1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING.  If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 *  commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 *    communication.
30 *
31 */
32
33#include <linux/kernel.h>
34#include <linux/init.h>
35#include <linux/types.h>
36#include <linux/sched.h>
37#include <linux/pci.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/completion.h>
41#include <linux/blkdev.h>
42#include <linux/delay.h>
43#include <linux/kthread.h>
44#include <linux/interrupt.h>
45#include <linux/semaphore.h>
46#include <scsi/scsi.h>
47#include <scsi/scsi_host.h>
48#include <scsi/scsi_device.h>
49#include <scsi/scsi_cmnd.h>
50
51#include "aacraid.h"
52
53/**
54 *	fib_map_alloc		-	allocate the fib objects
55 *	@dev: Adapter to allocate for
56 *
57 *	Allocate and map the shared PCI space for the FIB blocks used to
58 *	talk to the Adaptec firmware.
59 */
60
61static int fib_map_alloc(struct aac_dev *dev)
62{
63	dprintk((KERN_INFO
64	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70		&dev->hw_fib_pa);
71	if (dev->hw_fib_va == NULL)
72		return -ENOMEM;
73	return 0;
74}
75
76/**
77 *	aac_fib_map_free		-	free the fib objects
78 *	@dev: Adapter to free
79 *
80 *	Free the PCI mappings and the memory allocated for FIB blocks
81 *	on this adapter.
82 */
83
84void aac_fib_map_free(struct aac_dev *dev)
85{
86	pci_free_consistent(dev->pdev,
87	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88	  dev->hw_fib_va, dev->hw_fib_pa);
89	dev->hw_fib_va = NULL;
90	dev->hw_fib_pa = 0;
91}
92
93/**
94 *	aac_fib_setup	-	setup the fibs
95 *	@dev: Adapter to set up
96 *
97 *	Allocate the PCI space for the fibs, map it and then initialise the
98 *	fib area, the unmapped fib data and also the free list
99 */
100
101int aac_fib_setup(struct aac_dev * dev)
102{
103	struct fib *fibptr;
104	struct hw_fib *hw_fib;
105	dma_addr_t hw_fib_pa;
106	int i;
107
108	while (((i = fib_map_alloc(dev)) == -ENOMEM)
109	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112	}
113	if (i<0)
114		return -ENOMEM;
115
116	/* 32 byte alignment for PMC */
117	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119		(hw_fib_pa - dev->hw_fib_pa));
120	dev->hw_fib_pa = hw_fib_pa;
121	memset(dev->hw_fib_va, 0,
122		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124
125	/* add Xport header */
126	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127		sizeof(struct aac_fib_xporthdr));
128	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129
130	hw_fib = dev->hw_fib_va;
131	hw_fib_pa = dev->hw_fib_pa;
132	/*
133	 *	Initialise the fibs
134	 */
135	for (i = 0, fibptr = &dev->fibs[i];
136		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137		i++, fibptr++)
138	{
139		fibptr->flags = 0;
140		fibptr->dev = dev;
141		fibptr->hw_fib_va = hw_fib;
142		fibptr->data = (void *) fibptr->hw_fib_va->data;
143		fibptr->next = fibptr+1;	/* Forward chain the fibs */
144		sema_init(&fibptr->event_wait, 0);
145		spin_lock_init(&fibptr->event_lock);
146		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
147		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
148		fibptr->hw_fib_pa = hw_fib_pa;
149		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
150			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
151		hw_fib_pa = hw_fib_pa +
152			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
153	}
154	/*
155	 *	Add the fib chain to the free list
156	 */
157	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
158	/*
159	 *	Enable this to debug out of queue space
160	 */
161	dev->free_fib = &dev->fibs[0];
162	return 0;
163}
164
165/**
166 *	aac_fib_alloc	-	allocate a fib
167 *	@dev: Adapter to allocate the fib for
168 *
169 *	Allocate a fib from the adapter fib pool. If the pool is empty we
170 *	return NULL.
171 */
172
173struct fib *aac_fib_alloc(struct aac_dev *dev)
174{
175	struct fib * fibptr;
176	unsigned long flags;
177	spin_lock_irqsave(&dev->fib_lock, flags);
178	fibptr = dev->free_fib;
179	if(!fibptr){
180		spin_unlock_irqrestore(&dev->fib_lock, flags);
181		return fibptr;
182	}
183	dev->free_fib = fibptr->next;
184	spin_unlock_irqrestore(&dev->fib_lock, flags);
185	/*
186	 *	Set the proper node type code and node byte size
187	 */
188	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
189	fibptr->size = sizeof(struct fib);
190	/*
191	 *	Null out fields that depend on being zero at the start of
192	 *	each I/O
193	 */
194	fibptr->hw_fib_va->header.XferState = 0;
195	fibptr->flags = 0;
196	fibptr->callback = NULL;
197	fibptr->callback_data = NULL;
198
199	return fibptr;
200}
201
202/**
203 *	aac_fib_free	-	free a fib
204 *	@fibptr: fib to free up
205 *
206 *	Frees up a fib and places it on the appropriate queue
207 */
208
209void aac_fib_free(struct fib *fibptr)
210{
211	unsigned long flags, flagsv;
212
213	spin_lock_irqsave(&fibptr->event_lock, flagsv);
214	if (fibptr->done == 2) {
215		spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
216		return;
217	}
218	spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
219
220	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
221	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
222		aac_config.fib_timeouts++;
223	if (fibptr->hw_fib_va->header.XferState != 0) {
224		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
225			 (void*)fibptr,
226			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
227	}
228	fibptr->next = fibptr->dev->free_fib;
229	fibptr->dev->free_fib = fibptr;
230	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
231}
232
233/**
234 *	aac_fib_init	-	initialise a fib
235 *	@fibptr: The fib to initialize
236 *
237 *	Set up the generic fib fields ready for use
238 */
239
240void aac_fib_init(struct fib *fibptr)
241{
242	struct hw_fib *hw_fib = fibptr->hw_fib_va;
243
244	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
245	hw_fib->header.StructType = FIB_MAGIC;
246	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
247	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
248	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
249	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
250}
251
252/**
253 *	fib_deallocate		-	deallocate a fib
254 *	@fibptr: fib to deallocate
255 *
256 *	Will deallocate and return to the free pool the FIB pointed to by the
257 *	caller.
258 */
259
260static void fib_dealloc(struct fib * fibptr)
261{
262	struct hw_fib *hw_fib = fibptr->hw_fib_va;
263	hw_fib->header.XferState = 0;
264}
265
266/*
267 *	Commuication primitives define and support the queuing method we use to
268 *	support host to adapter commuication. All queue accesses happen through
269 *	these routines and are the only routines which have a knowledge of the
270 *	 how these queues are implemented.
271 */
272
273/**
274 *	aac_get_entry		-	get a queue entry
275 *	@dev: Adapter
276 *	@qid: Queue Number
277 *	@entry: Entry return
278 *	@index: Index return
279 *	@nonotify: notification control
280 *
281 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
282 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
283 *	returned.
284 */
285
286static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
287{
288	struct aac_queue * q;
289	unsigned long idx;
290
291	/*
292	 *	All of the queues wrap when they reach the end, so we check
293	 *	to see if they have reached the end and if they have we just
294	 *	set the index back to zero. This is a wrap. You could or off
295	 *	the high bits in all updates but this is a bit faster I think.
296	 */
297
298	q = &dev->queues->queue[qid];
299
300	idx = *index = le32_to_cpu(*(q->headers.producer));
301	/* Interrupt Moderation, only interrupt for first two entries */
302	if (idx != le32_to_cpu(*(q->headers.consumer))) {
303		if (--idx == 0) {
304			if (qid == AdapNormCmdQueue)
305				idx = ADAP_NORM_CMD_ENTRIES;
306			else
307				idx = ADAP_NORM_RESP_ENTRIES;
308		}
309		if (idx != le32_to_cpu(*(q->headers.consumer)))
310			*nonotify = 1;
311	}
312
313	if (qid == AdapNormCmdQueue) {
314		if (*index >= ADAP_NORM_CMD_ENTRIES)
315			*index = 0; /* Wrap to front of the Producer Queue. */
316	} else {
317		if (*index >= ADAP_NORM_RESP_ENTRIES)
318			*index = 0; /* Wrap to front of the Producer Queue. */
319	}
320
321	/* Queue is full */
322	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
323		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
324				qid, q->numpending);
325		return 0;
326	} else {
327		*entry = q->base + *index;
328		return 1;
329	}
330}
331
332/**
333 *	aac_queue_get		-	get the next free QE
334 *	@dev: Adapter
335 *	@index: Returned index
336 *	@priority: Priority of fib
337 *	@fib: Fib to associate with the queue entry
338 *	@wait: Wait if queue full
339 *	@fibptr: Driver fib object to go with fib
340 *	@nonotify: Don't notify the adapter
341 *
342 *	Gets the next free QE off the requested priorty adapter command
343 *	queue and associates the Fib with the QE. The QE represented by
344 *	index is ready to insert on the queue when this routine returns
345 *	success.
346 */
347
348int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
349{
350	struct aac_entry * entry = NULL;
351	int map = 0;
352
353	if (qid == AdapNormCmdQueue) {
354		/*  if no entries wait for some if caller wants to */
355		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
356			printk(KERN_ERR "GetEntries failed\n");
357		}
358		/*
359		 *	Setup queue entry with a command, status and fib mapped
360		 */
361		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
362		map = 1;
363	} else {
364		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
365			/* if no entries wait for some if caller wants to */
366		}
367		/*
368		 *	Setup queue entry with command, status and fib mapped
369		 */
370		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
371		entry->addr = hw_fib->header.SenderFibAddress;
372			/* Restore adapters pointer to the FIB */
373		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
374		map = 0;
375	}
376	/*
377	 *	If MapFib is true than we need to map the Fib and put pointers
378	 *	in the queue entry.
379	 */
380	if (map)
381		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
382	return 0;
383}
384
385/*
386 *	Define the highest level of host to adapter communication routines.
387 *	These routines will support host to adapter FS commuication. These
388 *	routines have no knowledge of the commuication method used. This level
389 *	sends and receives FIBs. This level has no knowledge of how these FIBs
390 *	get passed back and forth.
391 */
392
393/**
394 *	aac_fib_send	-	send a fib to the adapter
395 *	@command: Command to send
396 *	@fibptr: The fib
397 *	@size: Size of fib data area
398 *	@priority: Priority of Fib
399 *	@wait: Async/sync select
400 *	@reply: True if a reply is wanted
401 *	@callback: Called with reply
402 *	@callback_data: Passed to callback
403 *
404 *	Sends the requested FIB to the adapter and optionally will wait for a
405 *	response FIB. If the caller does not wish to wait for a response than
406 *	an event to wait on must be supplied. This event will be set when a
407 *	response FIB is received from the adapter.
408 */
409
410int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
411		int priority, int wait, int reply, fib_callback callback,
412		void *callback_data)
413{
414	struct aac_dev * dev = fibptr->dev;
415	struct hw_fib * hw_fib = fibptr->hw_fib_va;
416	unsigned long flags = 0;
417	unsigned long qflags;
418	unsigned long mflags = 0;
419	unsigned long sflags = 0;
420
421
422	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
423		return -EBUSY;
424	/*
425	 *	There are 5 cases with the wait and response requested flags.
426	 *	The only invalid cases are if the caller requests to wait and
427	 *	does not request a response and if the caller does not want a
428	 *	response and the Fib is not allocated from pool. If a response
429	 *	is not requesed the Fib will just be deallocaed by the DPC
430	 *	routine when the response comes back from the adapter. No
431	 *	further processing will be done besides deleting the Fib. We
432	 *	will have a debug mode where the adapter can notify the host
433	 *	it had a problem and the host can log that fact.
434	 */
435	fibptr->flags = 0;
436	if (wait && !reply) {
437		return -EINVAL;
438	} else if (!wait && reply) {
439		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
440		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
441	} else if (!wait && !reply) {
442		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
443		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
444	} else if (wait && reply) {
445		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
446		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
447	}
448	/*
449	 *	Map the fib into 32bits by using the fib number
450	 */
451
452	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
453	hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
454	/*
455	 *	Set FIB state to indicate where it came from and if we want a
456	 *	response from the adapter. Also load the command from the
457	 *	caller.
458	 *
459	 *	Map the hw fib pointer as a 32bit value
460	 */
461	hw_fib->header.Command = cpu_to_le16(command);
462	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
463	/*
464	 *	Set the size of the Fib we want to send to the adapter
465	 */
466	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
468		return -EMSGSIZE;
469	}
470	/*
471	 *	Get a queue entry connect the FIB to it and send an notify
472	 *	the adapter a command is ready.
473	 */
474	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
475
476	/*
477	 *	Fill in the Callback and CallbackContext if we are not
478	 *	going to wait.
479	 */
480	if (!wait) {
481		fibptr->callback = callback;
482		fibptr->callback_data = callback_data;
483		fibptr->flags = FIB_CONTEXT_FLAG;
484	}
485
486	fibptr->done = 0;
487
488	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
489
490	dprintk((KERN_DEBUG "Fib contents:.\n"));
491	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
492	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
493	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
494	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
495	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
496	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
497
498	if (!dev->queues)
499		return -EBUSY;
500
501	if (wait) {
502
503		spin_lock_irqsave(&dev->manage_lock, mflags);
504		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
505			printk(KERN_INFO "No management Fibs Available:%d\n",
506						dev->management_fib_count);
507			spin_unlock_irqrestore(&dev->manage_lock, mflags);
508			return -EBUSY;
509		}
510		dev->management_fib_count++;
511		spin_unlock_irqrestore(&dev->manage_lock, mflags);
512		spin_lock_irqsave(&fibptr->event_lock, flags);
513	}
514
515	if (dev->sync_mode) {
516		if (wait)
517			spin_unlock_irqrestore(&fibptr->event_lock, flags);
518		spin_lock_irqsave(&dev->sync_lock, sflags);
519		if (dev->sync_fib) {
520			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
521			spin_unlock_irqrestore(&dev->sync_lock, sflags);
522		} else {
523			dev->sync_fib = fibptr;
524			spin_unlock_irqrestore(&dev->sync_lock, sflags);
525			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
526				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
527				NULL, NULL, NULL, NULL, NULL);
528		}
529		if (wait) {
530			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
531			if (down_interruptible(&fibptr->event_wait)) {
532				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
533				return -EFAULT;
534			}
535			return 0;
536		}
537		return -EINPROGRESS;
538	}
539
540	if (aac_adapter_deliver(fibptr) != 0) {
541		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
542		if (wait) {
543			spin_unlock_irqrestore(&fibptr->event_lock, flags);
544			spin_lock_irqsave(&dev->manage_lock, mflags);
545			dev->management_fib_count--;
546			spin_unlock_irqrestore(&dev->manage_lock, mflags);
547		}
548		return -EBUSY;
549	}
550
551
552	/*
553	 *	If the caller wanted us to wait for response wait now.
554	 */
555
556	if (wait) {
557		spin_unlock_irqrestore(&fibptr->event_lock, flags);
558		/* Only set for first known interruptable command */
559		if (wait < 0) {
560			/*
561			 * *VERY* Dangerous to time out a command, the
562			 * assumption is made that we have no hope of
563			 * functioning because an interrupt routing or other
564			 * hardware failure has occurred.
565			 */
566			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
567			while (down_trylock(&fibptr->event_wait)) {
568				int blink;
569				if (time_is_before_eq_jiffies(timeout)) {
570					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
571					spin_lock_irqsave(q->lock, qflags);
572					q->numpending--;
573					spin_unlock_irqrestore(q->lock, qflags);
574					if (wait == -1) {
575	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
576						  "Usually a result of a PCI interrupt routing problem;\n"
577						  "update mother board BIOS or consider utilizing one of\n"
578						  "the SAFE mode kernel options (acpi, apic etc)\n");
579					}
580					return -ETIMEDOUT;
581				}
582				if ((blink = aac_adapter_check_health(dev)) > 0) {
583					if (wait == -1) {
584	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
585						  "Usually a result of a serious unrecoverable hardware problem\n",
586						  blink);
587					}
588					return -EFAULT;
589				}
590				/* We used to udelay() here but that absorbed
591				 * a CPU when a timeout occured. Not very
592				 * useful. */
593				cpu_relax();
594			}
595		} else if (down_interruptible(&fibptr->event_wait)) {
596			/* Do nothing ... satisfy
597			 * down_interruptible must_check */
598		}
599
600		spin_lock_irqsave(&fibptr->event_lock, flags);
601		if (fibptr->done == 0) {
602			fibptr->done = 2; /* Tell interrupt we aborted */
603			spin_unlock_irqrestore(&fibptr->event_lock, flags);
604			return -ERESTARTSYS;
605		}
606		spin_unlock_irqrestore(&fibptr->event_lock, flags);
607		BUG_ON(fibptr->done == 0);
608
609		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
610			return -ETIMEDOUT;
611		return 0;
612	}
613	/*
614	 *	If the user does not want a response than return success otherwise
615	 *	return pending
616	 */
617	if (reply)
618		return -EINPROGRESS;
619	else
620		return 0;
621}
622
623/**
624 *	aac_consumer_get	-	get the top of the queue
625 *	@dev: Adapter
626 *	@q: Queue
627 *	@entry: Return entry
628 *
629 *	Will return a pointer to the entry on the top of the queue requested that
630 *	we are a consumer of, and return the address of the queue entry. It does
631 *	not change the state of the queue.
632 */
633
634int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
635{
636	u32 index;
637	int status;
638	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
639		status = 0;
640	} else {
641		/*
642		 *	The consumer index must be wrapped if we have reached
643		 *	the end of the queue, else we just use the entry
644		 *	pointed to by the header index
645		 */
646		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
647			index = 0;
648		else
649			index = le32_to_cpu(*q->headers.consumer);
650		*entry = q->base + index;
651		status = 1;
652	}
653	return(status);
654}
655
656/**
657 *	aac_consumer_free	-	free consumer entry
658 *	@dev: Adapter
659 *	@q: Queue
660 *	@qid: Queue ident
661 *
662 *	Frees up the current top of the queue we are a consumer of. If the
663 *	queue was full notify the producer that the queue is no longer full.
664 */
665
666void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
667{
668	int wasfull = 0;
669	u32 notify;
670
671	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
672		wasfull = 1;
673
674	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
675		*q->headers.consumer = cpu_to_le32(1);
676	else
677		le32_add_cpu(q->headers.consumer, 1);
678
679	if (wasfull) {
680		switch (qid) {
681
682		case HostNormCmdQueue:
683			notify = HostNormCmdNotFull;
684			break;
685		case HostNormRespQueue:
686			notify = HostNormRespNotFull;
687			break;
688		default:
689			BUG();
690			return;
691		}
692		aac_adapter_notify(dev, notify);
693	}
694}
695
696/**
697 *	aac_fib_adapter_complete	-	complete adapter issued fib
698 *	@fibptr: fib to complete
699 *	@size: size of fib
700 *
701 *	Will do all necessary work to complete a FIB that was sent from
702 *	the adapter.
703 */
704
705int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
706{
707	struct hw_fib * hw_fib = fibptr->hw_fib_va;
708	struct aac_dev * dev = fibptr->dev;
709	struct aac_queue * q;
710	unsigned long nointr = 0;
711	unsigned long qflags;
712
713	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
714	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
715		kfree(hw_fib);
716		return 0;
717	}
718
719	if (hw_fib->header.XferState == 0) {
720		if (dev->comm_interface == AAC_COMM_MESSAGE)
721			kfree(hw_fib);
722		return 0;
723	}
724	/*
725	 *	If we plan to do anything check the structure type first.
726	 */
727	if (hw_fib->header.StructType != FIB_MAGIC &&
728	    hw_fib->header.StructType != FIB_MAGIC2 &&
729	    hw_fib->header.StructType != FIB_MAGIC2_64) {
730		if (dev->comm_interface == AAC_COMM_MESSAGE)
731			kfree(hw_fib);
732		return -EINVAL;
733	}
734	/*
735	 *	This block handles the case where the adapter had sent us a
736	 *	command and we have finished processing the command. We
737	 *	call completeFib when we are done processing the command
738	 *	and want to send a response back to the adapter. This will
739	 *	send the completed cdb to the adapter.
740	 */
741	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
742		if (dev->comm_interface == AAC_COMM_MESSAGE) {
743			kfree (hw_fib);
744		} else {
745			u32 index;
746			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
747			if (size) {
748				size += sizeof(struct aac_fibhdr);
749				if (size > le16_to_cpu(hw_fib->header.SenderSize))
750					return -EMSGSIZE;
751				hw_fib->header.Size = cpu_to_le16(size);
752			}
753			q = &dev->queues->queue[AdapNormRespQueue];
754			spin_lock_irqsave(q->lock, qflags);
755			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
756			*(q->headers.producer) = cpu_to_le32(index + 1);
757			spin_unlock_irqrestore(q->lock, qflags);
758			if (!(nointr & (int)aac_config.irq_mod))
759				aac_adapter_notify(dev, AdapNormRespQueue);
760		}
761	} else {
762		printk(KERN_WARNING "aac_fib_adapter_complete: "
763			"Unknown xferstate detected.\n");
764		BUG();
765	}
766	return 0;
767}
768
769/**
770 *	aac_fib_complete	-	fib completion handler
771 *	@fib: FIB to complete
772 *
773 *	Will do all necessary work to complete a FIB.
774 */
775
776int aac_fib_complete(struct fib *fibptr)
777{
778	unsigned long flags;
779	struct hw_fib * hw_fib = fibptr->hw_fib_va;
780
781	/*
782	 *	Check for a fib which has already been completed
783	 */
784
785	if (hw_fib->header.XferState == 0)
786		return 0;
787	/*
788	 *	If we plan to do anything check the structure type first.
789	 */
790
791	if (hw_fib->header.StructType != FIB_MAGIC &&
792	    hw_fib->header.StructType != FIB_MAGIC2 &&
793	    hw_fib->header.StructType != FIB_MAGIC2_64)
794		return -EINVAL;
795	/*
796	 *	This block completes a cdb which orginated on the host and we
797	 *	just need to deallocate the cdb or reinit it. At this point the
798	 *	command is complete that we had sent to the adapter and this
799	 *	cdb could be reused.
800	 */
801	spin_lock_irqsave(&fibptr->event_lock, flags);
802	if (fibptr->done == 2) {
803		spin_unlock_irqrestore(&fibptr->event_lock, flags);
804		return 0;
805	}
806	spin_unlock_irqrestore(&fibptr->event_lock, flags);
807
808	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
809		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
810	{
811		fib_dealloc(fibptr);
812	}
813	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
814	{
815		/*
816		 *	This handles the case when the host has aborted the I/O
817		 *	to the adapter because the adapter is not responding
818		 */
819		fib_dealloc(fibptr);
820	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
821		fib_dealloc(fibptr);
822	} else {
823		BUG();
824	}
825	return 0;
826}
827
828/**
829 *	aac_printf	-	handle printf from firmware
830 *	@dev: Adapter
831 *	@val: Message info
832 *
833 *	Print a message passed to us by the controller firmware on the
834 *	Adaptec board
835 */
836
837void aac_printf(struct aac_dev *dev, u32 val)
838{
839	char *cp = dev->printfbuf;
840	if (dev->printf_enabled)
841	{
842		int length = val & 0xffff;
843		int level = (val >> 16) & 0xffff;
844
845		/*
846		 *	The size of the printfbuf is set in port.c
847		 *	There is no variable or define for it
848		 */
849		if (length > 255)
850			length = 255;
851		if (cp[length] != 0)
852			cp[length] = 0;
853		if (level == LOG_AAC_HIGH_ERROR)
854			printk(KERN_WARNING "%s:%s", dev->name, cp);
855		else
856			printk(KERN_INFO "%s:%s", dev->name, cp);
857	}
858	memset(cp, 0, 256);
859}
860
861
862/**
863 *	aac_handle_aif		-	Handle a message from the firmware
864 *	@dev: Which adapter this fib is from
865 *	@fibptr: Pointer to fibptr from adapter
866 *
867 *	This routine handles a driver notify fib from the adapter and
868 *	dispatches it to the appropriate routine for handling.
869 */
870
871#define AIF_SNIFF_TIMEOUT	(30*HZ)
872static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
873{
874	struct hw_fib * hw_fib = fibptr->hw_fib_va;
875	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
876	u32 channel, id, lun, container;
877	struct scsi_device *device;
878	enum {
879		NOTHING,
880		DELETE,
881		ADD,
882		CHANGE
883	} device_config_needed = NOTHING;
884
885	/* Sniff for container changes */
886
887	if (!dev || !dev->fsa_dev)
888		return;
889	container = channel = id = lun = (u32)-1;
890
891	/*
892	 *	We have set this up to try and minimize the number of
893	 * re-configures that take place. As a result of this when
894	 * certain AIF's come in we will set a flag waiting for another
895	 * type of AIF before setting the re-config flag.
896	 */
897	switch (le32_to_cpu(aifcmd->command)) {
898	case AifCmdDriverNotify:
899		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
900		/*
901		 *	Morph or Expand complete
902		 */
903		case AifDenMorphComplete:
904		case AifDenVolumeExtendComplete:
905			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
906			if (container >= dev->maximum_num_containers)
907				break;
908
909			/*
910			 *	Find the scsi_device associated with the SCSI
911			 * address. Make sure we have the right array, and if
912			 * so set the flag to initiate a new re-config once we
913			 * see an AifEnConfigChange AIF come through.
914			 */
915
916			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
917				device = scsi_device_lookup(dev->scsi_host_ptr,
918					CONTAINER_TO_CHANNEL(container),
919					CONTAINER_TO_ID(container),
920					CONTAINER_TO_LUN(container));
921				if (device) {
922					dev->fsa_dev[container].config_needed = CHANGE;
923					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
924					dev->fsa_dev[container].config_waiting_stamp = jiffies;
925					scsi_device_put(device);
926				}
927			}
928		}
929
930		/*
931		 *	If we are waiting on something and this happens to be
932		 * that thing then set the re-configure flag.
933		 */
934		if (container != (u32)-1) {
935			if (container >= dev->maximum_num_containers)
936				break;
937			if ((dev->fsa_dev[container].config_waiting_on ==
938			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
939			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
940				dev->fsa_dev[container].config_waiting_on = 0;
941		} else for (container = 0;
942		    container < dev->maximum_num_containers; ++container) {
943			if ((dev->fsa_dev[container].config_waiting_on ==
944			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
945			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
946				dev->fsa_dev[container].config_waiting_on = 0;
947		}
948		break;
949
950	case AifCmdEventNotify:
951		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
952		case AifEnBatteryEvent:
953			dev->cache_protected =
954				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
955			break;
956		/*
957		 *	Add an Array.
958		 */
959		case AifEnAddContainer:
960			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
961			if (container >= dev->maximum_num_containers)
962				break;
963			dev->fsa_dev[container].config_needed = ADD;
964			dev->fsa_dev[container].config_waiting_on =
965				AifEnConfigChange;
966			dev->fsa_dev[container].config_waiting_stamp = jiffies;
967			break;
968
969		/*
970		 *	Delete an Array.
971		 */
972		case AifEnDeleteContainer:
973			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
974			if (container >= dev->maximum_num_containers)
975				break;
976			dev->fsa_dev[container].config_needed = DELETE;
977			dev->fsa_dev[container].config_waiting_on =
978				AifEnConfigChange;
979			dev->fsa_dev[container].config_waiting_stamp = jiffies;
980			break;
981
982		/*
983		 *	Container change detected. If we currently are not
984		 * waiting on something else, setup to wait on a Config Change.
985		 */
986		case AifEnContainerChange:
987			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
988			if (container >= dev->maximum_num_containers)
989				break;
990			if (dev->fsa_dev[container].config_waiting_on &&
991			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
992				break;
993			dev->fsa_dev[container].config_needed = CHANGE;
994			dev->fsa_dev[container].config_waiting_on =
995				AifEnConfigChange;
996			dev->fsa_dev[container].config_waiting_stamp = jiffies;
997			break;
998
999		case AifEnConfigChange:
1000			break;
1001
1002		case AifEnAddJBOD:
1003		case AifEnDeleteJBOD:
1004			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1005			if ((container >> 28)) {
1006				container = (u32)-1;
1007				break;
1008			}
1009			channel = (container >> 24) & 0xF;
1010			if (channel >= dev->maximum_num_channels) {
1011				container = (u32)-1;
1012				break;
1013			}
1014			id = container & 0xFFFF;
1015			if (id >= dev->maximum_num_physicals) {
1016				container = (u32)-1;
1017				break;
1018			}
1019			lun = (container >> 16) & 0xFF;
1020			container = (u32)-1;
1021			channel = aac_phys_to_logical(channel);
1022			device_config_needed =
1023			  (((__le32 *)aifcmd->data)[0] ==
1024			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1025			if (device_config_needed == ADD) {
1026				device = scsi_device_lookup(dev->scsi_host_ptr,
1027					channel,
1028					id,
1029					lun);
1030				if (device) {
1031					scsi_remove_device(device);
1032					scsi_device_put(device);
1033				}
1034			}
1035			break;
1036
1037		case AifEnEnclosureManagement:
1038			/*
1039			 * If in JBOD mode, automatic exposure of new
1040			 * physical target to be suppressed until configured.
1041			 */
1042			if (dev->jbod)
1043				break;
1044			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1045			case EM_DRIVE_INSERTION:
1046			case EM_DRIVE_REMOVAL:
1047				container = le32_to_cpu(
1048					((__le32 *)aifcmd->data)[2]);
1049				if ((container >> 28)) {
1050					container = (u32)-1;
1051					break;
1052				}
1053				channel = (container >> 24) & 0xF;
1054				if (channel >= dev->maximum_num_channels) {
1055					container = (u32)-1;
1056					break;
1057				}
1058				id = container & 0xFFFF;
1059				lun = (container >> 16) & 0xFF;
1060				container = (u32)-1;
1061				if (id >= dev->maximum_num_physicals) {
1062					/* legacy dev_t ? */
1063					if ((0x2000 <= id) || lun || channel ||
1064					  ((channel = (id >> 7) & 0x3F) >=
1065					  dev->maximum_num_channels))
1066						break;
1067					lun = (id >> 4) & 7;
1068					id &= 0xF;
1069				}
1070				channel = aac_phys_to_logical(channel);
1071				device_config_needed =
1072				  (((__le32 *)aifcmd->data)[3]
1073				    == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1074				  ADD : DELETE;
1075				break;
1076			}
1077			break;
1078		}
1079
1080		/*
1081		 *	If we are waiting on something and this happens to be
1082		 * that thing then set the re-configure flag.
1083		 */
1084		if (container != (u32)-1) {
1085			if (container >= dev->maximum_num_containers)
1086				break;
1087			if ((dev->fsa_dev[container].config_waiting_on ==
1088			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1089			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1090				dev->fsa_dev[container].config_waiting_on = 0;
1091		} else for (container = 0;
1092		    container < dev->maximum_num_containers; ++container) {
1093			if ((dev->fsa_dev[container].config_waiting_on ==
1094			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1095			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1096				dev->fsa_dev[container].config_waiting_on = 0;
1097		}
1098		break;
1099
1100	case AifCmdJobProgress:
1101		/*
1102		 *	These are job progress AIF's. When a Clear is being
1103		 * done on a container it is initially created then hidden from
1104		 * the OS. When the clear completes we don't get a config
1105		 * change so we monitor the job status complete on a clear then
1106		 * wait for a container change.
1107		 */
1108
1109		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1110		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1111		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1112			for (container = 0;
1113			    container < dev->maximum_num_containers;
1114			    ++container) {
1115				/*
1116				 * Stomp on all config sequencing for all
1117				 * containers?
1118				 */
1119				dev->fsa_dev[container].config_waiting_on =
1120					AifEnContainerChange;
1121				dev->fsa_dev[container].config_needed = ADD;
1122				dev->fsa_dev[container].config_waiting_stamp =
1123					jiffies;
1124			}
1125		}
1126		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1127		    ((__le32 *)aifcmd->data)[6] == 0 &&
1128		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1129			for (container = 0;
1130			    container < dev->maximum_num_containers;
1131			    ++container) {
1132				/*
1133				 * Stomp on all config sequencing for all
1134				 * containers?
1135				 */
1136				dev->fsa_dev[container].config_waiting_on =
1137					AifEnContainerChange;
1138				dev->fsa_dev[container].config_needed = DELETE;
1139				dev->fsa_dev[container].config_waiting_stamp =
1140					jiffies;
1141			}
1142		}
1143		break;
1144	}
1145
1146	container = 0;
1147retry_next:
1148	if (device_config_needed == NOTHING)
1149	for (; container < dev->maximum_num_containers; ++container) {
1150		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1151			(dev->fsa_dev[container].config_needed != NOTHING) &&
1152			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1153			device_config_needed =
1154				dev->fsa_dev[container].config_needed;
1155			dev->fsa_dev[container].config_needed = NOTHING;
1156			channel = CONTAINER_TO_CHANNEL(container);
1157			id = CONTAINER_TO_ID(container);
1158			lun = CONTAINER_TO_LUN(container);
1159			break;
1160		}
1161	}
1162	if (device_config_needed == NOTHING)
1163		return;
1164
1165	/*
1166	 *	If we decided that a re-configuration needs to be done,
1167	 * schedule it here on the way out the door, please close the door
1168	 * behind you.
1169	 */
1170
1171	/*
1172	 *	Find the scsi_device associated with the SCSI address,
1173	 * and mark it as changed, invalidating the cache. This deals
1174	 * with changes to existing device IDs.
1175	 */
1176
1177	if (!dev || !dev->scsi_host_ptr)
1178		return;
1179	/*
1180	 * force reload of disk info via aac_probe_container
1181	 */
1182	if ((channel == CONTAINER_CHANNEL) &&
1183	  (device_config_needed != NOTHING)) {
1184		if (dev->fsa_dev[container].valid == 1)
1185			dev->fsa_dev[container].valid = 2;
1186		aac_probe_container(dev, container);
1187	}
1188	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1189	if (device) {
1190		switch (device_config_needed) {
1191		case DELETE:
1192#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1193			scsi_remove_device(device);
1194#else
1195			if (scsi_device_online(device)) {
1196				scsi_device_set_state(device, SDEV_OFFLINE);
1197				sdev_printk(KERN_INFO, device,
1198					"Device offlined - %s\n",
1199					(channel == CONTAINER_CHANNEL) ?
1200						"array deleted" :
1201						"enclosure services event");
1202			}
1203#endif
1204			break;
1205		case ADD:
1206			if (!scsi_device_online(device)) {
1207				sdev_printk(KERN_INFO, device,
1208					"Device online - %s\n",
1209					(channel == CONTAINER_CHANNEL) ?
1210						"array created" :
1211						"enclosure services event");
1212				scsi_device_set_state(device, SDEV_RUNNING);
1213			}
1214			/* FALLTHRU */
1215		case CHANGE:
1216			if ((channel == CONTAINER_CHANNEL)
1217			 && (!dev->fsa_dev[container].valid)) {
1218#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1219				scsi_remove_device(device);
1220#else
1221				if (!scsi_device_online(device))
1222					break;
1223				scsi_device_set_state(device, SDEV_OFFLINE);
1224				sdev_printk(KERN_INFO, device,
1225					"Device offlined - %s\n",
1226					"array failed");
1227#endif
1228				break;
1229			}
1230			scsi_rescan_device(&device->sdev_gendev);
1231
1232		default:
1233			break;
1234		}
1235		scsi_device_put(device);
1236		device_config_needed = NOTHING;
1237	}
1238	if (device_config_needed == ADD)
1239		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1240	if (channel == CONTAINER_CHANNEL) {
1241		container++;
1242		device_config_needed = NOTHING;
1243		goto retry_next;
1244	}
1245}
1246
1247static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1248{
1249	int index, quirks;
1250	int retval;
1251	struct Scsi_Host *host;
1252	struct scsi_device *dev;
1253	struct scsi_cmnd *command;
1254	struct scsi_cmnd *command_list;
1255	int jafo = 0;
1256
1257	/*
1258	 * Assumptions:
1259	 *	- host is locked, unless called by the aacraid thread.
1260	 *	  (a matter of convenience, due to legacy issues surrounding
1261	 *	  eh_host_adapter_reset).
1262	 *	- in_reset is asserted, so no new i/o is getting to the
1263	 *	  card.
1264	 *	- The card is dead, or will be very shortly ;-/ so no new
1265	 *	  commands are completing in the interrupt service.
1266	 */
1267	host = aac->scsi_host_ptr;
1268	scsi_block_requests(host);
1269	aac_adapter_disable_int(aac);
1270	if (aac->thread->pid != current->pid) {
1271		spin_unlock_irq(host->host_lock);
1272		kthread_stop(aac->thread);
1273		jafo = 1;
1274	}
1275
1276	/*
1277	 *	If a positive health, means in a known DEAD PANIC
1278	 * state and the adapter could be reset to `try again'.
1279	 */
1280	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1281
1282	if (retval)
1283		goto out;
1284
1285	/*
1286	 *	Loop through the fibs, close the synchronous FIBS
1287	 */
1288	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1289		struct fib *fib = &aac->fibs[index];
1290		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1291		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1292			unsigned long flagv;
1293			spin_lock_irqsave(&fib->event_lock, flagv);
1294			up(&fib->event_wait);
1295			spin_unlock_irqrestore(&fib->event_lock, flagv);
1296			schedule();
1297			retval = 0;
1298		}
1299	}
1300	/* Give some extra time for ioctls to complete. */
1301	if (retval == 0)
1302		ssleep(2);
1303	index = aac->cardtype;
1304
1305	/*
1306	 * Re-initialize the adapter, first free resources, then carefully
1307	 * apply the initialization sequence to come back again. Only risk
1308	 * is a change in Firmware dropping cache, it is assumed the caller
1309	 * will ensure that i/o is queisced and the card is flushed in that
1310	 * case.
1311	 */
1312	aac_fib_map_free(aac);
1313	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1314	aac->comm_addr = NULL;
1315	aac->comm_phys = 0;
1316	kfree(aac->queues);
1317	aac->queues = NULL;
1318	free_irq(aac->pdev->irq, aac);
1319	if (aac->msi)
1320		pci_disable_msi(aac->pdev);
1321	kfree(aac->fsa_dev);
1322	aac->fsa_dev = NULL;
1323	quirks = aac_get_driver_ident(index)->quirks;
1324	if (quirks & AAC_QUIRK_31BIT) {
1325		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1326		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1327			goto out;
1328	} else {
1329		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1330		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1331			goto out;
1332	}
1333	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1334		goto out;
1335	if (quirks & AAC_QUIRK_31BIT)
1336		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1337			goto out;
1338	if (jafo) {
1339		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1340					  aac->name);
1341		if (IS_ERR(aac->thread)) {
1342			retval = PTR_ERR(aac->thread);
1343			goto out;
1344		}
1345	}
1346	(void)aac_get_adapter_info(aac);
1347	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1348		host->sg_tablesize = 34;
1349		host->max_sectors = (host->sg_tablesize * 8) + 112;
1350	}
1351	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1352		host->sg_tablesize = 17;
1353		host->max_sectors = (host->sg_tablesize * 8) + 112;
1354	}
1355	aac_get_config_status(aac, 1);
1356	aac_get_containers(aac);
1357	/*
1358	 * This is where the assumption that the Adapter is quiesced
1359	 * is important.
1360	 */
1361	command_list = NULL;
1362	__shost_for_each_device(dev, host) {
1363		unsigned long flags;
1364		spin_lock_irqsave(&dev->list_lock, flags);
1365		list_for_each_entry(command, &dev->cmd_list, list)
1366			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1367				command->SCp.buffer = (struct scatterlist *)command_list;
1368				command_list = command;
1369			}
1370		spin_unlock_irqrestore(&dev->list_lock, flags);
1371	}
1372	while ((command = command_list)) {
1373		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1374		command->SCp.buffer = NULL;
1375		command->result = DID_OK << 16
1376		  | COMMAND_COMPLETE << 8
1377		  | SAM_STAT_TASK_SET_FULL;
1378		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1379		command->scsi_done(command);
1380	}
1381	retval = 0;
1382
1383out:
1384	aac->in_reset = 0;
1385	scsi_unblock_requests(host);
1386	if (jafo) {
1387		spin_lock_irq(host->host_lock);
1388	}
1389	return retval;
1390}
1391
1392int aac_reset_adapter(struct aac_dev * aac, int forced)
1393{
1394	unsigned long flagv = 0;
1395	int retval;
1396	struct Scsi_Host * host;
1397
1398	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1399		return -EBUSY;
1400
1401	if (aac->in_reset) {
1402		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1403		return -EBUSY;
1404	}
1405	aac->in_reset = 1;
1406	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1407
1408	/*
1409	 * Wait for all commands to complete to this specific
1410	 * target (block maximum 60 seconds). Although not necessary,
1411	 * it does make us a good storage citizen.
1412	 */
1413	host = aac->scsi_host_ptr;
1414	scsi_block_requests(host);
1415	if (forced < 2) for (retval = 60; retval; --retval) {
1416		struct scsi_device * dev;
1417		struct scsi_cmnd * command;
1418		int active = 0;
1419
1420		__shost_for_each_device(dev, host) {
1421			spin_lock_irqsave(&dev->list_lock, flagv);
1422			list_for_each_entry(command, &dev->cmd_list, list) {
1423				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1424					active++;
1425					break;
1426				}
1427			}
1428			spin_unlock_irqrestore(&dev->list_lock, flagv);
1429			if (active)
1430				break;
1431
1432		}
1433		/*
1434		 * We can exit If all the commands are complete
1435		 */
1436		if (active == 0)
1437			break;
1438		ssleep(1);
1439	}
1440
1441	/* Quiesce build, flush cache, write through mode */
1442	if (forced < 2)
1443		aac_send_shutdown(aac);
1444	spin_lock_irqsave(host->host_lock, flagv);
1445	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1446	spin_unlock_irqrestore(host->host_lock, flagv);
1447
1448	if ((forced < 2) && (retval == -ENODEV)) {
1449		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1450		struct fib * fibctx = aac_fib_alloc(aac);
1451		if (fibctx) {
1452			struct aac_pause *cmd;
1453			int status;
1454
1455			aac_fib_init(fibctx);
1456
1457			cmd = (struct aac_pause *) fib_data(fibctx);
1458
1459			cmd->command = cpu_to_le32(VM_ContainerConfig);
1460			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1461			cmd->timeout = cpu_to_le32(1);
1462			cmd->min = cpu_to_le32(1);
1463			cmd->noRescan = cpu_to_le32(1);
1464			cmd->count = cpu_to_le32(0);
1465
1466			status = aac_fib_send(ContainerCommand,
1467			  fibctx,
1468			  sizeof(struct aac_pause),
1469			  FsaNormal,
1470			  -2 /* Timeout silently */, 1,
1471			  NULL, NULL);
1472
1473			if (status >= 0)
1474				aac_fib_complete(fibctx);
1475			/* FIB should be freed only after getting
1476			 * the response from the F/W */
1477			if (status != -ERESTARTSYS)
1478				aac_fib_free(fibctx);
1479		}
1480	}
1481
1482	return retval;
1483}
1484
1485int aac_check_health(struct aac_dev * aac)
1486{
1487	int BlinkLED;
1488	unsigned long time_now, flagv = 0;
1489	struct list_head * entry;
1490	struct Scsi_Host * host;
1491
1492	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1493	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1494		return 0;
1495
1496	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1497		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1498		return 0; /* OK */
1499	}
1500
1501	aac->in_reset = 1;
1502
1503	/* Fake up an AIF:
1504	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1505	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1506	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1507	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1508	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1509	 *	aac.aifcmd.data[3] = BlinkLED
1510	 */
1511
1512	time_now = jiffies/HZ;
1513	entry = aac->fib_list.next;
1514
1515	/*
1516	 * For each Context that is on the
1517	 * fibctxList, make a copy of the
1518	 * fib, and then set the event to wake up the
1519	 * thread that is waiting for it.
1520	 */
1521	while (entry != &aac->fib_list) {
1522		/*
1523		 * Extract the fibctx
1524		 */
1525		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1526		struct hw_fib * hw_fib;
1527		struct fib * fib;
1528		/*
1529		 * Check if the queue is getting
1530		 * backlogged
1531		 */
1532		if (fibctx->count > 20) {
1533			/*
1534			 * It's *not* jiffies folks,
1535			 * but jiffies / HZ, so do not
1536			 * panic ...
1537			 */
1538			u32 time_last = fibctx->jiffies;
1539			/*
1540			 * Has it been > 2 minutes
1541			 * since the last read off
1542			 * the queue?
1543			 */
1544			if ((time_now - time_last) > aif_timeout) {
1545				entry = entry->next;
1546				aac_close_fib_context(aac, fibctx);
1547				continue;
1548			}
1549		}
1550		/*
1551		 * Warning: no sleep allowed while
1552		 * holding spinlock
1553		 */
1554		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1555		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1556		if (fib && hw_fib) {
1557			struct aac_aifcmd * aif;
1558
1559			fib->hw_fib_va = hw_fib;
1560			fib->dev = aac;
1561			aac_fib_init(fib);
1562			fib->type = FSAFS_NTC_FIB_CONTEXT;
1563			fib->size = sizeof (struct fib);
1564			fib->data = hw_fib->data;
1565			aif = (struct aac_aifcmd *)hw_fib->data;
1566			aif->command = cpu_to_le32(AifCmdEventNotify);
1567			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1568			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1569			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1570			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1571			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1572
1573			/*
1574			 * Put the FIB onto the
1575			 * fibctx's fibs
1576			 */
1577			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1578			fibctx->count++;
1579			/*
1580			 * Set the event to wake up the
1581			 * thread that will waiting.
1582			 */
1583			up(&fibctx->wait_sem);
1584		} else {
1585			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1586			kfree(fib);
1587			kfree(hw_fib);
1588		}
1589		entry = entry->next;
1590	}
1591
1592	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1593
1594	if (BlinkLED < 0) {
1595		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1596		goto out;
1597	}
1598
1599	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1600
1601	if (!aac_check_reset || ((aac_check_reset == 1) &&
1602		(aac->supplement_adapter_info.SupportedOptions2 &
1603			AAC_OPTION_IGNORE_RESET)))
1604		goto out;
1605	host = aac->scsi_host_ptr;
1606	if (aac->thread->pid != current->pid)
1607		spin_lock_irqsave(host->host_lock, flagv);
1608	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1609	if (aac->thread->pid != current->pid)
1610		spin_unlock_irqrestore(host->host_lock, flagv);
1611	return BlinkLED;
1612
1613out:
1614	aac->in_reset = 0;
1615	return BlinkLED;
1616}
1617
1618
1619/**
1620 *	aac_command_thread	-	command processing thread
1621 *	@dev: Adapter to monitor
1622 *
1623 *	Waits on the commandready event in it's queue. When the event gets set
1624 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1625 *	until the queue is empty. When the queue is empty it will wait for
1626 *	more FIBs.
1627 */
1628
1629int aac_command_thread(void *data)
1630{
1631	struct aac_dev *dev = data;
1632	struct hw_fib *hw_fib, *hw_newfib;
1633	struct fib *fib, *newfib;
1634	struct aac_fib_context *fibctx;
1635	unsigned long flags;
1636	DECLARE_WAITQUEUE(wait, current);
1637	unsigned long next_jiffies = jiffies + HZ;
1638	unsigned long next_check_jiffies = next_jiffies;
1639	long difference = HZ;
1640
1641	/*
1642	 *	We can only have one thread per adapter for AIF's.
1643	 */
1644	if (dev->aif_thread)
1645		return -EINVAL;
1646
1647	/*
1648	 *	Let the DPC know it has a place to send the AIF's to.
1649	 */
1650	dev->aif_thread = 1;
1651	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1652	set_current_state(TASK_INTERRUPTIBLE);
1653	dprintk ((KERN_INFO "aac_command_thread start\n"));
1654	while (1) {
1655		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1656		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1657			struct list_head *entry;
1658			struct aac_aifcmd * aifcmd;
1659
1660			set_current_state(TASK_RUNNING);
1661
1662			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1663			list_del(entry);
1664
1665			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1666			fib = list_entry(entry, struct fib, fiblink);
1667			/*
1668			 *	We will process the FIB here or pass it to a
1669			 *	worker thread that is TBD. We Really can't
1670			 *	do anything at this point since we don't have
1671			 *	anything defined for this thread to do.
1672			 */
1673			hw_fib = fib->hw_fib_va;
1674			memset(fib, 0, sizeof(struct fib));
1675			fib->type = FSAFS_NTC_FIB_CONTEXT;
1676			fib->size = sizeof(struct fib);
1677			fib->hw_fib_va = hw_fib;
1678			fib->data = hw_fib->data;
1679			fib->dev = dev;
1680			/*
1681			 *	We only handle AifRequest fibs from the adapter.
1682			 */
1683			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1684			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1685				/* Handle Driver Notify Events */
1686				aac_handle_aif(dev, fib);
1687				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1688				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1689			} else {
1690				/* The u32 here is important and intended. We are using
1691				   32bit wrapping time to fit the adapter field */
1692
1693				u32 time_now, time_last;
1694				unsigned long flagv;
1695				unsigned num;
1696				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1697				struct fib ** fib_pool, ** fib_p;
1698
1699				/* Sniff events */
1700				if ((aifcmd->command ==
1701				     cpu_to_le32(AifCmdEventNotify)) ||
1702				    (aifcmd->command ==
1703				     cpu_to_le32(AifCmdJobProgress))) {
1704					aac_handle_aif(dev, fib);
1705				}
1706
1707				time_now = jiffies/HZ;
1708
1709				/*
1710				 * Warning: no sleep allowed while
1711				 * holding spinlock. We take the estimate
1712				 * and pre-allocate a set of fibs outside the
1713				 * lock.
1714				 */
1715				num = le32_to_cpu(dev->init->AdapterFibsSize)
1716				    / sizeof(struct hw_fib); /* some extra */
1717				spin_lock_irqsave(&dev->fib_lock, flagv);
1718				entry = dev->fib_list.next;
1719				while (entry != &dev->fib_list) {
1720					entry = entry->next;
1721					++num;
1722				}
1723				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1724				hw_fib_pool = NULL;
1725				fib_pool = NULL;
1726				if (num
1727				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1728				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1729					hw_fib_p = hw_fib_pool;
1730					fib_p = fib_pool;
1731					while (hw_fib_p < &hw_fib_pool[num]) {
1732						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1733							--hw_fib_p;
1734							break;
1735						}
1736						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1737							kfree(*(--hw_fib_p));
1738							break;
1739						}
1740					}
1741					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1742						kfree(fib_pool);
1743						fib_pool = NULL;
1744						kfree(hw_fib_pool);
1745						hw_fib_pool = NULL;
1746					}
1747				} else {
1748					kfree(hw_fib_pool);
1749					hw_fib_pool = NULL;
1750				}
1751				spin_lock_irqsave(&dev->fib_lock, flagv);
1752				entry = dev->fib_list.next;
1753				/*
1754				 * For each Context that is on the
1755				 * fibctxList, make a copy of the
1756				 * fib, and then set the event to wake up the
1757				 * thread that is waiting for it.
1758				 */
1759				hw_fib_p = hw_fib_pool;
1760				fib_p = fib_pool;
1761				while (entry != &dev->fib_list) {
1762					/*
1763					 * Extract the fibctx
1764					 */
1765					fibctx = list_entry(entry, struct aac_fib_context, next);
1766					/*
1767					 * Check if the queue is getting
1768					 * backlogged
1769					 */
1770					if (fibctx->count > 20)
1771					{
1772						/*
1773						 * It's *not* jiffies folks,
1774						 * but jiffies / HZ so do not
1775						 * panic ...
1776						 */
1777						time_last = fibctx->jiffies;
1778						/*
1779						 * Has it been > 2 minutes
1780						 * since the last read off
1781						 * the queue?
1782						 */
1783						if ((time_now - time_last) > aif_timeout) {
1784							entry = entry->next;
1785							aac_close_fib_context(dev, fibctx);
1786							continue;
1787						}
1788					}
1789					/*
1790					 * Warning: no sleep allowed while
1791					 * holding spinlock
1792					 */
1793					if (hw_fib_p < &hw_fib_pool[num]) {
1794						hw_newfib = *hw_fib_p;
1795						*(hw_fib_p++) = NULL;
1796						newfib = *fib_p;
1797						*(fib_p++) = NULL;
1798						/*
1799						 * Make the copy of the FIB
1800						 */
1801						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1802						memcpy(newfib, fib, sizeof(struct fib));
1803						newfib->hw_fib_va = hw_newfib;
1804						/*
1805						 * Put the FIB onto the
1806						 * fibctx's fibs
1807						 */
1808						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1809						fibctx->count++;
1810						/*
1811						 * Set the event to wake up the
1812						 * thread that is waiting.
1813						 */
1814						up(&fibctx->wait_sem);
1815					} else {
1816						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1817					}
1818					entry = entry->next;
1819				}
1820				/*
1821				 *	Set the status of this FIB
1822				 */
1823				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1824				aac_fib_adapter_complete(fib, sizeof(u32));
1825				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1826				/* Free up the remaining resources */
1827				hw_fib_p = hw_fib_pool;
1828				fib_p = fib_pool;
1829				while (hw_fib_p < &hw_fib_pool[num]) {
1830					kfree(*hw_fib_p);
1831					kfree(*fib_p);
1832					++fib_p;
1833					++hw_fib_p;
1834				}
1835				kfree(hw_fib_pool);
1836				kfree(fib_pool);
1837			}
1838			kfree(fib);
1839			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1840		}
1841		/*
1842		 *	There are no more AIF's
1843		 */
1844		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1845
1846		/*
1847		 *	Background activity
1848		 */
1849		if ((time_before(next_check_jiffies,next_jiffies))
1850		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1851			next_check_jiffies = next_jiffies;
1852			if (aac_check_health(dev) == 0) {
1853				difference = ((long)(unsigned)check_interval)
1854					   * HZ;
1855				next_check_jiffies = jiffies + difference;
1856			} else if (!dev->queues)
1857				break;
1858		}
1859		if (!time_before(next_check_jiffies,next_jiffies)
1860		 && ((difference = next_jiffies - jiffies) <= 0)) {
1861			struct timeval now;
1862			int ret;
1863
1864			/* Don't even try to talk to adapter if its sick */
1865			ret = aac_check_health(dev);
1866			if (!ret && !dev->queues)
1867				break;
1868			next_check_jiffies = jiffies
1869					   + ((long)(unsigned)check_interval)
1870					   * HZ;
1871			do_gettimeofday(&now);
1872
1873			/* Synchronize our watches */
1874			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1875			 && (now.tv_usec > (1000000 / HZ)))
1876				difference = (((1000000 - now.tv_usec) * HZ)
1877				  + 500000) / 1000000;
1878			else if (ret == 0) {
1879				struct fib *fibptr;
1880
1881				if ((fibptr = aac_fib_alloc(dev))) {
1882					int status;
1883					__le32 *info;
1884
1885					aac_fib_init(fibptr);
1886
1887					info = (__le32 *) fib_data(fibptr);
1888					if (now.tv_usec > 500000)
1889						++now.tv_sec;
1890
1891					*info = cpu_to_le32(now.tv_sec);
1892
1893					status = aac_fib_send(SendHostTime,
1894						fibptr,
1895						sizeof(*info),
1896						FsaNormal,
1897						1, 1,
1898						NULL,
1899						NULL);
1900					/* Do not set XferState to zero unless
1901					 * receives a response from F/W */
1902					if (status >= 0)
1903						aac_fib_complete(fibptr);
1904					/* FIB should be freed only after
1905					 * getting the response from the F/W */
1906					if (status != -ERESTARTSYS)
1907						aac_fib_free(fibptr);
1908				}
1909				difference = (long)(unsigned)update_interval*HZ;
1910			} else {
1911				/* retry shortly */
1912				difference = 10 * HZ;
1913			}
1914			next_jiffies = jiffies + difference;
1915			if (time_before(next_check_jiffies,next_jiffies))
1916				difference = next_check_jiffies - jiffies;
1917		}
1918		if (difference <= 0)
1919			difference = 1;
1920		set_current_state(TASK_INTERRUPTIBLE);
1921		schedule_timeout(difference);
1922
1923		if (kthread_should_stop())
1924			break;
1925	}
1926	if (dev->queues)
1927		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1928	dev->aif_thread = 0;
1929	return 0;
1930}
1931