1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000  Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 *         Wolfgang Stanglmeier        <wolf@cologne.de>
15 *         Stefan Esser                <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994  Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38 */
39
40/*
41 *  Scripts for SYMBIOS-Processor
42 *
43 *  We have to know the offsets of all labels before we reach
44 *  them (for forward jumps). Therefore we declare a struct
45 *  here. If you make changes inside the script,
46 *
47 *  DONT FORGET TO CHANGE THE LENGTHS HERE!
48 */
49
50/*
51 *  Script fragments which are loaded into the on-chip RAM
52 *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
53 *  Must not exceed 4K bytes.
54 */
55struct SYM_FWA_SCR {
56	u32 start		[ 14];
57	u32 getjob_begin	[  4];
58	u32 getjob_end		[  4];
59#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
60	u32 select		[  6];
61#else
62	u32 select		[  4];
63#endif
64#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
65	u32 is_dmap_dirty	[  4];
66#endif
67	u32 wf_sel_done		[  2];
68	u32 sel_done		[  2];
69	u32 send_ident		[  2];
70#ifdef SYM_CONF_IARB_SUPPORT
71	u32 select2		[  8];
72#else
73	u32 select2		[  2];
74#endif
75	u32 command		[  2];
76	u32 dispatch		[ 28];
77	u32 sel_no_cmd		[ 10];
78	u32 init		[  6];
79	u32 clrack		[  4];
80	u32 datai_done		[ 10];
81	u32 datai_done_wsr	[ 20];
82	u32 datao_done		[ 10];
83	u32 datao_done_wss	[  6];
84	u32 datai_phase		[  4];
85	u32 datao_phase		[  6];
86	u32 msg_in		[  2];
87	u32 msg_in2		[ 10];
88#ifdef SYM_CONF_IARB_SUPPORT
89	u32 status		[ 14];
90#else
91	u32 status		[ 10];
92#endif
93	u32 complete		[  6];
94	u32 complete2		[ 12];
95	u32 done		[ 14];
96	u32 done_end		[  2];
97	u32 complete_error	[  4];
98	u32 save_dp		[ 12];
99	u32 restore_dp		[  8];
100	u32 disconnect		[ 12];
101#ifdef SYM_CONF_IARB_SUPPORT
102	u32 idle		[  4];
103#else
104	u32 idle		[  2];
105#endif
106#ifdef SYM_CONF_IARB_SUPPORT
107	u32 ungetjob		[  6];
108#else
109	u32 ungetjob		[  4];
110#endif
111#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
112	u32 reselect		[  4];
113#else
114	u32 reselect		[  2];
115#endif
116	u32 reselected		[ 22];
117	u32 resel_scntl4	[ 20];
118	u32 resel_lun0		[  6];
119#if   SYM_CONF_MAX_TASK*4 > 512
120	u32 resel_tag		[ 26];
121#elif SYM_CONF_MAX_TASK*4 > 256
122	u32 resel_tag		[ 20];
123#else
124	u32 resel_tag		[ 16];
125#endif
126	u32 resel_dsa		[  2];
127	u32 resel_dsa1		[  4];
128	u32 resel_no_tag	[  6];
129	u32 data_in		[SYM_CONF_MAX_SG * 2];
130	u32 data_in2		[  4];
131	u32 data_out		[SYM_CONF_MAX_SG * 2];
132	u32 data_out2		[  4];
133	u32 pm0_data		[ 12];
134	u32 pm0_data_out	[  6];
135	u32 pm0_data_end	[  6];
136	u32 pm1_data		[ 12];
137	u32 pm1_data_out	[  6];
138	u32 pm1_data_end	[  6];
139};
140
141/*
142 *  Script fragments which stay in main memory for all chips
143 *  except for chips that support 8K on-chip RAM.
144 */
145struct SYM_FWB_SCR {
146	u32 start64		[  2];
147	u32 no_data		[  2];
148#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
149	u32 sel_for_abort	[ 18];
150#else
151	u32 sel_for_abort	[ 16];
152#endif
153	u32 sel_for_abort_1	[  2];
154	u32 msg_in_etc		[ 12];
155	u32 msg_received	[  4];
156	u32 msg_weird_seen	[  4];
157	u32 msg_extended	[ 20];
158	u32 msg_bad		[  6];
159	u32 msg_weird		[  4];
160	u32 msg_weird1		[  8];
161
162	u32 wdtr_resp		[  6];
163	u32 send_wdtr		[  4];
164	u32 sdtr_resp		[  6];
165	u32 send_sdtr		[  4];
166	u32 ppr_resp		[  6];
167	u32 send_ppr		[  4];
168	u32 nego_bad_phase	[  4];
169	u32 msg_out		[  4];
170	u32 msg_out_done	[  4];
171	u32 data_ovrun		[  2];
172	u32 data_ovrun1		[ 22];
173	u32 data_ovrun2		[  8];
174	u32 abort_resel		[ 16];
175	u32 resend_ident	[  4];
176	u32 ident_break		[  4];
177	u32 ident_break_atn	[  4];
178	u32 sdata_in		[  6];
179	u32 resel_bad_lun	[  4];
180	u32 bad_i_t_l		[  4];
181	u32 bad_i_t_l_q		[  4];
182	u32 bad_status		[  6];
183	u32 pm_handle		[ 20];
184	u32 pm_handle1		[  4];
185	u32 pm_save		[  4];
186	u32 pm0_save		[ 12];
187	u32 pm_save_end		[  4];
188	u32 pm1_save		[ 14];
189
190	/* WSR handling */
191	u32 pm_wsr_handle	[ 38];
192	u32 wsr_ma_helper	[  4];
193
194	/* Data area */
195	u32 zero		[  1];
196	u32 scratch		[  1];
197	u32 pm0_data_addr	[  1];
198	u32 pm1_data_addr	[  1];
199	u32 done_pos		[  1];
200	u32 startpos		[  1];
201	u32 targtbl		[  1];
202};
203
204/*
205 *  Script fragments used at initialisations.
206 *  Only runs out of main memory.
207 */
208struct SYM_FWZ_SCR {
209	u32 snooptest		[  6];
210	u32 snoopend		[  2];
211};
212
213static struct SYM_FWA_SCR SYM_FWA_SCR = {
214/*--------------------------< START >----------------------------*/ {
215	/*
216	 *  Switch the LED on.
217	 *  Will be patched with a NO_OP if LED
218	 *  not needed or not desired.
219	 */
220	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
221		0,
222	/*
223	 *      Clear SIGP.
224	 */
225	SCR_FROM_REG (ctest2),
226		0,
227	/*
228	 *  Stop here if the C code wants to perform
229	 *  some error recovery procedure manually.
230	 *  (Indicate this by setting SEM in ISTAT)
231	 */
232	SCR_FROM_REG (istat),
233		0,
234	/*
235	 *  Report to the C code the next position in
236	 *  the start queue the SCRIPTS will schedule.
237	 *  The C code must not change SCRATCHA.
238	 */
239	SCR_LOAD_ABS (scratcha, 4),
240		PADDR_B (startpos),
241	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
242		SIR_SCRIPT_STOPPED,
243	/*
244	 *  Start the next job.
245	 *
246	 *  @DSA     = start point for this job.
247	 *  SCRATCHA = address of this job in the start queue.
248	 *
249	 *  We will restore startpos with SCRATCHA if we fails the
250	 *  arbitration or if it is the idle job.
251	 *
252	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
253	 *  is a critical path. If it is partially executed, it then
254	 *  may happen that the job address is not yet in the DSA
255	 *  and the next queue position points to the next JOB.
256	 */
257	SCR_LOAD_ABS (dsa, 4),
258		PADDR_B (startpos),
259	SCR_LOAD_REL (temp, 4),
260		4,
261}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
262	SCR_STORE_ABS (temp, 4),
263		PADDR_B (startpos),
264	SCR_LOAD_REL (dsa, 4),
265		0,
266}/*-------------------------< GETJOB_END >-----------------------*/,{
267	SCR_LOAD_REL (temp, 4),
268		0,
269	SCR_RETURN,
270		0,
271}/*-------------------------< SELECT >---------------------------*/,{
272	/*
273	 *  DSA	contains the address of a scheduled
274	 *  	data structure.
275	 *
276	 *  SCRATCHA contains the address of the start queue
277	 *  	entry which points to the next job.
278	 *
279	 *  Set Initiator mode.
280	 *
281	 *  (Target mode is left as an exercise for the reader)
282	 */
283#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
284	SCR_CLR (SCR_TRG),
285		0,
286#endif
287	/*
288	 *      And try to select this target.
289	 */
290	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
291		PADDR_A (ungetjob),
292	/*
293	 *  Now there are 4 possibilities:
294	 *
295	 *  (1) The chip loses arbitration.
296	 *  This is ok, because it will try again,
297	 *  when the bus becomes idle.
298	 *  (But beware of the timeout function!)
299	 *
300	 *  (2) The chip is reselected.
301	 *  Then the script processor takes the jump
302	 *  to the RESELECT label.
303	 *
304	 *  (3) The chip wins arbitration.
305	 *  Then it will execute SCRIPTS instruction until
306	 *  the next instruction that checks SCSI phase.
307	 *  Then will stop and wait for selection to be
308	 *  complete or selection time-out to occur.
309	 *
310	 *  After having won arbitration, the SCRIPTS
311	 *  processor is able to execute instructions while
312	 *  the SCSI core is performing SCSI selection.
313	 */
314	/*
315	 *      Initialize the status registers
316	 */
317	SCR_LOAD_REL (scr0, 4),
318		offsetof (struct sym_ccb, phys.head.status),
319	/*
320	 *  We may need help from CPU if the DMA segment
321	 *  registers aren't up-to-date for this IO.
322	 *  Patched with NOOP for chips that donnot
323	 *  support DAC addressing.
324	 */
325#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
326}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
327	SCR_FROM_REG (HX_REG),
328		0,
329	SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
330		SIR_DMAP_DIRTY,
331#endif
332}/*-------------------------< WF_SEL_DONE >----------------------*/,{
333	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
334		SIR_SEL_ATN_NO_MSG_OUT,
335}/*-------------------------< SEL_DONE >-------------------------*/,{
336	/*
337	 *  C1010-33 errata work-around.
338	 *  Due to a race, the SCSI core may not have
339	 *  loaded SCNTL3 on SEL_TBL instruction.
340	 *  We reload it once phase is stable.
341	 *  Patched with a NOOP for other chips.
342	 */
343	SCR_LOAD_REL (scntl3, 1),
344		offsetof(struct sym_dsb, select.sel_scntl3),
345}/*-------------------------< SEND_IDENT >-----------------------*/,{
346	/*
347	 *  Selection complete.
348	 *  Send the IDENTIFY and possibly the TAG message
349	 *  and negotiation message if present.
350	 */
351	SCR_MOVE_TBL ^ SCR_MSG_OUT,
352		offsetof (struct sym_dsb, smsg),
353}/*-------------------------< SELECT2 >--------------------------*/,{
354#ifdef SYM_CONF_IARB_SUPPORT
355	/*
356	 *  Set IMMEDIATE ARBITRATION if we have been given
357	 *  a hint to do so. (Some job to do after this one).
358	 */
359	SCR_FROM_REG (HF_REG),
360		0,
361	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
362		8,
363	SCR_REG_REG (scntl1, SCR_OR, IARB),
364		0,
365#endif
366	/*
367	 *  Anticipate the COMMAND phase.
368	 *  This is the PHASE we expect at this point.
369	 */
370	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
371		PADDR_A (sel_no_cmd),
372}/*-------------------------< COMMAND >--------------------------*/,{
373	/*
374	 *  ... and send the command
375	 */
376	SCR_MOVE_TBL ^ SCR_COMMAND,
377		offsetof (struct sym_dsb, cmd),
378}/*-------------------------< DISPATCH >-------------------------*/,{
379	/*
380	 *  MSG_IN is the only phase that shall be
381	 *  entered at least once for each (re)selection.
382	 *  So we test it first.
383	 */
384	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
385		PADDR_A (msg_in),
386	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
387		PADDR_A (datao_phase),
388	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
389		PADDR_A (datai_phase),
390	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
391		PADDR_A (status),
392	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
393		PADDR_A (command),
394	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
395		PADDR_B (msg_out),
396	/*
397	 *  Discard as many illegal phases as
398	 *  required and tell the C code about.
399	 */
400	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
401		16,
402	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
403		HADDR_1 (scratch),
404	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
405		-16,
406	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
407		16,
408	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
409		HADDR_1 (scratch),
410	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
411		-16,
412	SCR_INT,
413		SIR_BAD_PHASE,
414	SCR_JUMP,
415		PADDR_A (dispatch),
416}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
417	/*
418	 *  The target does not switch to command
419	 *  phase after IDENTIFY has been sent.
420	 *
421	 *  If it stays in MSG OUT phase send it
422	 *  the IDENTIFY again.
423	 */
424	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
425		PADDR_B (resend_ident),
426	/*
427	 *  If target does not switch to MSG IN phase
428	 *  and we sent a negotiation, assert the
429	 *  failure immediately.
430	 */
431	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
432		PADDR_A (dispatch),
433	SCR_FROM_REG (HS_REG),
434		0,
435	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
436		SIR_NEGO_FAILED,
437	/*
438	 *  Jump to dispatcher.
439	 */
440	SCR_JUMP,
441		PADDR_A (dispatch),
442}/*-------------------------< INIT >-----------------------------*/,{
443	/*
444	 *  Wait for the SCSI RESET signal to be
445	 *  inactive before restarting operations,
446	 *  since the chip may hang on SEL_ATN
447	 *  if SCSI RESET is active.
448	 */
449	SCR_FROM_REG (sstat0),
450		0,
451	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
452		-16,
453	SCR_JUMP,
454		PADDR_A (start),
455}/*-------------------------< CLRACK >---------------------------*/,{
456	/*
457	 *  Terminate possible pending message phase.
458	 */
459	SCR_CLR (SCR_ACK),
460		0,
461	SCR_JUMP,
462		PADDR_A (dispatch),
463}/*-------------------------< DATAI_DONE >-----------------------*/,{
464	/*
465	 *  Save current pointer to LASTP.
466	 */
467	SCR_STORE_REL (temp, 4),
468		offsetof (struct sym_ccb, phys.head.lastp),
469	/*
470	 *  If the SWIDE is not full, jump to dispatcher.
471	 *  We anticipate a STATUS phase.
472	 */
473	SCR_FROM_REG (scntl2),
474		0,
475	SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
476		PADDR_A (datai_done_wsr),
477	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
478		PADDR_A (status),
479	SCR_JUMP,
480		PADDR_A (dispatch),
481}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
482	/*
483	 *  The SWIDE is full.
484	 *  Clear this condition.
485	 */
486	SCR_REG_REG (scntl2, SCR_OR, WSR),
487		0,
488	/*
489	 *  We are expecting an IGNORE RESIDUE message
490	 *  from the device, otherwise we are in data
491	 *  overrun condition. Check against MSG_IN phase.
492	 */
493	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
494		SIR_SWIDE_OVERRUN,
495	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
496		PADDR_A (dispatch),
497	/*
498	 *  We are in MSG_IN phase,
499	 *  Read the first byte of the message.
500	 *  If it is not an IGNORE RESIDUE message,
501	 *  signal overrun and jump to message
502	 *  processing.
503	 */
504	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
505		HADDR_1 (msgin[0]),
506	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
507		SIR_SWIDE_OVERRUN,
508	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
509		PADDR_A (msg_in2),
510	/*
511	 *  We got the message we expected.
512	 *  Read the 2nd byte, and jump to dispatcher.
513	 */
514	SCR_CLR (SCR_ACK),
515		0,
516	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
517		HADDR_1 (msgin[1]),
518	SCR_CLR (SCR_ACK),
519		0,
520	SCR_JUMP,
521		PADDR_A (dispatch),
522}/*-------------------------< DATAO_DONE >-----------------------*/,{
523	/*
524	 *  Save current pointer to LASTP.
525	 */
526	SCR_STORE_REL (temp, 4),
527		offsetof (struct sym_ccb, phys.head.lastp),
528	/*
529	 *  If the SODL is not full jump to dispatcher.
530	 *  We anticipate a STATUS phase.
531	 */
532	SCR_FROM_REG (scntl2),
533		0,
534	SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
535		PADDR_A (datao_done_wss),
536	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
537		PADDR_A (status),
538	SCR_JUMP,
539		PADDR_A (dispatch),
540}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
541	/*
542	 *  The SODL is full, clear this condition.
543	 */
544	SCR_REG_REG (scntl2, SCR_OR, WSS),
545		0,
546	/*
547	 *  And signal a DATA UNDERRUN condition
548	 *  to the C code.
549	 */
550	SCR_INT,
551		SIR_SODL_UNDERRUN,
552	SCR_JUMP,
553		PADDR_A (dispatch),
554}/*-------------------------< DATAI_PHASE >----------------------*/,{
555	/*
556	 *  Jump to current pointer.
557	 */
558	SCR_LOAD_REL (temp, 4),
559		offsetof (struct sym_ccb, phys.head.lastp),
560	SCR_RETURN,
561		0,
562}/*-------------------------< DATAO_PHASE >----------------------*/,{
563	/*
564	 *  C1010-66 errata work-around.
565	 *  Extra clocks of data hold must be inserted
566	 *  in DATA OUT phase on 33 MHz PCI BUS.
567	 *  Patched with a NOOP for other chips.
568	 */
569	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
570		0,
571	/*
572	 *  Jump to current pointer.
573	 */
574	SCR_LOAD_REL (temp, 4),
575		offsetof (struct sym_ccb, phys.head.lastp),
576	SCR_RETURN,
577		0,
578}/*-------------------------< MSG_IN >---------------------------*/,{
579	/*
580	 *  Get the first byte of the message.
581	 *
582	 *  The script processor doesn't negate the
583	 *  ACK signal after this transfer.
584	 */
585	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
586		HADDR_1 (msgin[0]),
587}/*-------------------------< MSG_IN2 >--------------------------*/,{
588	/*
589	 *  Check first against 1 byte messages
590	 *  that we handle from SCRIPTS.
591	 */
592	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
593		PADDR_A (complete),
594	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
595		PADDR_A (disconnect),
596	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
597		PADDR_A (save_dp),
598	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
599		PADDR_A (restore_dp),
600	/*
601	 *  We handle all other messages from the
602	 *  C code, so no need to waste on-chip RAM
603	 *  for those ones.
604	 */
605	SCR_JUMP,
606		PADDR_B (msg_in_etc),
607}/*-------------------------< STATUS >---------------------------*/,{
608	/*
609	 *  get the status
610	 */
611	SCR_MOVE_ABS (1) ^ SCR_STATUS,
612		HADDR_1 (scratch),
613#ifdef SYM_CONF_IARB_SUPPORT
614	/*
615	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
616	 *  since we may have to tamper the start queue from
617	 *  the C code.
618	 */
619	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
620		8,
621	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
622		0,
623#endif
624	/*
625	 *  save status to scsi_status.
626	 *  mark as complete.
627	 */
628	SCR_TO_REG (SS_REG),
629		0,
630	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
631		0,
632	/*
633	 *  Anticipate the MESSAGE PHASE for
634	 *  the TASK COMPLETE message.
635	 */
636	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
637		PADDR_A (msg_in),
638	SCR_JUMP,
639		PADDR_A (dispatch),
640}/*-------------------------< COMPLETE >-------------------------*/,{
641	/*
642	 *  Complete message.
643	 *
644	 *  When we terminate the cycle by clearing ACK,
645	 *  the target may disconnect immediately.
646	 *
647	 *  We don't want to be told of an "unexpected disconnect",
648	 *  so we disable this feature.
649	 */
650	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
651		0,
652	/*
653	 *  Terminate cycle ...
654	 */
655	SCR_CLR (SCR_ACK|SCR_ATN),
656		0,
657	/*
658	 *  ... and wait for the disconnect.
659	 */
660	SCR_WAIT_DISC,
661		0,
662}/*-------------------------< COMPLETE2 >------------------------*/,{
663	/*
664	 *  Save host status.
665	 */
666	SCR_STORE_REL (scr0, 4),
667		offsetof (struct sym_ccb, phys.head.status),
668	/*
669	 *  Some bridges may reorder DMA writes to memory.
670	 *  We donnot want the CPU to deal with completions
671	 *  without all the posted write having been flushed
672	 *  to memory. This DUMMY READ should flush posted
673	 *  buffers prior to the CPU having to deal with
674	 *  completions.
675	 */
676	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
677		offsetof (struct sym_ccb, phys.head.status),
678
679	/*
680	 *  If command resulted in not GOOD status,
681	 *  call the C code if needed.
682	 */
683	SCR_FROM_REG (SS_REG),
684		0,
685	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
686		PADDR_B (bad_status),
687	/*
688	 *  If we performed an auto-sense, call
689	 *  the C code to synchronyze task aborts
690	 *  with UNIT ATTENTION conditions.
691	 */
692	SCR_FROM_REG (HF_REG),
693		0,
694	SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
695		PADDR_A (complete_error),
696}/*-------------------------< DONE >-----------------------------*/,{
697	/*
698	 *  Copy the DSA to the DONE QUEUE and
699	 *  signal completion to the host.
700	 *  If we are interrupted between DONE
701	 *  and DONE_END, we must reset, otherwise
702	 *  the completed CCB may be lost.
703	 */
704	SCR_STORE_ABS (dsa, 4),
705		PADDR_B (scratch),
706	SCR_LOAD_ABS (dsa, 4),
707		PADDR_B (done_pos),
708	SCR_LOAD_ABS (scratcha, 4),
709		PADDR_B (scratch),
710	SCR_STORE_REL (scratcha, 4),
711		0,
712	/*
713	 *  The instruction below reads the DONE QUEUE next
714	 *  free position from memory.
715	 *  In addition it ensures that all PCI posted writes
716	 *  are flushed and so the DSA value of the done
717	 *  CCB is visible by the CPU before INTFLY is raised.
718	 */
719	SCR_LOAD_REL (scratcha, 4),
720		4,
721	SCR_INT_FLY,
722		0,
723	SCR_STORE_ABS (scratcha, 4),
724		PADDR_B (done_pos),
725}/*-------------------------< DONE_END >-------------------------*/,{
726	SCR_JUMP,
727		PADDR_A (start),
728}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
729	SCR_LOAD_ABS (scratcha, 4),
730		PADDR_B (startpos),
731	SCR_INT,
732		SIR_COMPLETE_ERROR,
733}/*-------------------------< SAVE_DP >--------------------------*/,{
734	/*
735	 *  Clear ACK immediately.
736	 *  No need to delay it.
737	 */
738	SCR_CLR (SCR_ACK),
739		0,
740	/*
741	 *  Keep track we received a SAVE DP, so
742	 *  we will switch to the other PM context
743	 *  on the next PM since the DP may point
744	 *  to the current PM context.
745	 */
746	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
747		0,
748	/*
749	 *  SAVE_DP message:
750	 *  Copy LASTP to SAVEP.
751	 */
752	SCR_LOAD_REL (scratcha, 4),
753		offsetof (struct sym_ccb, phys.head.lastp),
754	SCR_STORE_REL (scratcha, 4),
755		offsetof (struct sym_ccb, phys.head.savep),
756	/*
757	 *  Anticipate the MESSAGE PHASE for
758	 *  the DISCONNECT message.
759	 */
760	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
761		PADDR_A (msg_in),
762	SCR_JUMP,
763		PADDR_A (dispatch),
764}/*-------------------------< RESTORE_DP >-----------------------*/,{
765	/*
766	 *  Clear ACK immediately.
767	 *  No need to delay it.
768	 */
769	SCR_CLR (SCR_ACK),
770		0,
771	/*
772	 *  Copy SAVEP to LASTP.
773	 */
774	SCR_LOAD_REL  (scratcha, 4),
775		offsetof (struct sym_ccb, phys.head.savep),
776	SCR_STORE_REL (scratcha, 4),
777		offsetof (struct sym_ccb, phys.head.lastp),
778	SCR_JUMP,
779		PADDR_A (dispatch),
780}/*-------------------------< DISCONNECT >-----------------------*/,{
781	/*
782	 *  DISCONNECTing  ...
783	 *
784	 *  disable the "unexpected disconnect" feature,
785	 *  and remove the ACK signal.
786	 */
787	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
788		0,
789	SCR_CLR (SCR_ACK|SCR_ATN),
790		0,
791	/*
792	 *  Wait for the disconnect.
793	 */
794	SCR_WAIT_DISC,
795		0,
796	/*
797	 *  Status is: DISCONNECTED.
798	 */
799	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
800		0,
801	/*
802	 *  Save host status.
803	 */
804	SCR_STORE_REL (scr0, 4),
805		offsetof (struct sym_ccb, phys.head.status),
806	SCR_JUMP,
807		PADDR_A (start),
808}/*-------------------------< IDLE >-----------------------------*/,{
809	/*
810	 *  Nothing to do?
811	 *  Switch the LED off and wait for reselect.
812	 *  Will be patched with a NO_OP if LED
813	 *  not needed or not desired.
814	 */
815	SCR_REG_REG (gpreg, SCR_OR, 0x01),
816		0,
817#ifdef SYM_CONF_IARB_SUPPORT
818	SCR_JUMPR,
819		8,
820#endif
821}/*-------------------------< UNGETJOB >-------------------------*/,{
822#ifdef SYM_CONF_IARB_SUPPORT
823	/*
824	 *  Set IMMEDIATE ARBITRATION, for the next time.
825	 *  This will give us better chance to win arbitration
826	 *  for the job we just wanted to do.
827	 */
828	SCR_REG_REG (scntl1, SCR_OR, IARB),
829		0,
830#endif
831	/*
832	 *  We are not able to restart the SCRIPTS if we are
833	 *  interrupted and these instruction haven't been
834	 *  all executed. BTW, this is very unlikely to
835	 *  happen, but we check that from the C code.
836	 */
837	SCR_LOAD_REG (dsa, 0xff),
838		0,
839	SCR_STORE_ABS (scratcha, 4),
840		PADDR_B (startpos),
841}/*-------------------------< RESELECT >-------------------------*/,{
842#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
843	/*
844	 *  Make sure we are in initiator mode.
845	 */
846	SCR_CLR (SCR_TRG),
847		0,
848#endif
849	/*
850	 *  Sleep waiting for a reselection.
851	 */
852	SCR_WAIT_RESEL,
853		PADDR_A(start),
854}/*-------------------------< RESELECTED >-----------------------*/,{
855	/*
856	 *  Switch the LED on.
857	 *  Will be patched with a NO_OP if LED
858	 *  not needed or not desired.
859	 */
860	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
861		0,
862	/*
863	 *  load the target id into the sdid
864	 */
865	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
866		0,
867	SCR_TO_REG (sdid),
868		0,
869	/*
870	 *  Load the target control block address
871	 */
872	SCR_LOAD_ABS (dsa, 4),
873		PADDR_B (targtbl),
874	SCR_SFBR_REG (dsa, SCR_SHL, 0),
875		0,
876	SCR_REG_REG (dsa, SCR_SHL, 0),
877		0,
878	SCR_REG_REG (dsa, SCR_AND, 0x3c),
879		0,
880	SCR_LOAD_REL (dsa, 4),
881		0,
882	/*
883	 *  We expect MESSAGE IN phase.
884	 *  If not, get help from the C code.
885	 */
886	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
887		SIR_RESEL_NO_MSG_IN,
888	/*
889	 *  Load the legacy synchronous transfer registers.
890	 */
891	SCR_LOAD_REL (scntl3, 1),
892		offsetof(struct sym_tcb, head.wval),
893	SCR_LOAD_REL (sxfer, 1),
894		offsetof(struct sym_tcb, head.sval),
895}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
896	/*
897	 *  The C1010 uses a new synchronous timing scheme.
898	 *  Will be patched with a NO_OP if not a C1010.
899	 */
900	SCR_LOAD_REL (scntl4, 1),
901		offsetof(struct sym_tcb, head.uval),
902	/*
903	 *  Get the IDENTIFY message.
904	 */
905	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
906		HADDR_1 (msgin),
907	/*
908	 *  If IDENTIFY LUN #0, use a faster path
909	 *  to find the LCB structure.
910	 */
911	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
912		PADDR_A (resel_lun0),
913	/*
914	 *  If message isn't an IDENTIFY,
915	 *  tell the C code about.
916	 */
917	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
918		SIR_RESEL_NO_IDENTIFY,
919	/*
920	 *  It is an IDENTIFY message,
921	 *  Load the LUN control block address.
922	 */
923	SCR_LOAD_REL (dsa, 4),
924		offsetof(struct sym_tcb, head.luntbl_sa),
925	SCR_SFBR_REG (dsa, SCR_SHL, 0),
926		0,
927	SCR_REG_REG (dsa, SCR_SHL, 0),
928		0,
929	SCR_REG_REG (dsa, SCR_AND, 0xfc),
930		0,
931	SCR_LOAD_REL (dsa, 4),
932		0,
933	SCR_JUMPR,
934		8,
935}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
936	/*
937	 *  LUN 0 special case (but usual one :))
938	 */
939	SCR_LOAD_REL (dsa, 4),
940		offsetof(struct sym_tcb, head.lun0_sa),
941	/*
942	 *  Jump indirectly to the reselect action for this LUN.
943	 */
944	SCR_LOAD_REL (temp, 4),
945		offsetof(struct sym_lcb, head.resel_sa),
946	SCR_RETURN,
947		0,
948	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
949}/*-------------------------< RESEL_TAG >------------------------*/,{
950	/*
951	 *  ACK the IDENTIFY previously received.
952	 */
953	SCR_CLR (SCR_ACK),
954		0,
955	/*
956	 *  It shall be a tagged command.
957	 *  Read SIMPLE+TAG.
958	 *  The C code will deal with errors.
959	 *  Aggressive optimization, isn't it? :)
960	 */
961	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
962		HADDR_1 (msgin),
963	/*
964	 *  Load the pointer to the tagged task
965	 *  table for this LUN.
966	 */
967	SCR_LOAD_REL (dsa, 4),
968		offsetof(struct sym_lcb, head.itlq_tbl_sa),
969	/*
970	 *  The SIDL still contains the TAG value.
971	 *  Aggressive optimization, isn't it? :):)
972	 */
973	SCR_REG_SFBR (sidl, SCR_SHL, 0),
974		0,
975#if SYM_CONF_MAX_TASK*4 > 512
976	SCR_JUMPR ^ IFFALSE (CARRYSET),
977		8,
978	SCR_REG_REG (dsa1, SCR_OR, 2),
979		0,
980	SCR_REG_REG (sfbr, SCR_SHL, 0),
981		0,
982	SCR_JUMPR ^ IFFALSE (CARRYSET),
983		8,
984	SCR_REG_REG (dsa1, SCR_OR, 1),
985		0,
986#elif SYM_CONF_MAX_TASK*4 > 256
987	SCR_JUMPR ^ IFFALSE (CARRYSET),
988		8,
989	SCR_REG_REG (dsa1, SCR_OR, 1),
990		0,
991#endif
992	/*
993	 *  Retrieve the DSA of this task.
994	 *  JUMP indirectly to the restart point of the CCB.
995	 */
996	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
997		0,
998	SCR_LOAD_REL (dsa, 4),
999		0,
1000	SCR_LOAD_REL (temp, 4),
1001		offsetof(struct sym_ccb, phys.head.go.restart),
1002	SCR_RETURN,
1003		0,
1004	/* In normal situations we branch to RESEL_DSA */
1005}/*-------------------------< RESEL_DSA >------------------------*/,{
1006	/*
1007	 *  ACK the IDENTIFY or TAG previously received.
1008	 */
1009	SCR_CLR (SCR_ACK),
1010		0,
1011}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1012	/*
1013	 *      Initialize the status registers
1014	 */
1015	SCR_LOAD_REL (scr0, 4),
1016		offsetof (struct sym_ccb, phys.head.status),
1017	/*
1018	 *  Jump to dispatcher.
1019	 */
1020	SCR_JUMP,
1021		PADDR_A (dispatch),
1022}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1023	/*
1024	 *  Load the DSA with the unique ITL task.
1025	 */
1026	SCR_LOAD_REL (dsa, 4),
1027		offsetof(struct sym_lcb, head.itl_task_sa),
1028	/*
1029	 *  JUMP indirectly to the restart point of the CCB.
1030	 */
1031	SCR_LOAD_REL (temp, 4),
1032		offsetof(struct sym_ccb, phys.head.go.restart),
1033	SCR_RETURN,
1034		0,
1035	/* In normal situations we branch to RESEL_DSA */
1036}/*-------------------------< DATA_IN >--------------------------*/,{
1037/*
1038 *  Because the size depends on the
1039 *  #define SYM_CONF_MAX_SG parameter,
1040 *  it is filled in at runtime.
1041 *
1042 *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1043 *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1044 *  ||		offsetof (struct sym_dsb, data[ i]),
1045 *  ##==========================================
1046 */
10470
1048}/*-------------------------< DATA_IN2 >-------------------------*/,{
1049	SCR_CALL,
1050		PADDR_A (datai_done),
1051	SCR_JUMP,
1052		PADDR_B (data_ovrun),
1053}/*-------------------------< DATA_OUT >-------------------------*/,{
1054/*
1055 *  Because the size depends on the
1056 *  #define SYM_CONF_MAX_SG parameter,
1057 *  it is filled in at runtime.
1058 *
1059 *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1060 *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1061 *  ||		offsetof (struct sym_dsb, data[ i]),
1062 *  ##==========================================
1063 */
10640
1065}/*-------------------------< DATA_OUT2 >------------------------*/,{
1066	SCR_CALL,
1067		PADDR_A (datao_done),
1068	SCR_JUMP,
1069		PADDR_B (data_ovrun),
1070}/*-------------------------< PM0_DATA >-------------------------*/,{
1071	/*
1072	 *  Read our host flags to SFBR, so we will be able
1073	 *  to check against the data direction we expect.
1074	 */
1075	SCR_FROM_REG (HF_REG),
1076		0,
1077	/*
1078	 *  Check against actual DATA PHASE.
1079	 */
1080	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1081		PADDR_A (pm0_data_out),
1082	/*
1083	 *  Actual phase is DATA IN.
1084	 *  Check against expected direction.
1085	 */
1086	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1087		PADDR_B (data_ovrun),
1088	/*
1089	 *  Keep track we are moving data from the
1090	 *  PM0 DATA mini-script.
1091	 */
1092	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1093		0,
1094	/*
1095	 *  Move the data to memory.
1096	 */
1097	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1098		offsetof (struct sym_ccb, phys.pm0.sg),
1099	SCR_JUMP,
1100		PADDR_A (pm0_data_end),
1101}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1102	/*
1103	 *  Actual phase is DATA OUT.
1104	 *  Check against expected direction.
1105	 */
1106	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1107		PADDR_B (data_ovrun),
1108	/*
1109	 *  Keep track we are moving data from the
1110	 *  PM0 DATA mini-script.
1111	 */
1112	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1113		0,
1114	/*
1115	 *  Move the data from memory.
1116	 */
1117	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1118		offsetof (struct sym_ccb, phys.pm0.sg),
1119}/*-------------------------< PM0_DATA_END >---------------------*/,{
1120	/*
1121	 *  Clear the flag that told we were moving
1122	 *  data from the PM0 DATA mini-script.
1123	 */
1124	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1125		0,
1126	/*
1127	 *  Return to the previous DATA script which
1128	 *  is guaranteed by design (if no bug) to be
1129	 *  the main DATA script for this transfer.
1130	 */
1131	SCR_LOAD_REL (temp, 4),
1132		offsetof (struct sym_ccb, phys.pm0.ret),
1133	SCR_RETURN,
1134		0,
1135}/*-------------------------< PM1_DATA >-------------------------*/,{
1136	/*
1137	 *  Read our host flags to SFBR, so we will be able
1138	 *  to check against the data direction we expect.
1139	 */
1140	SCR_FROM_REG (HF_REG),
1141		0,
1142	/*
1143	 *  Check against actual DATA PHASE.
1144	 */
1145	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1146		PADDR_A (pm1_data_out),
1147	/*
1148	 *  Actual phase is DATA IN.
1149	 *  Check against expected direction.
1150	 */
1151	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1152		PADDR_B (data_ovrun),
1153	/*
1154	 *  Keep track we are moving data from the
1155	 *  PM1 DATA mini-script.
1156	 */
1157	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1158		0,
1159	/*
1160	 *  Move the data to memory.
1161	 */
1162	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1163		offsetof (struct sym_ccb, phys.pm1.sg),
1164	SCR_JUMP,
1165		PADDR_A (pm1_data_end),
1166}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1167	/*
1168	 *  Actual phase is DATA OUT.
1169	 *  Check against expected direction.
1170	 */
1171	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1172		PADDR_B (data_ovrun),
1173	/*
1174	 *  Keep track we are moving data from the
1175	 *  PM1 DATA mini-script.
1176	 */
1177	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1178		0,
1179	/*
1180	 *  Move the data from memory.
1181	 */
1182	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1183		offsetof (struct sym_ccb, phys.pm1.sg),
1184}/*-------------------------< PM1_DATA_END >---------------------*/,{
1185	/*
1186	 *  Clear the flag that told we were moving
1187	 *  data from the PM1 DATA mini-script.
1188	 */
1189	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1190		0,
1191	/*
1192	 *  Return to the previous DATA script which
1193	 *  is guaranteed by design (if no bug) to be
1194	 *  the main DATA script for this transfer.
1195	 */
1196	SCR_LOAD_REL (temp, 4),
1197		offsetof (struct sym_ccb, phys.pm1.ret),
1198	SCR_RETURN,
1199		0,
1200}/*-------------------------<>-----------------------------------*/
1201};
1202
1203static struct SYM_FWB_SCR SYM_FWB_SCR = {
1204/*--------------------------< START64 >--------------------------*/ {
1205	/*
1206	 *  SCRIPT entry point for the 895A, 896 and 1010.
1207	 *  For now, there is no specific stuff for those
1208	 *  chips at this point, but this may come.
1209	 */
1210	SCR_JUMP,
1211		PADDR_A (init),
1212}/*-------------------------< NO_DATA >--------------------------*/,{
1213	SCR_JUMP,
1214		PADDR_B (data_ovrun),
1215}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1216	/*
1217	 *  We are jumped here by the C code, if we have
1218	 *  some target to reset or some disconnected
1219	 *  job to abort. Since error recovery is a serious
1220	 *  busyness, we will really reset the SCSI BUS, if
1221	 *  case of a SCSI interrupt occurring in this path.
1222	 */
1223#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
1224	/*
1225	 *  Set initiator mode.
1226	 */
1227	SCR_CLR (SCR_TRG),
1228		0,
1229#endif
1230	/*
1231	 *      And try to select this target.
1232	 */
1233	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1234		PADDR_A (reselect),
1235	/*
1236	 *  Wait for the selection to complete or
1237	 *  the selection to time out.
1238	 */
1239	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1240		-8,
1241	/*
1242	 *  Call the C code.
1243	 */
1244	SCR_INT,
1245		SIR_TARGET_SELECTED,
1246	/*
1247	 *  The C code should let us continue here.
1248	 *  Send the 'kiss of death' message.
1249	 *  We expect an immediate disconnect once
1250	 *  the target has eaten the message.
1251	 */
1252	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1253		0,
1254	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1255		offsetof (struct sym_hcb, abrt_tbl),
1256	SCR_CLR (SCR_ACK|SCR_ATN),
1257		0,
1258	SCR_WAIT_DISC,
1259		0,
1260	/*
1261	 *  Tell the C code that we are done.
1262	 */
1263	SCR_INT,
1264		SIR_ABORT_SENT,
1265}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1266	/*
1267	 *  Jump at scheduler.
1268	 */
1269	SCR_JUMP,
1270		PADDR_A (start),
1271}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1272	/*
1273	 *  If it is an EXTENDED (variable size message)
1274	 *  Handle it.
1275	 */
1276	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1277		PADDR_B (msg_extended),
1278	/*
1279	 *  Let the C code handle any other
1280	 *  1 byte message.
1281	 */
1282	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1283		PADDR_B (msg_received),
1284	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1285		PADDR_B (msg_received),
1286	/*
1287	 *  We donnot handle 2 bytes messages from SCRIPTS.
1288	 *  So, let the C code deal with these ones too.
1289	 */
1290	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1291		PADDR_B (msg_weird_seen),
1292	SCR_CLR (SCR_ACK),
1293		0,
1294	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1295		HADDR_1 (msgin[1]),
1296}/*-------------------------< MSG_RECEIVED >---------------------*/,{
1297	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1298		0,
1299	SCR_INT,
1300		SIR_MSG_RECEIVED,
1301}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1302	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1303		0,
1304	SCR_INT,
1305		SIR_MSG_WEIRD,
1306}/*-------------------------< MSG_EXTENDED >---------------------*/,{
1307	/*
1308	 *  Clear ACK and get the next byte
1309	 *  assumed to be the message length.
1310	 */
1311	SCR_CLR (SCR_ACK),
1312		0,
1313	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1314		HADDR_1 (msgin[1]),
1315	/*
1316	 *  Try to catch some unlikely situations as 0 length
1317	 *  or too large the length.
1318	 */
1319	SCR_JUMP ^ IFTRUE (DATA (0)),
1320		PADDR_B (msg_weird_seen),
1321	SCR_TO_REG (scratcha),
1322		0,
1323	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1324		0,
1325	SCR_JUMP ^ IFTRUE (CARRYSET),
1326		PADDR_B (msg_weird_seen),
1327	/*
1328	 *  We donnot handle extended messages from SCRIPTS.
1329	 *  Read the amount of data corresponding to the
1330	 *  message length and call the C code.
1331	 */
1332	SCR_STORE_REL (scratcha, 1),
1333		offsetof (struct sym_dsb, smsg_ext.size),
1334	SCR_CLR (SCR_ACK),
1335		0,
1336	SCR_MOVE_TBL ^ SCR_MSG_IN,
1337		offsetof (struct sym_dsb, smsg_ext),
1338	SCR_JUMP,
1339		PADDR_B (msg_received),
1340}/*-------------------------< MSG_BAD >--------------------------*/,{
1341	/*
1342	 *  unimplemented message - reject it.
1343	 */
1344	SCR_INT,
1345		SIR_REJECT_TO_SEND,
1346	SCR_SET (SCR_ATN),
1347		0,
1348	SCR_JUMP,
1349		PADDR_A (clrack),
1350}/*-------------------------< MSG_WEIRD >------------------------*/,{
1351	/*
1352	 *  weird message received
1353	 *  ignore all MSG IN phases and reject it.
1354	 */
1355	SCR_INT,
1356		SIR_REJECT_TO_SEND,
1357	SCR_SET (SCR_ATN),
1358		0,
1359}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1360	SCR_CLR (SCR_ACK),
1361		0,
1362	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1363		PADDR_A (dispatch),
1364	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1365		HADDR_1 (scratch),
1366	SCR_JUMP,
1367		PADDR_B (msg_weird1),
1368}/*-------------------------< WDTR_RESP >------------------------*/,{
1369	/*
1370	 *  let the target fetch our answer.
1371	 */
1372	SCR_SET (SCR_ATN),
1373		0,
1374	SCR_CLR (SCR_ACK),
1375		0,
1376	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1377		PADDR_B (nego_bad_phase),
1378}/*-------------------------< SEND_WDTR >------------------------*/,{
1379	/*
1380	 *  Send the M_X_WIDE_REQ
1381	 */
1382	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1383		HADDR_1 (msgout),
1384	SCR_JUMP,
1385		PADDR_B (msg_out_done),
1386}/*-------------------------< SDTR_RESP >------------------------*/,{
1387	/*
1388	 *  let the target fetch our answer.
1389	 */
1390	SCR_SET (SCR_ATN),
1391		0,
1392	SCR_CLR (SCR_ACK),
1393		0,
1394	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1395		PADDR_B (nego_bad_phase),
1396}/*-------------------------< SEND_SDTR >------------------------*/,{
1397	/*
1398	 *  Send the M_X_SYNC_REQ
1399	 */
1400	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1401		HADDR_1 (msgout),
1402	SCR_JUMP,
1403		PADDR_B (msg_out_done),
1404}/*-------------------------< PPR_RESP >-------------------------*/,{
1405	/*
1406	 *  let the target fetch our answer.
1407	 */
1408	SCR_SET (SCR_ATN),
1409		0,
1410	SCR_CLR (SCR_ACK),
1411		0,
1412	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1413		PADDR_B (nego_bad_phase),
1414}/*-------------------------< SEND_PPR >-------------------------*/,{
1415	/*
1416	 *  Send the M_X_PPR_REQ
1417	 */
1418	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1419		HADDR_1 (msgout),
1420	SCR_JUMP,
1421		PADDR_B (msg_out_done),
1422}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1423	SCR_INT,
1424		SIR_NEGO_PROTO,
1425	SCR_JUMP,
1426		PADDR_A (dispatch),
1427}/*-------------------------< MSG_OUT >--------------------------*/,{
1428	/*
1429	 *  The target requests a message.
1430	 *  We donnot send messages that may
1431	 *  require the device to go to bus free.
1432	 */
1433	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1434		HADDR_1 (msgout),
1435	/*
1436	 *  ... wait for the next phase
1437	 *  if it's a message out, send it again, ...
1438	 */
1439	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1440		PADDR_B (msg_out),
1441}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1442	/*
1443	 *  Let the C code be aware of the
1444	 *  sent message and clear the message.
1445	 */
1446	SCR_INT,
1447		SIR_MSG_OUT_DONE,
1448	/*
1449	 *  ... and process the next phase
1450	 */
1451	SCR_JUMP,
1452		PADDR_A (dispatch),
1453}/*-------------------------< DATA_OVRUN >-----------------------*/,{
1454	/*
1455	 *  Use scratcha to count the extra bytes.
1456	 */
1457	SCR_LOAD_ABS (scratcha, 4),
1458		PADDR_B (zero),
1459}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1460	/*
1461	 *  The target may want to transfer too much data.
1462	 *
1463	 *  If phase is DATA OUT write 1 byte and count it.
1464	 */
1465	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1466		16,
1467	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1468		HADDR_1 (scratch),
1469	SCR_JUMP,
1470		PADDR_B (data_ovrun2),
1471	/*
1472	 *  If WSR is set, clear this condition, and
1473	 *  count this byte.
1474	 */
1475	SCR_FROM_REG (scntl2),
1476		0,
1477	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1478		16,
1479	SCR_REG_REG (scntl2, SCR_OR, WSR),
1480		0,
1481	SCR_JUMP,
1482		PADDR_B (data_ovrun2),
1483	/*
1484	 *  Finally check against DATA IN phase.
1485	 *  Signal data overrun to the C code
1486	 *  and jump to dispatcher if not so.
1487	 *  Read 1 byte otherwise and count it.
1488	 */
1489	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1490		16,
1491	SCR_INT,
1492		SIR_DATA_OVERRUN,
1493	SCR_JUMP,
1494		PADDR_A (dispatch),
1495	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1496		HADDR_1 (scratch),
1497}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1498	/*
1499	 *  Count this byte.
1500	 *  This will allow to return a negative
1501	 *  residual to user.
1502	 */
1503	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1504		0,
1505	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1506		0,
1507	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1508		0,
1509	/*
1510	 *  .. and repeat as required.
1511	 */
1512	SCR_JUMP,
1513		PADDR_B (data_ovrun1),
1514}/*-------------------------< ABORT_RESEL >----------------------*/,{
1515	SCR_SET (SCR_ATN),
1516		0,
1517	SCR_CLR (SCR_ACK),
1518		0,
1519	/*
1520	 *  send the abort/abortag/reset message
1521	 *  we expect an immediate disconnect
1522	 */
1523	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1524		0,
1525	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1526		HADDR_1 (msgout),
1527	SCR_CLR (SCR_ACK|SCR_ATN),
1528		0,
1529	SCR_WAIT_DISC,
1530		0,
1531	SCR_INT,
1532		SIR_RESEL_ABORTED,
1533	SCR_JUMP,
1534		PADDR_A (start),
1535}/*-------------------------< RESEND_IDENT >---------------------*/,{
1536	/*
1537	 *  The target stays in MSG OUT phase after having acked
1538	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
1539	 *  behave this way on parity error.
1540	 *  We must send it again all the messages.
1541	 */
1542	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1543		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1544	SCR_JUMP,
1545		PADDR_A (send_ident),
1546}/*-------------------------< IDENT_BREAK >----------------------*/,{
1547	SCR_CLR (SCR_ATN),
1548		0,
1549	SCR_JUMP,
1550		PADDR_A (select2),
1551}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1552	SCR_SET (SCR_ATN),
1553		0,
1554	SCR_JUMP,
1555		PADDR_A (select2),
1556}/*-------------------------< SDATA_IN >-------------------------*/,{
1557	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1558		offsetof (struct sym_dsb, sense),
1559	SCR_CALL,
1560		PADDR_A (datai_done),
1561	SCR_JUMP,
1562		PADDR_B (data_ovrun),
1563}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1564	/*
1565	 *  Message is an IDENTIFY, but lun is unknown.
1566	 *  Signal problem to C code for logging the event.
1567	 *  Send a M_ABORT to clear all pending tasks.
1568	 */
1569	SCR_INT,
1570		SIR_RESEL_BAD_LUN,
1571	SCR_JUMP,
1572		PADDR_B (abort_resel),
1573}/*-------------------------< BAD_I_T_L >------------------------*/,{
1574	/*
1575	 *  We donnot have a task for that I_T_L.
1576	 *  Signal problem to C code for logging the event.
1577	 *  Send a M_ABORT message.
1578	 */
1579	SCR_INT,
1580		SIR_RESEL_BAD_I_T_L,
1581	SCR_JUMP,
1582		PADDR_B (abort_resel),
1583}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1584	/*
1585	 *  We donnot have a task that matches the tag.
1586	 *  Signal problem to C code for logging the event.
1587	 *  Send a M_ABORTTAG message.
1588	 */
1589	SCR_INT,
1590		SIR_RESEL_BAD_I_T_L_Q,
1591	SCR_JUMP,
1592		PADDR_B (abort_resel),
1593}/*-------------------------< BAD_STATUS >-----------------------*/,{
1594	/*
1595	 *  Anything different from INTERMEDIATE
1596	 *  CONDITION MET should be a bad SCSI status,
1597	 *  given that GOOD status has already been tested.
1598	 *  Call the C code.
1599	 */
1600	SCR_LOAD_ABS (scratcha, 4),
1601		PADDR_B (startpos),
1602	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1603		SIR_BAD_SCSI_STATUS,
1604	SCR_RETURN,
1605		0,
1606}/*-------------------------< PM_HANDLE >------------------------*/,{
1607	/*
1608	 *  Phase mismatch handling.
1609	 *
1610	 *  Since we have to deal with 2 SCSI data pointers
1611	 *  (current and saved), we need at least 2 contexts.
1612	 *  Each context (pm0 and pm1) has a saved area, a
1613	 *  SAVE mini-script and a DATA phase mini-script.
1614	 */
1615	/*
1616	 *  Get the PM handling flags.
1617	 */
1618	SCR_FROM_REG (HF_REG),
1619		0,
1620	/*
1621	 *  If no flags (1rst PM for example), avoid
1622	 *  all the below heavy flags testing.
1623	 *  This makes the normal case a bit faster.
1624	 */
1625	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1626		PADDR_B (pm_handle1),
1627	/*
1628	 *  If we received a SAVE DP, switch to the
1629	 *  other PM context since the savep may point
1630	 *  to the current PM context.
1631	 */
1632	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1633		8,
1634	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1635		0,
1636	/*
1637	 *  If we have been interrupt in a PM DATA mini-script,
1638	 *  we take the return address from the corresponding
1639	 *  saved area.
1640	 *  This ensure the return address always points to the
1641	 *  main DATA script for this transfer.
1642	 */
1643	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1644		PADDR_B (pm_handle1),
1645	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1646		16,
1647	SCR_LOAD_REL (ia, 4),
1648		offsetof(struct sym_ccb, phys.pm0.ret),
1649	SCR_JUMP,
1650		PADDR_B (pm_save),
1651	SCR_LOAD_REL (ia, 4),
1652		offsetof(struct sym_ccb, phys.pm1.ret),
1653	SCR_JUMP,
1654		PADDR_B (pm_save),
1655}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1656	/*
1657	 *  Normal case.
1658	 *  Update the return address so that it
1659	 *  will point after the interrupted MOVE.
1660	 */
1661	SCR_REG_REG (ia, SCR_ADD, 8),
1662		0,
1663	SCR_REG_REG (ia1, SCR_ADDC, 0),
1664		0,
1665}/*-------------------------< PM_SAVE >--------------------------*/,{
1666	/*
1667	 *  Clear all the flags that told us if we were
1668	 *  interrupted in a PM DATA mini-script and/or
1669	 *  we received a SAVE DP.
1670	 */
1671	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1672		0,
1673	/*
1674	 *  Choose the current PM context.
1675	 */
1676	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1677		PADDR_B (pm1_save),
1678}/*-------------------------< PM0_SAVE >-------------------------*/,{
1679	SCR_STORE_REL (ia, 4),
1680		offsetof(struct sym_ccb, phys.pm0.ret),
1681	/*
1682	 *  If WSR bit is set, either UA and RBC may
1683	 *  have to be changed whether the device wants
1684	 *  to ignore this residue or not.
1685	 */
1686	SCR_FROM_REG (scntl2),
1687		0,
1688	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1689		PADDR_B (pm_wsr_handle),
1690	/*
1691	 *  Save the remaining byte count, the updated
1692	 *  address and the return address.
1693	 */
1694	SCR_STORE_REL (rbc, 4),
1695		offsetof(struct sym_ccb, phys.pm0.sg.size),
1696	SCR_STORE_REL (ua, 4),
1697		offsetof(struct sym_ccb, phys.pm0.sg.addr),
1698	/*
1699	 *  Set the current pointer at the PM0 DATA mini-script.
1700	 */
1701	SCR_LOAD_ABS (ia, 4),
1702		PADDR_B (pm0_data_addr),
1703}/*-------------------------< PM_SAVE_END >----------------------*/,{
1704	SCR_STORE_REL (ia, 4),
1705		offsetof(struct sym_ccb, phys.head.lastp),
1706	SCR_JUMP,
1707		PADDR_A (dispatch),
1708}/*-------------------------< PM1_SAVE >-------------------------*/,{
1709	SCR_STORE_REL (ia, 4),
1710		offsetof(struct sym_ccb, phys.pm1.ret),
1711	/*
1712	 *  If WSR bit is set, either UA and RBC may
1713	 *  have to be changed whether the device wants
1714	 *  to ignore this residue or not.
1715	 */
1716	SCR_FROM_REG (scntl2),
1717		0,
1718	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1719		PADDR_B (pm_wsr_handle),
1720	/*
1721	 *  Save the remaining byte count, the updated
1722	 *  address and the return address.
1723	 */
1724	SCR_STORE_REL (rbc, 4),
1725		offsetof(struct sym_ccb, phys.pm1.sg.size),
1726	SCR_STORE_REL (ua, 4),
1727		offsetof(struct sym_ccb, phys.pm1.sg.addr),
1728	/*
1729	 *  Set the current pointer at the PM1 DATA mini-script.
1730	 */
1731	SCR_LOAD_ABS (ia, 4),
1732		PADDR_B (pm1_data_addr),
1733	SCR_JUMP,
1734		PADDR_B (pm_save_end),
1735}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1736	/*
1737	 *  Phase mismatch handling from SCRIPT with WSR set.
1738	 *  Such a condition can occur if the chip wants to
1739	 *  execute a CHMOV(size > 1) when the WSR bit is
1740	 *  set and the target changes PHASE.
1741	 *
1742	 *  We must move the residual byte to memory.
1743	 *
1744	 *  UA contains bit 0..31 of the address to
1745	 *  move the residual byte.
1746	 *  Move it to the table indirect.
1747	 */
1748	SCR_STORE_REL (ua, 4),
1749		offsetof (struct sym_ccb, phys.wresid.addr),
1750	/*
1751	 *  Increment UA (move address to next position).
1752	 */
1753	SCR_REG_REG (ua, SCR_ADD, 1),
1754		0,
1755	SCR_REG_REG (ua1, SCR_ADDC, 0),
1756		0,
1757	SCR_REG_REG (ua2, SCR_ADDC, 0),
1758		0,
1759	SCR_REG_REG (ua3, SCR_ADDC, 0),
1760		0,
1761	/*
1762	 *  Compute SCRATCHA as:
1763	 *  - size to transfer = 1 byte.
1764	 *  - bit 24..31 = high address bit [32...39].
1765	 */
1766	SCR_LOAD_ABS (scratcha, 4),
1767		PADDR_B (zero),
1768	SCR_REG_REG (scratcha, SCR_OR, 1),
1769		0,
1770	SCR_FROM_REG (rbc3),
1771		0,
1772	SCR_TO_REG (scratcha3),
1773		0,
1774	/*
1775	 *  Move this value to the table indirect.
1776	 */
1777	SCR_STORE_REL (scratcha, 4),
1778		offsetof (struct sym_ccb, phys.wresid.size),
1779	/*
1780	 *  Wait for a valid phase.
1781	 *  While testing with bogus QUANTUM drives, the C1010
1782	 *  sometimes raised a spurious phase mismatch with
1783	 *  WSR and the CHMOV(1) triggered another PM.
1784	 *  Waiting explicitly for the PHASE seemed to avoid
1785	 *  the nested phase mismatch. Btw, this didn't happen
1786	 *  using my IBM drives.
1787	 */
1788	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1789		0,
1790	/*
1791	 *  Perform the move of the residual byte.
1792	 */
1793	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1794		offsetof (struct sym_ccb, phys.wresid),
1795	/*
1796	 *  We can now handle the phase mismatch with UA fixed.
1797	 *  RBC[0..23]=0 is a special case that does not require
1798	 *  a PM context. The C code also checks against this.
1799	 */
1800	SCR_FROM_REG (rbc),
1801		0,
1802	SCR_RETURN ^ IFFALSE (DATA (0)),
1803		0,
1804	SCR_FROM_REG (rbc1),
1805		0,
1806	SCR_RETURN ^ IFFALSE (DATA (0)),
1807		0,
1808	SCR_FROM_REG (rbc2),
1809		0,
1810	SCR_RETURN ^ IFFALSE (DATA (0)),
1811		0,
1812	/*
1813	 *  RBC[0..23]=0.
1814	 *  Not only we donnot need a PM context, but this would
1815	 *  lead to a bogus CHMOV(0). This condition means that
1816	 *  the residual was the last byte to move from this CHMOV.
1817	 *  So, we just have to move the current data script pointer
1818	 *  (i.e. TEMP) to the SCRIPTS address following the
1819	 *  interrupted CHMOV and jump to dispatcher.
1820	 *  IA contains the data pointer to save.
1821	 */
1822	SCR_JUMP,
1823		PADDR_B (pm_save_end),
1824}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1825	/*
1826	 *  Helper for the C code when WSR bit is set.
1827	 *  Perform the move of the residual byte.
1828	 */
1829	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1830		offsetof (struct sym_ccb, phys.wresid),
1831	SCR_JUMP,
1832		PADDR_A (dispatch),
1833
1834}/*-------------------------< ZERO >-----------------------------*/,{
1835	SCR_DATA_ZERO,
1836}/*-------------------------< SCRATCH >--------------------------*/,{
1837	SCR_DATA_ZERO,
1838}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1839	SCR_DATA_ZERO,
1840}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1841	SCR_DATA_ZERO,
1842}/*-------------------------< DONE_POS >-------------------------*/,{
1843	SCR_DATA_ZERO,
1844}/*-------------------------< STARTPOS >-------------------------*/,{
1845	SCR_DATA_ZERO,
1846}/*-------------------------< TARGTBL >--------------------------*/,{
1847	SCR_DATA_ZERO,
1848}/*-------------------------<>-----------------------------------*/
1849};
1850
1851static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
1852 /*-------------------------< SNOOPTEST >------------------------*/{
1853	/*
1854	 *  Read the variable from memory.
1855	 */
1856	SCR_LOAD_REL (scratcha, 4),
1857		offsetof(struct sym_hcb, scratch),
1858	/*
1859	 *  Write the variable to memory.
1860	 */
1861	SCR_STORE_REL (temp, 4),
1862		offsetof(struct sym_hcb, scratch),
1863	/*
1864	 *  Read back the variable from memory.
1865	 */
1866	SCR_LOAD_REL (temp, 4),
1867		offsetof(struct sym_hcb, scratch),
1868}/*-------------------------< SNOOPEND >-------------------------*/,{
1869	/*
1870	 *  And stop.
1871	 */
1872	SCR_INT,
1873		99,
1874}/*-------------------------<>-----------------------------------*/
1875};
1876