commsup.c revision 65101355450df2d935f8d56ac3abef279f28a0e2
1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING.  If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 *  commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 *    communication.
29 *
30 */
31
32#include <linux/kernel.h>
33#include <linux/init.h>
34#include <linux/types.h>
35#include <linux/sched.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/slab.h>
39#include <linux/completion.h>
40#include <linux/blkdev.h>
41#include <linux/delay.h>
42#include <linux/kthread.h>
43#include <scsi/scsi.h>
44#include <scsi/scsi_host.h>
45#include <scsi/scsi_device.h>
46#include <scsi/scsi_cmnd.h>
47#include <asm/semaphore.h>
48
49#include "aacraid.h"
50
51/**
52 *	fib_map_alloc		-	allocate the fib objects
53 *	@dev: Adapter to allocate for
54 *
55 *	Allocate and map the shared PCI space for the FIB blocks used to
56 *	talk to the Adaptec firmware.
57 */
58
59static int fib_map_alloc(struct aac_dev *dev)
60{
61	dprintk((KERN_INFO
62	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
63	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
64	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
66	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
67	  &dev->hw_fib_pa))==NULL)
68		return -ENOMEM;
69	return 0;
70}
71
72/**
73 *	aac_fib_map_free		-	free the fib objects
74 *	@dev: Adapter to free
75 *
76 *	Free the PCI mappings and the memory allocated for FIB blocks
77 *	on this adapter.
78 */
79
80void aac_fib_map_free(struct aac_dev *dev)
81{
82	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
83}
84
85/**
86 *	aac_fib_setup	-	setup the fibs
87 *	@dev: Adapter to set up
88 *
89 *	Allocate the PCI space for the fibs, map it and then intialise the
90 *	fib area, the unmapped fib data and also the free list
91 */
92
93int aac_fib_setup(struct aac_dev * dev)
94{
95	struct fib *fibptr;
96	struct hw_fib *hw_fib_va;
97	dma_addr_t hw_fib_pa;
98	int i;
99
100	while (((i = fib_map_alloc(dev)) == -ENOMEM)
101	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
102		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
103		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
104	}
105	if (i<0)
106		return -ENOMEM;
107
108	hw_fib_va = dev->hw_fib_va;
109	hw_fib_pa = dev->hw_fib_pa;
110	memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
111	/*
112	 *	Initialise the fibs
113	 */
114	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
115	{
116		fibptr->dev = dev;
117		fibptr->hw_fib = hw_fib_va;
118		fibptr->data = (void *) fibptr->hw_fib->data;
119		fibptr->next = fibptr+1;	/* Forward chain the fibs */
120		init_MUTEX_LOCKED(&fibptr->event_wait);
121		spin_lock_init(&fibptr->event_lock);
122		hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
123		hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
124		fibptr->hw_fib_pa = hw_fib_pa;
125		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
126		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
127	}
128	/*
129	 *	Add the fib chain to the free list
130	 */
131	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
132	/*
133	 *	Enable this to debug out of queue space
134	 */
135	dev->free_fib = &dev->fibs[0];
136	return 0;
137}
138
139/**
140 *	aac_fib_alloc	-	allocate a fib
141 *	@dev: Adapter to allocate the fib for
142 *
143 *	Allocate a fib from the adapter fib pool. If the pool is empty we
144 *	return NULL.
145 */
146
147struct fib *aac_fib_alloc(struct aac_dev *dev)
148{
149	struct fib * fibptr;
150	unsigned long flags;
151	spin_lock_irqsave(&dev->fib_lock, flags);
152	fibptr = dev->free_fib;
153	if(!fibptr){
154		spin_unlock_irqrestore(&dev->fib_lock, flags);
155		return fibptr;
156	}
157	dev->free_fib = fibptr->next;
158	spin_unlock_irqrestore(&dev->fib_lock, flags);
159	/*
160	 *	Set the proper node type code and node byte size
161	 */
162	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
163	fibptr->size = sizeof(struct fib);
164	/*
165	 *	Null out fields that depend on being zero at the start of
166	 *	each I/O
167	 */
168	fibptr->hw_fib->header.XferState = 0;
169	fibptr->callback = NULL;
170	fibptr->callback_data = NULL;
171
172	return fibptr;
173}
174
175/**
176 *	aac_fib_free	-	free a fib
177 *	@fibptr: fib to free up
178 *
179 *	Frees up a fib and places it on the appropriate queue
180 *	(either free or timed out)
181 */
182
183void aac_fib_free(struct fib *fibptr)
184{
185	unsigned long flags;
186
187	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
188	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
189		aac_config.fib_timeouts++;
190		fibptr->next = fibptr->dev->timeout_fib;
191		fibptr->dev->timeout_fib = fibptr;
192	} else {
193		if (fibptr->hw_fib->header.XferState != 0) {
194			printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
195				 (void*)fibptr,
196				 le32_to_cpu(fibptr->hw_fib->header.XferState));
197		}
198		fibptr->next = fibptr->dev->free_fib;
199		fibptr->dev->free_fib = fibptr;
200	}
201	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
202}
203
204/**
205 *	aac_fib_init	-	initialise a fib
206 *	@fibptr: The fib to initialize
207 *
208 *	Set up the generic fib fields ready for use
209 */
210
211void aac_fib_init(struct fib *fibptr)
212{
213	struct hw_fib *hw_fib = fibptr->hw_fib;
214
215	hw_fib->header.StructType = FIB_MAGIC;
216	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
217	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
218	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
219	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
220	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
221}
222
223/**
224 *	fib_deallocate		-	deallocate a fib
225 *	@fibptr: fib to deallocate
226 *
227 *	Will deallocate and return to the free pool the FIB pointed to by the
228 *	caller.
229 */
230
231static void fib_dealloc(struct fib * fibptr)
232{
233	struct hw_fib *hw_fib = fibptr->hw_fib;
234	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
235	hw_fib->header.XferState = 0;
236}
237
238/*
239 *	Commuication primitives define and support the queuing method we use to
240 *	support host to adapter commuication. All queue accesses happen through
241 *	these routines and are the only routines which have a knowledge of the
242 *	 how these queues are implemented.
243 */
244
245/**
246 *	aac_get_entry		-	get a queue entry
247 *	@dev: Adapter
248 *	@qid: Queue Number
249 *	@entry: Entry return
250 *	@index: Index return
251 *	@nonotify: notification control
252 *
253 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
254 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
255 *	returned.
256 */
257
258static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
259{
260	struct aac_queue * q;
261	unsigned long idx;
262
263	/*
264	 *	All of the queues wrap when they reach the end, so we check
265	 *	to see if they have reached the end and if they have we just
266	 *	set the index back to zero. This is a wrap. You could or off
267	 *	the high bits in all updates but this is a bit faster I think.
268	 */
269
270	q = &dev->queues->queue[qid];
271
272	idx = *index = le32_to_cpu(*(q->headers.producer));
273	/* Interrupt Moderation, only interrupt for first two entries */
274	if (idx != le32_to_cpu(*(q->headers.consumer))) {
275		if (--idx == 0) {
276			if (qid == AdapNormCmdQueue)
277				idx = ADAP_NORM_CMD_ENTRIES;
278			else
279				idx = ADAP_NORM_RESP_ENTRIES;
280		}
281		if (idx != le32_to_cpu(*(q->headers.consumer)))
282			*nonotify = 1;
283	}
284
285	if (qid == AdapNormCmdQueue) {
286	        if (*index >= ADAP_NORM_CMD_ENTRIES)
287			*index = 0; /* Wrap to front of the Producer Queue. */
288	} else {
289		if (*index >= ADAP_NORM_RESP_ENTRIES)
290			*index = 0; /* Wrap to front of the Producer Queue. */
291	}
292
293        if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
294		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
295				qid, q->numpending);
296		return 0;
297	} else {
298	        *entry = q->base + *index;
299		return 1;
300	}
301}
302
303/**
304 *	aac_queue_get		-	get the next free QE
305 *	@dev: Adapter
306 *	@index: Returned index
307 *	@priority: Priority of fib
308 *	@fib: Fib to associate with the queue entry
309 *	@wait: Wait if queue full
310 *	@fibptr: Driver fib object to go with fib
311 *	@nonotify: Don't notify the adapter
312 *
313 *	Gets the next free QE off the requested priorty adapter command
314 *	queue and associates the Fib with the QE. The QE represented by
315 *	index is ready to insert on the queue when this routine returns
316 *	success.
317 */
318
319static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
320{
321	struct aac_entry * entry = NULL;
322	int map = 0;
323
324	if (qid == AdapNormCmdQueue) {
325		/*  if no entries wait for some if caller wants to */
326        	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
327        	{
328			printk(KERN_ERR "GetEntries failed\n");
329		}
330	        /*
331	         *	Setup queue entry with a command, status and fib mapped
332	         */
333	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
334	        map = 1;
335	} else {
336	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
337	        {
338			/* if no entries wait for some if caller wants to */
339		}
340        	/*
341        	 *	Setup queue entry with command, status and fib mapped
342        	 */
343        	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344        	entry->addr = hw_fib->header.SenderFibAddress;
345     			/* Restore adapters pointer to the FIB */
346		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
347        	map = 0;
348	}
349	/*
350	 *	If MapFib is true than we need to map the Fib and put pointers
351	 *	in the queue entry.
352	 */
353	if (map)
354		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
355	return 0;
356}
357
358/*
359 *	Define the highest level of host to adapter communication routines.
360 *	These routines will support host to adapter FS commuication. These
361 *	routines have no knowledge of the commuication method used. This level
362 *	sends and receives FIBs. This level has no knowledge of how these FIBs
363 *	get passed back and forth.
364 */
365
366/**
367 *	aac_fib_send	-	send a fib to the adapter
368 *	@command: Command to send
369 *	@fibptr: The fib
370 *	@size: Size of fib data area
371 *	@priority: Priority of Fib
372 *	@wait: Async/sync select
373 *	@reply: True if a reply is wanted
374 *	@callback: Called with reply
375 *	@callback_data: Passed to callback
376 *
377 *	Sends the requested FIB to the adapter and optionally will wait for a
378 *	response FIB. If the caller does not wish to wait for a response than
379 *	an event to wait on must be supplied. This event will be set when a
380 *	response FIB is received from the adapter.
381 */
382
383int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
384		int priority, int wait, int reply, fib_callback callback,
385		void *callback_data)
386{
387	struct aac_dev * dev = fibptr->dev;
388	struct hw_fib * hw_fib = fibptr->hw_fib;
389	struct aac_queue * q;
390	unsigned long flags = 0;
391	unsigned long qflags;
392
393	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394		return -EBUSY;
395	/*
396	 *	There are 5 cases with the wait and reponse requested flags.
397	 *	The only invalid cases are if the caller requests to wait and
398	 *	does not request a response and if the caller does not want a
399	 *	response and the Fib is not allocated from pool. If a response
400	 *	is not requesed the Fib will just be deallocaed by the DPC
401	 *	routine when the response comes back from the adapter. No
402	 *	further processing will be done besides deleting the Fib. We
403	 *	will have a debug mode where the adapter can notify the host
404	 *	it had a problem and the host can log that fact.
405	 */
406	if (wait && !reply) {
407		return -EINVAL;
408	} else if (!wait && reply) {
409		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
410		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
411	} else if (!wait && !reply) {
412		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
413		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
414	} else if (wait && reply) {
415		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
416		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
417	}
418	/*
419	 *	Map the fib into 32bits by using the fib number
420	 */
421
422	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
423	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
424	/*
425	 *	Set FIB state to indicate where it came from and if we want a
426	 *	response from the adapter. Also load the command from the
427	 *	caller.
428	 *
429	 *	Map the hw fib pointer as a 32bit value
430	 */
431	hw_fib->header.Command = cpu_to_le16(command);
432	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
433	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
434	/*
435	 *	Set the size of the Fib we want to send to the adapter
436	 */
437	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
438	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
439		return -EMSGSIZE;
440	}
441	/*
442	 *	Get a queue entry connect the FIB to it and send an notify
443	 *	the adapter a command is ready.
444	 */
445	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
446
447	/*
448	 *	Fill in the Callback and CallbackContext if we are not
449	 *	going to wait.
450	 */
451	if (!wait) {
452		fibptr->callback = callback;
453		fibptr->callback_data = callback_data;
454	}
455
456	fibptr->done = 0;
457	fibptr->flags = 0;
458
459	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
460
461	dprintk((KERN_DEBUG "Fib contents:.\n"));
462	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
463	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
464	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
465	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
466	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
467	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
468
469	if (!dev->queues)
470		return -EBUSY;
471	q = &dev->queues->queue[AdapNormCmdQueue];
472
473	if(wait)
474		spin_lock_irqsave(&fibptr->event_lock, flags);
475	spin_lock_irqsave(q->lock, qflags);
476	if (dev->new_comm_interface) {
477		unsigned long count = 10000000L; /* 50 seconds */
478		q->numpending++;
479		spin_unlock_irqrestore(q->lock, qflags);
480		while (aac_adapter_send(fibptr) != 0) {
481			if (--count == 0) {
482				if (wait)
483					spin_unlock_irqrestore(&fibptr->event_lock, flags);
484				spin_lock_irqsave(q->lock, qflags);
485				q->numpending--;
486				spin_unlock_irqrestore(q->lock, qflags);
487				return -ETIMEDOUT;
488			}
489			udelay(5);
490		}
491	} else {
492		u32 index;
493		unsigned long nointr = 0;
494		aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
495
496		q->numpending++;
497		*(q->headers.producer) = cpu_to_le32(index + 1);
498		spin_unlock_irqrestore(q->lock, qflags);
499		dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
500		if (!(nointr & aac_config.irq_mod))
501			aac_adapter_notify(dev, AdapNormCmdQueue);
502	}
503
504	/*
505	 *	If the caller wanted us to wait for response wait now.
506	 */
507
508	if (wait) {
509		spin_unlock_irqrestore(&fibptr->event_lock, flags);
510		/* Only set for first known interruptable command */
511		if (wait < 0) {
512			/*
513			 * *VERY* Dangerous to time out a command, the
514			 * assumption is made that we have no hope of
515			 * functioning because an interrupt routing or other
516			 * hardware failure has occurred.
517			 */
518			unsigned long count = 36000000L; /* 3 minutes */
519			while (down_trylock(&fibptr->event_wait)) {
520				if (--count == 0) {
521					spin_lock_irqsave(q->lock, qflags);
522					q->numpending--;
523					spin_unlock_irqrestore(q->lock, qflags);
524					if (wait == -1) {
525	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
526						  "Usually a result of a PCI interrupt routing problem;\n"
527						  "update mother board BIOS or consider utilizing one of\n"
528						  "the SAFE mode kernel options (acpi, apic etc)\n");
529					}
530					return -ETIMEDOUT;
531				}
532				udelay(5);
533			}
534		} else if (down_interruptible(&fibptr->event_wait)) {
535			spin_lock_irqsave(&fibptr->event_lock, flags);
536			if (fibptr->done == 0) {
537				fibptr->done = 2; /* Tell interrupt we aborted */
538				spin_unlock_irqrestore(&fibptr->event_lock, flags);
539				return -EINTR;
540			}
541			spin_unlock_irqrestore(&fibptr->event_lock, flags);
542		}
543		BUG_ON(fibptr->done == 0);
544
545		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
546			return -ETIMEDOUT;
547		} else {
548			return 0;
549		}
550	}
551	/*
552	 *	If the user does not want a response than return success otherwise
553	 *	return pending
554	 */
555	if (reply)
556		return -EINPROGRESS;
557	else
558		return 0;
559}
560
561/**
562 *	aac_consumer_get	-	get the top of the queue
563 *	@dev: Adapter
564 *	@q: Queue
565 *	@entry: Return entry
566 *
567 *	Will return a pointer to the entry on the top of the queue requested that
568 * 	we are a consumer of, and return the address of the queue entry. It does
569 *	not change the state of the queue.
570 */
571
572int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
573{
574	u32 index;
575	int status;
576	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
577		status = 0;
578	} else {
579		/*
580		 *	The consumer index must be wrapped if we have reached
581		 *	the end of the queue, else we just use the entry
582		 *	pointed to by the header index
583		 */
584		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
585			index = 0;
586		else
587		        index = le32_to_cpu(*q->headers.consumer);
588		*entry = q->base + index;
589		status = 1;
590	}
591	return(status);
592}
593
594/**
595 *	aac_consumer_free	-	free consumer entry
596 *	@dev: Adapter
597 *	@q: Queue
598 *	@qid: Queue ident
599 *
600 *	Frees up the current top of the queue we are a consumer of. If the
601 *	queue was full notify the producer that the queue is no longer full.
602 */
603
604void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
605{
606	int wasfull = 0;
607	u32 notify;
608
609	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
610		wasfull = 1;
611
612	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
613		*q->headers.consumer = cpu_to_le32(1);
614	else
615		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
616
617	if (wasfull) {
618		switch (qid) {
619
620		case HostNormCmdQueue:
621			notify = HostNormCmdNotFull;
622			break;
623		case HostNormRespQueue:
624			notify = HostNormRespNotFull;
625			break;
626		default:
627			BUG();
628			return;
629		}
630		aac_adapter_notify(dev, notify);
631	}
632}
633
634/**
635 *	aac_fib_adapter_complete	-	complete adapter issued fib
636 *	@fibptr: fib to complete
637 *	@size: size of fib
638 *
639 *	Will do all necessary work to complete a FIB that was sent from
640 *	the adapter.
641 */
642
643int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
644{
645	struct hw_fib * hw_fib = fibptr->hw_fib;
646	struct aac_dev * dev = fibptr->dev;
647	struct aac_queue * q;
648	unsigned long nointr = 0;
649	unsigned long qflags;
650
651	if (hw_fib->header.XferState == 0) {
652		if (dev->new_comm_interface)
653			kfree (hw_fib);
654        	return 0;
655	}
656	/*
657	 *	If we plan to do anything check the structure type first.
658	 */
659	if ( hw_fib->header.StructType != FIB_MAGIC ) {
660		if (dev->new_comm_interface)
661			kfree (hw_fib);
662        	return -EINVAL;
663	}
664	/*
665	 *	This block handles the case where the adapter had sent us a
666	 *	command and we have finished processing the command. We
667	 *	call completeFib when we are done processing the command
668	 *	and want to send a response back to the adapter. This will
669	 *	send the completed cdb to the adapter.
670	 */
671	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
672		if (dev->new_comm_interface) {
673			kfree (hw_fib);
674		} else {
675	       		u32 index;
676		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
677			if (size) {
678				size += sizeof(struct aac_fibhdr);
679				if (size > le16_to_cpu(hw_fib->header.SenderSize))
680					return -EMSGSIZE;
681				hw_fib->header.Size = cpu_to_le16(size);
682			}
683			q = &dev->queues->queue[AdapNormRespQueue];
684			spin_lock_irqsave(q->lock, qflags);
685			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
686			*(q->headers.producer) = cpu_to_le32(index + 1);
687			spin_unlock_irqrestore(q->lock, qflags);
688			if (!(nointr & (int)aac_config.irq_mod))
689				aac_adapter_notify(dev, AdapNormRespQueue);
690		}
691	}
692	else
693	{
694        	printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
695        	BUG();
696	}
697	return 0;
698}
699
700/**
701 *	aac_fib_complete	-	fib completion handler
702 *	@fib: FIB to complete
703 *
704 *	Will do all necessary work to complete a FIB.
705 */
706
707int aac_fib_complete(struct fib *fibptr)
708{
709	struct hw_fib * hw_fib = fibptr->hw_fib;
710
711	/*
712	 *	Check for a fib which has already been completed
713	 */
714
715	if (hw_fib->header.XferState == 0)
716        	return 0;
717	/*
718	 *	If we plan to do anything check the structure type first.
719	 */
720
721	if (hw_fib->header.StructType != FIB_MAGIC)
722	        return -EINVAL;
723	/*
724	 *	This block completes a cdb which orginated on the host and we
725	 *	just need to deallocate the cdb or reinit it. At this point the
726	 *	command is complete that we had sent to the adapter and this
727	 *	cdb could be reused.
728	 */
729	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
730		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
731	{
732		fib_dealloc(fibptr);
733	}
734	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
735	{
736		/*
737		 *	This handles the case when the host has aborted the I/O
738		 *	to the adapter because the adapter is not responding
739		 */
740		fib_dealloc(fibptr);
741	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
742		fib_dealloc(fibptr);
743	} else {
744		BUG();
745	}
746	return 0;
747}
748
749/**
750 *	aac_printf	-	handle printf from firmware
751 *	@dev: Adapter
752 *	@val: Message info
753 *
754 *	Print a message passed to us by the controller firmware on the
755 *	Adaptec board
756 */
757
758void aac_printf(struct aac_dev *dev, u32 val)
759{
760	char *cp = dev->printfbuf;
761	if (dev->printf_enabled)
762	{
763		int length = val & 0xffff;
764		int level = (val >> 16) & 0xffff;
765
766		/*
767		 *	The size of the printfbuf is set in port.c
768		 *	There is no variable or define for it
769		 */
770		if (length > 255)
771			length = 255;
772		if (cp[length] != 0)
773			cp[length] = 0;
774		if (level == LOG_AAC_HIGH_ERROR)
775			printk(KERN_WARNING "%s:%s", dev->name, cp);
776		else
777			printk(KERN_INFO "%s:%s", dev->name, cp);
778	}
779	memset(cp, 0,  256);
780}
781
782
783/**
784 *	aac_handle_aif		-	Handle a message from the firmware
785 *	@dev: Which adapter this fib is from
786 *	@fibptr: Pointer to fibptr from adapter
787 *
788 *	This routine handles a driver notify fib from the adapter and
789 *	dispatches it to the appropriate routine for handling.
790 */
791
792#define AIF_SNIFF_TIMEOUT	(30*HZ)
793static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
794{
795	struct hw_fib * hw_fib = fibptr->hw_fib;
796	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
797	int busy;
798	u32 container;
799	struct scsi_device *device;
800	enum {
801		NOTHING,
802		DELETE,
803		ADD,
804		CHANGE
805	} device_config_needed;
806
807	/* Sniff for container changes */
808
809	if (!dev || !dev->fsa_dev)
810		return;
811	container = (u32)-1;
812
813	/*
814	 *	We have set this up to try and minimize the number of
815	 * re-configures that take place. As a result of this when
816	 * certain AIF's come in we will set a flag waiting for another
817	 * type of AIF before setting the re-config flag.
818	 */
819	switch (le32_to_cpu(aifcmd->command)) {
820	case AifCmdDriverNotify:
821		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
822		/*
823		 *	Morph or Expand complete
824		 */
825		case AifDenMorphComplete:
826		case AifDenVolumeExtendComplete:
827			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
828			if (container >= dev->maximum_num_containers)
829				break;
830
831			/*
832			 *	Find the scsi_device associated with the SCSI
833			 * address. Make sure we have the right array, and if
834			 * so set the flag to initiate a new re-config once we
835			 * see an AifEnConfigChange AIF come through.
836			 */
837
838			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
839				device = scsi_device_lookup(dev->scsi_host_ptr,
840					CONTAINER_TO_CHANNEL(container),
841					CONTAINER_TO_ID(container),
842					CONTAINER_TO_LUN(container));
843				if (device) {
844					dev->fsa_dev[container].config_needed = CHANGE;
845					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
846					dev->fsa_dev[container].config_waiting_stamp = jiffies;
847					scsi_device_put(device);
848				}
849			}
850		}
851
852		/*
853		 *	If we are waiting on something and this happens to be
854		 * that thing then set the re-configure flag.
855		 */
856		if (container != (u32)-1) {
857			if (container >= dev->maximum_num_containers)
858				break;
859			if ((dev->fsa_dev[container].config_waiting_on ==
860			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
861			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
862				dev->fsa_dev[container].config_waiting_on = 0;
863		} else for (container = 0;
864		    container < dev->maximum_num_containers; ++container) {
865			if ((dev->fsa_dev[container].config_waiting_on ==
866			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
867			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
868				dev->fsa_dev[container].config_waiting_on = 0;
869		}
870		break;
871
872	case AifCmdEventNotify:
873		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
874		/*
875		 *	Add an Array.
876		 */
877		case AifEnAddContainer:
878			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
879			if (container >= dev->maximum_num_containers)
880				break;
881			dev->fsa_dev[container].config_needed = ADD;
882			dev->fsa_dev[container].config_waiting_on =
883				AifEnConfigChange;
884			dev->fsa_dev[container].config_waiting_stamp = jiffies;
885			break;
886
887		/*
888		 *	Delete an Array.
889		 */
890		case AifEnDeleteContainer:
891			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
892			if (container >= dev->maximum_num_containers)
893				break;
894			dev->fsa_dev[container].config_needed = DELETE;
895			dev->fsa_dev[container].config_waiting_on =
896				AifEnConfigChange;
897			dev->fsa_dev[container].config_waiting_stamp = jiffies;
898			break;
899
900		/*
901		 *	Container change detected. If we currently are not
902		 * waiting on something else, setup to wait on a Config Change.
903		 */
904		case AifEnContainerChange:
905			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
906			if (container >= dev->maximum_num_containers)
907				break;
908			if (dev->fsa_dev[container].config_waiting_on &&
909			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
910				break;
911			dev->fsa_dev[container].config_needed = CHANGE;
912			dev->fsa_dev[container].config_waiting_on =
913				AifEnConfigChange;
914			dev->fsa_dev[container].config_waiting_stamp = jiffies;
915			break;
916
917		case AifEnConfigChange:
918			break;
919
920		}
921
922		/*
923		 *	If we are waiting on something and this happens to be
924		 * that thing then set the re-configure flag.
925		 */
926		if (container != (u32)-1) {
927			if (container >= dev->maximum_num_containers)
928				break;
929			if ((dev->fsa_dev[container].config_waiting_on ==
930			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
931			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
932				dev->fsa_dev[container].config_waiting_on = 0;
933		} else for (container = 0;
934		    container < dev->maximum_num_containers; ++container) {
935			if ((dev->fsa_dev[container].config_waiting_on ==
936			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
937			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
938				dev->fsa_dev[container].config_waiting_on = 0;
939		}
940		break;
941
942	case AifCmdJobProgress:
943		/*
944		 *	These are job progress AIF's. When a Clear is being
945		 * done on a container it is initially created then hidden from
946		 * the OS. When the clear completes we don't get a config
947		 * change so we monitor the job status complete on a clear then
948		 * wait for a container change.
949		 */
950
951		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
952		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
953		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
954			for (container = 0;
955			    container < dev->maximum_num_containers;
956			    ++container) {
957				/*
958				 * Stomp on all config sequencing for all
959				 * containers?
960				 */
961				dev->fsa_dev[container].config_waiting_on =
962					AifEnContainerChange;
963				dev->fsa_dev[container].config_needed = ADD;
964				dev->fsa_dev[container].config_waiting_stamp =
965					jiffies;
966			}
967		}
968		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
969		 && (((u32 *)aifcmd->data)[6] == 0)
970		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
971			for (container = 0;
972			    container < dev->maximum_num_containers;
973			    ++container) {
974				/*
975				 * Stomp on all config sequencing for all
976				 * containers?
977				 */
978				dev->fsa_dev[container].config_waiting_on =
979					AifEnContainerChange;
980				dev->fsa_dev[container].config_needed = DELETE;
981				dev->fsa_dev[container].config_waiting_stamp =
982					jiffies;
983			}
984		}
985		break;
986	}
987
988	device_config_needed = NOTHING;
989	for (container = 0; container < dev->maximum_num_containers;
990	    ++container) {
991		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
992			(dev->fsa_dev[container].config_needed != NOTHING) &&
993			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
994			device_config_needed =
995				dev->fsa_dev[container].config_needed;
996			dev->fsa_dev[container].config_needed = NOTHING;
997			break;
998		}
999	}
1000	if (device_config_needed == NOTHING)
1001		return;
1002
1003	/*
1004	 *	If we decided that a re-configuration needs to be done,
1005	 * schedule it here on the way out the door, please close the door
1006	 * behind you.
1007	 */
1008
1009	busy = 0;
1010
1011
1012	/*
1013	 *	Find the scsi_device associated with the SCSI address,
1014	 * and mark it as changed, invalidating the cache. This deals
1015	 * with changes to existing device IDs.
1016	 */
1017
1018	if (!dev || !dev->scsi_host_ptr)
1019		return;
1020	/*
1021	 * force reload of disk info via aac_probe_container
1022	 */
1023	if ((device_config_needed == CHANGE)
1024	 && (dev->fsa_dev[container].valid == 1))
1025		dev->fsa_dev[container].valid = 2;
1026	if ((device_config_needed == CHANGE) ||
1027			(device_config_needed == ADD))
1028		aac_probe_container(dev, container);
1029	device = scsi_device_lookup(dev->scsi_host_ptr,
1030		CONTAINER_TO_CHANNEL(container),
1031		CONTAINER_TO_ID(container),
1032		CONTAINER_TO_LUN(container));
1033	if (device) {
1034		switch (device_config_needed) {
1035		case DELETE:
1036			scsi_remove_device(device);
1037			break;
1038		case CHANGE:
1039			if (!dev->fsa_dev[container].valid) {
1040				scsi_remove_device(device);
1041				break;
1042			}
1043			scsi_rescan_device(&device->sdev_gendev);
1044
1045		default:
1046			break;
1047		}
1048		scsi_device_put(device);
1049	}
1050	if (device_config_needed == ADD) {
1051		scsi_add_device(dev->scsi_host_ptr,
1052		  CONTAINER_TO_CHANNEL(container),
1053		  CONTAINER_TO_ID(container),
1054		  CONTAINER_TO_LUN(container));
1055	}
1056
1057}
1058
1059static int _aac_reset_adapter(struct aac_dev *aac)
1060{
1061	int index, quirks;
1062	u32 ret;
1063	int retval;
1064	struct Scsi_Host *host;
1065	struct scsi_device *dev;
1066	struct scsi_cmnd *command;
1067	struct scsi_cmnd *command_list;
1068
1069	/*
1070	 * Assumptions:
1071	 *	- host is locked.
1072	 *	- in_reset is asserted, so no new i/o is getting to the
1073	 *	  card.
1074	 *	- The card is dead.
1075	 */
1076	host = aac->scsi_host_ptr;
1077	scsi_block_requests(host);
1078	aac_adapter_disable_int(aac);
1079	spin_unlock_irq(host->host_lock);
1080	kthread_stop(aac->thread);
1081
1082	/*
1083	 *	If a positive health, means in a known DEAD PANIC
1084	 * state and the adapter could be reset to `try again'.
1085	 */
1086	retval = aac_adapter_check_health(aac);
1087	if (retval == 0)
1088		retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
1089		  0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1090	if (retval)
1091		retval = aac_adapter_sync_cmd(aac, IOP_RESET,
1092		  0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1093
1094	if (retval)
1095		goto out;
1096	if (ret != 0x00000001) {
1097		retval = -ENODEV;
1098		goto out;
1099	}
1100
1101	index = aac->cardtype;
1102
1103	/*
1104	 * Re-initialize the adapter, first free resources, then carefully
1105	 * apply the initialization sequence to come back again. Only risk
1106	 * is a change in Firmware dropping cache, it is assumed the caller
1107	 * will ensure that i/o is queisced and the card is flushed in that
1108	 * case.
1109	 */
1110	aac_fib_map_free(aac);
1111	aac->hw_fib_va = NULL;
1112	aac->hw_fib_pa = 0;
1113	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1114	aac->comm_addr = NULL;
1115	aac->comm_phys = 0;
1116	kfree(aac->queues);
1117	aac->queues = NULL;
1118	free_irq(aac->pdev->irq, aac);
1119	kfree(aac->fsa_dev);
1120	aac->fsa_dev = NULL;
1121	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1122		if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1123		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1124			goto out;
1125	} else {
1126		if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1127		  ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1128			goto out;
1129	}
1130	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1131		goto out;
1132	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1133		if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1134			goto out;
1135	aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1136	if (IS_ERR(aac->thread)) {
1137		retval = PTR_ERR(aac->thread);
1138		goto out;
1139	}
1140	(void)aac_get_adapter_info(aac);
1141	quirks = aac_get_driver_ident(index)->quirks;
1142	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1143 		host->sg_tablesize = 34;
1144 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1145 	}
1146 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1147 		host->sg_tablesize = 17;
1148 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1149 	}
1150	aac_get_config_status(aac, 1);
1151	aac_get_containers(aac);
1152	/*
1153	 * This is where the assumption that the Adapter is quiesced
1154	 * is important.
1155	 */
1156	command_list = NULL;
1157	__shost_for_each_device(dev, host) {
1158		unsigned long flags;
1159		spin_lock_irqsave(&dev->list_lock, flags);
1160		list_for_each_entry(command, &dev->cmd_list, list)
1161			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1162				command->SCp.buffer = (struct scatterlist *)command_list;
1163				command_list = command;
1164			}
1165		spin_unlock_irqrestore(&dev->list_lock, flags);
1166	}
1167	while ((command = command_list)) {
1168		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1169		command->SCp.buffer = NULL;
1170		command->result = DID_OK << 16
1171		  | COMMAND_COMPLETE << 8
1172		  | SAM_STAT_TASK_SET_FULL;
1173		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1174		command->scsi_done(command);
1175	}
1176	retval = 0;
1177
1178out:
1179	aac->in_reset = 0;
1180	scsi_unblock_requests(host);
1181	spin_lock_irq(host->host_lock);
1182	return retval;
1183}
1184
1185int aac_check_health(struct aac_dev * aac)
1186{
1187	int BlinkLED;
1188	unsigned long time_now, flagv = 0;
1189	struct list_head * entry;
1190	struct Scsi_Host * host;
1191
1192	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1193	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1194		return 0;
1195
1196	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1197		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1198		return 0; /* OK */
1199	}
1200
1201	aac->in_reset = 1;
1202
1203	/* Fake up an AIF:
1204	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1205	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1206	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1207	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1208	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1209	 *	aac.aifcmd.data[3] = BlinkLED
1210	 */
1211
1212	time_now = jiffies/HZ;
1213	entry = aac->fib_list.next;
1214
1215	/*
1216	 * For each Context that is on the
1217	 * fibctxList, make a copy of the
1218	 * fib, and then set the event to wake up the
1219	 * thread that is waiting for it.
1220	 */
1221	while (entry != &aac->fib_list) {
1222		/*
1223		 * Extract the fibctx
1224		 */
1225		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1226		struct hw_fib * hw_fib;
1227		struct fib * fib;
1228		/*
1229		 * Check if the queue is getting
1230		 * backlogged
1231		 */
1232		if (fibctx->count > 20) {
1233			/*
1234			 * It's *not* jiffies folks,
1235			 * but jiffies / HZ, so do not
1236			 * panic ...
1237			 */
1238			u32 time_last = fibctx->jiffies;
1239			/*
1240			 * Has it been > 2 minutes
1241			 * since the last read off
1242			 * the queue?
1243			 */
1244			if ((time_now - time_last) > aif_timeout) {
1245				entry = entry->next;
1246				aac_close_fib_context(aac, fibctx);
1247				continue;
1248			}
1249		}
1250		/*
1251		 * Warning: no sleep allowed while
1252		 * holding spinlock
1253		 */
1254		hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1255		fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1256		if (fib && hw_fib) {
1257			struct aac_aifcmd * aif;
1258
1259			memset(hw_fib, 0, sizeof(struct hw_fib));
1260			memset(fib, 0, sizeof(struct fib));
1261			fib->hw_fib = hw_fib;
1262			fib->dev = aac;
1263			aac_fib_init(fib);
1264			fib->type = FSAFS_NTC_FIB_CONTEXT;
1265			fib->size = sizeof (struct fib);
1266			fib->data = hw_fib->data;
1267			aif = (struct aac_aifcmd *)hw_fib->data;
1268			aif->command = cpu_to_le32(AifCmdEventNotify);
1269		 	aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1270		 	aif->data[0] = cpu_to_le32(AifEnExpEvent);
1271			aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1272		 	aif->data[2] = cpu_to_le32(AifHighPriority);
1273			aif->data[3] = cpu_to_le32(BlinkLED);
1274
1275			/*
1276			 * Put the FIB onto the
1277			 * fibctx's fibs
1278			 */
1279			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1280			fibctx->count++;
1281			/*
1282			 * Set the event to wake up the
1283			 * thread that will waiting.
1284			 */
1285			up(&fibctx->wait_sem);
1286		} else {
1287			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1288			kfree(fib);
1289			kfree(hw_fib);
1290		}
1291		entry = entry->next;
1292	}
1293
1294	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1295
1296	if (BlinkLED < 0) {
1297		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1298		goto out;
1299	}
1300
1301	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1302
1303	host = aac->scsi_host_ptr;
1304	spin_lock_irqsave(host->host_lock, flagv);
1305	BlinkLED = _aac_reset_adapter(aac);
1306	spin_unlock_irqrestore(host->host_lock, flagv);
1307	return BlinkLED;
1308
1309out:
1310	aac->in_reset = 0;
1311	return BlinkLED;
1312}
1313
1314
1315/**
1316 *	aac_command_thread	-	command processing thread
1317 *	@dev: Adapter to monitor
1318 *
1319 *	Waits on the commandready event in it's queue. When the event gets set
1320 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1321 *	until the queue is empty. When the queue is empty it will wait for
1322 *	more FIBs.
1323 */
1324
1325int aac_command_thread(void *data)
1326{
1327	struct aac_dev *dev = data;
1328	struct hw_fib *hw_fib, *hw_newfib;
1329	struct fib *fib, *newfib;
1330	struct aac_fib_context *fibctx;
1331	unsigned long flags;
1332	DECLARE_WAITQUEUE(wait, current);
1333
1334	/*
1335	 *	We can only have one thread per adapter for AIF's.
1336	 */
1337	if (dev->aif_thread)
1338		return -EINVAL;
1339
1340	/*
1341	 *	Let the DPC know it has a place to send the AIF's to.
1342	 */
1343	dev->aif_thread = 1;
1344	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1345	set_current_state(TASK_INTERRUPTIBLE);
1346	dprintk ((KERN_INFO "aac_command_thread start\n"));
1347	while(1)
1348	{
1349		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1350		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1351			struct list_head *entry;
1352			struct aac_aifcmd * aifcmd;
1353
1354			set_current_state(TASK_RUNNING);
1355
1356			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1357			list_del(entry);
1358
1359			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1360			fib = list_entry(entry, struct fib, fiblink);
1361			/*
1362			 *	We will process the FIB here or pass it to a
1363			 *	worker thread that is TBD. We Really can't
1364			 *	do anything at this point since we don't have
1365			 *	anything defined for this thread to do.
1366			 */
1367			hw_fib = fib->hw_fib;
1368			memset(fib, 0, sizeof(struct fib));
1369			fib->type = FSAFS_NTC_FIB_CONTEXT;
1370			fib->size = sizeof( struct fib );
1371			fib->hw_fib = hw_fib;
1372			fib->data = hw_fib->data;
1373			fib->dev = dev;
1374			/*
1375			 *	We only handle AifRequest fibs from the adapter.
1376			 */
1377			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1378			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1379				/* Handle Driver Notify Events */
1380				aac_handle_aif(dev, fib);
1381				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1382				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1383			} else {
1384				struct list_head *entry;
1385				/* The u32 here is important and intended. We are using
1386				   32bit wrapping time to fit the adapter field */
1387
1388				u32 time_now, time_last;
1389				unsigned long flagv;
1390				unsigned num;
1391				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1392				struct fib ** fib_pool, ** fib_p;
1393
1394				/* Sniff events */
1395				if ((aifcmd->command ==
1396				     cpu_to_le32(AifCmdEventNotify)) ||
1397				    (aifcmd->command ==
1398				     cpu_to_le32(AifCmdJobProgress))) {
1399					aac_handle_aif(dev, fib);
1400				}
1401
1402				time_now = jiffies/HZ;
1403
1404				/*
1405				 * Warning: no sleep allowed while
1406				 * holding spinlock. We take the estimate
1407				 * and pre-allocate a set of fibs outside the
1408				 * lock.
1409				 */
1410				num = le32_to_cpu(dev->init->AdapterFibsSize)
1411				    / sizeof(struct hw_fib); /* some extra */
1412				spin_lock_irqsave(&dev->fib_lock, flagv);
1413				entry = dev->fib_list.next;
1414				while (entry != &dev->fib_list) {
1415					entry = entry->next;
1416					++num;
1417				}
1418				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1419				hw_fib_pool = NULL;
1420				fib_pool = NULL;
1421				if (num
1422				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1423				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1424					hw_fib_p = hw_fib_pool;
1425					fib_p = fib_pool;
1426					while (hw_fib_p < &hw_fib_pool[num]) {
1427						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1428							--hw_fib_p;
1429							break;
1430						}
1431						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1432							kfree(*(--hw_fib_p));
1433							break;
1434						}
1435					}
1436					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1437						kfree(fib_pool);
1438						fib_pool = NULL;
1439						kfree(hw_fib_pool);
1440						hw_fib_pool = NULL;
1441					}
1442				} else {
1443					kfree(hw_fib_pool);
1444					hw_fib_pool = NULL;
1445				}
1446				spin_lock_irqsave(&dev->fib_lock, flagv);
1447				entry = dev->fib_list.next;
1448				/*
1449				 * For each Context that is on the
1450				 * fibctxList, make a copy of the
1451				 * fib, and then set the event to wake up the
1452				 * thread that is waiting for it.
1453				 */
1454				hw_fib_p = hw_fib_pool;
1455				fib_p = fib_pool;
1456				while (entry != &dev->fib_list) {
1457					/*
1458					 * Extract the fibctx
1459					 */
1460					fibctx = list_entry(entry, struct aac_fib_context, next);
1461					/*
1462					 * Check if the queue is getting
1463					 * backlogged
1464					 */
1465					if (fibctx->count > 20)
1466					{
1467						/*
1468						 * It's *not* jiffies folks,
1469						 * but jiffies / HZ so do not
1470						 * panic ...
1471						 */
1472						time_last = fibctx->jiffies;
1473						/*
1474						 * Has it been > 2 minutes
1475						 * since the last read off
1476						 * the queue?
1477						 */
1478						if ((time_now - time_last) > aif_timeout) {
1479							entry = entry->next;
1480							aac_close_fib_context(dev, fibctx);
1481							continue;
1482						}
1483					}
1484					/*
1485					 * Warning: no sleep allowed while
1486					 * holding spinlock
1487					 */
1488					if (hw_fib_p < &hw_fib_pool[num]) {
1489						hw_newfib = *hw_fib_p;
1490						*(hw_fib_p++) = NULL;
1491						newfib = *fib_p;
1492						*(fib_p++) = NULL;
1493						/*
1494						 * Make the copy of the FIB
1495						 */
1496						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1497						memcpy(newfib, fib, sizeof(struct fib));
1498						newfib->hw_fib = hw_newfib;
1499						/*
1500						 * Put the FIB onto the
1501						 * fibctx's fibs
1502						 */
1503						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1504						fibctx->count++;
1505						/*
1506						 * Set the event to wake up the
1507						 * thread that is waiting.
1508						 */
1509						up(&fibctx->wait_sem);
1510					} else {
1511						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1512					}
1513					entry = entry->next;
1514				}
1515				/*
1516				 *	Set the status of this FIB
1517				 */
1518				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1519				aac_fib_adapter_complete(fib, sizeof(u32));
1520				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1521				/* Free up the remaining resources */
1522				hw_fib_p = hw_fib_pool;
1523				fib_p = fib_pool;
1524				while (hw_fib_p < &hw_fib_pool[num]) {
1525					kfree(*hw_fib_p);
1526					kfree(*fib_p);
1527					++fib_p;
1528					++hw_fib_p;
1529				}
1530				kfree(hw_fib_pool);
1531				kfree(fib_pool);
1532			}
1533			kfree(fib);
1534			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1535		}
1536		/*
1537		 *	There are no more AIF's
1538		 */
1539		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1540		schedule();
1541
1542		if (kthread_should_stop())
1543			break;
1544		set_current_state(TASK_INTERRUPTIBLE);
1545	}
1546	if (dev->queues)
1547		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1548	dev->aif_thread = 0;
1549	return 0;
1550}
1551