1/**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 *		http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 *      Ben Dooks <ben@simtec.co.uk>
8 *      http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/spinlock.h>
20#include <linux/interrupt.h>
21#include <linux/platform_device.h>
22#include <linux/dma-mapping.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/delay.h>
26#include <linux/io.h>
27#include <linux/slab.h>
28#include <linux/clk.h>
29#include <linux/regulator/consumer.h>
30#include <linux/of_platform.h>
31#include <linux/phy/phy.h>
32
33#include <linux/usb/ch9.h>
34#include <linux/usb/gadget.h>
35#include <linux/usb/phy.h>
36#include <linux/platform_data/s3c-hsotg.h>
37
38#include "core.h"
39
40/* conversion functions */
41static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
42{
43	return container_of(req, struct s3c_hsotg_req, req);
44}
45
46static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
47{
48	return container_of(ep, struct s3c_hsotg_ep, ep);
49}
50
51static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
52{
53	return container_of(gadget, struct s3c_hsotg, gadget);
54}
55
56static inline void __orr32(void __iomem *ptr, u32 val)
57{
58	writel(readl(ptr) | val, ptr);
59}
60
61static inline void __bic32(void __iomem *ptr, u32 val)
62{
63	writel(readl(ptr) & ~val, ptr);
64}
65
66/* forward decleration of functions */
67static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
68
69/**
70 * using_dma - return the DMA status of the driver.
71 * @hsotg: The driver state.
72 *
73 * Return true if we're using DMA.
74 *
75 * Currently, we have the DMA support code worked into everywhere
76 * that needs it, but the AMBA DMA implementation in the hardware can
77 * only DMA from 32bit aligned addresses. This means that gadgets such
78 * as the CDC Ethernet cannot work as they often pass packets which are
79 * not 32bit aligned.
80 *
81 * Unfortunately the choice to use DMA or not is global to the controller
82 * and seems to be only settable when the controller is being put through
83 * a core reset. This means we either need to fix the gadgets to take
84 * account of DMA alignment, or add bounce buffers (yuerk).
85 *
86 * Until this issue is sorted out, we always return 'false'.
87 */
88static inline bool using_dma(struct s3c_hsotg *hsotg)
89{
90	return false;	/* support is not complete */
91}
92
93/**
94 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
95 * @hsotg: The device state
96 * @ints: A bitmask of the interrupts to enable
97 */
98static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
99{
100	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
101	u32 new_gsintmsk;
102
103	new_gsintmsk = gsintmsk | ints;
104
105	if (new_gsintmsk != gsintmsk) {
106		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
107		writel(new_gsintmsk, hsotg->regs + GINTMSK);
108	}
109}
110
111/**
112 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
113 * @hsotg: The device state
114 * @ints: A bitmask of the interrupts to enable
115 */
116static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
117{
118	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
119	u32 new_gsintmsk;
120
121	new_gsintmsk = gsintmsk & ~ints;
122
123	if (new_gsintmsk != gsintmsk)
124		writel(new_gsintmsk, hsotg->regs + GINTMSK);
125}
126
127/**
128 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
129 * @hsotg: The device state
130 * @ep: The endpoint index
131 * @dir_in: True if direction is in.
132 * @en: The enable value, true to enable
133 *
134 * Set or clear the mask for an individual endpoint's interrupt
135 * request.
136 */
137static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
138				 unsigned int ep, unsigned int dir_in,
139				 unsigned int en)
140{
141	unsigned long flags;
142	u32 bit = 1 << ep;
143	u32 daint;
144
145	if (!dir_in)
146		bit <<= 16;
147
148	local_irq_save(flags);
149	daint = readl(hsotg->regs + DAINTMSK);
150	if (en)
151		daint |= bit;
152	else
153		daint &= ~bit;
154	writel(daint, hsotg->regs + DAINTMSK);
155	local_irq_restore(flags);
156}
157
158/**
159 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
160 * @hsotg: The device instance.
161 */
162static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
163{
164	unsigned int ep;
165	unsigned int addr;
166	unsigned int size;
167	int timeout;
168	u32 val;
169
170	/* set FIFO sizes to 2048/1024 */
171
172	writel(2048, hsotg->regs + GRXFSIZ);
173	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
174		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
175
176	/*
177	 * arange all the rest of the TX FIFOs, as some versions of this
178	 * block have overlapping default addresses. This also ensures
179	 * that if the settings have been changed, then they are set to
180	 * known values.
181	 */
182
183	/* start at the end of the GNPTXFSIZ, rounded up */
184	addr = 2048 + 1024;
185
186	/*
187	 * Because we have not enough memory to have each TX FIFO of size at
188	 * least 3072 bytes (the maximum single packet size), we create four
189	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
190	 * them to endpoints dynamically according to maxpacket size value of
191	 * given endpoint.
192	 */
193
194	/* 256*4=1024 bytes FIFO length */
195	size = 256;
196	for (ep = 1; ep <= 4; ep++) {
197		val = addr;
198		val |= size << FIFOSIZE_DEPTH_SHIFT;
199		WARN_ONCE(addr + size > hsotg->fifo_mem,
200			  "insufficient fifo memory");
201		addr += size;
202
203		writel(val, hsotg->regs + DPTXFSIZN(ep));
204	}
205	/* 768*4=3072 bytes FIFO length */
206	size = 768;
207	for (ep = 5; ep <= 8; ep++) {
208		val = addr;
209		val |= size << FIFOSIZE_DEPTH_SHIFT;
210		WARN_ONCE(addr + size > hsotg->fifo_mem,
211			  "insufficient fifo memory");
212		addr += size;
213
214		writel(val, hsotg->regs + DPTXFSIZN(ep));
215	}
216
217	/*
218	 * according to p428 of the design guide, we need to ensure that
219	 * all fifos are flushed before continuing
220	 */
221
222	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
223	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
224
225	/* wait until the fifos are both flushed */
226	timeout = 100;
227	while (1) {
228		val = readl(hsotg->regs + GRSTCTL);
229
230		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
231			break;
232
233		if (--timeout == 0) {
234			dev_err(hsotg->dev,
235				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
236				__func__, val);
237		}
238
239		udelay(1);
240	}
241
242	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243}
244
245/**
246 * @ep: USB endpoint to allocate request for.
247 * @flags: Allocation flags
248 *
249 * Allocate a new USB request structure appropriate for the specified endpoint
250 */
251static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
252						      gfp_t flags)
253{
254	struct s3c_hsotg_req *req;
255
256	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
257	if (!req)
258		return NULL;
259
260	INIT_LIST_HEAD(&req->queue);
261
262	return &req->req;
263}
264
265/**
266 * is_ep_periodic - return true if the endpoint is in periodic mode.
267 * @hs_ep: The endpoint to query.
268 *
269 * Returns true if the endpoint is in periodic mode, meaning it is being
270 * used for an Interrupt or ISO transfer.
271 */
272static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
273{
274	return hs_ep->periodic;
275}
276
277/**
278 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
279 * @hsotg: The device state.
280 * @hs_ep: The endpoint for the request
281 * @hs_req: The request being processed.
282 *
283 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
284 * of a request to ensure the buffer is ready for access by the caller.
285 */
286static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
287				struct s3c_hsotg_ep *hs_ep,
288				struct s3c_hsotg_req *hs_req)
289{
290	struct usb_request *req = &hs_req->req;
291
292	/* ignore this if we're not moving any data */
293	if (hs_req->req.length == 0)
294		return;
295
296	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297}
298
299/**
300 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
301 * @hsotg: The controller state.
302 * @hs_ep: The endpoint we're going to write for.
303 * @hs_req: The request to write data for.
304 *
305 * This is called when the TxFIFO has some space in it to hold a new
306 * transmission and we have something to give it. The actual setup of
307 * the data size is done elsewhere, so all we have to do is to actually
308 * write the data.
309 *
310 * The return value is zero if there is more space (or nothing was done)
311 * otherwise -ENOSPC is returned if the FIFO space was used up.
312 *
313 * This routine is only needed for PIO
314 */
315static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
316				struct s3c_hsotg_ep *hs_ep,
317				struct s3c_hsotg_req *hs_req)
318{
319	bool periodic = is_ep_periodic(hs_ep);
320	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321	int buf_pos = hs_req->req.actual;
322	int to_write = hs_ep->size_loaded;
323	void *data;
324	int can_write;
325	int pkt_round;
326	int max_transfer;
327
328	to_write -= (buf_pos - hs_ep->last_load);
329
330	/* if there's nothing to write, get out early */
331	if (to_write == 0)
332		return 0;
333
334	if (periodic && !hsotg->dedicated_fifos) {
335		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336		int size_left;
337		int size_done;
338
339		/*
340		 * work out how much data was loaded so we can calculate
341		 * how much data is left in the fifo.
342		 */
343
344		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345
346		/*
347		 * if shared fifo, we cannot write anything until the
348		 * previous data has been completely sent.
349		 */
350		if (hs_ep->fifo_load != 0) {
351			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352			return -ENOSPC;
353		}
354
355		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356			__func__, size_left,
357			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358
359		/* how much of the data has moved */
360		size_done = hs_ep->size_loaded - size_left;
361
362		/* how much data is left in the fifo */
363		can_write = hs_ep->fifo_load - size_done;
364		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365			__func__, can_write);
366
367		can_write = hs_ep->fifo_size - can_write;
368		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369			__func__, can_write);
370
371		if (can_write <= 0) {
372			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373			return -ENOSPC;
374		}
375	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377
378		can_write &= 0xffff;
379		can_write *= 4;
380	} else {
381		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382			dev_dbg(hsotg->dev,
383				"%s: no queue slots available (0x%08x)\n",
384				__func__, gnptxsts);
385
386			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387			return -ENOSPC;
388		}
389
390		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391		can_write *= 4;	/* fifo size is in 32bit quantities. */
392	}
393
394	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395
396	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397		 __func__, gnptxsts, can_write, to_write, max_transfer);
398
399	/*
400	 * limit to 512 bytes of data, it seems at least on the non-periodic
401	 * FIFO, requests of >512 cause the endpoint to get stuck with a
402	 * fragment of the end of the transfer in it.
403	 */
404	if (can_write > 512 && !periodic)
405		can_write = 512;
406
407	/*
408	 * limit the write to one max-packet size worth of data, but allow
409	 * the transfer to return that it did not run out of fifo space
410	 * doing it.
411	 */
412	if (to_write > max_transfer) {
413		to_write = max_transfer;
414
415		/* it's needed only when we do not use dedicated fifos */
416		if (!hsotg->dedicated_fifos)
417			s3c_hsotg_en_gsint(hsotg,
418					   periodic ? GINTSTS_PTXFEMP :
419					   GINTSTS_NPTXFEMP);
420	}
421
422	/* see if we can write data */
423
424	if (to_write > can_write) {
425		to_write = can_write;
426		pkt_round = to_write % max_transfer;
427
428		/*
429		 * Round the write down to an
430		 * exact number of packets.
431		 *
432		 * Note, we do not currently check to see if we can ever
433		 * write a full packet or not to the FIFO.
434		 */
435
436		if (pkt_round)
437			to_write -= pkt_round;
438
439		/*
440		 * enable correct FIFO interrupt to alert us when there
441		 * is more room left.
442		 */
443
444		/* it's needed only when we do not use dedicated fifos */
445		if (!hsotg->dedicated_fifos)
446			s3c_hsotg_en_gsint(hsotg,
447					   periodic ? GINTSTS_PTXFEMP :
448					   GINTSTS_NPTXFEMP);
449	}
450
451	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452		 to_write, hs_req->req.length, can_write, buf_pos);
453
454	if (to_write <= 0)
455		return -ENOSPC;
456
457	hs_req->req.actual = buf_pos + to_write;
458	hs_ep->total_data += to_write;
459
460	if (periodic)
461		hs_ep->fifo_load += to_write;
462
463	to_write = DIV_ROUND_UP(to_write, 4);
464	data = hs_req->req.buf + buf_pos;
465
466	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467
468	return (to_write >= can_write) ? -ENOSPC : 0;
469}
470
471/**
472 * get_ep_limit - get the maximum data legnth for this endpoint
473 * @hs_ep: The endpoint
474 *
475 * Return the maximum data that can be queued in one go on a given endpoint
476 * so that transfers that are too long can be split.
477 */
478static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
479{
480	int index = hs_ep->index;
481	unsigned maxsize;
482	unsigned maxpkt;
483
484	if (index != 0) {
485		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487	} else {
488		maxsize = 64+64;
489		if (hs_ep->dir_in)
490			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491		else
492			maxpkt = 2;
493	}
494
495	/* we made the constant loading easier above by using +1 */
496	maxpkt--;
497	maxsize--;
498
499	/*
500	 * constrain by packet count if maxpkts*pktsize is greater
501	 * than the length register size.
502	 */
503
504	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505		maxsize = maxpkt * hs_ep->ep.maxpacket;
506
507	return maxsize;
508}
509
510/**
511 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
512 * @hsotg: The controller state.
513 * @hs_ep: The endpoint to process a request for
514 * @hs_req: The request to start.
515 * @continuing: True if we are doing more for the current request.
516 *
517 * Start the given request running by setting the endpoint registers
518 * appropriately, and writing any data to the FIFOs.
519 */
520static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
521				struct s3c_hsotg_ep *hs_ep,
522				struct s3c_hsotg_req *hs_req,
523				bool continuing)
524{
525	struct usb_request *ureq = &hs_req->req;
526	int index = hs_ep->index;
527	int dir_in = hs_ep->dir_in;
528	u32 epctrl_reg;
529	u32 epsize_reg;
530	u32 epsize;
531	u32 ctrl;
532	unsigned length;
533	unsigned packets;
534	unsigned maxreq;
535
536	if (index != 0) {
537		if (hs_ep->req && !continuing) {
538			dev_err(hsotg->dev, "%s: active request\n", __func__);
539			WARN_ON(1);
540			return;
541		} else if (hs_ep->req != hs_req && continuing) {
542			dev_err(hsotg->dev,
543				"%s: continue different req\n", __func__);
544			WARN_ON(1);
545			return;
546		}
547	}
548
549	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551
552	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553		__func__, readl(hsotg->regs + epctrl_reg), index,
554		hs_ep->dir_in ? "in" : "out");
555
556	/* If endpoint is stalled, we will restart request later */
557	ctrl = readl(hsotg->regs + epctrl_reg);
558
559	if (ctrl & DXEPCTL_STALL) {
560		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561		return;
562	}
563
564	length = ureq->length - ureq->actual;
565	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566		ureq->length, ureq->actual);
567	if (0)
568		dev_dbg(hsotg->dev,
569			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
570			ureq->buf, length, &ureq->dma,
571			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
572
573	maxreq = get_ep_limit(hs_ep);
574	if (length > maxreq) {
575		int round = maxreq % hs_ep->ep.maxpacket;
576
577		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
578			__func__, length, maxreq, round);
579
580		/* round down to multiple of packets */
581		if (round)
582			maxreq -= round;
583
584		length = maxreq;
585	}
586
587	if (length)
588		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
589	else
590		packets = 1;	/* send one packet if length is zero. */
591
592	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
593		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
594		return;
595	}
596
597	if (dir_in && index != 0)
598		if (hs_ep->isochronous)
599			epsize = DXEPTSIZ_MC(packets);
600		else
601			epsize = DXEPTSIZ_MC(1);
602	else
603		epsize = 0;
604
605	if (index != 0 && ureq->zero) {
606		/*
607		 * test for the packets being exactly right for the
608		 * transfer
609		 */
610
611		if (length == (packets * hs_ep->ep.maxpacket))
612			packets++;
613	}
614
615	epsize |= DXEPTSIZ_PKTCNT(packets);
616	epsize |= DXEPTSIZ_XFERSIZE(length);
617
618	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
619		__func__, packets, length, ureq->length, epsize, epsize_reg);
620
621	/* store the request as the current one we're doing */
622	hs_ep->req = hs_req;
623
624	/* write size / packets */
625	writel(epsize, hsotg->regs + epsize_reg);
626
627	if (using_dma(hsotg) && !continuing) {
628		unsigned int dma_reg;
629
630		/*
631		 * write DMA address to control register, buffer already
632		 * synced by s3c_hsotg_ep_queue().
633		 */
634
635		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
636		writel(ureq->dma, hsotg->regs + dma_reg);
637
638		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
639			__func__, &ureq->dma, dma_reg);
640	}
641
642	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
643	ctrl |= DXEPCTL_USBACTEP;
644
645	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
646
647	/* For Setup request do not clear NAK */
648	if (hsotg->setup && index == 0)
649		hsotg->setup = 0;
650	else
651		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
652
653
654	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
655	writel(ctrl, hsotg->regs + epctrl_reg);
656
657	/*
658	 * set these, it seems that DMA support increments past the end
659	 * of the packet buffer so we need to calculate the length from
660	 * this information.
661	 */
662	hs_ep->size_loaded = length;
663	hs_ep->last_load = ureq->actual;
664
665	if (dir_in && !using_dma(hsotg)) {
666		/* set these anyway, we may need them for non-periodic in */
667		hs_ep->fifo_load = 0;
668
669		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
670	}
671
672	/*
673	 * clear the INTknTXFEmpMsk when we start request, more as a aide
674	 * to debugging to see what is going on.
675	 */
676	if (dir_in)
677		writel(DIEPMSK_INTKNTXFEMPMSK,
678		       hsotg->regs + DIEPINT(index));
679
680	/*
681	 * Note, trying to clear the NAK here causes problems with transmit
682	 * on the S3C6400 ending up with the TXFIFO becoming full.
683	 */
684
685	/* check ep is enabled */
686	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
687		dev_warn(hsotg->dev,
688			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
689			 index, readl(hsotg->regs + epctrl_reg));
690
691	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
692		__func__, readl(hsotg->regs + epctrl_reg));
693
694	/* enable ep interrupts */
695	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
696}
697
698/**
699 * s3c_hsotg_map_dma - map the DMA memory being used for the request
700 * @hsotg: The device state.
701 * @hs_ep: The endpoint the request is on.
702 * @req: The request being processed.
703 *
704 * We've been asked to queue a request, so ensure that the memory buffer
705 * is correctly setup for DMA. If we've been passed an extant DMA address
706 * then ensure the buffer has been synced to memory. If our buffer has no
707 * DMA memory, then we map the memory and mark our request to allow us to
708 * cleanup on completion.
709 */
710static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
711			     struct s3c_hsotg_ep *hs_ep,
712			     struct usb_request *req)
713{
714	struct s3c_hsotg_req *hs_req = our_req(req);
715	int ret;
716
717	/* if the length is zero, ignore the DMA data */
718	if (hs_req->req.length == 0)
719		return 0;
720
721	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
722	if (ret)
723		goto dma_error;
724
725	return 0;
726
727dma_error:
728	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
729		__func__, req->buf, req->length);
730
731	return -EIO;
732}
733
734static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
735			      gfp_t gfp_flags)
736{
737	struct s3c_hsotg_req *hs_req = our_req(req);
738	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
739	struct s3c_hsotg *hs = hs_ep->parent;
740	bool first;
741
742	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
743		ep->name, req, req->length, req->buf, req->no_interrupt,
744		req->zero, req->short_not_ok);
745
746	/* initialise status of the request */
747	INIT_LIST_HEAD(&hs_req->queue);
748	req->actual = 0;
749	req->status = -EINPROGRESS;
750
751	/* if we're using DMA, sync the buffers as necessary */
752	if (using_dma(hs)) {
753		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
754		if (ret)
755			return ret;
756	}
757
758	first = list_empty(&hs_ep->queue);
759	list_add_tail(&hs_req->queue, &hs_ep->queue);
760
761	if (first)
762		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
763
764	return 0;
765}
766
767static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
768			      gfp_t gfp_flags)
769{
770	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
771	struct s3c_hsotg *hs = hs_ep->parent;
772	unsigned long flags = 0;
773	int ret = 0;
774
775	spin_lock_irqsave(&hs->lock, flags);
776	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
777	spin_unlock_irqrestore(&hs->lock, flags);
778
779	return ret;
780}
781
782static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
783				      struct usb_request *req)
784{
785	struct s3c_hsotg_req *hs_req = our_req(req);
786
787	kfree(hs_req);
788}
789
790/**
791 * s3c_hsotg_complete_oursetup - setup completion callback
792 * @ep: The endpoint the request was on.
793 * @req: The request completed.
794 *
795 * Called on completion of any requests the driver itself
796 * submitted that need cleaning up.
797 */
798static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
799					struct usb_request *req)
800{
801	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
802	struct s3c_hsotg *hsotg = hs_ep->parent;
803
804	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
805
806	s3c_hsotg_ep_free_request(ep, req);
807}
808
809/**
810 * ep_from_windex - convert control wIndex value to endpoint
811 * @hsotg: The driver state.
812 * @windex: The control request wIndex field (in host order).
813 *
814 * Convert the given wIndex into a pointer to an driver endpoint
815 * structure, or return NULL if it is not a valid endpoint.
816 */
817static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
818					   u32 windex)
819{
820	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
821	int dir = (windex & USB_DIR_IN) ? 1 : 0;
822	int idx = windex & 0x7F;
823
824	if (windex >= 0x100)
825		return NULL;
826
827	if (idx > hsotg->num_of_eps)
828		return NULL;
829
830	if (idx && ep->dir_in != dir)
831		return NULL;
832
833	return ep;
834}
835
836/**
837 * s3c_hsotg_send_reply - send reply to control request
838 * @hsotg: The device state
839 * @ep: Endpoint 0
840 * @buff: Buffer for request
841 * @length: Length of reply.
842 *
843 * Create a request and queue it on the given endpoint. This is useful as
844 * an internal method of sending replies to certain control requests, etc.
845 */
846static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
847				struct s3c_hsotg_ep *ep,
848				void *buff,
849				int length)
850{
851	struct usb_request *req;
852	int ret;
853
854	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
855
856	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
857	hsotg->ep0_reply = req;
858	if (!req) {
859		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
860		return -ENOMEM;
861	}
862
863	req->buf = hsotg->ep0_buff;
864	req->length = length;
865	req->zero = 1; /* always do zero-length final transfer */
866	req->complete = s3c_hsotg_complete_oursetup;
867
868	if (length)
869		memcpy(req->buf, buff, length);
870	else
871		ep->sent_zlp = 1;
872
873	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
874	if (ret) {
875		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
876		return ret;
877	}
878
879	return 0;
880}
881
882/**
883 * s3c_hsotg_process_req_status - process request GET_STATUS
884 * @hsotg: The device state
885 * @ctrl: USB control request
886 */
887static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
888					struct usb_ctrlrequest *ctrl)
889{
890	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
891	struct s3c_hsotg_ep *ep;
892	__le16 reply;
893	int ret;
894
895	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
896
897	if (!ep0->dir_in) {
898		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
899		return -EINVAL;
900	}
901
902	switch (ctrl->bRequestType & USB_RECIP_MASK) {
903	case USB_RECIP_DEVICE:
904		reply = cpu_to_le16(0); /* bit 0 => self powered,
905					 * bit 1 => remote wakeup */
906		break;
907
908	case USB_RECIP_INTERFACE:
909		/* currently, the data result should be zero */
910		reply = cpu_to_le16(0);
911		break;
912
913	case USB_RECIP_ENDPOINT:
914		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
915		if (!ep)
916			return -ENOENT;
917
918		reply = cpu_to_le16(ep->halted ? 1 : 0);
919		break;
920
921	default:
922		return 0;
923	}
924
925	if (le16_to_cpu(ctrl->wLength) != 2)
926		return -EINVAL;
927
928	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
929	if (ret) {
930		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
931		return ret;
932	}
933
934	return 1;
935}
936
937static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
938
939/**
940 * get_ep_head - return the first request on the endpoint
941 * @hs_ep: The controller endpoint to get
942 *
943 * Get the first request on the endpoint.
944 */
945static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
946{
947	if (list_empty(&hs_ep->queue))
948		return NULL;
949
950	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
951}
952
953/**
954 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
955 * @hsotg: The device state
956 * @ctrl: USB control request
957 */
958static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
959					 struct usb_ctrlrequest *ctrl)
960{
961	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
962	struct s3c_hsotg_req *hs_req;
963	bool restart;
964	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
965	struct s3c_hsotg_ep *ep;
966	int ret;
967	bool halted;
968
969	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
970		__func__, set ? "SET" : "CLEAR");
971
972	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
973		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
974		if (!ep) {
975			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
976				__func__, le16_to_cpu(ctrl->wIndex));
977			return -ENOENT;
978		}
979
980		switch (le16_to_cpu(ctrl->wValue)) {
981		case USB_ENDPOINT_HALT:
982			halted = ep->halted;
983
984			s3c_hsotg_ep_sethalt(&ep->ep, set);
985
986			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
987			if (ret) {
988				dev_err(hsotg->dev,
989					"%s: failed to send reply\n", __func__);
990				return ret;
991			}
992
993			/*
994			 * we have to complete all requests for ep if it was
995			 * halted, and the halt was cleared by CLEAR_FEATURE
996			 */
997
998			if (!set && halted) {
999				/*
1000				 * If we have request in progress,
1001				 * then complete it
1002				 */
1003				if (ep->req) {
1004					hs_req = ep->req;
1005					ep->req = NULL;
1006					list_del_init(&hs_req->queue);
1007					usb_gadget_giveback_request(&ep->ep,
1008								    &hs_req->req);
1009				}
1010
1011				/* If we have pending request, then start it */
1012				restart = !list_empty(&ep->queue);
1013				if (restart) {
1014					hs_req = get_ep_head(ep);
1015					s3c_hsotg_start_req(hsotg, ep,
1016							    hs_req, false);
1017				}
1018			}
1019
1020			break;
1021
1022		default:
1023			return -ENOENT;
1024		}
1025	} else
1026		return -ENOENT;  /* currently only deal with endpoint */
1027
1028	return 1;
1029}
1030
1031static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1032static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1033
1034/**
1035 * s3c_hsotg_stall_ep0 - stall ep0
1036 * @hsotg: The device state
1037 *
1038 * Set stall for ep0 as response for setup request.
1039 */
1040static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg)
1041{
1042	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1043	u32 reg;
1044	u32 ctrl;
1045
1046	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1047	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1048
1049	/*
1050	 * DxEPCTL_Stall will be cleared by EP once it has
1051	 * taken effect, so no need to clear later.
1052	 */
1053
1054	ctrl = readl(hsotg->regs + reg);
1055	ctrl |= DXEPCTL_STALL;
1056	ctrl |= DXEPCTL_CNAK;
1057	writel(ctrl, hsotg->regs + reg);
1058
1059	dev_dbg(hsotg->dev,
1060		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1061		ctrl, reg, readl(hsotg->regs + reg));
1062
1063	 /*
1064	  * complete won't be called, so we enqueue
1065	  * setup request here
1066	  */
1067	 s3c_hsotg_enqueue_setup(hsotg);
1068}
1069
1070/**
1071 * s3c_hsotg_process_control - process a control request
1072 * @hsotg: The device state
1073 * @ctrl: The control request received
1074 *
1075 * The controller has received the SETUP phase of a control request, and
1076 * needs to work out what to do next (and whether to pass it on to the
1077 * gadget driver).
1078 */
1079static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1080				      struct usb_ctrlrequest *ctrl)
1081{
1082	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1083	int ret = 0;
1084	u32 dcfg;
1085
1086	ep0->sent_zlp = 0;
1087
1088	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1089		 ctrl->bRequest, ctrl->bRequestType,
1090		 ctrl->wValue, ctrl->wLength);
1091
1092	/*
1093	 * record the direction of the request, for later use when enquing
1094	 * packets onto EP0.
1095	 */
1096
1097	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1098	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1099
1100	/*
1101	 * if we've no data with this request, then the last part of the
1102	 * transaction is going to implicitly be IN.
1103	 */
1104	if (ctrl->wLength == 0)
1105		ep0->dir_in = 1;
1106
1107	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1108		switch (ctrl->bRequest) {
1109		case USB_REQ_SET_ADDRESS:
1110			s3c_hsotg_disconnect(hsotg);
1111			dcfg = readl(hsotg->regs + DCFG);
1112			dcfg &= ~DCFG_DEVADDR_MASK;
1113			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1114				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1115			writel(dcfg, hsotg->regs + DCFG);
1116
1117			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1118
1119			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1120			return;
1121
1122		case USB_REQ_GET_STATUS:
1123			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1124			break;
1125
1126		case USB_REQ_CLEAR_FEATURE:
1127		case USB_REQ_SET_FEATURE:
1128			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1129			break;
1130		}
1131	}
1132
1133	/* as a fallback, try delivering it to the driver to deal with */
1134
1135	if (ret == 0 && hsotg->driver) {
1136		spin_unlock(&hsotg->lock);
1137		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1138		spin_lock(&hsotg->lock);
1139		if (ret < 0)
1140			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1141	}
1142
1143	/*
1144	 * the request is either unhandlable, or is not formatted correctly
1145	 * so respond with a STALL for the status stage to indicate failure.
1146	 */
1147
1148	if (ret < 0)
1149		s3c_hsotg_stall_ep0(hsotg);
1150}
1151
1152/**
1153 * s3c_hsotg_complete_setup - completion of a setup transfer
1154 * @ep: The endpoint the request was on.
1155 * @req: The request completed.
1156 *
1157 * Called on completion of any requests the driver itself submitted for
1158 * EP0 setup packets
1159 */
1160static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1161				     struct usb_request *req)
1162{
1163	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1164	struct s3c_hsotg *hsotg = hs_ep->parent;
1165
1166	if (req->status < 0) {
1167		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1168		return;
1169	}
1170
1171	spin_lock(&hsotg->lock);
1172	if (req->actual == 0)
1173		s3c_hsotg_enqueue_setup(hsotg);
1174	else
1175		s3c_hsotg_process_control(hsotg, req->buf);
1176	spin_unlock(&hsotg->lock);
1177}
1178
1179/**
1180 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1181 * @hsotg: The device state.
1182 *
1183 * Enqueue a request on EP0 if necessary to received any SETUP packets
1184 * received from the host.
1185 */
1186static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1187{
1188	struct usb_request *req = hsotg->ctrl_req;
1189	struct s3c_hsotg_req *hs_req = our_req(req);
1190	int ret;
1191
1192	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1193
1194	req->zero = 0;
1195	req->length = 8;
1196	req->buf = hsotg->ctrl_buff;
1197	req->complete = s3c_hsotg_complete_setup;
1198
1199	if (!list_empty(&hs_req->queue)) {
1200		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1201		return;
1202	}
1203
1204	hsotg->eps[0].dir_in = 0;
1205
1206	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1207	if (ret < 0) {
1208		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1209		/*
1210		 * Don't think there's much we can do other than watch the
1211		 * driver fail.
1212		 */
1213	}
1214}
1215
1216/**
1217 * s3c_hsotg_complete_request - complete a request given to us
1218 * @hsotg: The device state.
1219 * @hs_ep: The endpoint the request was on.
1220 * @hs_req: The request to complete.
1221 * @result: The result code (0 => Ok, otherwise errno)
1222 *
1223 * The given request has finished, so call the necessary completion
1224 * if it has one and then look to see if we can start a new request
1225 * on the endpoint.
1226 *
1227 * Note, expects the ep to already be locked as appropriate.
1228 */
1229static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1230				       struct s3c_hsotg_ep *hs_ep,
1231				       struct s3c_hsotg_req *hs_req,
1232				       int result)
1233{
1234	bool restart;
1235
1236	if (!hs_req) {
1237		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1238		return;
1239	}
1240
1241	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1242		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1243
1244	/*
1245	 * only replace the status if we've not already set an error
1246	 * from a previous transaction
1247	 */
1248
1249	if (hs_req->req.status == -EINPROGRESS)
1250		hs_req->req.status = result;
1251
1252	hs_ep->req = NULL;
1253	list_del_init(&hs_req->queue);
1254
1255	if (using_dma(hsotg))
1256		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1257
1258	/*
1259	 * call the complete request with the locks off, just in case the
1260	 * request tries to queue more work for this endpoint.
1261	 */
1262
1263	if (hs_req->req.complete) {
1264		spin_unlock(&hsotg->lock);
1265		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1266		spin_lock(&hsotg->lock);
1267	}
1268
1269	/*
1270	 * Look to see if there is anything else to do. Note, the completion
1271	 * of the previous request may have caused a new request to be started
1272	 * so be careful when doing this.
1273	 */
1274
1275	if (!hs_ep->req && result >= 0) {
1276		restart = !list_empty(&hs_ep->queue);
1277		if (restart) {
1278			hs_req = get_ep_head(hs_ep);
1279			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1280		}
1281	}
1282}
1283
1284/**
1285 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1286 * @hsotg: The device state.
1287 * @ep_idx: The endpoint index for the data
1288 * @size: The size of data in the fifo, in bytes
1289 *
1290 * The FIFO status shows there is data to read from the FIFO for a given
1291 * endpoint, so sort out whether we need to read the data into a request
1292 * that has been made for that endpoint.
1293 */
1294static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1295{
1296	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1297	struct s3c_hsotg_req *hs_req = hs_ep->req;
1298	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1299	int to_read;
1300	int max_req;
1301	int read_ptr;
1302
1303
1304	if (!hs_req) {
1305		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1306		int ptr;
1307
1308		dev_warn(hsotg->dev,
1309			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1310			 __func__, size, ep_idx, epctl);
1311
1312		/* dump the data from the FIFO, we've nothing we can do */
1313		for (ptr = 0; ptr < size; ptr += 4)
1314			(void)readl(fifo);
1315
1316		return;
1317	}
1318
1319	to_read = size;
1320	read_ptr = hs_req->req.actual;
1321	max_req = hs_req->req.length - read_ptr;
1322
1323	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1324		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1325
1326	if (to_read > max_req) {
1327		/*
1328		 * more data appeared than we where willing
1329		 * to deal with in this request.
1330		 */
1331
1332		/* currently we don't deal this */
1333		WARN_ON_ONCE(1);
1334	}
1335
1336	hs_ep->total_data += to_read;
1337	hs_req->req.actual += to_read;
1338	to_read = DIV_ROUND_UP(to_read, 4);
1339
1340	/*
1341	 * note, we might over-write the buffer end by 3 bytes depending on
1342	 * alignment of the data.
1343	 */
1344	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1345}
1346
1347/**
1348 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1349 * @hsotg: The device instance
1350 * @req: The request currently on this endpoint
1351 *
1352 * Generate a zero-length IN packet request for terminating a SETUP
1353 * transaction.
1354 *
1355 * Note, since we don't write any data to the TxFIFO, then it is
1356 * currently believed that we do not need to wait for any space in
1357 * the TxFIFO.
1358 */
1359static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1360			       struct s3c_hsotg_req *req)
1361{
1362	u32 ctrl;
1363
1364	if (!req) {
1365		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1366		return;
1367	}
1368
1369	if (req->req.length == 0) {
1370		hsotg->eps[0].sent_zlp = 1;
1371		s3c_hsotg_enqueue_setup(hsotg);
1372		return;
1373	}
1374
1375	hsotg->eps[0].dir_in = 1;
1376	hsotg->eps[0].sent_zlp = 1;
1377
1378	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1379
1380	/* issue a zero-sized packet to terminate this */
1381	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1382	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1383
1384	ctrl = readl(hsotg->regs + DIEPCTL0);
1385	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1386	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1387	ctrl |= DXEPCTL_USBACTEP;
1388	writel(ctrl, hsotg->regs + DIEPCTL0);
1389}
1390
1391/**
1392 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1393 * @hsotg: The device instance
1394 * @epnum: The endpoint received from
1395 * @was_setup: Set if processing a SetupDone event.
1396 *
1397 * The RXFIFO has delivered an OutDone event, which means that the data
1398 * transfer for an OUT endpoint has been completed, either by a short
1399 * packet or by the finish of a transfer.
1400 */
1401static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1402				     int epnum, bool was_setup)
1403{
1404	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1406	struct s3c_hsotg_req *hs_req = hs_ep->req;
1407	struct usb_request *req = &hs_req->req;
1408	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409	int result = 0;
1410
1411	if (!hs_req) {
1412		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1413		return;
1414	}
1415
1416	if (using_dma(hsotg)) {
1417		unsigned size_done;
1418
1419		/*
1420		 * Calculate the size of the transfer by checking how much
1421		 * is left in the endpoint size register and then working it
1422		 * out from the amount we loaded for the transfer.
1423		 *
1424		 * We need to do this as DMA pointers are always 32bit aligned
1425		 * so may overshoot/undershoot the transfer.
1426		 */
1427
1428		size_done = hs_ep->size_loaded - size_left;
1429		size_done += hs_ep->last_load;
1430
1431		req->actual = size_done;
1432	}
1433
1434	/* if there is more request to do, schedule new transfer */
1435	if (req->actual < req->length && size_left == 0) {
1436		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1437		return;
1438	} else if (epnum == 0) {
1439		/*
1440		 * After was_setup = 1 =>
1441		 * set CNAK for non Setup requests
1442		 */
1443		hsotg->setup = was_setup ? 0 : 1;
1444	}
1445
1446	if (req->actual < req->length && req->short_not_ok) {
1447		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1448			__func__, req->actual, req->length);
1449
1450		/*
1451		 * todo - what should we return here? there's no one else
1452		 * even bothering to check the status.
1453		 */
1454	}
1455
1456	if (epnum == 0) {
1457		/*
1458		 * Condition req->complete != s3c_hsotg_complete_setup says:
1459		 * send ZLP when we have an asynchronous request from gadget
1460		 */
1461		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1462			s3c_hsotg_send_zlp(hsotg, hs_req);
1463	}
1464
1465	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1466}
1467
1468/**
1469 * s3c_hsotg_read_frameno - read current frame number
1470 * @hsotg: The device instance
1471 *
1472 * Return the current frame number
1473 */
1474static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1475{
1476	u32 dsts;
1477
1478	dsts = readl(hsotg->regs + DSTS);
1479	dsts &= DSTS_SOFFN_MASK;
1480	dsts >>= DSTS_SOFFN_SHIFT;
1481
1482	return dsts;
1483}
1484
1485/**
1486 * s3c_hsotg_handle_rx - RX FIFO has data
1487 * @hsotg: The device instance
1488 *
1489 * The IRQ handler has detected that the RX FIFO has some data in it
1490 * that requires processing, so find out what is in there and do the
1491 * appropriate read.
1492 *
1493 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1494 * chunks, so if you have x packets received on an endpoint you'll get x
1495 * FIFO events delivered, each with a packet's worth of data in it.
1496 *
1497 * When using DMA, we should not be processing events from the RXFIFO
1498 * as the actual data should be sent to the memory directly and we turn
1499 * on the completion interrupts to get notifications of transfer completion.
1500 */
1501static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1502{
1503	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1504	u32 epnum, status, size;
1505
1506	WARN_ON(using_dma(hsotg));
1507
1508	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1509	status = grxstsr & GRXSTS_PKTSTS_MASK;
1510
1511	size = grxstsr & GRXSTS_BYTECNT_MASK;
1512	size >>= GRXSTS_BYTECNT_SHIFT;
1513
1514	if (1)
1515		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1516			__func__, grxstsr, size, epnum);
1517
1518	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1519	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1520		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1521		break;
1522
1523	case GRXSTS_PKTSTS_OUTDONE:
1524		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1525			s3c_hsotg_read_frameno(hsotg));
1526
1527		if (!using_dma(hsotg))
1528			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1529		break;
1530
1531	case GRXSTS_PKTSTS_SETUPDONE:
1532		dev_dbg(hsotg->dev,
1533			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1534			s3c_hsotg_read_frameno(hsotg),
1535			readl(hsotg->regs + DOEPCTL(0)));
1536
1537		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1538		break;
1539
1540	case GRXSTS_PKTSTS_OUTRX:
1541		s3c_hsotg_rx_data(hsotg, epnum, size);
1542		break;
1543
1544	case GRXSTS_PKTSTS_SETUPRX:
1545		dev_dbg(hsotg->dev,
1546			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1547			s3c_hsotg_read_frameno(hsotg),
1548			readl(hsotg->regs + DOEPCTL(0)));
1549
1550		s3c_hsotg_rx_data(hsotg, epnum, size);
1551		break;
1552
1553	default:
1554		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1555			 __func__, grxstsr);
1556
1557		s3c_hsotg_dump(hsotg);
1558		break;
1559	}
1560}
1561
1562/**
1563 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1564 * @mps: The maximum packet size in bytes.
1565 */
1566static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1567{
1568	switch (mps) {
1569	case 64:
1570		return D0EPCTL_MPS_64;
1571	case 32:
1572		return D0EPCTL_MPS_32;
1573	case 16:
1574		return D0EPCTL_MPS_16;
1575	case 8:
1576		return D0EPCTL_MPS_8;
1577	}
1578
1579	/* bad max packet size, warn and return invalid result */
1580	WARN_ON(1);
1581	return (u32)-1;
1582}
1583
1584/**
1585 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1586 * @hsotg: The driver state.
1587 * @ep: The index number of the endpoint
1588 * @mps: The maximum packet size in bytes
1589 *
1590 * Configure the maximum packet size for the given endpoint, updating
1591 * the hardware control registers to reflect this.
1592 */
1593static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1594				       unsigned int ep, unsigned int mps)
1595{
1596	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1597	void __iomem *regs = hsotg->regs;
1598	u32 mpsval;
1599	u32 mcval;
1600	u32 reg;
1601
1602	if (ep == 0) {
1603		/* EP0 is a special case */
1604		mpsval = s3c_hsotg_ep0_mps(mps);
1605		if (mpsval > 3)
1606			goto bad_mps;
1607		hs_ep->ep.maxpacket = mps;
1608		hs_ep->mc = 1;
1609	} else {
1610		mpsval = mps & DXEPCTL_MPS_MASK;
1611		if (mpsval > 1024)
1612			goto bad_mps;
1613		mcval = ((mps >> 11) & 0x3) + 1;
1614		hs_ep->mc = mcval;
1615		if (mcval > 3)
1616			goto bad_mps;
1617		hs_ep->ep.maxpacket = mpsval;
1618	}
1619
1620	/*
1621	 * update both the in and out endpoint controldir_ registers, even
1622	 * if one of the directions may not be in use.
1623	 */
1624
1625	reg = readl(regs + DIEPCTL(ep));
1626	reg &= ~DXEPCTL_MPS_MASK;
1627	reg |= mpsval;
1628	writel(reg, regs + DIEPCTL(ep));
1629
1630	if (ep) {
1631		reg = readl(regs + DOEPCTL(ep));
1632		reg &= ~DXEPCTL_MPS_MASK;
1633		reg |= mpsval;
1634		writel(reg, regs + DOEPCTL(ep));
1635	}
1636
1637	return;
1638
1639bad_mps:
1640	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1641}
1642
1643/**
1644 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1645 * @hsotg: The driver state
1646 * @idx: The index for the endpoint (0..15)
1647 */
1648static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1649{
1650	int timeout;
1651	int val;
1652
1653	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1654		hsotg->regs + GRSTCTL);
1655
1656	/* wait until the fifo is flushed */
1657	timeout = 100;
1658
1659	while (1) {
1660		val = readl(hsotg->regs + GRSTCTL);
1661
1662		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1663			break;
1664
1665		if (--timeout == 0) {
1666			dev_err(hsotg->dev,
1667				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1668				__func__, val);
1669			break;
1670		}
1671
1672		udelay(1);
1673	}
1674}
1675
1676/**
1677 * s3c_hsotg_trytx - check to see if anything needs transmitting
1678 * @hsotg: The driver state
1679 * @hs_ep: The driver endpoint to check.
1680 *
1681 * Check to see if there is a request that has data to send, and if so
1682 * make an attempt to write data into the FIFO.
1683 */
1684static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1685			   struct s3c_hsotg_ep *hs_ep)
1686{
1687	struct s3c_hsotg_req *hs_req = hs_ep->req;
1688
1689	if (!hs_ep->dir_in || !hs_req) {
1690		/**
1691		 * if request is not enqueued, we disable interrupts
1692		 * for endpoints, excepting ep0
1693		 */
1694		if (hs_ep->index != 0)
1695			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1696					     hs_ep->dir_in, 0);
1697		return 0;
1698	}
1699
1700	if (hs_req->req.actual < hs_req->req.length) {
1701		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1702			hs_ep->index);
1703		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1704	}
1705
1706	return 0;
1707}
1708
1709/**
1710 * s3c_hsotg_complete_in - complete IN transfer
1711 * @hsotg: The device state.
1712 * @hs_ep: The endpoint that has just completed.
1713 *
1714 * An IN transfer has been completed, update the transfer's state and then
1715 * call the relevant completion routines.
1716 */
1717static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1718				  struct s3c_hsotg_ep *hs_ep)
1719{
1720	struct s3c_hsotg_req *hs_req = hs_ep->req;
1721	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1722	int size_left, size_done;
1723
1724	if (!hs_req) {
1725		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1726		return;
1727	}
1728
1729	/* Finish ZLP handling for IN EP0 transactions */
1730	if (hsotg->eps[0].sent_zlp) {
1731		dev_dbg(hsotg->dev, "zlp packet received\n");
1732		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1733		return;
1734	}
1735
1736	/*
1737	 * Calculate the size of the transfer by checking how much is left
1738	 * in the endpoint size register and then working it out from
1739	 * the amount we loaded for the transfer.
1740	 *
1741	 * We do this even for DMA, as the transfer may have incremented
1742	 * past the end of the buffer (DMA transfers are always 32bit
1743	 * aligned).
1744	 */
1745
1746	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1747
1748	size_done = hs_ep->size_loaded - size_left;
1749	size_done += hs_ep->last_load;
1750
1751	if (hs_req->req.actual != size_done)
1752		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1753			__func__, hs_req->req.actual, size_done);
1754
1755	hs_req->req.actual = size_done;
1756	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1757		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1758
1759	/*
1760	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1761	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1762	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1763	 * inform the host that no more data is available.
1764	 * The state of req.zero member is checked to be sure that the value to
1765	 * send is smaller than wValue expected from host.
1766	 * Check req.length to NOT send another ZLP when the current one is
1767	 * under completion (the one for which this completion has been called).
1768	 */
1769	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1770	    hs_req->req.length == hs_req->req.actual &&
1771	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1772
1773		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1774		s3c_hsotg_send_zlp(hsotg, hs_req);
1775
1776		return;
1777	}
1778
1779	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1780		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1781		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1782	} else
1783		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1784}
1785
1786/**
1787 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1788 * @hsotg: The driver state
1789 * @idx: The index for the endpoint (0..15)
1790 * @dir_in: Set if this is an IN endpoint
1791 *
1792 * Process and clear any interrupt pending for an individual endpoint
1793 */
1794static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1795			    int dir_in)
1796{
1797	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1798	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1799	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1800	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1801	u32 ints;
1802	u32 ctrl;
1803
1804	ints = readl(hsotg->regs + epint_reg);
1805	ctrl = readl(hsotg->regs + epctl_reg);
1806
1807	/* Clear endpoint interrupts */
1808	writel(ints, hsotg->regs + epint_reg);
1809
1810	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1811		__func__, idx, dir_in ? "in" : "out", ints);
1812
1813	if (ints & DXEPINT_XFERCOMPL) {
1814		if (hs_ep->isochronous && hs_ep->interval == 1) {
1815			if (ctrl & DXEPCTL_EOFRNUM)
1816				ctrl |= DXEPCTL_SETEVENFR;
1817			else
1818				ctrl |= DXEPCTL_SETODDFR;
1819			writel(ctrl, hsotg->regs + epctl_reg);
1820		}
1821
1822		dev_dbg(hsotg->dev,
1823			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1824			__func__, readl(hsotg->regs + epctl_reg),
1825			readl(hsotg->regs + epsiz_reg));
1826
1827		/*
1828		 * we get OutDone from the FIFO, so we only need to look
1829		 * at completing IN requests here
1830		 */
1831		if (dir_in) {
1832			s3c_hsotg_complete_in(hsotg, hs_ep);
1833
1834			if (idx == 0 && !hs_ep->req)
1835				s3c_hsotg_enqueue_setup(hsotg);
1836		} else if (using_dma(hsotg)) {
1837			/*
1838			 * We're using DMA, we need to fire an OutDone here
1839			 * as we ignore the RXFIFO.
1840			 */
1841
1842			s3c_hsotg_handle_outdone(hsotg, idx, false);
1843		}
1844	}
1845
1846	if (ints & DXEPINT_EPDISBLD) {
1847		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1848
1849		if (dir_in) {
1850			int epctl = readl(hsotg->regs + epctl_reg);
1851
1852			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1853
1854			if ((epctl & DXEPCTL_STALL) &&
1855				(epctl & DXEPCTL_EPTYPE_BULK)) {
1856				int dctl = readl(hsotg->regs + DCTL);
1857
1858				dctl |= DCTL_CGNPINNAK;
1859				writel(dctl, hsotg->regs + DCTL);
1860			}
1861		}
1862	}
1863
1864	if (ints & DXEPINT_AHBERR)
1865		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1866
1867	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1868		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1869
1870		if (using_dma(hsotg) && idx == 0) {
1871			/*
1872			 * this is the notification we've received a
1873			 * setup packet. In non-DMA mode we'd get this
1874			 * from the RXFIFO, instead we need to process
1875			 * the setup here.
1876			 */
1877
1878			if (dir_in)
1879				WARN_ON_ONCE(1);
1880			else
1881				s3c_hsotg_handle_outdone(hsotg, 0, true);
1882		}
1883	}
1884
1885	if (ints & DXEPINT_BACK2BACKSETUP)
1886		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1887
1888	if (dir_in && !hs_ep->isochronous) {
1889		/* not sure if this is important, but we'll clear it anyway */
1890		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1891			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1892				__func__, idx);
1893		}
1894
1895		/* this probably means something bad is happening */
1896		if (ints & DIEPMSK_INTKNEPMISMSK) {
1897			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1898				 __func__, idx);
1899		}
1900
1901		/* FIFO has space or is empty (see GAHBCFG) */
1902		if (hsotg->dedicated_fifos &&
1903		    ints & DIEPMSK_TXFIFOEMPTY) {
1904			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1905				__func__, idx);
1906			if (!using_dma(hsotg))
1907				s3c_hsotg_trytx(hsotg, hs_ep);
1908		}
1909	}
1910}
1911
1912/**
1913 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1914 * @hsotg: The device state.
1915 *
1916 * Handle updating the device settings after the enumeration phase has
1917 * been completed.
1918 */
1919static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1920{
1921	u32 dsts = readl(hsotg->regs + DSTS);
1922	int ep0_mps = 0, ep_mps = 8;
1923
1924	/*
1925	 * This should signal the finish of the enumeration phase
1926	 * of the USB handshaking, so we should now know what rate
1927	 * we connected at.
1928	 */
1929
1930	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1931
1932	/*
1933	 * note, since we're limited by the size of transfer on EP0, and
1934	 * it seems IN transfers must be a even number of packets we do
1935	 * not advertise a 64byte MPS on EP0.
1936	 */
1937
1938	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1939	switch (dsts & DSTS_ENUMSPD_MASK) {
1940	case DSTS_ENUMSPD_FS:
1941	case DSTS_ENUMSPD_FS48:
1942		hsotg->gadget.speed = USB_SPEED_FULL;
1943		ep0_mps = EP0_MPS_LIMIT;
1944		ep_mps = 1023;
1945		break;
1946
1947	case DSTS_ENUMSPD_HS:
1948		hsotg->gadget.speed = USB_SPEED_HIGH;
1949		ep0_mps = EP0_MPS_LIMIT;
1950		ep_mps = 1024;
1951		break;
1952
1953	case DSTS_ENUMSPD_LS:
1954		hsotg->gadget.speed = USB_SPEED_LOW;
1955		/*
1956		 * note, we don't actually support LS in this driver at the
1957		 * moment, and the documentation seems to imply that it isn't
1958		 * supported by the PHYs on some of the devices.
1959		 */
1960		break;
1961	}
1962	dev_info(hsotg->dev, "new device is %s\n",
1963		 usb_speed_string(hsotg->gadget.speed));
1964
1965	/*
1966	 * we should now know the maximum packet size for an
1967	 * endpoint, so set the endpoints to a default value.
1968	 */
1969
1970	if (ep0_mps) {
1971		int i;
1972		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1973		for (i = 1; i < hsotg->num_of_eps; i++)
1974			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1975	}
1976
1977	/* ensure after enumeration our EP0 is active */
1978
1979	s3c_hsotg_enqueue_setup(hsotg);
1980
1981	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1982		readl(hsotg->regs + DIEPCTL0),
1983		readl(hsotg->regs + DOEPCTL0));
1984}
1985
1986/**
1987 * kill_all_requests - remove all requests from the endpoint's queue
1988 * @hsotg: The device state.
1989 * @ep: The endpoint the requests may be on.
1990 * @result: The result code to use.
1991 * @force: Force removal of any current requests
1992 *
1993 * Go through the requests on the given endpoint and mark them
1994 * completed with the given result code.
1995 */
1996static void kill_all_requests(struct s3c_hsotg *hsotg,
1997			      struct s3c_hsotg_ep *ep,
1998			      int result, bool force)
1999{
2000	struct s3c_hsotg_req *req, *treq;
2001	unsigned size;
2002
2003	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2004		/*
2005		 * currently, we can't do much about an already
2006		 * running request on an in endpoint
2007		 */
2008
2009		if (ep->req == req && ep->dir_in && !force)
2010			continue;
2011
2012		s3c_hsotg_complete_request(hsotg, ep, req,
2013					   result);
2014	}
2015	if (!hsotg->dedicated_fifos)
2016		return;
2017	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2018	if (size < ep->fifo_size)
2019		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2020}
2021
2022/**
2023 * s3c_hsotg_disconnect - disconnect service
2024 * @hsotg: The device state.
2025 *
2026 * The device has been disconnected. Remove all current
2027 * transactions and signal the gadget driver that this
2028 * has happened.
2029 */
2030static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2031{
2032	unsigned ep;
2033
2034	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2035		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2036
2037	call_gadget(hsotg, disconnect);
2038}
2039
2040/**
2041 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2042 * @hsotg: The device state:
2043 * @periodic: True if this is a periodic FIFO interrupt
2044 */
2045static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2046{
2047	struct s3c_hsotg_ep *ep;
2048	int epno, ret;
2049
2050	/* look through for any more data to transmit */
2051
2052	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2053		ep = &hsotg->eps[epno];
2054
2055		if (!ep->dir_in)
2056			continue;
2057
2058		if ((periodic && !ep->periodic) ||
2059		    (!periodic && ep->periodic))
2060			continue;
2061
2062		ret = s3c_hsotg_trytx(hsotg, ep);
2063		if (ret < 0)
2064			break;
2065	}
2066}
2067
2068/* IRQ flags which will trigger a retry around the IRQ loop */
2069#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2070			GINTSTS_PTXFEMP |  \
2071			GINTSTS_RXFLVL)
2072
2073/**
2074 * s3c_hsotg_corereset - issue softreset to the core
2075 * @hsotg: The device state
2076 *
2077 * Issue a soft reset to the core, and await the core finishing it.
2078 */
2079static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2080{
2081	int timeout;
2082	u32 grstctl;
2083
2084	dev_dbg(hsotg->dev, "resetting core\n");
2085
2086	/* issue soft reset */
2087	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2088
2089	timeout = 10000;
2090	do {
2091		grstctl = readl(hsotg->regs + GRSTCTL);
2092	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2093
2094	if (grstctl & GRSTCTL_CSFTRST) {
2095		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2096		return -EINVAL;
2097	}
2098
2099	timeout = 10000;
2100
2101	while (1) {
2102		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2103
2104		if (timeout-- < 0) {
2105			dev_info(hsotg->dev,
2106				 "%s: reset failed, GRSTCTL=%08x\n",
2107				 __func__, grstctl);
2108			return -ETIMEDOUT;
2109		}
2110
2111		if (!(grstctl & GRSTCTL_AHBIDLE))
2112			continue;
2113
2114		break;		/* reset done */
2115	}
2116
2117	dev_dbg(hsotg->dev, "reset successful\n");
2118	return 0;
2119}
2120
2121/**
2122 * s3c_hsotg_core_init - issue softreset to the core
2123 * @hsotg: The device state
2124 *
2125 * Issue a soft reset to the core, and await the core finishing it.
2126 */
2127static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2128{
2129	s3c_hsotg_corereset(hsotg);
2130
2131	/*
2132	 * we must now enable ep0 ready for host detection and then
2133	 * set configuration.
2134	 */
2135
2136	/* set the PLL on, remove the HNP/SRP and set the PHY */
2137	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2138	       (0x5 << 10), hsotg->regs + GUSBCFG);
2139
2140	s3c_hsotg_init_fifo(hsotg);
2141
2142	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2143
2144	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2145
2146	/* Clear any pending OTG interrupts */
2147	writel(0xffffffff, hsotg->regs + GOTGINT);
2148
2149	/* Clear any pending interrupts */
2150	writel(0xffffffff, hsotg->regs + GINTSTS);
2151
2152	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2153		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2154		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2155		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2156		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2157		hsotg->regs + GINTMSK);
2158
2159	if (using_dma(hsotg))
2160		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2161		       GAHBCFG_HBSTLEN_INCR4,
2162		       hsotg->regs + GAHBCFG);
2163	else
2164		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2165						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2166		       GAHBCFG_GLBL_INTR_EN,
2167		       hsotg->regs + GAHBCFG);
2168
2169	/*
2170	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2171	 * when we have no data to transfer. Otherwise we get being flooded by
2172	 * interrupts.
2173	 */
2174
2175	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2176		DIEPMSK_INTKNTXFEMPMSK : 0) |
2177		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2178		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2179		DIEPMSK_INTKNEPMISMSK,
2180		hsotg->regs + DIEPMSK);
2181
2182	/*
2183	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2184	 * DMA mode we may need this.
2185	 */
2186	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2187				    DIEPMSK_TIMEOUTMSK) : 0) |
2188		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2189		DOEPMSK_SETUPMSK,
2190		hsotg->regs + DOEPMSK);
2191
2192	writel(0, hsotg->regs + DAINTMSK);
2193
2194	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2195		readl(hsotg->regs + DIEPCTL0),
2196		readl(hsotg->regs + DOEPCTL0));
2197
2198	/* enable in and out endpoint interrupts */
2199	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2200
2201	/*
2202	 * Enable the RXFIFO when in slave mode, as this is how we collect
2203	 * the data. In DMA mode, we get events from the FIFO but also
2204	 * things we cannot process, so do not use it.
2205	 */
2206	if (!using_dma(hsotg))
2207		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2208
2209	/* Enable interrupts for EP0 in and out */
2210	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2211	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2212
2213	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2214	udelay(10);  /* see openiboot */
2215	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2216
2217	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2218
2219	/*
2220	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2221	 * writing to the EPCTL register..
2222	 */
2223
2224	/* set to read 1 8byte packet */
2225	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2226	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2227
2228	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2229	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2230	       DXEPCTL_USBACTEP,
2231	       hsotg->regs + DOEPCTL0);
2232
2233	/* enable, but don't activate EP0in */
2234	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2235	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2236
2237	s3c_hsotg_enqueue_setup(hsotg);
2238
2239	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2240		readl(hsotg->regs + DIEPCTL0),
2241		readl(hsotg->regs + DOEPCTL0));
2242
2243	/* clear global NAKs */
2244	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2245	       hsotg->regs + DCTL);
2246
2247	/* must be at-least 3ms to allow bus to see disconnect */
2248	mdelay(3);
2249
2250	/* remove the soft-disconnect and let's go */
2251	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2252}
2253
2254/**
2255 * s3c_hsotg_irq - handle device interrupt
2256 * @irq: The IRQ number triggered
2257 * @pw: The pw value when registered the handler.
2258 */
2259static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2260{
2261	struct s3c_hsotg *hsotg = pw;
2262	int retry_count = 8;
2263	u32 gintsts;
2264	u32 gintmsk;
2265
2266	spin_lock(&hsotg->lock);
2267irq_retry:
2268	gintsts = readl(hsotg->regs + GINTSTS);
2269	gintmsk = readl(hsotg->regs + GINTMSK);
2270
2271	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2272		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2273
2274	gintsts &= gintmsk;
2275
2276	if (gintsts & GINTSTS_OTGINT) {
2277		u32 otgint = readl(hsotg->regs + GOTGINT);
2278
2279		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2280
2281		writel(otgint, hsotg->regs + GOTGINT);
2282	}
2283
2284	if (gintsts & GINTSTS_SESSREQINT) {
2285		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2286		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2287	}
2288
2289	if (gintsts & GINTSTS_ENUMDONE) {
2290		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2291
2292		s3c_hsotg_irq_enumdone(hsotg);
2293	}
2294
2295	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2296		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2297			readl(hsotg->regs + DSTS),
2298			readl(hsotg->regs + GOTGCTL));
2299
2300		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2301	}
2302
2303	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2304		u32 daint = readl(hsotg->regs + DAINT);
2305		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2306		u32 daint_out, daint_in;
2307		int ep;
2308
2309		daint &= daintmsk;
2310		daint_out = daint >> DAINT_OUTEP_SHIFT;
2311		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2312
2313		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2314
2315		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2316			if (daint_out & 1)
2317				s3c_hsotg_epint(hsotg, ep, 0);
2318		}
2319
2320		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2321			if (daint_in & 1)
2322				s3c_hsotg_epint(hsotg, ep, 1);
2323		}
2324	}
2325
2326	if (gintsts & GINTSTS_USBRST) {
2327
2328		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2329
2330		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2331		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2332			readl(hsotg->regs + GNPTXSTS));
2333
2334		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2335
2336		if (usb_status & GOTGCTL_BSESVLD) {
2337			if (time_after(jiffies, hsotg->last_rst +
2338				       msecs_to_jiffies(200))) {
2339
2340				kill_all_requests(hsotg, &hsotg->eps[0],
2341							  -ECONNRESET, true);
2342
2343				s3c_hsotg_core_init(hsotg);
2344				hsotg->last_rst = jiffies;
2345			}
2346		}
2347	}
2348
2349	/* check both FIFOs */
2350
2351	if (gintsts & GINTSTS_NPTXFEMP) {
2352		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2353
2354		/*
2355		 * Disable the interrupt to stop it happening again
2356		 * unless one of these endpoint routines decides that
2357		 * it needs re-enabling
2358		 */
2359
2360		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2361		s3c_hsotg_irq_fifoempty(hsotg, false);
2362	}
2363
2364	if (gintsts & GINTSTS_PTXFEMP) {
2365		dev_dbg(hsotg->dev, "PTxFEmp\n");
2366
2367		/* See note in GINTSTS_NPTxFEmp */
2368
2369		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2370		s3c_hsotg_irq_fifoempty(hsotg, true);
2371	}
2372
2373	if (gintsts & GINTSTS_RXFLVL) {
2374		/*
2375		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2376		 * we need to retry s3c_hsotg_handle_rx if this is still
2377		 * set.
2378		 */
2379
2380		s3c_hsotg_handle_rx(hsotg);
2381	}
2382
2383	if (gintsts & GINTSTS_MODEMIS) {
2384		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2385		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2386	}
2387
2388	if (gintsts & GINTSTS_USBSUSP) {
2389		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2390		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2391
2392		call_gadget(hsotg, suspend);
2393	}
2394
2395	if (gintsts & GINTSTS_WKUPINT) {
2396		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2397		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2398
2399		call_gadget(hsotg, resume);
2400	}
2401
2402	if (gintsts & GINTSTS_ERLYSUSP) {
2403		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2404		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2405	}
2406
2407	/*
2408	 * these next two seem to crop-up occasionally causing the core
2409	 * to shutdown the USB transfer, so try clearing them and logging
2410	 * the occurrence.
2411	 */
2412
2413	if (gintsts & GINTSTS_GOUTNAKEFF) {
2414		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2415
2416		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2417
2418		s3c_hsotg_dump(hsotg);
2419	}
2420
2421	if (gintsts & GINTSTS_GINNAKEFF) {
2422		dev_info(hsotg->dev, "GINNakEff triggered\n");
2423
2424		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2425
2426		s3c_hsotg_dump(hsotg);
2427	}
2428
2429	/*
2430	 * if we've had fifo events, we should try and go around the
2431	 * loop again to see if there's any point in returning yet.
2432	 */
2433
2434	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2435			goto irq_retry;
2436
2437	spin_unlock(&hsotg->lock);
2438
2439	return IRQ_HANDLED;
2440}
2441
2442/**
2443 * s3c_hsotg_ep_enable - enable the given endpoint
2444 * @ep: The USB endpint to configure
2445 * @desc: The USB endpoint descriptor to configure with.
2446 *
2447 * This is called from the USB gadget code's usb_ep_enable().
2448 */
2449static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2450			       const struct usb_endpoint_descriptor *desc)
2451{
2452	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2453	struct s3c_hsotg *hsotg = hs_ep->parent;
2454	unsigned long flags;
2455	int index = hs_ep->index;
2456	u32 epctrl_reg;
2457	u32 epctrl;
2458	u32 mps;
2459	int dir_in;
2460	int i, val, size;
2461	int ret = 0;
2462
2463	dev_dbg(hsotg->dev,
2464		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2465		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2466		desc->wMaxPacketSize, desc->bInterval);
2467
2468	/* not to be called for EP0 */
2469	WARN_ON(index == 0);
2470
2471	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2472	if (dir_in != hs_ep->dir_in) {
2473		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2474		return -EINVAL;
2475	}
2476
2477	mps = usb_endpoint_maxp(desc);
2478
2479	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2480
2481	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2482	epctrl = readl(hsotg->regs + epctrl_reg);
2483
2484	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2485		__func__, epctrl, epctrl_reg);
2486
2487	spin_lock_irqsave(&hsotg->lock, flags);
2488
2489	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2490	epctrl |= DXEPCTL_MPS(mps);
2491
2492	/*
2493	 * mark the endpoint as active, otherwise the core may ignore
2494	 * transactions entirely for this endpoint
2495	 */
2496	epctrl |= DXEPCTL_USBACTEP;
2497
2498	/*
2499	 * set the NAK status on the endpoint, otherwise we might try and
2500	 * do something with data that we've yet got a request to process
2501	 * since the RXFIFO will take data for an endpoint even if the
2502	 * size register hasn't been set.
2503	 */
2504
2505	epctrl |= DXEPCTL_SNAK;
2506
2507	/* update the endpoint state */
2508	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2509
2510	/* default, set to non-periodic */
2511	hs_ep->isochronous = 0;
2512	hs_ep->periodic = 0;
2513	hs_ep->halted = 0;
2514	hs_ep->interval = desc->bInterval;
2515
2516	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2517		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2518
2519	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2520	case USB_ENDPOINT_XFER_ISOC:
2521		epctrl |= DXEPCTL_EPTYPE_ISO;
2522		epctrl |= DXEPCTL_SETEVENFR;
2523		hs_ep->isochronous = 1;
2524		if (dir_in)
2525			hs_ep->periodic = 1;
2526		break;
2527
2528	case USB_ENDPOINT_XFER_BULK:
2529		epctrl |= DXEPCTL_EPTYPE_BULK;
2530		break;
2531
2532	case USB_ENDPOINT_XFER_INT:
2533		if (dir_in)
2534			hs_ep->periodic = 1;
2535
2536		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2537		break;
2538
2539	case USB_ENDPOINT_XFER_CONTROL:
2540		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2541		break;
2542	}
2543
2544	/*
2545	 * if the hardware has dedicated fifos, we must give each IN EP
2546	 * a unique tx-fifo even if it is non-periodic.
2547	 */
2548	if (dir_in && hsotg->dedicated_fifos) {
2549		size = hs_ep->ep.maxpacket*hs_ep->mc;
2550		for (i = 1; i <= 8; ++i) {
2551			if (hsotg->fifo_map & (1<<i))
2552				continue;
2553			val = readl(hsotg->regs + DPTXFSIZN(i));
2554			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2555			if (val < size)
2556				continue;
2557			hsotg->fifo_map |= 1<<i;
2558
2559			epctrl |= DXEPCTL_TXFNUM(i);
2560			hs_ep->fifo_index = i;
2561			hs_ep->fifo_size = val;
2562			break;
2563		}
2564		if (i == 8) {
2565			ret = -ENOMEM;
2566			goto error;
2567		}
2568	}
2569
2570	/* for non control endpoints, set PID to D0 */
2571	if (index)
2572		epctrl |= DXEPCTL_SETD0PID;
2573
2574	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2575		__func__, epctrl);
2576
2577	writel(epctrl, hsotg->regs + epctrl_reg);
2578	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2579		__func__, readl(hsotg->regs + epctrl_reg));
2580
2581	/* enable the endpoint interrupt */
2582	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2583
2584error:
2585	spin_unlock_irqrestore(&hsotg->lock, flags);
2586	return ret;
2587}
2588
2589/**
2590 * s3c_hsotg_ep_disable - disable given endpoint
2591 * @ep: The endpoint to disable.
2592 */
2593static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2594{
2595	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2596	struct s3c_hsotg *hsotg = hs_ep->parent;
2597	int dir_in = hs_ep->dir_in;
2598	int index = hs_ep->index;
2599	unsigned long flags;
2600	u32 epctrl_reg;
2601	u32 ctrl;
2602
2603	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2604
2605	if (ep == &hsotg->eps[0].ep) {
2606		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2607		return -EINVAL;
2608	}
2609
2610	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2611
2612	spin_lock_irqsave(&hsotg->lock, flags);
2613	/* terminate all requests with shutdown */
2614	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2615
2616	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2617	hs_ep->fifo_index = 0;
2618	hs_ep->fifo_size = 0;
2619
2620	ctrl = readl(hsotg->regs + epctrl_reg);
2621	ctrl &= ~DXEPCTL_EPENA;
2622	ctrl &= ~DXEPCTL_USBACTEP;
2623	ctrl |= DXEPCTL_SNAK;
2624
2625	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2626	writel(ctrl, hsotg->regs + epctrl_reg);
2627
2628	/* disable endpoint interrupts */
2629	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2630
2631	spin_unlock_irqrestore(&hsotg->lock, flags);
2632	return 0;
2633}
2634
2635/**
2636 * on_list - check request is on the given endpoint
2637 * @ep: The endpoint to check.
2638 * @test: The request to test if it is on the endpoint.
2639 */
2640static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2641{
2642	struct s3c_hsotg_req *req, *treq;
2643
2644	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2645		if (req == test)
2646			return true;
2647	}
2648
2649	return false;
2650}
2651
2652/**
2653 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2654 * @ep: The endpoint to dequeue.
2655 * @req: The request to be removed from a queue.
2656 */
2657static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2658{
2659	struct s3c_hsotg_req *hs_req = our_req(req);
2660	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2661	struct s3c_hsotg *hs = hs_ep->parent;
2662	unsigned long flags;
2663
2664	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2665
2666	spin_lock_irqsave(&hs->lock, flags);
2667
2668	if (!on_list(hs_ep, hs_req)) {
2669		spin_unlock_irqrestore(&hs->lock, flags);
2670		return -EINVAL;
2671	}
2672
2673	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2674	spin_unlock_irqrestore(&hs->lock, flags);
2675
2676	return 0;
2677}
2678
2679/**
2680 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2681 * @ep: The endpoint to set halt.
2682 * @value: Set or unset the halt.
2683 */
2684static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2685{
2686	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2687	struct s3c_hsotg *hs = hs_ep->parent;
2688	int index = hs_ep->index;
2689	u32 epreg;
2690	u32 epctl;
2691	u32 xfertype;
2692
2693	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2694
2695	if (index == 0) {
2696		if (value)
2697			s3c_hsotg_stall_ep0(hs);
2698		else
2699			dev_warn(hs->dev,
2700				 "%s: can't clear halt on ep0\n", __func__);
2701		return 0;
2702	}
2703
2704	/* write both IN and OUT control registers */
2705
2706	epreg = DIEPCTL(index);
2707	epctl = readl(hs->regs + epreg);
2708
2709	if (value) {
2710		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2711		if (epctl & DXEPCTL_EPENA)
2712			epctl |= DXEPCTL_EPDIS;
2713	} else {
2714		epctl &= ~DXEPCTL_STALL;
2715		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2716		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2717			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2718				epctl |= DXEPCTL_SETD0PID;
2719	}
2720
2721	writel(epctl, hs->regs + epreg);
2722
2723	epreg = DOEPCTL(index);
2724	epctl = readl(hs->regs + epreg);
2725
2726	if (value)
2727		epctl |= DXEPCTL_STALL;
2728	else {
2729		epctl &= ~DXEPCTL_STALL;
2730		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2731		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2732			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2733				epctl |= DXEPCTL_SETD0PID;
2734	}
2735
2736	writel(epctl, hs->regs + epreg);
2737
2738	hs_ep->halted = value;
2739
2740	return 0;
2741}
2742
2743/**
2744 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2745 * @ep: The endpoint to set halt.
2746 * @value: Set or unset the halt.
2747 */
2748static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2749{
2750	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2751	struct s3c_hsotg *hs = hs_ep->parent;
2752	unsigned long flags = 0;
2753	int ret = 0;
2754
2755	spin_lock_irqsave(&hs->lock, flags);
2756	ret = s3c_hsotg_ep_sethalt(ep, value);
2757	spin_unlock_irqrestore(&hs->lock, flags);
2758
2759	return ret;
2760}
2761
2762static struct usb_ep_ops s3c_hsotg_ep_ops = {
2763	.enable		= s3c_hsotg_ep_enable,
2764	.disable	= s3c_hsotg_ep_disable,
2765	.alloc_request	= s3c_hsotg_ep_alloc_request,
2766	.free_request	= s3c_hsotg_ep_free_request,
2767	.queue		= s3c_hsotg_ep_queue_lock,
2768	.dequeue	= s3c_hsotg_ep_dequeue,
2769	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2770	/* note, don't believe we have any call for the fifo routines */
2771};
2772
2773/**
2774 * s3c_hsotg_phy_enable - enable platform phy dev
2775 * @hsotg: The driver state
2776 *
2777 * A wrapper for platform code responsible for controlling
2778 * low-level USB code
2779 */
2780static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2781{
2782	struct platform_device *pdev = to_platform_device(hsotg->dev);
2783
2784	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2785
2786	if (hsotg->uphy)
2787		usb_phy_init(hsotg->uphy);
2788	else if (hsotg->plat && hsotg->plat->phy_init)
2789		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2790	else {
2791		phy_init(hsotg->phy);
2792		phy_power_on(hsotg->phy);
2793	}
2794}
2795
2796/**
2797 * s3c_hsotg_phy_disable - disable platform phy dev
2798 * @hsotg: The driver state
2799 *
2800 * A wrapper for platform code responsible for controlling
2801 * low-level USB code
2802 */
2803static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2804{
2805	struct platform_device *pdev = to_platform_device(hsotg->dev);
2806
2807	if (hsotg->uphy)
2808		usb_phy_shutdown(hsotg->uphy);
2809	else if (hsotg->plat && hsotg->plat->phy_exit)
2810		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2811	else {
2812		phy_power_off(hsotg->phy);
2813		phy_exit(hsotg->phy);
2814	}
2815}
2816
2817/**
2818 * s3c_hsotg_init - initalize the usb core
2819 * @hsotg: The driver state
2820 */
2821static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2822{
2823	/* unmask subset of endpoint interrupts */
2824
2825	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2826		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2827		hsotg->regs + DIEPMSK);
2828
2829	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2830		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2831		hsotg->regs + DOEPMSK);
2832
2833	writel(0, hsotg->regs + DAINTMSK);
2834
2835	/* Be in disconnected state until gadget is registered */
2836	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2837
2838	if (0) {
2839		/* post global nak until we're ready */
2840		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2841		       hsotg->regs + DCTL);
2842	}
2843
2844	/* setup fifos */
2845
2846	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2847		readl(hsotg->regs + GRXFSIZ),
2848		readl(hsotg->regs + GNPTXFSIZ));
2849
2850	s3c_hsotg_init_fifo(hsotg);
2851
2852	/* set the PLL on, remove the HNP/SRP and set the PHY */
2853	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2854	       hsotg->regs + GUSBCFG);
2855
2856	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2857	       hsotg->regs + GAHBCFG);
2858}
2859
2860/**
2861 * s3c_hsotg_udc_start - prepare the udc for work
2862 * @gadget: The usb gadget state
2863 * @driver: The usb gadget driver
2864 *
2865 * Perform initialization to prepare udc device and driver
2866 * to work.
2867 */
2868static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2869			   struct usb_gadget_driver *driver)
2870{
2871	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2872	int ret;
2873
2874	if (!hsotg) {
2875		pr_err("%s: called with no device\n", __func__);
2876		return -ENODEV;
2877	}
2878
2879	if (!driver) {
2880		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2881		return -EINVAL;
2882	}
2883
2884	if (driver->max_speed < USB_SPEED_FULL)
2885		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2886
2887	if (!driver->setup) {
2888		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2889		return -EINVAL;
2890	}
2891
2892	WARN_ON(hsotg->driver);
2893
2894	driver->driver.bus = NULL;
2895	hsotg->driver = driver;
2896	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2897	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2898
2899	clk_enable(hsotg->clk);
2900
2901	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2902				    hsotg->supplies);
2903	if (ret) {
2904		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2905		goto err;
2906	}
2907
2908	hsotg->last_rst = jiffies;
2909	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2910	return 0;
2911
2912err:
2913	hsotg->driver = NULL;
2914	return ret;
2915}
2916
2917/**
2918 * s3c_hsotg_udc_stop - stop the udc
2919 * @gadget: The usb gadget state
2920 * @driver: The usb gadget driver
2921 *
2922 * Stop udc hw block and stay tunned for future transmissions
2923 */
2924static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2925			  struct usb_gadget_driver *driver)
2926{
2927	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2928	unsigned long flags = 0;
2929	int ep;
2930
2931	if (!hsotg)
2932		return -ENODEV;
2933
2934	/* all endpoints should be shutdown */
2935	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2936		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2937
2938	spin_lock_irqsave(&hsotg->lock, flags);
2939
2940	hsotg->driver = NULL;
2941	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2942
2943	spin_unlock_irqrestore(&hsotg->lock, flags);
2944
2945	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2946
2947	clk_disable(hsotg->clk);
2948
2949	return 0;
2950}
2951
2952/**
2953 * s3c_hsotg_gadget_getframe - read the frame number
2954 * @gadget: The usb gadget state
2955 *
2956 * Read the {micro} frame number
2957 */
2958static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2959{
2960	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2961}
2962
2963/**
2964 * s3c_hsotg_pullup - connect/disconnect the USB PHY
2965 * @gadget: The usb gadget state
2966 * @is_on: Current state of the USB PHY
2967 *
2968 * Connect/Disconnect the USB PHY pullup
2969 */
2970static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2971{
2972	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2973	unsigned long flags = 0;
2974
2975	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2976
2977	spin_lock_irqsave(&hsotg->lock, flags);
2978	if (is_on) {
2979		s3c_hsotg_phy_enable(hsotg);
2980		clk_enable(hsotg->clk);
2981		s3c_hsotg_core_init(hsotg);
2982	} else {
2983		clk_disable(hsotg->clk);
2984		s3c_hsotg_phy_disable(hsotg);
2985	}
2986
2987	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2988	spin_unlock_irqrestore(&hsotg->lock, flags);
2989
2990	return 0;
2991}
2992
2993static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2994	.get_frame	= s3c_hsotg_gadget_getframe,
2995	.udc_start		= s3c_hsotg_udc_start,
2996	.udc_stop		= s3c_hsotg_udc_stop,
2997	.pullup                 = s3c_hsotg_pullup,
2998};
2999
3000/**
3001 * s3c_hsotg_initep - initialise a single endpoint
3002 * @hsotg: The device state.
3003 * @hs_ep: The endpoint to be initialised.
3004 * @epnum: The endpoint number
3005 *
3006 * Initialise the given endpoint (as part of the probe and device state
3007 * creation) to give to the gadget driver. Setup the endpoint name, any
3008 * direction information and other state that may be required.
3009 */
3010static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3011				       struct s3c_hsotg_ep *hs_ep,
3012				       int epnum)
3013{
3014	char *dir;
3015
3016	if (epnum == 0)
3017		dir = "";
3018	else if ((epnum % 2) == 0) {
3019		dir = "out";
3020	} else {
3021		dir = "in";
3022		hs_ep->dir_in = 1;
3023	}
3024
3025	hs_ep->index = epnum;
3026
3027	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3028
3029	INIT_LIST_HEAD(&hs_ep->queue);
3030	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3031
3032	/* add to the list of endpoints known by the gadget driver */
3033	if (epnum)
3034		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3035
3036	hs_ep->parent = hsotg;
3037	hs_ep->ep.name = hs_ep->name;
3038	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3039	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3040
3041	/*
3042	 * if we're using dma, we need to set the next-endpoint pointer
3043	 * to be something valid.
3044	 */
3045
3046	if (using_dma(hsotg)) {
3047		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3048		writel(next, hsotg->regs + DIEPCTL(epnum));
3049		writel(next, hsotg->regs + DOEPCTL(epnum));
3050	}
3051}
3052
3053/**
3054 * s3c_hsotg_hw_cfg - read HW configuration registers
3055 * @param: The device state
3056 *
3057 * Read the USB core HW configuration registers
3058 */
3059static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3060{
3061	u32 cfg2, cfg3, cfg4;
3062	/* check hardware configuration */
3063
3064	cfg2 = readl(hsotg->regs + 0x48);
3065	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3066
3067	cfg3 = readl(hsotg->regs + 0x4C);
3068	hsotg->fifo_mem = (cfg3 >> 16);
3069
3070	cfg4 = readl(hsotg->regs + 0x50);
3071	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3072
3073	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3074		 hsotg->num_of_eps,
3075		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3076		 hsotg->fifo_mem);
3077}
3078
3079/**
3080 * s3c_hsotg_dump - dump state of the udc
3081 * @param: The device state
3082 */
3083static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3084{
3085#ifdef DEBUG
3086	struct device *dev = hsotg->dev;
3087	void __iomem *regs = hsotg->regs;
3088	u32 val;
3089	int idx;
3090
3091	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3092		 readl(regs + DCFG), readl(regs + DCTL),
3093		 readl(regs + DIEPMSK));
3094
3095	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3096		 readl(regs + GAHBCFG), readl(regs + 0x44));
3097
3098	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3099		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3100
3101	/* show periodic fifo settings */
3102
3103	for (idx = 1; idx <= 15; idx++) {
3104		val = readl(regs + DPTXFSIZN(idx));
3105		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3106			 val >> FIFOSIZE_DEPTH_SHIFT,
3107			 val & FIFOSIZE_STARTADDR_MASK);
3108	}
3109
3110	for (idx = 0; idx < 15; idx++) {
3111		dev_info(dev,
3112			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3113			 readl(regs + DIEPCTL(idx)),
3114			 readl(regs + DIEPTSIZ(idx)),
3115			 readl(regs + DIEPDMA(idx)));
3116
3117		val = readl(regs + DOEPCTL(idx));
3118		dev_info(dev,
3119			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3120			 idx, readl(regs + DOEPCTL(idx)),
3121			 readl(regs + DOEPTSIZ(idx)),
3122			 readl(regs + DOEPDMA(idx)));
3123
3124	}
3125
3126	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3127		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3128#endif
3129}
3130
3131/**
3132 * state_show - debugfs: show overall driver and device state.
3133 * @seq: The seq file to write to.
3134 * @v: Unused parameter.
3135 *
3136 * This debugfs entry shows the overall state of the hardware and
3137 * some general information about each of the endpoints available
3138 * to the system.
3139 */
3140static int state_show(struct seq_file *seq, void *v)
3141{
3142	struct s3c_hsotg *hsotg = seq->private;
3143	void __iomem *regs = hsotg->regs;
3144	int idx;
3145
3146	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3147		 readl(regs + DCFG),
3148		 readl(regs + DCTL),
3149		 readl(regs + DSTS));
3150
3151	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3152		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3153
3154	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3155		   readl(regs + GINTMSK),
3156		   readl(regs + GINTSTS));
3157
3158	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3159		   readl(regs + DAINTMSK),
3160		   readl(regs + DAINT));
3161
3162	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3163		   readl(regs + GNPTXSTS),
3164		   readl(regs + GRXSTSR));
3165
3166	seq_puts(seq, "\nEndpoint status:\n");
3167
3168	for (idx = 0; idx < 15; idx++) {
3169		u32 in, out;
3170
3171		in = readl(regs + DIEPCTL(idx));
3172		out = readl(regs + DOEPCTL(idx));
3173
3174		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3175			   idx, in, out);
3176
3177		in = readl(regs + DIEPTSIZ(idx));
3178		out = readl(regs + DOEPTSIZ(idx));
3179
3180		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3181			   in, out);
3182
3183		seq_puts(seq, "\n");
3184	}
3185
3186	return 0;
3187}
3188
3189static int state_open(struct inode *inode, struct file *file)
3190{
3191	return single_open(file, state_show, inode->i_private);
3192}
3193
3194static const struct file_operations state_fops = {
3195	.owner		= THIS_MODULE,
3196	.open		= state_open,
3197	.read		= seq_read,
3198	.llseek		= seq_lseek,
3199	.release	= single_release,
3200};
3201
3202/**
3203 * fifo_show - debugfs: show the fifo information
3204 * @seq: The seq_file to write data to.
3205 * @v: Unused parameter.
3206 *
3207 * Show the FIFO information for the overall fifo and all the
3208 * periodic transmission FIFOs.
3209 */
3210static int fifo_show(struct seq_file *seq, void *v)
3211{
3212	struct s3c_hsotg *hsotg = seq->private;
3213	void __iomem *regs = hsotg->regs;
3214	u32 val;
3215	int idx;
3216
3217	seq_puts(seq, "Non-periodic FIFOs:\n");
3218	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3219
3220	val = readl(regs + GNPTXFSIZ);
3221	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3222		   val >> FIFOSIZE_DEPTH_SHIFT,
3223		   val & FIFOSIZE_DEPTH_MASK);
3224
3225	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3226
3227	for (idx = 1; idx <= 15; idx++) {
3228		val = readl(regs + DPTXFSIZN(idx));
3229
3230		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3231			   val >> FIFOSIZE_DEPTH_SHIFT,
3232			   val & FIFOSIZE_STARTADDR_MASK);
3233	}
3234
3235	return 0;
3236}
3237
3238static int fifo_open(struct inode *inode, struct file *file)
3239{
3240	return single_open(file, fifo_show, inode->i_private);
3241}
3242
3243static const struct file_operations fifo_fops = {
3244	.owner		= THIS_MODULE,
3245	.open		= fifo_open,
3246	.read		= seq_read,
3247	.llseek		= seq_lseek,
3248	.release	= single_release,
3249};
3250
3251
3252static const char *decode_direction(int is_in)
3253{
3254	return is_in ? "in" : "out";
3255}
3256
3257/**
3258 * ep_show - debugfs: show the state of an endpoint.
3259 * @seq: The seq_file to write data to.
3260 * @v: Unused parameter.
3261 *
3262 * This debugfs entry shows the state of the given endpoint (one is
3263 * registered for each available).
3264 */
3265static int ep_show(struct seq_file *seq, void *v)
3266{
3267	struct s3c_hsotg_ep *ep = seq->private;
3268	struct s3c_hsotg *hsotg = ep->parent;
3269	struct s3c_hsotg_req *req;
3270	void __iomem *regs = hsotg->regs;
3271	int index = ep->index;
3272	int show_limit = 15;
3273	unsigned long flags;
3274
3275	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3276		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3277
3278	/* first show the register state */
3279
3280	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3281		   readl(regs + DIEPCTL(index)),
3282		   readl(regs + DOEPCTL(index)));
3283
3284	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3285		   readl(regs + DIEPDMA(index)),
3286		   readl(regs + DOEPDMA(index)));
3287
3288	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3289		   readl(regs + DIEPINT(index)),
3290		   readl(regs + DOEPINT(index)));
3291
3292	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3293		   readl(regs + DIEPTSIZ(index)),
3294		   readl(regs + DOEPTSIZ(index)));
3295
3296	seq_puts(seq, "\n");
3297	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3298	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3299
3300	seq_printf(seq, "request list (%p,%p):\n",
3301		   ep->queue.next, ep->queue.prev);
3302
3303	spin_lock_irqsave(&hsotg->lock, flags);
3304
3305	list_for_each_entry(req, &ep->queue, queue) {
3306		if (--show_limit < 0) {
3307			seq_puts(seq, "not showing more requests...\n");
3308			break;
3309		}
3310
3311		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3312			   req == ep->req ? '*' : ' ',
3313			   req, req->req.length, req->req.buf);
3314		seq_printf(seq, "%d done, res %d\n",
3315			   req->req.actual, req->req.status);
3316	}
3317
3318	spin_unlock_irqrestore(&hsotg->lock, flags);
3319
3320	return 0;
3321}
3322
3323static int ep_open(struct inode *inode, struct file *file)
3324{
3325	return single_open(file, ep_show, inode->i_private);
3326}
3327
3328static const struct file_operations ep_fops = {
3329	.owner		= THIS_MODULE,
3330	.open		= ep_open,
3331	.read		= seq_read,
3332	.llseek		= seq_lseek,
3333	.release	= single_release,
3334};
3335
3336/**
3337 * s3c_hsotg_create_debug - create debugfs directory and files
3338 * @hsotg: The driver state
3339 *
3340 * Create the debugfs files to allow the user to get information
3341 * about the state of the system. The directory name is created
3342 * with the same name as the device itself, in case we end up
3343 * with multiple blocks in future systems.
3344 */
3345static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3346{
3347	struct dentry *root;
3348	unsigned epidx;
3349
3350	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3351	hsotg->debug_root = root;
3352	if (IS_ERR(root)) {
3353		dev_err(hsotg->dev, "cannot create debug root\n");
3354		return;
3355	}
3356
3357	/* create general state file */
3358
3359	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3360						hsotg, &state_fops);
3361
3362	if (IS_ERR(hsotg->debug_file))
3363		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3364
3365	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3366						hsotg, &fifo_fops);
3367
3368	if (IS_ERR(hsotg->debug_fifo))
3369		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3370
3371	/* create one file for each endpoint */
3372
3373	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3374		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3375
3376		ep->debugfs = debugfs_create_file(ep->name, 0444,
3377						  root, ep, &ep_fops);
3378
3379		if (IS_ERR(ep->debugfs))
3380			dev_err(hsotg->dev, "failed to create %s debug file\n",
3381				ep->name);
3382	}
3383}
3384
3385/**
3386 * s3c_hsotg_delete_debug - cleanup debugfs entries
3387 * @hsotg: The driver state
3388 *
3389 * Cleanup (remove) the debugfs files for use on module exit.
3390 */
3391static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3392{
3393	unsigned epidx;
3394
3395	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3396		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3397		debugfs_remove(ep->debugfs);
3398	}
3399
3400	debugfs_remove(hsotg->debug_file);
3401	debugfs_remove(hsotg->debug_fifo);
3402	debugfs_remove(hsotg->debug_root);
3403}
3404
3405/**
3406 * s3c_hsotg_probe - probe function for hsotg driver
3407 * @pdev: The platform information for the driver
3408 */
3409
3410static int s3c_hsotg_probe(struct platform_device *pdev)
3411{
3412	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3413	struct phy *phy;
3414	struct usb_phy *uphy;
3415	struct device *dev = &pdev->dev;
3416	struct s3c_hsotg_ep *eps;
3417	struct s3c_hsotg *hsotg;
3418	struct resource *res;
3419	int epnum;
3420	int ret;
3421	int i;
3422
3423	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3424	if (!hsotg)
3425		return -ENOMEM;
3426
3427	/* Set default UTMI width */
3428	hsotg->phyif = GUSBCFG_PHYIF16;
3429
3430	/*
3431	 * Attempt to find a generic PHY, then look for an old style
3432	 * USB PHY, finally fall back to pdata
3433	 */
3434	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3435	if (IS_ERR(phy)) {
3436		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3437		if (IS_ERR(uphy)) {
3438			/* Fallback for pdata */
3439			plat = dev_get_platdata(&pdev->dev);
3440			if (!plat) {
3441				dev_err(&pdev->dev,
3442				"no platform data or transceiver defined\n");
3443				return -EPROBE_DEFER;
3444			}
3445			hsotg->plat = plat;
3446		} else
3447			hsotg->uphy = uphy;
3448	} else {
3449		hsotg->phy = phy;
3450		/*
3451		 * If using the generic PHY framework, check if the PHY bus
3452		 * width is 8-bit and set the phyif appropriately.
3453		 */
3454		if (phy_get_bus_width(phy) == 8)
3455			hsotg->phyif = GUSBCFG_PHYIF8;
3456	}
3457
3458	hsotg->dev = dev;
3459
3460	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3461	if (IS_ERR(hsotg->clk)) {
3462		dev_err(dev, "cannot get otg clock\n");
3463		return PTR_ERR(hsotg->clk);
3464	}
3465
3466	platform_set_drvdata(pdev, hsotg);
3467
3468	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3469
3470	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3471	if (IS_ERR(hsotg->regs)) {
3472		ret = PTR_ERR(hsotg->regs);
3473		goto err_clk;
3474	}
3475
3476	ret = platform_get_irq(pdev, 0);
3477	if (ret < 0) {
3478		dev_err(dev, "cannot find IRQ\n");
3479		goto err_clk;
3480	}
3481
3482	spin_lock_init(&hsotg->lock);
3483
3484	hsotg->irq = ret;
3485
3486	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3487
3488	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3489	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3490	hsotg->gadget.name = dev_name(dev);
3491
3492	/* reset the system */
3493
3494	clk_prepare_enable(hsotg->clk);
3495
3496	/* regulators */
3497
3498	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3499		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3500
3501	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3502				 hsotg->supplies);
3503	if (ret) {
3504		dev_err(dev, "failed to request supplies: %d\n", ret);
3505		goto err_clk;
3506	}
3507
3508	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3509				    hsotg->supplies);
3510
3511	if (ret) {
3512		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3513		goto err_supplies;
3514	}
3515
3516	/* usb phy enable */
3517	s3c_hsotg_phy_enable(hsotg);
3518
3519	s3c_hsotg_corereset(hsotg);
3520	s3c_hsotg_hw_cfg(hsotg);
3521	s3c_hsotg_init(hsotg);
3522
3523	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3524				dev_name(dev), hsotg);
3525	if (ret < 0) {
3526		s3c_hsotg_phy_disable(hsotg);
3527		clk_disable_unprepare(hsotg->clk);
3528		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3529				       hsotg->supplies);
3530		dev_err(dev, "cannot claim IRQ\n");
3531		goto err_clk;
3532	}
3533
3534	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3535
3536	if (hsotg->num_of_eps == 0) {
3537		dev_err(dev, "wrong number of EPs (zero)\n");
3538		ret = -EINVAL;
3539		goto err_supplies;
3540	}
3541
3542	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3543		      GFP_KERNEL);
3544	if (!eps) {
3545		ret = -ENOMEM;
3546		goto err_supplies;
3547	}
3548
3549	hsotg->eps = eps;
3550
3551	/* setup endpoint information */
3552
3553	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3554	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3555
3556	/* allocate EP0 request */
3557
3558	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3559						     GFP_KERNEL);
3560	if (!hsotg->ctrl_req) {
3561		dev_err(dev, "failed to allocate ctrl req\n");
3562		ret = -ENOMEM;
3563		goto err_ep_mem;
3564	}
3565
3566	/* initialise the endpoints now the core has been initialised */
3567	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3568		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3569
3570	/* disable power and clock */
3571	s3c_hsotg_phy_disable(hsotg);
3572
3573	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3574				    hsotg->supplies);
3575	if (ret) {
3576		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3577		goto err_ep_mem;
3578	}
3579
3580	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3581	if (ret)
3582		goto err_ep_mem;
3583
3584	s3c_hsotg_create_debug(hsotg);
3585
3586	s3c_hsotg_dump(hsotg);
3587
3588	return 0;
3589
3590err_ep_mem:
3591	kfree(eps);
3592err_supplies:
3593	s3c_hsotg_phy_disable(hsotg);
3594err_clk:
3595	clk_disable_unprepare(hsotg->clk);
3596
3597	return ret;
3598}
3599
3600/**
3601 * s3c_hsotg_remove - remove function for hsotg driver
3602 * @pdev: The platform information for the driver
3603 */
3604static int s3c_hsotg_remove(struct platform_device *pdev)
3605{
3606	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3607
3608	usb_del_gadget_udc(&hsotg->gadget);
3609
3610	s3c_hsotg_delete_debug(hsotg);
3611
3612	if (hsotg->driver) {
3613		/* should have been done already by driver model core */
3614		usb_gadget_unregister_driver(hsotg->driver);
3615	}
3616
3617	clk_disable_unprepare(hsotg->clk);
3618
3619	return 0;
3620}
3621
3622static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
3623{
3624	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3625	unsigned long flags;
3626	int ret = 0;
3627
3628	if (hsotg->driver)
3629		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3630			 hsotg->driver->driver.name);
3631
3632	spin_lock_irqsave(&hsotg->lock, flags);
3633	s3c_hsotg_disconnect(hsotg);
3634	s3c_hsotg_phy_disable(hsotg);
3635	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3636	spin_unlock_irqrestore(&hsotg->lock, flags);
3637
3638	if (hsotg->driver) {
3639		int ep;
3640		for (ep = 0; ep < hsotg->num_of_eps; ep++)
3641			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3642
3643		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3644					     hsotg->supplies);
3645		clk_disable(hsotg->clk);
3646	}
3647
3648	return ret;
3649}
3650
3651static int s3c_hsotg_resume(struct platform_device *pdev)
3652{
3653	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3654	unsigned long flags;
3655	int ret = 0;
3656
3657	if (hsotg->driver) {
3658		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3659			 hsotg->driver->driver.name);
3660
3661		clk_enable(hsotg->clk);
3662		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3663				      hsotg->supplies);
3664	}
3665
3666	spin_lock_irqsave(&hsotg->lock, flags);
3667	hsotg->last_rst = jiffies;
3668	s3c_hsotg_phy_enable(hsotg);
3669	s3c_hsotg_core_init(hsotg);
3670	spin_unlock_irqrestore(&hsotg->lock, flags);
3671
3672	return ret;
3673}
3674
3675#ifdef CONFIG_OF
3676static const struct of_device_id s3c_hsotg_of_ids[] = {
3677	{ .compatible = "samsung,s3c6400-hsotg", },
3678	{ .compatible = "snps,dwc2", },
3679	{ /* sentinel */ }
3680};
3681MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3682#endif
3683
3684static struct platform_driver s3c_hsotg_driver = {
3685	.driver		= {
3686		.name	= "s3c-hsotg",
3687		.owner	= THIS_MODULE,
3688		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3689	},
3690	.probe		= s3c_hsotg_probe,
3691	.remove		= s3c_hsotg_remove,
3692	.suspend	= s3c_hsotg_suspend,
3693	.resume		= s3c_hsotg_resume,
3694};
3695
3696module_platform_driver(s3c_hsotg_driver);
3697
3698MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3699MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3700MODULE_LICENSE("GPL");
3701MODULE_ALIAS("platform:s3c-hsotg");
3702