gadget.c revision 604eac3c0c69e98f2fd0133305f9e777418f1d3b
1/**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 *		http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 *      Ben Dooks <ben@simtec.co.uk>
8 *      http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/spinlock.h>
20#include <linux/interrupt.h>
21#include <linux/platform_device.h>
22#include <linux/dma-mapping.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/delay.h>
26#include <linux/io.h>
27#include <linux/slab.h>
28#include <linux/clk.h>
29#include <linux/regulator/consumer.h>
30#include <linux/of_platform.h>
31#include <linux/phy/phy.h>
32
33#include <linux/usb/ch9.h>
34#include <linux/usb/gadget.h>
35#include <linux/usb/phy.h>
36#include <linux/platform_data/s3c-hsotg.h>
37
38#include "core.h"
39
40/* conversion functions */
41static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
42{
43	return container_of(req, struct s3c_hsotg_req, req);
44}
45
46static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
47{
48	return container_of(ep, struct s3c_hsotg_ep, ep);
49}
50
51static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
52{
53	return container_of(gadget, struct s3c_hsotg, gadget);
54}
55
56static inline void __orr32(void __iomem *ptr, u32 val)
57{
58	writel(readl(ptr) | val, ptr);
59}
60
61static inline void __bic32(void __iomem *ptr, u32 val)
62{
63	writel(readl(ptr) & ~val, ptr);
64}
65
66/* forward decleration of functions */
67static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
68
69/**
70 * using_dma - return the DMA status of the driver.
71 * @hsotg: The driver state.
72 *
73 * Return true if we're using DMA.
74 *
75 * Currently, we have the DMA support code worked into everywhere
76 * that needs it, but the AMBA DMA implementation in the hardware can
77 * only DMA from 32bit aligned addresses. This means that gadgets such
78 * as the CDC Ethernet cannot work as they often pass packets which are
79 * not 32bit aligned.
80 *
81 * Unfortunately the choice to use DMA or not is global to the controller
82 * and seems to be only settable when the controller is being put through
83 * a core reset. This means we either need to fix the gadgets to take
84 * account of DMA alignment, or add bounce buffers (yuerk).
85 *
86 * Until this issue is sorted out, we always return 'false'.
87 */
88static inline bool using_dma(struct s3c_hsotg *hsotg)
89{
90	return false;	/* support is not complete */
91}
92
93/**
94 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
95 * @hsotg: The device state
96 * @ints: A bitmask of the interrupts to enable
97 */
98static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
99{
100	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
101	u32 new_gsintmsk;
102
103	new_gsintmsk = gsintmsk | ints;
104
105	if (new_gsintmsk != gsintmsk) {
106		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
107		writel(new_gsintmsk, hsotg->regs + GINTMSK);
108	}
109}
110
111/**
112 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
113 * @hsotg: The device state
114 * @ints: A bitmask of the interrupts to enable
115 */
116static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
117{
118	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
119	u32 new_gsintmsk;
120
121	new_gsintmsk = gsintmsk & ~ints;
122
123	if (new_gsintmsk != gsintmsk)
124		writel(new_gsintmsk, hsotg->regs + GINTMSK);
125}
126
127/**
128 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
129 * @hsotg: The device state
130 * @ep: The endpoint index
131 * @dir_in: True if direction is in.
132 * @en: The enable value, true to enable
133 *
134 * Set or clear the mask for an individual endpoint's interrupt
135 * request.
136 */
137static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
138				 unsigned int ep, unsigned int dir_in,
139				 unsigned int en)
140{
141	unsigned long flags;
142	u32 bit = 1 << ep;
143	u32 daint;
144
145	if (!dir_in)
146		bit <<= 16;
147
148	local_irq_save(flags);
149	daint = readl(hsotg->regs + DAINTMSK);
150	if (en)
151		daint |= bit;
152	else
153		daint &= ~bit;
154	writel(daint, hsotg->regs + DAINTMSK);
155	local_irq_restore(flags);
156}
157
158/**
159 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
160 * @hsotg: The device instance.
161 */
162static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
163{
164	unsigned int ep;
165	unsigned int addr;
166	unsigned int size;
167	int timeout;
168	u32 val;
169
170	/* set FIFO sizes to 2048/1024 */
171
172	writel(2048, hsotg->regs + GRXFSIZ);
173	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
174		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
175
176	/*
177	 * arange all the rest of the TX FIFOs, as some versions of this
178	 * block have overlapping default addresses. This also ensures
179	 * that if the settings have been changed, then they are set to
180	 * known values.
181	 */
182
183	/* start at the end of the GNPTXFSIZ, rounded up */
184	addr = 2048 + 1024;
185	size = 768;
186
187	/*
188	 * currently we allocate TX FIFOs for all possible endpoints,
189	 * and assume that they are all the same size.
190	 */
191
192	for (ep = 1; ep <= 15; ep++) {
193		val = addr;
194		val |= size << FIFOSIZE_DEPTH_SHIFT;
195		addr += size;
196
197		writel(val, hsotg->regs + DPTXFSIZN(ep));
198	}
199
200	/*
201	 * according to p428 of the design guide, we need to ensure that
202	 * all fifos are flushed before continuing
203	 */
204
205	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
206	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
207
208	/* wait until the fifos are both flushed */
209	timeout = 100;
210	while (1) {
211		val = readl(hsotg->regs + GRSTCTL);
212
213		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
214			break;
215
216		if (--timeout == 0) {
217			dev_err(hsotg->dev,
218				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
219				__func__, val);
220		}
221
222		udelay(1);
223	}
224
225	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
226}
227
228/**
229 * @ep: USB endpoint to allocate request for.
230 * @flags: Allocation flags
231 *
232 * Allocate a new USB request structure appropriate for the specified endpoint
233 */
234static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
235						      gfp_t flags)
236{
237	struct s3c_hsotg_req *req;
238
239	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
240	if (!req)
241		return NULL;
242
243	INIT_LIST_HEAD(&req->queue);
244
245	return &req->req;
246}
247
248/**
249 * is_ep_periodic - return true if the endpoint is in periodic mode.
250 * @hs_ep: The endpoint to query.
251 *
252 * Returns true if the endpoint is in periodic mode, meaning it is being
253 * used for an Interrupt or ISO transfer.
254 */
255static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
256{
257	return hs_ep->periodic;
258}
259
260/**
261 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
262 * @hsotg: The device state.
263 * @hs_ep: The endpoint for the request
264 * @hs_req: The request being processed.
265 *
266 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
267 * of a request to ensure the buffer is ready for access by the caller.
268 */
269static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
270				struct s3c_hsotg_ep *hs_ep,
271				struct s3c_hsotg_req *hs_req)
272{
273	struct usb_request *req = &hs_req->req;
274
275	/* ignore this if we're not moving any data */
276	if (hs_req->req.length == 0)
277		return;
278
279	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
280}
281
282/**
283 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
284 * @hsotg: The controller state.
285 * @hs_ep: The endpoint we're going to write for.
286 * @hs_req: The request to write data for.
287 *
288 * This is called when the TxFIFO has some space in it to hold a new
289 * transmission and we have something to give it. The actual setup of
290 * the data size is done elsewhere, so all we have to do is to actually
291 * write the data.
292 *
293 * The return value is zero if there is more space (or nothing was done)
294 * otherwise -ENOSPC is returned if the FIFO space was used up.
295 *
296 * This routine is only needed for PIO
297 */
298static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
299				struct s3c_hsotg_ep *hs_ep,
300				struct s3c_hsotg_req *hs_req)
301{
302	bool periodic = is_ep_periodic(hs_ep);
303	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
304	int buf_pos = hs_req->req.actual;
305	int to_write = hs_ep->size_loaded;
306	void *data;
307	int can_write;
308	int pkt_round;
309	int max_transfer;
310
311	to_write -= (buf_pos - hs_ep->last_load);
312
313	/* if there's nothing to write, get out early */
314	if (to_write == 0)
315		return 0;
316
317	if (periodic && !hsotg->dedicated_fifos) {
318		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
319		int size_left;
320		int size_done;
321
322		/*
323		 * work out how much data was loaded so we can calculate
324		 * how much data is left in the fifo.
325		 */
326
327		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
328
329		/*
330		 * if shared fifo, we cannot write anything until the
331		 * previous data has been completely sent.
332		 */
333		if (hs_ep->fifo_load != 0) {
334			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
335			return -ENOSPC;
336		}
337
338		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
339			__func__, size_left,
340			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
341
342		/* how much of the data has moved */
343		size_done = hs_ep->size_loaded - size_left;
344
345		/* how much data is left in the fifo */
346		can_write = hs_ep->fifo_load - size_done;
347		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
348			__func__, can_write);
349
350		can_write = hs_ep->fifo_size - can_write;
351		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
352			__func__, can_write);
353
354		if (can_write <= 0) {
355			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
356			return -ENOSPC;
357		}
358	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
359		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
360
361		can_write &= 0xffff;
362		can_write *= 4;
363	} else {
364		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
365			dev_dbg(hsotg->dev,
366				"%s: no queue slots available (0x%08x)\n",
367				__func__, gnptxsts);
368
369			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
370			return -ENOSPC;
371		}
372
373		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
374		can_write *= 4;	/* fifo size is in 32bit quantities. */
375	}
376
377	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
378
379	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
380		 __func__, gnptxsts, can_write, to_write, max_transfer);
381
382	/*
383	 * limit to 512 bytes of data, it seems at least on the non-periodic
384	 * FIFO, requests of >512 cause the endpoint to get stuck with a
385	 * fragment of the end of the transfer in it.
386	 */
387	if (can_write > 512 && !periodic)
388		can_write = 512;
389
390	/*
391	 * limit the write to one max-packet size worth of data, but allow
392	 * the transfer to return that it did not run out of fifo space
393	 * doing it.
394	 */
395	if (to_write > max_transfer) {
396		to_write = max_transfer;
397
398		/* it's needed only when we do not use dedicated fifos */
399		if (!hsotg->dedicated_fifos)
400			s3c_hsotg_en_gsint(hsotg,
401					   periodic ? GINTSTS_PTXFEMP :
402					   GINTSTS_NPTXFEMP);
403	}
404
405	/* see if we can write data */
406
407	if (to_write > can_write) {
408		to_write = can_write;
409		pkt_round = to_write % max_transfer;
410
411		/*
412		 * Round the write down to an
413		 * exact number of packets.
414		 *
415		 * Note, we do not currently check to see if we can ever
416		 * write a full packet or not to the FIFO.
417		 */
418
419		if (pkt_round)
420			to_write -= pkt_round;
421
422		/*
423		 * enable correct FIFO interrupt to alert us when there
424		 * is more room left.
425		 */
426
427		/* it's needed only when we do not use dedicated fifos */
428		if (!hsotg->dedicated_fifos)
429			s3c_hsotg_en_gsint(hsotg,
430					   periodic ? GINTSTS_PTXFEMP :
431					   GINTSTS_NPTXFEMP);
432	}
433
434	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
435		 to_write, hs_req->req.length, can_write, buf_pos);
436
437	if (to_write <= 0)
438		return -ENOSPC;
439
440	hs_req->req.actual = buf_pos + to_write;
441	hs_ep->total_data += to_write;
442
443	if (periodic)
444		hs_ep->fifo_load += to_write;
445
446	to_write = DIV_ROUND_UP(to_write, 4);
447	data = hs_req->req.buf + buf_pos;
448
449	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
450
451	return (to_write >= can_write) ? -ENOSPC : 0;
452}
453
454/**
455 * get_ep_limit - get the maximum data legnth for this endpoint
456 * @hs_ep: The endpoint
457 *
458 * Return the maximum data that can be queued in one go on a given endpoint
459 * so that transfers that are too long can be split.
460 */
461static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
462{
463	int index = hs_ep->index;
464	unsigned maxsize;
465	unsigned maxpkt;
466
467	if (index != 0) {
468		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
469		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
470	} else {
471		maxsize = 64+64;
472		if (hs_ep->dir_in)
473			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
474		else
475			maxpkt = 2;
476	}
477
478	/* we made the constant loading easier above by using +1 */
479	maxpkt--;
480	maxsize--;
481
482	/*
483	 * constrain by packet count if maxpkts*pktsize is greater
484	 * than the length register size.
485	 */
486
487	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
488		maxsize = maxpkt * hs_ep->ep.maxpacket;
489
490	return maxsize;
491}
492
493/**
494 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
495 * @hsotg: The controller state.
496 * @hs_ep: The endpoint to process a request for
497 * @hs_req: The request to start.
498 * @continuing: True if we are doing more for the current request.
499 *
500 * Start the given request running by setting the endpoint registers
501 * appropriately, and writing any data to the FIFOs.
502 */
503static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
504				struct s3c_hsotg_ep *hs_ep,
505				struct s3c_hsotg_req *hs_req,
506				bool continuing)
507{
508	struct usb_request *ureq = &hs_req->req;
509	int index = hs_ep->index;
510	int dir_in = hs_ep->dir_in;
511	u32 epctrl_reg;
512	u32 epsize_reg;
513	u32 epsize;
514	u32 ctrl;
515	unsigned length;
516	unsigned packets;
517	unsigned maxreq;
518
519	if (index != 0) {
520		if (hs_ep->req && !continuing) {
521			dev_err(hsotg->dev, "%s: active request\n", __func__);
522			WARN_ON(1);
523			return;
524		} else if (hs_ep->req != hs_req && continuing) {
525			dev_err(hsotg->dev,
526				"%s: continue different req\n", __func__);
527			WARN_ON(1);
528			return;
529		}
530	}
531
532	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
533	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
534
535	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
536		__func__, readl(hsotg->regs + epctrl_reg), index,
537		hs_ep->dir_in ? "in" : "out");
538
539	/* If endpoint is stalled, we will restart request later */
540	ctrl = readl(hsotg->regs + epctrl_reg);
541
542	if (ctrl & DXEPCTL_STALL) {
543		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
544		return;
545	}
546
547	length = ureq->length - ureq->actual;
548	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
549		ureq->length, ureq->actual);
550	if (0)
551		dev_dbg(hsotg->dev,
552			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
553			ureq->buf, length, &ureq->dma,
554			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
555
556	maxreq = get_ep_limit(hs_ep);
557	if (length > maxreq) {
558		int round = maxreq % hs_ep->ep.maxpacket;
559
560		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
561			__func__, length, maxreq, round);
562
563		/* round down to multiple of packets */
564		if (round)
565			maxreq -= round;
566
567		length = maxreq;
568	}
569
570	if (length)
571		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
572	else
573		packets = 1;	/* send one packet if length is zero. */
574
575	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
576		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
577		return;
578	}
579
580	if (dir_in && index != 0)
581		if (hs_ep->isochronous)
582			epsize = DXEPTSIZ_MC(packets);
583		else
584			epsize = DXEPTSIZ_MC(1);
585	else
586		epsize = 0;
587
588	if (index != 0 && ureq->zero) {
589		/*
590		 * test for the packets being exactly right for the
591		 * transfer
592		 */
593
594		if (length == (packets * hs_ep->ep.maxpacket))
595			packets++;
596	}
597
598	epsize |= DXEPTSIZ_PKTCNT(packets);
599	epsize |= DXEPTSIZ_XFERSIZE(length);
600
601	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
602		__func__, packets, length, ureq->length, epsize, epsize_reg);
603
604	/* store the request as the current one we're doing */
605	hs_ep->req = hs_req;
606
607	/* write size / packets */
608	writel(epsize, hsotg->regs + epsize_reg);
609
610	if (using_dma(hsotg) && !continuing) {
611		unsigned int dma_reg;
612
613		/*
614		 * write DMA address to control register, buffer already
615		 * synced by s3c_hsotg_ep_queue().
616		 */
617
618		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
619		writel(ureq->dma, hsotg->regs + dma_reg);
620
621		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
622			__func__, &ureq->dma, dma_reg);
623	}
624
625	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
626	ctrl |= DXEPCTL_USBACTEP;
627
628	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
629
630	/* For Setup request do not clear NAK */
631	if (hsotg->setup && index == 0)
632		hsotg->setup = 0;
633	else
634		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
635
636
637	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
638	writel(ctrl, hsotg->regs + epctrl_reg);
639
640	/*
641	 * set these, it seems that DMA support increments past the end
642	 * of the packet buffer so we need to calculate the length from
643	 * this information.
644	 */
645	hs_ep->size_loaded = length;
646	hs_ep->last_load = ureq->actual;
647
648	if (dir_in && !using_dma(hsotg)) {
649		/* set these anyway, we may need them for non-periodic in */
650		hs_ep->fifo_load = 0;
651
652		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
653	}
654
655	/*
656	 * clear the INTknTXFEmpMsk when we start request, more as a aide
657	 * to debugging to see what is going on.
658	 */
659	if (dir_in)
660		writel(DIEPMSK_INTKNTXFEMPMSK,
661		       hsotg->regs + DIEPINT(index));
662
663	/*
664	 * Note, trying to clear the NAK here causes problems with transmit
665	 * on the S3C6400 ending up with the TXFIFO becoming full.
666	 */
667
668	/* check ep is enabled */
669	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
670		dev_warn(hsotg->dev,
671			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
672			 index, readl(hsotg->regs + epctrl_reg));
673
674	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
675		__func__, readl(hsotg->regs + epctrl_reg));
676
677	/* enable ep interrupts */
678	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
679}
680
681/**
682 * s3c_hsotg_map_dma - map the DMA memory being used for the request
683 * @hsotg: The device state.
684 * @hs_ep: The endpoint the request is on.
685 * @req: The request being processed.
686 *
687 * We've been asked to queue a request, so ensure that the memory buffer
688 * is correctly setup for DMA. If we've been passed an extant DMA address
689 * then ensure the buffer has been synced to memory. If our buffer has no
690 * DMA memory, then we map the memory and mark our request to allow us to
691 * cleanup on completion.
692 */
693static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
694			     struct s3c_hsotg_ep *hs_ep,
695			     struct usb_request *req)
696{
697	struct s3c_hsotg_req *hs_req = our_req(req);
698	int ret;
699
700	/* if the length is zero, ignore the DMA data */
701	if (hs_req->req.length == 0)
702		return 0;
703
704	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
705	if (ret)
706		goto dma_error;
707
708	return 0;
709
710dma_error:
711	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
712		__func__, req->buf, req->length);
713
714	return -EIO;
715}
716
717static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
718			      gfp_t gfp_flags)
719{
720	struct s3c_hsotg_req *hs_req = our_req(req);
721	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
722	struct s3c_hsotg *hs = hs_ep->parent;
723	bool first;
724
725	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
726		ep->name, req, req->length, req->buf, req->no_interrupt,
727		req->zero, req->short_not_ok);
728
729	/* initialise status of the request */
730	INIT_LIST_HEAD(&hs_req->queue);
731	req->actual = 0;
732	req->status = -EINPROGRESS;
733
734	/* if we're using DMA, sync the buffers as necessary */
735	if (using_dma(hs)) {
736		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
737		if (ret)
738			return ret;
739	}
740
741	first = list_empty(&hs_ep->queue);
742	list_add_tail(&hs_req->queue, &hs_ep->queue);
743
744	if (first)
745		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
746
747	return 0;
748}
749
750static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
751			      gfp_t gfp_flags)
752{
753	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
754	struct s3c_hsotg *hs = hs_ep->parent;
755	unsigned long flags = 0;
756	int ret = 0;
757
758	spin_lock_irqsave(&hs->lock, flags);
759	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
760	spin_unlock_irqrestore(&hs->lock, flags);
761
762	return ret;
763}
764
765static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
766				      struct usb_request *req)
767{
768	struct s3c_hsotg_req *hs_req = our_req(req);
769
770	kfree(hs_req);
771}
772
773/**
774 * s3c_hsotg_complete_oursetup - setup completion callback
775 * @ep: The endpoint the request was on.
776 * @req: The request completed.
777 *
778 * Called on completion of any requests the driver itself
779 * submitted that need cleaning up.
780 */
781static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
782					struct usb_request *req)
783{
784	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
785	struct s3c_hsotg *hsotg = hs_ep->parent;
786
787	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
788
789	s3c_hsotg_ep_free_request(ep, req);
790}
791
792/**
793 * ep_from_windex - convert control wIndex value to endpoint
794 * @hsotg: The driver state.
795 * @windex: The control request wIndex field (in host order).
796 *
797 * Convert the given wIndex into a pointer to an driver endpoint
798 * structure, or return NULL if it is not a valid endpoint.
799 */
800static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
801					   u32 windex)
802{
803	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
804	int dir = (windex & USB_DIR_IN) ? 1 : 0;
805	int idx = windex & 0x7F;
806
807	if (windex >= 0x100)
808		return NULL;
809
810	if (idx > hsotg->num_of_eps)
811		return NULL;
812
813	if (idx && ep->dir_in != dir)
814		return NULL;
815
816	return ep;
817}
818
819/**
820 * s3c_hsotg_send_reply - send reply to control request
821 * @hsotg: The device state
822 * @ep: Endpoint 0
823 * @buff: Buffer for request
824 * @length: Length of reply.
825 *
826 * Create a request and queue it on the given endpoint. This is useful as
827 * an internal method of sending replies to certain control requests, etc.
828 */
829static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
830				struct s3c_hsotg_ep *ep,
831				void *buff,
832				int length)
833{
834	struct usb_request *req;
835	int ret;
836
837	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
838
839	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
840	hsotg->ep0_reply = req;
841	if (!req) {
842		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
843		return -ENOMEM;
844	}
845
846	req->buf = hsotg->ep0_buff;
847	req->length = length;
848	req->zero = 1; /* always do zero-length final transfer */
849	req->complete = s3c_hsotg_complete_oursetup;
850
851	if (length)
852		memcpy(req->buf, buff, length);
853	else
854		ep->sent_zlp = 1;
855
856	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
857	if (ret) {
858		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
859		return ret;
860	}
861
862	return 0;
863}
864
865/**
866 * s3c_hsotg_process_req_status - process request GET_STATUS
867 * @hsotg: The device state
868 * @ctrl: USB control request
869 */
870static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
871					struct usb_ctrlrequest *ctrl)
872{
873	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
874	struct s3c_hsotg_ep *ep;
875	__le16 reply;
876	int ret;
877
878	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
879
880	if (!ep0->dir_in) {
881		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
882		return -EINVAL;
883	}
884
885	switch (ctrl->bRequestType & USB_RECIP_MASK) {
886	case USB_RECIP_DEVICE:
887		reply = cpu_to_le16(0); /* bit 0 => self powered,
888					 * bit 1 => remote wakeup */
889		break;
890
891	case USB_RECIP_INTERFACE:
892		/* currently, the data result should be zero */
893		reply = cpu_to_le16(0);
894		break;
895
896	case USB_RECIP_ENDPOINT:
897		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
898		if (!ep)
899			return -ENOENT;
900
901		reply = cpu_to_le16(ep->halted ? 1 : 0);
902		break;
903
904	default:
905		return 0;
906	}
907
908	if (le16_to_cpu(ctrl->wLength) != 2)
909		return -EINVAL;
910
911	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
912	if (ret) {
913		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
914		return ret;
915	}
916
917	return 1;
918}
919
920static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
921
922/**
923 * get_ep_head - return the first request on the endpoint
924 * @hs_ep: The controller endpoint to get
925 *
926 * Get the first request on the endpoint.
927 */
928static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
929{
930	if (list_empty(&hs_ep->queue))
931		return NULL;
932
933	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
934}
935
936/**
937 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
938 * @hsotg: The device state
939 * @ctrl: USB control request
940 */
941static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
942					 struct usb_ctrlrequest *ctrl)
943{
944	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
945	struct s3c_hsotg_req *hs_req;
946	bool restart;
947	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
948	struct s3c_hsotg_ep *ep;
949	int ret;
950	bool halted;
951
952	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
953		__func__, set ? "SET" : "CLEAR");
954
955	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
956		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
957		if (!ep) {
958			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
959				__func__, le16_to_cpu(ctrl->wIndex));
960			return -ENOENT;
961		}
962
963		switch (le16_to_cpu(ctrl->wValue)) {
964		case USB_ENDPOINT_HALT:
965			halted = ep->halted;
966
967			s3c_hsotg_ep_sethalt(&ep->ep, set);
968
969			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
970			if (ret) {
971				dev_err(hsotg->dev,
972					"%s: failed to send reply\n", __func__);
973				return ret;
974			}
975
976			/*
977			 * we have to complete all requests for ep if it was
978			 * halted, and the halt was cleared by CLEAR_FEATURE
979			 */
980
981			if (!set && halted) {
982				/*
983				 * If we have request in progress,
984				 * then complete it
985				 */
986				if (ep->req) {
987					hs_req = ep->req;
988					ep->req = NULL;
989					list_del_init(&hs_req->queue);
990					hs_req->req.complete(&ep->ep,
991							     &hs_req->req);
992				}
993
994				/* If we have pending request, then start it */
995				restart = !list_empty(&ep->queue);
996				if (restart) {
997					hs_req = get_ep_head(ep);
998					s3c_hsotg_start_req(hsotg, ep,
999							    hs_req, false);
1000				}
1001			}
1002
1003			break;
1004
1005		default:
1006			return -ENOENT;
1007		}
1008	} else
1009		return -ENOENT;  /* currently only deal with endpoint */
1010
1011	return 1;
1012}
1013
1014static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1015static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1016
1017/**
1018 * s3c_hsotg_stall_ep0 - stall ep0
1019 * @hsotg: The device state
1020 *
1021 * Set stall for ep0 as response for setup request.
1022 */
1023static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg)
1024{
1025	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1026	u32 reg;
1027	u32 ctrl;
1028
1029	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1030	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1031
1032	/*
1033	 * DxEPCTL_Stall will be cleared by EP once it has
1034	 * taken effect, so no need to clear later.
1035	 */
1036
1037	ctrl = readl(hsotg->regs + reg);
1038	ctrl |= DXEPCTL_STALL;
1039	ctrl |= DXEPCTL_CNAK;
1040	writel(ctrl, hsotg->regs + reg);
1041
1042	dev_dbg(hsotg->dev,
1043		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1044		ctrl, reg, readl(hsotg->regs + reg));
1045
1046	 /*
1047	  * complete won't be called, so we enqueue
1048	  * setup request here
1049	  */
1050	 s3c_hsotg_enqueue_setup(hsotg);
1051}
1052
1053/**
1054 * s3c_hsotg_process_control - process a control request
1055 * @hsotg: The device state
1056 * @ctrl: The control request received
1057 *
1058 * The controller has received the SETUP phase of a control request, and
1059 * needs to work out what to do next (and whether to pass it on to the
1060 * gadget driver).
1061 */
1062static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1063				      struct usb_ctrlrequest *ctrl)
1064{
1065	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1066	int ret = 0;
1067	u32 dcfg;
1068
1069	ep0->sent_zlp = 0;
1070
1071	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1072		 ctrl->bRequest, ctrl->bRequestType,
1073		 ctrl->wValue, ctrl->wLength);
1074
1075	/*
1076	 * record the direction of the request, for later use when enquing
1077	 * packets onto EP0.
1078	 */
1079
1080	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1081	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1082
1083	/*
1084	 * if we've no data with this request, then the last part of the
1085	 * transaction is going to implicitly be IN.
1086	 */
1087	if (ctrl->wLength == 0)
1088		ep0->dir_in = 1;
1089
1090	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1091		switch (ctrl->bRequest) {
1092		case USB_REQ_SET_ADDRESS:
1093			s3c_hsotg_disconnect(hsotg);
1094			dcfg = readl(hsotg->regs + DCFG);
1095			dcfg &= ~DCFG_DEVADDR_MASK;
1096			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1097				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1098			writel(dcfg, hsotg->regs + DCFG);
1099
1100			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1101
1102			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1103			return;
1104
1105		case USB_REQ_GET_STATUS:
1106			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1107			break;
1108
1109		case USB_REQ_CLEAR_FEATURE:
1110		case USB_REQ_SET_FEATURE:
1111			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1112			break;
1113		}
1114	}
1115
1116	/* as a fallback, try delivering it to the driver to deal with */
1117
1118	if (ret == 0 && hsotg->driver) {
1119		spin_unlock(&hsotg->lock);
1120		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1121		spin_lock(&hsotg->lock);
1122		if (ret < 0)
1123			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1124	}
1125
1126	/*
1127	 * the request is either unhandlable, or is not formatted correctly
1128	 * so respond with a STALL for the status stage to indicate failure.
1129	 */
1130
1131	if (ret < 0)
1132		s3c_hsotg_stall_ep0(hsotg);
1133}
1134
1135/**
1136 * s3c_hsotg_complete_setup - completion of a setup transfer
1137 * @ep: The endpoint the request was on.
1138 * @req: The request completed.
1139 *
1140 * Called on completion of any requests the driver itself submitted for
1141 * EP0 setup packets
1142 */
1143static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1144				     struct usb_request *req)
1145{
1146	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1147	struct s3c_hsotg *hsotg = hs_ep->parent;
1148
1149	if (req->status < 0) {
1150		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1151		return;
1152	}
1153
1154	spin_lock(&hsotg->lock);
1155	if (req->actual == 0)
1156		s3c_hsotg_enqueue_setup(hsotg);
1157	else
1158		s3c_hsotg_process_control(hsotg, req->buf);
1159	spin_unlock(&hsotg->lock);
1160}
1161
1162/**
1163 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1164 * @hsotg: The device state.
1165 *
1166 * Enqueue a request on EP0 if necessary to received any SETUP packets
1167 * received from the host.
1168 */
1169static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1170{
1171	struct usb_request *req = hsotg->ctrl_req;
1172	struct s3c_hsotg_req *hs_req = our_req(req);
1173	int ret;
1174
1175	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1176
1177	req->zero = 0;
1178	req->length = 8;
1179	req->buf = hsotg->ctrl_buff;
1180	req->complete = s3c_hsotg_complete_setup;
1181
1182	if (!list_empty(&hs_req->queue)) {
1183		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1184		return;
1185	}
1186
1187	hsotg->eps[0].dir_in = 0;
1188
1189	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1190	if (ret < 0) {
1191		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1192		/*
1193		 * Don't think there's much we can do other than watch the
1194		 * driver fail.
1195		 */
1196	}
1197}
1198
1199/**
1200 * s3c_hsotg_complete_request - complete a request given to us
1201 * @hsotg: The device state.
1202 * @hs_ep: The endpoint the request was on.
1203 * @hs_req: The request to complete.
1204 * @result: The result code (0 => Ok, otherwise errno)
1205 *
1206 * The given request has finished, so call the necessary completion
1207 * if it has one and then look to see if we can start a new request
1208 * on the endpoint.
1209 *
1210 * Note, expects the ep to already be locked as appropriate.
1211 */
1212static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1213				       struct s3c_hsotg_ep *hs_ep,
1214				       struct s3c_hsotg_req *hs_req,
1215				       int result)
1216{
1217	bool restart;
1218
1219	if (!hs_req) {
1220		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1221		return;
1222	}
1223
1224	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1225		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1226
1227	/*
1228	 * only replace the status if we've not already set an error
1229	 * from a previous transaction
1230	 */
1231
1232	if (hs_req->req.status == -EINPROGRESS)
1233		hs_req->req.status = result;
1234
1235	hs_ep->req = NULL;
1236	list_del_init(&hs_req->queue);
1237
1238	if (using_dma(hsotg))
1239		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1240
1241	/*
1242	 * call the complete request with the locks off, just in case the
1243	 * request tries to queue more work for this endpoint.
1244	 */
1245
1246	if (hs_req->req.complete) {
1247		spin_unlock(&hsotg->lock);
1248		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1249		spin_lock(&hsotg->lock);
1250	}
1251
1252	/*
1253	 * Look to see if there is anything else to do. Note, the completion
1254	 * of the previous request may have caused a new request to be started
1255	 * so be careful when doing this.
1256	 */
1257
1258	if (!hs_ep->req && result >= 0) {
1259		restart = !list_empty(&hs_ep->queue);
1260		if (restart) {
1261			hs_req = get_ep_head(hs_ep);
1262			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1263		}
1264	}
1265}
1266
1267/**
1268 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1269 * @hsotg: The device state.
1270 * @ep_idx: The endpoint index for the data
1271 * @size: The size of data in the fifo, in bytes
1272 *
1273 * The FIFO status shows there is data to read from the FIFO for a given
1274 * endpoint, so sort out whether we need to read the data into a request
1275 * that has been made for that endpoint.
1276 */
1277static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1278{
1279	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1280	struct s3c_hsotg_req *hs_req = hs_ep->req;
1281	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1282	int to_read;
1283	int max_req;
1284	int read_ptr;
1285
1286
1287	if (!hs_req) {
1288		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1289		int ptr;
1290
1291		dev_warn(hsotg->dev,
1292			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1293			 __func__, size, ep_idx, epctl);
1294
1295		/* dump the data from the FIFO, we've nothing we can do */
1296		for (ptr = 0; ptr < size; ptr += 4)
1297			(void)readl(fifo);
1298
1299		return;
1300	}
1301
1302	to_read = size;
1303	read_ptr = hs_req->req.actual;
1304	max_req = hs_req->req.length - read_ptr;
1305
1306	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1307		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1308
1309	if (to_read > max_req) {
1310		/*
1311		 * more data appeared than we where willing
1312		 * to deal with in this request.
1313		 */
1314
1315		/* currently we don't deal this */
1316		WARN_ON_ONCE(1);
1317	}
1318
1319	hs_ep->total_data += to_read;
1320	hs_req->req.actual += to_read;
1321	to_read = DIV_ROUND_UP(to_read, 4);
1322
1323	/*
1324	 * note, we might over-write the buffer end by 3 bytes depending on
1325	 * alignment of the data.
1326	 */
1327	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1328}
1329
1330/**
1331 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1332 * @hsotg: The device instance
1333 * @req: The request currently on this endpoint
1334 *
1335 * Generate a zero-length IN packet request for terminating a SETUP
1336 * transaction.
1337 *
1338 * Note, since we don't write any data to the TxFIFO, then it is
1339 * currently believed that we do not need to wait for any space in
1340 * the TxFIFO.
1341 */
1342static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1343			       struct s3c_hsotg_req *req)
1344{
1345	u32 ctrl;
1346
1347	if (!req) {
1348		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1349		return;
1350	}
1351
1352	if (req->req.length == 0) {
1353		hsotg->eps[0].sent_zlp = 1;
1354		s3c_hsotg_enqueue_setup(hsotg);
1355		return;
1356	}
1357
1358	hsotg->eps[0].dir_in = 1;
1359	hsotg->eps[0].sent_zlp = 1;
1360
1361	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1362
1363	/* issue a zero-sized packet to terminate this */
1364	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1365	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1366
1367	ctrl = readl(hsotg->regs + DIEPCTL0);
1368	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1369	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1370	ctrl |= DXEPCTL_USBACTEP;
1371	writel(ctrl, hsotg->regs + DIEPCTL0);
1372}
1373
1374/**
1375 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1376 * @hsotg: The device instance
1377 * @epnum: The endpoint received from
1378 * @was_setup: Set if processing a SetupDone event.
1379 *
1380 * The RXFIFO has delivered an OutDone event, which means that the data
1381 * transfer for an OUT endpoint has been completed, either by a short
1382 * packet or by the finish of a transfer.
1383 */
1384static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1385				     int epnum, bool was_setup)
1386{
1387	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1388	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1389	struct s3c_hsotg_req *hs_req = hs_ep->req;
1390	struct usb_request *req = &hs_req->req;
1391	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1392	int result = 0;
1393
1394	if (!hs_req) {
1395		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1396		return;
1397	}
1398
1399	if (using_dma(hsotg)) {
1400		unsigned size_done;
1401
1402		/*
1403		 * Calculate the size of the transfer by checking how much
1404		 * is left in the endpoint size register and then working it
1405		 * out from the amount we loaded for the transfer.
1406		 *
1407		 * We need to do this as DMA pointers are always 32bit aligned
1408		 * so may overshoot/undershoot the transfer.
1409		 */
1410
1411		size_done = hs_ep->size_loaded - size_left;
1412		size_done += hs_ep->last_load;
1413
1414		req->actual = size_done;
1415	}
1416
1417	/* if there is more request to do, schedule new transfer */
1418	if (req->actual < req->length && size_left == 0) {
1419		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1420		return;
1421	} else if (epnum == 0) {
1422		/*
1423		 * After was_setup = 1 =>
1424		 * set CNAK for non Setup requests
1425		 */
1426		hsotg->setup = was_setup ? 0 : 1;
1427	}
1428
1429	if (req->actual < req->length && req->short_not_ok) {
1430		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1431			__func__, req->actual, req->length);
1432
1433		/*
1434		 * todo - what should we return here? there's no one else
1435		 * even bothering to check the status.
1436		 */
1437	}
1438
1439	if (epnum == 0) {
1440		/*
1441		 * Condition req->complete != s3c_hsotg_complete_setup says:
1442		 * send ZLP when we have an asynchronous request from gadget
1443		 */
1444		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1445			s3c_hsotg_send_zlp(hsotg, hs_req);
1446	}
1447
1448	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1449}
1450
1451/**
1452 * s3c_hsotg_read_frameno - read current frame number
1453 * @hsotg: The device instance
1454 *
1455 * Return the current frame number
1456 */
1457static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1458{
1459	u32 dsts;
1460
1461	dsts = readl(hsotg->regs + DSTS);
1462	dsts &= DSTS_SOFFN_MASK;
1463	dsts >>= DSTS_SOFFN_SHIFT;
1464
1465	return dsts;
1466}
1467
1468/**
1469 * s3c_hsotg_handle_rx - RX FIFO has data
1470 * @hsotg: The device instance
1471 *
1472 * The IRQ handler has detected that the RX FIFO has some data in it
1473 * that requires processing, so find out what is in there and do the
1474 * appropriate read.
1475 *
1476 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1477 * chunks, so if you have x packets received on an endpoint you'll get x
1478 * FIFO events delivered, each with a packet's worth of data in it.
1479 *
1480 * When using DMA, we should not be processing events from the RXFIFO
1481 * as the actual data should be sent to the memory directly and we turn
1482 * on the completion interrupts to get notifications of transfer completion.
1483 */
1484static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1485{
1486	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1487	u32 epnum, status, size;
1488
1489	WARN_ON(using_dma(hsotg));
1490
1491	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1492	status = grxstsr & GRXSTS_PKTSTS_MASK;
1493
1494	size = grxstsr & GRXSTS_BYTECNT_MASK;
1495	size >>= GRXSTS_BYTECNT_SHIFT;
1496
1497	if (1)
1498		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1499			__func__, grxstsr, size, epnum);
1500
1501	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1502	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1503		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1504		break;
1505
1506	case GRXSTS_PKTSTS_OUTDONE:
1507		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1508			s3c_hsotg_read_frameno(hsotg));
1509
1510		if (!using_dma(hsotg))
1511			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1512		break;
1513
1514	case GRXSTS_PKTSTS_SETUPDONE:
1515		dev_dbg(hsotg->dev,
1516			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1517			s3c_hsotg_read_frameno(hsotg),
1518			readl(hsotg->regs + DOEPCTL(0)));
1519
1520		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1521		break;
1522
1523	case GRXSTS_PKTSTS_OUTRX:
1524		s3c_hsotg_rx_data(hsotg, epnum, size);
1525		break;
1526
1527	case GRXSTS_PKTSTS_SETUPRX:
1528		dev_dbg(hsotg->dev,
1529			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1530			s3c_hsotg_read_frameno(hsotg),
1531			readl(hsotg->regs + DOEPCTL(0)));
1532
1533		s3c_hsotg_rx_data(hsotg, epnum, size);
1534		break;
1535
1536	default:
1537		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1538			 __func__, grxstsr);
1539
1540		s3c_hsotg_dump(hsotg);
1541		break;
1542	}
1543}
1544
1545/**
1546 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1547 * @mps: The maximum packet size in bytes.
1548 */
1549static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1550{
1551	switch (mps) {
1552	case 64:
1553		return D0EPCTL_MPS_64;
1554	case 32:
1555		return D0EPCTL_MPS_32;
1556	case 16:
1557		return D0EPCTL_MPS_16;
1558	case 8:
1559		return D0EPCTL_MPS_8;
1560	}
1561
1562	/* bad max packet size, warn and return invalid result */
1563	WARN_ON(1);
1564	return (u32)-1;
1565}
1566
1567/**
1568 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1569 * @hsotg: The driver state.
1570 * @ep: The index number of the endpoint
1571 * @mps: The maximum packet size in bytes
1572 *
1573 * Configure the maximum packet size for the given endpoint, updating
1574 * the hardware control registers to reflect this.
1575 */
1576static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1577				       unsigned int ep, unsigned int mps)
1578{
1579	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1580	void __iomem *regs = hsotg->regs;
1581	u32 mpsval;
1582	u32 mcval;
1583	u32 reg;
1584
1585	if (ep == 0) {
1586		/* EP0 is a special case */
1587		mpsval = s3c_hsotg_ep0_mps(mps);
1588		if (mpsval > 3)
1589			goto bad_mps;
1590		hs_ep->ep.maxpacket = mps;
1591		hs_ep->mc = 1;
1592	} else {
1593		mpsval = mps & DXEPCTL_MPS_MASK;
1594		if (mpsval > 1024)
1595			goto bad_mps;
1596		mcval = ((mps >> 11) & 0x3) + 1;
1597		hs_ep->mc = mcval;
1598		if (mcval > 3)
1599			goto bad_mps;
1600		hs_ep->ep.maxpacket = mpsval;
1601	}
1602
1603	/*
1604	 * update both the in and out endpoint controldir_ registers, even
1605	 * if one of the directions may not be in use.
1606	 */
1607
1608	reg = readl(regs + DIEPCTL(ep));
1609	reg &= ~DXEPCTL_MPS_MASK;
1610	reg |= mpsval;
1611	writel(reg, regs + DIEPCTL(ep));
1612
1613	if (ep) {
1614		reg = readl(regs + DOEPCTL(ep));
1615		reg &= ~DXEPCTL_MPS_MASK;
1616		reg |= mpsval;
1617		writel(reg, regs + DOEPCTL(ep));
1618	}
1619
1620	return;
1621
1622bad_mps:
1623	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1624}
1625
1626/**
1627 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1628 * @hsotg: The driver state
1629 * @idx: The index for the endpoint (0..15)
1630 */
1631static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1632{
1633	int timeout;
1634	int val;
1635
1636	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1637		hsotg->regs + GRSTCTL);
1638
1639	/* wait until the fifo is flushed */
1640	timeout = 100;
1641
1642	while (1) {
1643		val = readl(hsotg->regs + GRSTCTL);
1644
1645		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1646			break;
1647
1648		if (--timeout == 0) {
1649			dev_err(hsotg->dev,
1650				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1651				__func__, val);
1652			break;
1653		}
1654
1655		udelay(1);
1656	}
1657}
1658
1659/**
1660 * s3c_hsotg_trytx - check to see if anything needs transmitting
1661 * @hsotg: The driver state
1662 * @hs_ep: The driver endpoint to check.
1663 *
1664 * Check to see if there is a request that has data to send, and if so
1665 * make an attempt to write data into the FIFO.
1666 */
1667static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1668			   struct s3c_hsotg_ep *hs_ep)
1669{
1670	struct s3c_hsotg_req *hs_req = hs_ep->req;
1671
1672	if (!hs_ep->dir_in || !hs_req) {
1673		/**
1674		 * if request is not enqueued, we disable interrupts
1675		 * for endpoints, excepting ep0
1676		 */
1677		if (hs_ep->index != 0)
1678			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1679					     hs_ep->dir_in, 0);
1680		return 0;
1681	}
1682
1683	if (hs_req->req.actual < hs_req->req.length) {
1684		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1685			hs_ep->index);
1686		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1687	}
1688
1689	return 0;
1690}
1691
1692/**
1693 * s3c_hsotg_complete_in - complete IN transfer
1694 * @hsotg: The device state.
1695 * @hs_ep: The endpoint that has just completed.
1696 *
1697 * An IN transfer has been completed, update the transfer's state and then
1698 * call the relevant completion routines.
1699 */
1700static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1701				  struct s3c_hsotg_ep *hs_ep)
1702{
1703	struct s3c_hsotg_req *hs_req = hs_ep->req;
1704	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1705	int size_left, size_done;
1706
1707	if (!hs_req) {
1708		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1709		return;
1710	}
1711
1712	/* Finish ZLP handling for IN EP0 transactions */
1713	if (hsotg->eps[0].sent_zlp) {
1714		dev_dbg(hsotg->dev, "zlp packet received\n");
1715		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1716		return;
1717	}
1718
1719	/*
1720	 * Calculate the size of the transfer by checking how much is left
1721	 * in the endpoint size register and then working it out from
1722	 * the amount we loaded for the transfer.
1723	 *
1724	 * We do this even for DMA, as the transfer may have incremented
1725	 * past the end of the buffer (DMA transfers are always 32bit
1726	 * aligned).
1727	 */
1728
1729	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1730
1731	size_done = hs_ep->size_loaded - size_left;
1732	size_done += hs_ep->last_load;
1733
1734	if (hs_req->req.actual != size_done)
1735		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1736			__func__, hs_req->req.actual, size_done);
1737
1738	hs_req->req.actual = size_done;
1739	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1740		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1741
1742	/*
1743	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1744	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1745	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1746	 * inform the host that no more data is available.
1747	 * The state of req.zero member is checked to be sure that the value to
1748	 * send is smaller than wValue expected from host.
1749	 * Check req.length to NOT send another ZLP when the current one is
1750	 * under completion (the one for which this completion has been called).
1751	 */
1752	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1753	    hs_req->req.length == hs_req->req.actual &&
1754	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1755
1756		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1757		s3c_hsotg_send_zlp(hsotg, hs_req);
1758
1759		return;
1760	}
1761
1762	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1763		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1764		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1765	} else
1766		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1767}
1768
1769/**
1770 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1771 * @hsotg: The driver state
1772 * @idx: The index for the endpoint (0..15)
1773 * @dir_in: Set if this is an IN endpoint
1774 *
1775 * Process and clear any interrupt pending for an individual endpoint
1776 */
1777static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1778			    int dir_in)
1779{
1780	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1781	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1782	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1783	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1784	u32 ints;
1785	u32 ctrl;
1786
1787	ints = readl(hsotg->regs + epint_reg);
1788	ctrl = readl(hsotg->regs + epctl_reg);
1789
1790	/* Clear endpoint interrupts */
1791	writel(ints, hsotg->regs + epint_reg);
1792
1793	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1794		__func__, idx, dir_in ? "in" : "out", ints);
1795
1796	if (ints & DXEPINT_XFERCOMPL) {
1797		if (hs_ep->isochronous && hs_ep->interval == 1) {
1798			if (ctrl & DXEPCTL_EOFRNUM)
1799				ctrl |= DXEPCTL_SETEVENFR;
1800			else
1801				ctrl |= DXEPCTL_SETODDFR;
1802			writel(ctrl, hsotg->regs + epctl_reg);
1803		}
1804
1805		dev_dbg(hsotg->dev,
1806			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1807			__func__, readl(hsotg->regs + epctl_reg),
1808			readl(hsotg->regs + epsiz_reg));
1809
1810		/*
1811		 * we get OutDone from the FIFO, so we only need to look
1812		 * at completing IN requests here
1813		 */
1814		if (dir_in) {
1815			s3c_hsotg_complete_in(hsotg, hs_ep);
1816
1817			if (idx == 0 && !hs_ep->req)
1818				s3c_hsotg_enqueue_setup(hsotg);
1819		} else if (using_dma(hsotg)) {
1820			/*
1821			 * We're using DMA, we need to fire an OutDone here
1822			 * as we ignore the RXFIFO.
1823			 */
1824
1825			s3c_hsotg_handle_outdone(hsotg, idx, false);
1826		}
1827	}
1828
1829	if (ints & DXEPINT_EPDISBLD) {
1830		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1831
1832		if (dir_in) {
1833			int epctl = readl(hsotg->regs + epctl_reg);
1834
1835			s3c_hsotg_txfifo_flush(hsotg, idx);
1836
1837			if ((epctl & DXEPCTL_STALL) &&
1838				(epctl & DXEPCTL_EPTYPE_BULK)) {
1839				int dctl = readl(hsotg->regs + DCTL);
1840
1841				dctl |= DCTL_CGNPINNAK;
1842				writel(dctl, hsotg->regs + DCTL);
1843			}
1844		}
1845	}
1846
1847	if (ints & DXEPINT_AHBERR)
1848		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1849
1850	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1851		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1852
1853		if (using_dma(hsotg) && idx == 0) {
1854			/*
1855			 * this is the notification we've received a
1856			 * setup packet. In non-DMA mode we'd get this
1857			 * from the RXFIFO, instead we need to process
1858			 * the setup here.
1859			 */
1860
1861			if (dir_in)
1862				WARN_ON_ONCE(1);
1863			else
1864				s3c_hsotg_handle_outdone(hsotg, 0, true);
1865		}
1866	}
1867
1868	if (ints & DXEPINT_BACK2BACKSETUP)
1869		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1870
1871	if (dir_in && !hs_ep->isochronous) {
1872		/* not sure if this is important, but we'll clear it anyway */
1873		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1874			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1875				__func__, idx);
1876		}
1877
1878		/* this probably means something bad is happening */
1879		if (ints & DIEPMSK_INTKNEPMISMSK) {
1880			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1881				 __func__, idx);
1882		}
1883
1884		/* FIFO has space or is empty (see GAHBCFG) */
1885		if (hsotg->dedicated_fifos &&
1886		    ints & DIEPMSK_TXFIFOEMPTY) {
1887			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1888				__func__, idx);
1889			if (!using_dma(hsotg))
1890				s3c_hsotg_trytx(hsotg, hs_ep);
1891		}
1892	}
1893}
1894
1895/**
1896 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1897 * @hsotg: The device state.
1898 *
1899 * Handle updating the device settings after the enumeration phase has
1900 * been completed.
1901 */
1902static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1903{
1904	u32 dsts = readl(hsotg->regs + DSTS);
1905	int ep0_mps = 0, ep_mps = 8;
1906
1907	/*
1908	 * This should signal the finish of the enumeration phase
1909	 * of the USB handshaking, so we should now know what rate
1910	 * we connected at.
1911	 */
1912
1913	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1914
1915	/*
1916	 * note, since we're limited by the size of transfer on EP0, and
1917	 * it seems IN transfers must be a even number of packets we do
1918	 * not advertise a 64byte MPS on EP0.
1919	 */
1920
1921	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1922	switch (dsts & DSTS_ENUMSPD_MASK) {
1923	case DSTS_ENUMSPD_FS:
1924	case DSTS_ENUMSPD_FS48:
1925		hsotg->gadget.speed = USB_SPEED_FULL;
1926		ep0_mps = EP0_MPS_LIMIT;
1927		ep_mps = 1023;
1928		break;
1929
1930	case DSTS_ENUMSPD_HS:
1931		hsotg->gadget.speed = USB_SPEED_HIGH;
1932		ep0_mps = EP0_MPS_LIMIT;
1933		ep_mps = 1024;
1934		break;
1935
1936	case DSTS_ENUMSPD_LS:
1937		hsotg->gadget.speed = USB_SPEED_LOW;
1938		/*
1939		 * note, we don't actually support LS in this driver at the
1940		 * moment, and the documentation seems to imply that it isn't
1941		 * supported by the PHYs on some of the devices.
1942		 */
1943		break;
1944	}
1945	dev_info(hsotg->dev, "new device is %s\n",
1946		 usb_speed_string(hsotg->gadget.speed));
1947
1948	/*
1949	 * we should now know the maximum packet size for an
1950	 * endpoint, so set the endpoints to a default value.
1951	 */
1952
1953	if (ep0_mps) {
1954		int i;
1955		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1956		for (i = 1; i < hsotg->num_of_eps; i++)
1957			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1958	}
1959
1960	/* ensure after enumeration our EP0 is active */
1961
1962	s3c_hsotg_enqueue_setup(hsotg);
1963
1964	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1965		readl(hsotg->regs + DIEPCTL0),
1966		readl(hsotg->regs + DOEPCTL0));
1967}
1968
1969/**
1970 * kill_all_requests - remove all requests from the endpoint's queue
1971 * @hsotg: The device state.
1972 * @ep: The endpoint the requests may be on.
1973 * @result: The result code to use.
1974 * @force: Force removal of any current requests
1975 *
1976 * Go through the requests on the given endpoint and mark them
1977 * completed with the given result code.
1978 */
1979static void kill_all_requests(struct s3c_hsotg *hsotg,
1980			      struct s3c_hsotg_ep *ep,
1981			      int result, bool force)
1982{
1983	struct s3c_hsotg_req *req, *treq;
1984
1985	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1986		/*
1987		 * currently, we can't do much about an already
1988		 * running request on an in endpoint
1989		 */
1990
1991		if (ep->req == req && ep->dir_in && !force)
1992			continue;
1993
1994		s3c_hsotg_complete_request(hsotg, ep, req,
1995					   result);
1996	}
1997	if (hsotg->dedicated_fifos)
1998		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
1999			s3c_hsotg_txfifo_flush(hsotg, ep->index);
2000}
2001
2002/**
2003 * s3c_hsotg_disconnect - disconnect service
2004 * @hsotg: The device state.
2005 *
2006 * The device has been disconnected. Remove all current
2007 * transactions and signal the gadget driver that this
2008 * has happened.
2009 */
2010static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2011{
2012	unsigned ep;
2013
2014	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2015		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2016
2017	call_gadget(hsotg, disconnect);
2018}
2019
2020/**
2021 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2022 * @hsotg: The device state:
2023 * @periodic: True if this is a periodic FIFO interrupt
2024 */
2025static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2026{
2027	struct s3c_hsotg_ep *ep;
2028	int epno, ret;
2029
2030	/* look through for any more data to transmit */
2031
2032	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2033		ep = &hsotg->eps[epno];
2034
2035		if (!ep->dir_in)
2036			continue;
2037
2038		if ((periodic && !ep->periodic) ||
2039		    (!periodic && ep->periodic))
2040			continue;
2041
2042		ret = s3c_hsotg_trytx(hsotg, ep);
2043		if (ret < 0)
2044			break;
2045	}
2046}
2047
2048/* IRQ flags which will trigger a retry around the IRQ loop */
2049#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2050			GINTSTS_PTXFEMP |  \
2051			GINTSTS_RXFLVL)
2052
2053/**
2054 * s3c_hsotg_corereset - issue softreset to the core
2055 * @hsotg: The device state
2056 *
2057 * Issue a soft reset to the core, and await the core finishing it.
2058 */
2059static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2060{
2061	int timeout;
2062	u32 grstctl;
2063
2064	dev_dbg(hsotg->dev, "resetting core\n");
2065
2066	/* issue soft reset */
2067	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2068
2069	timeout = 10000;
2070	do {
2071		grstctl = readl(hsotg->regs + GRSTCTL);
2072	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2073
2074	if (grstctl & GRSTCTL_CSFTRST) {
2075		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2076		return -EINVAL;
2077	}
2078
2079	timeout = 10000;
2080
2081	while (1) {
2082		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2083
2084		if (timeout-- < 0) {
2085			dev_info(hsotg->dev,
2086				 "%s: reset failed, GRSTCTL=%08x\n",
2087				 __func__, grstctl);
2088			return -ETIMEDOUT;
2089		}
2090
2091		if (!(grstctl & GRSTCTL_AHBIDLE))
2092			continue;
2093
2094		break;		/* reset done */
2095	}
2096
2097	dev_dbg(hsotg->dev, "reset successful\n");
2098	return 0;
2099}
2100
2101/**
2102 * s3c_hsotg_core_init - issue softreset to the core
2103 * @hsotg: The device state
2104 *
2105 * Issue a soft reset to the core, and await the core finishing it.
2106 */
2107static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2108{
2109	s3c_hsotg_corereset(hsotg);
2110
2111	/*
2112	 * we must now enable ep0 ready for host detection and then
2113	 * set configuration.
2114	 */
2115
2116	/* set the PLL on, remove the HNP/SRP and set the PHY */
2117	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2118	       (0x5 << 10), hsotg->regs + GUSBCFG);
2119
2120	s3c_hsotg_init_fifo(hsotg);
2121
2122	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2123
2124	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2125
2126	/* Clear any pending OTG interrupts */
2127	writel(0xffffffff, hsotg->regs + GOTGINT);
2128
2129	/* Clear any pending interrupts */
2130	writel(0xffffffff, hsotg->regs + GINTSTS);
2131
2132	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2133		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2134		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2135		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2136		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2137		hsotg->regs + GINTMSK);
2138
2139	if (using_dma(hsotg))
2140		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2141		       GAHBCFG_HBSTLEN_INCR4,
2142		       hsotg->regs + GAHBCFG);
2143	else
2144		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2145						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2146		       GAHBCFG_GLBL_INTR_EN,
2147		       hsotg->regs + GAHBCFG);
2148
2149	/*
2150	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2151	 * when we have no data to transfer. Otherwise we get being flooded by
2152	 * interrupts.
2153	 */
2154
2155	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2156		DIEPMSK_INTKNTXFEMPMSK : 0) |
2157		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2158		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2159		DIEPMSK_INTKNEPMISMSK,
2160		hsotg->regs + DIEPMSK);
2161
2162	/*
2163	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2164	 * DMA mode we may need this.
2165	 */
2166	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2167				    DIEPMSK_TIMEOUTMSK) : 0) |
2168		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2169		DOEPMSK_SETUPMSK,
2170		hsotg->regs + DOEPMSK);
2171
2172	writel(0, hsotg->regs + DAINTMSK);
2173
2174	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2175		readl(hsotg->regs + DIEPCTL0),
2176		readl(hsotg->regs + DOEPCTL0));
2177
2178	/* enable in and out endpoint interrupts */
2179	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2180
2181	/*
2182	 * Enable the RXFIFO when in slave mode, as this is how we collect
2183	 * the data. In DMA mode, we get events from the FIFO but also
2184	 * things we cannot process, so do not use it.
2185	 */
2186	if (!using_dma(hsotg))
2187		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2188
2189	/* Enable interrupts for EP0 in and out */
2190	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2191	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2192
2193	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2194	udelay(10);  /* see openiboot */
2195	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2196
2197	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2198
2199	/*
2200	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2201	 * writing to the EPCTL register..
2202	 */
2203
2204	/* set to read 1 8byte packet */
2205	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2206	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2207
2208	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2209	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2210	       DXEPCTL_USBACTEP,
2211	       hsotg->regs + DOEPCTL0);
2212
2213	/* enable, but don't activate EP0in */
2214	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2215	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2216
2217	s3c_hsotg_enqueue_setup(hsotg);
2218
2219	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2220		readl(hsotg->regs + DIEPCTL0),
2221		readl(hsotg->regs + DOEPCTL0));
2222
2223	/* clear global NAKs */
2224	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2225	       hsotg->regs + DCTL);
2226
2227	/* must be at-least 3ms to allow bus to see disconnect */
2228	mdelay(3);
2229
2230	/* remove the soft-disconnect and let's go */
2231	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2232}
2233
2234/**
2235 * s3c_hsotg_irq - handle device interrupt
2236 * @irq: The IRQ number triggered
2237 * @pw: The pw value when registered the handler.
2238 */
2239static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2240{
2241	struct s3c_hsotg *hsotg = pw;
2242	int retry_count = 8;
2243	u32 gintsts;
2244	u32 gintmsk;
2245
2246	spin_lock(&hsotg->lock);
2247irq_retry:
2248	gintsts = readl(hsotg->regs + GINTSTS);
2249	gintmsk = readl(hsotg->regs + GINTMSK);
2250
2251	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2252		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2253
2254	gintsts &= gintmsk;
2255
2256	if (gintsts & GINTSTS_OTGINT) {
2257		u32 otgint = readl(hsotg->regs + GOTGINT);
2258
2259		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2260
2261		writel(otgint, hsotg->regs + GOTGINT);
2262	}
2263
2264	if (gintsts & GINTSTS_SESSREQINT) {
2265		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2266		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2267	}
2268
2269	if (gintsts & GINTSTS_ENUMDONE) {
2270		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2271
2272		s3c_hsotg_irq_enumdone(hsotg);
2273	}
2274
2275	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2276		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2277			readl(hsotg->regs + DSTS),
2278			readl(hsotg->regs + GOTGCTL));
2279
2280		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2281	}
2282
2283	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2284		u32 daint = readl(hsotg->regs + DAINT);
2285		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2286		u32 daint_out, daint_in;
2287		int ep;
2288
2289		daint &= daintmsk;
2290		daint_out = daint >> DAINT_OUTEP_SHIFT;
2291		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2292
2293		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2294
2295		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2296			if (daint_out & 1)
2297				s3c_hsotg_epint(hsotg, ep, 0);
2298		}
2299
2300		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2301			if (daint_in & 1)
2302				s3c_hsotg_epint(hsotg, ep, 1);
2303		}
2304	}
2305
2306	if (gintsts & GINTSTS_USBRST) {
2307
2308		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2309
2310		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2311		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2312			readl(hsotg->regs + GNPTXSTS));
2313
2314		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2315
2316		if (usb_status & GOTGCTL_BSESVLD) {
2317			if (time_after(jiffies, hsotg->last_rst +
2318				       msecs_to_jiffies(200))) {
2319
2320				kill_all_requests(hsotg, &hsotg->eps[0],
2321							  -ECONNRESET, true);
2322
2323				s3c_hsotg_core_init(hsotg);
2324				hsotg->last_rst = jiffies;
2325			}
2326		}
2327	}
2328
2329	/* check both FIFOs */
2330
2331	if (gintsts & GINTSTS_NPTXFEMP) {
2332		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2333
2334		/*
2335		 * Disable the interrupt to stop it happening again
2336		 * unless one of these endpoint routines decides that
2337		 * it needs re-enabling
2338		 */
2339
2340		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2341		s3c_hsotg_irq_fifoempty(hsotg, false);
2342	}
2343
2344	if (gintsts & GINTSTS_PTXFEMP) {
2345		dev_dbg(hsotg->dev, "PTxFEmp\n");
2346
2347		/* See note in GINTSTS_NPTxFEmp */
2348
2349		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2350		s3c_hsotg_irq_fifoempty(hsotg, true);
2351	}
2352
2353	if (gintsts & GINTSTS_RXFLVL) {
2354		/*
2355		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2356		 * we need to retry s3c_hsotg_handle_rx if this is still
2357		 * set.
2358		 */
2359
2360		s3c_hsotg_handle_rx(hsotg);
2361	}
2362
2363	if (gintsts & GINTSTS_MODEMIS) {
2364		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2365		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2366	}
2367
2368	if (gintsts & GINTSTS_USBSUSP) {
2369		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2370		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2371
2372		call_gadget(hsotg, suspend);
2373	}
2374
2375	if (gintsts & GINTSTS_WKUPINT) {
2376		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2377		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2378
2379		call_gadget(hsotg, resume);
2380	}
2381
2382	if (gintsts & GINTSTS_ERLYSUSP) {
2383		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2384		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2385	}
2386
2387	/*
2388	 * these next two seem to crop-up occasionally causing the core
2389	 * to shutdown the USB transfer, so try clearing them and logging
2390	 * the occurrence.
2391	 */
2392
2393	if (gintsts & GINTSTS_GOUTNAKEFF) {
2394		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2395
2396		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2397
2398		s3c_hsotg_dump(hsotg);
2399	}
2400
2401	if (gintsts & GINTSTS_GINNAKEFF) {
2402		dev_info(hsotg->dev, "GINNakEff triggered\n");
2403
2404		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2405
2406		s3c_hsotg_dump(hsotg);
2407	}
2408
2409	/*
2410	 * if we've had fifo events, we should try and go around the
2411	 * loop again to see if there's any point in returning yet.
2412	 */
2413
2414	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2415			goto irq_retry;
2416
2417	spin_unlock(&hsotg->lock);
2418
2419	return IRQ_HANDLED;
2420}
2421
2422/**
2423 * s3c_hsotg_ep_enable - enable the given endpoint
2424 * @ep: The USB endpint to configure
2425 * @desc: The USB endpoint descriptor to configure with.
2426 *
2427 * This is called from the USB gadget code's usb_ep_enable().
2428 */
2429static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2430			       const struct usb_endpoint_descriptor *desc)
2431{
2432	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2433	struct s3c_hsotg *hsotg = hs_ep->parent;
2434	unsigned long flags;
2435	int index = hs_ep->index;
2436	u32 epctrl_reg;
2437	u32 epctrl;
2438	u32 mps;
2439	int dir_in;
2440	int ret = 0;
2441
2442	dev_dbg(hsotg->dev,
2443		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2444		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2445		desc->wMaxPacketSize, desc->bInterval);
2446
2447	/* not to be called for EP0 */
2448	WARN_ON(index == 0);
2449
2450	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2451	if (dir_in != hs_ep->dir_in) {
2452		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2453		return -EINVAL;
2454	}
2455
2456	mps = usb_endpoint_maxp(desc);
2457
2458	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2459
2460	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2461	epctrl = readl(hsotg->regs + epctrl_reg);
2462
2463	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2464		__func__, epctrl, epctrl_reg);
2465
2466	spin_lock_irqsave(&hsotg->lock, flags);
2467
2468	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2469	epctrl |= DXEPCTL_MPS(mps);
2470
2471	/*
2472	 * mark the endpoint as active, otherwise the core may ignore
2473	 * transactions entirely for this endpoint
2474	 */
2475	epctrl |= DXEPCTL_USBACTEP;
2476
2477	/*
2478	 * set the NAK status on the endpoint, otherwise we might try and
2479	 * do something with data that we've yet got a request to process
2480	 * since the RXFIFO will take data for an endpoint even if the
2481	 * size register hasn't been set.
2482	 */
2483
2484	epctrl |= DXEPCTL_SNAK;
2485
2486	/* update the endpoint state */
2487	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2488
2489	/* default, set to non-periodic */
2490	hs_ep->isochronous = 0;
2491	hs_ep->periodic = 0;
2492	hs_ep->halted = 0;
2493	hs_ep->interval = desc->bInterval;
2494
2495	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2496		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2497
2498	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2499	case USB_ENDPOINT_XFER_ISOC:
2500		epctrl |= DXEPCTL_EPTYPE_ISO;
2501		epctrl |= DXEPCTL_SETEVENFR;
2502		hs_ep->isochronous = 1;
2503		if (dir_in)
2504			hs_ep->periodic = 1;
2505		break;
2506
2507	case USB_ENDPOINT_XFER_BULK:
2508		epctrl |= DXEPCTL_EPTYPE_BULK;
2509		break;
2510
2511	case USB_ENDPOINT_XFER_INT:
2512		if (dir_in) {
2513			/*
2514			 * Allocate our TxFNum by simply using the index
2515			 * of the endpoint for the moment. We could do
2516			 * something better if the host indicates how
2517			 * many FIFOs we are expecting to use.
2518			 */
2519
2520			hs_ep->periodic = 1;
2521			epctrl |= DXEPCTL_TXFNUM(index);
2522		}
2523
2524		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2525		break;
2526
2527	case USB_ENDPOINT_XFER_CONTROL:
2528		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2529		break;
2530	}
2531
2532	/*
2533	 * if the hardware has dedicated fifos, we must give each IN EP
2534	 * a unique tx-fifo even if it is non-periodic.
2535	 */
2536	if (dir_in && hsotg->dedicated_fifos)
2537		epctrl |= DXEPCTL_TXFNUM(index);
2538
2539	/* for non control endpoints, set PID to D0 */
2540	if (index)
2541		epctrl |= DXEPCTL_SETD0PID;
2542
2543	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2544		__func__, epctrl);
2545
2546	writel(epctrl, hsotg->regs + epctrl_reg);
2547	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2548		__func__, readl(hsotg->regs + epctrl_reg));
2549
2550	/* enable the endpoint interrupt */
2551	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2552
2553	spin_unlock_irqrestore(&hsotg->lock, flags);
2554	return ret;
2555}
2556
2557/**
2558 * s3c_hsotg_ep_disable - disable given endpoint
2559 * @ep: The endpoint to disable.
2560 */
2561static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2562{
2563	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2564	struct s3c_hsotg *hsotg = hs_ep->parent;
2565	int dir_in = hs_ep->dir_in;
2566	int index = hs_ep->index;
2567	unsigned long flags;
2568	u32 epctrl_reg;
2569	u32 ctrl;
2570
2571	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2572
2573	if (ep == &hsotg->eps[0].ep) {
2574		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2575		return -EINVAL;
2576	}
2577
2578	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2579
2580	spin_lock_irqsave(&hsotg->lock, flags);
2581	/* terminate all requests with shutdown */
2582	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2583
2584
2585	ctrl = readl(hsotg->regs + epctrl_reg);
2586	ctrl &= ~DXEPCTL_EPENA;
2587	ctrl &= ~DXEPCTL_USBACTEP;
2588	ctrl |= DXEPCTL_SNAK;
2589
2590	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2591	writel(ctrl, hsotg->regs + epctrl_reg);
2592
2593	/* disable endpoint interrupts */
2594	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2595
2596	spin_unlock_irqrestore(&hsotg->lock, flags);
2597	return 0;
2598}
2599
2600/**
2601 * on_list - check request is on the given endpoint
2602 * @ep: The endpoint to check.
2603 * @test: The request to test if it is on the endpoint.
2604 */
2605static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2606{
2607	struct s3c_hsotg_req *req, *treq;
2608
2609	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2610		if (req == test)
2611			return true;
2612	}
2613
2614	return false;
2615}
2616
2617/**
2618 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2619 * @ep: The endpoint to dequeue.
2620 * @req: The request to be removed from a queue.
2621 */
2622static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2623{
2624	struct s3c_hsotg_req *hs_req = our_req(req);
2625	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2626	struct s3c_hsotg *hs = hs_ep->parent;
2627	unsigned long flags;
2628
2629	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2630
2631	spin_lock_irqsave(&hs->lock, flags);
2632
2633	if (!on_list(hs_ep, hs_req)) {
2634		spin_unlock_irqrestore(&hs->lock, flags);
2635		return -EINVAL;
2636	}
2637
2638	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2639	spin_unlock_irqrestore(&hs->lock, flags);
2640
2641	return 0;
2642}
2643
2644/**
2645 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2646 * @ep: The endpoint to set halt.
2647 * @value: Set or unset the halt.
2648 */
2649static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2650{
2651	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2652	struct s3c_hsotg *hs = hs_ep->parent;
2653	int index = hs_ep->index;
2654	u32 epreg;
2655	u32 epctl;
2656	u32 xfertype;
2657
2658	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2659
2660	if (index == 0) {
2661		if (value)
2662			s3c_hsotg_stall_ep0(hs);
2663		else
2664			dev_warn(hs->dev,
2665				 "%s: can't clear halt on ep0\n", __func__);
2666		return 0;
2667	}
2668
2669	/* write both IN and OUT control registers */
2670
2671	epreg = DIEPCTL(index);
2672	epctl = readl(hs->regs + epreg);
2673
2674	if (value) {
2675		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2676		if (epctl & DXEPCTL_EPENA)
2677			epctl |= DXEPCTL_EPDIS;
2678	} else {
2679		epctl &= ~DXEPCTL_STALL;
2680		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2681		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2682			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2683				epctl |= DXEPCTL_SETD0PID;
2684	}
2685
2686	writel(epctl, hs->regs + epreg);
2687
2688	epreg = DOEPCTL(index);
2689	epctl = readl(hs->regs + epreg);
2690
2691	if (value)
2692		epctl |= DXEPCTL_STALL;
2693	else {
2694		epctl &= ~DXEPCTL_STALL;
2695		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2696		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2697			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2698				epctl |= DXEPCTL_SETD0PID;
2699	}
2700
2701	writel(epctl, hs->regs + epreg);
2702
2703	hs_ep->halted = value;
2704
2705	return 0;
2706}
2707
2708/**
2709 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2710 * @ep: The endpoint to set halt.
2711 * @value: Set or unset the halt.
2712 */
2713static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2714{
2715	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2716	struct s3c_hsotg *hs = hs_ep->parent;
2717	unsigned long flags = 0;
2718	int ret = 0;
2719
2720	spin_lock_irqsave(&hs->lock, flags);
2721	ret = s3c_hsotg_ep_sethalt(ep, value);
2722	spin_unlock_irqrestore(&hs->lock, flags);
2723
2724	return ret;
2725}
2726
2727static struct usb_ep_ops s3c_hsotg_ep_ops = {
2728	.enable		= s3c_hsotg_ep_enable,
2729	.disable	= s3c_hsotg_ep_disable,
2730	.alloc_request	= s3c_hsotg_ep_alloc_request,
2731	.free_request	= s3c_hsotg_ep_free_request,
2732	.queue		= s3c_hsotg_ep_queue_lock,
2733	.dequeue	= s3c_hsotg_ep_dequeue,
2734	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2735	/* note, don't believe we have any call for the fifo routines */
2736};
2737
2738/**
2739 * s3c_hsotg_phy_enable - enable platform phy dev
2740 * @hsotg: The driver state
2741 *
2742 * A wrapper for platform code responsible for controlling
2743 * low-level USB code
2744 */
2745static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2746{
2747	struct platform_device *pdev = to_platform_device(hsotg->dev);
2748
2749	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2750
2751	if (hsotg->uphy)
2752		usb_phy_init(hsotg->uphy);
2753	else if (hsotg->plat && hsotg->plat->phy_init)
2754		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2755	else {
2756		phy_init(hsotg->phy);
2757		phy_power_on(hsotg->phy);
2758	}
2759}
2760
2761/**
2762 * s3c_hsotg_phy_disable - disable platform phy dev
2763 * @hsotg: The driver state
2764 *
2765 * A wrapper for platform code responsible for controlling
2766 * low-level USB code
2767 */
2768static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2769{
2770	struct platform_device *pdev = to_platform_device(hsotg->dev);
2771
2772	if (hsotg->uphy)
2773		usb_phy_shutdown(hsotg->uphy);
2774	else if (hsotg->plat && hsotg->plat->phy_exit)
2775		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2776	else {
2777		phy_power_off(hsotg->phy);
2778		phy_exit(hsotg->phy);
2779	}
2780}
2781
2782/**
2783 * s3c_hsotg_init - initalize the usb core
2784 * @hsotg: The driver state
2785 */
2786static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2787{
2788	/* unmask subset of endpoint interrupts */
2789
2790	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2791		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2792		hsotg->regs + DIEPMSK);
2793
2794	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2795		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2796		hsotg->regs + DOEPMSK);
2797
2798	writel(0, hsotg->regs + DAINTMSK);
2799
2800	/* Be in disconnected state until gadget is registered */
2801	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2802
2803	if (0) {
2804		/* post global nak until we're ready */
2805		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2806		       hsotg->regs + DCTL);
2807	}
2808
2809	/* setup fifos */
2810
2811	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2812		readl(hsotg->regs + GRXFSIZ),
2813		readl(hsotg->regs + GNPTXFSIZ));
2814
2815	s3c_hsotg_init_fifo(hsotg);
2816
2817	/* set the PLL on, remove the HNP/SRP and set the PHY */
2818	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2819	       hsotg->regs + GUSBCFG);
2820
2821	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2822	       hsotg->regs + GAHBCFG);
2823}
2824
2825/**
2826 * s3c_hsotg_udc_start - prepare the udc for work
2827 * @gadget: The usb gadget state
2828 * @driver: The usb gadget driver
2829 *
2830 * Perform initialization to prepare udc device and driver
2831 * to work.
2832 */
2833static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2834			   struct usb_gadget_driver *driver)
2835{
2836	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2837	int ret;
2838
2839	if (!hsotg) {
2840		pr_err("%s: called with no device\n", __func__);
2841		return -ENODEV;
2842	}
2843
2844	if (!driver) {
2845		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2846		return -EINVAL;
2847	}
2848
2849	if (driver->max_speed < USB_SPEED_FULL)
2850		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2851
2852	if (!driver->setup) {
2853		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2854		return -EINVAL;
2855	}
2856
2857	WARN_ON(hsotg->driver);
2858
2859	driver->driver.bus = NULL;
2860	hsotg->driver = driver;
2861	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2862	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2863
2864	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2865				    hsotg->supplies);
2866	if (ret) {
2867		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2868		goto err;
2869	}
2870
2871	hsotg->last_rst = jiffies;
2872	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2873	return 0;
2874
2875err:
2876	hsotg->driver = NULL;
2877	return ret;
2878}
2879
2880/**
2881 * s3c_hsotg_udc_stop - stop the udc
2882 * @gadget: The usb gadget state
2883 * @driver: The usb gadget driver
2884 *
2885 * Stop udc hw block and stay tunned for future transmissions
2886 */
2887static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2888			  struct usb_gadget_driver *driver)
2889{
2890	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2891	unsigned long flags = 0;
2892	int ep;
2893
2894	if (!hsotg)
2895		return -ENODEV;
2896
2897	/* all endpoints should be shutdown */
2898	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2899		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2900
2901	spin_lock_irqsave(&hsotg->lock, flags);
2902
2903	if (!driver)
2904		hsotg->driver = NULL;
2905
2906	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2907
2908	spin_unlock_irqrestore(&hsotg->lock, flags);
2909
2910	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2911
2912	return 0;
2913}
2914
2915/**
2916 * s3c_hsotg_gadget_getframe - read the frame number
2917 * @gadget: The usb gadget state
2918 *
2919 * Read the {micro} frame number
2920 */
2921static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2922{
2923	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2924}
2925
2926/**
2927 * s3c_hsotg_pullup - connect/disconnect the USB PHY
2928 * @gadget: The usb gadget state
2929 * @is_on: Current state of the USB PHY
2930 *
2931 * Connect/Disconnect the USB PHY pullup
2932 */
2933static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2934{
2935	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2936	unsigned long flags = 0;
2937
2938	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
2939
2940	spin_lock_irqsave(&hsotg->lock, flags);
2941	if (is_on) {
2942		s3c_hsotg_phy_enable(hsotg);
2943		s3c_hsotg_core_init(hsotg);
2944	} else {
2945		s3c_hsotg_phy_disable(hsotg);
2946	}
2947
2948	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2949	spin_unlock_irqrestore(&hsotg->lock, flags);
2950
2951	return 0;
2952}
2953
2954static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2955	.get_frame	= s3c_hsotg_gadget_getframe,
2956	.udc_start		= s3c_hsotg_udc_start,
2957	.udc_stop		= s3c_hsotg_udc_stop,
2958	.pullup                 = s3c_hsotg_pullup,
2959};
2960
2961/**
2962 * s3c_hsotg_initep - initialise a single endpoint
2963 * @hsotg: The device state.
2964 * @hs_ep: The endpoint to be initialised.
2965 * @epnum: The endpoint number
2966 *
2967 * Initialise the given endpoint (as part of the probe and device state
2968 * creation) to give to the gadget driver. Setup the endpoint name, any
2969 * direction information and other state that may be required.
2970 */
2971static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2972				       struct s3c_hsotg_ep *hs_ep,
2973				       int epnum)
2974{
2975	u32 ptxfifo;
2976	char *dir;
2977
2978	if (epnum == 0)
2979		dir = "";
2980	else if ((epnum % 2) == 0) {
2981		dir = "out";
2982	} else {
2983		dir = "in";
2984		hs_ep->dir_in = 1;
2985	}
2986
2987	hs_ep->index = epnum;
2988
2989	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2990
2991	INIT_LIST_HEAD(&hs_ep->queue);
2992	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2993
2994	/* add to the list of endpoints known by the gadget driver */
2995	if (epnum)
2996		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2997
2998	hs_ep->parent = hsotg;
2999	hs_ep->ep.name = hs_ep->name;
3000	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3001	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3002
3003	/*
3004	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3005	 * an OUT endpoint, we may as well do this if in future the
3006	 * code is changed to make each endpoint's direction changeable.
3007	 */
3008
3009	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
3010	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3011
3012	/*
3013	 * if we're using dma, we need to set the next-endpoint pointer
3014	 * to be something valid.
3015	 */
3016
3017	if (using_dma(hsotg)) {
3018		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3019		writel(next, hsotg->regs + DIEPCTL(epnum));
3020		writel(next, hsotg->regs + DOEPCTL(epnum));
3021	}
3022}
3023
3024/**
3025 * s3c_hsotg_hw_cfg - read HW configuration registers
3026 * @param: The device state
3027 *
3028 * Read the USB core HW configuration registers
3029 */
3030static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3031{
3032	u32 cfg2, cfg4;
3033	/* check hardware configuration */
3034
3035	cfg2 = readl(hsotg->regs + 0x48);
3036	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3037
3038	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3039
3040	cfg4 = readl(hsotg->regs + 0x50);
3041	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3042
3043	dev_info(hsotg->dev, "%s fifos\n",
3044		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3045}
3046
3047/**
3048 * s3c_hsotg_dump - dump state of the udc
3049 * @param: The device state
3050 */
3051static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3052{
3053#ifdef DEBUG
3054	struct device *dev = hsotg->dev;
3055	void __iomem *regs = hsotg->regs;
3056	u32 val;
3057	int idx;
3058
3059	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3060		 readl(regs + DCFG), readl(regs + DCTL),
3061		 readl(regs + DIEPMSK));
3062
3063	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3064		 readl(regs + GAHBCFG), readl(regs + 0x44));
3065
3066	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3067		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3068
3069	/* show periodic fifo settings */
3070
3071	for (idx = 1; idx <= 15; idx++) {
3072		val = readl(regs + DPTXFSIZN(idx));
3073		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3074			 val >> FIFOSIZE_DEPTH_SHIFT,
3075			 val & FIFOSIZE_STARTADDR_MASK);
3076	}
3077
3078	for (idx = 0; idx < 15; idx++) {
3079		dev_info(dev,
3080			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3081			 readl(regs + DIEPCTL(idx)),
3082			 readl(regs + DIEPTSIZ(idx)),
3083			 readl(regs + DIEPDMA(idx)));
3084
3085		val = readl(regs + DOEPCTL(idx));
3086		dev_info(dev,
3087			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3088			 idx, readl(regs + DOEPCTL(idx)),
3089			 readl(regs + DOEPTSIZ(idx)),
3090			 readl(regs + DOEPDMA(idx)));
3091
3092	}
3093
3094	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3095		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3096#endif
3097}
3098
3099/**
3100 * state_show - debugfs: show overall driver and device state.
3101 * @seq: The seq file to write to.
3102 * @v: Unused parameter.
3103 *
3104 * This debugfs entry shows the overall state of the hardware and
3105 * some general information about each of the endpoints available
3106 * to the system.
3107 */
3108static int state_show(struct seq_file *seq, void *v)
3109{
3110	struct s3c_hsotg *hsotg = seq->private;
3111	void __iomem *regs = hsotg->regs;
3112	int idx;
3113
3114	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3115		 readl(regs + DCFG),
3116		 readl(regs + DCTL),
3117		 readl(regs + DSTS));
3118
3119	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3120		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3121
3122	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3123		   readl(regs + GINTMSK),
3124		   readl(regs + GINTSTS));
3125
3126	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3127		   readl(regs + DAINTMSK),
3128		   readl(regs + DAINT));
3129
3130	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3131		   readl(regs + GNPTXSTS),
3132		   readl(regs + GRXSTSR));
3133
3134	seq_puts(seq, "\nEndpoint status:\n");
3135
3136	for (idx = 0; idx < 15; idx++) {
3137		u32 in, out;
3138
3139		in = readl(regs + DIEPCTL(idx));
3140		out = readl(regs + DOEPCTL(idx));
3141
3142		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3143			   idx, in, out);
3144
3145		in = readl(regs + DIEPTSIZ(idx));
3146		out = readl(regs + DOEPTSIZ(idx));
3147
3148		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3149			   in, out);
3150
3151		seq_puts(seq, "\n");
3152	}
3153
3154	return 0;
3155}
3156
3157static int state_open(struct inode *inode, struct file *file)
3158{
3159	return single_open(file, state_show, inode->i_private);
3160}
3161
3162static const struct file_operations state_fops = {
3163	.owner		= THIS_MODULE,
3164	.open		= state_open,
3165	.read		= seq_read,
3166	.llseek		= seq_lseek,
3167	.release	= single_release,
3168};
3169
3170/**
3171 * fifo_show - debugfs: show the fifo information
3172 * @seq: The seq_file to write data to.
3173 * @v: Unused parameter.
3174 *
3175 * Show the FIFO information for the overall fifo and all the
3176 * periodic transmission FIFOs.
3177 */
3178static int fifo_show(struct seq_file *seq, void *v)
3179{
3180	struct s3c_hsotg *hsotg = seq->private;
3181	void __iomem *regs = hsotg->regs;
3182	u32 val;
3183	int idx;
3184
3185	seq_puts(seq, "Non-periodic FIFOs:\n");
3186	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3187
3188	val = readl(regs + GNPTXFSIZ);
3189	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3190		   val >> FIFOSIZE_DEPTH_SHIFT,
3191		   val & FIFOSIZE_DEPTH_MASK);
3192
3193	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3194
3195	for (idx = 1; idx <= 15; idx++) {
3196		val = readl(regs + DPTXFSIZN(idx));
3197
3198		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3199			   val >> FIFOSIZE_DEPTH_SHIFT,
3200			   val & FIFOSIZE_STARTADDR_MASK);
3201	}
3202
3203	return 0;
3204}
3205
3206static int fifo_open(struct inode *inode, struct file *file)
3207{
3208	return single_open(file, fifo_show, inode->i_private);
3209}
3210
3211static const struct file_operations fifo_fops = {
3212	.owner		= THIS_MODULE,
3213	.open		= fifo_open,
3214	.read		= seq_read,
3215	.llseek		= seq_lseek,
3216	.release	= single_release,
3217};
3218
3219
3220static const char *decode_direction(int is_in)
3221{
3222	return is_in ? "in" : "out";
3223}
3224
3225/**
3226 * ep_show - debugfs: show the state of an endpoint.
3227 * @seq: The seq_file to write data to.
3228 * @v: Unused parameter.
3229 *
3230 * This debugfs entry shows the state of the given endpoint (one is
3231 * registered for each available).
3232 */
3233static int ep_show(struct seq_file *seq, void *v)
3234{
3235	struct s3c_hsotg_ep *ep = seq->private;
3236	struct s3c_hsotg *hsotg = ep->parent;
3237	struct s3c_hsotg_req *req;
3238	void __iomem *regs = hsotg->regs;
3239	int index = ep->index;
3240	int show_limit = 15;
3241	unsigned long flags;
3242
3243	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3244		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3245
3246	/* first show the register state */
3247
3248	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3249		   readl(regs + DIEPCTL(index)),
3250		   readl(regs + DOEPCTL(index)));
3251
3252	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3253		   readl(regs + DIEPDMA(index)),
3254		   readl(regs + DOEPDMA(index)));
3255
3256	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3257		   readl(regs + DIEPINT(index)),
3258		   readl(regs + DOEPINT(index)));
3259
3260	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3261		   readl(regs + DIEPTSIZ(index)),
3262		   readl(regs + DOEPTSIZ(index)));
3263
3264	seq_puts(seq, "\n");
3265	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3266	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3267
3268	seq_printf(seq, "request list (%p,%p):\n",
3269		   ep->queue.next, ep->queue.prev);
3270
3271	spin_lock_irqsave(&hsotg->lock, flags);
3272
3273	list_for_each_entry(req, &ep->queue, queue) {
3274		if (--show_limit < 0) {
3275			seq_puts(seq, "not showing more requests...\n");
3276			break;
3277		}
3278
3279		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3280			   req == ep->req ? '*' : ' ',
3281			   req, req->req.length, req->req.buf);
3282		seq_printf(seq, "%d done, res %d\n",
3283			   req->req.actual, req->req.status);
3284	}
3285
3286	spin_unlock_irqrestore(&hsotg->lock, flags);
3287
3288	return 0;
3289}
3290
3291static int ep_open(struct inode *inode, struct file *file)
3292{
3293	return single_open(file, ep_show, inode->i_private);
3294}
3295
3296static const struct file_operations ep_fops = {
3297	.owner		= THIS_MODULE,
3298	.open		= ep_open,
3299	.read		= seq_read,
3300	.llseek		= seq_lseek,
3301	.release	= single_release,
3302};
3303
3304/**
3305 * s3c_hsotg_create_debug - create debugfs directory and files
3306 * @hsotg: The driver state
3307 *
3308 * Create the debugfs files to allow the user to get information
3309 * about the state of the system. The directory name is created
3310 * with the same name as the device itself, in case we end up
3311 * with multiple blocks in future systems.
3312 */
3313static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3314{
3315	struct dentry *root;
3316	unsigned epidx;
3317
3318	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3319	hsotg->debug_root = root;
3320	if (IS_ERR(root)) {
3321		dev_err(hsotg->dev, "cannot create debug root\n");
3322		return;
3323	}
3324
3325	/* create general state file */
3326
3327	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3328						hsotg, &state_fops);
3329
3330	if (IS_ERR(hsotg->debug_file))
3331		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3332
3333	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3334						hsotg, &fifo_fops);
3335
3336	if (IS_ERR(hsotg->debug_fifo))
3337		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3338
3339	/* create one file for each endpoint */
3340
3341	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3342		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3343
3344		ep->debugfs = debugfs_create_file(ep->name, 0444,
3345						  root, ep, &ep_fops);
3346
3347		if (IS_ERR(ep->debugfs))
3348			dev_err(hsotg->dev, "failed to create %s debug file\n",
3349				ep->name);
3350	}
3351}
3352
3353/**
3354 * s3c_hsotg_delete_debug - cleanup debugfs entries
3355 * @hsotg: The driver state
3356 *
3357 * Cleanup (remove) the debugfs files for use on module exit.
3358 */
3359static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3360{
3361	unsigned epidx;
3362
3363	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3364		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3365		debugfs_remove(ep->debugfs);
3366	}
3367
3368	debugfs_remove(hsotg->debug_file);
3369	debugfs_remove(hsotg->debug_fifo);
3370	debugfs_remove(hsotg->debug_root);
3371}
3372
3373/**
3374 * s3c_hsotg_probe - probe function for hsotg driver
3375 * @pdev: The platform information for the driver
3376 */
3377
3378static int s3c_hsotg_probe(struct platform_device *pdev)
3379{
3380	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3381	struct phy *phy;
3382	struct usb_phy *uphy;
3383	struct device *dev = &pdev->dev;
3384	struct s3c_hsotg_ep *eps;
3385	struct s3c_hsotg *hsotg;
3386	struct resource *res;
3387	int epnum;
3388	int ret;
3389	int i;
3390
3391	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3392	if (!hsotg)
3393		return -ENOMEM;
3394
3395	/*
3396	 * Attempt to find a generic PHY, then look for an old style
3397	 * USB PHY, finally fall back to pdata
3398	 */
3399	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3400	if (IS_ERR(phy)) {
3401		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3402		if (IS_ERR(uphy)) {
3403			/* Fallback for pdata */
3404			plat = dev_get_platdata(&pdev->dev);
3405			if (!plat) {
3406				dev_err(&pdev->dev,
3407				"no platform data or transceiver defined\n");
3408				return -EPROBE_DEFER;
3409			}
3410			hsotg->plat = plat;
3411		} else
3412			hsotg->uphy = uphy;
3413	} else
3414		hsotg->phy = phy;
3415
3416	hsotg->dev = dev;
3417
3418	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3419	if (IS_ERR(hsotg->clk)) {
3420		dev_err(dev, "cannot get otg clock\n");
3421		return PTR_ERR(hsotg->clk);
3422	}
3423
3424	platform_set_drvdata(pdev, hsotg);
3425
3426	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3427
3428	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3429	if (IS_ERR(hsotg->regs)) {
3430		ret = PTR_ERR(hsotg->regs);
3431		goto err_clk;
3432	}
3433
3434	ret = platform_get_irq(pdev, 0);
3435	if (ret < 0) {
3436		dev_err(dev, "cannot find IRQ\n");
3437		goto err_clk;
3438	}
3439
3440	spin_lock_init(&hsotg->lock);
3441
3442	hsotg->irq = ret;
3443
3444	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3445
3446	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3447	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3448	hsotg->gadget.name = dev_name(dev);
3449
3450	/* reset the system */
3451
3452	clk_prepare_enable(hsotg->clk);
3453
3454	/* regulators */
3455
3456	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3457		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3458
3459	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3460				 hsotg->supplies);
3461	if (ret) {
3462		dev_err(dev, "failed to request supplies: %d\n", ret);
3463		goto err_clk;
3464	}
3465
3466	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3467				    hsotg->supplies);
3468
3469	if (ret) {
3470		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3471		goto err_supplies;
3472	}
3473
3474	/* Set default UTMI width */
3475	hsotg->phyif = GUSBCFG_PHYIF16;
3476
3477	/*
3478	 * If using the generic PHY framework, check if the PHY bus
3479	 * width is 8-bit and set the phyif appropriately.
3480	 */
3481	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3482		hsotg->phyif = GUSBCFG_PHYIF8;
3483
3484	/* usb phy enable */
3485	s3c_hsotg_phy_enable(hsotg);
3486
3487	s3c_hsotg_corereset(hsotg);
3488	s3c_hsotg_init(hsotg);
3489	s3c_hsotg_hw_cfg(hsotg);
3490
3491	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3492				dev_name(dev), hsotg);
3493	if (ret < 0) {
3494		s3c_hsotg_phy_disable(hsotg);
3495		clk_disable_unprepare(hsotg->clk);
3496		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3497				       hsotg->supplies);
3498		dev_err(dev, "cannot claim IRQ\n");
3499		goto err_clk;
3500	}
3501
3502	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3503
3504	if (hsotg->num_of_eps == 0) {
3505		dev_err(dev, "wrong number of EPs (zero)\n");
3506		ret = -EINVAL;
3507		goto err_supplies;
3508	}
3509
3510	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3511		      GFP_KERNEL);
3512	if (!eps) {
3513		ret = -ENOMEM;
3514		goto err_supplies;
3515	}
3516
3517	hsotg->eps = eps;
3518
3519	/* setup endpoint information */
3520
3521	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3522	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3523
3524	/* allocate EP0 request */
3525
3526	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3527						     GFP_KERNEL);
3528	if (!hsotg->ctrl_req) {
3529		dev_err(dev, "failed to allocate ctrl req\n");
3530		ret = -ENOMEM;
3531		goto err_ep_mem;
3532	}
3533
3534	/* initialise the endpoints now the core has been initialised */
3535	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3536		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3537
3538	/* disable power and clock */
3539
3540	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3541				    hsotg->supplies);
3542	if (ret) {
3543		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3544		goto err_ep_mem;
3545	}
3546
3547	s3c_hsotg_phy_disable(hsotg);
3548
3549	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3550	if (ret)
3551		goto err_ep_mem;
3552
3553	s3c_hsotg_create_debug(hsotg);
3554
3555	s3c_hsotg_dump(hsotg);
3556
3557	return 0;
3558
3559err_ep_mem:
3560	kfree(eps);
3561err_supplies:
3562	s3c_hsotg_phy_disable(hsotg);
3563err_clk:
3564	clk_disable_unprepare(hsotg->clk);
3565
3566	return ret;
3567}
3568
3569/**
3570 * s3c_hsotg_remove - remove function for hsotg driver
3571 * @pdev: The platform information for the driver
3572 */
3573static int s3c_hsotg_remove(struct platform_device *pdev)
3574{
3575	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3576
3577	usb_del_gadget_udc(&hsotg->gadget);
3578
3579	s3c_hsotg_delete_debug(hsotg);
3580
3581	if (hsotg->driver) {
3582		/* should have been done already by driver model core */
3583		usb_gadget_unregister_driver(hsotg->driver);
3584	}
3585
3586	clk_disable_unprepare(hsotg->clk);
3587
3588	return 0;
3589}
3590
3591static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
3592{
3593	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3594	unsigned long flags;
3595	int ret = 0;
3596
3597	if (hsotg->driver)
3598		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3599			 hsotg->driver->driver.name);
3600
3601	spin_lock_irqsave(&hsotg->lock, flags);
3602	s3c_hsotg_disconnect(hsotg);
3603	s3c_hsotg_phy_disable(hsotg);
3604	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3605	spin_unlock_irqrestore(&hsotg->lock, flags);
3606
3607	if (hsotg->driver) {
3608		int ep;
3609		for (ep = 0; ep < hsotg->num_of_eps; ep++)
3610			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3611
3612		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3613					     hsotg->supplies);
3614	}
3615
3616	return ret;
3617}
3618
3619static int s3c_hsotg_resume(struct platform_device *pdev)
3620{
3621	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3622	unsigned long flags;
3623	int ret = 0;
3624
3625	if (hsotg->driver) {
3626		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3627			 hsotg->driver->driver.name);
3628		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3629				      hsotg->supplies);
3630	}
3631
3632	spin_lock_irqsave(&hsotg->lock, flags);
3633	hsotg->last_rst = jiffies;
3634	s3c_hsotg_phy_enable(hsotg);
3635	s3c_hsotg_core_init(hsotg);
3636	spin_unlock_irqrestore(&hsotg->lock, flags);
3637
3638	return ret;
3639}
3640
3641#ifdef CONFIG_OF
3642static const struct of_device_id s3c_hsotg_of_ids[] = {
3643	{ .compatible = "samsung,s3c6400-hsotg", },
3644	{ .compatible = "snps,dwc2", },
3645	{ /* sentinel */ }
3646};
3647MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3648#endif
3649
3650static struct platform_driver s3c_hsotg_driver = {
3651	.driver		= {
3652		.name	= "s3c-hsotg",
3653		.owner	= THIS_MODULE,
3654		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3655	},
3656	.probe		= s3c_hsotg_probe,
3657	.remove		= s3c_hsotg_remove,
3658	.suspend	= s3c_hsotg_suspend,
3659	.resume		= s3c_hsotg_resume,
3660};
3661
3662module_platform_driver(s3c_hsotg_driver);
3663
3664MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3665MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3666MODULE_LICENSE("GPL");
3667MODULE_ALIAS("platform:s3c-hsotg");
3668