commsup.c revision e8b12f0fb8352237525961f14ec933e915848840
1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING.  If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 *  commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 *    communication.
30 *
31 */
32
33#include <linux/kernel.h>
34#include <linux/init.h>
35#include <linux/types.h>
36#include <linux/sched.h>
37#include <linux/pci.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/completion.h>
41#include <linux/blkdev.h>
42#include <linux/delay.h>
43#include <linux/kthread.h>
44#include <linux/interrupt.h>
45#include <linux/semaphore.h>
46#include <scsi/scsi.h>
47#include <scsi/scsi_host.h>
48#include <scsi/scsi_device.h>
49#include <scsi/scsi_cmnd.h>
50
51#include "aacraid.h"
52
53/**
54 *	fib_map_alloc		-	allocate the fib objects
55 *	@dev: Adapter to allocate for
56 *
57 *	Allocate and map the shared PCI space for the FIB blocks used to
58 *	talk to the Adaptec firmware.
59 */
60
61static int fib_map_alloc(struct aac_dev *dev)
62{
63	dprintk((KERN_INFO
64	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70		&dev->hw_fib_pa);
71	if (dev->hw_fib_va == NULL)
72		return -ENOMEM;
73	return 0;
74}
75
76/**
77 *	aac_fib_map_free		-	free the fib objects
78 *	@dev: Adapter to free
79 *
80 *	Free the PCI mappings and the memory allocated for FIB blocks
81 *	on this adapter.
82 */
83
84void aac_fib_map_free(struct aac_dev *dev)
85{
86	pci_free_consistent(dev->pdev,
87	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88	  dev->hw_fib_va, dev->hw_fib_pa);
89	dev->hw_fib_va = NULL;
90	dev->hw_fib_pa = 0;
91}
92
93/**
94 *	aac_fib_setup	-	setup the fibs
95 *	@dev: Adapter to set up
96 *
97 *	Allocate the PCI space for the fibs, map it and then initialise the
98 *	fib area, the unmapped fib data and also the free list
99 */
100
101int aac_fib_setup(struct aac_dev * dev)
102{
103	struct fib *fibptr;
104	struct hw_fib *hw_fib;
105	dma_addr_t hw_fib_pa;
106	int i;
107
108	while (((i = fib_map_alloc(dev)) == -ENOMEM)
109	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112	}
113	if (i<0)
114		return -ENOMEM;
115
116	/* 32 byte alignment for PMC */
117	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119		(hw_fib_pa - dev->hw_fib_pa));
120	dev->hw_fib_pa = hw_fib_pa;
121	memset(dev->hw_fib_va, 0,
122		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124
125	/* add Xport header */
126	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127		sizeof(struct aac_fib_xporthdr));
128	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129
130	hw_fib = dev->hw_fib_va;
131	hw_fib_pa = dev->hw_fib_pa;
132	/*
133	 *	Initialise the fibs
134	 */
135	for (i = 0, fibptr = &dev->fibs[i];
136		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137		i++, fibptr++)
138	{
139		fibptr->dev = dev;
140		fibptr->hw_fib_va = hw_fib;
141		fibptr->data = (void *) fibptr->hw_fib_va->data;
142		fibptr->next = fibptr+1;	/* Forward chain the fibs */
143		sema_init(&fibptr->event_wait, 0);
144		spin_lock_init(&fibptr->event_lock);
145		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
146		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
147		fibptr->hw_fib_pa = hw_fib_pa;
148		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
149			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
150		hw_fib_pa = hw_fib_pa +
151			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
152	}
153	/*
154	 *	Add the fib chain to the free list
155	 */
156	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
157	/*
158	 *	Enable this to debug out of queue space
159	 */
160	dev->free_fib = &dev->fibs[0];
161	return 0;
162}
163
164/**
165 *	aac_fib_alloc	-	allocate a fib
166 *	@dev: Adapter to allocate the fib for
167 *
168 *	Allocate a fib from the adapter fib pool. If the pool is empty we
169 *	return NULL.
170 */
171
172struct fib *aac_fib_alloc(struct aac_dev *dev)
173{
174	struct fib * fibptr;
175	unsigned long flags;
176	spin_lock_irqsave(&dev->fib_lock, flags);
177	fibptr = dev->free_fib;
178	if(!fibptr){
179		spin_unlock_irqrestore(&dev->fib_lock, flags);
180		return fibptr;
181	}
182	dev->free_fib = fibptr->next;
183	spin_unlock_irqrestore(&dev->fib_lock, flags);
184	/*
185	 *	Set the proper node type code and node byte size
186	 */
187	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
188	fibptr->size = sizeof(struct fib);
189	/*
190	 *	Null out fields that depend on being zero at the start of
191	 *	each I/O
192	 */
193	fibptr->hw_fib_va->header.XferState = 0;
194	fibptr->flags = 0;
195	fibptr->callback = NULL;
196	fibptr->callback_data = NULL;
197
198	return fibptr;
199}
200
201/**
202 *	aac_fib_free	-	free a fib
203 *	@fibptr: fib to free up
204 *
205 *	Frees up a fib and places it on the appropriate queue
206 */
207
208void aac_fib_free(struct fib *fibptr)
209{
210	unsigned long flags, flagsv;
211
212	spin_lock_irqsave(&fibptr->event_lock, flagsv);
213	if (fibptr->done == 2) {
214		spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
215		return;
216	}
217	spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
218
219	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
220	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
221		aac_config.fib_timeouts++;
222	if (fibptr->hw_fib_va->header.XferState != 0) {
223		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
224			 (void*)fibptr,
225			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
226	}
227	fibptr->next = fibptr->dev->free_fib;
228	fibptr->dev->free_fib = fibptr;
229	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
230}
231
232/**
233 *	aac_fib_init	-	initialise a fib
234 *	@fibptr: The fib to initialize
235 *
236 *	Set up the generic fib fields ready for use
237 */
238
239void aac_fib_init(struct fib *fibptr)
240{
241	struct hw_fib *hw_fib = fibptr->hw_fib_va;
242
243	hw_fib->header.StructType = FIB_MAGIC;
244	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
245	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
246	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
247	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
248	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
249}
250
251/**
252 *	fib_deallocate		-	deallocate a fib
253 *	@fibptr: fib to deallocate
254 *
255 *	Will deallocate and return to the free pool the FIB pointed to by the
256 *	caller.
257 */
258
259static void fib_dealloc(struct fib * fibptr)
260{
261	struct hw_fib *hw_fib = fibptr->hw_fib_va;
262	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
263	hw_fib->header.XferState = 0;
264}
265
266/*
267 *	Commuication primitives define and support the queuing method we use to
268 *	support host to adapter commuication. All queue accesses happen through
269 *	these routines and are the only routines which have a knowledge of the
270 *	 how these queues are implemented.
271 */
272
273/**
274 *	aac_get_entry		-	get a queue entry
275 *	@dev: Adapter
276 *	@qid: Queue Number
277 *	@entry: Entry return
278 *	@index: Index return
279 *	@nonotify: notification control
280 *
281 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
282 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
283 *	returned.
284 */
285
286static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
287{
288	struct aac_queue * q;
289	unsigned long idx;
290
291	/*
292	 *	All of the queues wrap when they reach the end, so we check
293	 *	to see if they have reached the end and if they have we just
294	 *	set the index back to zero. This is a wrap. You could or off
295	 *	the high bits in all updates but this is a bit faster I think.
296	 */
297
298	q = &dev->queues->queue[qid];
299
300	idx = *index = le32_to_cpu(*(q->headers.producer));
301	/* Interrupt Moderation, only interrupt for first two entries */
302	if (idx != le32_to_cpu(*(q->headers.consumer))) {
303		if (--idx == 0) {
304			if (qid == AdapNormCmdQueue)
305				idx = ADAP_NORM_CMD_ENTRIES;
306			else
307				idx = ADAP_NORM_RESP_ENTRIES;
308		}
309		if (idx != le32_to_cpu(*(q->headers.consumer)))
310			*nonotify = 1;
311	}
312
313	if (qid == AdapNormCmdQueue) {
314		if (*index >= ADAP_NORM_CMD_ENTRIES)
315			*index = 0; /* Wrap to front of the Producer Queue. */
316	} else {
317		if (*index >= ADAP_NORM_RESP_ENTRIES)
318			*index = 0; /* Wrap to front of the Producer Queue. */
319	}
320
321	/* Queue is full */
322	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
323		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
324				qid, q->numpending);
325		return 0;
326	} else {
327		*entry = q->base + *index;
328		return 1;
329	}
330}
331
332/**
333 *	aac_queue_get		-	get the next free QE
334 *	@dev: Adapter
335 *	@index: Returned index
336 *	@priority: Priority of fib
337 *	@fib: Fib to associate with the queue entry
338 *	@wait: Wait if queue full
339 *	@fibptr: Driver fib object to go with fib
340 *	@nonotify: Don't notify the adapter
341 *
342 *	Gets the next free QE off the requested priorty adapter command
343 *	queue and associates the Fib with the QE. The QE represented by
344 *	index is ready to insert on the queue when this routine returns
345 *	success.
346 */
347
348int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
349{
350	struct aac_entry * entry = NULL;
351	int map = 0;
352
353	if (qid == AdapNormCmdQueue) {
354		/*  if no entries wait for some if caller wants to */
355		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
356			printk(KERN_ERR "GetEntries failed\n");
357		}
358		/*
359		 *	Setup queue entry with a command, status and fib mapped
360		 */
361		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
362		map = 1;
363	} else {
364		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
365			/* if no entries wait for some if caller wants to */
366		}
367		/*
368		 *	Setup queue entry with command, status and fib mapped
369		 */
370		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
371		entry->addr = hw_fib->header.SenderFibAddress;
372			/* Restore adapters pointer to the FIB */
373		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
374		map = 0;
375	}
376	/*
377	 *	If MapFib is true than we need to map the Fib and put pointers
378	 *	in the queue entry.
379	 */
380	if (map)
381		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
382	return 0;
383}
384
385/*
386 *	Define the highest level of host to adapter communication routines.
387 *	These routines will support host to adapter FS commuication. These
388 *	routines have no knowledge of the commuication method used. This level
389 *	sends and receives FIBs. This level has no knowledge of how these FIBs
390 *	get passed back and forth.
391 */
392
393/**
394 *	aac_fib_send	-	send a fib to the adapter
395 *	@command: Command to send
396 *	@fibptr: The fib
397 *	@size: Size of fib data area
398 *	@priority: Priority of Fib
399 *	@wait: Async/sync select
400 *	@reply: True if a reply is wanted
401 *	@callback: Called with reply
402 *	@callback_data: Passed to callback
403 *
404 *	Sends the requested FIB to the adapter and optionally will wait for a
405 *	response FIB. If the caller does not wish to wait for a response than
406 *	an event to wait on must be supplied. This event will be set when a
407 *	response FIB is received from the adapter.
408 */
409
410int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
411		int priority, int wait, int reply, fib_callback callback,
412		void *callback_data)
413{
414	struct aac_dev * dev = fibptr->dev;
415	struct hw_fib * hw_fib = fibptr->hw_fib_va;
416	unsigned long flags = 0;
417	unsigned long qflags;
418	unsigned long mflags = 0;
419
420
421	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
422		return -EBUSY;
423	/*
424	 *	There are 5 cases with the wait and reponse requested flags.
425	 *	The only invalid cases are if the caller requests to wait and
426	 *	does not request a response and if the caller does not want a
427	 *	response and the Fib is not allocated from pool. If a response
428	 *	is not requesed the Fib will just be deallocaed by the DPC
429	 *	routine when the response comes back from the adapter. No
430	 *	further processing will be done besides deleting the Fib. We
431	 *	will have a debug mode where the adapter can notify the host
432	 *	it had a problem and the host can log that fact.
433	 */
434	fibptr->flags = 0;
435	if (wait && !reply) {
436		return -EINVAL;
437	} else if (!wait && reply) {
438		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
439		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
440	} else if (!wait && !reply) {
441		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
442		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
443	} else if (wait && reply) {
444		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
445		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
446	}
447	/*
448	 *	Map the fib into 32bits by using the fib number
449	 */
450
451	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
452	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
453	/*
454	 *	Set FIB state to indicate where it came from and if we want a
455	 *	response from the adapter. Also load the command from the
456	 *	caller.
457	 *
458	 *	Map the hw fib pointer as a 32bit value
459	 */
460	hw_fib->header.Command = cpu_to_le16(command);
461	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
462	fibptr->hw_fib_va->header.Flags = 0;	/* 0 the flags field - internal only*/
463	/*
464	 *	Set the size of the Fib we want to send to the adapter
465	 */
466	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
468		return -EMSGSIZE;
469	}
470	/*
471	 *	Get a queue entry connect the FIB to it and send an notify
472	 *	the adapter a command is ready.
473	 */
474	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
475
476	/*
477	 *	Fill in the Callback and CallbackContext if we are not
478	 *	going to wait.
479	 */
480	if (!wait) {
481		fibptr->callback = callback;
482		fibptr->callback_data = callback_data;
483		fibptr->flags = FIB_CONTEXT_FLAG;
484	}
485
486	fibptr->done = 0;
487
488	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
489
490	dprintk((KERN_DEBUG "Fib contents:.\n"));
491	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
492	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
493	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
494	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
495	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
496	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
497
498	if (!dev->queues)
499		return -EBUSY;
500
501	if (wait) {
502
503		spin_lock_irqsave(&dev->manage_lock, mflags);
504		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
505			printk(KERN_INFO "No management Fibs Available:%d\n",
506						dev->management_fib_count);
507			spin_unlock_irqrestore(&dev->manage_lock, mflags);
508			return -EBUSY;
509		}
510		dev->management_fib_count++;
511		spin_unlock_irqrestore(&dev->manage_lock, mflags);
512		spin_lock_irqsave(&fibptr->event_lock, flags);
513	}
514
515	if (aac_adapter_deliver(fibptr) != 0) {
516		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
517		if (wait) {
518			spin_unlock_irqrestore(&fibptr->event_lock, flags);
519			spin_lock_irqsave(&dev->manage_lock, mflags);
520			dev->management_fib_count--;
521			spin_unlock_irqrestore(&dev->manage_lock, mflags);
522		}
523		return -EBUSY;
524	}
525
526
527	/*
528	 *	If the caller wanted us to wait for response wait now.
529	 */
530
531	if (wait) {
532		spin_unlock_irqrestore(&fibptr->event_lock, flags);
533		/* Only set for first known interruptable command */
534		if (wait < 0) {
535			/*
536			 * *VERY* Dangerous to time out a command, the
537			 * assumption is made that we have no hope of
538			 * functioning because an interrupt routing or other
539			 * hardware failure has occurred.
540			 */
541			unsigned long count = 36000000L; /* 3 minutes */
542			while (down_trylock(&fibptr->event_wait)) {
543				int blink;
544				if (--count == 0) {
545					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
546					spin_lock_irqsave(q->lock, qflags);
547					q->numpending--;
548					spin_unlock_irqrestore(q->lock, qflags);
549					if (wait == -1) {
550	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
551						  "Usually a result of a PCI interrupt routing problem;\n"
552						  "update mother board BIOS or consider utilizing one of\n"
553						  "the SAFE mode kernel options (acpi, apic etc)\n");
554					}
555					return -ETIMEDOUT;
556				}
557				if ((blink = aac_adapter_check_health(dev)) > 0) {
558					if (wait == -1) {
559	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
560						  "Usually a result of a serious unrecoverable hardware problem\n",
561						  blink);
562					}
563					return -EFAULT;
564				}
565				udelay(5);
566			}
567		} else if (down_interruptible(&fibptr->event_wait)) {
568			/* Do nothing ... satisfy
569			 * down_interruptible must_check */
570		}
571
572		spin_lock_irqsave(&fibptr->event_lock, flags);
573		if (fibptr->done == 0) {
574			fibptr->done = 2; /* Tell interrupt we aborted */
575			spin_unlock_irqrestore(&fibptr->event_lock, flags);
576			return -ERESTARTSYS;
577		}
578		spin_unlock_irqrestore(&fibptr->event_lock, flags);
579		BUG_ON(fibptr->done == 0);
580
581		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
582			return -ETIMEDOUT;
583		return 0;
584	}
585	/*
586	 *	If the user does not want a response than return success otherwise
587	 *	return pending
588	 */
589	if (reply)
590		return -EINPROGRESS;
591	else
592		return 0;
593}
594
595/**
596 *	aac_consumer_get	-	get the top of the queue
597 *	@dev: Adapter
598 *	@q: Queue
599 *	@entry: Return entry
600 *
601 *	Will return a pointer to the entry on the top of the queue requested that
602 *	we are a consumer of, and return the address of the queue entry. It does
603 *	not change the state of the queue.
604 */
605
606int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
607{
608	u32 index;
609	int status;
610	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
611		status = 0;
612	} else {
613		/*
614		 *	The consumer index must be wrapped if we have reached
615		 *	the end of the queue, else we just use the entry
616		 *	pointed to by the header index
617		 */
618		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
619			index = 0;
620		else
621			index = le32_to_cpu(*q->headers.consumer);
622		*entry = q->base + index;
623		status = 1;
624	}
625	return(status);
626}
627
628/**
629 *	aac_consumer_free	-	free consumer entry
630 *	@dev: Adapter
631 *	@q: Queue
632 *	@qid: Queue ident
633 *
634 *	Frees up the current top of the queue we are a consumer of. If the
635 *	queue was full notify the producer that the queue is no longer full.
636 */
637
638void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
639{
640	int wasfull = 0;
641	u32 notify;
642
643	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
644		wasfull = 1;
645
646	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
647		*q->headers.consumer = cpu_to_le32(1);
648	else
649		le32_add_cpu(q->headers.consumer, 1);
650
651	if (wasfull) {
652		switch (qid) {
653
654		case HostNormCmdQueue:
655			notify = HostNormCmdNotFull;
656			break;
657		case HostNormRespQueue:
658			notify = HostNormRespNotFull;
659			break;
660		default:
661			BUG();
662			return;
663		}
664		aac_adapter_notify(dev, notify);
665	}
666}
667
668/**
669 *	aac_fib_adapter_complete	-	complete adapter issued fib
670 *	@fibptr: fib to complete
671 *	@size: size of fib
672 *
673 *	Will do all necessary work to complete a FIB that was sent from
674 *	the adapter.
675 */
676
677int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
678{
679	struct hw_fib * hw_fib = fibptr->hw_fib_va;
680	struct aac_dev * dev = fibptr->dev;
681	struct aac_queue * q;
682	unsigned long nointr = 0;
683	unsigned long qflags;
684
685	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
686		kfree(hw_fib);
687		return 0;
688	}
689
690	if (hw_fib->header.XferState == 0) {
691		if (dev->comm_interface == AAC_COMM_MESSAGE)
692			kfree(hw_fib);
693		return 0;
694	}
695	/*
696	 *	If we plan to do anything check the structure type first.
697	 */
698	if (hw_fib->header.StructType != FIB_MAGIC) {
699		if (dev->comm_interface == AAC_COMM_MESSAGE)
700			kfree(hw_fib);
701		return -EINVAL;
702	}
703	/*
704	 *	This block handles the case where the adapter had sent us a
705	 *	command and we have finished processing the command. We
706	 *	call completeFib when we are done processing the command
707	 *	and want to send a response back to the adapter. This will
708	 *	send the completed cdb to the adapter.
709	 */
710	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
711		if (dev->comm_interface == AAC_COMM_MESSAGE) {
712			kfree (hw_fib);
713		} else {
714			u32 index;
715			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
716			if (size) {
717				size += sizeof(struct aac_fibhdr);
718				if (size > le16_to_cpu(hw_fib->header.SenderSize))
719					return -EMSGSIZE;
720				hw_fib->header.Size = cpu_to_le16(size);
721			}
722			q = &dev->queues->queue[AdapNormRespQueue];
723			spin_lock_irqsave(q->lock, qflags);
724			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
725			*(q->headers.producer) = cpu_to_le32(index + 1);
726			spin_unlock_irqrestore(q->lock, qflags);
727			if (!(nointr & (int)aac_config.irq_mod))
728				aac_adapter_notify(dev, AdapNormRespQueue);
729		}
730	} else {
731		printk(KERN_WARNING "aac_fib_adapter_complete: "
732			"Unknown xferstate detected.\n");
733		BUG();
734	}
735	return 0;
736}
737
738/**
739 *	aac_fib_complete	-	fib completion handler
740 *	@fib: FIB to complete
741 *
742 *	Will do all necessary work to complete a FIB.
743 */
744
745int aac_fib_complete(struct fib *fibptr)
746{
747	unsigned long flags;
748	struct hw_fib * hw_fib = fibptr->hw_fib_va;
749
750	/*
751	 *	Check for a fib which has already been completed
752	 */
753
754	if (hw_fib->header.XferState == 0)
755		return 0;
756	/*
757	 *	If we plan to do anything check the structure type first.
758	 */
759
760	if (hw_fib->header.StructType != FIB_MAGIC)
761		return -EINVAL;
762	/*
763	 *	This block completes a cdb which orginated on the host and we
764	 *	just need to deallocate the cdb or reinit it. At this point the
765	 *	command is complete that we had sent to the adapter and this
766	 *	cdb could be reused.
767	 */
768	spin_lock_irqsave(&fibptr->event_lock, flags);
769	if (fibptr->done == 2) {
770		spin_unlock_irqrestore(&fibptr->event_lock, flags);
771		return 0;
772	}
773	spin_unlock_irqrestore(&fibptr->event_lock, flags);
774
775	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
776		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
777	{
778		fib_dealloc(fibptr);
779	}
780	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
781	{
782		/*
783		 *	This handles the case when the host has aborted the I/O
784		 *	to the adapter because the adapter is not responding
785		 */
786		fib_dealloc(fibptr);
787	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
788		fib_dealloc(fibptr);
789	} else {
790		BUG();
791	}
792	return 0;
793}
794
795/**
796 *	aac_printf	-	handle printf from firmware
797 *	@dev: Adapter
798 *	@val: Message info
799 *
800 *	Print a message passed to us by the controller firmware on the
801 *	Adaptec board
802 */
803
804void aac_printf(struct aac_dev *dev, u32 val)
805{
806	char *cp = dev->printfbuf;
807	if (dev->printf_enabled)
808	{
809		int length = val & 0xffff;
810		int level = (val >> 16) & 0xffff;
811
812		/*
813		 *	The size of the printfbuf is set in port.c
814		 *	There is no variable or define for it
815		 */
816		if (length > 255)
817			length = 255;
818		if (cp[length] != 0)
819			cp[length] = 0;
820		if (level == LOG_AAC_HIGH_ERROR)
821			printk(KERN_WARNING "%s:%s", dev->name, cp);
822		else
823			printk(KERN_INFO "%s:%s", dev->name, cp);
824	}
825	memset(cp, 0, 256);
826}
827
828
829/**
830 *	aac_handle_aif		-	Handle a message from the firmware
831 *	@dev: Which adapter this fib is from
832 *	@fibptr: Pointer to fibptr from adapter
833 *
834 *	This routine handles a driver notify fib from the adapter and
835 *	dispatches it to the appropriate routine for handling.
836 */
837
838#define AIF_SNIFF_TIMEOUT	(30*HZ)
839static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
840{
841	struct hw_fib * hw_fib = fibptr->hw_fib_va;
842	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
843	u32 channel, id, lun, container;
844	struct scsi_device *device;
845	enum {
846		NOTHING,
847		DELETE,
848		ADD,
849		CHANGE
850	} device_config_needed = NOTHING;
851
852	/* Sniff for container changes */
853
854	if (!dev || !dev->fsa_dev)
855		return;
856	container = channel = id = lun = (u32)-1;
857
858	/*
859	 *	We have set this up to try and minimize the number of
860	 * re-configures that take place. As a result of this when
861	 * certain AIF's come in we will set a flag waiting for another
862	 * type of AIF before setting the re-config flag.
863	 */
864	switch (le32_to_cpu(aifcmd->command)) {
865	case AifCmdDriverNotify:
866		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
867		/*
868		 *	Morph or Expand complete
869		 */
870		case AifDenMorphComplete:
871		case AifDenVolumeExtendComplete:
872			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
873			if (container >= dev->maximum_num_containers)
874				break;
875
876			/*
877			 *	Find the scsi_device associated with the SCSI
878			 * address. Make sure we have the right array, and if
879			 * so set the flag to initiate a new re-config once we
880			 * see an AifEnConfigChange AIF come through.
881			 */
882
883			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
884				device = scsi_device_lookup(dev->scsi_host_ptr,
885					CONTAINER_TO_CHANNEL(container),
886					CONTAINER_TO_ID(container),
887					CONTAINER_TO_LUN(container));
888				if (device) {
889					dev->fsa_dev[container].config_needed = CHANGE;
890					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
891					dev->fsa_dev[container].config_waiting_stamp = jiffies;
892					scsi_device_put(device);
893				}
894			}
895		}
896
897		/*
898		 *	If we are waiting on something and this happens to be
899		 * that thing then set the re-configure flag.
900		 */
901		if (container != (u32)-1) {
902			if (container >= dev->maximum_num_containers)
903				break;
904			if ((dev->fsa_dev[container].config_waiting_on ==
905			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
906			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
907				dev->fsa_dev[container].config_waiting_on = 0;
908		} else for (container = 0;
909		    container < dev->maximum_num_containers; ++container) {
910			if ((dev->fsa_dev[container].config_waiting_on ==
911			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
912			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
913				dev->fsa_dev[container].config_waiting_on = 0;
914		}
915		break;
916
917	case AifCmdEventNotify:
918		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
919		case AifEnBatteryEvent:
920			dev->cache_protected =
921				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
922			break;
923		/*
924		 *	Add an Array.
925		 */
926		case AifEnAddContainer:
927			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
928			if (container >= dev->maximum_num_containers)
929				break;
930			dev->fsa_dev[container].config_needed = ADD;
931			dev->fsa_dev[container].config_waiting_on =
932				AifEnConfigChange;
933			dev->fsa_dev[container].config_waiting_stamp = jiffies;
934			break;
935
936		/*
937		 *	Delete an Array.
938		 */
939		case AifEnDeleteContainer:
940			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
941			if (container >= dev->maximum_num_containers)
942				break;
943			dev->fsa_dev[container].config_needed = DELETE;
944			dev->fsa_dev[container].config_waiting_on =
945				AifEnConfigChange;
946			dev->fsa_dev[container].config_waiting_stamp = jiffies;
947			break;
948
949		/*
950		 *	Container change detected. If we currently are not
951		 * waiting on something else, setup to wait on a Config Change.
952		 */
953		case AifEnContainerChange:
954			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
955			if (container >= dev->maximum_num_containers)
956				break;
957			if (dev->fsa_dev[container].config_waiting_on &&
958			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
959				break;
960			dev->fsa_dev[container].config_needed = CHANGE;
961			dev->fsa_dev[container].config_waiting_on =
962				AifEnConfigChange;
963			dev->fsa_dev[container].config_waiting_stamp = jiffies;
964			break;
965
966		case AifEnConfigChange:
967			break;
968
969		case AifEnAddJBOD:
970		case AifEnDeleteJBOD:
971			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
972			if ((container >> 28)) {
973				container = (u32)-1;
974				break;
975			}
976			channel = (container >> 24) & 0xF;
977			if (channel >= dev->maximum_num_channels) {
978				container = (u32)-1;
979				break;
980			}
981			id = container & 0xFFFF;
982			if (id >= dev->maximum_num_physicals) {
983				container = (u32)-1;
984				break;
985			}
986			lun = (container >> 16) & 0xFF;
987			container = (u32)-1;
988			channel = aac_phys_to_logical(channel);
989			device_config_needed =
990			  (((__le32 *)aifcmd->data)[0] ==
991			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
992			if (device_config_needed == ADD) {
993				device = scsi_device_lookup(dev->scsi_host_ptr,
994					channel,
995					id,
996					lun);
997				if (device) {
998					scsi_remove_device(device);
999					scsi_device_put(device);
1000				}
1001			}
1002			break;
1003
1004		case AifEnEnclosureManagement:
1005			/*
1006			 * If in JBOD mode, automatic exposure of new
1007			 * physical target to be suppressed until configured.
1008			 */
1009			if (dev->jbod)
1010				break;
1011			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1012			case EM_DRIVE_INSERTION:
1013			case EM_DRIVE_REMOVAL:
1014				container = le32_to_cpu(
1015					((__le32 *)aifcmd->data)[2]);
1016				if ((container >> 28)) {
1017					container = (u32)-1;
1018					break;
1019				}
1020				channel = (container >> 24) & 0xF;
1021				if (channel >= dev->maximum_num_channels) {
1022					container = (u32)-1;
1023					break;
1024				}
1025				id = container & 0xFFFF;
1026				lun = (container >> 16) & 0xFF;
1027				container = (u32)-1;
1028				if (id >= dev->maximum_num_physicals) {
1029					/* legacy dev_t ? */
1030					if ((0x2000 <= id) || lun || channel ||
1031					  ((channel = (id >> 7) & 0x3F) >=
1032					  dev->maximum_num_channels))
1033						break;
1034					lun = (id >> 4) & 7;
1035					id &= 0xF;
1036				}
1037				channel = aac_phys_to_logical(channel);
1038				device_config_needed =
1039				  (((__le32 *)aifcmd->data)[3]
1040				    == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1041				  ADD : DELETE;
1042				break;
1043			}
1044			break;
1045		}
1046
1047		/*
1048		 *	If we are waiting on something and this happens to be
1049		 * that thing then set the re-configure flag.
1050		 */
1051		if (container != (u32)-1) {
1052			if (container >= dev->maximum_num_containers)
1053				break;
1054			if ((dev->fsa_dev[container].config_waiting_on ==
1055			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1056			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1057				dev->fsa_dev[container].config_waiting_on = 0;
1058		} else for (container = 0;
1059		    container < dev->maximum_num_containers; ++container) {
1060			if ((dev->fsa_dev[container].config_waiting_on ==
1061			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1062			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1063				dev->fsa_dev[container].config_waiting_on = 0;
1064		}
1065		break;
1066
1067	case AifCmdJobProgress:
1068		/*
1069		 *	These are job progress AIF's. When a Clear is being
1070		 * done on a container it is initially created then hidden from
1071		 * the OS. When the clear completes we don't get a config
1072		 * change so we monitor the job status complete on a clear then
1073		 * wait for a container change.
1074		 */
1075
1076		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1077		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1078		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1079			for (container = 0;
1080			    container < dev->maximum_num_containers;
1081			    ++container) {
1082				/*
1083				 * Stomp on all config sequencing for all
1084				 * containers?
1085				 */
1086				dev->fsa_dev[container].config_waiting_on =
1087					AifEnContainerChange;
1088				dev->fsa_dev[container].config_needed = ADD;
1089				dev->fsa_dev[container].config_waiting_stamp =
1090					jiffies;
1091			}
1092		}
1093		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1094		    ((__le32 *)aifcmd->data)[6] == 0 &&
1095		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1096			for (container = 0;
1097			    container < dev->maximum_num_containers;
1098			    ++container) {
1099				/*
1100				 * Stomp on all config sequencing for all
1101				 * containers?
1102				 */
1103				dev->fsa_dev[container].config_waiting_on =
1104					AifEnContainerChange;
1105				dev->fsa_dev[container].config_needed = DELETE;
1106				dev->fsa_dev[container].config_waiting_stamp =
1107					jiffies;
1108			}
1109		}
1110		break;
1111	}
1112
1113	container = 0;
1114retry_next:
1115	if (device_config_needed == NOTHING)
1116	for (; container < dev->maximum_num_containers; ++container) {
1117		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1118			(dev->fsa_dev[container].config_needed != NOTHING) &&
1119			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1120			device_config_needed =
1121				dev->fsa_dev[container].config_needed;
1122			dev->fsa_dev[container].config_needed = NOTHING;
1123			channel = CONTAINER_TO_CHANNEL(container);
1124			id = CONTAINER_TO_ID(container);
1125			lun = CONTAINER_TO_LUN(container);
1126			break;
1127		}
1128	}
1129	if (device_config_needed == NOTHING)
1130		return;
1131
1132	/*
1133	 *	If we decided that a re-configuration needs to be done,
1134	 * schedule it here on the way out the door, please close the door
1135	 * behind you.
1136	 */
1137
1138	/*
1139	 *	Find the scsi_device associated with the SCSI address,
1140	 * and mark it as changed, invalidating the cache. This deals
1141	 * with changes to existing device IDs.
1142	 */
1143
1144	if (!dev || !dev->scsi_host_ptr)
1145		return;
1146	/*
1147	 * force reload of disk info via aac_probe_container
1148	 */
1149	if ((channel == CONTAINER_CHANNEL) &&
1150	  (device_config_needed != NOTHING)) {
1151		if (dev->fsa_dev[container].valid == 1)
1152			dev->fsa_dev[container].valid = 2;
1153		aac_probe_container(dev, container);
1154	}
1155	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1156	if (device) {
1157		switch (device_config_needed) {
1158		case DELETE:
1159#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1160			scsi_remove_device(device);
1161#else
1162			if (scsi_device_online(device)) {
1163				scsi_device_set_state(device, SDEV_OFFLINE);
1164				sdev_printk(KERN_INFO, device,
1165					"Device offlined - %s\n",
1166					(channel == CONTAINER_CHANNEL) ?
1167						"array deleted" :
1168						"enclosure services event");
1169			}
1170#endif
1171			break;
1172		case ADD:
1173			if (!scsi_device_online(device)) {
1174				sdev_printk(KERN_INFO, device,
1175					"Device online - %s\n",
1176					(channel == CONTAINER_CHANNEL) ?
1177						"array created" :
1178						"enclosure services event");
1179				scsi_device_set_state(device, SDEV_RUNNING);
1180			}
1181			/* FALLTHRU */
1182		case CHANGE:
1183			if ((channel == CONTAINER_CHANNEL)
1184			 && (!dev->fsa_dev[container].valid)) {
1185#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1186				scsi_remove_device(device);
1187#else
1188				if (!scsi_device_online(device))
1189					break;
1190				scsi_device_set_state(device, SDEV_OFFLINE);
1191				sdev_printk(KERN_INFO, device,
1192					"Device offlined - %s\n",
1193					"array failed");
1194#endif
1195				break;
1196			}
1197			scsi_rescan_device(&device->sdev_gendev);
1198
1199		default:
1200			break;
1201		}
1202		scsi_device_put(device);
1203		device_config_needed = NOTHING;
1204	}
1205	if (device_config_needed == ADD)
1206		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1207	if (channel == CONTAINER_CHANNEL) {
1208		container++;
1209		device_config_needed = NOTHING;
1210		goto retry_next;
1211	}
1212}
1213
1214static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1215{
1216	int index, quirks;
1217	int retval;
1218	struct Scsi_Host *host;
1219	struct scsi_device *dev;
1220	struct scsi_cmnd *command;
1221	struct scsi_cmnd *command_list;
1222	int jafo = 0;
1223
1224	/*
1225	 * Assumptions:
1226	 *	- host is locked, unless called by the aacraid thread.
1227	 *	  (a matter of convenience, due to legacy issues surrounding
1228	 *	  eh_host_adapter_reset).
1229	 *	- in_reset is asserted, so no new i/o is getting to the
1230	 *	  card.
1231	 *	- The card is dead, or will be very shortly ;-/ so no new
1232	 *	  commands are completing in the interrupt service.
1233	 */
1234	host = aac->scsi_host_ptr;
1235	scsi_block_requests(host);
1236	aac_adapter_disable_int(aac);
1237	if (aac->thread->pid != current->pid) {
1238		spin_unlock_irq(host->host_lock);
1239		kthread_stop(aac->thread);
1240		jafo = 1;
1241	}
1242
1243	/*
1244	 *	If a positive health, means in a known DEAD PANIC
1245	 * state and the adapter could be reset to `try again'.
1246	 */
1247	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1248
1249	if (retval)
1250		goto out;
1251
1252	/*
1253	 *	Loop through the fibs, close the synchronous FIBS
1254	 */
1255	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1256		struct fib *fib = &aac->fibs[index];
1257		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1258		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1259			unsigned long flagv;
1260			spin_lock_irqsave(&fib->event_lock, flagv);
1261			up(&fib->event_wait);
1262			spin_unlock_irqrestore(&fib->event_lock, flagv);
1263			schedule();
1264			retval = 0;
1265		}
1266	}
1267	/* Give some extra time for ioctls to complete. */
1268	if (retval == 0)
1269		ssleep(2);
1270	index = aac->cardtype;
1271
1272	/*
1273	 * Re-initialize the adapter, first free resources, then carefully
1274	 * apply the initialization sequence to come back again. Only risk
1275	 * is a change in Firmware dropping cache, it is assumed the caller
1276	 * will ensure that i/o is queisced and the card is flushed in that
1277	 * case.
1278	 */
1279	aac_fib_map_free(aac);
1280	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1281	aac->comm_addr = NULL;
1282	aac->comm_phys = 0;
1283	kfree(aac->queues);
1284	aac->queues = NULL;
1285	free_irq(aac->pdev->irq, aac);
1286	kfree(aac->fsa_dev);
1287	aac->fsa_dev = NULL;
1288	quirks = aac_get_driver_ident(index)->quirks;
1289	if (quirks & AAC_QUIRK_31BIT) {
1290		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1291		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1292			goto out;
1293	} else {
1294		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1295		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1296			goto out;
1297	}
1298	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1299		goto out;
1300	if (quirks & AAC_QUIRK_31BIT)
1301		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1302			goto out;
1303	if (jafo) {
1304		aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1305		if (IS_ERR(aac->thread)) {
1306			retval = PTR_ERR(aac->thread);
1307			goto out;
1308		}
1309	}
1310	(void)aac_get_adapter_info(aac);
1311	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1312		host->sg_tablesize = 34;
1313		host->max_sectors = (host->sg_tablesize * 8) + 112;
1314	}
1315	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1316		host->sg_tablesize = 17;
1317		host->max_sectors = (host->sg_tablesize * 8) + 112;
1318	}
1319	aac_get_config_status(aac, 1);
1320	aac_get_containers(aac);
1321	/*
1322	 * This is where the assumption that the Adapter is quiesced
1323	 * is important.
1324	 */
1325	command_list = NULL;
1326	__shost_for_each_device(dev, host) {
1327		unsigned long flags;
1328		spin_lock_irqsave(&dev->list_lock, flags);
1329		list_for_each_entry(command, &dev->cmd_list, list)
1330			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1331				command->SCp.buffer = (struct scatterlist *)command_list;
1332				command_list = command;
1333			}
1334		spin_unlock_irqrestore(&dev->list_lock, flags);
1335	}
1336	while ((command = command_list)) {
1337		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1338		command->SCp.buffer = NULL;
1339		command->result = DID_OK << 16
1340		  | COMMAND_COMPLETE << 8
1341		  | SAM_STAT_TASK_SET_FULL;
1342		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1343		command->scsi_done(command);
1344	}
1345	retval = 0;
1346
1347out:
1348	aac->in_reset = 0;
1349	scsi_unblock_requests(host);
1350	if (jafo) {
1351		spin_lock_irq(host->host_lock);
1352	}
1353	return retval;
1354}
1355
1356int aac_reset_adapter(struct aac_dev * aac, int forced)
1357{
1358	unsigned long flagv = 0;
1359	int retval;
1360	struct Scsi_Host * host;
1361
1362	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1363		return -EBUSY;
1364
1365	if (aac->in_reset) {
1366		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1367		return -EBUSY;
1368	}
1369	aac->in_reset = 1;
1370	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1371
1372	/*
1373	 * Wait for all commands to complete to this specific
1374	 * target (block maximum 60 seconds). Although not necessary,
1375	 * it does make us a good storage citizen.
1376	 */
1377	host = aac->scsi_host_ptr;
1378	scsi_block_requests(host);
1379	if (forced < 2) for (retval = 60; retval; --retval) {
1380		struct scsi_device * dev;
1381		struct scsi_cmnd * command;
1382		int active = 0;
1383
1384		__shost_for_each_device(dev, host) {
1385			spin_lock_irqsave(&dev->list_lock, flagv);
1386			list_for_each_entry(command, &dev->cmd_list, list) {
1387				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1388					active++;
1389					break;
1390				}
1391			}
1392			spin_unlock_irqrestore(&dev->list_lock, flagv);
1393			if (active)
1394				break;
1395
1396		}
1397		/*
1398		 * We can exit If all the commands are complete
1399		 */
1400		if (active == 0)
1401			break;
1402		ssleep(1);
1403	}
1404
1405	/* Quiesce build, flush cache, write through mode */
1406	if (forced < 2)
1407		aac_send_shutdown(aac);
1408	spin_lock_irqsave(host->host_lock, flagv);
1409	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1410	spin_unlock_irqrestore(host->host_lock, flagv);
1411
1412	if ((forced < 2) && (retval == -ENODEV)) {
1413		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1414		struct fib * fibctx = aac_fib_alloc(aac);
1415		if (fibctx) {
1416			struct aac_pause *cmd;
1417			int status;
1418
1419			aac_fib_init(fibctx);
1420
1421			cmd = (struct aac_pause *) fib_data(fibctx);
1422
1423			cmd->command = cpu_to_le32(VM_ContainerConfig);
1424			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1425			cmd->timeout = cpu_to_le32(1);
1426			cmd->min = cpu_to_le32(1);
1427			cmd->noRescan = cpu_to_le32(1);
1428			cmd->count = cpu_to_le32(0);
1429
1430			status = aac_fib_send(ContainerCommand,
1431			  fibctx,
1432			  sizeof(struct aac_pause),
1433			  FsaNormal,
1434			  -2 /* Timeout silently */, 1,
1435			  NULL, NULL);
1436
1437			if (status >= 0)
1438				aac_fib_complete(fibctx);
1439			/* FIB should be freed only after getting
1440			 * the response from the F/W */
1441			if (status != -ERESTARTSYS)
1442				aac_fib_free(fibctx);
1443		}
1444	}
1445
1446	return retval;
1447}
1448
1449int aac_check_health(struct aac_dev * aac)
1450{
1451	int BlinkLED;
1452	unsigned long time_now, flagv = 0;
1453	struct list_head * entry;
1454	struct Scsi_Host * host;
1455
1456	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1457	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1458		return 0;
1459
1460	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1461		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1462		return 0; /* OK */
1463	}
1464
1465	aac->in_reset = 1;
1466
1467	/* Fake up an AIF:
1468	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1469	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1470	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1471	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1472	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1473	 *	aac.aifcmd.data[3] = BlinkLED
1474	 */
1475
1476	time_now = jiffies/HZ;
1477	entry = aac->fib_list.next;
1478
1479	/*
1480	 * For each Context that is on the
1481	 * fibctxList, make a copy of the
1482	 * fib, and then set the event to wake up the
1483	 * thread that is waiting for it.
1484	 */
1485	while (entry != &aac->fib_list) {
1486		/*
1487		 * Extract the fibctx
1488		 */
1489		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1490		struct hw_fib * hw_fib;
1491		struct fib * fib;
1492		/*
1493		 * Check if the queue is getting
1494		 * backlogged
1495		 */
1496		if (fibctx->count > 20) {
1497			/*
1498			 * It's *not* jiffies folks,
1499			 * but jiffies / HZ, so do not
1500			 * panic ...
1501			 */
1502			u32 time_last = fibctx->jiffies;
1503			/*
1504			 * Has it been > 2 minutes
1505			 * since the last read off
1506			 * the queue?
1507			 */
1508			if ((time_now - time_last) > aif_timeout) {
1509				entry = entry->next;
1510				aac_close_fib_context(aac, fibctx);
1511				continue;
1512			}
1513		}
1514		/*
1515		 * Warning: no sleep allowed while
1516		 * holding spinlock
1517		 */
1518		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1519		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1520		if (fib && hw_fib) {
1521			struct aac_aifcmd * aif;
1522
1523			fib->hw_fib_va = hw_fib;
1524			fib->dev = aac;
1525			aac_fib_init(fib);
1526			fib->type = FSAFS_NTC_FIB_CONTEXT;
1527			fib->size = sizeof (struct fib);
1528			fib->data = hw_fib->data;
1529			aif = (struct aac_aifcmd *)hw_fib->data;
1530			aif->command = cpu_to_le32(AifCmdEventNotify);
1531			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1532			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1533			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1534			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1535			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1536
1537			/*
1538			 * Put the FIB onto the
1539			 * fibctx's fibs
1540			 */
1541			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1542			fibctx->count++;
1543			/*
1544			 * Set the event to wake up the
1545			 * thread that will waiting.
1546			 */
1547			up(&fibctx->wait_sem);
1548		} else {
1549			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1550			kfree(fib);
1551			kfree(hw_fib);
1552		}
1553		entry = entry->next;
1554	}
1555
1556	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1557
1558	if (BlinkLED < 0) {
1559		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1560		goto out;
1561	}
1562
1563	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1564
1565	if (!aac_check_reset || ((aac_check_reset == 1) &&
1566		(aac->supplement_adapter_info.SupportedOptions2 &
1567			AAC_OPTION_IGNORE_RESET)))
1568		goto out;
1569	host = aac->scsi_host_ptr;
1570	if (aac->thread->pid != current->pid)
1571		spin_lock_irqsave(host->host_lock, flagv);
1572	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1573	if (aac->thread->pid != current->pid)
1574		spin_unlock_irqrestore(host->host_lock, flagv);
1575	return BlinkLED;
1576
1577out:
1578	aac->in_reset = 0;
1579	return BlinkLED;
1580}
1581
1582
1583/**
1584 *	aac_command_thread	-	command processing thread
1585 *	@dev: Adapter to monitor
1586 *
1587 *	Waits on the commandready event in it's queue. When the event gets set
1588 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1589 *	until the queue is empty. When the queue is empty it will wait for
1590 *	more FIBs.
1591 */
1592
1593int aac_command_thread(void *data)
1594{
1595	struct aac_dev *dev = data;
1596	struct hw_fib *hw_fib, *hw_newfib;
1597	struct fib *fib, *newfib;
1598	struct aac_fib_context *fibctx;
1599	unsigned long flags;
1600	DECLARE_WAITQUEUE(wait, current);
1601	unsigned long next_jiffies = jiffies + HZ;
1602	unsigned long next_check_jiffies = next_jiffies;
1603	long difference = HZ;
1604
1605	/*
1606	 *	We can only have one thread per adapter for AIF's.
1607	 */
1608	if (dev->aif_thread)
1609		return -EINVAL;
1610
1611	/*
1612	 *	Let the DPC know it has a place to send the AIF's to.
1613	 */
1614	dev->aif_thread = 1;
1615	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1616	set_current_state(TASK_INTERRUPTIBLE);
1617	dprintk ((KERN_INFO "aac_command_thread start\n"));
1618	while (1) {
1619		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1620		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1621			struct list_head *entry;
1622			struct aac_aifcmd * aifcmd;
1623
1624			set_current_state(TASK_RUNNING);
1625
1626			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1627			list_del(entry);
1628
1629			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1630			fib = list_entry(entry, struct fib, fiblink);
1631			/*
1632			 *	We will process the FIB here or pass it to a
1633			 *	worker thread that is TBD. We Really can't
1634			 *	do anything at this point since we don't have
1635			 *	anything defined for this thread to do.
1636			 */
1637			hw_fib = fib->hw_fib_va;
1638			memset(fib, 0, sizeof(struct fib));
1639			fib->type = FSAFS_NTC_FIB_CONTEXT;
1640			fib->size = sizeof(struct fib);
1641			fib->hw_fib_va = hw_fib;
1642			fib->data = hw_fib->data;
1643			fib->dev = dev;
1644			/*
1645			 *	We only handle AifRequest fibs from the adapter.
1646			 */
1647			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1648			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1649				/* Handle Driver Notify Events */
1650				aac_handle_aif(dev, fib);
1651				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1652				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1653			} else {
1654				/* The u32 here is important and intended. We are using
1655				   32bit wrapping time to fit the adapter field */
1656
1657				u32 time_now, time_last;
1658				unsigned long flagv;
1659				unsigned num;
1660				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1661				struct fib ** fib_pool, ** fib_p;
1662
1663				/* Sniff events */
1664				if ((aifcmd->command ==
1665				     cpu_to_le32(AifCmdEventNotify)) ||
1666				    (aifcmd->command ==
1667				     cpu_to_le32(AifCmdJobProgress))) {
1668					aac_handle_aif(dev, fib);
1669				}
1670
1671				time_now = jiffies/HZ;
1672
1673				/*
1674				 * Warning: no sleep allowed while
1675				 * holding spinlock. We take the estimate
1676				 * and pre-allocate a set of fibs outside the
1677				 * lock.
1678				 */
1679				num = le32_to_cpu(dev->init->AdapterFibsSize)
1680				    / sizeof(struct hw_fib); /* some extra */
1681				spin_lock_irqsave(&dev->fib_lock, flagv);
1682				entry = dev->fib_list.next;
1683				while (entry != &dev->fib_list) {
1684					entry = entry->next;
1685					++num;
1686				}
1687				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1688				hw_fib_pool = NULL;
1689				fib_pool = NULL;
1690				if (num
1691				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1692				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1693					hw_fib_p = hw_fib_pool;
1694					fib_p = fib_pool;
1695					while (hw_fib_p < &hw_fib_pool[num]) {
1696						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1697							--hw_fib_p;
1698							break;
1699						}
1700						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1701							kfree(*(--hw_fib_p));
1702							break;
1703						}
1704					}
1705					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1706						kfree(fib_pool);
1707						fib_pool = NULL;
1708						kfree(hw_fib_pool);
1709						hw_fib_pool = NULL;
1710					}
1711				} else {
1712					kfree(hw_fib_pool);
1713					hw_fib_pool = NULL;
1714				}
1715				spin_lock_irqsave(&dev->fib_lock, flagv);
1716				entry = dev->fib_list.next;
1717				/*
1718				 * For each Context that is on the
1719				 * fibctxList, make a copy of the
1720				 * fib, and then set the event to wake up the
1721				 * thread that is waiting for it.
1722				 */
1723				hw_fib_p = hw_fib_pool;
1724				fib_p = fib_pool;
1725				while (entry != &dev->fib_list) {
1726					/*
1727					 * Extract the fibctx
1728					 */
1729					fibctx = list_entry(entry, struct aac_fib_context, next);
1730					/*
1731					 * Check if the queue is getting
1732					 * backlogged
1733					 */
1734					if (fibctx->count > 20)
1735					{
1736						/*
1737						 * It's *not* jiffies folks,
1738						 * but jiffies / HZ so do not
1739						 * panic ...
1740						 */
1741						time_last = fibctx->jiffies;
1742						/*
1743						 * Has it been > 2 minutes
1744						 * since the last read off
1745						 * the queue?
1746						 */
1747						if ((time_now - time_last) > aif_timeout) {
1748							entry = entry->next;
1749							aac_close_fib_context(dev, fibctx);
1750							continue;
1751						}
1752					}
1753					/*
1754					 * Warning: no sleep allowed while
1755					 * holding spinlock
1756					 */
1757					if (hw_fib_p < &hw_fib_pool[num]) {
1758						hw_newfib = *hw_fib_p;
1759						*(hw_fib_p++) = NULL;
1760						newfib = *fib_p;
1761						*(fib_p++) = NULL;
1762						/*
1763						 * Make the copy of the FIB
1764						 */
1765						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1766						memcpy(newfib, fib, sizeof(struct fib));
1767						newfib->hw_fib_va = hw_newfib;
1768						/*
1769						 * Put the FIB onto the
1770						 * fibctx's fibs
1771						 */
1772						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1773						fibctx->count++;
1774						/*
1775						 * Set the event to wake up the
1776						 * thread that is waiting.
1777						 */
1778						up(&fibctx->wait_sem);
1779					} else {
1780						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1781					}
1782					entry = entry->next;
1783				}
1784				/*
1785				 *	Set the status of this FIB
1786				 */
1787				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1788				aac_fib_adapter_complete(fib, sizeof(u32));
1789				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1790				/* Free up the remaining resources */
1791				hw_fib_p = hw_fib_pool;
1792				fib_p = fib_pool;
1793				while (hw_fib_p < &hw_fib_pool[num]) {
1794					kfree(*hw_fib_p);
1795					kfree(*fib_p);
1796					++fib_p;
1797					++hw_fib_p;
1798				}
1799				kfree(hw_fib_pool);
1800				kfree(fib_pool);
1801			}
1802			kfree(fib);
1803			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1804		}
1805		/*
1806		 *	There are no more AIF's
1807		 */
1808		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1809
1810		/*
1811		 *	Background activity
1812		 */
1813		if ((time_before(next_check_jiffies,next_jiffies))
1814		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1815			next_check_jiffies = next_jiffies;
1816			if (aac_check_health(dev) == 0) {
1817				difference = ((long)(unsigned)check_interval)
1818					   * HZ;
1819				next_check_jiffies = jiffies + difference;
1820			} else if (!dev->queues)
1821				break;
1822		}
1823		if (!time_before(next_check_jiffies,next_jiffies)
1824		 && ((difference = next_jiffies - jiffies) <= 0)) {
1825			struct timeval now;
1826			int ret;
1827
1828			/* Don't even try to talk to adapter if its sick */
1829			ret = aac_check_health(dev);
1830			if (!ret && !dev->queues)
1831				break;
1832			next_check_jiffies = jiffies
1833					   + ((long)(unsigned)check_interval)
1834					   * HZ;
1835			do_gettimeofday(&now);
1836
1837			/* Synchronize our watches */
1838			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1839			 && (now.tv_usec > (1000000 / HZ)))
1840				difference = (((1000000 - now.tv_usec) * HZ)
1841				  + 500000) / 1000000;
1842			else if (ret == 0) {
1843				struct fib *fibptr;
1844
1845				if ((fibptr = aac_fib_alloc(dev))) {
1846					int status;
1847					__le32 *info;
1848
1849					aac_fib_init(fibptr);
1850
1851					info = (__le32 *) fib_data(fibptr);
1852					if (now.tv_usec > 500000)
1853						++now.tv_sec;
1854
1855					*info = cpu_to_le32(now.tv_sec);
1856
1857					status = aac_fib_send(SendHostTime,
1858						fibptr,
1859						sizeof(*info),
1860						FsaNormal,
1861						1, 1,
1862						NULL,
1863						NULL);
1864					/* Do not set XferState to zero unless
1865					 * receives a response from F/W */
1866					if (status >= 0)
1867						aac_fib_complete(fibptr);
1868					/* FIB should be freed only after
1869					 * getting the response from the F/W */
1870					if (status != -ERESTARTSYS)
1871						aac_fib_free(fibptr);
1872				}
1873				difference = (long)(unsigned)update_interval*HZ;
1874			} else {
1875				/* retry shortly */
1876				difference = 10 * HZ;
1877			}
1878			next_jiffies = jiffies + difference;
1879			if (time_before(next_check_jiffies,next_jiffies))
1880				difference = next_check_jiffies - jiffies;
1881		}
1882		if (difference <= 0)
1883			difference = 1;
1884		set_current_state(TASK_INTERRUPTIBLE);
1885		schedule_timeout(difference);
1886
1887		if (kthread_should_stop())
1888			break;
1889	}
1890	if (dev->queues)
1891		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1892	dev->aif_thread = 0;
1893	return 0;
1894}
1895