commsup.c revision 6de76cfc7db8844bc26ab9a60b20f50ad7851833
1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING.  If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 *  commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 *    communication.
29 *
30 */
31
32#include <linux/kernel.h>
33#include <linux/init.h>
34#include <linux/types.h>
35#include <linux/sched.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/slab.h>
39#include <linux/completion.h>
40#include <linux/blkdev.h>
41#include <linux/delay.h>
42#include <linux/kthread.h>
43#include <linux/interrupt.h>
44#include <linux/semaphore.h>
45#include <scsi/scsi.h>
46#include <scsi/scsi_host.h>
47#include <scsi/scsi_device.h>
48#include <scsi/scsi_cmnd.h>
49
50#include "aacraid.h"
51
52/**
53 *	fib_map_alloc		-	allocate the fib objects
54 *	@dev: Adapter to allocate for
55 *
56 *	Allocate and map the shared PCI space for the FIB blocks used to
57 *	talk to the Adaptec firmware.
58 */
59
60static int fib_map_alloc(struct aac_dev *dev)
61{
62	dprintk((KERN_INFO
63	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68	  &dev->hw_fib_pa))==NULL)
69		return -ENOMEM;
70	return 0;
71}
72
73/**
74 *	aac_fib_map_free		-	free the fib objects
75 *	@dev: Adapter to free
76 *
77 *	Free the PCI mappings and the memory allocated for FIB blocks
78 *	on this adapter.
79 */
80
81void aac_fib_map_free(struct aac_dev *dev)
82{
83	pci_free_consistent(dev->pdev,
84	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85	  dev->hw_fib_va, dev->hw_fib_pa);
86	dev->hw_fib_va = NULL;
87	dev->hw_fib_pa = 0;
88}
89
90/**
91 *	aac_fib_setup	-	setup the fibs
92 *	@dev: Adapter to set up
93 *
94 *	Allocate the PCI space for the fibs, map it and then intialise the
95 *	fib area, the unmapped fib data and also the free list
96 */
97
98int aac_fib_setup(struct aac_dev * dev)
99{
100	struct fib *fibptr;
101	struct hw_fib *hw_fib;
102	dma_addr_t hw_fib_pa;
103	int i;
104
105	while (((i = fib_map_alloc(dev)) == -ENOMEM)
106	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109	}
110	if (i<0)
111		return -ENOMEM;
112
113	hw_fib = dev->hw_fib_va;
114	hw_fib_pa = dev->hw_fib_pa;
115	memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
116	/*
117	 *	Initialise the fibs
118	 */
119	for (i = 0, fibptr = &dev->fibs[i];
120		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
121		i++, fibptr++)
122	{
123		fibptr->dev = dev;
124		fibptr->hw_fib_va = hw_fib;
125		fibptr->data = (void *) fibptr->hw_fib_va->data;
126		fibptr->next = fibptr+1;	/* Forward chain the fibs */
127		sema_init(&fibptr->event_wait, 0);
128		spin_lock_init(&fibptr->event_lock);
129		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
130		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
131		fibptr->hw_fib_pa = hw_fib_pa;
132		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
133		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
134	}
135	/*
136	 *	Add the fib chain to the free list
137	 */
138	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
139	/*
140	 *	Enable this to debug out of queue space
141	 */
142	dev->free_fib = &dev->fibs[0];
143	return 0;
144}
145
146/**
147 *	aac_fib_alloc	-	allocate a fib
148 *	@dev: Adapter to allocate the fib for
149 *
150 *	Allocate a fib from the adapter fib pool. If the pool is empty we
151 *	return NULL.
152 */
153
154struct fib *aac_fib_alloc(struct aac_dev *dev)
155{
156	struct fib * fibptr;
157	unsigned long flags;
158	spin_lock_irqsave(&dev->fib_lock, flags);
159	fibptr = dev->free_fib;
160	if(!fibptr){
161		spin_unlock_irqrestore(&dev->fib_lock, flags);
162		return fibptr;
163	}
164	dev->free_fib = fibptr->next;
165	spin_unlock_irqrestore(&dev->fib_lock, flags);
166	/*
167	 *	Set the proper node type code and node byte size
168	 */
169	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
170	fibptr->size = sizeof(struct fib);
171	/*
172	 *	Null out fields that depend on being zero at the start of
173	 *	each I/O
174	 */
175	fibptr->hw_fib_va->header.XferState = 0;
176	fibptr->flags = 0;
177	fibptr->callback = NULL;
178	fibptr->callback_data = NULL;
179
180	return fibptr;
181}
182
183/**
184 *	aac_fib_free	-	free a fib
185 *	@fibptr: fib to free up
186 *
187 *	Frees up a fib and places it on the appropriate queue
188 */
189
190void aac_fib_free(struct fib *fibptr)
191{
192	unsigned long flags, flagsv;
193
194	spin_lock_irqsave(&fibptr->event_lock, flagsv);
195	if (fibptr->done == 2) {
196		spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
197		return;
198	}
199	spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
200
201	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
202	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
203		aac_config.fib_timeouts++;
204	if (fibptr->hw_fib_va->header.XferState != 0) {
205		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
206			 (void*)fibptr,
207			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
208	}
209	fibptr->next = fibptr->dev->free_fib;
210	fibptr->dev->free_fib = fibptr;
211	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
212}
213
214/**
215 *	aac_fib_init	-	initialise a fib
216 *	@fibptr: The fib to initialize
217 *
218 *	Set up the generic fib fields ready for use
219 */
220
221void aac_fib_init(struct fib *fibptr)
222{
223	struct hw_fib *hw_fib = fibptr->hw_fib_va;
224
225	hw_fib->header.StructType = FIB_MAGIC;
226	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
227	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
228	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
229	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
230	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
231}
232
233/**
234 *	fib_deallocate		-	deallocate a fib
235 *	@fibptr: fib to deallocate
236 *
237 *	Will deallocate and return to the free pool the FIB pointed to by the
238 *	caller.
239 */
240
241static void fib_dealloc(struct fib * fibptr)
242{
243	struct hw_fib *hw_fib = fibptr->hw_fib_va;
244	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
245	hw_fib->header.XferState = 0;
246}
247
248/*
249 *	Commuication primitives define and support the queuing method we use to
250 *	support host to adapter commuication. All queue accesses happen through
251 *	these routines and are the only routines which have a knowledge of the
252 *	 how these queues are implemented.
253 */
254
255/**
256 *	aac_get_entry		-	get a queue entry
257 *	@dev: Adapter
258 *	@qid: Queue Number
259 *	@entry: Entry return
260 *	@index: Index return
261 *	@nonotify: notification control
262 *
263 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
264 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
265 *	returned.
266 */
267
268static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
269{
270	struct aac_queue * q;
271	unsigned long idx;
272
273	/*
274	 *	All of the queues wrap when they reach the end, so we check
275	 *	to see if they have reached the end and if they have we just
276	 *	set the index back to zero. This is a wrap. You could or off
277	 *	the high bits in all updates but this is a bit faster I think.
278	 */
279
280	q = &dev->queues->queue[qid];
281
282	idx = *index = le32_to_cpu(*(q->headers.producer));
283	/* Interrupt Moderation, only interrupt for first two entries */
284	if (idx != le32_to_cpu(*(q->headers.consumer))) {
285		if (--idx == 0) {
286			if (qid == AdapNormCmdQueue)
287				idx = ADAP_NORM_CMD_ENTRIES;
288			else
289				idx = ADAP_NORM_RESP_ENTRIES;
290		}
291		if (idx != le32_to_cpu(*(q->headers.consumer)))
292			*nonotify = 1;
293	}
294
295	if (qid == AdapNormCmdQueue) {
296		if (*index >= ADAP_NORM_CMD_ENTRIES)
297			*index = 0; /* Wrap to front of the Producer Queue. */
298	} else {
299		if (*index >= ADAP_NORM_RESP_ENTRIES)
300			*index = 0; /* Wrap to front of the Producer Queue. */
301	}
302
303	/* Queue is full */
304	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
305		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
306				qid, q->numpending);
307		return 0;
308	} else {
309		*entry = q->base + *index;
310		return 1;
311	}
312}
313
314/**
315 *	aac_queue_get		-	get the next free QE
316 *	@dev: Adapter
317 *	@index: Returned index
318 *	@priority: Priority of fib
319 *	@fib: Fib to associate with the queue entry
320 *	@wait: Wait if queue full
321 *	@fibptr: Driver fib object to go with fib
322 *	@nonotify: Don't notify the adapter
323 *
324 *	Gets the next free QE off the requested priorty adapter command
325 *	queue and associates the Fib with the QE. The QE represented by
326 *	index is ready to insert on the queue when this routine returns
327 *	success.
328 */
329
330int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
331{
332	struct aac_entry * entry = NULL;
333	int map = 0;
334
335	if (qid == AdapNormCmdQueue) {
336		/*  if no entries wait for some if caller wants to */
337		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
338			printk(KERN_ERR "GetEntries failed\n");
339		}
340		/*
341		 *	Setup queue entry with a command, status and fib mapped
342		 */
343		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344		map = 1;
345	} else {
346		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
347			/* if no entries wait for some if caller wants to */
348		}
349		/*
350		 *	Setup queue entry with command, status and fib mapped
351		 */
352		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
353		entry->addr = hw_fib->header.SenderFibAddress;
354			/* Restore adapters pointer to the FIB */
355		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
356		map = 0;
357	}
358	/*
359	 *	If MapFib is true than we need to map the Fib and put pointers
360	 *	in the queue entry.
361	 */
362	if (map)
363		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
364	return 0;
365}
366
367/*
368 *	Define the highest level of host to adapter communication routines.
369 *	These routines will support host to adapter FS commuication. These
370 *	routines have no knowledge of the commuication method used. This level
371 *	sends and receives FIBs. This level has no knowledge of how these FIBs
372 *	get passed back and forth.
373 */
374
375/**
376 *	aac_fib_send	-	send a fib to the adapter
377 *	@command: Command to send
378 *	@fibptr: The fib
379 *	@size: Size of fib data area
380 *	@priority: Priority of Fib
381 *	@wait: Async/sync select
382 *	@reply: True if a reply is wanted
383 *	@callback: Called with reply
384 *	@callback_data: Passed to callback
385 *
386 *	Sends the requested FIB to the adapter and optionally will wait for a
387 *	response FIB. If the caller does not wish to wait for a response than
388 *	an event to wait on must be supplied. This event will be set when a
389 *	response FIB is received from the adapter.
390 */
391
392int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
393		int priority, int wait, int reply, fib_callback callback,
394		void *callback_data)
395{
396	struct aac_dev * dev = fibptr->dev;
397	struct hw_fib * hw_fib = fibptr->hw_fib_va;
398	unsigned long flags = 0;
399	unsigned long qflags;
400	unsigned long mflags = 0;
401
402
403	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
404		return -EBUSY;
405	/*
406	 *	There are 5 cases with the wait and reponse requested flags.
407	 *	The only invalid cases are if the caller requests to wait and
408	 *	does not request a response and if the caller does not want a
409	 *	response and the Fib is not allocated from pool. If a response
410	 *	is not requesed the Fib will just be deallocaed by the DPC
411	 *	routine when the response comes back from the adapter. No
412	 *	further processing will be done besides deleting the Fib. We
413	 *	will have a debug mode where the adapter can notify the host
414	 *	it had a problem and the host can log that fact.
415	 */
416	fibptr->flags = 0;
417	if (wait && !reply) {
418		return -EINVAL;
419	} else if (!wait && reply) {
420		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
421		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
422	} else if (!wait && !reply) {
423		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
424		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
425	} else if (wait && reply) {
426		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
427		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
428	}
429	/*
430	 *	Map the fib into 32bits by using the fib number
431	 */
432
433	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
434	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
435	/*
436	 *	Set FIB state to indicate where it came from and if we want a
437	 *	response from the adapter. Also load the command from the
438	 *	caller.
439	 *
440	 *	Map the hw fib pointer as a 32bit value
441	 */
442	hw_fib->header.Command = cpu_to_le16(command);
443	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
444	fibptr->hw_fib_va->header.Flags = 0;	/* 0 the flags field - internal only*/
445	/*
446	 *	Set the size of the Fib we want to send to the adapter
447	 */
448	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
449	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
450		return -EMSGSIZE;
451	}
452	/*
453	 *	Get a queue entry connect the FIB to it and send an notify
454	 *	the adapter a command is ready.
455	 */
456	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
457
458	/*
459	 *	Fill in the Callback and CallbackContext if we are not
460	 *	going to wait.
461	 */
462	if (!wait) {
463		fibptr->callback = callback;
464		fibptr->callback_data = callback_data;
465		fibptr->flags = FIB_CONTEXT_FLAG;
466	}
467
468	fibptr->done = 0;
469
470	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
471
472	dprintk((KERN_DEBUG "Fib contents:.\n"));
473	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
474	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
475	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
476	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
477	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
478	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
479
480	if (!dev->queues)
481		return -EBUSY;
482
483	if (wait) {
484
485		spin_lock_irqsave(&dev->manage_lock, mflags);
486		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
487			printk(KERN_INFO "No management Fibs Available:%d\n",
488						dev->management_fib_count);
489			spin_unlock_irqrestore(&dev->manage_lock, mflags);
490			return -EBUSY;
491		}
492		dev->management_fib_count++;
493		spin_unlock_irqrestore(&dev->manage_lock, mflags);
494		spin_lock_irqsave(&fibptr->event_lock, flags);
495	}
496
497	if (aac_adapter_deliver(fibptr) != 0) {
498		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
499		if (wait) {
500			spin_unlock_irqrestore(&fibptr->event_lock, flags);
501			spin_lock_irqsave(&dev->manage_lock, mflags);
502			dev->management_fib_count--;
503			spin_unlock_irqrestore(&dev->manage_lock, mflags);
504		}
505		return -EBUSY;
506	}
507
508
509	/*
510	 *	If the caller wanted us to wait for response wait now.
511	 */
512
513	if (wait) {
514		spin_unlock_irqrestore(&fibptr->event_lock, flags);
515		/* Only set for first known interruptable command */
516		if (wait < 0) {
517			/*
518			 * *VERY* Dangerous to time out a command, the
519			 * assumption is made that we have no hope of
520			 * functioning because an interrupt routing or other
521			 * hardware failure has occurred.
522			 */
523			unsigned long count = 36000000L; /* 3 minutes */
524			while (down_trylock(&fibptr->event_wait)) {
525				int blink;
526				if (--count == 0) {
527					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
528					spin_lock_irqsave(q->lock, qflags);
529					q->numpending--;
530					spin_unlock_irqrestore(q->lock, qflags);
531					if (wait == -1) {
532	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
533						  "Usually a result of a PCI interrupt routing problem;\n"
534						  "update mother board BIOS or consider utilizing one of\n"
535						  "the SAFE mode kernel options (acpi, apic etc)\n");
536					}
537					return -ETIMEDOUT;
538				}
539				if ((blink = aac_adapter_check_health(dev)) > 0) {
540					if (wait == -1) {
541	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
542						  "Usually a result of a serious unrecoverable hardware problem\n",
543						  blink);
544					}
545					return -EFAULT;
546				}
547				udelay(5);
548			}
549		} else if (down_interruptible(&fibptr->event_wait)) {
550			/* Do nothing ... satisfy
551			 * down_interruptible must_check */
552		}
553
554		spin_lock_irqsave(&fibptr->event_lock, flags);
555		if (fibptr->done == 0) {
556			fibptr->done = 2; /* Tell interrupt we aborted */
557			spin_unlock_irqrestore(&fibptr->event_lock, flags);
558			return -ERESTARTSYS;
559		}
560		spin_unlock_irqrestore(&fibptr->event_lock, flags);
561		BUG_ON(fibptr->done == 0);
562
563		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
564			return -ETIMEDOUT;
565		return 0;
566	}
567	/*
568	 *	If the user does not want a response than return success otherwise
569	 *	return pending
570	 */
571	if (reply)
572		return -EINPROGRESS;
573	else
574		return 0;
575}
576
577/**
578 *	aac_consumer_get	-	get the top of the queue
579 *	@dev: Adapter
580 *	@q: Queue
581 *	@entry: Return entry
582 *
583 *	Will return a pointer to the entry on the top of the queue requested that
584 *	we are a consumer of, and return the address of the queue entry. It does
585 *	not change the state of the queue.
586 */
587
588int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
589{
590	u32 index;
591	int status;
592	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
593		status = 0;
594	} else {
595		/*
596		 *	The consumer index must be wrapped if we have reached
597		 *	the end of the queue, else we just use the entry
598		 *	pointed to by the header index
599		 */
600		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
601			index = 0;
602		else
603			index = le32_to_cpu(*q->headers.consumer);
604		*entry = q->base + index;
605		status = 1;
606	}
607	return(status);
608}
609
610/**
611 *	aac_consumer_free	-	free consumer entry
612 *	@dev: Adapter
613 *	@q: Queue
614 *	@qid: Queue ident
615 *
616 *	Frees up the current top of the queue we are a consumer of. If the
617 *	queue was full notify the producer that the queue is no longer full.
618 */
619
620void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
621{
622	int wasfull = 0;
623	u32 notify;
624
625	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
626		wasfull = 1;
627
628	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
629		*q->headers.consumer = cpu_to_le32(1);
630	else
631		le32_add_cpu(q->headers.consumer, 1);
632
633	if (wasfull) {
634		switch (qid) {
635
636		case HostNormCmdQueue:
637			notify = HostNormCmdNotFull;
638			break;
639		case HostNormRespQueue:
640			notify = HostNormRespNotFull;
641			break;
642		default:
643			BUG();
644			return;
645		}
646		aac_adapter_notify(dev, notify);
647	}
648}
649
650/**
651 *	aac_fib_adapter_complete	-	complete adapter issued fib
652 *	@fibptr: fib to complete
653 *	@size: size of fib
654 *
655 *	Will do all necessary work to complete a FIB that was sent from
656 *	the adapter.
657 */
658
659int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
660{
661	struct hw_fib * hw_fib = fibptr->hw_fib_va;
662	struct aac_dev * dev = fibptr->dev;
663	struct aac_queue * q;
664	unsigned long nointr = 0;
665	unsigned long qflags;
666
667	if (hw_fib->header.XferState == 0) {
668		if (dev->comm_interface == AAC_COMM_MESSAGE)
669			kfree (hw_fib);
670		return 0;
671	}
672	/*
673	 *	If we plan to do anything check the structure type first.
674	 */
675	if (hw_fib->header.StructType != FIB_MAGIC) {
676		if (dev->comm_interface == AAC_COMM_MESSAGE)
677			kfree (hw_fib);
678		return -EINVAL;
679	}
680	/*
681	 *	This block handles the case where the adapter had sent us a
682	 *	command and we have finished processing the command. We
683	 *	call completeFib when we are done processing the command
684	 *	and want to send a response back to the adapter. This will
685	 *	send the completed cdb to the adapter.
686	 */
687	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
688		if (dev->comm_interface == AAC_COMM_MESSAGE) {
689			kfree (hw_fib);
690		} else {
691			u32 index;
692			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
693			if (size) {
694				size += sizeof(struct aac_fibhdr);
695				if (size > le16_to_cpu(hw_fib->header.SenderSize))
696					return -EMSGSIZE;
697				hw_fib->header.Size = cpu_to_le16(size);
698			}
699			q = &dev->queues->queue[AdapNormRespQueue];
700			spin_lock_irqsave(q->lock, qflags);
701			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
702			*(q->headers.producer) = cpu_to_le32(index + 1);
703			spin_unlock_irqrestore(q->lock, qflags);
704			if (!(nointr & (int)aac_config.irq_mod))
705				aac_adapter_notify(dev, AdapNormRespQueue);
706		}
707	} else {
708		printk(KERN_WARNING "aac_fib_adapter_complete: "
709			"Unknown xferstate detected.\n");
710		BUG();
711	}
712	return 0;
713}
714
715/**
716 *	aac_fib_complete	-	fib completion handler
717 *	@fib: FIB to complete
718 *
719 *	Will do all necessary work to complete a FIB.
720 */
721
722int aac_fib_complete(struct fib *fibptr)
723{
724	unsigned long flags;
725	struct hw_fib * hw_fib = fibptr->hw_fib_va;
726
727	/*
728	 *	Check for a fib which has already been completed
729	 */
730
731	if (hw_fib->header.XferState == 0)
732		return 0;
733	/*
734	 *	If we plan to do anything check the structure type first.
735	 */
736
737	if (hw_fib->header.StructType != FIB_MAGIC)
738		return -EINVAL;
739	/*
740	 *	This block completes a cdb which orginated on the host and we
741	 *	just need to deallocate the cdb or reinit it. At this point the
742	 *	command is complete that we had sent to the adapter and this
743	 *	cdb could be reused.
744	 */
745	spin_lock_irqsave(&fibptr->event_lock, flags);
746	if (fibptr->done == 2) {
747		spin_unlock_irqrestore(&fibptr->event_lock, flags);
748		return 0;
749	}
750	spin_unlock_irqrestore(&fibptr->event_lock, flags);
751
752	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
753		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
754	{
755		fib_dealloc(fibptr);
756	}
757	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
758	{
759		/*
760		 *	This handles the case when the host has aborted the I/O
761		 *	to the adapter because the adapter is not responding
762		 */
763		fib_dealloc(fibptr);
764	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
765		fib_dealloc(fibptr);
766	} else {
767		BUG();
768	}
769	return 0;
770}
771
772/**
773 *	aac_printf	-	handle printf from firmware
774 *	@dev: Adapter
775 *	@val: Message info
776 *
777 *	Print a message passed to us by the controller firmware on the
778 *	Adaptec board
779 */
780
781void aac_printf(struct aac_dev *dev, u32 val)
782{
783	char *cp = dev->printfbuf;
784	if (dev->printf_enabled)
785	{
786		int length = val & 0xffff;
787		int level = (val >> 16) & 0xffff;
788
789		/*
790		 *	The size of the printfbuf is set in port.c
791		 *	There is no variable or define for it
792		 */
793		if (length > 255)
794			length = 255;
795		if (cp[length] != 0)
796			cp[length] = 0;
797		if (level == LOG_AAC_HIGH_ERROR)
798			printk(KERN_WARNING "%s:%s", dev->name, cp);
799		else
800			printk(KERN_INFO "%s:%s", dev->name, cp);
801	}
802	memset(cp, 0, 256);
803}
804
805
806/**
807 *	aac_handle_aif		-	Handle a message from the firmware
808 *	@dev: Which adapter this fib is from
809 *	@fibptr: Pointer to fibptr from adapter
810 *
811 *	This routine handles a driver notify fib from the adapter and
812 *	dispatches it to the appropriate routine for handling.
813 */
814
815#define AIF_SNIFF_TIMEOUT	(30*HZ)
816static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
817{
818	struct hw_fib * hw_fib = fibptr->hw_fib_va;
819	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
820	u32 channel, id, lun, container;
821	struct scsi_device *device;
822	enum {
823		NOTHING,
824		DELETE,
825		ADD,
826		CHANGE
827	} device_config_needed = NOTHING;
828
829	/* Sniff for container changes */
830
831	if (!dev || !dev->fsa_dev)
832		return;
833	container = channel = id = lun = (u32)-1;
834
835	/*
836	 *	We have set this up to try and minimize the number of
837	 * re-configures that take place. As a result of this when
838	 * certain AIF's come in we will set a flag waiting for another
839	 * type of AIF before setting the re-config flag.
840	 */
841	switch (le32_to_cpu(aifcmd->command)) {
842	case AifCmdDriverNotify:
843		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
844		/*
845		 *	Morph or Expand complete
846		 */
847		case AifDenMorphComplete:
848		case AifDenVolumeExtendComplete:
849			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
850			if (container >= dev->maximum_num_containers)
851				break;
852
853			/*
854			 *	Find the scsi_device associated with the SCSI
855			 * address. Make sure we have the right array, and if
856			 * so set the flag to initiate a new re-config once we
857			 * see an AifEnConfigChange AIF come through.
858			 */
859
860			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
861				device = scsi_device_lookup(dev->scsi_host_ptr,
862					CONTAINER_TO_CHANNEL(container),
863					CONTAINER_TO_ID(container),
864					CONTAINER_TO_LUN(container));
865				if (device) {
866					dev->fsa_dev[container].config_needed = CHANGE;
867					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
868					dev->fsa_dev[container].config_waiting_stamp = jiffies;
869					scsi_device_put(device);
870				}
871			}
872		}
873
874		/*
875		 *	If we are waiting on something and this happens to be
876		 * that thing then set the re-configure flag.
877		 */
878		if (container != (u32)-1) {
879			if (container >= dev->maximum_num_containers)
880				break;
881			if ((dev->fsa_dev[container].config_waiting_on ==
882			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
883			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
884				dev->fsa_dev[container].config_waiting_on = 0;
885		} else for (container = 0;
886		    container < dev->maximum_num_containers; ++container) {
887			if ((dev->fsa_dev[container].config_waiting_on ==
888			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
889			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
890				dev->fsa_dev[container].config_waiting_on = 0;
891		}
892		break;
893
894	case AifCmdEventNotify:
895		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
896		case AifEnBatteryEvent:
897			dev->cache_protected =
898				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
899			break;
900		/*
901		 *	Add an Array.
902		 */
903		case AifEnAddContainer:
904			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
905			if (container >= dev->maximum_num_containers)
906				break;
907			dev->fsa_dev[container].config_needed = ADD;
908			dev->fsa_dev[container].config_waiting_on =
909				AifEnConfigChange;
910			dev->fsa_dev[container].config_waiting_stamp = jiffies;
911			break;
912
913		/*
914		 *	Delete an Array.
915		 */
916		case AifEnDeleteContainer:
917			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
918			if (container >= dev->maximum_num_containers)
919				break;
920			dev->fsa_dev[container].config_needed = DELETE;
921			dev->fsa_dev[container].config_waiting_on =
922				AifEnConfigChange;
923			dev->fsa_dev[container].config_waiting_stamp = jiffies;
924			break;
925
926		/*
927		 *	Container change detected. If we currently are not
928		 * waiting on something else, setup to wait on a Config Change.
929		 */
930		case AifEnContainerChange:
931			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
932			if (container >= dev->maximum_num_containers)
933				break;
934			if (dev->fsa_dev[container].config_waiting_on &&
935			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
936				break;
937			dev->fsa_dev[container].config_needed = CHANGE;
938			dev->fsa_dev[container].config_waiting_on =
939				AifEnConfigChange;
940			dev->fsa_dev[container].config_waiting_stamp = jiffies;
941			break;
942
943		case AifEnConfigChange:
944			break;
945
946		case AifEnAddJBOD:
947		case AifEnDeleteJBOD:
948			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
949			if ((container >> 28)) {
950				container = (u32)-1;
951				break;
952			}
953			channel = (container >> 24) & 0xF;
954			if (channel >= dev->maximum_num_channels) {
955				container = (u32)-1;
956				break;
957			}
958			id = container & 0xFFFF;
959			if (id >= dev->maximum_num_physicals) {
960				container = (u32)-1;
961				break;
962			}
963			lun = (container >> 16) & 0xFF;
964			container = (u32)-1;
965			channel = aac_phys_to_logical(channel);
966			device_config_needed =
967			  (((__le32 *)aifcmd->data)[0] ==
968			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
969			if (device_config_needed == ADD) {
970				device = scsi_device_lookup(dev->scsi_host_ptr,
971					channel,
972					id,
973					lun);
974				if (device) {
975					scsi_remove_device(device);
976					scsi_device_put(device);
977				}
978			}
979			break;
980
981		case AifEnEnclosureManagement:
982			/*
983			 * If in JBOD mode, automatic exposure of new
984			 * physical target to be suppressed until configured.
985			 */
986			if (dev->jbod)
987				break;
988			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
989			case EM_DRIVE_INSERTION:
990			case EM_DRIVE_REMOVAL:
991				container = le32_to_cpu(
992					((__le32 *)aifcmd->data)[2]);
993				if ((container >> 28)) {
994					container = (u32)-1;
995					break;
996				}
997				channel = (container >> 24) & 0xF;
998				if (channel >= dev->maximum_num_channels) {
999					container = (u32)-1;
1000					break;
1001				}
1002				id = container & 0xFFFF;
1003				lun = (container >> 16) & 0xFF;
1004				container = (u32)-1;
1005				if (id >= dev->maximum_num_physicals) {
1006					/* legacy dev_t ? */
1007					if ((0x2000 <= id) || lun || channel ||
1008					  ((channel = (id >> 7) & 0x3F) >=
1009					  dev->maximum_num_channels))
1010						break;
1011					lun = (id >> 4) & 7;
1012					id &= 0xF;
1013				}
1014				channel = aac_phys_to_logical(channel);
1015				device_config_needed =
1016				  (((__le32 *)aifcmd->data)[3]
1017				    == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1018				  ADD : DELETE;
1019				break;
1020			}
1021			break;
1022		}
1023
1024		/*
1025		 *	If we are waiting on something and this happens to be
1026		 * that thing then set the re-configure flag.
1027		 */
1028		if (container != (u32)-1) {
1029			if (container >= dev->maximum_num_containers)
1030				break;
1031			if ((dev->fsa_dev[container].config_waiting_on ==
1032			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1033			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1034				dev->fsa_dev[container].config_waiting_on = 0;
1035		} else for (container = 0;
1036		    container < dev->maximum_num_containers; ++container) {
1037			if ((dev->fsa_dev[container].config_waiting_on ==
1038			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1039			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1040				dev->fsa_dev[container].config_waiting_on = 0;
1041		}
1042		break;
1043
1044	case AifCmdJobProgress:
1045		/*
1046		 *	These are job progress AIF's. When a Clear is being
1047		 * done on a container it is initially created then hidden from
1048		 * the OS. When the clear completes we don't get a config
1049		 * change so we monitor the job status complete on a clear then
1050		 * wait for a container change.
1051		 */
1052
1053		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1054		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1055		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1056			for (container = 0;
1057			    container < dev->maximum_num_containers;
1058			    ++container) {
1059				/*
1060				 * Stomp on all config sequencing for all
1061				 * containers?
1062				 */
1063				dev->fsa_dev[container].config_waiting_on =
1064					AifEnContainerChange;
1065				dev->fsa_dev[container].config_needed = ADD;
1066				dev->fsa_dev[container].config_waiting_stamp =
1067					jiffies;
1068			}
1069		}
1070		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1071		    ((__le32 *)aifcmd->data)[6] == 0 &&
1072		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1073			for (container = 0;
1074			    container < dev->maximum_num_containers;
1075			    ++container) {
1076				/*
1077				 * Stomp on all config sequencing for all
1078				 * containers?
1079				 */
1080				dev->fsa_dev[container].config_waiting_on =
1081					AifEnContainerChange;
1082				dev->fsa_dev[container].config_needed = DELETE;
1083				dev->fsa_dev[container].config_waiting_stamp =
1084					jiffies;
1085			}
1086		}
1087		break;
1088	}
1089
1090	container = 0;
1091retry_next:
1092	if (device_config_needed == NOTHING)
1093	for (; container < dev->maximum_num_containers; ++container) {
1094		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1095			(dev->fsa_dev[container].config_needed != NOTHING) &&
1096			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1097			device_config_needed =
1098				dev->fsa_dev[container].config_needed;
1099			dev->fsa_dev[container].config_needed = NOTHING;
1100			channel = CONTAINER_TO_CHANNEL(container);
1101			id = CONTAINER_TO_ID(container);
1102			lun = CONTAINER_TO_LUN(container);
1103			break;
1104		}
1105	}
1106	if (device_config_needed == NOTHING)
1107		return;
1108
1109	/*
1110	 *	If we decided that a re-configuration needs to be done,
1111	 * schedule it here on the way out the door, please close the door
1112	 * behind you.
1113	 */
1114
1115	/*
1116	 *	Find the scsi_device associated with the SCSI address,
1117	 * and mark it as changed, invalidating the cache. This deals
1118	 * with changes to existing device IDs.
1119	 */
1120
1121	if (!dev || !dev->scsi_host_ptr)
1122		return;
1123	/*
1124	 * force reload of disk info via aac_probe_container
1125	 */
1126	if ((channel == CONTAINER_CHANNEL) &&
1127	  (device_config_needed != NOTHING)) {
1128		if (dev->fsa_dev[container].valid == 1)
1129			dev->fsa_dev[container].valid = 2;
1130		aac_probe_container(dev, container);
1131	}
1132	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1133	if (device) {
1134		switch (device_config_needed) {
1135		case DELETE:
1136#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1137			scsi_remove_device(device);
1138#else
1139			if (scsi_device_online(device)) {
1140				scsi_device_set_state(device, SDEV_OFFLINE);
1141				sdev_printk(KERN_INFO, device,
1142					"Device offlined - %s\n",
1143					(channel == CONTAINER_CHANNEL) ?
1144						"array deleted" :
1145						"enclosure services event");
1146			}
1147#endif
1148			break;
1149		case ADD:
1150			if (!scsi_device_online(device)) {
1151				sdev_printk(KERN_INFO, device,
1152					"Device online - %s\n",
1153					(channel == CONTAINER_CHANNEL) ?
1154						"array created" :
1155						"enclosure services event");
1156				scsi_device_set_state(device, SDEV_RUNNING);
1157			}
1158			/* FALLTHRU */
1159		case CHANGE:
1160			if ((channel == CONTAINER_CHANNEL)
1161			 && (!dev->fsa_dev[container].valid)) {
1162#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1163				scsi_remove_device(device);
1164#else
1165				if (!scsi_device_online(device))
1166					break;
1167				scsi_device_set_state(device, SDEV_OFFLINE);
1168				sdev_printk(KERN_INFO, device,
1169					"Device offlined - %s\n",
1170					"array failed");
1171#endif
1172				break;
1173			}
1174			scsi_rescan_device(&device->sdev_gendev);
1175
1176		default:
1177			break;
1178		}
1179		scsi_device_put(device);
1180		device_config_needed = NOTHING;
1181	}
1182	if (device_config_needed == ADD)
1183		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1184	if (channel == CONTAINER_CHANNEL) {
1185		container++;
1186		device_config_needed = NOTHING;
1187		goto retry_next;
1188	}
1189}
1190
1191static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1192{
1193	int index, quirks;
1194	int retval;
1195	struct Scsi_Host *host;
1196	struct scsi_device *dev;
1197	struct scsi_cmnd *command;
1198	struct scsi_cmnd *command_list;
1199	int jafo = 0;
1200
1201	/*
1202	 * Assumptions:
1203	 *	- host is locked, unless called by the aacraid thread.
1204	 *	  (a matter of convenience, due to legacy issues surrounding
1205	 *	  eh_host_adapter_reset).
1206	 *	- in_reset is asserted, so no new i/o is getting to the
1207	 *	  card.
1208	 *	- The card is dead, or will be very shortly ;-/ so no new
1209	 *	  commands are completing in the interrupt service.
1210	 */
1211	host = aac->scsi_host_ptr;
1212	scsi_block_requests(host);
1213	aac_adapter_disable_int(aac);
1214	if (aac->thread->pid != current->pid) {
1215		spin_unlock_irq(host->host_lock);
1216		kthread_stop(aac->thread);
1217		jafo = 1;
1218	}
1219
1220	/*
1221	 *	If a positive health, means in a known DEAD PANIC
1222	 * state and the adapter could be reset to `try again'.
1223	 */
1224	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1225
1226	if (retval)
1227		goto out;
1228
1229	/*
1230	 *	Loop through the fibs, close the synchronous FIBS
1231	 */
1232	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1233		struct fib *fib = &aac->fibs[index];
1234		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1235		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1236			unsigned long flagv;
1237			spin_lock_irqsave(&fib->event_lock, flagv);
1238			up(&fib->event_wait);
1239			spin_unlock_irqrestore(&fib->event_lock, flagv);
1240			schedule();
1241			retval = 0;
1242		}
1243	}
1244	/* Give some extra time for ioctls to complete. */
1245	if (retval == 0)
1246		ssleep(2);
1247	index = aac->cardtype;
1248
1249	/*
1250	 * Re-initialize the adapter, first free resources, then carefully
1251	 * apply the initialization sequence to come back again. Only risk
1252	 * is a change in Firmware dropping cache, it is assumed the caller
1253	 * will ensure that i/o is queisced and the card is flushed in that
1254	 * case.
1255	 */
1256	aac_fib_map_free(aac);
1257	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1258	aac->comm_addr = NULL;
1259	aac->comm_phys = 0;
1260	kfree(aac->queues);
1261	aac->queues = NULL;
1262	free_irq(aac->pdev->irq, aac);
1263	kfree(aac->fsa_dev);
1264	aac->fsa_dev = NULL;
1265	quirks = aac_get_driver_ident(index)->quirks;
1266	if (quirks & AAC_QUIRK_31BIT) {
1267		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1268		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1269			goto out;
1270	} else {
1271		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1272		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1273			goto out;
1274	}
1275	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1276		goto out;
1277	if (quirks & AAC_QUIRK_31BIT)
1278		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1279			goto out;
1280	if (jafo) {
1281		aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1282		if (IS_ERR(aac->thread)) {
1283			retval = PTR_ERR(aac->thread);
1284			goto out;
1285		}
1286	}
1287	(void)aac_get_adapter_info(aac);
1288	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1289		host->sg_tablesize = 34;
1290		host->max_sectors = (host->sg_tablesize * 8) + 112;
1291	}
1292	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1293		host->sg_tablesize = 17;
1294		host->max_sectors = (host->sg_tablesize * 8) + 112;
1295	}
1296	aac_get_config_status(aac, 1);
1297	aac_get_containers(aac);
1298	/*
1299	 * This is where the assumption that the Adapter is quiesced
1300	 * is important.
1301	 */
1302	command_list = NULL;
1303	__shost_for_each_device(dev, host) {
1304		unsigned long flags;
1305		spin_lock_irqsave(&dev->list_lock, flags);
1306		list_for_each_entry(command, &dev->cmd_list, list)
1307			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1308				command->SCp.buffer = (struct scatterlist *)command_list;
1309				command_list = command;
1310			}
1311		spin_unlock_irqrestore(&dev->list_lock, flags);
1312	}
1313	while ((command = command_list)) {
1314		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1315		command->SCp.buffer = NULL;
1316		command->result = DID_OK << 16
1317		  | COMMAND_COMPLETE << 8
1318		  | SAM_STAT_TASK_SET_FULL;
1319		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1320		command->scsi_done(command);
1321	}
1322	retval = 0;
1323
1324out:
1325	aac->in_reset = 0;
1326	scsi_unblock_requests(host);
1327	if (jafo) {
1328		spin_lock_irq(host->host_lock);
1329	}
1330	return retval;
1331}
1332
1333int aac_reset_adapter(struct aac_dev * aac, int forced)
1334{
1335	unsigned long flagv = 0;
1336	int retval;
1337	struct Scsi_Host * host;
1338
1339	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1340		return -EBUSY;
1341
1342	if (aac->in_reset) {
1343		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1344		return -EBUSY;
1345	}
1346	aac->in_reset = 1;
1347	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1348
1349	/*
1350	 * Wait for all commands to complete to this specific
1351	 * target (block maximum 60 seconds). Although not necessary,
1352	 * it does make us a good storage citizen.
1353	 */
1354	host = aac->scsi_host_ptr;
1355	scsi_block_requests(host);
1356	if (forced < 2) for (retval = 60; retval; --retval) {
1357		struct scsi_device * dev;
1358		struct scsi_cmnd * command;
1359		int active = 0;
1360
1361		__shost_for_each_device(dev, host) {
1362			spin_lock_irqsave(&dev->list_lock, flagv);
1363			list_for_each_entry(command, &dev->cmd_list, list) {
1364				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1365					active++;
1366					break;
1367				}
1368			}
1369			spin_unlock_irqrestore(&dev->list_lock, flagv);
1370			if (active)
1371				break;
1372
1373		}
1374		/*
1375		 * We can exit If all the commands are complete
1376		 */
1377		if (active == 0)
1378			break;
1379		ssleep(1);
1380	}
1381
1382	/* Quiesce build, flush cache, write through mode */
1383	if (forced < 2)
1384		aac_send_shutdown(aac);
1385	spin_lock_irqsave(host->host_lock, flagv);
1386	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1387	spin_unlock_irqrestore(host->host_lock, flagv);
1388
1389	if ((forced < 2) && (retval == -ENODEV)) {
1390		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1391		struct fib * fibctx = aac_fib_alloc(aac);
1392		if (fibctx) {
1393			struct aac_pause *cmd;
1394			int status;
1395
1396			aac_fib_init(fibctx);
1397
1398			cmd = (struct aac_pause *) fib_data(fibctx);
1399
1400			cmd->command = cpu_to_le32(VM_ContainerConfig);
1401			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1402			cmd->timeout = cpu_to_le32(1);
1403			cmd->min = cpu_to_le32(1);
1404			cmd->noRescan = cpu_to_le32(1);
1405			cmd->count = cpu_to_le32(0);
1406
1407			status = aac_fib_send(ContainerCommand,
1408			  fibctx,
1409			  sizeof(struct aac_pause),
1410			  FsaNormal,
1411			  -2 /* Timeout silently */, 1,
1412			  NULL, NULL);
1413
1414			if (status >= 0)
1415				aac_fib_complete(fibctx);
1416			/* FIB should be freed only after getting
1417			 * the response from the F/W */
1418			if (status != -ERESTARTSYS)
1419				aac_fib_free(fibctx);
1420		}
1421	}
1422
1423	return retval;
1424}
1425
1426int aac_check_health(struct aac_dev * aac)
1427{
1428	int BlinkLED;
1429	unsigned long time_now, flagv = 0;
1430	struct list_head * entry;
1431	struct Scsi_Host * host;
1432
1433	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1434	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1435		return 0;
1436
1437	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1438		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1439		return 0; /* OK */
1440	}
1441
1442	aac->in_reset = 1;
1443
1444	/* Fake up an AIF:
1445	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1446	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1447	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1448	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1449	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1450	 *	aac.aifcmd.data[3] = BlinkLED
1451	 */
1452
1453	time_now = jiffies/HZ;
1454	entry = aac->fib_list.next;
1455
1456	/*
1457	 * For each Context that is on the
1458	 * fibctxList, make a copy of the
1459	 * fib, and then set the event to wake up the
1460	 * thread that is waiting for it.
1461	 */
1462	while (entry != &aac->fib_list) {
1463		/*
1464		 * Extract the fibctx
1465		 */
1466		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1467		struct hw_fib * hw_fib;
1468		struct fib * fib;
1469		/*
1470		 * Check if the queue is getting
1471		 * backlogged
1472		 */
1473		if (fibctx->count > 20) {
1474			/*
1475			 * It's *not* jiffies folks,
1476			 * but jiffies / HZ, so do not
1477			 * panic ...
1478			 */
1479			u32 time_last = fibctx->jiffies;
1480			/*
1481			 * Has it been > 2 minutes
1482			 * since the last read off
1483			 * the queue?
1484			 */
1485			if ((time_now - time_last) > aif_timeout) {
1486				entry = entry->next;
1487				aac_close_fib_context(aac, fibctx);
1488				continue;
1489			}
1490		}
1491		/*
1492		 * Warning: no sleep allowed while
1493		 * holding spinlock
1494		 */
1495		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1496		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1497		if (fib && hw_fib) {
1498			struct aac_aifcmd * aif;
1499
1500			fib->hw_fib_va = hw_fib;
1501			fib->dev = aac;
1502			aac_fib_init(fib);
1503			fib->type = FSAFS_NTC_FIB_CONTEXT;
1504			fib->size = sizeof (struct fib);
1505			fib->data = hw_fib->data;
1506			aif = (struct aac_aifcmd *)hw_fib->data;
1507			aif->command = cpu_to_le32(AifCmdEventNotify);
1508			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1509			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1510			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1511			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1512			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1513
1514			/*
1515			 * Put the FIB onto the
1516			 * fibctx's fibs
1517			 */
1518			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1519			fibctx->count++;
1520			/*
1521			 * Set the event to wake up the
1522			 * thread that will waiting.
1523			 */
1524			up(&fibctx->wait_sem);
1525		} else {
1526			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1527			kfree(fib);
1528			kfree(hw_fib);
1529		}
1530		entry = entry->next;
1531	}
1532
1533	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1534
1535	if (BlinkLED < 0) {
1536		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1537		goto out;
1538	}
1539
1540	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1541
1542	if (!aac_check_reset || ((aac_check_reset == 1) &&
1543		(aac->supplement_adapter_info.SupportedOptions2 &
1544			AAC_OPTION_IGNORE_RESET)))
1545		goto out;
1546	host = aac->scsi_host_ptr;
1547	if (aac->thread->pid != current->pid)
1548		spin_lock_irqsave(host->host_lock, flagv);
1549	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1550	if (aac->thread->pid != current->pid)
1551		spin_unlock_irqrestore(host->host_lock, flagv);
1552	return BlinkLED;
1553
1554out:
1555	aac->in_reset = 0;
1556	return BlinkLED;
1557}
1558
1559
1560/**
1561 *	aac_command_thread	-	command processing thread
1562 *	@dev: Adapter to monitor
1563 *
1564 *	Waits on the commandready event in it's queue. When the event gets set
1565 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1566 *	until the queue is empty. When the queue is empty it will wait for
1567 *	more FIBs.
1568 */
1569
1570int aac_command_thread(void *data)
1571{
1572	struct aac_dev *dev = data;
1573	struct hw_fib *hw_fib, *hw_newfib;
1574	struct fib *fib, *newfib;
1575	struct aac_fib_context *fibctx;
1576	unsigned long flags;
1577	DECLARE_WAITQUEUE(wait, current);
1578	unsigned long next_jiffies = jiffies + HZ;
1579	unsigned long next_check_jiffies = next_jiffies;
1580	long difference = HZ;
1581
1582	/*
1583	 *	We can only have one thread per adapter for AIF's.
1584	 */
1585	if (dev->aif_thread)
1586		return -EINVAL;
1587
1588	/*
1589	 *	Let the DPC know it has a place to send the AIF's to.
1590	 */
1591	dev->aif_thread = 1;
1592	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1593	set_current_state(TASK_INTERRUPTIBLE);
1594	dprintk ((KERN_INFO "aac_command_thread start\n"));
1595	while (1) {
1596		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1597		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1598			struct list_head *entry;
1599			struct aac_aifcmd * aifcmd;
1600
1601			set_current_state(TASK_RUNNING);
1602
1603			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1604			list_del(entry);
1605
1606			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1607			fib = list_entry(entry, struct fib, fiblink);
1608			/*
1609			 *	We will process the FIB here or pass it to a
1610			 *	worker thread that is TBD. We Really can't
1611			 *	do anything at this point since we don't have
1612			 *	anything defined for this thread to do.
1613			 */
1614			hw_fib = fib->hw_fib_va;
1615			memset(fib, 0, sizeof(struct fib));
1616			fib->type = FSAFS_NTC_FIB_CONTEXT;
1617			fib->size = sizeof(struct fib);
1618			fib->hw_fib_va = hw_fib;
1619			fib->data = hw_fib->data;
1620			fib->dev = dev;
1621			/*
1622			 *	We only handle AifRequest fibs from the adapter.
1623			 */
1624			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1625			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1626				/* Handle Driver Notify Events */
1627				aac_handle_aif(dev, fib);
1628				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1629				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1630			} else {
1631				/* The u32 here is important and intended. We are using
1632				   32bit wrapping time to fit the adapter field */
1633
1634				u32 time_now, time_last;
1635				unsigned long flagv;
1636				unsigned num;
1637				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1638				struct fib ** fib_pool, ** fib_p;
1639
1640				/* Sniff events */
1641				if ((aifcmd->command ==
1642				     cpu_to_le32(AifCmdEventNotify)) ||
1643				    (aifcmd->command ==
1644				     cpu_to_le32(AifCmdJobProgress))) {
1645					aac_handle_aif(dev, fib);
1646				}
1647
1648				time_now = jiffies/HZ;
1649
1650				/*
1651				 * Warning: no sleep allowed while
1652				 * holding spinlock. We take the estimate
1653				 * and pre-allocate a set of fibs outside the
1654				 * lock.
1655				 */
1656				num = le32_to_cpu(dev->init->AdapterFibsSize)
1657				    / sizeof(struct hw_fib); /* some extra */
1658				spin_lock_irqsave(&dev->fib_lock, flagv);
1659				entry = dev->fib_list.next;
1660				while (entry != &dev->fib_list) {
1661					entry = entry->next;
1662					++num;
1663				}
1664				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1665				hw_fib_pool = NULL;
1666				fib_pool = NULL;
1667				if (num
1668				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1669				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1670					hw_fib_p = hw_fib_pool;
1671					fib_p = fib_pool;
1672					while (hw_fib_p < &hw_fib_pool[num]) {
1673						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1674							--hw_fib_p;
1675							break;
1676						}
1677						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1678							kfree(*(--hw_fib_p));
1679							break;
1680						}
1681					}
1682					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1683						kfree(fib_pool);
1684						fib_pool = NULL;
1685						kfree(hw_fib_pool);
1686						hw_fib_pool = NULL;
1687					}
1688				} else {
1689					kfree(hw_fib_pool);
1690					hw_fib_pool = NULL;
1691				}
1692				spin_lock_irqsave(&dev->fib_lock, flagv);
1693				entry = dev->fib_list.next;
1694				/*
1695				 * For each Context that is on the
1696				 * fibctxList, make a copy of the
1697				 * fib, and then set the event to wake up the
1698				 * thread that is waiting for it.
1699				 */
1700				hw_fib_p = hw_fib_pool;
1701				fib_p = fib_pool;
1702				while (entry != &dev->fib_list) {
1703					/*
1704					 * Extract the fibctx
1705					 */
1706					fibctx = list_entry(entry, struct aac_fib_context, next);
1707					/*
1708					 * Check if the queue is getting
1709					 * backlogged
1710					 */
1711					if (fibctx->count > 20)
1712					{
1713						/*
1714						 * It's *not* jiffies folks,
1715						 * but jiffies / HZ so do not
1716						 * panic ...
1717						 */
1718						time_last = fibctx->jiffies;
1719						/*
1720						 * Has it been > 2 minutes
1721						 * since the last read off
1722						 * the queue?
1723						 */
1724						if ((time_now - time_last) > aif_timeout) {
1725							entry = entry->next;
1726							aac_close_fib_context(dev, fibctx);
1727							continue;
1728						}
1729					}
1730					/*
1731					 * Warning: no sleep allowed while
1732					 * holding spinlock
1733					 */
1734					if (hw_fib_p < &hw_fib_pool[num]) {
1735						hw_newfib = *hw_fib_p;
1736						*(hw_fib_p++) = NULL;
1737						newfib = *fib_p;
1738						*(fib_p++) = NULL;
1739						/*
1740						 * Make the copy of the FIB
1741						 */
1742						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1743						memcpy(newfib, fib, sizeof(struct fib));
1744						newfib->hw_fib_va = hw_newfib;
1745						/*
1746						 * Put the FIB onto the
1747						 * fibctx's fibs
1748						 */
1749						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1750						fibctx->count++;
1751						/*
1752						 * Set the event to wake up the
1753						 * thread that is waiting.
1754						 */
1755						up(&fibctx->wait_sem);
1756					} else {
1757						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1758					}
1759					entry = entry->next;
1760				}
1761				/*
1762				 *	Set the status of this FIB
1763				 */
1764				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1765				aac_fib_adapter_complete(fib, sizeof(u32));
1766				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1767				/* Free up the remaining resources */
1768				hw_fib_p = hw_fib_pool;
1769				fib_p = fib_pool;
1770				while (hw_fib_p < &hw_fib_pool[num]) {
1771					kfree(*hw_fib_p);
1772					kfree(*fib_p);
1773					++fib_p;
1774					++hw_fib_p;
1775				}
1776				kfree(hw_fib_pool);
1777				kfree(fib_pool);
1778			}
1779			kfree(fib);
1780			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1781		}
1782		/*
1783		 *	There are no more AIF's
1784		 */
1785		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1786
1787		/*
1788		 *	Background activity
1789		 */
1790		if ((time_before(next_check_jiffies,next_jiffies))
1791		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1792			next_check_jiffies = next_jiffies;
1793			if (aac_check_health(dev) == 0) {
1794				difference = ((long)(unsigned)check_interval)
1795					   * HZ;
1796				next_check_jiffies = jiffies + difference;
1797			} else if (!dev->queues)
1798				break;
1799		}
1800		if (!time_before(next_check_jiffies,next_jiffies)
1801		 && ((difference = next_jiffies - jiffies) <= 0)) {
1802			struct timeval now;
1803			int ret;
1804
1805			/* Don't even try to talk to adapter if its sick */
1806			ret = aac_check_health(dev);
1807			if (!ret && !dev->queues)
1808				break;
1809			next_check_jiffies = jiffies
1810					   + ((long)(unsigned)check_interval)
1811					   * HZ;
1812			do_gettimeofday(&now);
1813
1814			/* Synchronize our watches */
1815			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1816			 && (now.tv_usec > (1000000 / HZ)))
1817				difference = (((1000000 - now.tv_usec) * HZ)
1818				  + 500000) / 1000000;
1819			else if (ret == 0) {
1820				struct fib *fibptr;
1821
1822				if ((fibptr = aac_fib_alloc(dev))) {
1823					int status;
1824					__le32 *info;
1825
1826					aac_fib_init(fibptr);
1827
1828					info = (__le32 *) fib_data(fibptr);
1829					if (now.tv_usec > 500000)
1830						++now.tv_sec;
1831
1832					*info = cpu_to_le32(now.tv_sec);
1833
1834					status = aac_fib_send(SendHostTime,
1835						fibptr,
1836						sizeof(*info),
1837						FsaNormal,
1838						1, 1,
1839						NULL,
1840						NULL);
1841					/* Do not set XferState to zero unless
1842					 * receives a response from F/W */
1843					if (status >= 0)
1844						aac_fib_complete(fibptr);
1845					/* FIB should be freed only after
1846					 * getting the response from the F/W */
1847					if (status != -ERESTARTSYS)
1848						aac_fib_free(fibptr);
1849				}
1850				difference = (long)(unsigned)update_interval*HZ;
1851			} else {
1852				/* retry shortly */
1853				difference = 10 * HZ;
1854			}
1855			next_jiffies = jiffies + difference;
1856			if (time_before(next_check_jiffies,next_jiffies))
1857				difference = next_check_jiffies - jiffies;
1858		}
1859		if (difference <= 0)
1860			difference = 1;
1861		set_current_state(TASK_INTERRUPTIBLE);
1862		schedule_timeout(difference);
1863
1864		if (kthread_should_stop())
1865			break;
1866	}
1867	if (dev->queues)
1868		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1869	dev->aif_thread = 0;
1870	return 0;
1871}
1872