commsup.c revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING.  If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 *  commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 *    commuication.
29 *
30 */
31
32#include <linux/kernel.h>
33#include <linux/init.h>
34#include <linux/types.h>
35#include <linux/sched.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/slab.h>
39#include <linux/completion.h>
40#include <linux/blkdev.h>
41#include <asm/semaphore.h>
42
43#include "aacraid.h"
44
45/**
46 *	fib_map_alloc		-	allocate the fib objects
47 *	@dev: Adapter to allocate for
48 *
49 *	Allocate and map the shared PCI space for the FIB blocks used to
50 *	talk to the Adaptec firmware.
51 */
52
53static int fib_map_alloc(struct aac_dev *dev)
54{
55	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, &dev->hw_fib_pa))==NULL)
56		return -ENOMEM;
57	return 0;
58}
59
60/**
61 *	fib_map_free		-	free the fib objects
62 *	@dev: Adapter to free
63 *
64 *	Free the PCI mappings and the memory allocated for FIB blocks
65 *	on this adapter.
66 */
67
68void fib_map_free(struct aac_dev *dev)
69{
70	pci_free_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, dev->hw_fib_va, dev->hw_fib_pa);
71}
72
73/**
74 *	fib_setup	-	setup the fibs
75 *	@dev: Adapter to set up
76 *
77 *	Allocate the PCI space for the fibs, map it and then intialise the
78 *	fib area, the unmapped fib data and also the free list
79 */
80
81int fib_setup(struct aac_dev * dev)
82{
83	struct fib *fibptr;
84	struct hw_fib *hw_fib_va;
85	dma_addr_t hw_fib_pa;
86	int i;
87
88	if(fib_map_alloc(dev)<0)
89		return -ENOMEM;
90
91	hw_fib_va = dev->hw_fib_va;
92	hw_fib_pa = dev->hw_fib_pa;
93	memset(hw_fib_va, 0, sizeof(struct hw_fib) * AAC_NUM_FIB);
94	/*
95	 *	Initialise the fibs
96	 */
97	for (i = 0, fibptr = &dev->fibs[i]; i < AAC_NUM_FIB; i++, fibptr++)
98	{
99		fibptr->dev = dev;
100		fibptr->hw_fib = hw_fib_va;
101		fibptr->data = (void *) fibptr->hw_fib->data;
102		fibptr->next = fibptr+1;	/* Forward chain the fibs */
103		init_MUTEX_LOCKED(&fibptr->event_wait);
104		spin_lock_init(&fibptr->event_lock);
105		hw_fib_va->header.XferState = 0xffffffff;
106		hw_fib_va->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
107		fibptr->hw_fib_pa = hw_fib_pa;
108		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + sizeof(struct hw_fib));
109		hw_fib_pa = hw_fib_pa + sizeof(struct hw_fib);
110	}
111	/*
112	 *	Add the fib chain to the free list
113	 */
114	dev->fibs[AAC_NUM_FIB-1].next = NULL;
115	/*
116	 *	Enable this to debug out of queue space
117	 */
118	dev->free_fib = &dev->fibs[0];
119	return 0;
120}
121
122/**
123 *	fib_alloc	-	allocate a fib
124 *	@dev: Adapter to allocate the fib for
125 *
126 *	Allocate a fib from the adapter fib pool. If the pool is empty we
127 *	wait for fibs to become free.
128 */
129
130struct fib * fib_alloc(struct aac_dev *dev)
131{
132	struct fib * fibptr;
133	unsigned long flags;
134	spin_lock_irqsave(&dev->fib_lock, flags);
135	fibptr = dev->free_fib;
136	/* Cannot sleep here or you get hangs. Instead we did the
137	   maths at compile time. */
138	if(!fibptr)
139		BUG();
140	dev->free_fib = fibptr->next;
141	spin_unlock_irqrestore(&dev->fib_lock, flags);
142	/*
143	 *	Set the proper node type code and node byte size
144	 */
145	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
146	fibptr->size = sizeof(struct fib);
147	/*
148	 *	Null out fields that depend on being zero at the start of
149	 *	each I/O
150	 */
151	fibptr->hw_fib->header.XferState = 0;
152	fibptr->callback = NULL;
153	fibptr->callback_data = NULL;
154
155	return fibptr;
156}
157
158/**
159 *	fib_free	-	free a fib
160 *	@fibptr: fib to free up
161 *
162 *	Frees up a fib and places it on the appropriate queue
163 *	(either free or timed out)
164 */
165
166void fib_free(struct fib * fibptr)
167{
168	unsigned long flags;
169
170	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
171	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
172		aac_config.fib_timeouts++;
173		fibptr->next = fibptr->dev->timeout_fib;
174		fibptr->dev->timeout_fib = fibptr;
175	} else {
176		if (fibptr->hw_fib->header.XferState != 0) {
177			printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
178				 (void*)fibptr,
179				 le32_to_cpu(fibptr->hw_fib->header.XferState));
180		}
181		fibptr->next = fibptr->dev->free_fib;
182		fibptr->dev->free_fib = fibptr;
183	}
184	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
185}
186
187/**
188 *	fib_init	-	initialise a fib
189 *	@fibptr: The fib to initialize
190 *
191 *	Set up the generic fib fields ready for use
192 */
193
194void fib_init(struct fib *fibptr)
195{
196	struct hw_fib *hw_fib = fibptr->hw_fib;
197
198	hw_fib->header.StructType = FIB_MAGIC;
199	hw_fib->header.Size = cpu_to_le16(sizeof(struct hw_fib));
200        hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
201	hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
202	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
203	hw_fib->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
204}
205
206/**
207 *	fib_deallocate		-	deallocate a fib
208 *	@fibptr: fib to deallocate
209 *
210 *	Will deallocate and return to the free pool the FIB pointed to by the
211 *	caller.
212 */
213
214void fib_dealloc(struct fib * fibptr)
215{
216	struct hw_fib *hw_fib = fibptr->hw_fib;
217	if(hw_fib->header.StructType != FIB_MAGIC)
218		BUG();
219	hw_fib->header.XferState = 0;
220}
221
222/*
223 *	Commuication primitives define and support the queuing method we use to
224 *	support host to adapter commuication. All queue accesses happen through
225 *	these routines and are the only routines which have a knowledge of the
226 *	 how these queues are implemented.
227 */
228
229/**
230 *	aac_get_entry		-	get a queue entry
231 *	@dev: Adapter
232 *	@qid: Queue Number
233 *	@entry: Entry return
234 *	@index: Index return
235 *	@nonotify: notification control
236 *
237 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
238 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
239 *	returned.
240 */
241
242static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
243{
244	struct aac_queue * q;
245
246	/*
247	 *	All of the queues wrap when they reach the end, so we check
248	 *	to see if they have reached the end and if they have we just
249	 *	set the index back to zero. This is a wrap. You could or off
250	 *	the high bits in all updates but this is a bit faster I think.
251	 */
252
253	q = &dev->queues->queue[qid];
254
255	*index = le32_to_cpu(*(q->headers.producer));
256	if ((*index - 2) == le32_to_cpu(*(q->headers.consumer)))
257			*nonotify = 1;
258
259	if (qid == AdapHighCmdQueue) {
260	        if (*index >= ADAP_HIGH_CMD_ENTRIES)
261        		*index = 0;
262	} else if (qid == AdapNormCmdQueue) {
263	        if (*index >= ADAP_NORM_CMD_ENTRIES)
264			*index = 0; /* Wrap to front of the Producer Queue. */
265	}
266	else if (qid == AdapHighRespQueue)
267	{
268	        if (*index >= ADAP_HIGH_RESP_ENTRIES)
269			*index = 0;
270	}
271	else if (qid == AdapNormRespQueue)
272	{
273		if (*index >= ADAP_NORM_RESP_ENTRIES)
274			*index = 0; /* Wrap to front of the Producer Queue. */
275	}
276	else {
277		printk("aacraid: invalid qid\n");
278		BUG();
279	}
280
281        if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
282		printk(KERN_WARNING "Queue %d full, %d outstanding.\n",
283				qid, q->numpending);
284		return 0;
285	} else {
286	        *entry = q->base + *index;
287		return 1;
288	}
289}
290
291/**
292 *	aac_queue_get		-	get the next free QE
293 *	@dev: Adapter
294 *	@index: Returned index
295 *	@priority: Priority of fib
296 *	@fib: Fib to associate with the queue entry
297 *	@wait: Wait if queue full
298 *	@fibptr: Driver fib object to go with fib
299 *	@nonotify: Don't notify the adapter
300 *
301 *	Gets the next free QE off the requested priorty adapter command
302 *	queue and associates the Fib with the QE. The QE represented by
303 *	index is ready to insert on the queue when this routine returns
304 *	success.
305 */
306
307static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
308{
309	struct aac_entry * entry = NULL;
310	int map = 0;
311	struct aac_queue * q = &dev->queues->queue[qid];
312
313	spin_lock_irqsave(q->lock, q->SavedIrql);
314
315	if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue)
316	{
317		/*  if no entries wait for some if caller wants to */
318        	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
319        	{
320			printk(KERN_ERR "GetEntries failed\n");
321		}
322	        /*
323	         *	Setup queue entry with a command, status and fib mapped
324	         */
325	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
326	        map = 1;
327	}
328	else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
329	{
330	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
331	        {
332			/* if no entries wait for some if caller wants to */
333		}
334        	/*
335        	 *	Setup queue entry with command, status and fib mapped
336        	 */
337        	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
338        	entry->addr = hw_fib->header.SenderFibAddress;
339     			/* Restore adapters pointer to the FIB */
340		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
341        	map = 0;
342	}
343	/*
344	 *	If MapFib is true than we need to map the Fib and put pointers
345	 *	in the queue entry.
346	 */
347	if (map)
348		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
349	return 0;
350}
351
352
353/**
354 *	aac_insert_entry	-	insert a queue entry
355 *	@dev: Adapter
356 *	@index: Index of entry to insert
357 *	@qid: Queue number
358 *	@nonotify: Suppress adapter notification
359 *
360 *	Gets the next free QE off the requested priorty adapter command
361 *	queue and associates the Fib with the QE. The QE represented by
362 *	index is ready to insert on the queue when this routine returns
363 *	success.
364 */
365
366static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
367{
368	struct aac_queue * q = &dev->queues->queue[qid];
369
370	if(q == NULL)
371		BUG();
372	*(q->headers.producer) = cpu_to_le32(index + 1);
373	spin_unlock_irqrestore(q->lock, q->SavedIrql);
374
375	if (qid == AdapHighCmdQueue ||
376	    qid == AdapNormCmdQueue ||
377	    qid == AdapHighRespQueue ||
378	    qid == AdapNormRespQueue)
379	{
380		if (!nonotify)
381			aac_adapter_notify(dev, qid);
382	}
383	else
384		printk("Suprise insert!\n");
385	return 0;
386}
387
388/*
389 *	Define the highest level of host to adapter communication routines.
390 *	These routines will support host to adapter FS commuication. These
391 *	routines have no knowledge of the commuication method used. This level
392 *	sends and receives FIBs. This level has no knowledge of how these FIBs
393 *	get passed back and forth.
394 */
395
396/**
397 *	fib_send	-	send a fib to the adapter
398 *	@command: Command to send
399 *	@fibptr: The fib
400 *	@size: Size of fib data area
401 *	@priority: Priority of Fib
402 *	@wait: Async/sync select
403 *	@reply: True if a reply is wanted
404 *	@callback: Called with reply
405 *	@callback_data: Passed to callback
406 *
407 *	Sends the requested FIB to the adapter and optionally will wait for a
408 *	response FIB. If the caller does not wish to wait for a response than
409 *	an event to wait on must be supplied. This event will be set when a
410 *	response FIB is received from the adapter.
411 */
412
413int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
414{
415	u32 index;
416	u32 qid;
417	struct aac_dev * dev = fibptr->dev;
418	unsigned long nointr = 0;
419	struct hw_fib * hw_fib = fibptr->hw_fib;
420	struct aac_queue * q;
421	unsigned long flags = 0;
422	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
423		return -EBUSY;
424	/*
425	 *	There are 5 cases with the wait and reponse requested flags.
426	 *	The only invalid cases are if the caller requests to wait and
427	 *	does not request a response and if the caller does not want a
428	 *	response and the Fib is not allocated from pool. If a response
429	 *	is not requesed the Fib will just be deallocaed by the DPC
430	 *	routine when the response comes back from the adapter. No
431	 *	further processing will be done besides deleting the Fib. We
432	 *	will have a debug mode where the adapter can notify the host
433	 *	it had a problem and the host can log that fact.
434	 */
435	if (wait && !reply) {
436		return -EINVAL;
437	} else if (!wait && reply) {
438		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
439		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
440	} else if (!wait && !reply) {
441		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
442		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
443	} else if (wait && reply) {
444		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
445		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
446	}
447	/*
448	 *	Map the fib into 32bits by using the fib number
449	 */
450
451	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
452	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
453	/*
454	 *	Set FIB state to indicate where it came from and if we want a
455	 *	response from the adapter. Also load the command from the
456	 *	caller.
457	 *
458	 *	Map the hw fib pointer as a 32bit value
459	 */
460	hw_fib->header.Command = cpu_to_le16(command);
461	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
462	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
463	/*
464	 *	Set the size of the Fib we want to send to the adapter
465	 */
466	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
468		return -EMSGSIZE;
469	}
470	/*
471	 *	Get a queue entry connect the FIB to it and send an notify
472	 *	the adapter a command is ready.
473	 */
474	if (priority == FsaHigh) {
475		hw_fib->header.XferState |= cpu_to_le32(HighPriority);
476		qid = AdapHighCmdQueue;
477	} else {
478		hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
479		qid = AdapNormCmdQueue;
480	}
481	q = &dev->queues->queue[qid];
482
483	if(wait)
484		spin_lock_irqsave(&fibptr->event_lock, flags);
485	if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
486		return -EWOULDBLOCK;
487	dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
488	dprintk((KERN_DEBUG "Fib contents:.\n"));
489	dprintk((KERN_DEBUG "  Command =               %d.\n", hw_fib->header.Command));
490	dprintk((KERN_DEBUG "  XferState  =            %x.\n", hw_fib->header.XferState));
491	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
492	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
493	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
494	/*
495	 *	Fill in the Callback and CallbackContext if we are not
496	 *	going to wait.
497	 */
498	if (!wait) {
499		fibptr->callback = callback;
500		fibptr->callback_data = callback_data;
501	}
502	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
503	list_add_tail(&fibptr->queue, &q->pendingq);
504	q->numpending++;
505
506	fibptr->done = 0;
507	fibptr->flags = 0;
508
509	if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
510		return -EWOULDBLOCK;
511	/*
512	 *	If the caller wanted us to wait for response wait now.
513	 */
514
515	if (wait) {
516		spin_unlock_irqrestore(&fibptr->event_lock, flags);
517		down(&fibptr->event_wait);
518		if(fibptr->done == 0)
519			BUG();
520
521		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
522			return -ETIMEDOUT;
523		} else {
524			return 0;
525		}
526	}
527	/*
528	 *	If the user does not want a response than return success otherwise
529	 *	return pending
530	 */
531	if (reply)
532		return -EINPROGRESS;
533	else
534		return 0;
535}
536
537/**
538 *	aac_consumer_get	-	get the top of the queue
539 *	@dev: Adapter
540 *	@q: Queue
541 *	@entry: Return entry
542 *
543 *	Will return a pointer to the entry on the top of the queue requested that
544 * 	we are a consumer of, and return the address of the queue entry. It does
545 *	not change the state of the queue.
546 */
547
548int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
549{
550	u32 index;
551	int status;
552	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
553		status = 0;
554	} else {
555		/*
556		 *	The consumer index must be wrapped if we have reached
557		 *	the end of the queue, else we just use the entry
558		 *	pointed to by the header index
559		 */
560		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
561			index = 0;
562		else
563		        index = le32_to_cpu(*q->headers.consumer);
564		*entry = q->base + index;
565		status = 1;
566	}
567	return(status);
568}
569
570/**
571 *	aac_consumer_free	-	free consumer entry
572 *	@dev: Adapter
573 *	@q: Queue
574 *	@qid: Queue ident
575 *
576 *	Frees up the current top of the queue we are a consumer of. If the
577 *	queue was full notify the producer that the queue is no longer full.
578 */
579
580void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
581{
582	int wasfull = 0;
583	u32 notify;
584
585	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
586		wasfull = 1;
587
588	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
589		*q->headers.consumer = cpu_to_le32(1);
590	else
591		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
592
593	if (wasfull) {
594		switch (qid) {
595
596		case HostNormCmdQueue:
597			notify = HostNormCmdNotFull;
598			break;
599		case HostHighCmdQueue:
600			notify = HostHighCmdNotFull;
601			break;
602		case HostNormRespQueue:
603			notify = HostNormRespNotFull;
604			break;
605		case HostHighRespQueue:
606			notify = HostHighRespNotFull;
607			break;
608		default:
609			BUG();
610			return;
611		}
612		aac_adapter_notify(dev, notify);
613	}
614}
615
616/**
617 *	fib_adapter_complete	-	complete adapter issued fib
618 *	@fibptr: fib to complete
619 *	@size: size of fib
620 *
621 *	Will do all necessary work to complete a FIB that was sent from
622 *	the adapter.
623 */
624
625int fib_adapter_complete(struct fib * fibptr, unsigned short size)
626{
627	struct hw_fib * hw_fib = fibptr->hw_fib;
628	struct aac_dev * dev = fibptr->dev;
629	unsigned long nointr = 0;
630	if (hw_fib->header.XferState == 0)
631        	return 0;
632	/*
633	 *	If we plan to do anything check the structure type first.
634	 */
635	if ( hw_fib->header.StructType != FIB_MAGIC ) {
636        	return -EINVAL;
637	}
638	/*
639	 *	This block handles the case where the adapter had sent us a
640	 *	command and we have finished processing the command. We
641	 *	call completeFib when we are done processing the command
642	 *	and want to send a response back to the adapter. This will
643	 *	send the completed cdb to the adapter.
644	 */
645	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
646	        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
647	        if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
648        		u32 index;
649       			if (size)
650			{
651				size += sizeof(struct aac_fibhdr);
652				if (size > le16_to_cpu(hw_fib->header.SenderSize))
653					return -EMSGSIZE;
654				hw_fib->header.Size = cpu_to_le16(size);
655			}
656			if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
657				return -EWOULDBLOCK;
658			}
659			if (aac_insert_entry(dev, index, AdapHighRespQueue,  (nointr & (int)aac_config.irq_mod)) != 0) {
660			}
661		}
662		else if (hw_fib->header.XferState & NormalPriority)
663		{
664			u32 index;
665
666			if (size) {
667				size += sizeof(struct aac_fibhdr);
668				if (size > le16_to_cpu(hw_fib->header.SenderSize))
669					return -EMSGSIZE;
670				hw_fib->header.Size = cpu_to_le16(size);
671			}
672			if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
673				return -EWOULDBLOCK;
674			if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
675			{
676			}
677		}
678	}
679	else
680	{
681        	printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
682        	BUG();
683	}
684	return 0;
685}
686
687/**
688 *	fib_complete	-	fib completion handler
689 *	@fib: FIB to complete
690 *
691 *	Will do all necessary work to complete a FIB.
692 */
693
694int fib_complete(struct fib * fibptr)
695{
696	struct hw_fib * hw_fib = fibptr->hw_fib;
697
698	/*
699	 *	Check for a fib which has already been completed
700	 */
701
702	if (hw_fib->header.XferState == 0)
703        	return 0;
704	/*
705	 *	If we plan to do anything check the structure type first.
706	 */
707
708	if (hw_fib->header.StructType != FIB_MAGIC)
709	        return -EINVAL;
710	/*
711	 *	This block completes a cdb which orginated on the host and we
712	 *	just need to deallocate the cdb or reinit it. At this point the
713	 *	command is complete that we had sent to the adapter and this
714	 *	cdb could be reused.
715	 */
716	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
717		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
718	{
719		fib_dealloc(fibptr);
720	}
721	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
722	{
723		/*
724		 *	This handles the case when the host has aborted the I/O
725		 *	to the adapter because the adapter is not responding
726		 */
727		fib_dealloc(fibptr);
728	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
729		fib_dealloc(fibptr);
730	} else {
731		BUG();
732	}
733	return 0;
734}
735
736/**
737 *	aac_printf	-	handle printf from firmware
738 *	@dev: Adapter
739 *	@val: Message info
740 *
741 *	Print a message passed to us by the controller firmware on the
742 *	Adaptec board
743 */
744
745void aac_printf(struct aac_dev *dev, u32 val)
746{
747	int length = val & 0xffff;
748	int level = (val >> 16) & 0xffff;
749	char *cp = dev->printfbuf;
750
751	/*
752	 *	The size of the printfbuf is set in port.c
753	 *	There is no variable or define for it
754	 */
755	if (length > 255)
756		length = 255;
757	if (cp[length] != 0)
758		cp[length] = 0;
759	if (level == LOG_AAC_HIGH_ERROR)
760		printk(KERN_WARNING "aacraid:%s", cp);
761	else
762		printk(KERN_INFO "aacraid:%s", cp);
763	memset(cp, 0,  256);
764}
765
766/**
767 *	aac_command_thread	-	command processing thread
768 *	@dev: Adapter to monitor
769 *
770 *	Waits on the commandready event in it's queue. When the event gets set
771 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
772 *	until the queue is empty. When the queue is empty it will wait for
773 *	more FIBs.
774 */
775
776int aac_command_thread(struct aac_dev * dev)
777{
778	struct hw_fib *hw_fib, *hw_newfib;
779	struct fib *fib, *newfib;
780	struct aac_queue_block *queues = dev->queues;
781	struct aac_fib_context *fibctx;
782	unsigned long flags;
783	DECLARE_WAITQUEUE(wait, current);
784
785	/*
786	 *	We can only have one thread per adapter for AIF's.
787	 */
788	if (dev->aif_thread)
789		return -EINVAL;
790	/*
791	 *	Set up the name that will appear in 'ps'
792	 *	stored in  task_struct.comm[16].
793	 */
794	daemonize("aacraid");
795	allow_signal(SIGKILL);
796	/*
797	 *	Let the DPC know it has a place to send the AIF's to.
798	 */
799	dev->aif_thread = 1;
800	add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
801	set_current_state(TASK_INTERRUPTIBLE);
802	while(1)
803	{
804		spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
805		while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
806			struct list_head *entry;
807			struct aac_aifcmd * aifcmd;
808
809			set_current_state(TASK_RUNNING);
810
811			entry = queues->queue[HostNormCmdQueue].cmdq.next;
812			list_del(entry);
813
814			spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
815			fib = list_entry(entry, struct fib, fiblink);
816			/*
817			 *	We will process the FIB here or pass it to a
818			 *	worker thread that is TBD. We Really can't
819			 *	do anything at this point since we don't have
820			 *	anything defined for this thread to do.
821			 */
822			hw_fib = fib->hw_fib;
823			memset(fib, 0, sizeof(struct fib));
824			fib->type = FSAFS_NTC_FIB_CONTEXT;
825			fib->size = sizeof( struct fib );
826			fib->hw_fib = hw_fib;
827			fib->data = hw_fib->data;
828			fib->dev = dev;
829			/*
830			 *	We only handle AifRequest fibs from the adapter.
831			 */
832			aifcmd = (struct aac_aifcmd *) hw_fib->data;
833			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
834				/* Handle Driver Notify Events */
835				*(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
836				fib_adapter_complete(fib, sizeof(u32));
837			} else {
838				struct list_head *entry;
839				/* The u32 here is important and intended. We are using
840				   32bit wrapping time to fit the adapter field */
841
842				u32 time_now, time_last;
843				unsigned long flagv;
844
845				time_now = jiffies/HZ;
846
847				spin_lock_irqsave(&dev->fib_lock, flagv);
848				entry = dev->fib_list.next;
849				/*
850				 * For each Context that is on the
851				 * fibctxList, make a copy of the
852				 * fib, and then set the event to wake up the
853				 * thread that is waiting for it.
854				 */
855				while (entry != &dev->fib_list) {
856					/*
857					 * Extract the fibctx
858					 */
859					fibctx = list_entry(entry, struct aac_fib_context, next);
860					/*
861					 * Check if the queue is getting
862					 * backlogged
863					 */
864					if (fibctx->count > 20)
865					{
866						/*
867						 * It's *not* jiffies folks,
868						 * but jiffies / HZ so do not
869						 * panic ...
870						 */
871						time_last = fibctx->jiffies;
872						/*
873						 * Has it been > 2 minutes
874						 * since the last read off
875						 * the queue?
876						 */
877						if ((time_now - time_last) > 120) {
878							entry = entry->next;
879							aac_close_fib_context(dev, fibctx);
880							continue;
881						}
882					}
883					/*
884					 * Warning: no sleep allowed while
885					 * holding spinlock
886					 */
887					hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
888					newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
889					if (newfib && hw_newfib) {
890						/*
891						 * Make the copy of the FIB
892						 */
893						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
894						memcpy(newfib, fib, sizeof(struct fib));
895						newfib->hw_fib = hw_newfib;
896						/*
897						 * Put the FIB onto the
898						 * fibctx's fibs
899						 */
900						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
901						fibctx->count++;
902						/*
903						 * Set the event to wake up the
904						 * thread that will waiting.
905						 */
906						up(&fibctx->wait_sem);
907					} else {
908						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
909						if(newfib)
910							kfree(newfib);
911						if(hw_newfib)
912							kfree(hw_newfib);
913					}
914					entry = entry->next;
915				}
916				/*
917				 *	Set the status of this FIB
918				 */
919				*(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
920				fib_adapter_complete(fib, sizeof(u32));
921				spin_unlock_irqrestore(&dev->fib_lock, flagv);
922			}
923			spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
924			kfree(fib);
925		}
926		/*
927		 *	There are no more AIF's
928		 */
929		spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
930		schedule();
931
932		if(signal_pending(current))
933			break;
934		set_current_state(TASK_INTERRUPTIBLE);
935	}
936	remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
937	dev->aif_thread = 0;
938	complete_and_exit(&dev->aif_completion, 0);
939}
940