULL, "mch_power", show_mch_power },
1302};
1303
1304static int ips_debugfs_open(struct inode *inode, struct file *file)
1305{
1306	struct ips_debugfs_node *node = inode->i_private;
1307
1308	return single_open(file, node->show, node->ips);
1309}
1310
1311static const struct file_operations ips_debugfs_ops = {
1312	.owner = THIS_MODULE,
1313	.open = ips_debugfs_open,
1314	.read = seq_read,
1315	.llseek = seq_lseek,
1316	.release = single_release,
1317};
1318
1319static void ips_debugfs_cleanup(struct ips_driver *ips)
1320{
1321	if (ips->debug_root)
1322		debugfs_remove_recursive(ips->debug_root);
1323	return;
1324}
1325
1326static void ips_debugfs_init(struct ips_driver *ips)
1327{
1328	int i;
1329
1330	ips->debug_root = debugfs_create_dir("ips", NULL);
1331	if (!ips->debug_root) {
1332		dev_err(&ips->dev->dev,
1333			"failed to create debugfs entries: %ld\n",
1334			PTR_ERR(ips->debug_root));
1335		return;
1336	}
1337
1338	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1339		struct dentry *ent;
1340		struct ips_debugfs_node *node = &ips_debug_files[i];
1341
1342		node->ips = ips;
1343		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1344					  ips->debug_root, node,
1345					  &ips_debugfs_ops);
1346		if (!ent) {
1347			dev_err(&ips->dev->dev,
1348				"failed to create debug file: %ld\n",
1349				PTR_ERR(ent));
1350			goto err_cleanup;
1351		}
1352	}
1353
1354	return;
1355
1356err_cleanup:
1357	ips_debugfs_cleanup(ips);
1358	return;
1359}
1360#endif /* CONFIG_DEBUG_FS */
1361
1362/**
1363 * ips_detect_cpu - detect whether CPU supports IPS
1364 *
1365 * Walk our list and see if we're on a supported CPU.  If we find one,
1366 * return the limits for it.
1367 */
1368static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1369{
1370	u64 turbo_power, misc_en;
1371	struct ips_mcp_limits *limits = NULL;
1372	u16 tdp;
1373
1374	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1375		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1376		goto out;
1377	}
1378
1379	rdmsrl(IA32_MISC_ENABLE, misc_en);
1380	/*
1381	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1382	 * turbo manually or we'll get an illegal MSR access, even though
1383	 * turbo will still be available.
1384	 */
1385	if (misc_en & IA32_MISC_TURBO_EN)
1386		ips->turbo_toggle_allowed = true;
1387	else
1388		ips->turbo_toggle_allowed = false;
1389
1390	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1391		limits = &ips_sv_limits;
1392	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1393		limits = &ips_lv_limits;
1394	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1395		limits = &ips_ulv_limits;
1396	else {
1397		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1398		goto out;
1399	}
1400
1401	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1402	tdp = turbo_power & TURBO_TDP_MASK;
1403
1404	/* Sanity check TDP against CPU */
1405	if (limits->core_power_limit != (tdp / 8) * 1000) {
1406		dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1407			 tdp / 8, limits->core_power_limit / 1000);
1408		limits->core_power_limit = (tdp / 8) * 1000;
1409	}
1410
1411out:
1412	return limits;
1413}
1414
1415/**
1416 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1417 * @ips: IPS driver
1418 *
1419 * The i915 driver exports several interfaces to allow the IPS driver to
1420 * monitor and control graphics turbo mode.  If we can find them, we can
1421 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1422 * thermal and power limits in the MCP.
1423 */
1424static bool ips_get_i915_syms(struct ips_driver *ips)
1425{
1426	ips->read_mch_val = symbol_get(i915_read_mch_val);
1427	if (!ips->read_mch_val)
1428		goto out_err;
1429	ips->gpu_raise = symbol_get(i915_gpu_raise);
1430	if (!ips->gpu_raise)
1431		goto out_put_mch;
1432	ips->gpu_lower = symbol_get(i915_gpu_lower);
1433	if (!ips->gpu_lower)
1434		goto out_put_raise;
1435	ips->gpu_busy = symbol_get(i915_gpu_busy);
1436	if (!ips->gpu_busy)
1437		goto out_put_lower;
1438	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1439	if (!ips->gpu_turbo_disable)
1440		goto out_put_busy;
1441
1442	return true;
1443
1444out_put_busy:
1445	symbol_put(i915_gpu_busy);
1446out_put_lower:
1447	symbol_put(i915_gpu_lower);
1448out_put_raise:
1449	symbol_put(i915_gpu_raise);
1450out_put_mch:
1451	symbol_put(i915_read_mch_val);
1452out_err:
1453	return false;
1454}
1455
1456static bool
1457ips_gpu_turbo_enabled(struct ips_driver *ips)
1458{
1459	if (!ips->gpu_busy && late_i915_load) {
1460		if (ips_get_i915_syms(ips)) {
1461			dev_info(&ips->dev->dev,
1462				 "i915 driver attached, reenabling gpu turbo\n");
1463			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1464		}
1465	}
1466
1467	return ips->gpu_turbo_enabled;
1468}
1469
1470void
1471ips_link_to_i915_driver(void)
1472{
1473	/* We can't cleanly get at the various ips_driver structs from
1474	 * this caller (the i915 driver), so just set a flag saying
1475	 * that it's time to try getting the symbols again.
1476	 */
1477	late_i915_load = true;
1478}
1479EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1480
1481static const struct pci_device_id ips_id_table[] = {
1482	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1483		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1484	{ 0, }
1485};
1486
1487MODULE_DEVICE_TABLE(pci, ips_id_table);
1488
1489static int ips_blacklist_callback(const struct dmi_system_id *id)
1490{
1491	pr_info("Blacklisted intel_ips for %s\n", id->ident);
1492	return 1;
1493}
1494
1495static const struct dmi_system_id ips_blacklist[] = {
1496	{
1497		.callback = ips_blacklist_callback,
1498		.ident = "HP ProBook",
1499		.matches = {
1500			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1501			DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1502		},
1503	},
1504	{ }	/* terminating entry */
1505};
1506
1507static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1508{
1509	u64 platform_info;
1510	struct ips_driver *ips;
1511	u32 hts;
1512	int ret = 0;
1513	u16 htshi, trc, trc_required_mask;
1514	u8 tse;
1515
1516	if (dmi_check_system(ips_blacklist))
1517		return -ENODEV;
1518
1519	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1520	if (!ips)
1521		return -ENOMEM;
1522
1523	pci_set_drvdata(dev, ips);
1524	ips->dev = dev;
1525
1526	ips->limits = ips_detect_cpu(ips);
1527	if (!ips->limits) {
1528		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1529		ret = -ENXIO;
1530		goto error_free;
1531	}
1532
1533	spin_lock_init(&ips->turbo_status_lock);
1534
1535	ret = pci_enable_device(dev);
1536	if (ret) {
1537		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1538		goto error_free;
1539	}
1540
1541	if (!pci_resource_start(dev, 0)) {
1542		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1543		ret = -ENXIO;
1544		goto error_free;
1545	}
1546
1547	ret = pci_request_regions(dev, "ips thermal sensor");
1548	if (ret) {
1549		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1550		goto error_free;
1551	}
1552
1553
1554	ips->regmap = ioremap(pci_resource_start(dev, 0),
1555			      pci_resource_len(dev, 0));
1556	if (!ips->regmap) {
1557		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1558		ret = -EBUSY;
1559		goto error_release;
1560	}
1561
1562	tse = thm_readb(THM_TSE);
1563	if (tse != TSE_EN) {
1564		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1565		ret = -ENXIO;
1566		goto error_unmap;
1567	}
1568
1569	trc = thm_readw(THM_TRC);
1570	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1571	if ((trc & trc_required_mask) != trc_required_mask) {
1572		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1573		ret = -ENXIO;
1574		goto error_unmap;
1575	}
1576
1577	if (trc & TRC_CORE2_EN)
1578		ips->second_cpu = true;
1579
1580	update_turbo_limits(ips);
1581	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1582		ips->mcp_power_limit / 10);
1583	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1584		ips->core_power_limit / 10);
1585	/* BIOS may update limits at runtime */
1586	if (thm_readl(THM_PSC) & PSP_PBRT)
1587		ips->poll_turbo_status = true;
1588
1589	if (!ips_get_i915_syms(ips)) {
1590		dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1591		ips->gpu_turbo_enabled = false;
1592	} else {
1593		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1594		ips->gpu_turbo_enabled = true;
1595	}
1596
1597	/*
1598	 * Check PLATFORM_INFO MSR to make sure this chip is
1599	 * turbo capable.
1600	 */
1601	rdmsrl(PLATFORM_INFO, platform_info);
1602	if (!(platform_info & PLATFORM_TDP)) {
1603		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1604		ret = -ENODEV;
1605		goto error_unmap;
1606	}
1607
1608	/*
1609	 * IRQ handler for ME interaction
1610	 * Note: don't use MSI here as the PCH has bugs.
1611	 */
1612	pci_disable_msi(dev);
1613	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1614			  ips);
1615	if (ret) {
1616		dev_err(&dev->dev, "request irq failed, aborting\n");
1617		goto error_unmap;
1618	}
1619
1620	/* Enable aux, hot & critical interrupts */
1621	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1622		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1623	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1624
1625	/* Collect adjustment values */
1626	ips->cta_val = thm_readw(THM_CTA);
1627	ips->pta_val = thm_readw(THM_PTA);
1628	ips->mgta_val = thm_readw(THM_MGTA);
1629
1630	/* Save turbo limits & ratios */
1631	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1632
1633	ips_disable_cpu_turbo(ips);
1634	ips->cpu_turbo_enabled = false;
1635
1636	/* Create thermal adjust thread */
1637	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1638	if (IS_ERR(ips->adjust)) {
1639		dev_err(&dev->dev,
1640			"failed to create thermal adjust thread, aborting\n");
1641		ret = -ENOMEM;
1642		goto error_free_irq;
1643
1644	}
1645
1646	/*
1647	 * Set up the work queue and monitor thread. The monitor thread
1648	 * will wake up ips_adjust thread.
1649	 */
1650	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1651	if (IS_ERR(ips->monitor)) {
1652		dev_err(&dev->dev,
1653			"failed to create thermal monitor thread, aborting\n");
1654		ret = -ENOMEM;
1655		goto error_thread_cleanup;
1656	}
1657
1658	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1659		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1660	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1661
1662	thm_writew(THM_HTSHI, htshi);
1663	thm_writel(THM_HTS, hts);
1664
1665	ips_debugfs_init(ips);
1666
1667	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1668		 ips->mcp_temp_limit);
1669	return ret;
1670
1671error_thread_cleanup:
1672	kthread_stop(ips->adjust);
1673error_free_irq:
1674	free_irq(ips->dev->irq, ips);
1675error_unmap:
1676	iounmap(ips->regmap);
1677error_release:
1678	pci_release_regions(dev);
1679error_free:
1680	kfree(ips);
1681	return ret;
1682}
1683
1684static void ips_remove(struct pci_dev *dev)
1685{
1686	struct ips_driver *ips = pci_get_drvdata(dev);
1687	u64 turbo_override;
1688
1689	if (!ips)
1690		return;
1691
1692	ips_debugfs_cleanup(ips);
1693
1694	/* Release i915 driver */
1695	if (ips->read_mch_val)
1696		symbol_put(i915_read_mch_val);
1697	if (ips->gpu_raise)
1698		symbol_put(i915_gpu_raise);
1699	if (ips->gpu_lower)
1700		symbol_put(i915_gpu_lower);
1701	if (ips->gpu_busy)
1702		symbol_put(i915_gpu_busy);
1703	if (ips->gpu_turbo_disable)
1704		symbol_put(i915_gpu_turbo_disable);
1705
1706	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1708	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1709	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1710
1711	free_irq(ips->dev->irq, ips);
1712	if (ips->adjust)
1713		kthread_stop(ips->adjust);
1714	if (ips->monitor)
1715		kthread_stop(ips->monitor);
1716	iounmap(ips->regmap);
1717	pci_release_regions(dev);
1718	kfree(ips);
1719	dev_dbg(&dev->dev, "IPS driver removed\n");
1720}
1721
1722static void ips_shutdown(struct pci_dev *dev)
1723{
1724}
1725
1726static struct pci_driver ips_pci_driver = {
1727	.name = "intel ips",
1728	.id_table = ips_id_table,
1729	.probe = ips_probe,
1730	.remove = ips_remove,
1731	.shutdown = ips_shutdown,
1732};
1733
1734module_pci_driver(ips_pci_driver);
1735
1736MODULE_LICENSE("GPL");
1737MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1738MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1739