commsup.c revision c8f7b073e0e81499474a84ee2a90f77f7805c7f8
1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING.  If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 *  commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 *    communication.
29 *
30 */
31
32#include <linux/kernel.h>
33#include <linux/init.h>
34#include <linux/types.h>
35#include <linux/sched.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/slab.h>
39#include <linux/completion.h>
40#include <linux/blkdev.h>
41#include <linux/delay.h>
42#include <linux/kthread.h>
43#include <scsi/scsi_host.h>
44#include <scsi/scsi_device.h>
45#include <asm/semaphore.h>
46
47#include "aacraid.h"
48
49/**
50 *	fib_map_alloc		-	allocate the fib objects
51 *	@dev: Adapter to allocate for
52 *
53 *	Allocate and map the shared PCI space for the FIB blocks used to
54 *	talk to the Adaptec firmware.
55 */
56
57static int fib_map_alloc(struct aac_dev *dev)
58{
59	dprintk((KERN_INFO
60	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
61	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
62	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
63	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
64	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
65	  &dev->hw_fib_pa))==NULL)
66		return -ENOMEM;
67	return 0;
68}
69
70/**
71 *	aac_fib_map_free		-	free the fib objects
72 *	@dev: Adapter to free
73 *
74 *	Free the PCI mappings and the memory allocated for FIB blocks
75 *	on this adapter.
76 */
77
78void aac_fib_map_free(struct aac_dev *dev)
79{
80	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
81}
82
83/**
84 *	aac_fib_setup	-	setup the fibs
85 *	@dev: Adapter to set up
86 *
87 *	Allocate the PCI space for the fibs, map it and then intialise the
88 *	fib area, the unmapped fib data and also the free list
89 */
90
91int aac_fib_setup(struct aac_dev * dev)
92{
93	struct fib *fibptr;
94	struct hw_fib *hw_fib_va;
95	dma_addr_t hw_fib_pa;
96	int i;
97
98	while (((i = fib_map_alloc(dev)) == -ENOMEM)
99	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
100		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
101		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
102	}
103	if (i<0)
104		return -ENOMEM;
105
106	hw_fib_va = dev->hw_fib_va;
107	hw_fib_pa = dev->hw_fib_pa;
108	memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
109	/*
110	 *	Initialise the fibs
111	 */
112	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
113	{
114		fibptr->dev = dev;
115		fibptr->hw_fib = hw_fib_va;
116		fibptr->data = (void *) fibptr->hw_fib->data;
117		fibptr->next = fibptr+1;	/* Forward chain the fibs */
118		init_MUTEX_LOCKED(&fibptr->event_wait);
119		spin_lock_init(&fibptr->event_lock);
120		hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
121		hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
122		fibptr->hw_fib_pa = hw_fib_pa;
123		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
124		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
125	}
126	/*
127	 *	Add the fib chain to the free list
128	 */
129	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
130	/*
131	 *	Enable this to debug out of queue space
132	 */
133	dev->free_fib = &dev->fibs[0];
134	return 0;
135}
136
137/**
138 *	aac_fib_alloc	-	allocate a fib
139 *	@dev: Adapter to allocate the fib for
140 *
141 *	Allocate a fib from the adapter fib pool. If the pool is empty we
142 *	return NULL.
143 */
144
145struct fib *aac_fib_alloc(struct aac_dev *dev)
146{
147	struct fib * fibptr;
148	unsigned long flags;
149	spin_lock_irqsave(&dev->fib_lock, flags);
150	fibptr = dev->free_fib;
151	if(!fibptr){
152		spin_unlock_irqrestore(&dev->fib_lock, flags);
153		return fibptr;
154	}
155	dev->free_fib = fibptr->next;
156	spin_unlock_irqrestore(&dev->fib_lock, flags);
157	/*
158	 *	Set the proper node type code and node byte size
159	 */
160	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
161	fibptr->size = sizeof(struct fib);
162	/*
163	 *	Null out fields that depend on being zero at the start of
164	 *	each I/O
165	 */
166	fibptr->hw_fib->header.XferState = 0;
167	fibptr->callback = NULL;
168	fibptr->callback_data = NULL;
169
170	return fibptr;
171}
172
173/**
174 *	aac_fib_free	-	free a fib
175 *	@fibptr: fib to free up
176 *
177 *	Frees up a fib and places it on the appropriate queue
178 *	(either free or timed out)
179 */
180
181void aac_fib_free(struct fib *fibptr)
182{
183	unsigned long flags;
184
185	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
186	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
187		aac_config.fib_timeouts++;
188		fibptr->next = fibptr->dev->timeout_fib;
189		fibptr->dev->timeout_fib = fibptr;
190	} else {
191		if (fibptr->hw_fib->header.XferState != 0) {
192			printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
193				 (void*)fibptr,
194				 le32_to_cpu(fibptr->hw_fib->header.XferState));
195		}
196		fibptr->next = fibptr->dev->free_fib;
197		fibptr->dev->free_fib = fibptr;
198	}
199	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
200}
201
202/**
203 *	aac_fib_init	-	initialise a fib
204 *	@fibptr: The fib to initialize
205 *
206 *	Set up the generic fib fields ready for use
207 */
208
209void aac_fib_init(struct fib *fibptr)
210{
211	struct hw_fib *hw_fib = fibptr->hw_fib;
212
213	hw_fib->header.StructType = FIB_MAGIC;
214	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
215	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
216	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
217	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
218	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
219}
220
221/**
222 *	fib_deallocate		-	deallocate a fib
223 *	@fibptr: fib to deallocate
224 *
225 *	Will deallocate and return to the free pool the FIB pointed to by the
226 *	caller.
227 */
228
229static void fib_dealloc(struct fib * fibptr)
230{
231	struct hw_fib *hw_fib = fibptr->hw_fib;
232	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
233	hw_fib->header.XferState = 0;
234}
235
236/*
237 *	Commuication primitives define and support the queuing method we use to
238 *	support host to adapter commuication. All queue accesses happen through
239 *	these routines and are the only routines which have a knowledge of the
240 *	 how these queues are implemented.
241 */
242
243/**
244 *	aac_get_entry		-	get a queue entry
245 *	@dev: Adapter
246 *	@qid: Queue Number
247 *	@entry: Entry return
248 *	@index: Index return
249 *	@nonotify: notification control
250 *
251 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
252 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253 *	returned.
254 */
255
256static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257{
258	struct aac_queue * q;
259	unsigned long idx;
260
261	/*
262	 *	All of the queues wrap when they reach the end, so we check
263	 *	to see if they have reached the end and if they have we just
264	 *	set the index back to zero. This is a wrap. You could or off
265	 *	the high bits in all updates but this is a bit faster I think.
266	 */
267
268	q = &dev->queues->queue[qid];
269
270	idx = *index = le32_to_cpu(*(q->headers.producer));
271	/* Interrupt Moderation, only interrupt for first two entries */
272	if (idx != le32_to_cpu(*(q->headers.consumer))) {
273		if (--idx == 0) {
274			if (qid == AdapNormCmdQueue)
275				idx = ADAP_NORM_CMD_ENTRIES;
276			else
277				idx = ADAP_NORM_RESP_ENTRIES;
278		}
279		if (idx != le32_to_cpu(*(q->headers.consumer)))
280			*nonotify = 1;
281	}
282
283	if (qid == AdapNormCmdQueue) {
284	        if (*index >= ADAP_NORM_CMD_ENTRIES)
285			*index = 0; /* Wrap to front of the Producer Queue. */
286	} else {
287		if (*index >= ADAP_NORM_RESP_ENTRIES)
288			*index = 0; /* Wrap to front of the Producer Queue. */
289	}
290
291        if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293				qid, q->numpending);
294		return 0;
295	} else {
296	        *entry = q->base + *index;
297		return 1;
298	}
299}
300
301/**
302 *	aac_queue_get		-	get the next free QE
303 *	@dev: Adapter
304 *	@index: Returned index
305 *	@priority: Priority of fib
306 *	@fib: Fib to associate with the queue entry
307 *	@wait: Wait if queue full
308 *	@fibptr: Driver fib object to go with fib
309 *	@nonotify: Don't notify the adapter
310 *
311 *	Gets the next free QE off the requested priorty adapter command
312 *	queue and associates the Fib with the QE. The QE represented by
313 *	index is ready to insert on the queue when this routine returns
314 *	success.
315 */
316
317static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318{
319	struct aac_entry * entry = NULL;
320	int map = 0;
321
322	if (qid == AdapNormCmdQueue) {
323		/*  if no entries wait for some if caller wants to */
324        	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
325        	{
326			printk(KERN_ERR "GetEntries failed\n");
327		}
328	        /*
329	         *	Setup queue entry with a command, status and fib mapped
330	         */
331	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332	        map = 1;
333	} else {
334	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
335	        {
336			/* if no entries wait for some if caller wants to */
337		}
338        	/*
339        	 *	Setup queue entry with command, status and fib mapped
340        	 */
341        	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342        	entry->addr = hw_fib->header.SenderFibAddress;
343     			/* Restore adapters pointer to the FIB */
344		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
345        	map = 0;
346	}
347	/*
348	 *	If MapFib is true than we need to map the Fib and put pointers
349	 *	in the queue entry.
350	 */
351	if (map)
352		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353	return 0;
354}
355
356/*
357 *	Define the highest level of host to adapter communication routines.
358 *	These routines will support host to adapter FS commuication. These
359 *	routines have no knowledge of the commuication method used. This level
360 *	sends and receives FIBs. This level has no knowledge of how these FIBs
361 *	get passed back and forth.
362 */
363
364/**
365 *	aac_fib_send	-	send a fib to the adapter
366 *	@command: Command to send
367 *	@fibptr: The fib
368 *	@size: Size of fib data area
369 *	@priority: Priority of Fib
370 *	@wait: Async/sync select
371 *	@reply: True if a reply is wanted
372 *	@callback: Called with reply
373 *	@callback_data: Passed to callback
374 *
375 *	Sends the requested FIB to the adapter and optionally will wait for a
376 *	response FIB. If the caller does not wish to wait for a response than
377 *	an event to wait on must be supplied. This event will be set when a
378 *	response FIB is received from the adapter.
379 */
380
381int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
382		int priority, int wait, int reply, fib_callback callback,
383		void *callback_data)
384{
385	struct aac_dev * dev = fibptr->dev;
386	struct hw_fib * hw_fib = fibptr->hw_fib;
387	struct aac_queue * q;
388	unsigned long flags = 0;
389	unsigned long qflags;
390
391	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392		return -EBUSY;
393	/*
394	 *	There are 5 cases with the wait and reponse requested flags.
395	 *	The only invalid cases are if the caller requests to wait and
396	 *	does not request a response and if the caller does not want a
397	 *	response and the Fib is not allocated from pool. If a response
398	 *	is not requesed the Fib will just be deallocaed by the DPC
399	 *	routine when the response comes back from the adapter. No
400	 *	further processing will be done besides deleting the Fib. We
401	 *	will have a debug mode where the adapter can notify the host
402	 *	it had a problem and the host can log that fact.
403	 */
404	if (wait && !reply) {
405		return -EINVAL;
406	} else if (!wait && reply) {
407		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409	} else if (!wait && !reply) {
410		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412	} else if (wait && reply) {
413		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415	}
416	/*
417	 *	Map the fib into 32bits by using the fib number
418	 */
419
420	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
421	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
422	/*
423	 *	Set FIB state to indicate where it came from and if we want a
424	 *	response from the adapter. Also load the command from the
425	 *	caller.
426	 *
427	 *	Map the hw fib pointer as a 32bit value
428	 */
429	hw_fib->header.Command = cpu_to_le16(command);
430	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
432	/*
433	 *	Set the size of the Fib we want to send to the adapter
434	 */
435	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437		return -EMSGSIZE;
438	}
439	/*
440	 *	Get a queue entry connect the FIB to it and send an notify
441	 *	the adapter a command is ready.
442	 */
443	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444
445	/*
446	 *	Fill in the Callback and CallbackContext if we are not
447	 *	going to wait.
448	 */
449	if (!wait) {
450		fibptr->callback = callback;
451		fibptr->callback_data = callback_data;
452	}
453
454	fibptr->done = 0;
455	fibptr->flags = 0;
456
457	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
458
459	dprintk((KERN_DEBUG "Fib contents:.\n"));
460	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
461	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
462	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
463	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
464	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
466
467	if (!dev->queues)
468		return -ENODEV;
469	q = &dev->queues->queue[AdapNormCmdQueue];
470
471	if(wait)
472		spin_lock_irqsave(&fibptr->event_lock, flags);
473	spin_lock_irqsave(q->lock, qflags);
474	if (dev->new_comm_interface) {
475		unsigned long count = 10000000L; /* 50 seconds */
476		q->numpending++;
477		spin_unlock_irqrestore(q->lock, qflags);
478		while (aac_adapter_send(fibptr) != 0) {
479			if (--count == 0) {
480				if (wait)
481					spin_unlock_irqrestore(&fibptr->event_lock, flags);
482				spin_lock_irqsave(q->lock, qflags);
483				q->numpending--;
484				spin_unlock_irqrestore(q->lock, qflags);
485				return -ETIMEDOUT;
486			}
487			udelay(5);
488		}
489	} else {
490		u32 index;
491		unsigned long nointr = 0;
492		aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
493
494		q->numpending++;
495		*(q->headers.producer) = cpu_to_le32(index + 1);
496		spin_unlock_irqrestore(q->lock, qflags);
497		dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
498		if (!(nointr & aac_config.irq_mod))
499			aac_adapter_notify(dev, AdapNormCmdQueue);
500	}
501
502	/*
503	 *	If the caller wanted us to wait for response wait now.
504	 */
505
506	if (wait) {
507		spin_unlock_irqrestore(&fibptr->event_lock, flags);
508		/* Only set for first known interruptable command */
509		if (wait < 0) {
510			/*
511			 * *VERY* Dangerous to time out a command, the
512			 * assumption is made that we have no hope of
513			 * functioning because an interrupt routing or other
514			 * hardware failure has occurred.
515			 */
516			unsigned long count = 36000000L; /* 3 minutes */
517			while (down_trylock(&fibptr->event_wait)) {
518				if (--count == 0) {
519					spin_lock_irqsave(q->lock, qflags);
520					q->numpending--;
521					spin_unlock_irqrestore(q->lock, qflags);
522					if (wait == -1) {
523	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
524						  "Usually a result of a PCI interrupt routing problem;\n"
525						  "update mother board BIOS or consider utilizing one of\n"
526						  "the SAFE mode kernel options (acpi, apic etc)\n");
527					}
528					return -ETIMEDOUT;
529				}
530				udelay(5);
531			}
532		} else if (down_interruptible(&fibptr->event_wait)) {
533			spin_lock_irqsave(&fibptr->event_lock, flags);
534			if (fibptr->done == 0) {
535				fibptr->done = 2; /* Tell interrupt we aborted */
536				spin_unlock_irqrestore(&fibptr->event_lock, flags);
537				return -EINTR;
538			}
539			spin_unlock_irqrestore(&fibptr->event_lock, flags);
540		}
541		BUG_ON(fibptr->done == 0);
542
543		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
544			return -ETIMEDOUT;
545		} else {
546			return 0;
547		}
548	}
549	/*
550	 *	If the user does not want a response than return success otherwise
551	 *	return pending
552	 */
553	if (reply)
554		return -EINPROGRESS;
555	else
556		return 0;
557}
558
559/**
560 *	aac_consumer_get	-	get the top of the queue
561 *	@dev: Adapter
562 *	@q: Queue
563 *	@entry: Return entry
564 *
565 *	Will return a pointer to the entry on the top of the queue requested that
566 * 	we are a consumer of, and return the address of the queue entry. It does
567 *	not change the state of the queue.
568 */
569
570int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
571{
572	u32 index;
573	int status;
574	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
575		status = 0;
576	} else {
577		/*
578		 *	The consumer index must be wrapped if we have reached
579		 *	the end of the queue, else we just use the entry
580		 *	pointed to by the header index
581		 */
582		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
583			index = 0;
584		else
585		        index = le32_to_cpu(*q->headers.consumer);
586		*entry = q->base + index;
587		status = 1;
588	}
589	return(status);
590}
591
592/**
593 *	aac_consumer_free	-	free consumer entry
594 *	@dev: Adapter
595 *	@q: Queue
596 *	@qid: Queue ident
597 *
598 *	Frees up the current top of the queue we are a consumer of. If the
599 *	queue was full notify the producer that the queue is no longer full.
600 */
601
602void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
603{
604	int wasfull = 0;
605	u32 notify;
606
607	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
608		wasfull = 1;
609
610	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
611		*q->headers.consumer = cpu_to_le32(1);
612	else
613		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
614
615	if (wasfull) {
616		switch (qid) {
617
618		case HostNormCmdQueue:
619			notify = HostNormCmdNotFull;
620			break;
621		case HostNormRespQueue:
622			notify = HostNormRespNotFull;
623			break;
624		default:
625			BUG();
626			return;
627		}
628		aac_adapter_notify(dev, notify);
629	}
630}
631
632/**
633 *	aac_fib_adapter_complete	-	complete adapter issued fib
634 *	@fibptr: fib to complete
635 *	@size: size of fib
636 *
637 *	Will do all necessary work to complete a FIB that was sent from
638 *	the adapter.
639 */
640
641int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
642{
643	struct hw_fib * hw_fib = fibptr->hw_fib;
644	struct aac_dev * dev = fibptr->dev;
645	struct aac_queue * q;
646	unsigned long nointr = 0;
647	unsigned long qflags;
648
649	if (hw_fib->header.XferState == 0) {
650		if (dev->new_comm_interface)
651			kfree (hw_fib);
652        	return 0;
653	}
654	/*
655	 *	If we plan to do anything check the structure type first.
656	 */
657	if ( hw_fib->header.StructType != FIB_MAGIC ) {
658		if (dev->new_comm_interface)
659			kfree (hw_fib);
660        	return -EINVAL;
661	}
662	/*
663	 *	This block handles the case where the adapter had sent us a
664	 *	command and we have finished processing the command. We
665	 *	call completeFib when we are done processing the command
666	 *	and want to send a response back to the adapter. This will
667	 *	send the completed cdb to the adapter.
668	 */
669	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
670		if (dev->new_comm_interface) {
671			kfree (hw_fib);
672		} else {
673	       		u32 index;
674		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
675			if (size) {
676				size += sizeof(struct aac_fibhdr);
677				if (size > le16_to_cpu(hw_fib->header.SenderSize))
678					return -EMSGSIZE;
679				hw_fib->header.Size = cpu_to_le16(size);
680			}
681			q = &dev->queues->queue[AdapNormRespQueue];
682			spin_lock_irqsave(q->lock, qflags);
683			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
684			*(q->headers.producer) = cpu_to_le32(index + 1);
685			spin_unlock_irqrestore(q->lock, qflags);
686			if (!(nointr & (int)aac_config.irq_mod))
687				aac_adapter_notify(dev, AdapNormRespQueue);
688		}
689	}
690	else
691	{
692        	printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
693        	BUG();
694	}
695	return 0;
696}
697
698/**
699 *	aac_fib_complete	-	fib completion handler
700 *	@fib: FIB to complete
701 *
702 *	Will do all necessary work to complete a FIB.
703 */
704
705int aac_fib_complete(struct fib *fibptr)
706{
707	struct hw_fib * hw_fib = fibptr->hw_fib;
708
709	/*
710	 *	Check for a fib which has already been completed
711	 */
712
713	if (hw_fib->header.XferState == 0)
714        	return 0;
715	/*
716	 *	If we plan to do anything check the structure type first.
717	 */
718
719	if (hw_fib->header.StructType != FIB_MAGIC)
720	        return -EINVAL;
721	/*
722	 *	This block completes a cdb which orginated on the host and we
723	 *	just need to deallocate the cdb or reinit it. At this point the
724	 *	command is complete that we had sent to the adapter and this
725	 *	cdb could be reused.
726	 */
727	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
728		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
729	{
730		fib_dealloc(fibptr);
731	}
732	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
733	{
734		/*
735		 *	This handles the case when the host has aborted the I/O
736		 *	to the adapter because the adapter is not responding
737		 */
738		fib_dealloc(fibptr);
739	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
740		fib_dealloc(fibptr);
741	} else {
742		BUG();
743	}
744	return 0;
745}
746
747/**
748 *	aac_printf	-	handle printf from firmware
749 *	@dev: Adapter
750 *	@val: Message info
751 *
752 *	Print a message passed to us by the controller firmware on the
753 *	Adaptec board
754 */
755
756void aac_printf(struct aac_dev *dev, u32 val)
757{
758	char *cp = dev->printfbuf;
759	if (dev->printf_enabled)
760	{
761		int length = val & 0xffff;
762		int level = (val >> 16) & 0xffff;
763
764		/*
765		 *	The size of the printfbuf is set in port.c
766		 *	There is no variable or define for it
767		 */
768		if (length > 255)
769			length = 255;
770		if (cp[length] != 0)
771			cp[length] = 0;
772		if (level == LOG_AAC_HIGH_ERROR)
773			printk(KERN_WARNING "%s:%s", dev->name, cp);
774		else
775			printk(KERN_INFO "%s:%s", dev->name, cp);
776	}
777	memset(cp, 0,  256);
778}
779
780
781/**
782 *	aac_handle_aif		-	Handle a message from the firmware
783 *	@dev: Which adapter this fib is from
784 *	@fibptr: Pointer to fibptr from adapter
785 *
786 *	This routine handles a driver notify fib from the adapter and
787 *	dispatches it to the appropriate routine for handling.
788 */
789
790#define AIF_SNIFF_TIMEOUT	(30*HZ)
791static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
792{
793	struct hw_fib * hw_fib = fibptr->hw_fib;
794	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
795	int busy;
796	u32 container;
797	struct scsi_device *device;
798	enum {
799		NOTHING,
800		DELETE,
801		ADD,
802		CHANGE
803	} device_config_needed;
804
805	/* Sniff for container changes */
806
807	if (!dev || !dev->fsa_dev)
808		return;
809	container = (u32)-1;
810
811	/*
812	 *	We have set this up to try and minimize the number of
813	 * re-configures that take place. As a result of this when
814	 * certain AIF's come in we will set a flag waiting for another
815	 * type of AIF before setting the re-config flag.
816	 */
817	switch (le32_to_cpu(aifcmd->command)) {
818	case AifCmdDriverNotify:
819		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
820		/*
821		 *	Morph or Expand complete
822		 */
823		case AifDenMorphComplete:
824		case AifDenVolumeExtendComplete:
825			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
826			if (container >= dev->maximum_num_containers)
827				break;
828
829			/*
830			 *	Find the scsi_device associated with the SCSI
831			 * address. Make sure we have the right array, and if
832			 * so set the flag to initiate a new re-config once we
833			 * see an AifEnConfigChange AIF come through.
834			 */
835
836			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
837				device = scsi_device_lookup(dev->scsi_host_ptr,
838					CONTAINER_TO_CHANNEL(container),
839					CONTAINER_TO_ID(container),
840					CONTAINER_TO_LUN(container));
841				if (device) {
842					dev->fsa_dev[container].config_needed = CHANGE;
843					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
844					dev->fsa_dev[container].config_waiting_stamp = jiffies;
845					scsi_device_put(device);
846				}
847			}
848		}
849
850		/*
851		 *	If we are waiting on something and this happens to be
852		 * that thing then set the re-configure flag.
853		 */
854		if (container != (u32)-1) {
855			if (container >= dev->maximum_num_containers)
856				break;
857			if ((dev->fsa_dev[container].config_waiting_on ==
858			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
859			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
860				dev->fsa_dev[container].config_waiting_on = 0;
861		} else for (container = 0;
862		    container < dev->maximum_num_containers; ++container) {
863			if ((dev->fsa_dev[container].config_waiting_on ==
864			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
865			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
866				dev->fsa_dev[container].config_waiting_on = 0;
867		}
868		break;
869
870	case AifCmdEventNotify:
871		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
872		/*
873		 *	Add an Array.
874		 */
875		case AifEnAddContainer:
876			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
877			if (container >= dev->maximum_num_containers)
878				break;
879			dev->fsa_dev[container].config_needed = ADD;
880			dev->fsa_dev[container].config_waiting_on =
881				AifEnConfigChange;
882			dev->fsa_dev[container].config_waiting_stamp = jiffies;
883			break;
884
885		/*
886		 *	Delete an Array.
887		 */
888		case AifEnDeleteContainer:
889			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
890			if (container >= dev->maximum_num_containers)
891				break;
892			dev->fsa_dev[container].config_needed = DELETE;
893			dev->fsa_dev[container].config_waiting_on =
894				AifEnConfigChange;
895			dev->fsa_dev[container].config_waiting_stamp = jiffies;
896			break;
897
898		/*
899		 *	Container change detected. If we currently are not
900		 * waiting on something else, setup to wait on a Config Change.
901		 */
902		case AifEnContainerChange:
903			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
904			if (container >= dev->maximum_num_containers)
905				break;
906			if (dev->fsa_dev[container].config_waiting_on &&
907			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
908				break;
909			dev->fsa_dev[container].config_needed = CHANGE;
910			dev->fsa_dev[container].config_waiting_on =
911				AifEnConfigChange;
912			dev->fsa_dev[container].config_waiting_stamp = jiffies;
913			break;
914
915		case AifEnConfigChange:
916			break;
917
918		}
919
920		/*
921		 *	If we are waiting on something and this happens to be
922		 * that thing then set the re-configure flag.
923		 */
924		if (container != (u32)-1) {
925			if (container >= dev->maximum_num_containers)
926				break;
927			if ((dev->fsa_dev[container].config_waiting_on ==
928			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
929			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
930				dev->fsa_dev[container].config_waiting_on = 0;
931		} else for (container = 0;
932		    container < dev->maximum_num_containers; ++container) {
933			if ((dev->fsa_dev[container].config_waiting_on ==
934			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
935			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
936				dev->fsa_dev[container].config_waiting_on = 0;
937		}
938		break;
939
940	case AifCmdJobProgress:
941		/*
942		 *	These are job progress AIF's. When a Clear is being
943		 * done on a container it is initially created then hidden from
944		 * the OS. When the clear completes we don't get a config
945		 * change so we monitor the job status complete on a clear then
946		 * wait for a container change.
947		 */
948
949		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
950		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
951		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
952			for (container = 0;
953			    container < dev->maximum_num_containers;
954			    ++container) {
955				/*
956				 * Stomp on all config sequencing for all
957				 * containers?
958				 */
959				dev->fsa_dev[container].config_waiting_on =
960					AifEnContainerChange;
961				dev->fsa_dev[container].config_needed = ADD;
962				dev->fsa_dev[container].config_waiting_stamp =
963					jiffies;
964			}
965		}
966		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
967		 && (((u32 *)aifcmd->data)[6] == 0)
968		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
969			for (container = 0;
970			    container < dev->maximum_num_containers;
971			    ++container) {
972				/*
973				 * Stomp on all config sequencing for all
974				 * containers?
975				 */
976				dev->fsa_dev[container].config_waiting_on =
977					AifEnContainerChange;
978				dev->fsa_dev[container].config_needed = DELETE;
979				dev->fsa_dev[container].config_waiting_stamp =
980					jiffies;
981			}
982		}
983		break;
984	}
985
986	device_config_needed = NOTHING;
987	for (container = 0; container < dev->maximum_num_containers;
988	    ++container) {
989		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
990			(dev->fsa_dev[container].config_needed != NOTHING) &&
991			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
992			device_config_needed =
993				dev->fsa_dev[container].config_needed;
994			dev->fsa_dev[container].config_needed = NOTHING;
995			break;
996		}
997	}
998	if (device_config_needed == NOTHING)
999		return;
1000
1001	/*
1002	 *	If we decided that a re-configuration needs to be done,
1003	 * schedule it here on the way out the door, please close the door
1004	 * behind you.
1005	 */
1006
1007	busy = 0;
1008
1009
1010	/*
1011	 *	Find the scsi_device associated with the SCSI address,
1012	 * and mark it as changed, invalidating the cache. This deals
1013	 * with changes to existing device IDs.
1014	 */
1015
1016	if (!dev || !dev->scsi_host_ptr)
1017		return;
1018	/*
1019	 * force reload of disk info via aac_probe_container
1020	 */
1021	if ((device_config_needed == CHANGE)
1022	 && (dev->fsa_dev[container].valid == 1))
1023		dev->fsa_dev[container].valid = 2;
1024	if ((device_config_needed == CHANGE) ||
1025			(device_config_needed == ADD))
1026		aac_probe_container(dev, container);
1027	device = scsi_device_lookup(dev->scsi_host_ptr,
1028		CONTAINER_TO_CHANNEL(container),
1029		CONTAINER_TO_ID(container),
1030		CONTAINER_TO_LUN(container));
1031	if (device) {
1032		switch (device_config_needed) {
1033		case DELETE:
1034			scsi_remove_device(device);
1035			break;
1036		case CHANGE:
1037			if (!dev->fsa_dev[container].valid) {
1038				scsi_remove_device(device);
1039				break;
1040			}
1041			scsi_rescan_device(&device->sdev_gendev);
1042
1043		default:
1044			break;
1045		}
1046		scsi_device_put(device);
1047	}
1048	if (device_config_needed == ADD) {
1049		scsi_add_device(dev->scsi_host_ptr,
1050		  CONTAINER_TO_CHANNEL(container),
1051		  CONTAINER_TO_ID(container),
1052		  CONTAINER_TO_LUN(container));
1053	}
1054
1055}
1056
1057/**
1058 *	aac_command_thread	-	command processing thread
1059 *	@dev: Adapter to monitor
1060 *
1061 *	Waits on the commandready event in it's queue. When the event gets set
1062 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1063 *	until the queue is empty. When the queue is empty it will wait for
1064 *	more FIBs.
1065 */
1066
1067int aac_command_thread(void *data)
1068{
1069	struct aac_dev *dev = data;
1070	struct hw_fib *hw_fib, *hw_newfib;
1071	struct fib *fib, *newfib;
1072	struct aac_fib_context *fibctx;
1073	unsigned long flags;
1074	DECLARE_WAITQUEUE(wait, current);
1075
1076	/*
1077	 *	We can only have one thread per adapter for AIF's.
1078	 */
1079	if (dev->aif_thread)
1080		return -EINVAL;
1081
1082	/*
1083	 *	Let the DPC know it has a place to send the AIF's to.
1084	 */
1085	dev->aif_thread = 1;
1086	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1087	set_current_state(TASK_INTERRUPTIBLE);
1088	dprintk ((KERN_INFO "aac_command_thread start\n"));
1089	while(1)
1090	{
1091		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1092		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1093			struct list_head *entry;
1094			struct aac_aifcmd * aifcmd;
1095
1096			set_current_state(TASK_RUNNING);
1097
1098			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1099			list_del(entry);
1100
1101			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1102			fib = list_entry(entry, struct fib, fiblink);
1103			/*
1104			 *	We will process the FIB here or pass it to a
1105			 *	worker thread that is TBD. We Really can't
1106			 *	do anything at this point since we don't have
1107			 *	anything defined for this thread to do.
1108			 */
1109			hw_fib = fib->hw_fib;
1110			memset(fib, 0, sizeof(struct fib));
1111			fib->type = FSAFS_NTC_FIB_CONTEXT;
1112			fib->size = sizeof( struct fib );
1113			fib->hw_fib = hw_fib;
1114			fib->data = hw_fib->data;
1115			fib->dev = dev;
1116			/*
1117			 *	We only handle AifRequest fibs from the adapter.
1118			 */
1119			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1120			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1121				/* Handle Driver Notify Events */
1122				aac_handle_aif(dev, fib);
1123				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1124				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1125			} else {
1126				struct list_head *entry;
1127				/* The u32 here is important and intended. We are using
1128				   32bit wrapping time to fit the adapter field */
1129
1130				u32 time_now, time_last;
1131				unsigned long flagv;
1132				unsigned num;
1133				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1134				struct fib ** fib_pool, ** fib_p;
1135
1136				/* Sniff events */
1137				if ((aifcmd->command ==
1138				     cpu_to_le32(AifCmdEventNotify)) ||
1139				    (aifcmd->command ==
1140				     cpu_to_le32(AifCmdJobProgress))) {
1141					aac_handle_aif(dev, fib);
1142				}
1143
1144				time_now = jiffies/HZ;
1145
1146				/*
1147				 * Warning: no sleep allowed while
1148				 * holding spinlock. We take the estimate
1149				 * and pre-allocate a set of fibs outside the
1150				 * lock.
1151				 */
1152				num = le32_to_cpu(dev->init->AdapterFibsSize)
1153				    / sizeof(struct hw_fib); /* some extra */
1154				spin_lock_irqsave(&dev->fib_lock, flagv);
1155				entry = dev->fib_list.next;
1156				while (entry != &dev->fib_list) {
1157					entry = entry->next;
1158					++num;
1159				}
1160				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1161				hw_fib_pool = NULL;
1162				fib_pool = NULL;
1163				if (num
1164				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1165				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1166					hw_fib_p = hw_fib_pool;
1167					fib_p = fib_pool;
1168					while (hw_fib_p < &hw_fib_pool[num]) {
1169						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1170							--hw_fib_p;
1171							break;
1172						}
1173						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1174							kfree(*(--hw_fib_p));
1175							break;
1176						}
1177					}
1178					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1179						kfree(fib_pool);
1180						fib_pool = NULL;
1181						kfree(hw_fib_pool);
1182						hw_fib_pool = NULL;
1183					}
1184				} else {
1185					kfree(hw_fib_pool);
1186					hw_fib_pool = NULL;
1187				}
1188				spin_lock_irqsave(&dev->fib_lock, flagv);
1189				entry = dev->fib_list.next;
1190				/*
1191				 * For each Context that is on the
1192				 * fibctxList, make a copy of the
1193				 * fib, and then set the event to wake up the
1194				 * thread that is waiting for it.
1195				 */
1196				hw_fib_p = hw_fib_pool;
1197				fib_p = fib_pool;
1198				while (entry != &dev->fib_list) {
1199					/*
1200					 * Extract the fibctx
1201					 */
1202					fibctx = list_entry(entry, struct aac_fib_context, next);
1203					/*
1204					 * Check if the queue is getting
1205					 * backlogged
1206					 */
1207					if (fibctx->count > 20)
1208					{
1209						/*
1210						 * It's *not* jiffies folks,
1211						 * but jiffies / HZ so do not
1212						 * panic ...
1213						 */
1214						time_last = fibctx->jiffies;
1215						/*
1216						 * Has it been > 2 minutes
1217						 * since the last read off
1218						 * the queue?
1219						 */
1220						if ((time_now - time_last) > aif_timeout) {
1221							entry = entry->next;
1222							aac_close_fib_context(dev, fibctx);
1223							continue;
1224						}
1225					}
1226					/*
1227					 * Warning: no sleep allowed while
1228					 * holding spinlock
1229					 */
1230					if (hw_fib_p < &hw_fib_pool[num]) {
1231						hw_newfib = *hw_fib_p;
1232						*(hw_fib_p++) = NULL;
1233						newfib = *fib_p;
1234						*(fib_p++) = NULL;
1235						/*
1236						 * Make the copy of the FIB
1237						 */
1238						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1239						memcpy(newfib, fib, sizeof(struct fib));
1240						newfib->hw_fib = hw_newfib;
1241						/*
1242						 * Put the FIB onto the
1243						 * fibctx's fibs
1244						 */
1245						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1246						fibctx->count++;
1247						/*
1248						 * Set the event to wake up the
1249						 * thread that is waiting.
1250						 */
1251						up(&fibctx->wait_sem);
1252					} else {
1253						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1254					}
1255					entry = entry->next;
1256				}
1257				/*
1258				 *	Set the status of this FIB
1259				 */
1260				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1261				aac_fib_adapter_complete(fib, sizeof(u32));
1262				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1263				/* Free up the remaining resources */
1264				hw_fib_p = hw_fib_pool;
1265				fib_p = fib_pool;
1266				while (hw_fib_p < &hw_fib_pool[num]) {
1267					kfree(*hw_fib_p);
1268					kfree(*fib_p);
1269					++fib_p;
1270					++hw_fib_p;
1271				}
1272				kfree(hw_fib_pool);
1273				kfree(fib_pool);
1274			}
1275			kfree(fib);
1276			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1277		}
1278		/*
1279		 *	There are no more AIF's
1280		 */
1281		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1282		schedule();
1283
1284		if (kthread_should_stop())
1285			break;
1286		set_current_state(TASK_INTERRUPTIBLE);
1287	}
1288	if (dev->queues)
1289		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1290	dev->aif_thread = 0;
1291	return 0;
1292}
1293