1/*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 *  SCSI queueing library.
6 *      Initial versions: Eric Youngdale (eric@andante.org).
7 *                        Based upon conversations with large numbers
8 *                        of people at Linux Expo.
9 */
10
11#include <linux/bio.h>
12#include <linux/bitops.h>
13#include <linux/blkdev.h>
14#include <linux/completion.h>
15#include <linux/kernel.h>
16#include <linux/export.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/init.h>
20#include <linux/pci.h>
21#include <linux/delay.h>
22#include <linux/hardirq.h>
23#include <linux/scatterlist.h>
24#include <linux/blk-mq.h>
25
26#include <scsi/scsi.h>
27#include <scsi/scsi_cmnd.h>
28#include <scsi/scsi_dbg.h>
29#include <scsi/scsi_device.h>
30#include <scsi/scsi_driver.h>
31#include <scsi/scsi_eh.h>
32#include <scsi/scsi_host.h>
33
34#include <trace/events/scsi.h>
35
36#include "scsi_priv.h"
37#include "scsi_logging.h"
38
39
40#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
41#define SG_MEMPOOL_SIZE		2
42
43struct scsi_host_sg_pool {
44	size_t		size;
45	char		*name;
46	struct kmem_cache	*slab;
47	mempool_t	*pool;
48};
49
50#define SP(x) { x, "sgpool-" __stringify(x) }
51#if (SCSI_MAX_SG_SEGMENTS < 32)
52#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53#endif
54static struct scsi_host_sg_pool scsi_sg_pools[] = {
55	SP(8),
56	SP(16),
57#if (SCSI_MAX_SG_SEGMENTS > 32)
58	SP(32),
59#if (SCSI_MAX_SG_SEGMENTS > 64)
60	SP(64),
61#if (SCSI_MAX_SG_SEGMENTS > 128)
62	SP(128),
63#if (SCSI_MAX_SG_SEGMENTS > 256)
64#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65#endif
66#endif
67#endif
68#endif
69	SP(SCSI_MAX_SG_SEGMENTS)
70};
71#undef SP
72
73struct kmem_cache *scsi_sdb_cache;
74
75/*
76 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77 * not change behaviour from the previous unplug mechanism, experimentation
78 * may prove this needs changing.
79 */
80#define SCSI_QUEUE_DELAY	3
81
82static void
83scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84{
85	struct Scsi_Host *host = cmd->device->host;
86	struct scsi_device *device = cmd->device;
87	struct scsi_target *starget = scsi_target(device);
88
89	/*
90	 * Set the appropriate busy bit for the device/host.
91	 *
92	 * If the host/device isn't busy, assume that something actually
93	 * completed, and that we should be able to queue a command now.
94	 *
95	 * Note that the prior mid-layer assumption that any host could
96	 * always queue at least one command is now broken.  The mid-layer
97	 * will implement a user specifiable stall (see
98	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99	 * if a command is requeued with no other commands outstanding
100	 * either for the device or for the host.
101	 */
102	switch (reason) {
103	case SCSI_MLQUEUE_HOST_BUSY:
104		atomic_set(&host->host_blocked, host->max_host_blocked);
105		break;
106	case SCSI_MLQUEUE_DEVICE_BUSY:
107	case SCSI_MLQUEUE_EH_RETRY:
108		atomic_set(&device->device_blocked,
109			   device->max_device_blocked);
110		break;
111	case SCSI_MLQUEUE_TARGET_BUSY:
112		atomic_set(&starget->target_blocked,
113			   starget->max_target_blocked);
114		break;
115	}
116}
117
118static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119{
120	struct scsi_device *sdev = cmd->device;
121	struct request_queue *q = cmd->request->q;
122
123	blk_mq_requeue_request(cmd->request);
124	blk_mq_kick_requeue_list(q);
125	put_device(&sdev->sdev_gendev);
126}
127
128/**
129 * __scsi_queue_insert - private queue insertion
130 * @cmd: The SCSI command being requeued
131 * @reason:  The reason for the requeue
132 * @unbusy: Whether the queue should be unbusied
133 *
134 * This is a private queue insertion.  The public interface
135 * scsi_queue_insert() always assumes the queue should be unbusied
136 * because it's always called before the completion.  This function is
137 * for a requeue after completion, which should only occur in this
138 * file.
139 */
140static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141{
142	struct scsi_device *device = cmd->device;
143	struct request_queue *q = device->request_queue;
144	unsigned long flags;
145
146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147		"Inserting command %p into mlqueue\n", cmd));
148
149	scsi_set_blocked(cmd, reason);
150
151	/*
152	 * Decrement the counters, since these commands are no longer
153	 * active on the host/device.
154	 */
155	if (unbusy)
156		scsi_device_unbusy(device);
157
158	/*
159	 * Requeue this command.  It will go before all other commands
160	 * that are already in the queue. Schedule requeue work under
161	 * lock such that the kblockd_schedule_work() call happens
162	 * before blk_cleanup_queue() finishes.
163	 */
164	cmd->result = 0;
165	if (q->mq_ops) {
166		scsi_mq_requeue_cmd(cmd);
167		return;
168	}
169	spin_lock_irqsave(q->queue_lock, flags);
170	blk_requeue_request(q, cmd->request);
171	kblockd_schedule_work(&device->requeue_work);
172	spin_unlock_irqrestore(q->queue_lock, flags);
173}
174
175/*
176 * Function:    scsi_queue_insert()
177 *
178 * Purpose:     Insert a command in the midlevel queue.
179 *
180 * Arguments:   cmd    - command that we are adding to queue.
181 *              reason - why we are inserting command to queue.
182 *
183 * Lock status: Assumed that lock is not held upon entry.
184 *
185 * Returns:     Nothing.
186 *
187 * Notes:       We do this for one of two cases.  Either the host is busy
188 *              and it cannot accept any more commands for the time being,
189 *              or the device returned QUEUE_FULL and can accept no more
190 *              commands.
191 * Notes:       This could be called either from an interrupt context or a
192 *              normal process context.
193 */
194void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195{
196	__scsi_queue_insert(cmd, reason, 1);
197}
198/**
199 * scsi_execute - insert request and wait for the result
200 * @sdev:	scsi device
201 * @cmd:	scsi command
202 * @data_direction: data direction
203 * @buffer:	data buffer
204 * @bufflen:	len of buffer
205 * @sense:	optional sense buffer
206 * @timeout:	request timeout in seconds
207 * @retries:	number of times to retry request
208 * @flags:	or into request flags;
209 * @resid:	optional residual length
210 *
211 * returns the req->errors value which is the scsi_cmnd result
212 * field.
213 */
214int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215		 int data_direction, void *buffer, unsigned bufflen,
216		 unsigned char *sense, int timeout, int retries, u64 flags,
217		 int *resid)
218{
219	struct request *req;
220	int write = (data_direction == DMA_TO_DEVICE);
221	int ret = DRIVER_ERROR << 24;
222
223	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224	if (IS_ERR(req))
225		return ret;
226	blk_rq_set_block_pc(req);
227
228	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
229					buffer, bufflen, __GFP_WAIT))
230		goto out;
231
232	req->cmd_len = COMMAND_SIZE(cmd[0]);
233	memcpy(req->cmd, cmd, req->cmd_len);
234	req->sense = sense;
235	req->sense_len = 0;
236	req->retries = retries;
237	req->timeout = timeout;
238	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240	/*
241	 * head injection *required* here otherwise quiesce won't work
242	 */
243	blk_execute_rq(req->q, NULL, req, 1);
244
245	/*
246	 * Some devices (USB mass-storage in particular) may transfer
247	 * garbage data together with a residue indicating that the data
248	 * is invalid.  Prevent the garbage from being misinterpreted
249	 * and prevent security leaks by zeroing out the excess data.
250	 */
251	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254	if (resid)
255		*resid = req->resid_len;
256	ret = req->errors;
257 out:
258	blk_put_request(req);
259
260	return ret;
261}
262EXPORT_SYMBOL(scsi_execute);
263
264int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265		     int data_direction, void *buffer, unsigned bufflen,
266		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
267		     int *resid, u64 flags)
268{
269	char *sense = NULL;
270	int result;
271
272	if (sshdr) {
273		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274		if (!sense)
275			return DRIVER_ERROR << 24;
276	}
277	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278			      sense, timeout, retries, flags, resid);
279	if (sshdr)
280		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282	kfree(sense);
283	return result;
284}
285EXPORT_SYMBOL(scsi_execute_req_flags);
286
287/*
288 * Function:    scsi_init_cmd_errh()
289 *
290 * Purpose:     Initialize cmd fields related to error handling.
291 *
292 * Arguments:   cmd	- command that is ready to be queued.
293 *
294 * Notes:       This function has the job of initializing a number of
295 *              fields related to error handling.   Typically this will
296 *              be called once for each command, as required.
297 */
298static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299{
300	cmd->serial_number = 0;
301	scsi_set_resid(cmd, 0);
302	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303	if (cmd->cmd_len == 0)
304		cmd->cmd_len = scsi_command_size(cmd->cmnd);
305}
306
307void scsi_device_unbusy(struct scsi_device *sdev)
308{
309	struct Scsi_Host *shost = sdev->host;
310	struct scsi_target *starget = scsi_target(sdev);
311	unsigned long flags;
312
313	atomic_dec(&shost->host_busy);
314	if (starget->can_queue > 0)
315		atomic_dec(&starget->target_busy);
316
317	if (unlikely(scsi_host_in_recovery(shost) &&
318		     (shost->host_failed || shost->host_eh_scheduled))) {
319		spin_lock_irqsave(shost->host_lock, flags);
320		scsi_eh_wakeup(shost);
321		spin_unlock_irqrestore(shost->host_lock, flags);
322	}
323
324	atomic_dec(&sdev->device_busy);
325}
326
327static void scsi_kick_queue(struct request_queue *q)
328{
329	if (q->mq_ops)
330		blk_mq_start_hw_queues(q);
331	else
332		blk_run_queue(q);
333}
334
335/*
336 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337 * and call blk_run_queue for all the scsi_devices on the target -
338 * including current_sdev first.
339 *
340 * Called with *no* scsi locks held.
341 */
342static void scsi_single_lun_run(struct scsi_device *current_sdev)
343{
344	struct Scsi_Host *shost = current_sdev->host;
345	struct scsi_device *sdev, *tmp;
346	struct scsi_target *starget = scsi_target(current_sdev);
347	unsigned long flags;
348
349	spin_lock_irqsave(shost->host_lock, flags);
350	starget->starget_sdev_user = NULL;
351	spin_unlock_irqrestore(shost->host_lock, flags);
352
353	/*
354	 * Call blk_run_queue for all LUNs on the target, starting with
355	 * current_sdev. We race with others (to set starget_sdev_user),
356	 * but in most cases, we will be first. Ideally, each LU on the
357	 * target would get some limited time or requests on the target.
358	 */
359	scsi_kick_queue(current_sdev->request_queue);
360
361	spin_lock_irqsave(shost->host_lock, flags);
362	if (starget->starget_sdev_user)
363		goto out;
364	list_for_each_entry_safe(sdev, tmp, &starget->devices,
365			same_target_siblings) {
366		if (sdev == current_sdev)
367			continue;
368		if (scsi_device_get(sdev))
369			continue;
370
371		spin_unlock_irqrestore(shost->host_lock, flags);
372		scsi_kick_queue(sdev->request_queue);
373		spin_lock_irqsave(shost->host_lock, flags);
374
375		scsi_device_put(sdev);
376	}
377 out:
378	spin_unlock_irqrestore(shost->host_lock, flags);
379}
380
381static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382{
383	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384		return true;
385	if (atomic_read(&sdev->device_blocked) > 0)
386		return true;
387	return false;
388}
389
390static inline bool scsi_target_is_busy(struct scsi_target *starget)
391{
392	if (starget->can_queue > 0) {
393		if (atomic_read(&starget->target_busy) >= starget->can_queue)
394			return true;
395		if (atomic_read(&starget->target_blocked) > 0)
396			return true;
397	}
398	return false;
399}
400
401static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402{
403	if (shost->can_queue > 0 &&
404	    atomic_read(&shost->host_busy) >= shost->can_queue)
405		return true;
406	if (atomic_read(&shost->host_blocked) > 0)
407		return true;
408	if (shost->host_self_blocked)
409		return true;
410	return false;
411}
412
413static void scsi_starved_list_run(struct Scsi_Host *shost)
414{
415	LIST_HEAD(starved_list);
416	struct scsi_device *sdev;
417	unsigned long flags;
418
419	spin_lock_irqsave(shost->host_lock, flags);
420	list_splice_init(&shost->starved_list, &starved_list);
421
422	while (!list_empty(&starved_list)) {
423		struct request_queue *slq;
424
425		/*
426		 * As long as shost is accepting commands and we have
427		 * starved queues, call blk_run_queue. scsi_request_fn
428		 * drops the queue_lock and can add us back to the
429		 * starved_list.
430		 *
431		 * host_lock protects the starved_list and starved_entry.
432		 * scsi_request_fn must get the host_lock before checking
433		 * or modifying starved_list or starved_entry.
434		 */
435		if (scsi_host_is_busy(shost))
436			break;
437
438		sdev = list_entry(starved_list.next,
439				  struct scsi_device, starved_entry);
440		list_del_init(&sdev->starved_entry);
441		if (scsi_target_is_busy(scsi_target(sdev))) {
442			list_move_tail(&sdev->starved_entry,
443				       &shost->starved_list);
444			continue;
445		}
446
447		/*
448		 * Once we drop the host lock, a racing scsi_remove_device()
449		 * call may remove the sdev from the starved list and destroy
450		 * it and the queue.  Mitigate by taking a reference to the
451		 * queue and never touching the sdev again after we drop the
452		 * host lock.  Note: if __scsi_remove_device() invokes
453		 * blk_cleanup_queue() before the queue is run from this
454		 * function then blk_run_queue() will return immediately since
455		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456		 */
457		slq = sdev->request_queue;
458		if (!blk_get_queue(slq))
459			continue;
460		spin_unlock_irqrestore(shost->host_lock, flags);
461
462		scsi_kick_queue(slq);
463		blk_put_queue(slq);
464
465		spin_lock_irqsave(shost->host_lock, flags);
466	}
467	/* put any unprocessed entries back */
468	list_splice(&starved_list, &shost->starved_list);
469	spin_unlock_irqrestore(shost->host_lock, flags);
470}
471
472/*
473 * Function:   scsi_run_queue()
474 *
475 * Purpose:    Select a proper request queue to serve next
476 *
477 * Arguments:  q       - last request's queue
478 *
479 * Returns:     Nothing
480 *
481 * Notes:      The previous command was completely finished, start
482 *             a new one if possible.
483 */
484static void scsi_run_queue(struct request_queue *q)
485{
486	struct scsi_device *sdev = q->queuedata;
487
488	if (scsi_target(sdev)->single_lun)
489		scsi_single_lun_run(sdev);
490	if (!list_empty(&sdev->host->starved_list))
491		scsi_starved_list_run(sdev->host);
492
493	if (q->mq_ops)
494		blk_mq_start_stopped_hw_queues(q, false);
495	else
496		blk_run_queue(q);
497}
498
499void scsi_requeue_run_queue(struct work_struct *work)
500{
501	struct scsi_device *sdev;
502	struct request_queue *q;
503
504	sdev = container_of(work, struct scsi_device, requeue_work);
505	q = sdev->request_queue;
506	scsi_run_queue(q);
507}
508
509/*
510 * Function:	scsi_requeue_command()
511 *
512 * Purpose:	Handle post-processing of completed commands.
513 *
514 * Arguments:	q	- queue to operate on
515 *		cmd	- command that may need to be requeued.
516 *
517 * Returns:	Nothing
518 *
519 * Notes:	After command completion, there may be blocks left
520 *		over which weren't finished by the previous command
521 *		this can be for a number of reasons - the main one is
522 *		I/O errors in the middle of the request, in which case
523 *		we need to request the blocks that come after the bad
524 *		sector.
525 * Notes:	Upon return, cmd is a stale pointer.
526 */
527static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528{
529	struct scsi_device *sdev = cmd->device;
530	struct request *req = cmd->request;
531	unsigned long flags;
532
533	spin_lock_irqsave(q->queue_lock, flags);
534	blk_unprep_request(req);
535	req->special = NULL;
536	scsi_put_command(cmd);
537	blk_requeue_request(q, req);
538	spin_unlock_irqrestore(q->queue_lock, flags);
539
540	scsi_run_queue(q);
541
542	put_device(&sdev->sdev_gendev);
543}
544
545void scsi_next_command(struct scsi_cmnd *cmd)
546{
547	struct scsi_device *sdev = cmd->device;
548	struct request_queue *q = sdev->request_queue;
549
550	scsi_put_command(cmd);
551	scsi_run_queue(q);
552
553	put_device(&sdev->sdev_gendev);
554}
555
556void scsi_run_host_queues(struct Scsi_Host *shost)
557{
558	struct scsi_device *sdev;
559
560	shost_for_each_device(sdev, shost)
561		scsi_run_queue(sdev->request_queue);
562}
563
564static inline unsigned int scsi_sgtable_index(unsigned short nents)
565{
566	unsigned int index;
567
568	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570	if (nents <= 8)
571		index = 0;
572	else
573		index = get_count_order(nents) - 3;
574
575	return index;
576}
577
578static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579{
580	struct scsi_host_sg_pool *sgp;
581
582	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583	mempool_free(sgl, sgp->pool);
584}
585
586static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587{
588	struct scsi_host_sg_pool *sgp;
589
590	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591	return mempool_alloc(sgp->pool, gfp_mask);
592}
593
594static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595{
596	if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597		return;
598	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599}
600
601static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602			      gfp_t gfp_mask, bool mq)
603{
604	struct scatterlist *first_chunk = NULL;
605	int ret;
606
607	BUG_ON(!nents);
608
609	if (mq) {
610		if (nents <= SCSI_MAX_SG_SEGMENTS) {
611			sdb->table.nents = nents;
612			sg_init_table(sdb->table.sgl, sdb->table.nents);
613			return 0;
614		}
615		first_chunk = sdb->table.sgl;
616	}
617
618	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619			       first_chunk, gfp_mask, scsi_sg_alloc);
620	if (unlikely(ret))
621		scsi_free_sgtable(sdb, mq);
622	return ret;
623}
624
625static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626{
627	if (cmd->request->cmd_type == REQ_TYPE_FS) {
628		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630		if (drv->uninit_command)
631			drv->uninit_command(cmd);
632	}
633}
634
635static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636{
637	if (cmd->sdb.table.nents)
638		scsi_free_sgtable(&cmd->sdb, true);
639	if (cmd->request->next_rq && cmd->request->next_rq->special)
640		scsi_free_sgtable(cmd->request->next_rq->special, true);
641	if (scsi_prot_sg_count(cmd))
642		scsi_free_sgtable(cmd->prot_sdb, true);
643}
644
645static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646{
647	struct scsi_device *sdev = cmd->device;
648	struct Scsi_Host *shost = sdev->host;
649	unsigned long flags;
650
651	scsi_mq_free_sgtables(cmd);
652	scsi_uninit_cmd(cmd);
653
654	if (shost->use_cmd_list) {
655		BUG_ON(list_empty(&cmd->list));
656		spin_lock_irqsave(&sdev->list_lock, flags);
657		list_del_init(&cmd->list);
658		spin_unlock_irqrestore(&sdev->list_lock, flags);
659	}
660}
661
662/*
663 * Function:    scsi_release_buffers()
664 *
665 * Purpose:     Free resources allocate for a scsi_command.
666 *
667 * Arguments:   cmd	- command that we are bailing.
668 *
669 * Lock status: Assumed that no lock is held upon entry.
670 *
671 * Returns:     Nothing
672 *
673 * Notes:       In the event that an upper level driver rejects a
674 *		command, we must release resources allocated during
675 *		the __init_io() function.  Primarily this would involve
676 *		the scatter-gather table.
677 */
678static void scsi_release_buffers(struct scsi_cmnd *cmd)
679{
680	if (cmd->sdb.table.nents)
681		scsi_free_sgtable(&cmd->sdb, false);
682
683	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685	if (scsi_prot_sg_count(cmd))
686		scsi_free_sgtable(cmd->prot_sdb, false);
687}
688
689static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690{
691	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693	scsi_free_sgtable(bidi_sdb, false);
694	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695	cmd->request->next_rq->special = NULL;
696}
697
698static bool scsi_end_request(struct request *req, int error,
699		unsigned int bytes, unsigned int bidi_bytes)
700{
701	struct scsi_cmnd *cmd = req->special;
702	struct scsi_device *sdev = cmd->device;
703	struct request_queue *q = sdev->request_queue;
704
705	if (blk_update_request(req, error, bytes))
706		return true;
707
708	/* Bidi request must be completed as a whole */
709	if (unlikely(bidi_bytes) &&
710	    blk_update_request(req->next_rq, error, bidi_bytes))
711		return true;
712
713	if (blk_queue_add_random(q))
714		add_disk_randomness(req->rq_disk);
715
716	if (req->mq_ctx) {
717		/*
718		 * In the MQ case the command gets freed by __blk_mq_end_request,
719		 * so we have to do all cleanup that depends on it earlier.
720		 *
721		 * We also can't kick the queues from irq context, so we
722		 * will have to defer it to a workqueue.
723		 */
724		scsi_mq_uninit_cmd(cmd);
725
726		__blk_mq_end_request(req, error);
727
728		if (scsi_target(sdev)->single_lun ||
729		    !list_empty(&sdev->host->starved_list))
730			kblockd_schedule_work(&sdev->requeue_work);
731		else
732			blk_mq_start_stopped_hw_queues(q, true);
733
734		put_device(&sdev->sdev_gendev);
735	} else {
736		unsigned long flags;
737
738		if (bidi_bytes)
739			scsi_release_bidi_buffers(cmd);
740
741		spin_lock_irqsave(q->queue_lock, flags);
742		blk_finish_request(req, error);
743		spin_unlock_irqrestore(q->queue_lock, flags);
744
745		scsi_release_buffers(cmd);
746		scsi_next_command(cmd);
747	}
748
749	return false;
750}
751
752/**
753 * __scsi_error_from_host_byte - translate SCSI error code into errno
754 * @cmd:	SCSI command (unused)
755 * @result:	scsi error code
756 *
757 * Translate SCSI error code into standard UNIX errno.
758 * Return values:
759 * -ENOLINK	temporary transport failure
760 * -EREMOTEIO	permanent target failure, do not retry
761 * -EBADE	permanent nexus failure, retry on other path
762 * -ENOSPC	No write space available
763 * -ENODATA	Medium error
764 * -EIO		unspecified I/O error
765 */
766static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
767{
768	int error = 0;
769
770	switch(host_byte(result)) {
771	case DID_TRANSPORT_FAILFAST:
772		error = -ENOLINK;
773		break;
774	case DID_TARGET_FAILURE:
775		set_host_byte(cmd, DID_OK);
776		error = -EREMOTEIO;
777		break;
778	case DID_NEXUS_FAILURE:
779		set_host_byte(cmd, DID_OK);
780		error = -EBADE;
781		break;
782	case DID_ALLOC_FAILURE:
783		set_host_byte(cmd, DID_OK);
784		error = -ENOSPC;
785		break;
786	case DID_MEDIUM_ERROR:
787		set_host_byte(cmd, DID_OK);
788		error = -ENODATA;
789		break;
790	default:
791		error = -EIO;
792		break;
793	}
794
795	return error;
796}
797
798/*
799 * Function:    scsi_io_completion()
800 *
801 * Purpose:     Completion processing for block device I/O requests.
802 *
803 * Arguments:   cmd   - command that is finished.
804 *
805 * Lock status: Assumed that no lock is held upon entry.
806 *
807 * Returns:     Nothing
808 *
809 * Notes:       We will finish off the specified number of sectors.  If we
810 *		are done, the command block will be released and the queue
811 *		function will be goosed.  If we are not done then we have to
812 *		figure out what to do next:
813 *
814 *		a) We can call scsi_requeue_command().  The request
815 *		   will be unprepared and put back on the queue.  Then
816 *		   a new command will be created for it.  This should
817 *		   be used if we made forward progress, or if we want
818 *		   to switch from READ(10) to READ(6) for example.
819 *
820 *		b) We can call __scsi_queue_insert().  The request will
821 *		   be put back on the queue and retried using the same
822 *		   command as before, possibly after a delay.
823 *
824 *		c) We can call scsi_end_request() with -EIO to fail
825 *		   the remainder of the request.
826 */
827void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
828{
829	int result = cmd->result;
830	struct request_queue *q = cmd->device->request_queue;
831	struct request *req = cmd->request;
832	int error = 0;
833	struct scsi_sense_hdr sshdr;
834	int sense_valid = 0;
835	int sense_deferred = 0;
836	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
837	      ACTION_DELAYED_RETRY} action;
838	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
839
840	if (result) {
841		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
842		if (sense_valid)
843			sense_deferred = scsi_sense_is_deferred(&sshdr);
844	}
845
846	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
847		if (result) {
848			if (sense_valid && req->sense) {
849				/*
850				 * SG_IO wants current and deferred errors
851				 */
852				int len = 8 + cmd->sense_buffer[7];
853
854				if (len > SCSI_SENSE_BUFFERSIZE)
855					len = SCSI_SENSE_BUFFERSIZE;
856				memcpy(req->sense, cmd->sense_buffer,  len);
857				req->sense_len = len;
858			}
859			if (!sense_deferred)
860				error = __scsi_error_from_host_byte(cmd, result);
861		}
862		/*
863		 * __scsi_error_from_host_byte may have reset the host_byte
864		 */
865		req->errors = cmd->result;
866
867		req->resid_len = scsi_get_resid(cmd);
868
869		if (scsi_bidi_cmnd(cmd)) {
870			/*
871			 * Bidi commands Must be complete as a whole,
872			 * both sides at once.
873			 */
874			req->next_rq->resid_len = scsi_in(cmd)->resid;
875			if (scsi_end_request(req, 0, blk_rq_bytes(req),
876					blk_rq_bytes(req->next_rq)))
877				BUG();
878			return;
879		}
880	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
881		/*
882		 * Certain non BLOCK_PC requests are commands that don't
883		 * actually transfer anything (FLUSH), so cannot use
884		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
885		 * This sets the error explicitly for the problem case.
886		 */
887		error = __scsi_error_from_host_byte(cmd, result);
888	}
889
890	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
891	BUG_ON(blk_bidi_rq(req));
892
893	/*
894	 * Next deal with any sectors which we were able to correctly
895	 * handle.
896	 */
897	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
898		"%u sectors total, %d bytes done.\n",
899		blk_rq_sectors(req), good_bytes));
900
901	/*
902	 * Recovered errors need reporting, but they're always treated
903	 * as success, so fiddle the result code here.  For BLOCK_PC
904	 * we already took a copy of the original into rq->errors which
905	 * is what gets returned to the user
906	 */
907	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
908		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
909		 * print since caller wants ATA registers. Only occurs on
910		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
911		 */
912		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913			;
914		else if (!(req->cmd_flags & REQ_QUIET))
915			scsi_print_sense("", cmd);
916		result = 0;
917		/* BLOCK_PC may have set error */
918		error = 0;
919	}
920
921	/*
922	 * If we finished all bytes in the request we are done now.
923	 */
924	if (!scsi_end_request(req, error, good_bytes, 0))
925		return;
926
927	/*
928	 * Kill remainder if no retrys.
929	 */
930	if (error && scsi_noretry_cmd(cmd)) {
931		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
932			BUG();
933		return;
934	}
935
936	/*
937	 * If there had been no error, but we have leftover bytes in the
938	 * requeues just queue the command up again.
939	 */
940	if (result == 0)
941		goto requeue;
942
943	error = __scsi_error_from_host_byte(cmd, result);
944
945	if (host_byte(result) == DID_RESET) {
946		/* Third party bus reset or reset for error recovery
947		 * reasons.  Just retry the command and see what
948		 * happens.
949		 */
950		action = ACTION_RETRY;
951	} else if (sense_valid && !sense_deferred) {
952		switch (sshdr.sense_key) {
953		case UNIT_ATTENTION:
954			if (cmd->device->removable) {
955				/* Detected disc change.  Set a bit
956				 * and quietly refuse further access.
957				 */
958				cmd->device->changed = 1;
959				action = ACTION_FAIL;
960			} else {
961				/* Must have been a power glitch, or a
962				 * bus reset.  Could not have been a
963				 * media change, so we just retry the
964				 * command and see what happens.
965				 */
966				action = ACTION_RETRY;
967			}
968			break;
969		case ILLEGAL_REQUEST:
970			/* If we had an ILLEGAL REQUEST returned, then
971			 * we may have performed an unsupported
972			 * command.  The only thing this should be
973			 * would be a ten byte read where only a six
974			 * byte read was supported.  Also, on a system
975			 * where READ CAPACITY failed, we may have
976			 * read past the end of the disk.
977			 */
978			if ((cmd->device->use_10_for_rw &&
979			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
980			    (cmd->cmnd[0] == READ_10 ||
981			     cmd->cmnd[0] == WRITE_10)) {
982				/* This will issue a new 6-byte command. */
983				cmd->device->use_10_for_rw = 0;
984				action = ACTION_REPREP;
985			} else if (sshdr.asc == 0x10) /* DIX */ {
986				action = ACTION_FAIL;
987				error = -EILSEQ;
988			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
989			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
990				action = ACTION_FAIL;
991				error = -EREMOTEIO;
992			} else
993				action = ACTION_FAIL;
994			break;
995		case ABORTED_COMMAND:
996			action = ACTION_FAIL;
997			if (sshdr.asc == 0x10) /* DIF */
998				error = -EILSEQ;
999			break;
1000		case NOT_READY:
1001			/* If the device is in the process of becoming
1002			 * ready, or has a temporary blockage, retry.
1003			 */
1004			if (sshdr.asc == 0x04) {
1005				switch (sshdr.ascq) {
1006				case 0x01: /* becoming ready */
1007				case 0x04: /* format in progress */
1008				case 0x05: /* rebuild in progress */
1009				case 0x06: /* recalculation in progress */
1010				case 0x07: /* operation in progress */
1011				case 0x08: /* Long write in progress */
1012				case 0x09: /* self test in progress */
1013				case 0x14: /* space allocation in progress */
1014					action = ACTION_DELAYED_RETRY;
1015					break;
1016				default:
1017					action = ACTION_FAIL;
1018					break;
1019				}
1020			} else
1021				action = ACTION_FAIL;
1022			break;
1023		case VOLUME_OVERFLOW:
1024			/* See SSC3rXX or current. */
1025			action = ACTION_FAIL;
1026			break;
1027		default:
1028			action = ACTION_FAIL;
1029			break;
1030		}
1031	} else
1032		action = ACTION_FAIL;
1033
1034	if (action != ACTION_FAIL &&
1035	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1036		action = ACTION_FAIL;
1037
1038	switch (action) {
1039	case ACTION_FAIL:
1040		/* Give up and fail the remainder of the request */
1041		if (!(req->cmd_flags & REQ_QUIET)) {
1042			scsi_print_result(cmd);
1043			if (driver_byte(result) & DRIVER_SENSE)
1044				scsi_print_sense("", cmd);
1045			scsi_print_command(cmd);
1046		}
1047		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1048			return;
1049		/*FALLTHRU*/
1050	case ACTION_REPREP:
1051	requeue:
1052		/* Unprep the request and put it back at the head of the queue.
1053		 * A new command will be prepared and issued.
1054		 */
1055		if (q->mq_ops) {
1056			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1057			scsi_mq_uninit_cmd(cmd);
1058			scsi_mq_requeue_cmd(cmd);
1059		} else {
1060			scsi_release_buffers(cmd);
1061			scsi_requeue_command(q, cmd);
1062		}
1063		break;
1064	case ACTION_RETRY:
1065		/* Retry the same command immediately */
1066		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1067		break;
1068	case ACTION_DELAYED_RETRY:
1069		/* Retry the same command after a delay */
1070		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1071		break;
1072	}
1073}
1074
1075static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1076			     gfp_t gfp_mask)
1077{
1078	int count;
1079
1080	/*
1081	 * If sg table allocation fails, requeue request later.
1082	 */
1083	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1084					gfp_mask, req->mq_ctx != NULL)))
1085		return BLKPREP_DEFER;
1086
1087	/*
1088	 * Next, walk the list, and fill in the addresses and sizes of
1089	 * each segment.
1090	 */
1091	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1092	BUG_ON(count > sdb->table.nents);
1093	sdb->table.nents = count;
1094	sdb->length = blk_rq_bytes(req);
1095	return BLKPREP_OK;
1096}
1097
1098/*
1099 * Function:    scsi_init_io()
1100 *
1101 * Purpose:     SCSI I/O initialize function.
1102 *
1103 * Arguments:   cmd   - Command descriptor we wish to initialize
1104 *
1105 * Returns:     0 on success
1106 *		BLKPREP_DEFER if the failure is retryable
1107 *		BLKPREP_KILL if the failure is fatal
1108 */
1109int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1110{
1111	struct scsi_device *sdev = cmd->device;
1112	struct request *rq = cmd->request;
1113	bool is_mq = (rq->mq_ctx != NULL);
1114	int error;
1115
1116	BUG_ON(!rq->nr_phys_segments);
1117
1118	error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1119	if (error)
1120		goto err_exit;
1121
1122	if (blk_bidi_rq(rq)) {
1123		if (!rq->q->mq_ops) {
1124			struct scsi_data_buffer *bidi_sdb =
1125				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1126			if (!bidi_sdb) {
1127				error = BLKPREP_DEFER;
1128				goto err_exit;
1129			}
1130
1131			rq->next_rq->special = bidi_sdb;
1132		}
1133
1134		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1135					  GFP_ATOMIC);
1136		if (error)
1137			goto err_exit;
1138	}
1139
1140	if (blk_integrity_rq(rq)) {
1141		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1142		int ivecs, count;
1143
1144		BUG_ON(prot_sdb == NULL);
1145		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1146
1147		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1148			error = BLKPREP_DEFER;
1149			goto err_exit;
1150		}
1151
1152		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1153						prot_sdb->table.sgl);
1154		BUG_ON(unlikely(count > ivecs));
1155		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1156
1157		cmd->prot_sdb = prot_sdb;
1158		cmd->prot_sdb->table.nents = count;
1159	}
1160
1161	return BLKPREP_OK;
1162err_exit:
1163	if (is_mq) {
1164		scsi_mq_free_sgtables(cmd);
1165	} else {
1166		scsi_release_buffers(cmd);
1167		cmd->request->special = NULL;
1168		scsi_put_command(cmd);
1169		put_device(&sdev->sdev_gendev);
1170	}
1171	return error;
1172}
1173EXPORT_SYMBOL(scsi_init_io);
1174
1175static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1176		struct request *req)
1177{
1178	struct scsi_cmnd *cmd;
1179
1180	if (!req->special) {
1181		/* Bail if we can't get a reference to the device */
1182		if (!get_device(&sdev->sdev_gendev))
1183			return NULL;
1184
1185		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1186		if (unlikely(!cmd)) {
1187			put_device(&sdev->sdev_gendev);
1188			return NULL;
1189		}
1190		req->special = cmd;
1191	} else {
1192		cmd = req->special;
1193	}
1194
1195	/* pull a tag out of the request if we have one */
1196	cmd->tag = req->tag;
1197	cmd->request = req;
1198
1199	cmd->cmnd = req->cmd;
1200	cmd->prot_op = SCSI_PROT_NORMAL;
1201
1202	return cmd;
1203}
1204
1205static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1206{
1207	struct scsi_cmnd *cmd = req->special;
1208
1209	/*
1210	 * BLOCK_PC requests may transfer data, in which case they must
1211	 * a bio attached to them.  Or they might contain a SCSI command
1212	 * that does not transfer data, in which case they may optionally
1213	 * submit a request without an attached bio.
1214	 */
1215	if (req->bio) {
1216		int ret = scsi_init_io(cmd, GFP_ATOMIC);
1217		if (unlikely(ret))
1218			return ret;
1219	} else {
1220		BUG_ON(blk_rq_bytes(req));
1221
1222		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1223	}
1224
1225	cmd->cmd_len = req->cmd_len;
1226	cmd->transfersize = blk_rq_bytes(req);
1227	cmd->allowed = req->retries;
1228	return BLKPREP_OK;
1229}
1230
1231/*
1232 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1233 * that still need to be translated to SCSI CDBs from the ULD.
1234 */
1235static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1236{
1237	struct scsi_cmnd *cmd = req->special;
1238
1239	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241		int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242		if (ret != BLKPREP_OK)
1243			return ret;
1244	}
1245
1246	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1247	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1248}
1249
1250static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1251{
1252	struct scsi_cmnd *cmd = req->special;
1253
1254	if (!blk_rq_bytes(req))
1255		cmd->sc_data_direction = DMA_NONE;
1256	else if (rq_data_dir(req) == WRITE)
1257		cmd->sc_data_direction = DMA_TO_DEVICE;
1258	else
1259		cmd->sc_data_direction = DMA_FROM_DEVICE;
1260
1261	switch (req->cmd_type) {
1262	case REQ_TYPE_FS:
1263		return scsi_setup_fs_cmnd(sdev, req);
1264	case REQ_TYPE_BLOCK_PC:
1265		return scsi_setup_blk_pc_cmnd(sdev, req);
1266	default:
1267		return BLKPREP_KILL;
1268	}
1269}
1270
1271static int
1272scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1273{
1274	int ret = BLKPREP_OK;
1275
1276	/*
1277	 * If the device is not in running state we will reject some
1278	 * or all commands.
1279	 */
1280	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1281		switch (sdev->sdev_state) {
1282		case SDEV_OFFLINE:
1283		case SDEV_TRANSPORT_OFFLINE:
1284			/*
1285			 * If the device is offline we refuse to process any
1286			 * commands.  The device must be brought online
1287			 * before trying any recovery commands.
1288			 */
1289			sdev_printk(KERN_ERR, sdev,
1290				    "rejecting I/O to offline device\n");
1291			ret = BLKPREP_KILL;
1292			break;
1293		case SDEV_DEL:
1294			/*
1295			 * If the device is fully deleted, we refuse to
1296			 * process any commands as well.
1297			 */
1298			sdev_printk(KERN_ERR, sdev,
1299				    "rejecting I/O to dead device\n");
1300			ret = BLKPREP_KILL;
1301			break;
1302		case SDEV_QUIESCE:
1303		case SDEV_BLOCK:
1304		case SDEV_CREATED_BLOCK:
1305			/*
1306			 * If the devices is blocked we defer normal commands.
1307			 */
1308			if (!(req->cmd_flags & REQ_PREEMPT))
1309				ret = BLKPREP_DEFER;
1310			break;
1311		default:
1312			/*
1313			 * For any other not fully online state we only allow
1314			 * special commands.  In particular any user initiated
1315			 * command is not allowed.
1316			 */
1317			if (!(req->cmd_flags & REQ_PREEMPT))
1318				ret = BLKPREP_KILL;
1319			break;
1320		}
1321	}
1322	return ret;
1323}
1324
1325static int
1326scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1327{
1328	struct scsi_device *sdev = q->queuedata;
1329
1330	switch (ret) {
1331	case BLKPREP_KILL:
1332		req->errors = DID_NO_CONNECT << 16;
1333		/* release the command and kill it */
1334		if (req->special) {
1335			struct scsi_cmnd *cmd = req->special;
1336			scsi_release_buffers(cmd);
1337			scsi_put_command(cmd);
1338			put_device(&sdev->sdev_gendev);
1339			req->special = NULL;
1340		}
1341		break;
1342	case BLKPREP_DEFER:
1343		/*
1344		 * If we defer, the blk_peek_request() returns NULL, but the
1345		 * queue must be restarted, so we schedule a callback to happen
1346		 * shortly.
1347		 */
1348		if (atomic_read(&sdev->device_busy) == 0)
1349			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1350		break;
1351	default:
1352		req->cmd_flags |= REQ_DONTPREP;
1353	}
1354
1355	return ret;
1356}
1357
1358static int scsi_prep_fn(struct request_queue *q, struct request *req)
1359{
1360	struct scsi_device *sdev = q->queuedata;
1361	struct scsi_cmnd *cmd;
1362	int ret;
1363
1364	ret = scsi_prep_state_check(sdev, req);
1365	if (ret != BLKPREP_OK)
1366		goto out;
1367
1368	cmd = scsi_get_cmd_from_req(sdev, req);
1369	if (unlikely(!cmd)) {
1370		ret = BLKPREP_DEFER;
1371		goto out;
1372	}
1373
1374	ret = scsi_setup_cmnd(sdev, req);
1375out:
1376	return scsi_prep_return(q, req, ret);
1377}
1378
1379static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1380{
1381	scsi_uninit_cmd(req->special);
1382}
1383
1384/*
1385 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1386 * return 0.
1387 *
1388 * Called with the queue_lock held.
1389 */
1390static inline int scsi_dev_queue_ready(struct request_queue *q,
1391				  struct scsi_device *sdev)
1392{
1393	unsigned int busy;
1394
1395	busy = atomic_inc_return(&sdev->device_busy) - 1;
1396	if (atomic_read(&sdev->device_blocked)) {
1397		if (busy)
1398			goto out_dec;
1399
1400		/*
1401		 * unblock after device_blocked iterates to zero
1402		 */
1403		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1404			/*
1405			 * For the MQ case we take care of this in the caller.
1406			 */
1407			if (!q->mq_ops)
1408				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1409			goto out_dec;
1410		}
1411		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1412				   "unblocking device at zero depth\n"));
1413	}
1414
1415	if (busy >= sdev->queue_depth)
1416		goto out_dec;
1417
1418	return 1;
1419out_dec:
1420	atomic_dec(&sdev->device_busy);
1421	return 0;
1422}
1423
1424/*
1425 * scsi_target_queue_ready: checks if there we can send commands to target
1426 * @sdev: scsi device on starget to check.
1427 */
1428static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1429					   struct scsi_device *sdev)
1430{
1431	struct scsi_target *starget = scsi_target(sdev);
1432	unsigned int busy;
1433
1434	if (starget->single_lun) {
1435		spin_lock_irq(shost->host_lock);
1436		if (starget->starget_sdev_user &&
1437		    starget->starget_sdev_user != sdev) {
1438			spin_unlock_irq(shost->host_lock);
1439			return 0;
1440		}
1441		starget->starget_sdev_user = sdev;
1442		spin_unlock_irq(shost->host_lock);
1443	}
1444
1445	if (starget->can_queue <= 0)
1446		return 1;
1447
1448	busy = atomic_inc_return(&starget->target_busy) - 1;
1449	if (atomic_read(&starget->target_blocked) > 0) {
1450		if (busy)
1451			goto starved;
1452
1453		/*
1454		 * unblock after target_blocked iterates to zero
1455		 */
1456		if (atomic_dec_return(&starget->target_blocked) > 0)
1457			goto out_dec;
1458
1459		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1460				 "unblocking target at zero depth\n"));
1461	}
1462
1463	if (busy >= starget->can_queue)
1464		goto starved;
1465
1466	return 1;
1467
1468starved:
1469	spin_lock_irq(shost->host_lock);
1470	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1471	spin_unlock_irq(shost->host_lock);
1472out_dec:
1473	if (starget->can_queue > 0)
1474		atomic_dec(&starget->target_busy);
1475	return 0;
1476}
1477
1478/*
1479 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1480 * return 0. We must end up running the queue again whenever 0 is
1481 * returned, else IO can hang.
1482 */
1483static inline int scsi_host_queue_ready(struct request_queue *q,
1484				   struct Scsi_Host *shost,
1485				   struct scsi_device *sdev)
1486{
1487	unsigned int busy;
1488
1489	if (scsi_host_in_recovery(shost))
1490		return 0;
1491
1492	busy = atomic_inc_return(&shost->host_busy) - 1;
1493	if (atomic_read(&shost->host_blocked) > 0) {
1494		if (busy)
1495			goto starved;
1496
1497		/*
1498		 * unblock after host_blocked iterates to zero
1499		 */
1500		if (atomic_dec_return(&shost->host_blocked) > 0)
1501			goto out_dec;
1502
1503		SCSI_LOG_MLQUEUE(3,
1504			shost_printk(KERN_INFO, shost,
1505				     "unblocking host at zero depth\n"));
1506	}
1507
1508	if (shost->can_queue > 0 && busy >= shost->can_queue)
1509		goto starved;
1510	if (shost->host_self_blocked)
1511		goto starved;
1512
1513	/* We're OK to process the command, so we can't be starved */
1514	if (!list_empty(&sdev->starved_entry)) {
1515		spin_lock_irq(shost->host_lock);
1516		if (!list_empty(&sdev->starved_entry))
1517			list_del_init(&sdev->starved_entry);
1518		spin_unlock_irq(shost->host_lock);
1519	}
1520
1521	return 1;
1522
1523starved:
1524	spin_lock_irq(shost->host_lock);
1525	if (list_empty(&sdev->starved_entry))
1526		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1527	spin_unlock_irq(shost->host_lock);
1528out_dec:
1529	atomic_dec(&shost->host_busy);
1530	return 0;
1531}
1532
1533/*
1534 * Busy state exporting function for request stacking drivers.
1535 *
1536 * For efficiency, no lock is taken to check the busy state of
1537 * shost/starget/sdev, since the returned value is not guaranteed and
1538 * may be changed after request stacking drivers call the function,
1539 * regardless of taking lock or not.
1540 *
1541 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1542 * needs to return 'not busy'. Otherwise, request stacking drivers
1543 * may hold requests forever.
1544 */
1545static int scsi_lld_busy(struct request_queue *q)
1546{
1547	struct scsi_device *sdev = q->queuedata;
1548	struct Scsi_Host *shost;
1549
1550	if (blk_queue_dying(q))
1551		return 0;
1552
1553	shost = sdev->host;
1554
1555	/*
1556	 * Ignore host/starget busy state.
1557	 * Since block layer does not have a concept of fairness across
1558	 * multiple queues, congestion of host/starget needs to be handled
1559	 * in SCSI layer.
1560	 */
1561	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1562		return 1;
1563
1564	return 0;
1565}
1566
1567/*
1568 * Kill a request for a dead device
1569 */
1570static void scsi_kill_request(struct request *req, struct request_queue *q)
1571{
1572	struct scsi_cmnd *cmd = req->special;
1573	struct scsi_device *sdev;
1574	struct scsi_target *starget;
1575	struct Scsi_Host *shost;
1576
1577	blk_start_request(req);
1578
1579	scmd_printk(KERN_INFO, cmd, "killing request\n");
1580
1581	sdev = cmd->device;
1582	starget = scsi_target(sdev);
1583	shost = sdev->host;
1584	scsi_init_cmd_errh(cmd);
1585	cmd->result = DID_NO_CONNECT << 16;
1586	atomic_inc(&cmd->device->iorequest_cnt);
1587
1588	/*
1589	 * SCSI request completion path will do scsi_device_unbusy(),
1590	 * bump busy counts.  To bump the counters, we need to dance
1591	 * with the locks as normal issue path does.
1592	 */
1593	atomic_inc(&sdev->device_busy);
1594	atomic_inc(&shost->host_busy);
1595	if (starget->can_queue > 0)
1596		atomic_inc(&starget->target_busy);
1597
1598	blk_complete_request(req);
1599}
1600
1601static void scsi_softirq_done(struct request *rq)
1602{
1603	struct scsi_cmnd *cmd = rq->special;
1604	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1605	int disposition;
1606
1607	INIT_LIST_HEAD(&cmd->eh_entry);
1608
1609	atomic_inc(&cmd->device->iodone_cnt);
1610	if (cmd->result)
1611		atomic_inc(&cmd->device->ioerr_cnt);
1612
1613	disposition = scsi_decide_disposition(cmd);
1614	if (disposition != SUCCESS &&
1615	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1616		sdev_printk(KERN_ERR, cmd->device,
1617			    "timing out command, waited %lus\n",
1618			    wait_for/HZ);
1619		disposition = SUCCESS;
1620	}
1621
1622	scsi_log_completion(cmd, disposition);
1623
1624	switch (disposition) {
1625		case SUCCESS:
1626			scsi_finish_command(cmd);
1627			break;
1628		case NEEDS_RETRY:
1629			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1630			break;
1631		case ADD_TO_MLQUEUE:
1632			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1633			break;
1634		default:
1635			if (!scsi_eh_scmd_add(cmd, 0))
1636				scsi_finish_command(cmd);
1637	}
1638}
1639
1640/**
1641 * scsi_done - Invoke completion on finished SCSI command.
1642 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1643 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1644 *
1645 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1646 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1647 * calls blk_complete_request() for further processing.
1648 *
1649 * This function is interrupt context safe.
1650 */
1651static void scsi_done(struct scsi_cmnd *cmd)
1652{
1653	trace_scsi_dispatch_cmd_done(cmd);
1654	blk_complete_request(cmd->request);
1655}
1656
1657/*
1658 * Function:    scsi_request_fn()
1659 *
1660 * Purpose:     Main strategy routine for SCSI.
1661 *
1662 * Arguments:   q       - Pointer to actual queue.
1663 *
1664 * Returns:     Nothing
1665 *
1666 * Lock status: IO request lock assumed to be held when called.
1667 */
1668static void scsi_request_fn(struct request_queue *q)
1669	__releases(q->queue_lock)
1670	__acquires(q->queue_lock)
1671{
1672	struct scsi_device *sdev = q->queuedata;
1673	struct Scsi_Host *shost;
1674	struct scsi_cmnd *cmd;
1675	struct request *req;
1676
1677	/*
1678	 * To start with, we keep looping until the queue is empty, or until
1679	 * the host is no longer able to accept any more requests.
1680	 */
1681	shost = sdev->host;
1682	for (;;) {
1683		int rtn;
1684		/*
1685		 * get next queueable request.  We do this early to make sure
1686		 * that the request is fully prepared even if we cannot
1687		 * accept it.
1688		 */
1689		req = blk_peek_request(q);
1690		if (!req)
1691			break;
1692
1693		if (unlikely(!scsi_device_online(sdev))) {
1694			sdev_printk(KERN_ERR, sdev,
1695				    "rejecting I/O to offline device\n");
1696			scsi_kill_request(req, q);
1697			continue;
1698		}
1699
1700		if (!scsi_dev_queue_ready(q, sdev))
1701			break;
1702
1703		/*
1704		 * Remove the request from the request list.
1705		 */
1706		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1707			blk_start_request(req);
1708
1709		spin_unlock_irq(q->queue_lock);
1710		cmd = req->special;
1711		if (unlikely(cmd == NULL)) {
1712			printk(KERN_CRIT "impossible request in %s.\n"
1713					 "please mail a stack trace to "
1714					 "linux-scsi@vger.kernel.org\n",
1715					 __func__);
1716			blk_dump_rq_flags(req, "foo");
1717			BUG();
1718		}
1719
1720		/*
1721		 * We hit this when the driver is using a host wide
1722		 * tag map. For device level tag maps the queue_depth check
1723		 * in the device ready fn would prevent us from trying
1724		 * to allocate a tag. Since the map is a shared host resource
1725		 * we add the dev to the starved list so it eventually gets
1726		 * a run when a tag is freed.
1727		 */
1728		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1729			spin_lock_irq(shost->host_lock);
1730			if (list_empty(&sdev->starved_entry))
1731				list_add_tail(&sdev->starved_entry,
1732					      &shost->starved_list);
1733			spin_unlock_irq(shost->host_lock);
1734			goto not_ready;
1735		}
1736
1737		if (!scsi_target_queue_ready(shost, sdev))
1738			goto not_ready;
1739
1740		if (!scsi_host_queue_ready(q, shost, sdev))
1741			goto host_not_ready;
1742
1743		/*
1744		 * Finally, initialize any error handling parameters, and set up
1745		 * the timers for timeouts.
1746		 */
1747		scsi_init_cmd_errh(cmd);
1748
1749		/*
1750		 * Dispatch the command to the low-level driver.
1751		 */
1752		cmd->scsi_done = scsi_done;
1753		rtn = scsi_dispatch_cmd(cmd);
1754		if (rtn) {
1755			scsi_queue_insert(cmd, rtn);
1756			spin_lock_irq(q->queue_lock);
1757			goto out_delay;
1758		}
1759		spin_lock_irq(q->queue_lock);
1760	}
1761
1762	return;
1763
1764 host_not_ready:
1765	if (scsi_target(sdev)->can_queue > 0)
1766		atomic_dec(&scsi_target(sdev)->target_busy);
1767 not_ready:
1768	/*
1769	 * lock q, handle tag, requeue req, and decrement device_busy. We
1770	 * must return with queue_lock held.
1771	 *
1772	 * Decrementing device_busy without checking it is OK, as all such
1773	 * cases (host limits or settings) should run the queue at some
1774	 * later time.
1775	 */
1776	spin_lock_irq(q->queue_lock);
1777	blk_requeue_request(q, req);
1778	atomic_dec(&sdev->device_busy);
1779out_delay:
1780	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1781		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1782}
1783
1784static inline int prep_to_mq(int ret)
1785{
1786	switch (ret) {
1787	case BLKPREP_OK:
1788		return 0;
1789	case BLKPREP_DEFER:
1790		return BLK_MQ_RQ_QUEUE_BUSY;
1791	default:
1792		return BLK_MQ_RQ_QUEUE_ERROR;
1793	}
1794}
1795
1796static int scsi_mq_prep_fn(struct request *req)
1797{
1798	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1799	struct scsi_device *sdev = req->q->queuedata;
1800	struct Scsi_Host *shost = sdev->host;
1801	unsigned char *sense_buf = cmd->sense_buffer;
1802	struct scatterlist *sg;
1803
1804	memset(cmd, 0, sizeof(struct scsi_cmnd));
1805
1806	req->special = cmd;
1807
1808	cmd->request = req;
1809	cmd->device = sdev;
1810	cmd->sense_buffer = sense_buf;
1811
1812	cmd->tag = req->tag;
1813
1814	cmd->cmnd = req->cmd;
1815	cmd->prot_op = SCSI_PROT_NORMAL;
1816
1817	INIT_LIST_HEAD(&cmd->list);
1818	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1819	cmd->jiffies_at_alloc = jiffies;
1820
1821	if (shost->use_cmd_list) {
1822		spin_lock_irq(&sdev->list_lock);
1823		list_add_tail(&cmd->list, &sdev->cmd_list);
1824		spin_unlock_irq(&sdev->list_lock);
1825	}
1826
1827	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1828	cmd->sdb.table.sgl = sg;
1829
1830	if (scsi_host_get_prot(shost)) {
1831		cmd->prot_sdb = (void *)sg +
1832			shost->sg_tablesize * sizeof(struct scatterlist);
1833		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1834
1835		cmd->prot_sdb->table.sgl =
1836			(struct scatterlist *)(cmd->prot_sdb + 1);
1837	}
1838
1839	if (blk_bidi_rq(req)) {
1840		struct request *next_rq = req->next_rq;
1841		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1842
1843		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1844		bidi_sdb->table.sgl =
1845			(struct scatterlist *)(bidi_sdb + 1);
1846
1847		next_rq->special = bidi_sdb;
1848	}
1849
1850	blk_mq_start_request(req);
1851
1852	return scsi_setup_cmnd(sdev, req);
1853}
1854
1855static void scsi_mq_done(struct scsi_cmnd *cmd)
1856{
1857	trace_scsi_dispatch_cmd_done(cmd);
1858	blk_mq_complete_request(cmd->request);
1859}
1860
1861static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1862		bool last)
1863{
1864	struct request_queue *q = req->q;
1865	struct scsi_device *sdev = q->queuedata;
1866	struct Scsi_Host *shost = sdev->host;
1867	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1868	int ret;
1869	int reason;
1870
1871	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1872	if (ret)
1873		goto out;
1874
1875	ret = BLK_MQ_RQ_QUEUE_BUSY;
1876	if (!get_device(&sdev->sdev_gendev))
1877		goto out;
1878
1879	if (!scsi_dev_queue_ready(q, sdev))
1880		goto out_put_device;
1881	if (!scsi_target_queue_ready(shost, sdev))
1882		goto out_dec_device_busy;
1883	if (!scsi_host_queue_ready(q, shost, sdev))
1884		goto out_dec_target_busy;
1885
1886
1887	if (!(req->cmd_flags & REQ_DONTPREP)) {
1888		ret = prep_to_mq(scsi_mq_prep_fn(req));
1889		if (ret)
1890			goto out_dec_host_busy;
1891		req->cmd_flags |= REQ_DONTPREP;
1892	} else {
1893		blk_mq_start_request(req);
1894	}
1895
1896	if (blk_queue_tagged(q))
1897		req->cmd_flags |= REQ_QUEUED;
1898	else
1899		req->cmd_flags &= ~REQ_QUEUED;
1900
1901	scsi_init_cmd_errh(cmd);
1902	cmd->scsi_done = scsi_mq_done;
1903
1904	reason = scsi_dispatch_cmd(cmd);
1905	if (reason) {
1906		scsi_set_blocked(cmd, reason);
1907		ret = BLK_MQ_RQ_QUEUE_BUSY;
1908		goto out_dec_host_busy;
1909	}
1910
1911	return BLK_MQ_RQ_QUEUE_OK;
1912
1913out_dec_host_busy:
1914	atomic_dec(&shost->host_busy);
1915out_dec_target_busy:
1916	if (scsi_target(sdev)->can_queue > 0)
1917		atomic_dec(&scsi_target(sdev)->target_busy);
1918out_dec_device_busy:
1919	atomic_dec(&sdev->device_busy);
1920out_put_device:
1921	put_device(&sdev->sdev_gendev);
1922out:
1923	switch (ret) {
1924	case BLK_MQ_RQ_QUEUE_BUSY:
1925		blk_mq_stop_hw_queue(hctx);
1926		if (atomic_read(&sdev->device_busy) == 0 &&
1927		    !scsi_device_blocked(sdev))
1928			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1929		break;
1930	case BLK_MQ_RQ_QUEUE_ERROR:
1931		/*
1932		 * Make sure to release all allocated ressources when
1933		 * we hit an error, as we will never see this command
1934		 * again.
1935		 */
1936		if (req->cmd_flags & REQ_DONTPREP)
1937			scsi_mq_uninit_cmd(cmd);
1938		break;
1939	default:
1940		break;
1941	}
1942	return ret;
1943}
1944
1945static enum blk_eh_timer_return scsi_timeout(struct request *req,
1946		bool reserved)
1947{
1948	if (reserved)
1949		return BLK_EH_RESET_TIMER;
1950	return scsi_times_out(req);
1951}
1952
1953static int scsi_init_request(void *data, struct request *rq,
1954		unsigned int hctx_idx, unsigned int request_idx,
1955		unsigned int numa_node)
1956{
1957	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1958
1959	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1960			numa_node);
1961	if (!cmd->sense_buffer)
1962		return -ENOMEM;
1963	return 0;
1964}
1965
1966static void scsi_exit_request(void *data, struct request *rq,
1967		unsigned int hctx_idx, unsigned int request_idx)
1968{
1969	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1970
1971	kfree(cmd->sense_buffer);
1972}
1973
1974static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1975{
1976	struct device *host_dev;
1977	u64 bounce_limit = 0xffffffff;
1978
1979	if (shost->unchecked_isa_dma)
1980		return BLK_BOUNCE_ISA;
1981	/*
1982	 * Platforms with virtual-DMA translation
1983	 * hardware have no practical limit.
1984	 */
1985	if (!PCI_DMA_BUS_IS_PHYS)
1986		return BLK_BOUNCE_ANY;
1987
1988	host_dev = scsi_get_device(shost);
1989	if (host_dev && host_dev->dma_mask)
1990		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1991
1992	return bounce_limit;
1993}
1994
1995static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1996{
1997	struct device *dev = shost->dma_dev;
1998
1999	/*
2000	 * this limit is imposed by hardware restrictions
2001	 */
2002	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2003					SCSI_MAX_SG_CHAIN_SEGMENTS));
2004
2005	if (scsi_host_prot_dma(shost)) {
2006		shost->sg_prot_tablesize =
2007			min_not_zero(shost->sg_prot_tablesize,
2008				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2009		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2010		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2011	}
2012
2013	blk_queue_max_hw_sectors(q, shost->max_sectors);
2014	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2015	blk_queue_segment_boundary(q, shost->dma_boundary);
2016	dma_set_seg_boundary(dev, shost->dma_boundary);
2017
2018	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2019
2020	if (!shost->use_clustering)
2021		q->limits.cluster = 0;
2022
2023	/*
2024	 * set a reasonable default alignment on word boundaries: the
2025	 * host and device may alter it using
2026	 * blk_queue_update_dma_alignment() later.
2027	 */
2028	blk_queue_dma_alignment(q, 0x03);
2029}
2030
2031struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2032					 request_fn_proc *request_fn)
2033{
2034	struct request_queue *q;
2035
2036	q = blk_init_queue(request_fn, NULL);
2037	if (!q)
2038		return NULL;
2039	__scsi_init_queue(shost, q);
2040	return q;
2041}
2042EXPORT_SYMBOL(__scsi_alloc_queue);
2043
2044struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2045{
2046	struct request_queue *q;
2047
2048	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2049	if (!q)
2050		return NULL;
2051
2052	blk_queue_prep_rq(q, scsi_prep_fn);
2053	blk_queue_unprep_rq(q, scsi_unprep_fn);
2054	blk_queue_softirq_done(q, scsi_softirq_done);
2055	blk_queue_rq_timed_out(q, scsi_times_out);
2056	blk_queue_lld_busy(q, scsi_lld_busy);
2057	return q;
2058}
2059
2060static struct blk_mq_ops scsi_mq_ops = {
2061	.map_queue	= blk_mq_map_queue,
2062	.queue_rq	= scsi_queue_rq,
2063	.complete	= scsi_softirq_done,
2064	.timeout	= scsi_timeout,
2065	.init_request	= scsi_init_request,
2066	.exit_request	= scsi_exit_request,
2067};
2068
2069struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2070{
2071	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2072	if (IS_ERR(sdev->request_queue))
2073		return NULL;
2074
2075	sdev->request_queue->queuedata = sdev;
2076	__scsi_init_queue(sdev->host, sdev->request_queue);
2077	return sdev->request_queue;
2078}
2079
2080int scsi_mq_setup_tags(struct Scsi_Host *shost)
2081{
2082	unsigned int cmd_size, sgl_size, tbl_size;
2083
2084	tbl_size = shost->sg_tablesize;
2085	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2086		tbl_size = SCSI_MAX_SG_SEGMENTS;
2087	sgl_size = tbl_size * sizeof(struct scatterlist);
2088	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2089	if (scsi_host_get_prot(shost))
2090		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2091
2092	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2093	shost->tag_set.ops = &scsi_mq_ops;
2094	shost->tag_set.nr_hw_queues = 1;
2095	shost->tag_set.queue_depth = shost->can_queue;
2096	shost->tag_set.cmd_size = cmd_size;
2097	shost->tag_set.numa_node = NUMA_NO_NODE;
2098	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2099	shost->tag_set.driver_data = shost;
2100
2101	return blk_mq_alloc_tag_set(&shost->tag_set);
2102}
2103
2104void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2105{
2106	blk_mq_free_tag_set(&shost->tag_set);
2107}
2108
2109/*
2110 * Function:    scsi_block_requests()
2111 *
2112 * Purpose:     Utility function used by low-level drivers to prevent further
2113 *		commands from being queued to the device.
2114 *
2115 * Arguments:   shost       - Host in question
2116 *
2117 * Returns:     Nothing
2118 *
2119 * Lock status: No locks are assumed held.
2120 *
2121 * Notes:       There is no timer nor any other means by which the requests
2122 *		get unblocked other than the low-level driver calling
2123 *		scsi_unblock_requests().
2124 */
2125void scsi_block_requests(struct Scsi_Host *shost)
2126{
2127	shost->host_self_blocked = 1;
2128}
2129EXPORT_SYMBOL(scsi_block_requests);
2130
2131/*
2132 * Function:    scsi_unblock_requests()
2133 *
2134 * Purpose:     Utility function used by low-level drivers to allow further
2135 *		commands from being queued to the device.
2136 *
2137 * Arguments:   shost       - Host in question
2138 *
2139 * Returns:     Nothing
2140 *
2141 * Lock status: No locks are assumed held.
2142 *
2143 * Notes:       There is no timer nor any other means by which the requests
2144 *		get unblocked other than the low-level driver calling
2145 *		scsi_unblock_requests().
2146 *
2147 *		This is done as an API function so that changes to the
2148 *		internals of the scsi mid-layer won't require wholesale
2149 *		changes to drivers that use this feature.
2150 */
2151void scsi_unblock_requests(struct Scsi_Host *shost)
2152{
2153	shost->host_self_blocked = 0;
2154	scsi_run_host_queues(shost);
2155}
2156EXPORT_SYMBOL(scsi_unblock_requests);
2157
2158int __init scsi_init_queue(void)
2159{
2160	int i;
2161
2162	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2163					   sizeof(struct scsi_data_buffer),
2164					   0, 0, NULL);
2165	if (!scsi_sdb_cache) {
2166		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2167		return -ENOMEM;
2168	}
2169
2170	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2171		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2172		int size = sgp->size * sizeof(struct scatterlist);
2173
2174		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2175				SLAB_HWCACHE_ALIGN, NULL);
2176		if (!sgp->slab) {
2177			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2178					sgp->name);
2179			goto cleanup_sdb;
2180		}
2181
2182		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2183						     sgp->slab);
2184		if (!sgp->pool) {
2185			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2186					sgp->name);
2187			goto cleanup_sdb;
2188		}
2189	}
2190
2191	return 0;
2192
2193cleanup_sdb:
2194	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2195		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2196		if (sgp->pool)
2197			mempool_destroy(sgp->pool);
2198		if (sgp->slab)
2199			kmem_cache_destroy(sgp->slab);
2200	}
2201	kmem_cache_destroy(scsi_sdb_cache);
2202
2203	return -ENOMEM;
2204}
2205
2206void scsi_exit_queue(void)
2207{
2208	int i;
2209
2210	kmem_cache_destroy(scsi_sdb_cache);
2211
2212	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2213		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2214		mempool_destroy(sgp->pool);
2215		kmem_cache_destroy(sgp->slab);
2216	}
2217}
2218
2219/**
2220 *	scsi_mode_select - issue a mode select
2221 *	@sdev:	SCSI device to be queried
2222 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2223 *	@sp:	Save page bit (0 == don't save, 1 == save)
2224 *	@modepage: mode page being requested
2225 *	@buffer: request buffer (may not be smaller than eight bytes)
2226 *	@len:	length of request buffer.
2227 *	@timeout: command timeout
2228 *	@retries: number of retries before failing
2229 *	@data: returns a structure abstracting the mode header data
2230 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2231 *		must be SCSI_SENSE_BUFFERSIZE big.
2232 *
2233 *	Returns zero if successful; negative error number or scsi
2234 *	status on error
2235 *
2236 */
2237int
2238scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2239		 unsigned char *buffer, int len, int timeout, int retries,
2240		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2241{
2242	unsigned char cmd[10];
2243	unsigned char *real_buffer;
2244	int ret;
2245
2246	memset(cmd, 0, sizeof(cmd));
2247	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2248
2249	if (sdev->use_10_for_ms) {
2250		if (len > 65535)
2251			return -EINVAL;
2252		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2253		if (!real_buffer)
2254			return -ENOMEM;
2255		memcpy(real_buffer + 8, buffer, len);
2256		len += 8;
2257		real_buffer[0] = 0;
2258		real_buffer[1] = 0;
2259		real_buffer[2] = data->medium_type;
2260		real_buffer[3] = data->device_specific;
2261		real_buffer[4] = data->longlba ? 0x01 : 0;
2262		real_buffer[5] = 0;
2263		real_buffer[6] = data->block_descriptor_length >> 8;
2264		real_buffer[7] = data->block_descriptor_length;
2265
2266		cmd[0] = MODE_SELECT_10;
2267		cmd[7] = len >> 8;
2268		cmd[8] = len;
2269	} else {
2270		if (len > 255 || data->block_descriptor_length > 255 ||
2271		    data->longlba)
2272			return -EINVAL;
2273
2274		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2275		if (!real_buffer)
2276			return -ENOMEM;
2277		memcpy(real_buffer + 4, buffer, len);
2278		len += 4;
2279		real_buffer[0] = 0;
2280		real_buffer[1] = data->medium_type;
2281		real_buffer[2] = data->device_specific;
2282		real_buffer[3] = data->block_descriptor_length;
2283
2284
2285		cmd[0] = MODE_SELECT;
2286		cmd[4] = len;
2287	}
2288
2289	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2290			       sshdr, timeout, retries, NULL);
2291	kfree(real_buffer);
2292	return ret;
2293}
2294EXPORT_SYMBOL_GPL(scsi_mode_select);
2295
2296/**
2297 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2298 *	@sdev:	SCSI device to be queried
2299 *	@dbd:	set if mode sense will allow block descriptors to be returned
2300 *	@modepage: mode page being requested
2301 *	@buffer: request buffer (may not be smaller than eight bytes)
2302 *	@len:	length of request buffer.
2303 *	@timeout: command timeout
2304 *	@retries: number of retries before failing
2305 *	@data: returns a structure abstracting the mode header data
2306 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2307 *		must be SCSI_SENSE_BUFFERSIZE big.
2308 *
2309 *	Returns zero if unsuccessful, or the header offset (either 4
2310 *	or 8 depending on whether a six or ten byte command was
2311 *	issued) if successful.
2312 */
2313int
2314scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2315		  unsigned char *buffer, int len, int timeout, int retries,
2316		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2317{
2318	unsigned char cmd[12];
2319	int use_10_for_ms;
2320	int header_length;
2321	int result;
2322	struct scsi_sense_hdr my_sshdr;
2323
2324	memset(data, 0, sizeof(*data));
2325	memset(&cmd[0], 0, 12);
2326	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2327	cmd[2] = modepage;
2328
2329	/* caller might not be interested in sense, but we need it */
2330	if (!sshdr)
2331		sshdr = &my_sshdr;
2332
2333 retry:
2334	use_10_for_ms = sdev->use_10_for_ms;
2335
2336	if (use_10_for_ms) {
2337		if (len < 8)
2338			len = 8;
2339
2340		cmd[0] = MODE_SENSE_10;
2341		cmd[8] = len;
2342		header_length = 8;
2343	} else {
2344		if (len < 4)
2345			len = 4;
2346
2347		cmd[0] = MODE_SENSE;
2348		cmd[4] = len;
2349		header_length = 4;
2350	}
2351
2352	memset(buffer, 0, len);
2353
2354	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2355				  sshdr, timeout, retries, NULL);
2356
2357	/* This code looks awful: what it's doing is making sure an
2358	 * ILLEGAL REQUEST sense return identifies the actual command
2359	 * byte as the problem.  MODE_SENSE commands can return
2360	 * ILLEGAL REQUEST if the code page isn't supported */
2361
2362	if (use_10_for_ms && !scsi_status_is_good(result) &&
2363	    (driver_byte(result) & DRIVER_SENSE)) {
2364		if (scsi_sense_valid(sshdr)) {
2365			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2366			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2367				/*
2368				 * Invalid command operation code
2369				 */
2370				sdev->use_10_for_ms = 0;
2371				goto retry;
2372			}
2373		}
2374	}
2375
2376	if(scsi_status_is_good(result)) {
2377		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2378			     (modepage == 6 || modepage == 8))) {
2379			/* Initio breakage? */
2380			header_length = 0;
2381			data->length = 13;
2382			data->medium_type = 0;
2383			data->device_specific = 0;
2384			data->longlba = 0;
2385			data->block_descriptor_length = 0;
2386		} else if(use_10_for_ms) {
2387			data->length = buffer[0]*256 + buffer[1] + 2;
2388			data->medium_type = buffer[2];
2389			data->device_specific = buffer[3];
2390			data->longlba = buffer[4] & 0x01;
2391			data->block_descriptor_length = buffer[6]*256
2392				+ buffer[7];
2393		} else {
2394			data->length = buffer[0] + 1;
2395			data->medium_type = buffer[1];
2396			data->device_specific = buffer[2];
2397			data->block_descriptor_length = buffer[3];
2398		}
2399		data->header_length = header_length;
2400	}
2401
2402	return result;
2403}
2404EXPORT_SYMBOL(scsi_mode_sense);
2405
2406/**
2407 *	scsi_test_unit_ready - test if unit is ready
2408 *	@sdev:	scsi device to change the state of.
2409 *	@timeout: command timeout
2410 *	@retries: number of retries before failing
2411 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2412 *		returning sense. Make sure that this is cleared before passing
2413 *		in.
2414 *
2415 *	Returns zero if unsuccessful or an error if TUR failed.  For
2416 *	removable media, UNIT_ATTENTION sets ->changed flag.
2417 **/
2418int
2419scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2420		     struct scsi_sense_hdr *sshdr_external)
2421{
2422	char cmd[] = {
2423		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2424	};
2425	struct scsi_sense_hdr *sshdr;
2426	int result;
2427
2428	if (!sshdr_external)
2429		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2430	else
2431		sshdr = sshdr_external;
2432
2433	/* try to eat the UNIT_ATTENTION if there are enough retries */
2434	do {
2435		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2436					  timeout, retries, NULL);
2437		if (sdev->removable && scsi_sense_valid(sshdr) &&
2438		    sshdr->sense_key == UNIT_ATTENTION)
2439			sdev->changed = 1;
2440	} while (scsi_sense_valid(sshdr) &&
2441		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2442
2443	if (!sshdr_external)
2444		kfree(sshdr);
2445	return result;
2446}
2447EXPORT_SYMBOL(scsi_test_unit_ready);
2448
2449/**
2450 *	scsi_device_set_state - Take the given device through the device state model.
2451 *	@sdev:	scsi device to change the state of.
2452 *	@state:	state to change to.
2453 *
2454 *	Returns zero if unsuccessful or an error if the requested
2455 *	transition is illegal.
2456 */
2457int
2458scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2459{
2460	enum scsi_device_state oldstate = sdev->sdev_state;
2461
2462	if (state == oldstate)
2463		return 0;
2464
2465	switch (state) {
2466	case SDEV_CREATED:
2467		switch (oldstate) {
2468		case SDEV_CREATED_BLOCK:
2469			break;
2470		default:
2471			goto illegal;
2472		}
2473		break;
2474
2475	case SDEV_RUNNING:
2476		switch (oldstate) {
2477		case SDEV_CREATED:
2478		case SDEV_OFFLINE:
2479		case SDEV_TRANSPORT_OFFLINE:
2480		case SDEV_QUIESCE:
2481		case SDEV_BLOCK:
2482			break;
2483		default:
2484			goto illegal;
2485		}
2486		break;
2487
2488	case SDEV_QUIESCE:
2489		switch (oldstate) {
2490		case SDEV_RUNNING:
2491		case SDEV_OFFLINE:
2492		case SDEV_TRANSPORT_OFFLINE:
2493			break;
2494		default:
2495			goto illegal;
2496		}
2497		break;
2498
2499	case SDEV_OFFLINE:
2500	case SDEV_TRANSPORT_OFFLINE:
2501		switch (oldstate) {
2502		case SDEV_CREATED:
2503		case SDEV_RUNNING:
2504		case SDEV_QUIESCE:
2505		case SDEV_BLOCK:
2506			break;
2507		default:
2508			goto illegal;
2509		}
2510		break;
2511
2512	case SDEV_BLOCK:
2513		switch (oldstate) {
2514		case SDEV_RUNNING:
2515		case SDEV_CREATED_BLOCK:
2516			break;
2517		default:
2518			goto illegal;
2519		}
2520		break;
2521
2522	case SDEV_CREATED_BLOCK:
2523		switch (oldstate) {
2524		case SDEV_CREATED:
2525			break;
2526		default:
2527			goto illegal;
2528		}
2529		break;
2530
2531	case SDEV_CANCEL:
2532		switch (oldstate) {
2533		case SDEV_CREATED:
2534		case SDEV_RUNNING:
2535		case SDEV_QUIESCE:
2536		case SDEV_OFFLINE:
2537		case SDEV_TRANSPORT_OFFLINE:
2538		case SDEV_BLOCK:
2539			break;
2540		default:
2541			goto illegal;
2542		}
2543		break;
2544
2545	case SDEV_DEL:
2546		switch (oldstate) {
2547		case SDEV_CREATED:
2548		case SDEV_RUNNING:
2549		case SDEV_OFFLINE:
2550		case SDEV_TRANSPORT_OFFLINE:
2551		case SDEV_CANCEL:
2552		case SDEV_CREATED_BLOCK:
2553			break;
2554		default:
2555			goto illegal;
2556		}
2557		break;
2558
2559	}
2560	sdev->sdev_state = state;
2561	return 0;
2562
2563 illegal:
2564	SCSI_LOG_ERROR_RECOVERY(1,
2565				sdev_printk(KERN_ERR, sdev,
2566					    "Illegal state transition %s->%s",
2567					    scsi_device_state_name(oldstate),
2568					    scsi_device_state_name(state))
2569				);
2570	return -EINVAL;
2571}
2572EXPORT_SYMBOL(scsi_device_set_state);
2573
2574/**
2575 * 	sdev_evt_emit - emit a single SCSI device uevent
2576 *	@sdev: associated SCSI device
2577 *	@evt: event to emit
2578 *
2579 *	Send a single uevent (scsi_event) to the associated scsi_device.
2580 */
2581static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2582{
2583	int idx = 0;
2584	char *envp[3];
2585
2586	switch (evt->evt_type) {
2587	case SDEV_EVT_MEDIA_CHANGE:
2588		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2589		break;
2590	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2591		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2592		break;
2593	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2594		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2595		break;
2596	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2597	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2598		break;
2599	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2600		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2601		break;
2602	case SDEV_EVT_LUN_CHANGE_REPORTED:
2603		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2604		break;
2605	default:
2606		/* do nothing */
2607		break;
2608	}
2609
2610	envp[idx++] = NULL;
2611
2612	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2613}
2614
2615/**
2616 * 	sdev_evt_thread - send a uevent for each scsi event
2617 *	@work: work struct for scsi_device
2618 *
2619 *	Dispatch queued events to their associated scsi_device kobjects
2620 *	as uevents.
2621 */
2622void scsi_evt_thread(struct work_struct *work)
2623{
2624	struct scsi_device *sdev;
2625	enum scsi_device_event evt_type;
2626	LIST_HEAD(event_list);
2627
2628	sdev = container_of(work, struct scsi_device, event_work);
2629
2630	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2631		if (test_and_clear_bit(evt_type, sdev->pending_events))
2632			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2633
2634	while (1) {
2635		struct scsi_event *evt;
2636		struct list_head *this, *tmp;
2637		unsigned long flags;
2638
2639		spin_lock_irqsave(&sdev->list_lock, flags);
2640		list_splice_init(&sdev->event_list, &event_list);
2641		spin_unlock_irqrestore(&sdev->list_lock, flags);
2642
2643		if (list_empty(&event_list))
2644			break;
2645
2646		list_for_each_safe(this, tmp, &event_list) {
2647			evt = list_entry(this, struct scsi_event, node);
2648			list_del(&evt->node);
2649			scsi_evt_emit(sdev, evt);
2650			kfree(evt);
2651		}
2652	}
2653}
2654
2655/**
2656 * 	sdev_evt_send - send asserted event to uevent thread
2657 *	@sdev: scsi_device event occurred on
2658 *	@evt: event to send
2659 *
2660 *	Assert scsi device event asynchronously.
2661 */
2662void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2663{
2664	unsigned long flags;
2665
2666#if 0
2667	/* FIXME: currently this check eliminates all media change events
2668	 * for polled devices.  Need to update to discriminate between AN
2669	 * and polled events */
2670	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2671		kfree(evt);
2672		return;
2673	}
2674#endif
2675
2676	spin_lock_irqsave(&sdev->list_lock, flags);
2677	list_add_tail(&evt->node, &sdev->event_list);
2678	schedule_work(&sdev->event_work);
2679	spin_unlock_irqrestore(&sdev->list_lock, flags);
2680}
2681EXPORT_SYMBOL_GPL(sdev_evt_send);
2682
2683/**
2684 * 	sdev_evt_alloc - allocate a new scsi event
2685 *	@evt_type: type of event to allocate
2686 *	@gfpflags: GFP flags for allocation
2687 *
2688 *	Allocates and returns a new scsi_event.
2689 */
2690struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2691				  gfp_t gfpflags)
2692{
2693	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2694	if (!evt)
2695		return NULL;
2696
2697	evt->evt_type = evt_type;
2698	INIT_LIST_HEAD(&evt->node);
2699
2700	/* evt_type-specific initialization, if any */
2701	switch (evt_type) {
2702	case SDEV_EVT_MEDIA_CHANGE:
2703	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2704	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2705	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2706	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2707	case SDEV_EVT_LUN_CHANGE_REPORTED:
2708	default:
2709		/* do nothing */
2710		break;
2711	}
2712
2713	return evt;
2714}
2715EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2716
2717/**
2718 * 	sdev_evt_send_simple - send asserted event to uevent thread
2719 *	@sdev: scsi_device event occurred on
2720 *	@evt_type: type of event to send
2721 *	@gfpflags: GFP flags for allocation
2722 *
2723 *	Assert scsi device event asynchronously, given an event type.
2724 */
2725void sdev_evt_send_simple(struct scsi_device *sdev,
2726			  enum scsi_device_event evt_type, gfp_t gfpflags)
2727{
2728	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2729	if (!evt) {
2730		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2731			    evt_type);
2732		return;
2733	}
2734
2735	sdev_evt_send(sdev, evt);
2736}
2737EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2738
2739/**
2740 *	scsi_device_quiesce - Block user issued commands.
2741 *	@sdev:	scsi device to quiesce.
2742 *
2743 *	This works by trying to transition to the SDEV_QUIESCE state
2744 *	(which must be a legal transition).  When the device is in this
2745 *	state, only special requests will be accepted, all others will
2746 *	be deferred.  Since special requests may also be requeued requests,
2747 *	a successful return doesn't guarantee the device will be
2748 *	totally quiescent.
2749 *
2750 *	Must be called with user context, may sleep.
2751 *
2752 *	Returns zero if unsuccessful or an error if not.
2753 */
2754int
2755scsi_device_quiesce(struct scsi_device *sdev)
2756{
2757	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758	if (err)
2759		return err;
2760
2761	scsi_run_queue(sdev->request_queue);
2762	while (atomic_read(&sdev->device_busy)) {
2763		msleep_interruptible(200);
2764		scsi_run_queue(sdev->request_queue);
2765	}
2766	return 0;
2767}
2768EXPORT_SYMBOL(scsi_device_quiesce);
2769
2770/**
2771 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2772 *	@sdev:	scsi device to resume.
2773 *
2774 *	Moves the device from quiesced back to running and restarts the
2775 *	queues.
2776 *
2777 *	Must be called with user context, may sleep.
2778 */
2779void scsi_device_resume(struct scsi_device *sdev)
2780{
2781	/* check if the device state was mutated prior to resume, and if
2782	 * so assume the state is being managed elsewhere (for example
2783	 * device deleted during suspend)
2784	 */
2785	if (sdev->sdev_state != SDEV_QUIESCE ||
2786	    scsi_device_set_state(sdev, SDEV_RUNNING))
2787		return;
2788	scsi_run_queue(sdev->request_queue);
2789}
2790EXPORT_SYMBOL(scsi_device_resume);
2791
2792static void
2793device_quiesce_fn(struct scsi_device *sdev, void *data)
2794{
2795	scsi_device_quiesce(sdev);
2796}
2797
2798void
2799scsi_target_quiesce(struct scsi_target *starget)
2800{
2801	starget_for_each_device(starget, NULL, device_quiesce_fn);
2802}
2803EXPORT_SYMBOL(scsi_target_quiesce);
2804
2805static void
2806device_resume_fn(struct scsi_device *sdev, void *data)
2807{
2808	scsi_device_resume(sdev);
2809}
2810
2811void
2812scsi_target_resume(struct scsi_target *starget)
2813{
2814	starget_for_each_device(starget, NULL, device_resume_fn);
2815}
2816EXPORT_SYMBOL(scsi_target_resume);
2817
2818/**
2819 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2820 * @sdev:	device to block
2821 *
2822 * Block request made by scsi lld's to temporarily stop all
2823 * scsi commands on the specified device.  Called from interrupt
2824 * or normal process context.
2825 *
2826 * Returns zero if successful or error if not
2827 *
2828 * Notes:
2829 *	This routine transitions the device to the SDEV_BLOCK state
2830 *	(which must be a legal transition).  When the device is in this
2831 *	state, all commands are deferred until the scsi lld reenables
2832 *	the device with scsi_device_unblock or device_block_tmo fires.
2833 */
2834int
2835scsi_internal_device_block(struct scsi_device *sdev)
2836{
2837	struct request_queue *q = sdev->request_queue;
2838	unsigned long flags;
2839	int err = 0;
2840
2841	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2842	if (err) {
2843		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2844
2845		if (err)
2846			return err;
2847	}
2848
2849	/*
2850	 * The device has transitioned to SDEV_BLOCK.  Stop the
2851	 * block layer from calling the midlayer with this device's
2852	 * request queue.
2853	 */
2854	if (q->mq_ops) {
2855		blk_mq_stop_hw_queues(q);
2856	} else {
2857		spin_lock_irqsave(q->queue_lock, flags);
2858		blk_stop_queue(q);
2859		spin_unlock_irqrestore(q->queue_lock, flags);
2860	}
2861
2862	return 0;
2863}
2864EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2865
2866/**
2867 * scsi_internal_device_unblock - resume a device after a block request
2868 * @sdev:	device to resume
2869 * @new_state:	state to set devices to after unblocking
2870 *
2871 * Called by scsi lld's or the midlayer to restart the device queue
2872 * for the previously suspended scsi device.  Called from interrupt or
2873 * normal process context.
2874 *
2875 * Returns zero if successful or error if not.
2876 *
2877 * Notes:
2878 *	This routine transitions the device to the SDEV_RUNNING state
2879 *	or to one of the offline states (which must be a legal transition)
2880 *	allowing the midlayer to goose the queue for this device.
2881 */
2882int
2883scsi_internal_device_unblock(struct scsi_device *sdev,
2884			     enum scsi_device_state new_state)
2885{
2886	struct request_queue *q = sdev->request_queue;
2887	unsigned long flags;
2888
2889	/*
2890	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2891	 * offlined states and goose the device queue if successful.
2892	 */
2893	if ((sdev->sdev_state == SDEV_BLOCK) ||
2894	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2895		sdev->sdev_state = new_state;
2896	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2897		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2898		    new_state == SDEV_OFFLINE)
2899			sdev->sdev_state = new_state;
2900		else
2901			sdev->sdev_state = SDEV_CREATED;
2902	} else if (sdev->sdev_state != SDEV_CANCEL &&
2903		 sdev->sdev_state != SDEV_OFFLINE)
2904		return -EINVAL;
2905
2906	if (q->mq_ops) {
2907		blk_mq_start_stopped_hw_queues(q, false);
2908	} else {
2909		spin_lock_irqsave(q->queue_lock, flags);
2910		blk_start_queue(q);
2911		spin_unlock_irqrestore(q->queue_lock, flags);
2912	}
2913
2914	return 0;
2915}
2916EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2917
2918static void
2919device_block(struct scsi_device *sdev, void *data)
2920{
2921	scsi_internal_device_block(sdev);
2922}
2923
2924static int
2925target_block(struct device *dev, void *data)
2926{
2927	if (scsi_is_target_device(dev))
2928		starget_for_each_device(to_scsi_target(dev), NULL,
2929					device_block);
2930	return 0;
2931}
2932
2933void
2934scsi_target_block(struct device *dev)
2935{
2936	if (scsi_is_target_device(dev))
2937		starget_for_each_device(to_scsi_target(dev), NULL,
2938					device_block);
2939	else
2940		device_for_each_child(dev, NULL, target_block);
2941}
2942EXPORT_SYMBOL_GPL(scsi_target_block);
2943
2944static void
2945device_unblock(struct scsi_device *sdev, void *data)
2946{
2947	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2948}
2949
2950static int
2951target_unblock(struct device *dev, void *data)
2952{
2953	if (scsi_is_target_device(dev))
2954		starget_for_each_device(to_scsi_target(dev), data,
2955					device_unblock);
2956	return 0;
2957}
2958
2959void
2960scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2961{
2962	if (scsi_is_target_device(dev))
2963		starget_for_each_device(to_scsi_target(dev), &new_state,
2964					device_unblock);
2965	else
2966		device_for_each_child(dev, &new_state, target_unblock);
2967}
2968EXPORT_SYMBOL_GPL(scsi_target_unblock);
2969
2970/**
2971 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2972 * @sgl:	scatter-gather list
2973 * @sg_count:	number of segments in sg
2974 * @offset:	offset in bytes into sg, on return offset into the mapped area
2975 * @len:	bytes to map, on return number of bytes mapped
2976 *
2977 * Returns virtual address of the start of the mapped page
2978 */
2979void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2980			  size_t *offset, size_t *len)
2981{
2982	int i;
2983	size_t sg_len = 0, len_complete = 0;
2984	struct scatterlist *sg;
2985	struct page *page;
2986
2987	WARN_ON(!irqs_disabled());
2988
2989	for_each_sg(sgl, sg, sg_count, i) {
2990		len_complete = sg_len; /* Complete sg-entries */
2991		sg_len += sg->length;
2992		if (sg_len > *offset)
2993			break;
2994	}
2995
2996	if (unlikely(i == sg_count)) {
2997		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2998			"elements %d\n",
2999		       __func__, sg_len, *offset, sg_count);
3000		WARN_ON(1);
3001		return NULL;
3002	}
3003
3004	/* Offset starting from the beginning of first page in this sg-entry */
3005	*offset = *offset - len_complete + sg->offset;
3006
3007	/* Assumption: contiguous pages can be accessed as "page + i" */
3008	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3009	*offset &= ~PAGE_MASK;
3010
3011	/* Bytes in this sg-entry from *offset to the end of the page */
3012	sg_len = PAGE_SIZE - *offset;
3013	if (*len > sg_len)
3014		*len = sg_len;
3015
3016	return kmap_atomic(page);
3017}
3018EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3019
3020/**
3021 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3022 * @virt:	virtual address to be unmapped
3023 */
3024void scsi_kunmap_atomic_sg(void *virt)
3025{
3026	kunmap_atomic(virt);
3027}
3028EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3029
3030void sdev_disable_disk_events(struct scsi_device *sdev)
3031{
3032	atomic_inc(&sdev->disk_events_disable_depth);
3033}
3034EXPORT_SYMBOL(sdev_disable_disk_events);
3035
3036void sdev_enable_disk_events(struct scsi_device *sdev)
3037{
3038	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3039		return;
3040	atomic_dec(&sdev->disk_events_disable_depth);
3041}
3042EXPORT_SYMBOL(sdev_enable_disk_events);
3043