1/*
2 * Octeon HCD hardware register definitions.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Some parts of the code were originally released under BSD license:
9 *
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
11 * reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
15 * met:
16 *
17 *   * Redistributions of source code must retain the above copyright
18 *     notice, this list of conditions and the following disclaimer.
19 *
20 *   * Redistributions in binary form must reproduce the above
21 *     copyright notice, this list of conditions and the following
22 *     disclaimer in the documentation and/or other materials provided
23 *     with the distribution.
24 *
25 *   * Neither the name of Cavium Networks nor the names of
26 *     its contributors may be used to endorse or promote products
27 *     derived from this software without specific prior written
28 *     permission.
29 *
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
33 * countries.
34 *
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
45 */
46
47#ifndef __OCTEON_HCD_H__
48#define __OCTEON_HCD_H__
49
50#define CVMX_USBCXBASE 0x00016F0010000000ull
51#define CVMX_USBCXREG1(reg, bid) \
52	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
53	 ((bid) & 1) * 0x100000000000ull)
54#define CVMX_USBCXREG2(reg, bid, off) \
55	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
56	 (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
57
58#define CVMX_USBCX_GAHBCFG(bid)		CVMX_USBCXREG1(0x008, bid)
59#define CVMX_USBCX_GHWCFG3(bid)		CVMX_USBCXREG1(0x04c, bid)
60#define CVMX_USBCX_GINTMSK(bid)		CVMX_USBCXREG1(0x018, bid)
61#define CVMX_USBCX_GINTSTS(bid)		CVMX_USBCXREG1(0x014, bid)
62#define CVMX_USBCX_GNPTXFSIZ(bid)	CVMX_USBCXREG1(0x028, bid)
63#define CVMX_USBCX_GNPTXSTS(bid)	CVMX_USBCXREG1(0x02c, bid)
64#define CVMX_USBCX_GOTGCTL(bid)		CVMX_USBCXREG1(0x000, bid)
65#define CVMX_USBCX_GRSTCTL(bid)		CVMX_USBCXREG1(0x010, bid)
66#define CVMX_USBCX_GRXFSIZ(bid)		CVMX_USBCXREG1(0x024, bid)
67#define CVMX_USBCX_GRXSTSPH(bid)	CVMX_USBCXREG1(0x020, bid)
68#define CVMX_USBCX_GUSBCFG(bid)		CVMX_USBCXREG1(0x00c, bid)
69#define CVMX_USBCX_HAINT(bid)		CVMX_USBCXREG1(0x414, bid)
70#define CVMX_USBCX_HAINTMSK(bid)	CVMX_USBCXREG1(0x418, bid)
71#define CVMX_USBCX_HCCHARX(off, bid)	CVMX_USBCXREG2(0x500, bid, off)
72#define CVMX_USBCX_HCFG(bid)		CVMX_USBCXREG1(0x400, bid)
73#define CVMX_USBCX_HCINTMSKX(off, bid)	CVMX_USBCXREG2(0x50c, bid, off)
74#define CVMX_USBCX_HCINTX(off, bid)	CVMX_USBCXREG2(0x508, bid, off)
75#define CVMX_USBCX_HCSPLTX(off, bid)	CVMX_USBCXREG2(0x504, bid, off)
76#define CVMX_USBCX_HCTSIZX(off, bid)	CVMX_USBCXREG2(0x510, bid, off)
77#define CVMX_USBCX_HFIR(bid)		CVMX_USBCXREG1(0x404, bid)
78#define CVMX_USBCX_HFNUM(bid)		CVMX_USBCXREG1(0x408, bid)
79#define CVMX_USBCX_HPRT(bid)		CVMX_USBCXREG1(0x440, bid)
80#define CVMX_USBCX_HPTXFSIZ(bid)	CVMX_USBCXREG1(0x100, bid)
81#define CVMX_USBCX_HPTXSTS(bid)		CVMX_USBCXREG1(0x410, bid)
82
83#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
84#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
85
86#define CVMX_USBNXREG1(reg, bid) \
87	(CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
88#define CVMX_USBNXREG2(reg, bid) \
89	(CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
90
91#define CVMX_USBNX_CLK_CTL(bid)		CVMX_USBNXREG1(0x10, bid)
92#define CVMX_USBNX_DMA0_INB_CHN0(bid)	CVMX_USBNXREG2(0x818, bid)
93#define CVMX_USBNX_DMA0_OUTB_CHN0(bid)	CVMX_USBNXREG2(0x858, bid)
94#define CVMX_USBNX_USBP_CTL_STATUS(bid)	CVMX_USBNXREG1(0x18, bid)
95
96/**
97 * cvmx_usbc#_gahbcfg
98 *
99 * Core AHB Configuration Register (GAHBCFG)
100 *
101 * This register can be used to configure the core after power-on or a change in
102 * mode of operation. This register mainly contains AHB system-related
103 * configuration parameters. The AHB is the processor interface to the O2P USB
104 * core. In general, software need not know about this interface except to
105 * program the values as specified.
106 *
107 * The application must program this register as part of the O2P USB core
108 * initialization. Do not change this register after the initial programming.
109 */
110union cvmx_usbcx_gahbcfg {
111	uint32_t u32;
112	/**
113	 * struct cvmx_usbcx_gahbcfg_s
114	 * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
115	 *	Software should set this bit to 0x1.
116	 *	Indicates when the Periodic TxFIFO Empty Interrupt bit in the
117	 *	Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
118	 *	bit is used only in Slave mode.
119	 *	* 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
120	 *	TxFIFO is half empty
121	 *	* 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
122	 *	TxFIFO is completely empty
123	 * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
124	 *	Software should set this bit to 0x1.
125	 *	Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
126	 *	the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
127	 *	This bit is used only in Slave mode.
128	 *	* 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
129	 *	Periodic TxFIFO is half empty
130	 *	* 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
131	 *	Periodic TxFIFO is completely empty
132	 * @dmaen: DMA Enable (DMAEn)
133	 *	* 1'b0: Core operates in Slave mode
134	 *	* 1'b1: Core operates in a DMA mode
135	 * @hbstlen: Burst Length/Type (HBstLen)
136	 *	This field has not effect and should be left as 0x0.
137	 * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
138	 *	Software should set this field to 0x1.
139	 *	The application uses this bit to mask or unmask the interrupt
140	 *	line assertion to itself. Irrespective of this bit's setting,
141	 *	the interrupt status registers are updated by the core.
142	 *	* 1'b0: Mask the interrupt assertion to the application.
143	 *	* 1'b1: Unmask the interrupt assertion to the application.
144	 */
145	struct cvmx_usbcx_gahbcfg_s {
146		uint32_t reserved_9_31	: 23;
147		uint32_t ptxfemplvl	: 1;
148		uint32_t nptxfemplvl	: 1;
149		uint32_t reserved_6_6	: 1;
150		uint32_t dmaen		: 1;
151		uint32_t hbstlen	: 4;
152		uint32_t glblintrmsk	: 1;
153	} s;
154};
155
156/**
157 * cvmx_usbc#_ghwcfg3
158 *
159 * User HW Config3 Register (GHWCFG3)
160 *
161 * This register contains the configuration options of the O2P USB core.
162 */
163union cvmx_usbcx_ghwcfg3 {
164	uint32_t u32;
165	/**
166	 * struct cvmx_usbcx_ghwcfg3_s
167	 * @dfifodepth: DFIFO Depth (DfifoDepth)
168	 *	This value is in terms of 32-bit words.
169	 *	* Minimum value is 32
170	 *	* Maximum value is 32768
171	 * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
172	 *	Indicates whether AHB and PHY clocks are synchronous to
173	 *	each other.
174	 *	* 1'b0: No
175	 *	* 1'b1: Yes
176	 *	This bit is tied to 1.
177	 * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
178	 *	* 1'b0: Asynchronous reset is used in the core
179	 *	* 1'b1: Synchronous reset is used in the core
180	 * @optfeature: Optional Features Removed (OptFeature)
181	 *	Indicates whether the User ID register, GPIO interface ports,
182	 *	and SOF toggle and counter ports were removed for gate count
183	 *	optimization.
184	 * @vendor_control_interface_support: Vendor Control Interface Support
185	 *	* 1'b0: Vendor Control Interface is not available on the core.
186	 *	* 1'b1: Vendor Control Interface is available.
187	 * @i2c_selection: I2C Selection
188	 *	* 1'b0: I2C Interface is not available on the core.
189	 *	* 1'b1: I2C Interface is available on the core.
190	 * @otgen: OTG Function Enabled (OtgEn)
191	 *	The application uses this bit to indicate the O2P USB core's
192	 *	OTG capabilities.
193	 *	* 1'b0: Not OTG capable
194	 *	* 1'b1: OTG Capable
195	 * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
196	 *	* 3'b000: 4 bits
197	 *	* 3'b001: 5 bits
198	 *	* 3'b010: 6 bits
199	 *	* 3'b011: 7 bits
200	 *	* 3'b100: 8 bits
201	 *	* 3'b101: 9 bits
202	 *	* 3'b110: 10 bits
203	 *	* Others: Reserved
204	 * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
205	 *	* 4'b0000: 11 bits
206	 *	* 4'b0001: 12 bits
207	 *	- ...
208	 *	* 4'b1000: 19 bits
209	 *	* Others: Reserved
210	 */
211	struct cvmx_usbcx_ghwcfg3_s {
212		uint32_t dfifodepth				: 16;
213		uint32_t reserved_13_15				: 3;
214		uint32_t ahbphysync				: 1;
215		uint32_t rsttype				: 1;
216		uint32_t optfeature				: 1;
217		uint32_t vendor_control_interface_support	: 1;
218		uint32_t i2c_selection				: 1;
219		uint32_t otgen					: 1;
220		uint32_t pktsizewidth				: 3;
221		uint32_t xfersizewidth				: 4;
222	} s;
223};
224
225/**
226 * cvmx_usbc#_gintmsk
227 *
228 * Core Interrupt Mask Register (GINTMSK)
229 *
230 * This register works with the Core Interrupt register to interrupt the
231 * application. When an interrupt bit is masked, the interrupt associated with
232 * that bit will not be generated. However, the Core Interrupt (GINTSTS)
233 * register bit corresponding to that interrupt will still be set.
234 * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
235 */
236union cvmx_usbcx_gintmsk {
237	uint32_t u32;
238	/**
239	 * struct cvmx_usbcx_gintmsk_s
240	 * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
241	 *	(WkUpIntMsk)
242	 * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
243	 *	(SessReqIntMsk)
244	 * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
245	 * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
246	 * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
247	 * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
248	 * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
249	 * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
250	 * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
251	 *	Incomplete Isochronous OUT Transfer Mask
252	 *	(incompISOOUTMsk)
253	 * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
254	 *		    (incompISOINMsk)
255	 * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
256	 * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
257	 * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
258	 * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
259	 * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
260	 *	(ISOOutDropMsk)
261	 * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
262	 * @usbrstmsk: USB Reset Mask (USBRstMsk)
263	 * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
264	 * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
265	 * @i2cint: I2C Interrupt Mask (I2CINT)
266	 * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
267	 *	I2C Carkit Interrupt Mask (I2CCKINTMsk)
268	 * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
269	 * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
270	 *		  (GINNakEffMsk)
271	 * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
272	 * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
273	 * @sofmsk: Start of (micro)Frame Mask (SofMsk)
274	 * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
275	 * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
276	 */
277	struct cvmx_usbcx_gintmsk_s {
278		uint32_t wkupintmsk		: 1;
279		uint32_t sessreqintmsk		: 1;
280		uint32_t disconnintmsk		: 1;
281		uint32_t conidstschngmsk	: 1;
282		uint32_t reserved_27_27		: 1;
283		uint32_t ptxfempmsk		: 1;
284		uint32_t hchintmsk		: 1;
285		uint32_t prtintmsk		: 1;
286		uint32_t reserved_23_23		: 1;
287		uint32_t fetsuspmsk		: 1;
288		uint32_t incomplpmsk		: 1;
289		uint32_t incompisoinmsk		: 1;
290		uint32_t oepintmsk		: 1;
291		uint32_t inepintmsk		: 1;
292		uint32_t epmismsk		: 1;
293		uint32_t reserved_16_16		: 1;
294		uint32_t eopfmsk		: 1;
295		uint32_t isooutdropmsk		: 1;
296		uint32_t enumdonemsk		: 1;
297		uint32_t usbrstmsk		: 1;
298		uint32_t usbsuspmsk		: 1;
299		uint32_t erlysuspmsk		: 1;
300		uint32_t i2cint			: 1;
301		uint32_t ulpickintmsk		: 1;
302		uint32_t goutnakeffmsk		: 1;
303		uint32_t ginnakeffmsk		: 1;
304		uint32_t nptxfempmsk		: 1;
305		uint32_t rxflvlmsk		: 1;
306		uint32_t sofmsk			: 1;
307		uint32_t otgintmsk		: 1;
308		uint32_t modemismsk		: 1;
309		uint32_t reserved_0_0		: 1;
310	} s;
311};
312
313/**
314 * cvmx_usbc#_gintsts
315 *
316 * Core Interrupt Register (GINTSTS)
317 *
318 * This register interrupts the application for system-level events in the
319 * current mode of operation (Device mode or Host mode). It is shown in
320 * Interrupt. Some of the bits in this register are valid only in Host mode,
321 * while others are valid in Device mode only. This register also indicates the
322 * current mode of operation. In order to clear the interrupt status bits of
323 * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
324 * interrupts are read only; once software reads from or writes to the FIFO
325 * while servicing these interrupts, FIFO interrupt conditions are cleared
326 * automatically.
327 */
328union cvmx_usbcx_gintsts {
329	uint32_t u32;
330	/**
331	 * struct cvmx_usbcx_gintsts_s
332	 * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
333	 *	In Device mode, this interrupt is asserted when a resume is
334	 *	detected on the USB. In Host mode, this interrupt is asserted
335	 *	when a remote wakeup is detected on the USB.
336	 *	For more information on how to use this interrupt, see "Partial
337	 *	Power-Down and Clock Gating Programming Model" on
338	 *	page 353.
339	 * @sessreqint: Session Request/New Session Detected Interrupt
340	 *		(SessReqInt)
341	 *	In Host mode, this interrupt is asserted when a session request
342	 *	is detected from the device. In Device mode, this interrupt is
343	 *	asserted when the utmiotg_bvalid signal goes high.
344	 *	For more information on how to use this interrupt, see "Partial
345	 *	Power-Down and Clock Gating Programming Model" on
346	 *	page 353.
347	 * @disconnint: Disconnect Detected Interrupt (DisconnInt)
348	 *	Asserted when a device disconnect is detected.
349	 * @conidstschng: Connector ID Status Change (ConIDStsChng)
350	 *	The core sets this bit when there is a change in connector ID
351	 *	status.
352	 * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
353	 *	Asserted when the Periodic Transmit FIFO is either half or
354	 *	completely empty and there is space for at least one entry to be
355	 *	written in the Periodic Request Queue. The half or completely
356	 *	empty status is determined by the Periodic TxFIFO Empty Level
357	 *	bit in the Core AHB Configuration register
358	 *	(GAHBCFG.PTxFEmpLvl).
359	 * @hchint: Host Channels Interrupt (HChInt)
360	 *	The core sets this bit to indicate that an interrupt is pending
361	 *	on one of the channels of the core (in Host mode). The
362	 *	application must read the Host All Channels Interrupt (HAINT)
363	 *	register to determine the exact number of the channel on which
364	 *	the interrupt occurred, and then read the corresponding Host
365	 *	Channel-n Interrupt (HCINTn) register to determine the exact
366	 *	cause of the interrupt. The application must clear the
367	 *	appropriate status bit in the HCINTn register to clear this bit.
368	 * @prtint: Host Port Interrupt (PrtInt)
369	 *	The core sets this bit to indicate a change in port status of
370	 *	one of the O2P USB core ports in Host mode. The application must
371	 *	read the Host Port Control and Status (HPRT) register to
372	 *	determine the exact event that caused this interrupt. The
373	 *	application must clear the appropriate status bit in the Host
374	 *	Port Control and Status register to clear this bit.
375	 * @fetsusp: Data Fetch Suspended (FetSusp)
376	 *	This interrupt is valid only in DMA mode. This interrupt
377	 *	indicates that the core has stopped fetching data for IN
378	 *	endpoints due to the unavailability of TxFIFO space or Request
379	 *	Queue space. This interrupt is used by the application for an
380	 *	endpoint mismatch algorithm.
381	 * @incomplp: Incomplete Periodic Transfer (incomplP)
382	 *	In Host mode, the core sets this interrupt bit when there are
383	 *	incomplete periodic transactions still pending which are
384	 *	scheduled for the current microframe.
385	 *	Incomplete Isochronous OUT Transfer (incompISOOUT)
386	 *	The Device mode, the core sets this interrupt to indicate that
387	 *	there is at least one isochronous OUT endpoint on which the
388	 *	transfer is not completed in the current microframe. This
389	 *	interrupt is asserted along with the End of Periodic Frame
390	 *	Interrupt (EOPF) bit in this register.
391	 * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
392	 *	The core sets this interrupt to indicate that there is at least
393	 *	one isochronous IN endpoint on which the transfer is not
394	 *	completed in the current microframe. This interrupt is asserted
395	 *	along with the End of Periodic Frame Interrupt (EOPF) bit in
396	 *	this register.
397	 * @oepint: OUT Endpoints Interrupt (OEPInt)
398	 *	The core sets this bit to indicate that an interrupt is pending
399	 *	on one of the OUT endpoints of the core (in Device mode). The
400	 *	application must read the Device All Endpoints Interrupt
401	 *	(DAINT) register to determine the exact number of the OUT
402	 *	endpoint on which the interrupt occurred, and then read the
403	 *	corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
404	 *	register to determine the exact cause of the interrupt. The
405	 *	application must clear the appropriate status bit in the
406	 *	corresponding DOEPINTn register to clear this bit.
407	 * @iepint: IN Endpoints Interrupt (IEPInt)
408	 *	The core sets this bit to indicate that an interrupt is pending
409	 *	on one of the IN endpoints of the core (in Device mode). The
410	 *	application must read the Device All Endpoints Interrupt
411	 *	(DAINT) register to determine the exact number of the IN
412	 *	endpoint on which the interrupt occurred, and then read the
413	 *	corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
414	 *	register to determine the exact cause of the interrupt. The
415	 *	application must clear the appropriate status bit in the
416	 *	corresponding DIEPINTn register to clear this bit.
417	 * @epmis: Endpoint Mismatch Interrupt (EPMis)
418	 *	Indicates that an IN token has been received for a non-periodic
419	 *	endpoint, but the data for another endpoint is present in the
420	 *	top of the Non-Periodic Transmit FIFO and the IN endpoint
421	 *	mismatch count programmed by the application has expired.
422	 * @eopf: End of Periodic Frame Interrupt (EOPF)
423	 *	Indicates that the period specified in the Periodic Frame
424	 *	Interval field of the Device Configuration register
425	 *	(DCFG.PerFrInt) has been reached in the current microframe.
426	 * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
427	 *	The core sets this bit when it fails to write an isochronous OUT
428	 *	packet into the RxFIFO because the RxFIFO doesn't have
429	 *	enough space to accommodate a maximum packet size packet
430	 *	for the isochronous OUT endpoint.
431	 * @enumdone: Enumeration Done (EnumDone)
432	 *	The core sets this bit to indicate that speed enumeration is
433	 *	complete. The application must read the Device Status (DSTS)
434	 *	register to obtain the enumerated speed.
435	 * @usbrst: USB Reset (USBRst)
436	 *	The core sets this bit to indicate that a reset is detected on
437	 *	the USB.
438	 * @usbsusp: USB Suspend (USBSusp)
439	 *	The core sets this bit to indicate that a suspend was detected
440	 *	on the USB. The core enters the Suspended state when there
441	 *	is no activity on the phy_line_state_i signal for an extended
442	 *	period of time.
443	 * @erlysusp: Early Suspend (ErlySusp)
444	 *	The core sets this bit to indicate that an Idle state has been
445	 *	detected on the USB for 3 ms.
446	 * @i2cint: I2C Interrupt (I2CINT)
447	 *	This bit is always 0x0.
448	 * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
449	 *	This bit is always 0x0.
450	 * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
451	 *	Indicates that the Set Global OUT NAK bit in the Device Control
452	 *	register (DCTL.SGOUTNak), set by the application, has taken
453	 *	effect in the core. This bit can be cleared by writing the Clear
454	 *	Global OUT NAK bit in the Device Control register
455	 *	(DCTL.CGOUTNak).
456	 * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
457	 *	Indicates that the Set Global Non-Periodic IN NAK bit in the
458	 *	Device Control register (DCTL.SGNPInNak), set by the
459	 *	application, has taken effect in the core. That is, the core has
460	 *	sampled the Global IN NAK bit set by the application. This bit
461	 *	can be cleared by clearing the Clear Global Non-Periodic IN
462	 *	NAK bit in the Device Control register (DCTL.CGNPInNak).
463	 *	This interrupt does not necessarily mean that a NAK handshake
464	 *	is sent out on the USB. The STALL bit takes precedence over
465	 *	the NAK bit.
466	 * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
467	 *	This interrupt is asserted when the Non-Periodic TxFIFO is
468	 *	either half or completely empty, and there is space for at least
469	 *	one entry to be written to the Non-Periodic Transmit Request
470	 *	Queue. The half or completely empty status is determined by
471	 *	the Non-Periodic TxFIFO Empty Level bit in the Core AHB
472	 *	Configuration register (GAHBCFG.NPTxFEmpLvl).
473	 * @rxflvl: RxFIFO Non-Empty (RxFLvl)
474	 *	Indicates that there is at least one packet pending to be read
475	 *	from the RxFIFO.
476	 * @sof: Start of (micro)Frame (Sof)
477	 *	In Host mode, the core sets this bit to indicate that an SOF
478	 *	(FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
479	 *	USB. The application must write a 1 to this bit to clear the
480	 *	interrupt.
481	 *	In Device mode, in the core sets this bit to indicate that an
482	 *	SOF token has been received on the USB. The application can read
483	 *	the Device Status register to get the current (micro)frame
484	 *	number. This interrupt is seen only when the core is operating
485	 *	at either HS or FS.
486	 * @otgint: OTG Interrupt (OTGInt)
487	 *	The core sets this bit to indicate an OTG protocol event. The
488	 *	application must read the OTG Interrupt Status (GOTGINT)
489	 *	register to determine the exact event that caused this
490	 *	interrupt. The application must clear the appropriate status bit
491	 *	in the GOTGINT register to clear this bit.
492	 * @modemis: Mode Mismatch Interrupt (ModeMis)
493	 *	The core sets this bit when the application is trying to access:
494	 *	* A Host mode register, when the core is operating in Device
495	 *	mode
496	 *	* A Device mode register, when the core is operating in Host
497	 *	mode
498	 *	The register access is completed on the AHB with an OKAY
499	 *	response, but is ignored by the core internally and doesn't
500	 *	affect the operation of the core.
501	 * @curmod: Current Mode of Operation (CurMod)
502	 *	Indicates the current mode of operation.
503	 *	* 1'b0: Device mode
504	 *	* 1'b1: Host mode
505	 */
506	struct cvmx_usbcx_gintsts_s {
507		uint32_t wkupint	: 1;
508		uint32_t sessreqint	: 1;
509		uint32_t disconnint	: 1;
510		uint32_t conidstschng	: 1;
511		uint32_t reserved_27_27	: 1;
512		uint32_t ptxfemp	: 1;
513		uint32_t hchint		: 1;
514		uint32_t prtint		: 1;
515		uint32_t reserved_23_23	: 1;
516		uint32_t fetsusp	: 1;
517		uint32_t incomplp	: 1;
518		uint32_t incompisoin	: 1;
519		uint32_t oepint		: 1;
520		uint32_t iepint		: 1;
521		uint32_t epmis		: 1;
522		uint32_t reserved_16_16	: 1;
523		uint32_t eopf		: 1;
524		uint32_t isooutdrop	: 1;
525		uint32_t enumdone	: 1;
526		uint32_t usbrst		: 1;
527		uint32_t usbsusp	: 1;
528		uint32_t erlysusp	: 1;
529		uint32_t i2cint		: 1;
530		uint32_t ulpickint	: 1;
531		uint32_t goutnakeff	: 1;
532		uint32_t ginnakeff	: 1;
533		uint32_t nptxfemp	: 1;
534		uint32_t rxflvl		: 1;
535		uint32_t sof		: 1;
536		uint32_t otgint		: 1;
537		uint32_t modemis	: 1;
538		uint32_t curmod		: 1;
539	} s;
540};
541
542/**
543 * cvmx_usbc#_gnptxfsiz
544 *
545 * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
546 *
547 * The application can program the RAM size and the memory start address for the
548 * Non-Periodic TxFIFO.
549 */
550union cvmx_usbcx_gnptxfsiz {
551	uint32_t u32;
552	/**
553	 * struct cvmx_usbcx_gnptxfsiz_s
554	 * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
555	 *	This value is in terms of 32-bit words.
556	 *	Minimum value is 16
557	 *	Maximum value is 32768
558	 * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
559	 *	This field contains the memory start address for Non-Periodic
560	 *	Transmit FIFO RAM.
561	 */
562	struct cvmx_usbcx_gnptxfsiz_s {
563		uint32_t nptxfdep	: 16;
564		uint32_t nptxfstaddr	: 16;
565	} s;
566};
567
568/**
569 * cvmx_usbc#_gnptxsts
570 *
571 * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
572 *
573 * This read-only register contains the free space information for the
574 * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
575 */
576union cvmx_usbcx_gnptxsts {
577	uint32_t u32;
578	/**
579	 * struct cvmx_usbcx_gnptxsts_s
580	 * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
581	 *	Entry in the Non-Periodic Tx Request Queue that is currently
582	 *	being processed by the MAC.
583	 *	* Bits [30:27]: Channel/endpoint number
584	 *	* Bits [26:25]:
585	 *	- 2'b00: IN/OUT token
586	 *	- 2'b01: Zero-length transmit packet (device IN/host OUT)
587	 *	- 2'b10: PING/CSPLIT token
588	 *	- 2'b11: Channel halt command
589	 *	* Bit [24]: Terminate (last entry for selected channel/endpoint)
590	 * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
591	 *	(NPTxQSpcAvail)
592	 *	Indicates the amount of free space available in the Non-
593	 *	Periodic Transmit Request Queue. This queue holds both IN
594	 *	and OUT requests in Host mode. Device mode has only IN
595	 *	requests.
596	 *	* 8'h0: Non-Periodic Transmit Request Queue is full
597	 *	* 8'h1: 1 location available
598	 *	* 8'h2: 2 locations available
599	 *	* n: n locations available (0..8)
600	 *	* Others: Reserved
601	 * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
602	 *	Indicates the amount of free space available in the Non-
603	 *	Periodic TxFIFO.
604	 *	Values are in terms of 32-bit words.
605	 *	* 16'h0: Non-Periodic TxFIFO is full
606	 *	* 16'h1: 1 word available
607	 *	* 16'h2: 2 words available
608	 *	* 16'hn: n words available (where 0..32768)
609	 *	* 16'h8000: 32768 words available
610	 *	* Others: Reserved
611	 */
612	struct cvmx_usbcx_gnptxsts_s {
613		uint32_t reserved_31_31	: 1;
614		uint32_t nptxqtop	: 7;
615		uint32_t nptxqspcavail	: 8;
616		uint32_t nptxfspcavail	: 16;
617	} s;
618};
619
620/**
621 * cvmx_usbc#_grstctl
622 *
623 * Core Reset Register (GRSTCTL)
624 *
625 * The application uses this register to reset various hardware features inside
626 * the core.
627 */
628union cvmx_usbcx_grstctl {
629	uint32_t u32;
630	/**
631	 * struct cvmx_usbcx_grstctl_s
632	 * @ahbidle: AHB Master Idle (AHBIdle)
633	 *	Indicates that the AHB Master State Machine is in the IDLE
634	 *	condition.
635	 * @dmareq: DMA Request Signal (DMAReq)
636	 *	Indicates that the DMA request is in progress. Used for debug.
637	 * @txfnum: TxFIFO Number (TxFNum)
638	 *	This is the FIFO number that must be flushed using the TxFIFO
639	 *	Flush bit. This field must not be changed until the core clears
640	 *	the TxFIFO Flush bit.
641	 *	* 5'h0: Non-Periodic TxFIFO flush
642	 *	* 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
643	 *	TxFIFO flush in Host mode
644	 *	* 5'h2: Periodic TxFIFO 2 flush in Device mode
645	 *	- ...
646	 *	* 5'hF: Periodic TxFIFO 15 flush in Device mode
647	 *	* 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
648	 *	core
649	 * @txfflsh: TxFIFO Flush (TxFFlsh)
650	 *	This bit selectively flushes a single or all transmit FIFOs, but
651	 *	cannot do so if the core is in the midst of a transaction.
652	 *	The application must only write this bit after checking that the
653	 *	core is neither writing to the TxFIFO nor reading from the
654	 *	TxFIFO.
655	 *	The application must wait until the core clears this bit before
656	 *	performing any operations. This bit takes 8 clocks (of phy_clk
657	 *	or hclk, whichever is slower) to clear.
658	 * @rxfflsh: RxFIFO Flush (RxFFlsh)
659	 *	The application can flush the entire RxFIFO using this bit, but
660	 *	must first ensure that the core is not in the middle of a
661	 *	transaction.
662	 *	The application must only write to this bit after checking that
663	 *	the core is neither reading from the RxFIFO nor writing to the
664	 *	RxFIFO.
665	 *	The application must wait until the bit is cleared before
666	 *	performing any other operations. This bit will take 8 clocks
667	 *	(slowest of PHY or AHB clock) to clear.
668	 * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
669	 *	The application writes this bit to flush the IN Token Sequence
670	 *	Learning Queue.
671	 * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
672	 *	The application writes this bit to reset the (micro)frame number
673	 *	counter inside the core. When the (micro)frame counter is reset,
674	 *	the subsequent SOF sent out by the core will have a
675	 *	(micro)frame number of 0.
676	 * @hsftrst: HClk Soft Reset (HSftRst)
677	 *	The application uses this bit to flush the control logic in the
678	 *	AHB Clock domain. Only AHB Clock Domain pipelines are reset.
679	 *	* FIFOs are not flushed with this bit.
680	 *	* All state machines in the AHB clock domain are reset to the
681	 *	Idle state after terminating the transactions on the AHB,
682	 *	following the protocol.
683	 *	* CSR control bits used by the AHB clock domain state
684	 *	machines are cleared.
685	 *	* To clear this interrupt, status mask bits that control the
686	 *	interrupt status and are generated by the AHB clock domain
687	 *	state machine are cleared.
688	 *	* Because interrupt status bits are not cleared, the application
689	 *	can get the status of any core events that occurred after it set
690	 *	this bit.
691	 *	This is a self-clearing bit that the core clears after all
692	 *	necessary logic is reset in the core. This may take several
693	 *	clocks, depending on the core's current state.
694	 * @csftrst: Core Soft Reset (CSftRst)
695	 *	Resets the hclk and phy_clock domains as follows:
696	 *	* Clears the interrupts and all the CSR registers except the
697	 *	following register bits:
698	 *	- PCGCCTL.RstPdwnModule
699	 *	- PCGCCTL.GateHclk
700	 *	- PCGCCTL.PwrClmp
701	 *	- PCGCCTL.StopPPhyLPwrClkSelclk
702	 *	- GUSBCFG.PhyLPwrClkSel
703	 *	- GUSBCFG.DDRSel
704	 *	- GUSBCFG.PHYSel
705	 *	- GUSBCFG.FSIntf
706	 *	- GUSBCFG.ULPI_UTMI_Sel
707	 *	- GUSBCFG.PHYIf
708	 *	- HCFG.FSLSPclkSel
709	 *	- DCFG.DevSpd
710	 *	* All module state machines (except the AHB Slave Unit) are
711	 *	reset to the IDLE state, and all the transmit FIFOs and the
712	 *	receive FIFO are flushed.
713	 *	* Any transactions on the AHB Master are terminated as soon
714	 *	as possible, after gracefully completing the last data phase of
715	 *	an AHB transfer. Any transactions on the USB are terminated
716	 *	immediately.
717	 *	The application can write to this bit any time it wants to reset
718	 *	the core. This is a self-clearing bit and the core clears this
719	 *	bit after all the necessary logic is reset in the core, which
720	 *	may take several clocks, depending on the current state of the
721	 *	core. Once this bit is cleared software should wait at least 3
722	 *	PHY clocks before doing any access to the PHY domain
723	 *	(synchronization delay). Software should also should check that
724	 *	bit 31 of this register is 1 (AHB Master is IDLE) before
725	 *	starting any operation.
726	 *	Typically software reset is used during software development
727	 *	and also when you dynamically change the PHY selection bits
728	 *	in the USB configuration registers listed above. When you
729	 *	change the PHY, the corresponding clock for the PHY is
730	 *	selected and used in the PHY domain. Once a new clock is
731	 *	selected, the PHY domain has to be reset for proper operation.
732	 */
733	struct cvmx_usbcx_grstctl_s {
734		uint32_t ahbidle	: 1;
735		uint32_t dmareq		: 1;
736		uint32_t reserved_11_29	: 19;
737		uint32_t txfnum		: 5;
738		uint32_t txfflsh	: 1;
739		uint32_t rxfflsh	: 1;
740		uint32_t intknqflsh	: 1;
741		uint32_t frmcntrrst	: 1;
742		uint32_t hsftrst	: 1;
743		uint32_t csftrst	: 1;
744	} s;
745};
746
747/**
748 * cvmx_usbc#_grxfsiz
749 *
750 * Receive FIFO Size Register (GRXFSIZ)
751 *
752 * The application can program the RAM size that must be allocated to the
753 * RxFIFO.
754 */
755union cvmx_usbcx_grxfsiz {
756	uint32_t u32;
757	/**
758	 * struct cvmx_usbcx_grxfsiz_s
759	 * @rxfdep: RxFIFO Depth (RxFDep)
760	 *	This value is in terms of 32-bit words.
761	 *	* Minimum value is 16
762	 *	* Maximum value is 32768
763	 */
764	struct cvmx_usbcx_grxfsiz_s {
765		uint32_t reserved_16_31	: 16;
766		uint32_t rxfdep		: 16;
767	} s;
768};
769
770/**
771 * cvmx_usbc#_grxstsph
772 *
773 * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
774 *
775 * A read to the Receive Status Read and Pop register returns and additionally
776 * pops the top data entry out of the RxFIFO.
777 * This Description is only valid when the core is in Host Mode. For Device Mode
778 * use USBC_GRXSTSPD instead.
779 * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
780 *	 same offset in the O2P USB core. The offset difference shown in this
781 *	 document is for software clarity and is actually ignored by the
782 *       hardware.
783 */
784union cvmx_usbcx_grxstsph {
785	uint32_t u32;
786	/**
787	 * struct cvmx_usbcx_grxstsph_s
788	 * @pktsts: Packet Status (PktSts)
789	 *	Indicates the status of the received packet
790	 *	* 4'b0010: IN data packet received
791	 *	* 4'b0011: IN transfer completed (triggers an interrupt)
792	 *	* 4'b0101: Data toggle error (triggers an interrupt)
793	 *	* 4'b0111: Channel halted (triggers an interrupt)
794	 *	* Others: Reserved
795	 * @dpid: Data PID (DPID)
796	 *	* 2'b00: DATA0
797	 *	* 2'b10: DATA1
798	 *	* 2'b01: DATA2
799	 *	* 2'b11: MDATA
800	 * @bcnt: Byte Count (BCnt)
801	 *	Indicates the byte count of the received IN data packet
802	 * @chnum: Channel Number (ChNum)
803	 *	Indicates the channel number to which the current received
804	 *	packet belongs.
805	 */
806	struct cvmx_usbcx_grxstsph_s {
807		uint32_t reserved_21_31	: 11;
808		uint32_t pktsts		: 4;
809		uint32_t dpid		: 2;
810		uint32_t bcnt		: 11;
811		uint32_t chnum		: 4;
812	} s;
813};
814
815/**
816 * cvmx_usbc#_gusbcfg
817 *
818 * Core USB Configuration Register (GUSBCFG)
819 *
820 * This register can be used to configure the core after power-on or a changing
821 * to Host mode or Device mode. It contains USB and USB-PHY related
822 * configuration parameters. The application must program this register before
823 * starting any transactions on either the AHB or the USB. Do not make changes
824 * to this register after the initial programming.
825 */
826union cvmx_usbcx_gusbcfg {
827	uint32_t u32;
828	/**
829	 * struct cvmx_usbcx_gusbcfg_s
830	 * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
831	 *	This bit is always 0x0.
832	 * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
833	 *	Software should set this bit to 0x0.
834	 *	Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
835	 *	FS and LS modes, the PHY can usually operate on a 48-MHz
836	 *	clock to save power.
837	 *	* 1'b0: 480-MHz Internal PLL clock
838	 *	* 1'b1: 48-MHz External Clock
839	 *	In 480 MHz mode, the UTMI interface operates at either 60 or
840	 *	30-MHz, depending upon whether 8- or 16-bit data width is
841	 *	selected. In 48-MHz mode, the UTMI interface operates at 48
842	 *	MHz in FS mode and at either 48 or 6 MHz in LS mode
843	 *	(depending on the PHY vendor).
844	 *	This bit drives the utmi_fsls_low_power core output signal, and
845	 *	is valid only for UTMI+ PHYs.
846	 * @usbtrdtim: USB Turnaround Time (USBTrdTim)
847	 *	Sets the turnaround time in PHY clocks.
848	 *	Specifies the response time for a MAC request to the Packet
849	 *	FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
850	 *	This must be programmed to 0x5.
851	 * @hnpcap: HNP-Capable (HNPCap)
852	 *	This bit is always 0x0.
853	 * @srpcap: SRP-Capable (SRPCap)
854	 *	This bit is always 0x0.
855	 * @ddrsel: ULPI DDR Select (DDRSel)
856	 *	Software should set this bit to 0x0.
857	 * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
858	 *	Software should set this bit to 0x0.
859	 * @fsintf: Full-Speed Serial Interface Select (FSIntf)
860	 *	Software should set this bit to 0x0.
861	 * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
862	 *	This bit is always 0x0.
863	 * @phyif: PHY Interface (PHYIf)
864	 *	This bit is always 0x1.
865	 * @toutcal: HS/FS Timeout Calibration (TOutCal)
866	 *	The number of PHY clocks that the application programs in this
867	 *	field is added to the high-speed/full-speed interpacket timeout
868	 *	duration in the core to account for any additional delays
869	 *	introduced by the PHY. This may be required, since the delay
870	 *	introduced by the PHY in generating the linestate condition may
871	 *	vary from one PHY to another.
872	 *	The USB standard timeout value for high-speed operation is
873	 *	736 to 816 (inclusive) bit times. The USB standard timeout
874	 *	value for full-speed operation is 16 to 18 (inclusive) bit
875	 *	times. The application must program this field based on the
876	 *	speed of enumeration. The number of bit times added per PHY
877	 *	clock are:
878	 *	High-speed operation:
879	 *	* One 30-MHz PHY clock = 16 bit times
880	 *	* One 60-MHz PHY clock = 8 bit times
881	 *	Full-speed operation:
882	 *	* One 30-MHz PHY clock = 0.4 bit times
883	 *	* One 60-MHz PHY clock = 0.2 bit times
884	 *	* One 48-MHz PHY clock = 0.25 bit times
885	 */
886	struct cvmx_usbcx_gusbcfg_s {
887		uint32_t reserved_17_31	: 15;
888		uint32_t otgi2csel	: 1;
889		uint32_t phylpwrclksel	: 1;
890		uint32_t reserved_14_14	: 1;
891		uint32_t usbtrdtim	: 4;
892		uint32_t hnpcap		: 1;
893		uint32_t srpcap		: 1;
894		uint32_t ddrsel		: 1;
895		uint32_t physel		: 1;
896		uint32_t fsintf		: 1;
897		uint32_t ulpi_utmi_sel	: 1;
898		uint32_t phyif		: 1;
899		uint32_t toutcal	: 3;
900	} s;
901};
902
903/**
904 * cvmx_usbc#_haint
905 *
906 * Host All Channels Interrupt Register (HAINT)
907 *
908 * When a significant event occurs on a channel, the Host All Channels Interrupt
909 * register interrupts the application using the Host Channels Interrupt bit of
910 * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt.
911 * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in
912 * this register are set and cleared when the application sets and clears bits
913 * in the corresponding Host Channel-n Interrupt register.
914 */
915union cvmx_usbcx_haint {
916	uint32_t u32;
917	/**
918	 * struct cvmx_usbcx_haint_s
919	 * @haint: Channel Interrupts (HAINT)
920	 *	One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
921	 */
922	struct cvmx_usbcx_haint_s {
923		uint32_t reserved_16_31	: 16;
924		uint32_t haint		: 16;
925	} s;
926};
927
928/**
929 * cvmx_usbc#_haintmsk
930 *
931 * Host All Channels Interrupt Mask Register (HAINTMSK)
932 *
933 * The Host All Channel Interrupt Mask register works with the Host All Channel
934 * Interrupt register to interrupt the application when an event occurs on a
935 * channel. There is one interrupt mask bit per channel, up to a maximum of 16
936 * bits.
937 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
938 */
939union cvmx_usbcx_haintmsk {
940	uint32_t u32;
941	/**
942	 * struct cvmx_usbcx_haintmsk_s
943	 * @haintmsk: Channel Interrupt Mask (HAINTMsk)
944	 *	One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
945	 */
946	struct cvmx_usbcx_haintmsk_s {
947		uint32_t reserved_16_31	: 16;
948		uint32_t haintmsk	: 16;
949	} s;
950};
951
952/**
953 * cvmx_usbc#_hcchar#
954 *
955 * Host Channel-n Characteristics Register (HCCHAR)
956 *
957 */
958union cvmx_usbcx_hccharx {
959	uint32_t u32;
960	/**
961	 * struct cvmx_usbcx_hccharx_s
962	 * @chena: Channel Enable (ChEna)
963	 *	This field is set by the application and cleared by the OTG
964	 *	host.
965	 *	* 1'b0: Channel disabled
966	 *	* 1'b1: Channel enabled
967	 * @chdis: Channel Disable (ChDis)
968	 *	The application sets this bit to stop transmitting/receiving
969	 *	data on a channel, even before the transfer for that channel is
970	 *	complete. The application must wait for the Channel Disabled
971	 *	interrupt before treating the channel as disabled.
972	 * @oddfrm: Odd Frame (OddFrm)
973	 *	This field is set (reset) by the application to indicate that
974	 *	the OTG host must perform a transfer in an odd (micro)frame.
975	 *	This field is applicable for only periodic (isochronous and
976	 *	interrupt) transactions.
977	 *	* 1'b0: Even (micro)frame
978	 *	* 1'b1: Odd (micro)frame
979	 * @devaddr: Device Address (DevAddr)
980	 *	This field selects the specific device serving as the data
981	 *	source or sink.
982	 * @ec: Multi Count (MC) / Error Count (EC)
983	 *	When the Split Enable bit of the Host Channel-n Split Control
984	 *	register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates
985	 *	to the host the number of transactions that should be executed
986	 *	per microframe for this endpoint.
987	 *	* 2'b00: Reserved. This field yields undefined results.
988	 *	* 2'b01: 1 transaction
989	 *	* 2'b10: 2 transactions to be issued for this endpoint per
990	 *	microframe
991	 *	* 2'b11: 3 transactions to be issued for this endpoint per
992	 *	microframe
993	 *	When HCSPLTn.SpltEna is set (1'b1), this field indicates the
994	 *	number of immediate retries to be performed for a periodic split
995	 *	transactions on transaction errors. This field must be set to at
996	 *	least 2'b01.
997	 * @eptype: Endpoint Type (EPType)
998	 *	Indicates the transfer type selected.
999	 *	* 2'b00: Control
1000	 *	* 2'b01: Isochronous
1001	 *	* 2'b10: Bulk
1002	 *	* 2'b11: Interrupt
1003	 * @lspddev: Low-Speed Device (LSpdDev)
1004	 *	This field is set by the application to indicate that this
1005	 *	channel is communicating to a low-speed device.
1006	 * @epdir: Endpoint Direction (EPDir)
1007	 *	Indicates whether the transaction is IN or OUT.
1008	 *	* 1'b0: OUT
1009	 *	* 1'b1: IN
1010	 * @epnum: Endpoint Number (EPNum)
1011	 *	Indicates the endpoint number on the device serving as the
1012	 *	data source or sink.
1013	 * @mps: Maximum Packet Size (MPS)
1014	 *	Indicates the maximum packet size of the associated endpoint.
1015	 */
1016	struct cvmx_usbcx_hccharx_s {
1017		uint32_t chena		: 1;
1018		uint32_t chdis		: 1;
1019		uint32_t oddfrm		: 1;
1020		uint32_t devaddr	: 7;
1021		uint32_t ec		: 2;
1022		uint32_t eptype		: 2;
1023		uint32_t lspddev	: 1;
1024		uint32_t reserved_16_16	: 1;
1025		uint32_t epdir		: 1;
1026		uint32_t epnum		: 4;
1027		uint32_t mps		: 11;
1028	} s;
1029};
1030
1031/**
1032 * cvmx_usbc#_hcfg
1033 *
1034 * Host Configuration Register (HCFG)
1035 *
1036 * This register configures the core after power-on. Do not make changes to this
1037 * register after initializing the host.
1038 */
1039union cvmx_usbcx_hcfg {
1040	uint32_t u32;
1041	/**
1042	 * struct cvmx_usbcx_hcfg_s
1043	 * @fslssupp: FS- and LS-Only Support (FSLSSupp)
1044	 *	The application uses this bit to control the core's enumeration
1045	 *	speed. Using this bit, the application can make the core
1046	 *	enumerate as a FS host, even if the connected device supports
1047	 *	HS traffic. Do not make changes to this field after initial
1048	 *	programming.
1049	 *	* 1'b0: HS/FS/LS, based on the maximum speed supported by
1050	 *	the connected device
1051	 *	* 1'b1: FS/LS-only, even if the connected device can support HS
1052	 * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel)
1053	 *	When the core is in FS Host mode
1054	 *	* 2'b00: PHY clock is running at 30/60 MHz
1055	 *	* 2'b01: PHY clock is running at 48 MHz
1056	 *	* Others: Reserved
1057	 *	When the core is in LS Host mode
1058	 *	* 2'b00: PHY clock is running at 30/60 MHz. When the
1059	 *	UTMI+/ULPI PHY Low Power mode is not selected, use
1060	 *	30/60 MHz.
1061	 *	* 2'b01: PHY clock is running at 48 MHz. When the UTMI+
1062	 *	PHY Low Power mode is selected, use 48MHz if the PHY
1063	 *	supplies a 48 MHz clock during LS mode.
1064	 *	* 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode,
1065	 *	use 6 MHz when the UTMI+ PHY Low Power mode is
1066	 *	selected and the PHY supplies a 6 MHz clock during LS
1067	 *	mode. If you select a 6 MHz clock during LS mode, you must
1068	 *	do a soft reset.
1069	 *	* 2'b11: Reserved
1070	 */
1071	struct cvmx_usbcx_hcfg_s {
1072		uint32_t reserved_3_31	: 29;
1073		uint32_t fslssupp	: 1;
1074		uint32_t fslspclksel	: 2;
1075	} s;
1076};
1077
1078/**
1079 * cvmx_usbc#_hcint#
1080 *
1081 * Host Channel-n Interrupt Register (HCINT)
1082 *
1083 * This register indicates the status of a channel with respect to USB- and
1084 * AHB-related events. The application must read this register when the Host
1085 * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is
1086 * set. Before the application can read this register, it must first read
1087 * the Host All Channels Interrupt (HAINT) register to get the exact channel
1088 * number for the Host Channel-n Interrupt register. The application must clear
1089 * the appropriate bit in this register to clear the corresponding bits in the
1090 * HAINT and GINTSTS registers.
1091 */
1092union cvmx_usbcx_hcintx {
1093	uint32_t u32;
1094	/**
1095	 * struct cvmx_usbcx_hcintx_s
1096	 * @datatglerr: Data Toggle Error (DataTglErr)
1097	 * @frmovrun: Frame Overrun (FrmOvrun)
1098	 * @bblerr: Babble Error (BblErr)
1099	 * @xacterr: Transaction Error (XactErr)
1100	 * @nyet: NYET Response Received Interrupt (NYET)
1101	 * @ack: ACK Response Received Interrupt (ACK)
1102	 * @nak: NAK Response Received Interrupt (NAK)
1103	 * @stall: STALL Response Received Interrupt (STALL)
1104	 * @ahberr: This bit is always 0x0.
1105	 * @chhltd: Channel Halted (ChHltd)
1106	 *	Indicates the transfer completed abnormally either because of
1107	 *	any USB transaction error or in response to disable request by
1108	 *	the application.
1109	 * @xfercompl: Transfer Completed (XferCompl)
1110	 *	Transfer completed normally without any errors.
1111	 */
1112	struct cvmx_usbcx_hcintx_s {
1113		uint32_t reserved_11_31	: 21;
1114		uint32_t datatglerr	: 1;
1115		uint32_t frmovrun	: 1;
1116		uint32_t bblerr		: 1;
1117		uint32_t xacterr	: 1;
1118		uint32_t nyet		: 1;
1119		uint32_t ack		: 1;
1120		uint32_t nak		: 1;
1121		uint32_t stall		: 1;
1122		uint32_t ahberr		: 1;
1123		uint32_t chhltd		: 1;
1124		uint32_t xfercompl	: 1;
1125	} s;
1126};
1127
1128/**
1129 * cvmx_usbc#_hcintmsk#
1130 *
1131 * Host Channel-n Interrupt Mask Register (HCINTMSKn)
1132 *
1133 * This register reflects the mask for each channel status described in the
1134 * previous section.
1135 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
1136 */
1137union cvmx_usbcx_hcintmskx {
1138	uint32_t u32;
1139	/**
1140	 * struct cvmx_usbcx_hcintmskx_s
1141	 * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk)
1142	 * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk)
1143	 * @bblerrmsk: Babble Error Mask (BblErrMsk)
1144	 * @xacterrmsk: Transaction Error Mask (XactErrMsk)
1145	 * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk)
1146	 * @ackmsk: ACK Response Received Interrupt Mask (AckMsk)
1147	 * @nakmsk: NAK Response Received Interrupt Mask (NakMsk)
1148	 * @stallmsk: STALL Response Received Interrupt Mask (StallMsk)
1149	 * @ahberrmsk: AHB Error Mask (AHBErrMsk)
1150	 * @chhltdmsk: Channel Halted Mask (ChHltdMsk)
1151	 * @xfercomplmsk: Transfer Completed Mask (XferComplMsk)
1152	 */
1153	struct cvmx_usbcx_hcintmskx_s {
1154		uint32_t reserved_11_31	: 21;
1155		uint32_t datatglerrmsk	: 1;
1156		uint32_t frmovrunmsk	: 1;
1157		uint32_t bblerrmsk	: 1;
1158		uint32_t xacterrmsk	: 1;
1159		uint32_t nyetmsk	: 1;
1160		uint32_t ackmsk		: 1;
1161		uint32_t nakmsk		: 1;
1162		uint32_t stallmsk	: 1;
1163		uint32_t ahberrmsk	: 1;
1164		uint32_t chhltdmsk	: 1;
1165		uint32_t xfercomplmsk	: 1;
1166	} s;
1167};
1168
1169/**
1170 * cvmx_usbc#_hcsplt#
1171 *
1172 * Host Channel-n Split Control Register (HCSPLT)
1173 *
1174 */
1175union cvmx_usbcx_hcspltx {
1176	uint32_t u32;
1177	/**
1178	 * struct cvmx_usbcx_hcspltx_s
1179	 * @spltena: Split Enable (SpltEna)
1180	 *	The application sets this field to indicate that this channel is
1181	 *	enabled to perform split transactions.
1182	 * @compsplt: Do Complete Split (CompSplt)
1183	 *	The application sets this field to request the OTG host to
1184	 *	perform a complete split transaction.
1185	 * @xactpos: Transaction Position (XactPos)
1186	 *	This field is used to determine whether to send all, first,
1187	 *	middle, or last payloads with each OUT transaction.
1188	 *	* 2'b11: All. This is the entire data payload is of this
1189	 *	transaction (which is less than or equal to 188 bytes).
1190	 *	* 2'b10: Begin. This is the first data payload of this
1191	 *	transaction (which is larger than 188 bytes).
1192	 *	* 2'b00: Mid. This is the middle payload of this transaction
1193	 *	(which is larger than 188 bytes).
1194	 *	* 2'b01: End. This is the last payload of this transaction
1195	 *	(which is larger than 188 bytes).
1196	 * @hubaddr: Hub Address (HubAddr)
1197	 *	This field holds the device address of the transaction
1198	 *	translator's hub.
1199	 * @prtaddr: Port Address (PrtAddr)
1200	 *	This field is the port number of the recipient transaction
1201	 *	translator.
1202	 */
1203	struct cvmx_usbcx_hcspltx_s {
1204		uint32_t spltena	: 1;
1205		uint32_t reserved_17_30	: 14;
1206		uint32_t compsplt	: 1;
1207		uint32_t xactpos	: 2;
1208		uint32_t hubaddr	: 7;
1209		uint32_t prtaddr	: 7;
1210	} s;
1211};
1212
1213/**
1214 * cvmx_usbc#_hctsiz#
1215 *
1216 * Host Channel-n Transfer Size Register (HCTSIZ)
1217 *
1218 */
1219union cvmx_usbcx_hctsizx {
1220	uint32_t u32;
1221	/**
1222	 * struct cvmx_usbcx_hctsizx_s
1223	 * @dopng: Do Ping (DoPng)
1224	 *	Setting this field to 1 directs the host to do PING protocol.
1225	 * @pid: PID (Pid)
1226	 *	The application programs this field with the type of PID to use
1227	 *	for the initial transaction. The host will maintain this field
1228	 *	for the rest of the transfer.
1229	 *	* 2'b00: DATA0
1230	 *	* 2'b01: DATA2
1231	 *	* 2'b10: DATA1
1232	 *	* 2'b11: MDATA (non-control)/SETUP (control)
1233	 * @pktcnt: Packet Count (PktCnt)
1234	 *	This field is programmed by the application with the expected
1235	 *	number of packets to be transmitted (OUT) or received (IN).
1236	 *	The host decrements this count on every successful
1237	 *	transmission or reception of an OUT/IN packet. Once this count
1238	 *	reaches zero, the application is interrupted to indicate normal
1239	 *	completion.
1240	 * @xfersize: Transfer Size (XferSize)
1241	 *	For an OUT, this field is the number of data bytes the host will
1242	 *	send during the transfer.
1243	 *	For an IN, this field is the buffer size that the application
1244	 *	has reserved for the transfer. The application is expected to
1245	 *	program this field as an integer multiple of the maximum packet
1246	 *	size for IN transactions (periodic and non-periodic).
1247	 */
1248	struct cvmx_usbcx_hctsizx_s {
1249		uint32_t dopng		: 1;
1250		uint32_t pid		: 2;
1251		uint32_t pktcnt		: 10;
1252		uint32_t xfersize	: 19;
1253	} s;
1254};
1255
1256/**
1257 * cvmx_usbc#_hfir
1258 *
1259 * Host Frame Interval Register (HFIR)
1260 *
1261 * This register stores the frame interval information for the current speed to
1262 * which the O2P USB core has enumerated.
1263 */
1264union cvmx_usbcx_hfir {
1265	uint32_t u32;
1266	/**
1267	 * struct cvmx_usbcx_hfir_s
1268	 * @frint: Frame Interval (FrInt)
1269	 *	The value that the application programs to this field specifies
1270	 *	the interval between two consecutive SOFs (FS) or micro-
1271	 *	SOFs (HS) or Keep-Alive tokens (HS). This field contains the
1272	 *	number of PHY clocks that constitute the required frame
1273	 *	interval. The default value set in this field for a FS operation
1274	 *	when the PHY clock frequency is 60 MHz. The application can
1275	 *	write a value to this register only after the Port Enable bit of
1276	 *	the Host Port Control and Status register (HPRT.PrtEnaPort)
1277	 *	has been set. If no value is programmed, the core calculates
1278	 *	the value based on the PHY clock specified in the FS/LS PHY
1279	 *	Clock Select field of the Host Configuration register
1280	 *	(HCFG.FSLSPclkSel). Do not change the value of this field
1281	 *	after the initial configuration.
1282	 *	* 125 us (PHY clock frequency for HS)
1283	 *	* 1 ms (PHY clock frequency for FS/LS)
1284	 */
1285	struct cvmx_usbcx_hfir_s {
1286		uint32_t reserved_16_31	: 16;
1287		uint32_t frint		: 16;
1288	} s;
1289};
1290
1291/**
1292 * cvmx_usbc#_hfnum
1293 *
1294 * Host Frame Number/Frame Time Remaining Register (HFNUM)
1295 *
1296 * This register indicates the current frame number.
1297 * It also indicates the time remaining (in terms of the number of PHY clocks)
1298 * in the current (micro)frame.
1299 */
1300union cvmx_usbcx_hfnum {
1301	uint32_t u32;
1302	/**
1303	 * struct cvmx_usbcx_hfnum_s
1304	 * @frrem: Frame Time Remaining (FrRem)
1305	 *	Indicates the amount of time remaining in the current
1306	 *	microframe (HS) or frame (FS/LS), in terms of PHY clocks.
1307	 *	This field decrements on each PHY clock. When it reaches
1308	 *	zero, this field is reloaded with the value in the Frame
1309	 *	Interval register and a new SOF is transmitted on the USB.
1310	 * @frnum: Frame Number (FrNum)
1311	 *	This field increments when a new SOF is transmitted on the
1312	 *	USB, and is reset to 0 when it reaches 16'h3FFF.
1313	 */
1314	struct cvmx_usbcx_hfnum_s {
1315		uint32_t frrem	: 16;
1316		uint32_t frnum	: 16;
1317	} s;
1318};
1319
1320/**
1321 * cvmx_usbc#_hprt
1322 *
1323 * Host Port Control and Status Register (HPRT)
1324 *
1325 * This register is available in both Host and Device modes.
1326 * Currently, the OTG Host supports only one port.
1327 * A single register holds USB port-related information such as USB reset,
1328 * enable, suspend, resume, connect status, and test mode for each port. The
1329 * R_SS_WC bits in this register can trigger an interrupt to the application
1330 * through the Host Port Interrupt bit of the Core Interrupt register
1331 * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this
1332 * register and clear the bit that caused the interrupt. For the R_SS_WC bits,
1333 * the application must write a 1 to the bit to clear the interrupt.
1334 */
1335union cvmx_usbcx_hprt {
1336	uint32_t u32;
1337	/**
1338	 * struct cvmx_usbcx_hprt_s
1339	 * @prtspd: Port Speed (PrtSpd)
1340	 *	Indicates the speed of the device attached to this port.
1341	 *	* 2'b00: High speed
1342	 *	* 2'b01: Full speed
1343	 *	* 2'b10: Low speed
1344	 *	* 2'b11: Reserved
1345	 * @prttstctl: Port Test Control (PrtTstCtl)
1346	 *	The application writes a nonzero value to this field to put
1347	 *	the port into a Test mode, and the corresponding pattern is
1348	 *	signaled on the port.
1349	 *	* 4'b0000: Test mode disabled
1350	 *	* 4'b0001: Test_J mode
1351	 *	* 4'b0010: Test_K mode
1352	 *	* 4'b0011: Test_SE0_NAK mode
1353	 *	* 4'b0100: Test_Packet mode
1354	 *	* 4'b0101: Test_Force_Enable
1355	 *	* Others: Reserved
1356	 *	PrtSpd must be zero (i.e. the interface must be in high-speed
1357	 *	mode) to use the PrtTstCtl test modes.
1358	 * @prtpwr: Port Power (PrtPwr)
1359	 *	The application uses this field to control power to this port,
1360	 *	and the core clears this bit on an overcurrent condition.
1361	 *	* 1'b0: Power off
1362	 *	* 1'b1: Power on
1363	 * @prtlnsts: Port Line Status (PrtLnSts)
1364	 *	Indicates the current logic level USB data lines
1365	 *	* Bit [10]: Logic level of D-
1366	 *	* Bit [11]: Logic level of D+
1367	 * @prtrst: Port Reset (PrtRst)
1368	 *	When the application sets this bit, a reset sequence is
1369	 *	started on this port. The application must time the reset
1370	 *	period and clear this bit after the reset sequence is
1371	 *	complete.
1372	 *	* 1'b0: Port not in reset
1373	 *	* 1'b1: Port in reset
1374	 *	The application must leave this bit set for at least a
1375	 *	minimum duration mentioned below to start a reset on the
1376	 *	port. The application can leave it set for another 10 ms in
1377	 *	addition to the required minimum duration, before clearing
1378	 *	the bit, even though there is no maximum limit set by the
1379	 *	USB standard.
1380	 *	* High speed: 50 ms
1381	 *	* Full speed/Low speed: 10 ms
1382	 * @prtsusp: Port Suspend (PrtSusp)
1383	 *	The application sets this bit to put this port in Suspend
1384	 *	mode. The core only stops sending SOFs when this is set.
1385	 *	To stop the PHY clock, the application must set the Port
1386	 *	Clock Stop bit, which will assert the suspend input pin of
1387	 *	the PHY.
1388	 *	The read value of this bit reflects the current suspend
1389	 *	status of the port. This bit is cleared by the core after a
1390	 *	remote wakeup signal is detected or the application sets
1391	 *	the Port Reset bit or Port Resume bit in this register or the
1392	 *	Resume/Remote Wakeup Detected Interrupt bit or
1393	 *	Disconnect Detected Interrupt bit in the Core Interrupt
1394	 *	register (GINTSTS.WkUpInt or GINTSTS.DisconnInt,
1395	 *	respectively).
1396	 *	* 1'b0: Port not in Suspend mode
1397	 *	* 1'b1: Port in Suspend mode
1398	 * @prtres: Port Resume (PrtRes)
1399	 *	The application sets this bit to drive resume signaling on
1400	 *	the port. The core continues to drive the resume signal
1401	 *	until the application clears this bit.
1402	 *	If the core detects a USB remote wakeup sequence, as
1403	 *	indicated by the Port Resume/Remote Wakeup Detected
1404	 *	Interrupt bit of the Core Interrupt register
1405	 *	(GINTSTS.WkUpInt), the core starts driving resume
1406	 *	signaling without application intervention and clears this bit
1407	 *	when it detects a disconnect condition. The read value of
1408	 *	this bit indicates whether the core is currently driving
1409	 *	resume signaling.
1410	 *	* 1'b0: No resume driven
1411	 *	* 1'b1: Resume driven
1412	 * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng)
1413	 *	The core sets this bit when the status of the Port
1414	 *	Overcurrent Active bit (bit 4) in this register changes.
1415	 * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct)
1416	 *	Indicates the overcurrent condition of the port.
1417	 *	* 1'b0: No overcurrent condition
1418	 *	* 1'b1: Overcurrent condition
1419	 * @prtenchng: Port Enable/Disable Change (PrtEnChng)
1420	 *	The core sets this bit when the status of the Port Enable bit
1421	 *	[2] of this register changes.
1422	 * @prtena: Port Enable (PrtEna)
1423	 *	A port is enabled only by the core after a reset sequence,
1424	 *	and is disabled by an overcurrent condition, a disconnect
1425	 *	condition, or by the application clearing this bit. The
1426	 *	application cannot set this bit by a register write. It can only
1427	 *	clear it to disable the port. This bit does not trigger any
1428	 *	interrupt to the application.
1429	 *	* 1'b0: Port disabled
1430	 *	* 1'b1: Port enabled
1431	 * @prtconndet: Port Connect Detected (PrtConnDet)
1432	 *	The core sets this bit when a device connection is detected
1433	 *	to trigger an interrupt to the application using the Host Port
1434	 *	Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt).
1435	 *	The application must write a 1 to this bit to clear the
1436	 *	interrupt.
1437	 * @prtconnsts: Port Connect Status (PrtConnSts)
1438	 *	* 0: No device is attached to the port.
1439	 *	* 1: A device is attached to the port.
1440	 */
1441	struct cvmx_usbcx_hprt_s {
1442		uint32_t reserved_19_31	: 13;
1443		uint32_t prtspd		: 2;
1444		uint32_t prttstctl	: 4;
1445		uint32_t prtpwr		: 1;
1446		uint32_t prtlnsts	: 2;
1447		uint32_t reserved_9_9	: 1;
1448		uint32_t prtrst		: 1;
1449		uint32_t prtsusp	: 1;
1450		uint32_t prtres		: 1;
1451		uint32_t prtovrcurrchng	: 1;
1452		uint32_t prtovrcurract	: 1;
1453		uint32_t prtenchng	: 1;
1454		uint32_t prtena		: 1;
1455		uint32_t prtconndet	: 1;
1456		uint32_t prtconnsts	: 1;
1457	} s;
1458};
1459
1460/**
1461 * cvmx_usbc#_hptxfsiz
1462 *
1463 * Host Periodic Transmit FIFO Size Register (HPTXFSIZ)
1464 *
1465 * This register holds the size and the memory start address of the Periodic
1466 * TxFIFO, as shown in Figures 310 and 311.
1467 */
1468union cvmx_usbcx_hptxfsiz {
1469	uint32_t u32;
1470	/**
1471	 * struct cvmx_usbcx_hptxfsiz_s
1472	 * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize)
1473	 *	This value is in terms of 32-bit words.
1474	 *	* Minimum value is 16
1475	 *	* Maximum value is 32768
1476	 * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr)
1477	 */
1478	struct cvmx_usbcx_hptxfsiz_s {
1479		uint32_t ptxfsize	: 16;
1480		uint32_t ptxfstaddr	: 16;
1481	} s;
1482};
1483
1484/**
1485 * cvmx_usbc#_hptxsts
1486 *
1487 * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS)
1488 *
1489 * This read-only register contains the free space information for the Periodic
1490 * TxFIFO and the Periodic Transmit Request Queue
1491 */
1492union cvmx_usbcx_hptxsts {
1493	uint32_t u32;
1494	/**
1495	 * struct cvmx_usbcx_hptxsts_s
1496	 * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop)
1497	 *	This indicates the entry in the Periodic Tx Request Queue that
1498	 *	is currently being processes by the MAC.
1499	 *	This register is used for debugging.
1500	 *	* Bit [31]: Odd/Even (micro)frame
1501	 *	- 1'b0: send in even (micro)frame
1502	 *	- 1'b1: send in odd (micro)frame
1503	 *	* Bits [30:27]: Channel/endpoint number
1504	 *	* Bits [26:25]: Type
1505	 *	- 2'b00: IN/OUT
1506	 *	- 2'b01: Zero-length packet
1507	 *	- 2'b10: CSPLIT
1508	 *	- 2'b11: Disable channel command
1509	 *	* Bit [24]: Terminate (last entry for the selected
1510	 *	channel/endpoint)
1511	 * @ptxqspcavail: Periodic Transmit Request Queue Space Available
1512	 *	(PTxQSpcAvail)
1513	 *	Indicates the number of free locations available to be written
1514	 *	in the Periodic Transmit Request Queue. This queue holds both
1515	 *	IN and OUT requests.
1516	 *	* 8'h0: Periodic Transmit Request Queue is full
1517	 *	* 8'h1: 1 location available
1518	 *	* 8'h2: 2 locations available
1519	 *	* n: n locations available (0..8)
1520	 *	* Others: Reserved
1521	 * @ptxfspcavail: Periodic Transmit Data FIFO Space Available
1522	 *		  (PTxFSpcAvail)
1523	 *	Indicates the number of free locations available to be written
1524	 *	to in the Periodic TxFIFO.
1525	 *	Values are in terms of 32-bit words
1526	 *	* 16'h0: Periodic TxFIFO is full
1527	 *	* 16'h1: 1 word available
1528	 *	* 16'h2: 2 words available
1529	 *	* 16'hn: n words available (where 0..32768)
1530	 *	* 16'h8000: 32768 words available
1531	 *	* Others: Reserved
1532	 */
1533	struct cvmx_usbcx_hptxsts_s {
1534		uint32_t ptxqtop	: 8;
1535		uint32_t ptxqspcavail	: 8;
1536		uint32_t ptxfspcavail	: 16;
1537	} s;
1538};
1539
1540/**
1541 * cvmx_usbn#_clk_ctl
1542 *
1543 * USBN_CLK_CTL = USBN's Clock Control
1544 *
1545 * This register is used to control the frequency of the hclk and the
1546 * hreset and phy_rst signals.
1547 */
1548union cvmx_usbnx_clk_ctl {
1549	uint64_t u64;
1550	/**
1551	 * struct cvmx_usbnx_clk_ctl_s
1552	 * @divide2: The 'hclk' used by the USB subsystem is derived
1553	 *	from the eclk.
1554	 *	Also see the field DIVIDE. DIVIDE2<1> must currently
1555	 *	be zero because it is not implemented, so the maximum
1556	 *	ratio of eclk/hclk is currently 16.
1557	 *	The actual divide number for hclk is:
1558	 *	(DIVIDE2 + 1) * (DIVIDE + 1)
1559	 * @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
1560	 *	generate the hclk in the USB Subsystem is held
1561	 *	in reset. This bit must be set to '0' before
1562	 *	changing the value os DIVIDE in this register.
1563	 *	The reset to the HCLK_DIVIDERis also asserted
1564	 *	when core reset is asserted.
1565	 * @p_x_on: Force USB-PHY on during suspend.
1566	 *	'1' USB-PHY XO block is powered-down during
1567	 *	suspend.
1568	 *	'0' USB-PHY XO block is powered-up during
1569	 *	suspend.
1570	 *	The value of this field must be set while POR is
1571	 *	active.
1572	 * @p_rtype: PHY reference clock type
1573	 *	On CN50XX/CN52XX/CN56XX the values are:
1574	 *		'0' The USB-PHY uses a 12MHz crystal as a clock source
1575	 *		    at the USB_XO and USB_XI pins.
1576	 *		'1' Reserved.
1577	 *		'2' The USB_PHY uses 12/24/48MHz 2.5V board clock at the
1578	 *		    USB_XO pin. USB_XI should be tied to ground in this
1579	 *		    case.
1580	 *		'3' Reserved.
1581	 *	On CN3xxx bits 14 and 15 are p_xenbn and p_rclk and values are:
1582	 *		'0' Reserved.
1583	 *		'1' Reserved.
1584	 *		'2' The PHY PLL uses the XO block output as a reference.
1585	 *		    The XO block uses an external clock supplied on the
1586	 *		    XO pin. USB_XI should be tied to ground for this
1587	 *		    usage.
1588	 *		'3' The XO block uses the clock from a crystal.
1589	 * @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
1590	 *	remain powered in Suspend Mode.
1591	 *	'1' The USB-PHY XO Bias, Bandgap and PLL are
1592	 *	powered down in suspend mode.
1593	 *	The value of this field must be set while POR is
1594	 *	active.
1595	 * @p_c_sel: Phy clock speed select.
1596	 *	Selects the reference clock / crystal frequency.
1597	 *	'11': Reserved
1598	 *	'10': 48 MHz (reserved when a crystal is used)
1599	 *	'01': 24 MHz (reserved when a crystal is used)
1600	 *	'00': 12 MHz
1601	 *	The value of this field must be set while POR is
1602	 *	active.
1603	 *	NOTE: if a crystal is used as a reference clock,
1604	 *	this field must be set to 12 MHz.
1605	 * @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
1606	 * @sd_mode: Scaledown mode for the USBC. Control timing events
1607	 *	in the USBC, for normal operation this must be '0'.
1608	 * @s_bist: Starts bist on the hclk memories, during the '0'
1609	 *	to '1' transition.
1610	 * @por: Power On Reset for the PHY.
1611	 *	Resets all the PHYS registers and state machines.
1612	 * @enable: When '1' allows the generation of the hclk. When
1613	 *	'0' the hclk will not be generated. SEE DIVIDE
1614	 *	field of this register.
1615	 * @prst: When this field is '0' the reset associated with
1616	 *	the phy_clk functionality in the USB Subsystem is
1617	 *	help in reset. This bit should not be set to '1'
1618	 *	until the time it takes 6 clocks (hclk or phy_clk,
1619	 *	whichever is slower) has passed. Under normal
1620	 *	operation once this bit is set to '1' it should not
1621	 *	be set to '0'.
1622	 * @hrst: When this field is '0' the reset associated with
1623	 *	the hclk functioanlity in the USB Subsystem is
1624	 *	held in reset.This bit should not be set to '1'
1625	 *	until 12ms after phy_clk is stable. Under normal
1626	 *	operation, once this bit is set to '1' it should
1627	 *	not be set to '0'.
1628	 * @divide: The frequency of 'hclk' used by the USB subsystem
1629	 *	is the eclk frequency divided by the value of
1630	 *	(DIVIDE2 + 1) * (DIVIDE + 1), also see the field
1631	 *	DIVIDE2 of this register.
1632	 *	The hclk frequency should be less than 125Mhz.
1633	 *	After writing a value to this field the SW should
1634	 *	read the field for the value written.
1635	 *	The ENABLE field of this register should not be set
1636	 *	until AFTER this field is set and then read.
1637	 */
1638	struct cvmx_usbnx_clk_ctl_s {
1639		uint64_t reserved_20_63	: 44;
1640		uint64_t divide2	: 2;
1641		uint64_t hclk_rst	: 1;
1642		uint64_t p_x_on		: 1;
1643		uint64_t p_rtype	: 2;
1644		uint64_t p_com_on	: 1;
1645		uint64_t p_c_sel	: 2;
1646		uint64_t cdiv_byp	: 1;
1647		uint64_t sd_mode	: 2;
1648		uint64_t s_bist		: 1;
1649		uint64_t por		: 1;
1650		uint64_t enable		: 1;
1651		uint64_t prst		: 1;
1652		uint64_t hrst		: 1;
1653		uint64_t divide		: 3;
1654	} s;
1655};
1656
1657/**
1658 * cvmx_usbn#_usbp_ctl_status
1659 *
1660 * USBN_USBP_CTL_STATUS = USBP Control And Status Register
1661 *
1662 * Contains general control and status information for the USBN block.
1663 */
1664union cvmx_usbnx_usbp_ctl_status {
1665	uint64_t u64;
1666	/**
1667	 * struct cvmx_usbnx_usbp_ctl_status_s
1668	 * @txrisetune: HS Transmitter Rise/Fall Time Adjustment
1669	 * @txvreftune: HS DC Voltage Level Adjustment
1670	 * @txfslstune: FS/LS Source Impedence Adjustment
1671	 * @txhsxvtune: Transmitter High-Speed Crossover Adjustment
1672	 * @sqrxtune: Squelch Threshold Adjustment
1673	 * @compdistune: Disconnect Threshold Adjustment
1674	 * @otgtune: VBUS Valid Threshold Adjustment
1675	 * @otgdisable: OTG Block Disable
1676	 * @portreset: Per_Port Reset
1677	 * @drvvbus: Drive VBUS
1678	 * @lsbist: Low-Speed BIST Enable.
1679	 * @fsbist: Full-Speed BIST Enable.
1680	 * @hsbist: High-Speed BIST Enable.
1681	 * @bist_done: PHY Bist Done.
1682	 *	Asserted at the end of the PHY BIST sequence.
1683	 * @bist_err: PHY Bist Error.
1684	 *	Indicates an internal error was detected during
1685	 *	the BIST sequence.
1686	 * @tdata_out: PHY Test Data Out.
1687	 *	Presents either internaly generated signals or
1688	 *	test register contents, based upon the value of
1689	 *	test_data_out_sel.
1690	 * @siddq: Drives the USBP (USB-PHY) SIDDQ input.
1691	 *	Normally should be set to zero.
1692	 *	When customers have no intent to use USB PHY
1693	 *	interface, they should:
1694	 *	- still provide 3.3V to USB_VDD33, and
1695	 *	- tie USB_REXT to 3.3V supply, and
1696	 *	- set USBN*_USBP_CTL_STATUS[SIDDQ]=1
1697	 * @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
1698	 * @dma_bmode: When set to 1 the L2C DMA address will be updated
1699	 *	with byte-counts between packets. When set to 0
1700	 *	the L2C DMA address is incremented to the next
1701	 *	4-byte aligned address after adding byte-count.
1702	 * @usbc_end: Bigendian input to the USB Core. This should be
1703	 *	set to '0' for operation.
1704	 * @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
1705	 * @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
1706	 * @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
1707	 *	This signal enables the pull-down resistance on
1708	 *	the D+ line. '1' pull down-resistance is connected
1709	 *	to D+/ '0' pull down resistance is not connected
1710	 *	to D+. When an A/B device is acting as a host
1711	 *	(downstream-facing port), dp_pulldown and
1712	 *	dm_pulldown are enabled. This must not toggle
1713	 *	during normal opeartion.
1714	 * @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
1715	 *	This signal enables the pull-down resistance on
1716	 *	the D- line. '1' pull down-resistance is connected
1717	 *	to D-. '0' pull down resistance is not connected
1718	 *	to D-. When an A/B device is acting as a host
1719	 *	(downstream-facing port), dp_pulldown and
1720	 *	dm_pulldown are enabled. This must not toggle
1721	 *	during normal opeartion.
1722	 * @hst_mode: When '0' the USB is acting as HOST, when '1'
1723	 *	USB is acting as device. This field needs to be
1724	 *	set while the USB is in reset.
1725	 * @tuning: Transmitter Tuning for High-Speed Operation.
1726	 *	Tunes the current supply and rise/fall output
1727	 *	times for high-speed operation.
1728	 *	[20:19] == 11: Current supply increased
1729	 *	approximately 9%
1730	 *	[20:19] == 10: Current supply increased
1731	 *	approximately 4.5%
1732	 *	[20:19] == 01: Design default.
1733	 *	[20:19] == 00: Current supply decreased
1734	 *	approximately 4.5%
1735	 *	[22:21] == 11: Rise and fall times are increased.
1736	 *	[22:21] == 10: Design default.
1737	 *	[22:21] == 01: Rise and fall times are decreased.
1738	 *	[22:21] == 00: Rise and fall times are decreased
1739	 *	further as compared to the 01 setting.
1740	 * @tx_bs_enh: Transmit Bit Stuffing on [15:8].
1741	 *	Enables or disables bit stuffing on data[15:8]
1742	 *	when bit-stuffing is enabled.
1743	 * @tx_bs_en: Transmit Bit Stuffing on [7:0].
1744	 *	Enables or disables bit stuffing on data[7:0]
1745	 *	when bit-stuffing is enabled.
1746	 * @loop_enb: PHY Loopback Test Enable.
1747	 *	'1': During data transmission the receive is
1748	 *	enabled.
1749	 *	'0': During data transmission the receive is
1750	 *	disabled.
1751	 *	Must be '0' for normal operation.
1752	 * @vtest_enb: Analog Test Pin Enable.
1753	 *	'1' The PHY's analog_test pin is enabled for the
1754	 *	input and output of applicable analog test signals.
1755	 *	'0' THe analog_test pin is disabled.
1756	 * @bist_enb: Built-In Self Test Enable.
1757	 *	Used to activate BIST in the PHY.
1758	 * @tdata_sel: Test Data Out Select.
1759	 *	'1' test_data_out[3:0] (PHY) register contents
1760	 *	are output. '0' internaly generated signals are
1761	 *	output.
1762	 * @taddr_in: Mode Address for Test Interface.
1763	 *	Specifies the register address for writing to or
1764	 *	reading from the PHY test interface register.
1765	 * @tdata_in: Internal Testing Register Input Data and Select
1766	 *	This is a test bus. Data is present on [3:0],
1767	 *	and its corresponding select (enable) is present
1768	 *	on bits [7:4].
1769	 * @ate_reset: Reset input from automatic test equipment.
1770	 *	This is a test signal. When the USB Core is
1771	 *	powered up (not in Susned Mode), an automatic
1772	 *	tester can use this to disable phy_clock and
1773	 *	free_clk, then re-eanable them with an aligned
1774	 *	phase.
1775	 *	'1': The phy_clk and free_clk outputs are
1776	 *	disabled. "0": The phy_clock and free_clk outputs
1777	 *	are available within a specific period after the
1778	 *	de-assertion.
1779	 */
1780	struct cvmx_usbnx_usbp_ctl_status_s {
1781		uint64_t txrisetune		: 1;
1782		uint64_t txvreftune		: 4;
1783		uint64_t txfslstune		: 4;
1784		uint64_t txhsxvtune		: 2;
1785		uint64_t sqrxtune		: 3;
1786		uint64_t compdistune		: 3;
1787		uint64_t otgtune		: 3;
1788		uint64_t otgdisable		: 1;
1789		uint64_t portreset		: 1;
1790		uint64_t drvvbus		: 1;
1791		uint64_t lsbist			: 1;
1792		uint64_t fsbist			: 1;
1793		uint64_t hsbist			: 1;
1794		uint64_t bist_done		: 1;
1795		uint64_t bist_err		: 1;
1796		uint64_t tdata_out		: 4;
1797		uint64_t siddq			: 1;
1798		uint64_t txpreemphasistune	: 1;
1799		uint64_t dma_bmode		: 1;
1800		uint64_t usbc_end		: 1;
1801		uint64_t usbp_bist		: 1;
1802		uint64_t tclk			: 1;
1803		uint64_t dp_pulld		: 1;
1804		uint64_t dm_pulld		: 1;
1805		uint64_t hst_mode		: 1;
1806		uint64_t tuning			: 4;
1807		uint64_t tx_bs_enh		: 1;
1808		uint64_t tx_bs_en		: 1;
1809		uint64_t loop_enb		: 1;
1810		uint64_t vtest_enb		: 1;
1811		uint64_t bist_enb		: 1;
1812		uint64_t tdata_sel		: 1;
1813		uint64_t taddr_in		: 4;
1814		uint64_t tdata_in		: 8;
1815		uint64_t ate_reset		: 1;
1816	} s;
1817};
1818
1819#endif /* __OCTEON_HCD_H__ */
1820