commsup.c revision e6096963d2125294f736df4fc37f4226d0b4d178
1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING.  If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 *  commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 *    communication.
29 *
30 */
31
32#include <linux/kernel.h>
33#include <linux/init.h>
34#include <linux/types.h>
35#include <linux/sched.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/slab.h>
39#include <linux/completion.h>
40#include <linux/blkdev.h>
41#include <linux/delay.h>
42#include <linux/kthread.h>
43#include <linux/interrupt.h>
44#include <scsi/scsi.h>
45#include <scsi/scsi_host.h>
46#include <scsi/scsi_device.h>
47#include <scsi/scsi_cmnd.h>
48#include <asm/semaphore.h>
49
50#include "aacraid.h"
51
52/**
53 *	fib_map_alloc		-	allocate the fib objects
54 *	@dev: Adapter to allocate for
55 *
56 *	Allocate and map the shared PCI space for the FIB blocks used to
57 *	talk to the Adaptec firmware.
58 */
59
60static int fib_map_alloc(struct aac_dev *dev)
61{
62	dprintk((KERN_INFO
63	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68	  &dev->hw_fib_pa))==NULL)
69		return -ENOMEM;
70	return 0;
71}
72
73/**
74 *	aac_fib_map_free		-	free the fib objects
75 *	@dev: Adapter to free
76 *
77 *	Free the PCI mappings and the memory allocated for FIB blocks
78 *	on this adapter.
79 */
80
81void aac_fib_map_free(struct aac_dev *dev)
82{
83	pci_free_consistent(dev->pdev,
84	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85	  dev->hw_fib_va, dev->hw_fib_pa);
86	dev->hw_fib_va = NULL;
87	dev->hw_fib_pa = 0;
88}
89
90/**
91 *	aac_fib_setup	-	setup the fibs
92 *	@dev: Adapter to set up
93 *
94 *	Allocate the PCI space for the fibs, map it and then intialise the
95 *	fib area, the unmapped fib data and also the free list
96 */
97
98int aac_fib_setup(struct aac_dev * dev)
99{
100	struct fib *fibptr;
101	struct hw_fib *hw_fib;
102	dma_addr_t hw_fib_pa;
103	int i;
104
105	while (((i = fib_map_alloc(dev)) == -ENOMEM)
106	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109	}
110	if (i<0)
111		return -ENOMEM;
112
113	hw_fib = dev->hw_fib_va;
114	hw_fib_pa = dev->hw_fib_pa;
115	memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
116	/*
117	 *	Initialise the fibs
118	 */
119	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
120	{
121		fibptr->dev = dev;
122		fibptr->hw_fib_va = hw_fib;
123		fibptr->data = (void *) fibptr->hw_fib_va->data;
124		fibptr->next = fibptr+1;	/* Forward chain the fibs */
125		init_MUTEX_LOCKED(&fibptr->event_wait);
126		spin_lock_init(&fibptr->event_lock);
127		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
128		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
129		fibptr->hw_fib_pa = hw_fib_pa;
130		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
131		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
132	}
133	/*
134	 *	Add the fib chain to the free list
135	 */
136	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
137	/*
138	 *	Enable this to debug out of queue space
139	 */
140	dev->free_fib = &dev->fibs[0];
141	return 0;
142}
143
144/**
145 *	aac_fib_alloc	-	allocate a fib
146 *	@dev: Adapter to allocate the fib for
147 *
148 *	Allocate a fib from the adapter fib pool. If the pool is empty we
149 *	return NULL.
150 */
151
152struct fib *aac_fib_alloc(struct aac_dev *dev)
153{
154	struct fib * fibptr;
155	unsigned long flags;
156	spin_lock_irqsave(&dev->fib_lock, flags);
157	fibptr = dev->free_fib;
158	if(!fibptr){
159		spin_unlock_irqrestore(&dev->fib_lock, flags);
160		return fibptr;
161	}
162	dev->free_fib = fibptr->next;
163	spin_unlock_irqrestore(&dev->fib_lock, flags);
164	/*
165	 *	Set the proper node type code and node byte size
166	 */
167	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
168	fibptr->size = sizeof(struct fib);
169	/*
170	 *	Null out fields that depend on being zero at the start of
171	 *	each I/O
172	 */
173	fibptr->hw_fib_va->header.XferState = 0;
174	fibptr->callback = NULL;
175	fibptr->callback_data = NULL;
176
177	return fibptr;
178}
179
180/**
181 *	aac_fib_free	-	free a fib
182 *	@fibptr: fib to free up
183 *
184 *	Frees up a fib and places it on the appropriate queue
185 */
186
187void aac_fib_free(struct fib *fibptr)
188{
189	unsigned long flags;
190
191	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
192	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
193		aac_config.fib_timeouts++;
194	if (fibptr->hw_fib_va->header.XferState != 0) {
195		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196			 (void*)fibptr,
197			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
198	}
199	fibptr->next = fibptr->dev->free_fib;
200	fibptr->dev->free_fib = fibptr;
201	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
202}
203
204/**
205 *	aac_fib_init	-	initialise a fib
206 *	@fibptr: The fib to initialize
207 *
208 *	Set up the generic fib fields ready for use
209 */
210
211void aac_fib_init(struct fib *fibptr)
212{
213	struct hw_fib *hw_fib = fibptr->hw_fib_va;
214
215	hw_fib->header.StructType = FIB_MAGIC;
216	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
217	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
218	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
219	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
220	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
221}
222
223/**
224 *	fib_deallocate		-	deallocate a fib
225 *	@fibptr: fib to deallocate
226 *
227 *	Will deallocate and return to the free pool the FIB pointed to by the
228 *	caller.
229 */
230
231static void fib_dealloc(struct fib * fibptr)
232{
233	struct hw_fib *hw_fib = fibptr->hw_fib_va;
234	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
235	hw_fib->header.XferState = 0;
236}
237
238/*
239 *	Commuication primitives define and support the queuing method we use to
240 *	support host to adapter commuication. All queue accesses happen through
241 *	these routines and are the only routines which have a knowledge of the
242 *	 how these queues are implemented.
243 */
244
245/**
246 *	aac_get_entry		-	get a queue entry
247 *	@dev: Adapter
248 *	@qid: Queue Number
249 *	@entry: Entry return
250 *	@index: Index return
251 *	@nonotify: notification control
252 *
253 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
254 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
255 *	returned.
256 */
257
258static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
259{
260	struct aac_queue * q;
261	unsigned long idx;
262
263	/*
264	 *	All of the queues wrap when they reach the end, so we check
265	 *	to see if they have reached the end and if they have we just
266	 *	set the index back to zero. This is a wrap. You could or off
267	 *	the high bits in all updates but this is a bit faster I think.
268	 */
269
270	q = &dev->queues->queue[qid];
271
272	idx = *index = le32_to_cpu(*(q->headers.producer));
273	/* Interrupt Moderation, only interrupt for first two entries */
274	if (idx != le32_to_cpu(*(q->headers.consumer))) {
275		if (--idx == 0) {
276			if (qid == AdapNormCmdQueue)
277				idx = ADAP_NORM_CMD_ENTRIES;
278			else
279				idx = ADAP_NORM_RESP_ENTRIES;
280		}
281		if (idx != le32_to_cpu(*(q->headers.consumer)))
282			*nonotify = 1;
283	}
284
285	if (qid == AdapNormCmdQueue) {
286	        if (*index >= ADAP_NORM_CMD_ENTRIES)
287			*index = 0; /* Wrap to front of the Producer Queue. */
288	} else {
289		if (*index >= ADAP_NORM_RESP_ENTRIES)
290			*index = 0; /* Wrap to front of the Producer Queue. */
291	}
292
293        if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
294		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
295				qid, q->numpending);
296		return 0;
297	} else {
298	        *entry = q->base + *index;
299		return 1;
300	}
301}
302
303/**
304 *	aac_queue_get		-	get the next free QE
305 *	@dev: Adapter
306 *	@index: Returned index
307 *	@priority: Priority of fib
308 *	@fib: Fib to associate with the queue entry
309 *	@wait: Wait if queue full
310 *	@fibptr: Driver fib object to go with fib
311 *	@nonotify: Don't notify the adapter
312 *
313 *	Gets the next free QE off the requested priorty adapter command
314 *	queue and associates the Fib with the QE. The QE represented by
315 *	index is ready to insert on the queue when this routine returns
316 *	success.
317 */
318
319int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
320{
321	struct aac_entry * entry = NULL;
322	int map = 0;
323
324	if (qid == AdapNormCmdQueue) {
325		/*  if no entries wait for some if caller wants to */
326        	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
327        	{
328			printk(KERN_ERR "GetEntries failed\n");
329		}
330	        /*
331	         *	Setup queue entry with a command, status and fib mapped
332	         */
333	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
334	        map = 1;
335	} else {
336	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
337	        {
338			/* if no entries wait for some if caller wants to */
339		}
340        	/*
341        	 *	Setup queue entry with command, status and fib mapped
342        	 */
343        	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344        	entry->addr = hw_fib->header.SenderFibAddress;
345     			/* Restore adapters pointer to the FIB */
346		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
347        	map = 0;
348	}
349	/*
350	 *	If MapFib is true than we need to map the Fib and put pointers
351	 *	in the queue entry.
352	 */
353	if (map)
354		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
355	return 0;
356}
357
358/*
359 *	Define the highest level of host to adapter communication routines.
360 *	These routines will support host to adapter FS commuication. These
361 *	routines have no knowledge of the commuication method used. This level
362 *	sends and receives FIBs. This level has no knowledge of how these FIBs
363 *	get passed back and forth.
364 */
365
366/**
367 *	aac_fib_send	-	send a fib to the adapter
368 *	@command: Command to send
369 *	@fibptr: The fib
370 *	@size: Size of fib data area
371 *	@priority: Priority of Fib
372 *	@wait: Async/sync select
373 *	@reply: True if a reply is wanted
374 *	@callback: Called with reply
375 *	@callback_data: Passed to callback
376 *
377 *	Sends the requested FIB to the adapter and optionally will wait for a
378 *	response FIB. If the caller does not wish to wait for a response than
379 *	an event to wait on must be supplied. This event will be set when a
380 *	response FIB is received from the adapter.
381 */
382
383int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
384		int priority, int wait, int reply, fib_callback callback,
385		void *callback_data)
386{
387	struct aac_dev * dev = fibptr->dev;
388	struct hw_fib * hw_fib = fibptr->hw_fib_va;
389	unsigned long flags = 0;
390	unsigned long qflags;
391
392	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
393		return -EBUSY;
394	/*
395	 *	There are 5 cases with the wait and reponse requested flags.
396	 *	The only invalid cases are if the caller requests to wait and
397	 *	does not request a response and if the caller does not want a
398	 *	response and the Fib is not allocated from pool. If a response
399	 *	is not requesed the Fib will just be deallocaed by the DPC
400	 *	routine when the response comes back from the adapter. No
401	 *	further processing will be done besides deleting the Fib. We
402	 *	will have a debug mode where the adapter can notify the host
403	 *	it had a problem and the host can log that fact.
404	 */
405	if (wait && !reply) {
406		return -EINVAL;
407	} else if (!wait && reply) {
408		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
409		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
410	} else if (!wait && !reply) {
411		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
412		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
413	} else if (wait && reply) {
414		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
415		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
416	}
417	/*
418	 *	Map the fib into 32bits by using the fib number
419	 */
420
421	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
422	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
423	/*
424	 *	Set FIB state to indicate where it came from and if we want a
425	 *	response from the adapter. Also load the command from the
426	 *	caller.
427	 *
428	 *	Map the hw fib pointer as a 32bit value
429	 */
430	hw_fib->header.Command = cpu_to_le16(command);
431	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
432	fibptr->hw_fib_va->header.Flags = 0;	/* 0 the flags field - internal only*/
433	/*
434	 *	Set the size of the Fib we want to send to the adapter
435	 */
436	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
437	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
438		return -EMSGSIZE;
439	}
440	/*
441	 *	Get a queue entry connect the FIB to it and send an notify
442	 *	the adapter a command is ready.
443	 */
444	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
445
446	/*
447	 *	Fill in the Callback and CallbackContext if we are not
448	 *	going to wait.
449	 */
450	if (!wait) {
451		fibptr->callback = callback;
452		fibptr->callback_data = callback_data;
453	}
454
455	fibptr->done = 0;
456	fibptr->flags = 0;
457
458	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
459
460	dprintk((KERN_DEBUG "Fib contents:.\n"));
461	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
462	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
463	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
464	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
465	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
466	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
467
468	if (!dev->queues)
469		return -EBUSY;
470
471	if(wait)
472		spin_lock_irqsave(&fibptr->event_lock, flags);
473	aac_adapter_deliver(fibptr);
474
475	/*
476	 *	If the caller wanted us to wait for response wait now.
477	 */
478
479	if (wait) {
480		spin_unlock_irqrestore(&fibptr->event_lock, flags);
481		/* Only set for first known interruptable command */
482		if (wait < 0) {
483			/*
484			 * *VERY* Dangerous to time out a command, the
485			 * assumption is made that we have no hope of
486			 * functioning because an interrupt routing or other
487			 * hardware failure has occurred.
488			 */
489			unsigned long count = 36000000L; /* 3 minutes */
490			while (down_trylock(&fibptr->event_wait)) {
491				int blink;
492				if (--count == 0) {
493					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
494					spin_lock_irqsave(q->lock, qflags);
495					q->numpending--;
496					spin_unlock_irqrestore(q->lock, qflags);
497					if (wait == -1) {
498	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
499						  "Usually a result of a PCI interrupt routing problem;\n"
500						  "update mother board BIOS or consider utilizing one of\n"
501						  "the SAFE mode kernel options (acpi, apic etc)\n");
502					}
503					return -ETIMEDOUT;
504				}
505				if ((blink = aac_adapter_check_health(dev)) > 0) {
506					if (wait == -1) {
507	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
508						  "Usually a result of a serious unrecoverable hardware problem\n",
509						  blink);
510					}
511					return -EFAULT;
512				}
513				udelay(5);
514			}
515		} else
516			(void)down_interruptible(&fibptr->event_wait);
517		spin_lock_irqsave(&fibptr->event_lock, flags);
518		if (fibptr->done == 0) {
519			fibptr->done = 2; /* Tell interrupt we aborted */
520			spin_unlock_irqrestore(&fibptr->event_lock, flags);
521			return -EINTR;
522		}
523		spin_unlock_irqrestore(&fibptr->event_lock, flags);
524		BUG_ON(fibptr->done == 0);
525
526		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
527			return -ETIMEDOUT;
528		return 0;
529	}
530	/*
531	 *	If the user does not want a response than return success otherwise
532	 *	return pending
533	 */
534	if (reply)
535		return -EINPROGRESS;
536	else
537		return 0;
538}
539
540/**
541 *	aac_consumer_get	-	get the top of the queue
542 *	@dev: Adapter
543 *	@q: Queue
544 *	@entry: Return entry
545 *
546 *	Will return a pointer to the entry on the top of the queue requested that
547 * 	we are a consumer of, and return the address of the queue entry. It does
548 *	not change the state of the queue.
549 */
550
551int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
552{
553	u32 index;
554	int status;
555	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
556		status = 0;
557	} else {
558		/*
559		 *	The consumer index must be wrapped if we have reached
560		 *	the end of the queue, else we just use the entry
561		 *	pointed to by the header index
562		 */
563		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
564			index = 0;
565		else
566		        index = le32_to_cpu(*q->headers.consumer);
567		*entry = q->base + index;
568		status = 1;
569	}
570	return(status);
571}
572
573/**
574 *	aac_consumer_free	-	free consumer entry
575 *	@dev: Adapter
576 *	@q: Queue
577 *	@qid: Queue ident
578 *
579 *	Frees up the current top of the queue we are a consumer of. If the
580 *	queue was full notify the producer that the queue is no longer full.
581 */
582
583void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
584{
585	int wasfull = 0;
586	u32 notify;
587
588	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
589		wasfull = 1;
590
591	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
592		*q->headers.consumer = cpu_to_le32(1);
593	else
594		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
595
596	if (wasfull) {
597		switch (qid) {
598
599		case HostNormCmdQueue:
600			notify = HostNormCmdNotFull;
601			break;
602		case HostNormRespQueue:
603			notify = HostNormRespNotFull;
604			break;
605		default:
606			BUG();
607			return;
608		}
609		aac_adapter_notify(dev, notify);
610	}
611}
612
613/**
614 *	aac_fib_adapter_complete	-	complete adapter issued fib
615 *	@fibptr: fib to complete
616 *	@size: size of fib
617 *
618 *	Will do all necessary work to complete a FIB that was sent from
619 *	the adapter.
620 */
621
622int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
623{
624	struct hw_fib * hw_fib = fibptr->hw_fib_va;
625	struct aac_dev * dev = fibptr->dev;
626	struct aac_queue * q;
627	unsigned long nointr = 0;
628	unsigned long qflags;
629
630	if (hw_fib->header.XferState == 0) {
631		if (dev->comm_interface == AAC_COMM_MESSAGE)
632			kfree (hw_fib);
633        	return 0;
634	}
635	/*
636	 *	If we plan to do anything check the structure type first.
637	 */
638	if ( hw_fib->header.StructType != FIB_MAGIC ) {
639		if (dev->comm_interface == AAC_COMM_MESSAGE)
640			kfree (hw_fib);
641        	return -EINVAL;
642	}
643	/*
644	 *	This block handles the case where the adapter had sent us a
645	 *	command and we have finished processing the command. We
646	 *	call completeFib when we are done processing the command
647	 *	and want to send a response back to the adapter. This will
648	 *	send the completed cdb to the adapter.
649	 */
650	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
651		if (dev->comm_interface == AAC_COMM_MESSAGE) {
652			kfree (hw_fib);
653		} else {
654	       		u32 index;
655		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
656			if (size) {
657				size += sizeof(struct aac_fibhdr);
658				if (size > le16_to_cpu(hw_fib->header.SenderSize))
659					return -EMSGSIZE;
660				hw_fib->header.Size = cpu_to_le16(size);
661			}
662			q = &dev->queues->queue[AdapNormRespQueue];
663			spin_lock_irqsave(q->lock, qflags);
664			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
665			*(q->headers.producer) = cpu_to_le32(index + 1);
666			spin_unlock_irqrestore(q->lock, qflags);
667			if (!(nointr & (int)aac_config.irq_mod))
668				aac_adapter_notify(dev, AdapNormRespQueue);
669		}
670	}
671	else
672	{
673        	printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
674        	BUG();
675	}
676	return 0;
677}
678
679/**
680 *	aac_fib_complete	-	fib completion handler
681 *	@fib: FIB to complete
682 *
683 *	Will do all necessary work to complete a FIB.
684 */
685
686int aac_fib_complete(struct fib *fibptr)
687{
688	struct hw_fib * hw_fib = fibptr->hw_fib_va;
689
690	/*
691	 *	Check for a fib which has already been completed
692	 */
693
694	if (hw_fib->header.XferState == 0)
695        	return 0;
696	/*
697	 *	If we plan to do anything check the structure type first.
698	 */
699
700	if (hw_fib->header.StructType != FIB_MAGIC)
701	        return -EINVAL;
702	/*
703	 *	This block completes a cdb which orginated on the host and we
704	 *	just need to deallocate the cdb or reinit it. At this point the
705	 *	command is complete that we had sent to the adapter and this
706	 *	cdb could be reused.
707	 */
708	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
709		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
710	{
711		fib_dealloc(fibptr);
712	}
713	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
714	{
715		/*
716		 *	This handles the case when the host has aborted the I/O
717		 *	to the adapter because the adapter is not responding
718		 */
719		fib_dealloc(fibptr);
720	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
721		fib_dealloc(fibptr);
722	} else {
723		BUG();
724	}
725	return 0;
726}
727
728/**
729 *	aac_printf	-	handle printf from firmware
730 *	@dev: Adapter
731 *	@val: Message info
732 *
733 *	Print a message passed to us by the controller firmware on the
734 *	Adaptec board
735 */
736
737void aac_printf(struct aac_dev *dev, u32 val)
738{
739	char *cp = dev->printfbuf;
740	if (dev->printf_enabled)
741	{
742		int length = val & 0xffff;
743		int level = (val >> 16) & 0xffff;
744
745		/*
746		 *	The size of the printfbuf is set in port.c
747		 *	There is no variable or define for it
748		 */
749		if (length > 255)
750			length = 255;
751		if (cp[length] != 0)
752			cp[length] = 0;
753		if (level == LOG_AAC_HIGH_ERROR)
754			printk(KERN_WARNING "%s:%s", dev->name, cp);
755		else
756			printk(KERN_INFO "%s:%s", dev->name, cp);
757	}
758	memset(cp, 0,  256);
759}
760
761
762/**
763 *	aac_handle_aif		-	Handle a message from the firmware
764 *	@dev: Which adapter this fib is from
765 *	@fibptr: Pointer to fibptr from adapter
766 *
767 *	This routine handles a driver notify fib from the adapter and
768 *	dispatches it to the appropriate routine for handling.
769 */
770
771#define AIF_SNIFF_TIMEOUT	(30*HZ)
772static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
773{
774	struct hw_fib * hw_fib = fibptr->hw_fib_va;
775	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
776	u32 container;
777	struct scsi_device *device;
778	enum {
779		NOTHING,
780		DELETE,
781		ADD,
782		CHANGE
783	} device_config_needed;
784
785	/* Sniff for container changes */
786
787	if (!dev || !dev->fsa_dev)
788		return;
789	container = (u32)-1;
790
791	/*
792	 *	We have set this up to try and minimize the number of
793	 * re-configures that take place. As a result of this when
794	 * certain AIF's come in we will set a flag waiting for another
795	 * type of AIF before setting the re-config flag.
796	 */
797	switch (le32_to_cpu(aifcmd->command)) {
798	case AifCmdDriverNotify:
799		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
800		/*
801		 *	Morph or Expand complete
802		 */
803		case AifDenMorphComplete:
804		case AifDenVolumeExtendComplete:
805			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
806			if (container >= dev->maximum_num_containers)
807				break;
808
809			/*
810			 *	Find the scsi_device associated with the SCSI
811			 * address. Make sure we have the right array, and if
812			 * so set the flag to initiate a new re-config once we
813			 * see an AifEnConfigChange AIF come through.
814			 */
815
816			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
817				device = scsi_device_lookup(dev->scsi_host_ptr,
818					CONTAINER_TO_CHANNEL(container),
819					CONTAINER_TO_ID(container),
820					CONTAINER_TO_LUN(container));
821				if (device) {
822					dev->fsa_dev[container].config_needed = CHANGE;
823					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
824					dev->fsa_dev[container].config_waiting_stamp = jiffies;
825					scsi_device_put(device);
826				}
827			}
828		}
829
830		/*
831		 *	If we are waiting on something and this happens to be
832		 * that thing then set the re-configure flag.
833		 */
834		if (container != (u32)-1) {
835			if (container >= dev->maximum_num_containers)
836				break;
837			if ((dev->fsa_dev[container].config_waiting_on ==
838			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
839			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
840				dev->fsa_dev[container].config_waiting_on = 0;
841		} else for (container = 0;
842		    container < dev->maximum_num_containers; ++container) {
843			if ((dev->fsa_dev[container].config_waiting_on ==
844			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
845			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
846				dev->fsa_dev[container].config_waiting_on = 0;
847		}
848		break;
849
850	case AifCmdEventNotify:
851		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
852		/*
853		 *	Add an Array.
854		 */
855		case AifEnAddContainer:
856			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
857			if (container >= dev->maximum_num_containers)
858				break;
859			dev->fsa_dev[container].config_needed = ADD;
860			dev->fsa_dev[container].config_waiting_on =
861				AifEnConfigChange;
862			dev->fsa_dev[container].config_waiting_stamp = jiffies;
863			break;
864
865		/*
866		 *	Delete an Array.
867		 */
868		case AifEnDeleteContainer:
869			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
870			if (container >= dev->maximum_num_containers)
871				break;
872			dev->fsa_dev[container].config_needed = DELETE;
873			dev->fsa_dev[container].config_waiting_on =
874				AifEnConfigChange;
875			dev->fsa_dev[container].config_waiting_stamp = jiffies;
876			break;
877
878		/*
879		 *	Container change detected. If we currently are not
880		 * waiting on something else, setup to wait on a Config Change.
881		 */
882		case AifEnContainerChange:
883			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
884			if (container >= dev->maximum_num_containers)
885				break;
886			if (dev->fsa_dev[container].config_waiting_on &&
887			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
888				break;
889			dev->fsa_dev[container].config_needed = CHANGE;
890			dev->fsa_dev[container].config_waiting_on =
891				AifEnConfigChange;
892			dev->fsa_dev[container].config_waiting_stamp = jiffies;
893			break;
894
895		case AifEnConfigChange:
896			break;
897
898		}
899
900		/*
901		 *	If we are waiting on something and this happens to be
902		 * that thing then set the re-configure flag.
903		 */
904		if (container != (u32)-1) {
905			if (container >= dev->maximum_num_containers)
906				break;
907			if ((dev->fsa_dev[container].config_waiting_on ==
908			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
909			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
910				dev->fsa_dev[container].config_waiting_on = 0;
911		} else for (container = 0;
912		    container < dev->maximum_num_containers; ++container) {
913			if ((dev->fsa_dev[container].config_waiting_on ==
914			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
915			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
916				dev->fsa_dev[container].config_waiting_on = 0;
917		}
918		break;
919
920	case AifCmdJobProgress:
921		/*
922		 *	These are job progress AIF's. When a Clear is being
923		 * done on a container it is initially created then hidden from
924		 * the OS. When the clear completes we don't get a config
925		 * change so we monitor the job status complete on a clear then
926		 * wait for a container change.
927		 */
928
929		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
930		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
931		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
932			for (container = 0;
933			    container < dev->maximum_num_containers;
934			    ++container) {
935				/*
936				 * Stomp on all config sequencing for all
937				 * containers?
938				 */
939				dev->fsa_dev[container].config_waiting_on =
940					AifEnContainerChange;
941				dev->fsa_dev[container].config_needed = ADD;
942				dev->fsa_dev[container].config_waiting_stamp =
943					jiffies;
944			}
945		}
946		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
947		 && (((u32 *)aifcmd->data)[6] == 0)
948		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
949			for (container = 0;
950			    container < dev->maximum_num_containers;
951			    ++container) {
952				/*
953				 * Stomp on all config sequencing for all
954				 * containers?
955				 */
956				dev->fsa_dev[container].config_waiting_on =
957					AifEnContainerChange;
958				dev->fsa_dev[container].config_needed = DELETE;
959				dev->fsa_dev[container].config_waiting_stamp =
960					jiffies;
961			}
962		}
963		break;
964	}
965
966	device_config_needed = NOTHING;
967	for (container = 0; container < dev->maximum_num_containers;
968	    ++container) {
969		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
970			(dev->fsa_dev[container].config_needed != NOTHING) &&
971			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
972			device_config_needed =
973				dev->fsa_dev[container].config_needed;
974			dev->fsa_dev[container].config_needed = NOTHING;
975			break;
976		}
977	}
978	if (device_config_needed == NOTHING)
979		return;
980
981	/*
982	 *	If we decided that a re-configuration needs to be done,
983	 * schedule it here on the way out the door, please close the door
984	 * behind you.
985	 */
986
987	/*
988	 *	Find the scsi_device associated with the SCSI address,
989	 * and mark it as changed, invalidating the cache. This deals
990	 * with changes to existing device IDs.
991	 */
992
993	if (!dev || !dev->scsi_host_ptr)
994		return;
995	/*
996	 * force reload of disk info via aac_probe_container
997	 */
998	if ((device_config_needed == CHANGE)
999	 && (dev->fsa_dev[container].valid == 1))
1000		dev->fsa_dev[container].valid = 2;
1001	if ((device_config_needed == CHANGE) ||
1002			(device_config_needed == ADD))
1003		aac_probe_container(dev, container);
1004	device = scsi_device_lookup(dev->scsi_host_ptr,
1005		CONTAINER_TO_CHANNEL(container),
1006		CONTAINER_TO_ID(container),
1007		CONTAINER_TO_LUN(container));
1008	if (device) {
1009		switch (device_config_needed) {
1010		case DELETE:
1011		case CHANGE:
1012			scsi_rescan_device(&device->sdev_gendev);
1013
1014		default:
1015			break;
1016		}
1017		scsi_device_put(device);
1018	}
1019	if (device_config_needed == ADD) {
1020		scsi_add_device(dev->scsi_host_ptr,
1021		  CONTAINER_TO_CHANNEL(container),
1022		  CONTAINER_TO_ID(container),
1023		  CONTAINER_TO_LUN(container));
1024	}
1025
1026}
1027
1028static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1029{
1030	int index, quirks;
1031	int retval;
1032	struct Scsi_Host *host;
1033	struct scsi_device *dev;
1034	struct scsi_cmnd *command;
1035	struct scsi_cmnd *command_list;
1036	int jafo = 0;
1037
1038	/*
1039	 * Assumptions:
1040	 *	- host is locked, unless called by the aacraid thread.
1041	 *	  (a matter of convenience, due to legacy issues surrounding
1042	 *	  eh_host_adapter_reset).
1043	 *	- in_reset is asserted, so no new i/o is getting to the
1044	 *	  card.
1045	 *	- The card is dead, or will be very shortly ;-/ so no new
1046	 *	  commands are completing in the interrupt service.
1047	 */
1048	host = aac->scsi_host_ptr;
1049	scsi_block_requests(host);
1050	aac_adapter_disable_int(aac);
1051	if (aac->thread->pid != current->pid) {
1052		spin_unlock_irq(host->host_lock);
1053		kthread_stop(aac->thread);
1054		jafo = 1;
1055	}
1056
1057	/*
1058	 *	If a positive health, means in a known DEAD PANIC
1059	 * state and the adapter could be reset to `try again'.
1060	 */
1061	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1062
1063	if (retval)
1064		goto out;
1065
1066	/*
1067	 *	Loop through the fibs, close the synchronous FIBS
1068	 */
1069	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1070		struct fib *fib = &aac->fibs[index];
1071		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1072		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1073			unsigned long flagv;
1074			spin_lock_irqsave(&fib->event_lock, flagv);
1075			up(&fib->event_wait);
1076			spin_unlock_irqrestore(&fib->event_lock, flagv);
1077			schedule();
1078			retval = 0;
1079		}
1080	}
1081	/* Give some extra time for ioctls to complete. */
1082	if (retval == 0)
1083		ssleep(2);
1084	index = aac->cardtype;
1085
1086	/*
1087	 * Re-initialize the adapter, first free resources, then carefully
1088	 * apply the initialization sequence to come back again. Only risk
1089	 * is a change in Firmware dropping cache, it is assumed the caller
1090	 * will ensure that i/o is queisced and the card is flushed in that
1091	 * case.
1092	 */
1093	aac_fib_map_free(aac);
1094	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1095	aac->comm_addr = NULL;
1096	aac->comm_phys = 0;
1097	kfree(aac->queues);
1098	aac->queues = NULL;
1099	free_irq(aac->pdev->irq, aac);
1100	kfree(aac->fsa_dev);
1101	aac->fsa_dev = NULL;
1102	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1103		if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
1104		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
1105			goto out;
1106	} else {
1107		if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1108		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1109			goto out;
1110	}
1111	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1112		goto out;
1113	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1114		if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1115			goto out;
1116	if (jafo) {
1117		aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1118		if (IS_ERR(aac->thread)) {
1119			retval = PTR_ERR(aac->thread);
1120			goto out;
1121		}
1122	}
1123	(void)aac_get_adapter_info(aac);
1124	quirks = aac_get_driver_ident(index)->quirks;
1125	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1126 		host->sg_tablesize = 34;
1127 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1128 	}
1129 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1130 		host->sg_tablesize = 17;
1131 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1132 	}
1133	aac_get_config_status(aac, 1);
1134	aac_get_containers(aac);
1135	/*
1136	 * This is where the assumption that the Adapter is quiesced
1137	 * is important.
1138	 */
1139	command_list = NULL;
1140	__shost_for_each_device(dev, host) {
1141		unsigned long flags;
1142		spin_lock_irqsave(&dev->list_lock, flags);
1143		list_for_each_entry(command, &dev->cmd_list, list)
1144			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1145				command->SCp.buffer = (struct scatterlist *)command_list;
1146				command_list = command;
1147			}
1148		spin_unlock_irqrestore(&dev->list_lock, flags);
1149	}
1150	while ((command = command_list)) {
1151		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1152		command->SCp.buffer = NULL;
1153		command->result = DID_OK << 16
1154		  | COMMAND_COMPLETE << 8
1155		  | SAM_STAT_TASK_SET_FULL;
1156		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1157		command->scsi_done(command);
1158	}
1159	retval = 0;
1160
1161out:
1162	aac->in_reset = 0;
1163	scsi_unblock_requests(host);
1164	if (jafo) {
1165		spin_lock_irq(host->host_lock);
1166	}
1167	return retval;
1168}
1169
1170int aac_reset_adapter(struct aac_dev * aac, int forced)
1171{
1172	unsigned long flagv = 0;
1173	int retval;
1174	struct Scsi_Host * host;
1175
1176	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1177		return -EBUSY;
1178
1179	if (aac->in_reset) {
1180		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1181		return -EBUSY;
1182	}
1183	aac->in_reset = 1;
1184	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1185
1186	/*
1187	 * Wait for all commands to complete to this specific
1188	 * target (block maximum 60 seconds). Although not necessary,
1189	 * it does make us a good storage citizen.
1190	 */
1191	host = aac->scsi_host_ptr;
1192	scsi_block_requests(host);
1193	if (forced < 2) for (retval = 60; retval; --retval) {
1194		struct scsi_device * dev;
1195		struct scsi_cmnd * command;
1196		int active = 0;
1197
1198		__shost_for_each_device(dev, host) {
1199			spin_lock_irqsave(&dev->list_lock, flagv);
1200			list_for_each_entry(command, &dev->cmd_list, list) {
1201				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1202					active++;
1203					break;
1204				}
1205			}
1206			spin_unlock_irqrestore(&dev->list_lock, flagv);
1207			if (active)
1208				break;
1209
1210		}
1211		/*
1212		 * We can exit If all the commands are complete
1213		 */
1214		if (active == 0)
1215			break;
1216		ssleep(1);
1217	}
1218
1219	/* Quiesce build, flush cache, write through mode */
1220	aac_send_shutdown(aac);
1221	spin_lock_irqsave(host->host_lock, flagv);
1222	retval = _aac_reset_adapter(aac, forced);
1223	spin_unlock_irqrestore(host->host_lock, flagv);
1224
1225	if (retval == -ENODEV) {
1226		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1227		struct fib * fibctx = aac_fib_alloc(aac);
1228		if (fibctx) {
1229			struct aac_pause *cmd;
1230			int status;
1231
1232			aac_fib_init(fibctx);
1233
1234			cmd = (struct aac_pause *) fib_data(fibctx);
1235
1236			cmd->command = cpu_to_le32(VM_ContainerConfig);
1237			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1238			cmd->timeout = cpu_to_le32(1);
1239			cmd->min = cpu_to_le32(1);
1240			cmd->noRescan = cpu_to_le32(1);
1241			cmd->count = cpu_to_le32(0);
1242
1243			status = aac_fib_send(ContainerCommand,
1244			  fibctx,
1245			  sizeof(struct aac_pause),
1246			  FsaNormal,
1247			  -2 /* Timeout silently */, 1,
1248			  NULL, NULL);
1249
1250			if (status >= 0)
1251				aac_fib_complete(fibctx);
1252			aac_fib_free(fibctx);
1253		}
1254	}
1255
1256	return retval;
1257}
1258
1259int aac_check_health(struct aac_dev * aac)
1260{
1261	int BlinkLED;
1262	unsigned long time_now, flagv = 0;
1263	struct list_head * entry;
1264	struct Scsi_Host * host;
1265
1266	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1267	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1268		return 0;
1269
1270	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1271		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1272		return 0; /* OK */
1273	}
1274
1275	aac->in_reset = 1;
1276
1277	/* Fake up an AIF:
1278	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1279	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1280	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1281	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1282	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1283	 *	aac.aifcmd.data[3] = BlinkLED
1284	 */
1285
1286	time_now = jiffies/HZ;
1287	entry = aac->fib_list.next;
1288
1289	/*
1290	 * For each Context that is on the
1291	 * fibctxList, make a copy of the
1292	 * fib, and then set the event to wake up the
1293	 * thread that is waiting for it.
1294	 */
1295	while (entry != &aac->fib_list) {
1296		/*
1297		 * Extract the fibctx
1298		 */
1299		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1300		struct hw_fib * hw_fib;
1301		struct fib * fib;
1302		/*
1303		 * Check if the queue is getting
1304		 * backlogged
1305		 */
1306		if (fibctx->count > 20) {
1307			/*
1308			 * It's *not* jiffies folks,
1309			 * but jiffies / HZ, so do not
1310			 * panic ...
1311			 */
1312			u32 time_last = fibctx->jiffies;
1313			/*
1314			 * Has it been > 2 minutes
1315			 * since the last read off
1316			 * the queue?
1317			 */
1318			if ((time_now - time_last) > aif_timeout) {
1319				entry = entry->next;
1320				aac_close_fib_context(aac, fibctx);
1321				continue;
1322			}
1323		}
1324		/*
1325		 * Warning: no sleep allowed while
1326		 * holding spinlock
1327		 */
1328		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1329		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1330		if (fib && hw_fib) {
1331			struct aac_aifcmd * aif;
1332
1333			fib->hw_fib_va = hw_fib;
1334			fib->dev = aac;
1335			aac_fib_init(fib);
1336			fib->type = FSAFS_NTC_FIB_CONTEXT;
1337			fib->size = sizeof (struct fib);
1338			fib->data = hw_fib->data;
1339			aif = (struct aac_aifcmd *)hw_fib->data;
1340			aif->command = cpu_to_le32(AifCmdEventNotify);
1341		 	aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1342			aif->data[0] = AifEnExpEvent;
1343			aif->data[1] = AifExeFirmwarePanic;
1344			aif->data[2] = AifHighPriority;
1345			aif->data[3] = BlinkLED;
1346
1347			/*
1348			 * Put the FIB onto the
1349			 * fibctx's fibs
1350			 */
1351			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1352			fibctx->count++;
1353			/*
1354			 * Set the event to wake up the
1355			 * thread that will waiting.
1356			 */
1357			up(&fibctx->wait_sem);
1358		} else {
1359			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1360			kfree(fib);
1361			kfree(hw_fib);
1362		}
1363		entry = entry->next;
1364	}
1365
1366	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1367
1368	if (BlinkLED < 0) {
1369		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1370		goto out;
1371	}
1372
1373	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1374
1375	if (!aac_check_reset ||
1376		(aac->supplement_adapter_info.SupportedOptions2 &
1377			le32_to_cpu(AAC_OPTION_IGNORE_RESET)))
1378		goto out;
1379	host = aac->scsi_host_ptr;
1380	if (aac->thread->pid != current->pid)
1381		spin_lock_irqsave(host->host_lock, flagv);
1382	BlinkLED = _aac_reset_adapter(aac, 0);
1383	if (aac->thread->pid != current->pid)
1384		spin_unlock_irqrestore(host->host_lock, flagv);
1385	return BlinkLED;
1386
1387out:
1388	aac->in_reset = 0;
1389	return BlinkLED;
1390}
1391
1392
1393/**
1394 *	aac_command_thread	-	command processing thread
1395 *	@dev: Adapter to monitor
1396 *
1397 *	Waits on the commandready event in it's queue. When the event gets set
1398 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1399 *	until the queue is empty. When the queue is empty it will wait for
1400 *	more FIBs.
1401 */
1402
1403int aac_command_thread(void *data)
1404{
1405	struct aac_dev *dev = data;
1406	struct hw_fib *hw_fib, *hw_newfib;
1407	struct fib *fib, *newfib;
1408	struct aac_fib_context *fibctx;
1409	unsigned long flags;
1410	DECLARE_WAITQUEUE(wait, current);
1411	unsigned long next_jiffies = jiffies + HZ;
1412	unsigned long next_check_jiffies = next_jiffies;
1413	long difference = HZ;
1414
1415	/*
1416	 *	We can only have one thread per adapter for AIF's.
1417	 */
1418	if (dev->aif_thread)
1419		return -EINVAL;
1420
1421	/*
1422	 *	Let the DPC know it has a place to send the AIF's to.
1423	 */
1424	dev->aif_thread = 1;
1425	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1426	set_current_state(TASK_INTERRUPTIBLE);
1427	dprintk ((KERN_INFO "aac_command_thread start\n"));
1428	while(1)
1429	{
1430		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1431		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1432			struct list_head *entry;
1433			struct aac_aifcmd * aifcmd;
1434
1435			set_current_state(TASK_RUNNING);
1436
1437			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1438			list_del(entry);
1439
1440			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1441			fib = list_entry(entry, struct fib, fiblink);
1442			/*
1443			 *	We will process the FIB here or pass it to a
1444			 *	worker thread that is TBD. We Really can't
1445			 *	do anything at this point since we don't have
1446			 *	anything defined for this thread to do.
1447			 */
1448			hw_fib = fib->hw_fib_va;
1449			memset(fib, 0, sizeof(struct fib));
1450			fib->type = FSAFS_NTC_FIB_CONTEXT;
1451			fib->size = sizeof( struct fib );
1452			fib->hw_fib_va = hw_fib;
1453			fib->data = hw_fib->data;
1454			fib->dev = dev;
1455			/*
1456			 *	We only handle AifRequest fibs from the adapter.
1457			 */
1458			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1459			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1460				/* Handle Driver Notify Events */
1461				aac_handle_aif(dev, fib);
1462				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1463				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1464			} else {
1465				struct list_head *entry;
1466				/* The u32 here is important and intended. We are using
1467				   32bit wrapping time to fit the adapter field */
1468
1469				u32 time_now, time_last;
1470				unsigned long flagv;
1471				unsigned num;
1472				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1473				struct fib ** fib_pool, ** fib_p;
1474
1475				/* Sniff events */
1476				if ((aifcmd->command ==
1477				     cpu_to_le32(AifCmdEventNotify)) ||
1478				    (aifcmd->command ==
1479				     cpu_to_le32(AifCmdJobProgress))) {
1480					aac_handle_aif(dev, fib);
1481				}
1482
1483				time_now = jiffies/HZ;
1484
1485				/*
1486				 * Warning: no sleep allowed while
1487				 * holding spinlock. We take the estimate
1488				 * and pre-allocate a set of fibs outside the
1489				 * lock.
1490				 */
1491				num = le32_to_cpu(dev->init->AdapterFibsSize)
1492				    / sizeof(struct hw_fib); /* some extra */
1493				spin_lock_irqsave(&dev->fib_lock, flagv);
1494				entry = dev->fib_list.next;
1495				while (entry != &dev->fib_list) {
1496					entry = entry->next;
1497					++num;
1498				}
1499				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1500				hw_fib_pool = NULL;
1501				fib_pool = NULL;
1502				if (num
1503				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1504				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1505					hw_fib_p = hw_fib_pool;
1506					fib_p = fib_pool;
1507					while (hw_fib_p < &hw_fib_pool[num]) {
1508						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1509							--hw_fib_p;
1510							break;
1511						}
1512						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1513							kfree(*(--hw_fib_p));
1514							break;
1515						}
1516					}
1517					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1518						kfree(fib_pool);
1519						fib_pool = NULL;
1520						kfree(hw_fib_pool);
1521						hw_fib_pool = NULL;
1522					}
1523				} else {
1524					kfree(hw_fib_pool);
1525					hw_fib_pool = NULL;
1526				}
1527				spin_lock_irqsave(&dev->fib_lock, flagv);
1528				entry = dev->fib_list.next;
1529				/*
1530				 * For each Context that is on the
1531				 * fibctxList, make a copy of the
1532				 * fib, and then set the event to wake up the
1533				 * thread that is waiting for it.
1534				 */
1535				hw_fib_p = hw_fib_pool;
1536				fib_p = fib_pool;
1537				while (entry != &dev->fib_list) {
1538					/*
1539					 * Extract the fibctx
1540					 */
1541					fibctx = list_entry(entry, struct aac_fib_context, next);
1542					/*
1543					 * Check if the queue is getting
1544					 * backlogged
1545					 */
1546					if (fibctx->count > 20)
1547					{
1548						/*
1549						 * It's *not* jiffies folks,
1550						 * but jiffies / HZ so do not
1551						 * panic ...
1552						 */
1553						time_last = fibctx->jiffies;
1554						/*
1555						 * Has it been > 2 minutes
1556						 * since the last read off
1557						 * the queue?
1558						 */
1559						if ((time_now - time_last) > aif_timeout) {
1560							entry = entry->next;
1561							aac_close_fib_context(dev, fibctx);
1562							continue;
1563						}
1564					}
1565					/*
1566					 * Warning: no sleep allowed while
1567					 * holding spinlock
1568					 */
1569					if (hw_fib_p < &hw_fib_pool[num]) {
1570						hw_newfib = *hw_fib_p;
1571						*(hw_fib_p++) = NULL;
1572						newfib = *fib_p;
1573						*(fib_p++) = NULL;
1574						/*
1575						 * Make the copy of the FIB
1576						 */
1577						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1578						memcpy(newfib, fib, sizeof(struct fib));
1579						newfib->hw_fib_va = hw_newfib;
1580						/*
1581						 * Put the FIB onto the
1582						 * fibctx's fibs
1583						 */
1584						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1585						fibctx->count++;
1586						/*
1587						 * Set the event to wake up the
1588						 * thread that is waiting.
1589						 */
1590						up(&fibctx->wait_sem);
1591					} else {
1592						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1593					}
1594					entry = entry->next;
1595				}
1596				/*
1597				 *	Set the status of this FIB
1598				 */
1599				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1600				aac_fib_adapter_complete(fib, sizeof(u32));
1601				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1602				/* Free up the remaining resources */
1603				hw_fib_p = hw_fib_pool;
1604				fib_p = fib_pool;
1605				while (hw_fib_p < &hw_fib_pool[num]) {
1606					kfree(*hw_fib_p);
1607					kfree(*fib_p);
1608					++fib_p;
1609					++hw_fib_p;
1610				}
1611				kfree(hw_fib_pool);
1612				kfree(fib_pool);
1613			}
1614			kfree(fib);
1615			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1616		}
1617		/*
1618		 *	There are no more AIF's
1619		 */
1620		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1621
1622		/*
1623		 *	Background activity
1624		 */
1625		if ((time_before(next_check_jiffies,next_jiffies))
1626		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1627			next_check_jiffies = next_jiffies;
1628			if (aac_check_health(dev) == 0) {
1629				difference = ((long)(unsigned)check_interval)
1630					   * HZ;
1631				next_check_jiffies = jiffies + difference;
1632			} else if (!dev->queues)
1633				break;
1634		}
1635		if (!time_before(next_check_jiffies,next_jiffies)
1636		 && ((difference = next_jiffies - jiffies) <= 0)) {
1637			struct timeval now;
1638			int ret;
1639
1640			/* Don't even try to talk to adapter if its sick */
1641			ret = aac_check_health(dev);
1642			if (!ret && !dev->queues)
1643				break;
1644			next_check_jiffies = jiffies
1645					   + ((long)(unsigned)check_interval)
1646					   * HZ;
1647			do_gettimeofday(&now);
1648
1649			/* Synchronize our watches */
1650			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1651			 && (now.tv_usec > (1000000 / HZ)))
1652				difference = (((1000000 - now.tv_usec) * HZ)
1653				  + 500000) / 1000000;
1654			else if (ret == 0) {
1655				struct fib *fibptr;
1656
1657				if ((fibptr = aac_fib_alloc(dev))) {
1658					u32 * info;
1659
1660					aac_fib_init(fibptr);
1661
1662					info = (u32 *) fib_data(fibptr);
1663					if (now.tv_usec > 500000)
1664						++now.tv_sec;
1665
1666					*info = cpu_to_le32(now.tv_sec);
1667
1668					(void)aac_fib_send(SendHostTime,
1669						fibptr,
1670						sizeof(*info),
1671						FsaNormal,
1672						1, 1,
1673						NULL,
1674						NULL);
1675					aac_fib_complete(fibptr);
1676					aac_fib_free(fibptr);
1677				}
1678				difference = (long)(unsigned)update_interval*HZ;
1679			} else {
1680				/* retry shortly */
1681				difference = 10 * HZ;
1682			}
1683			next_jiffies = jiffies + difference;
1684			if (time_before(next_check_jiffies,next_jiffies))
1685				difference = next_check_jiffies - jiffies;
1686		}
1687		if (difference <= 0)
1688			difference = 1;
1689		set_current_state(TASK_INTERRUPTIBLE);
1690		schedule_timeout(difference);
1691
1692		if (kthread_should_stop())
1693			break;
1694	}
1695	if (dev->queues)
1696		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1697	dev->aif_thread = 0;
1698	return 0;
1699}
1700