gadget.c revision 47a1685f139271de401212bd69d17374ca5a5270
1/**
2 * linux/drivers/usb/gadget/s3c-hsotg.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 *		http://www.samsung.com
6 *
7 * Copyright 2008 Openmoko, Inc.
8 * Copyright 2008 Simtec Electronics
9 *      Ben Dooks <ben@simtec.co.uk>
10 *      http://armlinux.simtec.co.uk/
11 *
12 * S3C USB2.0 High-speed / OtG driver
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/spinlock.h>
22#include <linux/interrupt.h>
23#include <linux/platform_device.h>
24#include <linux/dma-mapping.h>
25#include <linux/debugfs.h>
26#include <linux/seq_file.h>
27#include <linux/delay.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/clk.h>
31#include <linux/regulator/consumer.h>
32#include <linux/of_platform.h>
33#include <linux/phy/phy.h>
34
35#include <linux/usb/ch9.h>
36#include <linux/usb/gadget.h>
37#include <linux/usb/phy.h>
38#include <linux/platform_data/s3c-hsotg.h>
39
40#include "hw.h"
41
42static const char * const s3c_hsotg_supply_names[] = {
43	"vusb_d",		/* digital USB supply, 1.2V */
44	"vusb_a",		/* analog USB supply, 1.1V */
45};
46
47/*
48 * EP0_MPS_LIMIT
49 *
50 * Unfortunately there seems to be a limit of the amount of data that can
51 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
52 * packets (which practically means 1 packet and 63 bytes of data) when the
53 * MPS is set to 64.
54 *
55 * This means if we are wanting to move >127 bytes of data, we need to
56 * split the transactions up, but just doing one packet at a time does
57 * not work (this may be an implicit DATA0 PID on first packet of the
58 * transaction) and doing 2 packets is outside the controller's limits.
59 *
60 * If we try to lower the MPS size for EP0, then no transfers work properly
61 * for EP0, and the system will fail basic enumeration. As no cause for this
62 * has currently been found, we cannot support any large IN transfers for
63 * EP0.
64 */
65#define EP0_MPS_LIMIT	64
66
67struct s3c_hsotg;
68struct s3c_hsotg_req;
69
70/**
71 * struct s3c_hsotg_ep - driver endpoint definition.
72 * @ep: The gadget layer representation of the endpoint.
73 * @name: The driver generated name for the endpoint.
74 * @queue: Queue of requests for this endpoint.
75 * @parent: Reference back to the parent device structure.
76 * @req: The current request that the endpoint is processing. This is
77 *       used to indicate an request has been loaded onto the endpoint
78 *       and has yet to be completed (maybe due to data move, or simply
79 *	 awaiting an ack from the core all the data has been completed).
80 * @debugfs: File entry for debugfs file for this endpoint.
81 * @lock: State lock to protect contents of endpoint.
82 * @dir_in: Set to true if this endpoint is of the IN direction, which
83 *	    means that it is sending data to the Host.
84 * @index: The index for the endpoint registers.
85 * @mc: Multi Count - number of transactions per microframe
86 * @interval - Interval for periodic endpoints
87 * @name: The name array passed to the USB core.
88 * @halted: Set if the endpoint has been halted.
89 * @periodic: Set if this is a periodic ep, such as Interrupt
90 * @isochronous: Set if this is a isochronous ep
91 * @sent_zlp: Set if we've sent a zero-length packet.
92 * @total_data: The total number of data bytes done.
93 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
94 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
95 * @last_load: The offset of data for the last start of request.
96 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
97 *
98 * This is the driver's state for each registered enpoint, allowing it
99 * to keep track of transactions that need doing. Each endpoint has a
100 * lock to protect the state, to try and avoid using an overall lock
101 * for the host controller as much as possible.
102 *
103 * For periodic IN endpoints, we have fifo_size and fifo_load to try
104 * and keep track of the amount of data in the periodic FIFO for each
105 * of these as we don't have a status register that tells us how much
106 * is in each of them. (note, this may actually be useless information
107 * as in shared-fifo mode periodic in acts like a single-frame packet
108 * buffer than a fifo)
109 */
110struct s3c_hsotg_ep {
111	struct usb_ep		ep;
112	struct list_head	queue;
113	struct s3c_hsotg	*parent;
114	struct s3c_hsotg_req	*req;
115	struct dentry		*debugfs;
116
117
118	unsigned long		total_data;
119	unsigned int		size_loaded;
120	unsigned int		last_load;
121	unsigned int		fifo_load;
122	unsigned short		fifo_size;
123
124	unsigned char		dir_in;
125	unsigned char		index;
126	unsigned char		mc;
127	unsigned char		interval;
128
129	unsigned int		halted:1;
130	unsigned int		periodic:1;
131	unsigned int		isochronous:1;
132	unsigned int		sent_zlp:1;
133
134	char			name[10];
135};
136
137/**
138 * struct s3c_hsotg - driver state.
139 * @dev: The parent device supplied to the probe function
140 * @driver: USB gadget driver
141 * @phy: The otg phy transceiver structure for phy control.
142 * @uphy: The otg phy transceiver structure for old USB phy control.
143 * @plat: The platform specific configuration data. This can be removed once
144 * all SoCs support usb transceiver.
145 * @regs: The memory area mapped for accessing registers.
146 * @irq: The IRQ number we are using
147 * @supplies: Definition of USB power supplies
148 * @phyif: PHY interface width
149 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
150 * @num_of_eps: Number of available EPs (excluding EP0)
151 * @debug_root: root directrory for debugfs.
152 * @debug_file: main status file for debugfs.
153 * @debug_fifo: FIFO status file for debugfs.
154 * @ep0_reply: Request used for ep0 reply.
155 * @ep0_buff: Buffer for EP0 reply data, if needed.
156 * @ctrl_buff: Buffer for EP0 control requests.
157 * @ctrl_req: Request for EP0 control packets.
158 * @setup: NAK management for EP0 SETUP
159 * @last_rst: Time of last reset
160 * @eps: The endpoints being supplied to the gadget framework
161 */
162struct s3c_hsotg {
163	struct device		 *dev;
164	struct usb_gadget_driver *driver;
165	struct phy		 *phy;
166	struct usb_phy		 *uphy;
167	struct s3c_hsotg_plat	 *plat;
168
169	spinlock_t              lock;
170
171	void __iomem		*regs;
172	int			irq;
173	struct clk		*clk;
174
175	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
176
177	u32			phyif;
178	unsigned int		dedicated_fifos:1;
179	unsigned char           num_of_eps;
180
181	struct dentry		*debug_root;
182	struct dentry		*debug_file;
183	struct dentry		*debug_fifo;
184
185	struct usb_request	*ep0_reply;
186	struct usb_request	*ctrl_req;
187	u8			ep0_buff[8];
188	u8			ctrl_buff[8];
189
190	struct usb_gadget	gadget;
191	unsigned int		setup;
192	unsigned long           last_rst;
193	struct s3c_hsotg_ep	*eps;
194};
195
196/**
197 * struct s3c_hsotg_req - data transfer request
198 * @req: The USB gadget request
199 * @queue: The list of requests for the endpoint this is queued for.
200 * @in_progress: Has already had size/packets written to core
201 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
202 */
203struct s3c_hsotg_req {
204	struct usb_request	req;
205	struct list_head	queue;
206	unsigned char		in_progress;
207	unsigned char		mapped;
208};
209
210/* conversion functions */
211static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
212{
213	return container_of(req, struct s3c_hsotg_req, req);
214}
215
216static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
217{
218	return container_of(ep, struct s3c_hsotg_ep, ep);
219}
220
221static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
222{
223	return container_of(gadget, struct s3c_hsotg, gadget);
224}
225
226static inline void __orr32(void __iomem *ptr, u32 val)
227{
228	writel(readl(ptr) | val, ptr);
229}
230
231static inline void __bic32(void __iomem *ptr, u32 val)
232{
233	writel(readl(ptr) & ~val, ptr);
234}
235
236/* forward decleration of functions */
237static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
238
239/**
240 * using_dma - return the DMA status of the driver.
241 * @hsotg: The driver state.
242 *
243 * Return true if we're using DMA.
244 *
245 * Currently, we have the DMA support code worked into everywhere
246 * that needs it, but the AMBA DMA implementation in the hardware can
247 * only DMA from 32bit aligned addresses. This means that gadgets such
248 * as the CDC Ethernet cannot work as they often pass packets which are
249 * not 32bit aligned.
250 *
251 * Unfortunately the choice to use DMA or not is global to the controller
252 * and seems to be only settable when the controller is being put through
253 * a core reset. This means we either need to fix the gadgets to take
254 * account of DMA alignment, or add bounce buffers (yuerk).
255 *
256 * Until this issue is sorted out, we always return 'false'.
257 */
258static inline bool using_dma(struct s3c_hsotg *hsotg)
259{
260	return false;	/* support is not complete */
261}
262
263/**
264 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
265 * @hsotg: The device state
266 * @ints: A bitmask of the interrupts to enable
267 */
268static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
269{
270	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
271	u32 new_gsintmsk;
272
273	new_gsintmsk = gsintmsk | ints;
274
275	if (new_gsintmsk != gsintmsk) {
276		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
277		writel(new_gsintmsk, hsotg->regs + GINTMSK);
278	}
279}
280
281/**
282 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
283 * @hsotg: The device state
284 * @ints: A bitmask of the interrupts to enable
285 */
286static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
287{
288	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
289	u32 new_gsintmsk;
290
291	new_gsintmsk = gsintmsk & ~ints;
292
293	if (new_gsintmsk != gsintmsk)
294		writel(new_gsintmsk, hsotg->regs + GINTMSK);
295}
296
297/**
298 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
299 * @hsotg: The device state
300 * @ep: The endpoint index
301 * @dir_in: True if direction is in.
302 * @en: The enable value, true to enable
303 *
304 * Set or clear the mask for an individual endpoint's interrupt
305 * request.
306 */
307static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
308				 unsigned int ep, unsigned int dir_in,
309				 unsigned int en)
310{
311	unsigned long flags;
312	u32 bit = 1 << ep;
313	u32 daint;
314
315	if (!dir_in)
316		bit <<= 16;
317
318	local_irq_save(flags);
319	daint = readl(hsotg->regs + DAINTMSK);
320	if (en)
321		daint |= bit;
322	else
323		daint &= ~bit;
324	writel(daint, hsotg->regs + DAINTMSK);
325	local_irq_restore(flags);
326}
327
328/**
329 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
330 * @hsotg: The device instance.
331 */
332static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
333{
334	unsigned int ep;
335	unsigned int addr;
336	unsigned int size;
337	int timeout;
338	u32 val;
339
340	/* set FIFO sizes to 2048/1024 */
341
342	writel(2048, hsotg->regs + GRXFSIZ);
343	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
344		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
345
346	/*
347	 * arange all the rest of the TX FIFOs, as some versions of this
348	 * block have overlapping default addresses. This also ensures
349	 * that if the settings have been changed, then they are set to
350	 * known values.
351	 */
352
353	/* start at the end of the GNPTXFSIZ, rounded up */
354	addr = 2048 + 1024;
355	size = 768;
356
357	/*
358	 * currently we allocate TX FIFOs for all possible endpoints,
359	 * and assume that they are all the same size.
360	 */
361
362	for (ep = 1; ep <= 15; ep++) {
363		val = addr;
364		val |= size << FIFOSIZE_DEPTH_SHIFT;
365		addr += size;
366
367		writel(val, hsotg->regs + DPTXFSIZN(ep));
368	}
369
370	/*
371	 * according to p428 of the design guide, we need to ensure that
372	 * all fifos are flushed before continuing
373	 */
374
375	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
376	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
377
378	/* wait until the fifos are both flushed */
379	timeout = 100;
380	while (1) {
381		val = readl(hsotg->regs + GRSTCTL);
382
383		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
384			break;
385
386		if (--timeout == 0) {
387			dev_err(hsotg->dev,
388				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
389				__func__, val);
390		}
391
392		udelay(1);
393	}
394
395	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
396}
397
398/**
399 * @ep: USB endpoint to allocate request for.
400 * @flags: Allocation flags
401 *
402 * Allocate a new USB request structure appropriate for the specified endpoint
403 */
404static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
405						      gfp_t flags)
406{
407	struct s3c_hsotg_req *req;
408
409	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
410	if (!req)
411		return NULL;
412
413	INIT_LIST_HEAD(&req->queue);
414
415	return &req->req;
416}
417
418/**
419 * is_ep_periodic - return true if the endpoint is in periodic mode.
420 * @hs_ep: The endpoint to query.
421 *
422 * Returns true if the endpoint is in periodic mode, meaning it is being
423 * used for an Interrupt or ISO transfer.
424 */
425static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
426{
427	return hs_ep->periodic;
428}
429
430/**
431 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
432 * @hsotg: The device state.
433 * @hs_ep: The endpoint for the request
434 * @hs_req: The request being processed.
435 *
436 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
437 * of a request to ensure the buffer is ready for access by the caller.
438 */
439static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
440				struct s3c_hsotg_ep *hs_ep,
441				struct s3c_hsotg_req *hs_req)
442{
443	struct usb_request *req = &hs_req->req;
444
445	/* ignore this if we're not moving any data */
446	if (hs_req->req.length == 0)
447		return;
448
449	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
450}
451
452/**
453 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
454 * @hsotg: The controller state.
455 * @hs_ep: The endpoint we're going to write for.
456 * @hs_req: The request to write data for.
457 *
458 * This is called when the TxFIFO has some space in it to hold a new
459 * transmission and we have something to give it. The actual setup of
460 * the data size is done elsewhere, so all we have to do is to actually
461 * write the data.
462 *
463 * The return value is zero if there is more space (or nothing was done)
464 * otherwise -ENOSPC is returned if the FIFO space was used up.
465 *
466 * This routine is only needed for PIO
467 */
468static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
469				struct s3c_hsotg_ep *hs_ep,
470				struct s3c_hsotg_req *hs_req)
471{
472	bool periodic = is_ep_periodic(hs_ep);
473	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
474	int buf_pos = hs_req->req.actual;
475	int to_write = hs_ep->size_loaded;
476	void *data;
477	int can_write;
478	int pkt_round;
479	int max_transfer;
480
481	to_write -= (buf_pos - hs_ep->last_load);
482
483	/* if there's nothing to write, get out early */
484	if (to_write == 0)
485		return 0;
486
487	if (periodic && !hsotg->dedicated_fifos) {
488		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
489		int size_left;
490		int size_done;
491
492		/*
493		 * work out how much data was loaded so we can calculate
494		 * how much data is left in the fifo.
495		 */
496
497		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
498
499		/*
500		 * if shared fifo, we cannot write anything until the
501		 * previous data has been completely sent.
502		 */
503		if (hs_ep->fifo_load != 0) {
504			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
505			return -ENOSPC;
506		}
507
508		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
509			__func__, size_left,
510			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
511
512		/* how much of the data has moved */
513		size_done = hs_ep->size_loaded - size_left;
514
515		/* how much data is left in the fifo */
516		can_write = hs_ep->fifo_load - size_done;
517		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
518			__func__, can_write);
519
520		can_write = hs_ep->fifo_size - can_write;
521		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
522			__func__, can_write);
523
524		if (can_write <= 0) {
525			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
526			return -ENOSPC;
527		}
528	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
529		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
530
531		can_write &= 0xffff;
532		can_write *= 4;
533	} else {
534		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
535			dev_dbg(hsotg->dev,
536				"%s: no queue slots available (0x%08x)\n",
537				__func__, gnptxsts);
538
539			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
540			return -ENOSPC;
541		}
542
543		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
544		can_write *= 4;	/* fifo size is in 32bit quantities. */
545	}
546
547	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
548
549	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
550		 __func__, gnptxsts, can_write, to_write, max_transfer);
551
552	/*
553	 * limit to 512 bytes of data, it seems at least on the non-periodic
554	 * FIFO, requests of >512 cause the endpoint to get stuck with a
555	 * fragment of the end of the transfer in it.
556	 */
557	if (can_write > 512 && !periodic)
558		can_write = 512;
559
560	/*
561	 * limit the write to one max-packet size worth of data, but allow
562	 * the transfer to return that it did not run out of fifo space
563	 * doing it.
564	 */
565	if (to_write > max_transfer) {
566		to_write = max_transfer;
567
568		/* it's needed only when we do not use dedicated fifos */
569		if (!hsotg->dedicated_fifos)
570			s3c_hsotg_en_gsint(hsotg,
571					   periodic ? GINTSTS_PTXFEMP :
572					   GINTSTS_NPTXFEMP);
573	}
574
575	/* see if we can write data */
576
577	if (to_write > can_write) {
578		to_write = can_write;
579		pkt_round = to_write % max_transfer;
580
581		/*
582		 * Round the write down to an
583		 * exact number of packets.
584		 *
585		 * Note, we do not currently check to see if we can ever
586		 * write a full packet or not to the FIFO.
587		 */
588
589		if (pkt_round)
590			to_write -= pkt_round;
591
592		/*
593		 * enable correct FIFO interrupt to alert us when there
594		 * is more room left.
595		 */
596
597		/* it's needed only when we do not use dedicated fifos */
598		if (!hsotg->dedicated_fifos)
599			s3c_hsotg_en_gsint(hsotg,
600					   periodic ? GINTSTS_PTXFEMP :
601					   GINTSTS_NPTXFEMP);
602	}
603
604	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
605		 to_write, hs_req->req.length, can_write, buf_pos);
606
607	if (to_write <= 0)
608		return -ENOSPC;
609
610	hs_req->req.actual = buf_pos + to_write;
611	hs_ep->total_data += to_write;
612
613	if (periodic)
614		hs_ep->fifo_load += to_write;
615
616	to_write = DIV_ROUND_UP(to_write, 4);
617	data = hs_req->req.buf + buf_pos;
618
619	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
620
621	return (to_write >= can_write) ? -ENOSPC : 0;
622}
623
624/**
625 * get_ep_limit - get the maximum data legnth for this endpoint
626 * @hs_ep: The endpoint
627 *
628 * Return the maximum data that can be queued in one go on a given endpoint
629 * so that transfers that are too long can be split.
630 */
631static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
632{
633	int index = hs_ep->index;
634	unsigned maxsize;
635	unsigned maxpkt;
636
637	if (index != 0) {
638		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
639		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
640	} else {
641		maxsize = 64+64;
642		if (hs_ep->dir_in)
643			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
644		else
645			maxpkt = 2;
646	}
647
648	/* we made the constant loading easier above by using +1 */
649	maxpkt--;
650	maxsize--;
651
652	/*
653	 * constrain by packet count if maxpkts*pktsize is greater
654	 * than the length register size.
655	 */
656
657	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
658		maxsize = maxpkt * hs_ep->ep.maxpacket;
659
660	return maxsize;
661}
662
663/**
664 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
665 * @hsotg: The controller state.
666 * @hs_ep: The endpoint to process a request for
667 * @hs_req: The request to start.
668 * @continuing: True if we are doing more for the current request.
669 *
670 * Start the given request running by setting the endpoint registers
671 * appropriately, and writing any data to the FIFOs.
672 */
673static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
674				struct s3c_hsotg_ep *hs_ep,
675				struct s3c_hsotg_req *hs_req,
676				bool continuing)
677{
678	struct usb_request *ureq = &hs_req->req;
679	int index = hs_ep->index;
680	int dir_in = hs_ep->dir_in;
681	u32 epctrl_reg;
682	u32 epsize_reg;
683	u32 epsize;
684	u32 ctrl;
685	unsigned length;
686	unsigned packets;
687	unsigned maxreq;
688
689	if (index != 0) {
690		if (hs_ep->req && !continuing) {
691			dev_err(hsotg->dev, "%s: active request\n", __func__);
692			WARN_ON(1);
693			return;
694		} else if (hs_ep->req != hs_req && continuing) {
695			dev_err(hsotg->dev,
696				"%s: continue different req\n", __func__);
697			WARN_ON(1);
698			return;
699		}
700	}
701
702	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
703	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
704
705	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
706		__func__, readl(hsotg->regs + epctrl_reg), index,
707		hs_ep->dir_in ? "in" : "out");
708
709	/* If endpoint is stalled, we will restart request later */
710	ctrl = readl(hsotg->regs + epctrl_reg);
711
712	if (ctrl & DXEPCTL_STALL) {
713		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
714		return;
715	}
716
717	length = ureq->length - ureq->actual;
718	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
719		ureq->length, ureq->actual);
720	if (0)
721		dev_dbg(hsotg->dev,
722			"REQ buf %p len %d dma 0x%pad noi=%d zp=%d snok=%d\n",
723			ureq->buf, length, &ureq->dma,
724			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
725
726	maxreq = get_ep_limit(hs_ep);
727	if (length > maxreq) {
728		int round = maxreq % hs_ep->ep.maxpacket;
729
730		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
731			__func__, length, maxreq, round);
732
733		/* round down to multiple of packets */
734		if (round)
735			maxreq -= round;
736
737		length = maxreq;
738	}
739
740	if (length)
741		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
742	else
743		packets = 1;	/* send one packet if length is zero. */
744
745	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
746		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
747		return;
748	}
749
750	if (dir_in && index != 0)
751		if (hs_ep->isochronous)
752			epsize = DXEPTSIZ_MC(packets);
753		else
754			epsize = DXEPTSIZ_MC(1);
755	else
756		epsize = 0;
757
758	if (index != 0 && ureq->zero) {
759		/*
760		 * test for the packets being exactly right for the
761		 * transfer
762		 */
763
764		if (length == (packets * hs_ep->ep.maxpacket))
765			packets++;
766	}
767
768	epsize |= DXEPTSIZ_PKTCNT(packets);
769	epsize |= DXEPTSIZ_XFERSIZE(length);
770
771	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
772		__func__, packets, length, ureq->length, epsize, epsize_reg);
773
774	/* store the request as the current one we're doing */
775	hs_ep->req = hs_req;
776
777	/* write size / packets */
778	writel(epsize, hsotg->regs + epsize_reg);
779
780	if (using_dma(hsotg) && !continuing) {
781		unsigned int dma_reg;
782
783		/*
784		 * write DMA address to control register, buffer already
785		 * synced by s3c_hsotg_ep_queue().
786		 */
787
788		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
789		writel(ureq->dma, hsotg->regs + dma_reg);
790
791		dev_dbg(hsotg->dev, "%s: 0x%pad => 0x%08x\n",
792			__func__, &ureq->dma, dma_reg);
793	}
794
795	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
796	ctrl |= DXEPCTL_USBACTEP;
797
798	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
799
800	/* For Setup request do not clear NAK */
801	if (hsotg->setup && index == 0)
802		hsotg->setup = 0;
803	else
804		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
805
806
807	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
808	writel(ctrl, hsotg->regs + epctrl_reg);
809
810	/*
811	 * set these, it seems that DMA support increments past the end
812	 * of the packet buffer so we need to calculate the length from
813	 * this information.
814	 */
815	hs_ep->size_loaded = length;
816	hs_ep->last_load = ureq->actual;
817
818	if (dir_in && !using_dma(hsotg)) {
819		/* set these anyway, we may need them for non-periodic in */
820		hs_ep->fifo_load = 0;
821
822		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
823	}
824
825	/*
826	 * clear the INTknTXFEmpMsk when we start request, more as a aide
827	 * to debugging to see what is going on.
828	 */
829	if (dir_in)
830		writel(DIEPMSK_INTKNTXFEMPMSK,
831		       hsotg->regs + DIEPINT(index));
832
833	/*
834	 * Note, trying to clear the NAK here causes problems with transmit
835	 * on the S3C6400 ending up with the TXFIFO becoming full.
836	 */
837
838	/* check ep is enabled */
839	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
840		dev_warn(hsotg->dev,
841			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
842			 index, readl(hsotg->regs + epctrl_reg));
843
844	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
845		__func__, readl(hsotg->regs + epctrl_reg));
846
847	/* enable ep interrupts */
848	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
849}
850
851/**
852 * s3c_hsotg_map_dma - map the DMA memory being used for the request
853 * @hsotg: The device state.
854 * @hs_ep: The endpoint the request is on.
855 * @req: The request being processed.
856 *
857 * We've been asked to queue a request, so ensure that the memory buffer
858 * is correctly setup for DMA. If we've been passed an extant DMA address
859 * then ensure the buffer has been synced to memory. If our buffer has no
860 * DMA memory, then we map the memory and mark our request to allow us to
861 * cleanup on completion.
862 */
863static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
864			     struct s3c_hsotg_ep *hs_ep,
865			     struct usb_request *req)
866{
867	struct s3c_hsotg_req *hs_req = our_req(req);
868	int ret;
869
870	/* if the length is zero, ignore the DMA data */
871	if (hs_req->req.length == 0)
872		return 0;
873
874	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
875	if (ret)
876		goto dma_error;
877
878	return 0;
879
880dma_error:
881	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
882		__func__, req->buf, req->length);
883
884	return -EIO;
885}
886
887static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
888			      gfp_t gfp_flags)
889{
890	struct s3c_hsotg_req *hs_req = our_req(req);
891	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
892	struct s3c_hsotg *hs = hs_ep->parent;
893	bool first;
894
895	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
896		ep->name, req, req->length, req->buf, req->no_interrupt,
897		req->zero, req->short_not_ok);
898
899	/* initialise status of the request */
900	INIT_LIST_HEAD(&hs_req->queue);
901	req->actual = 0;
902	req->status = -EINPROGRESS;
903
904	/* if we're using DMA, sync the buffers as necessary */
905	if (using_dma(hs)) {
906		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
907		if (ret)
908			return ret;
909	}
910
911	first = list_empty(&hs_ep->queue);
912	list_add_tail(&hs_req->queue, &hs_ep->queue);
913
914	if (first)
915		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
916
917	return 0;
918}
919
920static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
921			      gfp_t gfp_flags)
922{
923	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
924	struct s3c_hsotg *hs = hs_ep->parent;
925	unsigned long flags = 0;
926	int ret = 0;
927
928	spin_lock_irqsave(&hs->lock, flags);
929	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
930	spin_unlock_irqrestore(&hs->lock, flags);
931
932	return ret;
933}
934
935static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
936				      struct usb_request *req)
937{
938	struct s3c_hsotg_req *hs_req = our_req(req);
939
940	kfree(hs_req);
941}
942
943/**
944 * s3c_hsotg_complete_oursetup - setup completion callback
945 * @ep: The endpoint the request was on.
946 * @req: The request completed.
947 *
948 * Called on completion of any requests the driver itself
949 * submitted that need cleaning up.
950 */
951static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
952					struct usb_request *req)
953{
954	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
955	struct s3c_hsotg *hsotg = hs_ep->parent;
956
957	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
958
959	s3c_hsotg_ep_free_request(ep, req);
960}
961
962/**
963 * ep_from_windex - convert control wIndex value to endpoint
964 * @hsotg: The driver state.
965 * @windex: The control request wIndex field (in host order).
966 *
967 * Convert the given wIndex into a pointer to an driver endpoint
968 * structure, or return NULL if it is not a valid endpoint.
969 */
970static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
971					   u32 windex)
972{
973	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
974	int dir = (windex & USB_DIR_IN) ? 1 : 0;
975	int idx = windex & 0x7F;
976
977	if (windex >= 0x100)
978		return NULL;
979
980	if (idx > hsotg->num_of_eps)
981		return NULL;
982
983	if (idx && ep->dir_in != dir)
984		return NULL;
985
986	return ep;
987}
988
989/**
990 * s3c_hsotg_send_reply - send reply to control request
991 * @hsotg: The device state
992 * @ep: Endpoint 0
993 * @buff: Buffer for request
994 * @length: Length of reply.
995 *
996 * Create a request and queue it on the given endpoint. This is useful as
997 * an internal method of sending replies to certain control requests, etc.
998 */
999static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
1000				struct s3c_hsotg_ep *ep,
1001				void *buff,
1002				int length)
1003{
1004	struct usb_request *req;
1005	int ret;
1006
1007	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1008
1009	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1010	hsotg->ep0_reply = req;
1011	if (!req) {
1012		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1013		return -ENOMEM;
1014	}
1015
1016	req->buf = hsotg->ep0_buff;
1017	req->length = length;
1018	req->zero = 1; /* always do zero-length final transfer */
1019	req->complete = s3c_hsotg_complete_oursetup;
1020
1021	if (length)
1022		memcpy(req->buf, buff, length);
1023	else
1024		ep->sent_zlp = 1;
1025
1026	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1027	if (ret) {
1028		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1029		return ret;
1030	}
1031
1032	return 0;
1033}
1034
1035/**
1036 * s3c_hsotg_process_req_status - process request GET_STATUS
1037 * @hsotg: The device state
1038 * @ctrl: USB control request
1039 */
1040static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1041					struct usb_ctrlrequest *ctrl)
1042{
1043	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1044	struct s3c_hsotg_ep *ep;
1045	__le16 reply;
1046	int ret;
1047
1048	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1049
1050	if (!ep0->dir_in) {
1051		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1052		return -EINVAL;
1053	}
1054
1055	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1056	case USB_RECIP_DEVICE:
1057		reply = cpu_to_le16(0); /* bit 0 => self powered,
1058					 * bit 1 => remote wakeup */
1059		break;
1060
1061	case USB_RECIP_INTERFACE:
1062		/* currently, the data result should be zero */
1063		reply = cpu_to_le16(0);
1064		break;
1065
1066	case USB_RECIP_ENDPOINT:
1067		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1068		if (!ep)
1069			return -ENOENT;
1070
1071		reply = cpu_to_le16(ep->halted ? 1 : 0);
1072		break;
1073
1074	default:
1075		return 0;
1076	}
1077
1078	if (le16_to_cpu(ctrl->wLength) != 2)
1079		return -EINVAL;
1080
1081	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1082	if (ret) {
1083		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1084		return ret;
1085	}
1086
1087	return 1;
1088}
1089
1090static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1091
1092/**
1093 * get_ep_head - return the first request on the endpoint
1094 * @hs_ep: The controller endpoint to get
1095 *
1096 * Get the first request on the endpoint.
1097 */
1098static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1099{
1100	if (list_empty(&hs_ep->queue))
1101		return NULL;
1102
1103	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1104}
1105
1106/**
1107 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1108 * @hsotg: The device state
1109 * @ctrl: USB control request
1110 */
1111static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1112					 struct usb_ctrlrequest *ctrl)
1113{
1114	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1115	struct s3c_hsotg_req *hs_req;
1116	bool restart;
1117	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1118	struct s3c_hsotg_ep *ep;
1119	int ret;
1120	bool halted;
1121
1122	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1123		__func__, set ? "SET" : "CLEAR");
1124
1125	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1126		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1127		if (!ep) {
1128			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1129				__func__, le16_to_cpu(ctrl->wIndex));
1130			return -ENOENT;
1131		}
1132
1133		switch (le16_to_cpu(ctrl->wValue)) {
1134		case USB_ENDPOINT_HALT:
1135			halted = ep->halted;
1136
1137			s3c_hsotg_ep_sethalt(&ep->ep, set);
1138
1139			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1140			if (ret) {
1141				dev_err(hsotg->dev,
1142					"%s: failed to send reply\n", __func__);
1143				return ret;
1144			}
1145
1146			/*
1147			 * we have to complete all requests for ep if it was
1148			 * halted, and the halt was cleared by CLEAR_FEATURE
1149			 */
1150
1151			if (!set && halted) {
1152				/*
1153				 * If we have request in progress,
1154				 * then complete it
1155				 */
1156				if (ep->req) {
1157					hs_req = ep->req;
1158					ep->req = NULL;
1159					list_del_init(&hs_req->queue);
1160					hs_req->req.complete(&ep->ep,
1161							     &hs_req->req);
1162				}
1163
1164				/* If we have pending request, then start it */
1165				restart = !list_empty(&ep->queue);
1166				if (restart) {
1167					hs_req = get_ep_head(ep);
1168					s3c_hsotg_start_req(hsotg, ep,
1169							    hs_req, false);
1170				}
1171			}
1172
1173			break;
1174
1175		default:
1176			return -ENOENT;
1177		}
1178	} else
1179		return -ENOENT;  /* currently only deal with endpoint */
1180
1181	return 1;
1182}
1183
1184static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1185static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1186
1187/**
1188 * s3c_hsotg_stall_ep0 - stall ep0
1189 * @hsotg: The device state
1190 *
1191 * Set stall for ep0 as response for setup request.
1192 */
1193static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) {
1194	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1195	u32 reg;
1196	u32 ctrl;
1197
1198	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1199	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1200
1201	/*
1202	 * DxEPCTL_Stall will be cleared by EP once it has
1203	 * taken effect, so no need to clear later.
1204	 */
1205
1206	ctrl = readl(hsotg->regs + reg);
1207	ctrl |= DXEPCTL_STALL;
1208	ctrl |= DXEPCTL_CNAK;
1209	writel(ctrl, hsotg->regs + reg);
1210
1211	dev_dbg(hsotg->dev,
1212		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1213		ctrl, reg, readl(hsotg->regs + reg));
1214
1215	 /*
1216	  * complete won't be called, so we enqueue
1217	  * setup request here
1218	  */
1219	 s3c_hsotg_enqueue_setup(hsotg);
1220}
1221
1222/**
1223 * s3c_hsotg_process_control - process a control request
1224 * @hsotg: The device state
1225 * @ctrl: The control request received
1226 *
1227 * The controller has received the SETUP phase of a control request, and
1228 * needs to work out what to do next (and whether to pass it on to the
1229 * gadget driver).
1230 */
1231static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1232				      struct usb_ctrlrequest *ctrl)
1233{
1234	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1235	int ret = 0;
1236	u32 dcfg;
1237
1238	ep0->sent_zlp = 0;
1239
1240	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1241		 ctrl->bRequest, ctrl->bRequestType,
1242		 ctrl->wValue, ctrl->wLength);
1243
1244	/*
1245	 * record the direction of the request, for later use when enquing
1246	 * packets onto EP0.
1247	 */
1248
1249	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1250	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1251
1252	/*
1253	 * if we've no data with this request, then the last part of the
1254	 * transaction is going to implicitly be IN.
1255	 */
1256	if (ctrl->wLength == 0)
1257		ep0->dir_in = 1;
1258
1259	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1260		switch (ctrl->bRequest) {
1261		case USB_REQ_SET_ADDRESS:
1262			s3c_hsotg_disconnect(hsotg);
1263			dcfg = readl(hsotg->regs + DCFG);
1264			dcfg &= ~DCFG_DEVADDR_MASK;
1265			dcfg |= ctrl->wValue << DCFG_DEVADDR_SHIFT;
1266			writel(dcfg, hsotg->regs + DCFG);
1267
1268			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1269
1270			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1271			return;
1272
1273		case USB_REQ_GET_STATUS:
1274			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1275			break;
1276
1277		case USB_REQ_CLEAR_FEATURE:
1278		case USB_REQ_SET_FEATURE:
1279			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1280			break;
1281		}
1282	}
1283
1284	/* as a fallback, try delivering it to the driver to deal with */
1285
1286	if (ret == 0 && hsotg->driver) {
1287		spin_unlock(&hsotg->lock);
1288		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1289		spin_lock(&hsotg->lock);
1290		if (ret < 0)
1291			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1292	}
1293
1294	/*
1295	 * the request is either unhandlable, or is not formatted correctly
1296	 * so respond with a STALL for the status stage to indicate failure.
1297	 */
1298
1299	if (ret < 0)
1300		s3c_hsotg_stall_ep0(hsotg);
1301}
1302
1303/**
1304 * s3c_hsotg_complete_setup - completion of a setup transfer
1305 * @ep: The endpoint the request was on.
1306 * @req: The request completed.
1307 *
1308 * Called on completion of any requests the driver itself submitted for
1309 * EP0 setup packets
1310 */
1311static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1312				     struct usb_request *req)
1313{
1314	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1315	struct s3c_hsotg *hsotg = hs_ep->parent;
1316
1317	if (req->status < 0) {
1318		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1319		return;
1320	}
1321
1322	spin_lock(&hsotg->lock);
1323	if (req->actual == 0)
1324		s3c_hsotg_enqueue_setup(hsotg);
1325	else
1326		s3c_hsotg_process_control(hsotg, req->buf);
1327	spin_unlock(&hsotg->lock);
1328}
1329
1330/**
1331 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1332 * @hsotg: The device state.
1333 *
1334 * Enqueue a request on EP0 if necessary to received any SETUP packets
1335 * received from the host.
1336 */
1337static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1338{
1339	struct usb_request *req = hsotg->ctrl_req;
1340	struct s3c_hsotg_req *hs_req = our_req(req);
1341	int ret;
1342
1343	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1344
1345	req->zero = 0;
1346	req->length = 8;
1347	req->buf = hsotg->ctrl_buff;
1348	req->complete = s3c_hsotg_complete_setup;
1349
1350	if (!list_empty(&hs_req->queue)) {
1351		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1352		return;
1353	}
1354
1355	hsotg->eps[0].dir_in = 0;
1356
1357	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1358	if (ret < 0) {
1359		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1360		/*
1361		 * Don't think there's much we can do other than watch the
1362		 * driver fail.
1363		 */
1364	}
1365}
1366
1367/**
1368 * s3c_hsotg_complete_request - complete a request given to us
1369 * @hsotg: The device state.
1370 * @hs_ep: The endpoint the request was on.
1371 * @hs_req: The request to complete.
1372 * @result: The result code (0 => Ok, otherwise errno)
1373 *
1374 * The given request has finished, so call the necessary completion
1375 * if it has one and then look to see if we can start a new request
1376 * on the endpoint.
1377 *
1378 * Note, expects the ep to already be locked as appropriate.
1379 */
1380static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1381				       struct s3c_hsotg_ep *hs_ep,
1382				       struct s3c_hsotg_req *hs_req,
1383				       int result)
1384{
1385	bool restart;
1386
1387	if (!hs_req) {
1388		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1389		return;
1390	}
1391
1392	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1393		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1394
1395	/*
1396	 * only replace the status if we've not already set an error
1397	 * from a previous transaction
1398	 */
1399
1400	if (hs_req->req.status == -EINPROGRESS)
1401		hs_req->req.status = result;
1402
1403	hs_ep->req = NULL;
1404	list_del_init(&hs_req->queue);
1405
1406	if (using_dma(hsotg))
1407		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1408
1409	/*
1410	 * call the complete request with the locks off, just in case the
1411	 * request tries to queue more work for this endpoint.
1412	 */
1413
1414	if (hs_req->req.complete) {
1415		spin_unlock(&hsotg->lock);
1416		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1417		spin_lock(&hsotg->lock);
1418	}
1419
1420	/*
1421	 * Look to see if there is anything else to do. Note, the completion
1422	 * of the previous request may have caused a new request to be started
1423	 * so be careful when doing this.
1424	 */
1425
1426	if (!hs_ep->req && result >= 0) {
1427		restart = !list_empty(&hs_ep->queue);
1428		if (restart) {
1429			hs_req = get_ep_head(hs_ep);
1430			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1431		}
1432	}
1433}
1434
1435/**
1436 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1437 * @hsotg: The device state.
1438 * @ep_idx: The endpoint index for the data
1439 * @size: The size of data in the fifo, in bytes
1440 *
1441 * The FIFO status shows there is data to read from the FIFO for a given
1442 * endpoint, so sort out whether we need to read the data into a request
1443 * that has been made for that endpoint.
1444 */
1445static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1446{
1447	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1448	struct s3c_hsotg_req *hs_req = hs_ep->req;
1449	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1450	int to_read;
1451	int max_req;
1452	int read_ptr;
1453
1454
1455	if (!hs_req) {
1456		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1457		int ptr;
1458
1459		dev_warn(hsotg->dev,
1460			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1461			 __func__, size, ep_idx, epctl);
1462
1463		/* dump the data from the FIFO, we've nothing we can do */
1464		for (ptr = 0; ptr < size; ptr += 4)
1465			(void)readl(fifo);
1466
1467		return;
1468	}
1469
1470	to_read = size;
1471	read_ptr = hs_req->req.actual;
1472	max_req = hs_req->req.length - read_ptr;
1473
1474	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1475		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1476
1477	if (to_read > max_req) {
1478		/*
1479		 * more data appeared than we where willing
1480		 * to deal with in this request.
1481		 */
1482
1483		/* currently we don't deal this */
1484		WARN_ON_ONCE(1);
1485	}
1486
1487	hs_ep->total_data += to_read;
1488	hs_req->req.actual += to_read;
1489	to_read = DIV_ROUND_UP(to_read, 4);
1490
1491	/*
1492	 * note, we might over-write the buffer end by 3 bytes depending on
1493	 * alignment of the data.
1494	 */
1495	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1496}
1497
1498/**
1499 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1500 * @hsotg: The device instance
1501 * @req: The request currently on this endpoint
1502 *
1503 * Generate a zero-length IN packet request for terminating a SETUP
1504 * transaction.
1505 *
1506 * Note, since we don't write any data to the TxFIFO, then it is
1507 * currently believed that we do not need to wait for any space in
1508 * the TxFIFO.
1509 */
1510static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1511			       struct s3c_hsotg_req *req)
1512{
1513	u32 ctrl;
1514
1515	if (!req) {
1516		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1517		return;
1518	}
1519
1520	if (req->req.length == 0) {
1521		hsotg->eps[0].sent_zlp = 1;
1522		s3c_hsotg_enqueue_setup(hsotg);
1523		return;
1524	}
1525
1526	hsotg->eps[0].dir_in = 1;
1527	hsotg->eps[0].sent_zlp = 1;
1528
1529	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1530
1531	/* issue a zero-sized packet to terminate this */
1532	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1533	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1534
1535	ctrl = readl(hsotg->regs + DIEPCTL0);
1536	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1537	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1538	ctrl |= DXEPCTL_USBACTEP;
1539	writel(ctrl, hsotg->regs + DIEPCTL0);
1540}
1541
1542/**
1543 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1544 * @hsotg: The device instance
1545 * @epnum: The endpoint received from
1546 * @was_setup: Set if processing a SetupDone event.
1547 *
1548 * The RXFIFO has delivered an OutDone event, which means that the data
1549 * transfer for an OUT endpoint has been completed, either by a short
1550 * packet or by the finish of a transfer.
1551 */
1552static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1553				     int epnum, bool was_setup)
1554{
1555	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1556	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1557	struct s3c_hsotg_req *hs_req = hs_ep->req;
1558	struct usb_request *req = &hs_req->req;
1559	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1560	int result = 0;
1561
1562	if (!hs_req) {
1563		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1564		return;
1565	}
1566
1567	if (using_dma(hsotg)) {
1568		unsigned size_done;
1569
1570		/*
1571		 * Calculate the size of the transfer by checking how much
1572		 * is left in the endpoint size register and then working it
1573		 * out from the amount we loaded for the transfer.
1574		 *
1575		 * We need to do this as DMA pointers are always 32bit aligned
1576		 * so may overshoot/undershoot the transfer.
1577		 */
1578
1579		size_done = hs_ep->size_loaded - size_left;
1580		size_done += hs_ep->last_load;
1581
1582		req->actual = size_done;
1583	}
1584
1585	/* if there is more request to do, schedule new transfer */
1586	if (req->actual < req->length && size_left == 0) {
1587		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1588		return;
1589	} else if (epnum == 0) {
1590		/*
1591		 * After was_setup = 1 =>
1592		 * set CNAK for non Setup requests
1593		 */
1594		hsotg->setup = was_setup ? 0 : 1;
1595	}
1596
1597	if (req->actual < req->length && req->short_not_ok) {
1598		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1599			__func__, req->actual, req->length);
1600
1601		/*
1602		 * todo - what should we return here? there's no one else
1603		 * even bothering to check the status.
1604		 */
1605	}
1606
1607	if (epnum == 0) {
1608		/*
1609		 * Condition req->complete != s3c_hsotg_complete_setup says:
1610		 * send ZLP when we have an asynchronous request from gadget
1611		 */
1612		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1613			s3c_hsotg_send_zlp(hsotg, hs_req);
1614	}
1615
1616	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1617}
1618
1619/**
1620 * s3c_hsotg_read_frameno - read current frame number
1621 * @hsotg: The device instance
1622 *
1623 * Return the current frame number
1624 */
1625static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1626{
1627	u32 dsts;
1628
1629	dsts = readl(hsotg->regs + DSTS);
1630	dsts &= DSTS_SOFFN_MASK;
1631	dsts >>= DSTS_SOFFN_SHIFT;
1632
1633	return dsts;
1634}
1635
1636/**
1637 * s3c_hsotg_handle_rx - RX FIFO has data
1638 * @hsotg: The device instance
1639 *
1640 * The IRQ handler has detected that the RX FIFO has some data in it
1641 * that requires processing, so find out what is in there and do the
1642 * appropriate read.
1643 *
1644 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1645 * chunks, so if you have x packets received on an endpoint you'll get x
1646 * FIFO events delivered, each with a packet's worth of data in it.
1647 *
1648 * When using DMA, we should not be processing events from the RXFIFO
1649 * as the actual data should be sent to the memory directly and we turn
1650 * on the completion interrupts to get notifications of transfer completion.
1651 */
1652static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1653{
1654	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1655	u32 epnum, status, size;
1656
1657	WARN_ON(using_dma(hsotg));
1658
1659	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1660	status = grxstsr & GRXSTS_PKTSTS_MASK;
1661
1662	size = grxstsr & GRXSTS_BYTECNT_MASK;
1663	size >>= GRXSTS_BYTECNT_SHIFT;
1664
1665	if (1)
1666		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1667			__func__, grxstsr, size, epnum);
1668
1669	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1670	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1671		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1672		break;
1673
1674	case GRXSTS_PKTSTS_OUTDONE:
1675		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1676			s3c_hsotg_read_frameno(hsotg));
1677
1678		if (!using_dma(hsotg))
1679			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1680		break;
1681
1682	case GRXSTS_PKTSTS_SETUPDONE:
1683		dev_dbg(hsotg->dev,
1684			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1685			s3c_hsotg_read_frameno(hsotg),
1686			readl(hsotg->regs + DOEPCTL(0)));
1687
1688		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1689		break;
1690
1691	case GRXSTS_PKTSTS_OUTRX:
1692		s3c_hsotg_rx_data(hsotg, epnum, size);
1693		break;
1694
1695	case GRXSTS_PKTSTS_SETUPRX:
1696		dev_dbg(hsotg->dev,
1697			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1698			s3c_hsotg_read_frameno(hsotg),
1699			readl(hsotg->regs + DOEPCTL(0)));
1700
1701		s3c_hsotg_rx_data(hsotg, epnum, size);
1702		break;
1703
1704	default:
1705		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1706			 __func__, grxstsr);
1707
1708		s3c_hsotg_dump(hsotg);
1709		break;
1710	}
1711}
1712
1713/**
1714 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1715 * @mps: The maximum packet size in bytes.
1716 */
1717static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1718{
1719	switch (mps) {
1720	case 64:
1721		return D0EPCTL_MPS_64;
1722	case 32:
1723		return D0EPCTL_MPS_32;
1724	case 16:
1725		return D0EPCTL_MPS_16;
1726	case 8:
1727		return D0EPCTL_MPS_8;
1728	}
1729
1730	/* bad max packet size, warn and return invalid result */
1731	WARN_ON(1);
1732	return (u32)-1;
1733}
1734
1735/**
1736 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1737 * @hsotg: The driver state.
1738 * @ep: The index number of the endpoint
1739 * @mps: The maximum packet size in bytes
1740 *
1741 * Configure the maximum packet size for the given endpoint, updating
1742 * the hardware control registers to reflect this.
1743 */
1744static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1745				       unsigned int ep, unsigned int mps)
1746{
1747	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1748	void __iomem *regs = hsotg->regs;
1749	u32 mpsval;
1750	u32 mcval;
1751	u32 reg;
1752
1753	if (ep == 0) {
1754		/* EP0 is a special case */
1755		mpsval = s3c_hsotg_ep0_mps(mps);
1756		if (mpsval > 3)
1757			goto bad_mps;
1758		hs_ep->ep.maxpacket = mps;
1759		hs_ep->mc = 1;
1760	} else {
1761		mpsval = mps & DXEPCTL_MPS_MASK;
1762		if (mpsval > 1024)
1763			goto bad_mps;
1764		mcval = ((mps >> 11) & 0x3) + 1;
1765		hs_ep->mc = mcval;
1766		if (mcval > 3)
1767			goto bad_mps;
1768		hs_ep->ep.maxpacket = mpsval;
1769	}
1770
1771	/*
1772	 * update both the in and out endpoint controldir_ registers, even
1773	 * if one of the directions may not be in use.
1774	 */
1775
1776	reg = readl(regs + DIEPCTL(ep));
1777	reg &= ~DXEPCTL_MPS_MASK;
1778	reg |= mpsval;
1779	writel(reg, regs + DIEPCTL(ep));
1780
1781	if (ep) {
1782		reg = readl(regs + DOEPCTL(ep));
1783		reg &= ~DXEPCTL_MPS_MASK;
1784		reg |= mpsval;
1785		writel(reg, regs + DOEPCTL(ep));
1786	}
1787
1788	return;
1789
1790bad_mps:
1791	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1792}
1793
1794/**
1795 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1796 * @hsotg: The driver state
1797 * @idx: The index for the endpoint (0..15)
1798 */
1799static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1800{
1801	int timeout;
1802	int val;
1803
1804	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1805		hsotg->regs + GRSTCTL);
1806
1807	/* wait until the fifo is flushed */
1808	timeout = 100;
1809
1810	while (1) {
1811		val = readl(hsotg->regs + GRSTCTL);
1812
1813		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1814			break;
1815
1816		if (--timeout == 0) {
1817			dev_err(hsotg->dev,
1818				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1819				__func__, val);
1820		}
1821
1822		udelay(1);
1823	}
1824}
1825
1826/**
1827 * s3c_hsotg_trytx - check to see if anything needs transmitting
1828 * @hsotg: The driver state
1829 * @hs_ep: The driver endpoint to check.
1830 *
1831 * Check to see if there is a request that has data to send, and if so
1832 * make an attempt to write data into the FIFO.
1833 */
1834static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1835			   struct s3c_hsotg_ep *hs_ep)
1836{
1837	struct s3c_hsotg_req *hs_req = hs_ep->req;
1838
1839	if (!hs_ep->dir_in || !hs_req) {
1840		/**
1841		 * if request is not enqueued, we disable interrupts
1842		 * for endpoints, excepting ep0
1843		 */
1844		if (hs_ep->index != 0)
1845			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1846					     hs_ep->dir_in, 0);
1847		return 0;
1848	}
1849
1850	if (hs_req->req.actual < hs_req->req.length) {
1851		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1852			hs_ep->index);
1853		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1854	}
1855
1856	return 0;
1857}
1858
1859/**
1860 * s3c_hsotg_complete_in - complete IN transfer
1861 * @hsotg: The device state.
1862 * @hs_ep: The endpoint that has just completed.
1863 *
1864 * An IN transfer has been completed, update the transfer's state and then
1865 * call the relevant completion routines.
1866 */
1867static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1868				  struct s3c_hsotg_ep *hs_ep)
1869{
1870	struct s3c_hsotg_req *hs_req = hs_ep->req;
1871	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1872	int size_left, size_done;
1873
1874	if (!hs_req) {
1875		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1876		return;
1877	}
1878
1879	/* Finish ZLP handling for IN EP0 transactions */
1880	if (hsotg->eps[0].sent_zlp) {
1881		dev_dbg(hsotg->dev, "zlp packet received\n");
1882		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1883		return;
1884	}
1885
1886	/*
1887	 * Calculate the size of the transfer by checking how much is left
1888	 * in the endpoint size register and then working it out from
1889	 * the amount we loaded for the transfer.
1890	 *
1891	 * We do this even for DMA, as the transfer may have incremented
1892	 * past the end of the buffer (DMA transfers are always 32bit
1893	 * aligned).
1894	 */
1895
1896	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1897
1898	size_done = hs_ep->size_loaded - size_left;
1899	size_done += hs_ep->last_load;
1900
1901	if (hs_req->req.actual != size_done)
1902		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1903			__func__, hs_req->req.actual, size_done);
1904
1905	hs_req->req.actual = size_done;
1906	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1907		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1908
1909	/*
1910	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1911	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1912	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1913	 * inform the host that no more data is available.
1914	 * The state of req.zero member is checked to be sure that the value to
1915	 * send is smaller than wValue expected from host.
1916	 * Check req.length to NOT send another ZLP when the current one is
1917	 * under completion (the one for which this completion has been called).
1918	 */
1919	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1920	    hs_req->req.length == hs_req->req.actual &&
1921	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1922
1923		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1924		s3c_hsotg_send_zlp(hsotg, hs_req);
1925
1926		return;
1927	}
1928
1929	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1930		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1931		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1932	} else
1933		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1934}
1935
1936/**
1937 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1938 * @hsotg: The driver state
1939 * @idx: The index for the endpoint (0..15)
1940 * @dir_in: Set if this is an IN endpoint
1941 *
1942 * Process and clear any interrupt pending for an individual endpoint
1943 */
1944static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1945			    int dir_in)
1946{
1947	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1948	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1949	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1950	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1951	u32 ints;
1952	u32 ctrl;
1953
1954	ints = readl(hsotg->regs + epint_reg);
1955	ctrl = readl(hsotg->regs + epctl_reg);
1956
1957	/* Clear endpoint interrupts */
1958	writel(ints, hsotg->regs + epint_reg);
1959
1960	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1961		__func__, idx, dir_in ? "in" : "out", ints);
1962
1963	if (ints & DXEPINT_XFERCOMPL) {
1964		if (hs_ep->isochronous && hs_ep->interval == 1) {
1965			if (ctrl & DXEPCTL_EOFRNUM)
1966				ctrl |= DXEPCTL_SETEVENFR;
1967			else
1968				ctrl |= DXEPCTL_SETODDFR;
1969			writel(ctrl, hsotg->regs + epctl_reg);
1970		}
1971
1972		dev_dbg(hsotg->dev,
1973			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1974			__func__, readl(hsotg->regs + epctl_reg),
1975			readl(hsotg->regs + epsiz_reg));
1976
1977		/*
1978		 * we get OutDone from the FIFO, so we only need to look
1979		 * at completing IN requests here
1980		 */
1981		if (dir_in) {
1982			s3c_hsotg_complete_in(hsotg, hs_ep);
1983
1984			if (idx == 0 && !hs_ep->req)
1985				s3c_hsotg_enqueue_setup(hsotg);
1986		} else if (using_dma(hsotg)) {
1987			/*
1988			 * We're using DMA, we need to fire an OutDone here
1989			 * as we ignore the RXFIFO.
1990			 */
1991
1992			s3c_hsotg_handle_outdone(hsotg, idx, false);
1993		}
1994	}
1995
1996	if (ints & DXEPINT_EPDISBLD) {
1997		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1998
1999		if (dir_in) {
2000			int epctl = readl(hsotg->regs + epctl_reg);
2001
2002			s3c_hsotg_txfifo_flush(hsotg, idx);
2003
2004			if ((epctl & DXEPCTL_STALL) &&
2005				(epctl & DXEPCTL_EPTYPE_BULK)) {
2006				int dctl = readl(hsotg->regs + DCTL);
2007
2008				dctl |= DCTL_CGNPINNAK;
2009				writel(dctl, hsotg->regs + DCTL);
2010			}
2011		}
2012	}
2013
2014	if (ints & DXEPINT_AHBERR)
2015		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2016
2017	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2018		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2019
2020		if (using_dma(hsotg) && idx == 0) {
2021			/*
2022			 * this is the notification we've received a
2023			 * setup packet. In non-DMA mode we'd get this
2024			 * from the RXFIFO, instead we need to process
2025			 * the setup here.
2026			 */
2027
2028			if (dir_in)
2029				WARN_ON_ONCE(1);
2030			else
2031				s3c_hsotg_handle_outdone(hsotg, 0, true);
2032		}
2033	}
2034
2035	if (ints & DXEPINT_BACK2BACKSETUP)
2036		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2037
2038	if (dir_in && !hs_ep->isochronous) {
2039		/* not sure if this is important, but we'll clear it anyway */
2040		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2041			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2042				__func__, idx);
2043		}
2044
2045		/* this probably means something bad is happening */
2046		if (ints & DIEPMSK_INTKNEPMISMSK) {
2047			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2048				 __func__, idx);
2049		}
2050
2051		/* FIFO has space or is empty (see GAHBCFG) */
2052		if (hsotg->dedicated_fifos &&
2053		    ints & DIEPMSK_TXFIFOEMPTY) {
2054			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2055				__func__, idx);
2056			if (!using_dma(hsotg))
2057				s3c_hsotg_trytx(hsotg, hs_ep);
2058		}
2059	}
2060}
2061
2062/**
2063 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2064 * @hsotg: The device state.
2065 *
2066 * Handle updating the device settings after the enumeration phase has
2067 * been completed.
2068 */
2069static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
2070{
2071	u32 dsts = readl(hsotg->regs + DSTS);
2072	int ep0_mps = 0, ep_mps;
2073
2074	/*
2075	 * This should signal the finish of the enumeration phase
2076	 * of the USB handshaking, so we should now know what rate
2077	 * we connected at.
2078	 */
2079
2080	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2081
2082	/*
2083	 * note, since we're limited by the size of transfer on EP0, and
2084	 * it seems IN transfers must be a even number of packets we do
2085	 * not advertise a 64byte MPS on EP0.
2086	 */
2087
2088	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2089	switch (dsts & DSTS_ENUMSPD_MASK) {
2090	case DSTS_ENUMSPD_FS:
2091	case DSTS_ENUMSPD_FS48:
2092		hsotg->gadget.speed = USB_SPEED_FULL;
2093		ep0_mps = EP0_MPS_LIMIT;
2094		ep_mps = 1023;
2095		break;
2096
2097	case DSTS_ENUMSPD_HS:
2098		hsotg->gadget.speed = USB_SPEED_HIGH;
2099		ep0_mps = EP0_MPS_LIMIT;
2100		ep_mps = 1024;
2101		break;
2102
2103	case DSTS_ENUMSPD_LS:
2104		hsotg->gadget.speed = USB_SPEED_LOW;
2105		/*
2106		 * note, we don't actually support LS in this driver at the
2107		 * moment, and the documentation seems to imply that it isn't
2108		 * supported by the PHYs on some of the devices.
2109		 */
2110		break;
2111	}
2112	dev_info(hsotg->dev, "new device is %s\n",
2113		 usb_speed_string(hsotg->gadget.speed));
2114
2115	/*
2116	 * we should now know the maximum packet size for an
2117	 * endpoint, so set the endpoints to a default value.
2118	 */
2119
2120	if (ep0_mps) {
2121		int i;
2122		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2123		for (i = 1; i < hsotg->num_of_eps; i++)
2124			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2125	}
2126
2127	/* ensure after enumeration our EP0 is active */
2128
2129	s3c_hsotg_enqueue_setup(hsotg);
2130
2131	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2132		readl(hsotg->regs + DIEPCTL0),
2133		readl(hsotg->regs + DOEPCTL0));
2134}
2135
2136/**
2137 * kill_all_requests - remove all requests from the endpoint's queue
2138 * @hsotg: The device state.
2139 * @ep: The endpoint the requests may be on.
2140 * @result: The result code to use.
2141 * @force: Force removal of any current requests
2142 *
2143 * Go through the requests on the given endpoint and mark them
2144 * completed with the given result code.
2145 */
2146static void kill_all_requests(struct s3c_hsotg *hsotg,
2147			      struct s3c_hsotg_ep *ep,
2148			      int result, bool force)
2149{
2150	struct s3c_hsotg_req *req, *treq;
2151
2152	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2153		/*
2154		 * currently, we can't do much about an already
2155		 * running request on an in endpoint
2156		 */
2157
2158		if (ep->req == req && ep->dir_in && !force)
2159			continue;
2160
2161		s3c_hsotg_complete_request(hsotg, ep, req,
2162					   result);
2163	}
2164	if(hsotg->dedicated_fifos)
2165		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
2166			s3c_hsotg_txfifo_flush(hsotg, ep->index);
2167}
2168
2169#define call_gadget(_hs, _entry) \
2170do { \
2171	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2172	    (_hs)->driver && (_hs)->driver->_entry) { \
2173		spin_unlock(&_hs->lock); \
2174		(_hs)->driver->_entry(&(_hs)->gadget); \
2175		spin_lock(&_hs->lock); \
2176	} \
2177} while (0)
2178
2179/**
2180 * s3c_hsotg_disconnect - disconnect service
2181 * @hsotg: The device state.
2182 *
2183 * The device has been disconnected. Remove all current
2184 * transactions and signal the gadget driver that this
2185 * has happened.
2186 */
2187static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2188{
2189	unsigned ep;
2190
2191	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2192		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2193
2194	call_gadget(hsotg, disconnect);
2195}
2196
2197/**
2198 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2199 * @hsotg: The device state:
2200 * @periodic: True if this is a periodic FIFO interrupt
2201 */
2202static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2203{
2204	struct s3c_hsotg_ep *ep;
2205	int epno, ret;
2206
2207	/* look through for any more data to transmit */
2208
2209	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2210		ep = &hsotg->eps[epno];
2211
2212		if (!ep->dir_in)
2213			continue;
2214
2215		if ((periodic && !ep->periodic) ||
2216		    (!periodic && ep->periodic))
2217			continue;
2218
2219		ret = s3c_hsotg_trytx(hsotg, ep);
2220		if (ret < 0)
2221			break;
2222	}
2223}
2224
2225/* IRQ flags which will trigger a retry around the IRQ loop */
2226#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2227			GINTSTS_PTXFEMP |  \
2228			GINTSTS_RXFLVL)
2229
2230/**
2231 * s3c_hsotg_corereset - issue softreset to the core
2232 * @hsotg: The device state
2233 *
2234 * Issue a soft reset to the core, and await the core finishing it.
2235 */
2236static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2237{
2238	int timeout;
2239	u32 grstctl;
2240
2241	dev_dbg(hsotg->dev, "resetting core\n");
2242
2243	/* issue soft reset */
2244	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2245
2246	timeout = 10000;
2247	do {
2248		grstctl = readl(hsotg->regs + GRSTCTL);
2249	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2250
2251	if (grstctl & GRSTCTL_CSFTRST) {
2252		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2253		return -EINVAL;
2254	}
2255
2256	timeout = 10000;
2257
2258	while (1) {
2259		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2260
2261		if (timeout-- < 0) {
2262			dev_info(hsotg->dev,
2263				 "%s: reset failed, GRSTCTL=%08x\n",
2264				 __func__, grstctl);
2265			return -ETIMEDOUT;
2266		}
2267
2268		if (!(grstctl & GRSTCTL_AHBIDLE))
2269			continue;
2270
2271		break;		/* reset done */
2272	}
2273
2274	dev_dbg(hsotg->dev, "reset successful\n");
2275	return 0;
2276}
2277
2278/**
2279 * s3c_hsotg_core_init - issue softreset to the core
2280 * @hsotg: The device state
2281 *
2282 * Issue a soft reset to the core, and await the core finishing it.
2283 */
2284static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2285{
2286	s3c_hsotg_corereset(hsotg);
2287
2288	/*
2289	 * we must now enable ep0 ready for host detection and then
2290	 * set configuration.
2291	 */
2292
2293	/* set the PLL on, remove the HNP/SRP and set the PHY */
2294	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2295	       (0x5 << 10), hsotg->regs + GUSBCFG);
2296
2297	s3c_hsotg_init_fifo(hsotg);
2298
2299	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2300
2301	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2302
2303	/* Clear any pending OTG interrupts */
2304	writel(0xffffffff, hsotg->regs + GOTGINT);
2305
2306	/* Clear any pending interrupts */
2307	writel(0xffffffff, hsotg->regs + GINTSTS);
2308
2309	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2310		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2311		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2312		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2313		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2314		hsotg->regs + GINTMSK);
2315
2316	if (using_dma(hsotg))
2317		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2318		       GAHBCFG_HBSTLEN_INCR4,
2319		       hsotg->regs + GAHBCFG);
2320	else
2321		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2322						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2323		       GAHBCFG_GLBL_INTR_EN,
2324		       hsotg->regs + GAHBCFG);
2325
2326	/*
2327	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2328	 * when we have no data to transfer. Otherwise we get being flooded by
2329	 * interrupts.
2330	 */
2331
2332	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2333		DIEPMSK_INTKNTXFEMPMSK : 0) |
2334		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2335		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2336		DIEPMSK_INTKNEPMISMSK,
2337		hsotg->regs + DIEPMSK);
2338
2339	/*
2340	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2341	 * DMA mode we may need this.
2342	 */
2343	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2344				    DIEPMSK_TIMEOUTMSK) : 0) |
2345		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2346		DOEPMSK_SETUPMSK,
2347		hsotg->regs + DOEPMSK);
2348
2349	writel(0, hsotg->regs + DAINTMSK);
2350
2351	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2352		readl(hsotg->regs + DIEPCTL0),
2353		readl(hsotg->regs + DOEPCTL0));
2354
2355	/* enable in and out endpoint interrupts */
2356	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2357
2358	/*
2359	 * Enable the RXFIFO when in slave mode, as this is how we collect
2360	 * the data. In DMA mode, we get events from the FIFO but also
2361	 * things we cannot process, so do not use it.
2362	 */
2363	if (!using_dma(hsotg))
2364		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2365
2366	/* Enable interrupts for EP0 in and out */
2367	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2368	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2369
2370	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2371	udelay(10);  /* see openiboot */
2372	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2373
2374	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2375
2376	/*
2377	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2378	 * writing to the EPCTL register..
2379	 */
2380
2381	/* set to read 1 8byte packet */
2382	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2383	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2384
2385	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2386	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2387	       DXEPCTL_USBACTEP,
2388	       hsotg->regs + DOEPCTL0);
2389
2390	/* enable, but don't activate EP0in */
2391	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2392	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2393
2394	s3c_hsotg_enqueue_setup(hsotg);
2395
2396	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2397		readl(hsotg->regs + DIEPCTL0),
2398		readl(hsotg->regs + DOEPCTL0));
2399
2400	/* clear global NAKs */
2401	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2402	       hsotg->regs + DCTL);
2403
2404	/* must be at-least 3ms to allow bus to see disconnect */
2405	mdelay(3);
2406
2407	/* remove the soft-disconnect and let's go */
2408	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2409}
2410
2411/**
2412 * s3c_hsotg_irq - handle device interrupt
2413 * @irq: The IRQ number triggered
2414 * @pw: The pw value when registered the handler.
2415 */
2416static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2417{
2418	struct s3c_hsotg *hsotg = pw;
2419	int retry_count = 8;
2420	u32 gintsts;
2421	u32 gintmsk;
2422
2423	spin_lock(&hsotg->lock);
2424irq_retry:
2425	gintsts = readl(hsotg->regs + GINTSTS);
2426	gintmsk = readl(hsotg->regs + GINTMSK);
2427
2428	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2429		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2430
2431	gintsts &= gintmsk;
2432
2433	if (gintsts & GINTSTS_OTGINT) {
2434		u32 otgint = readl(hsotg->regs + GOTGINT);
2435
2436		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2437
2438		writel(otgint, hsotg->regs + GOTGINT);
2439	}
2440
2441	if (gintsts & GINTSTS_SESSREQINT) {
2442		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2443		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2444	}
2445
2446	if (gintsts & GINTSTS_ENUMDONE) {
2447		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2448
2449		s3c_hsotg_irq_enumdone(hsotg);
2450	}
2451
2452	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2453		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2454			readl(hsotg->regs + DSTS),
2455			readl(hsotg->regs + GOTGCTL));
2456
2457		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2458	}
2459
2460	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2461		u32 daint = readl(hsotg->regs + DAINT);
2462		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2463		u32 daint_out, daint_in;
2464		int ep;
2465
2466		daint &= daintmsk;
2467		daint_out = daint >> DAINT_OUTEP_SHIFT;
2468		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2469
2470		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2471
2472		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2473			if (daint_out & 1)
2474				s3c_hsotg_epint(hsotg, ep, 0);
2475		}
2476
2477		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2478			if (daint_in & 1)
2479				s3c_hsotg_epint(hsotg, ep, 1);
2480		}
2481	}
2482
2483	if (gintsts & GINTSTS_USBRST) {
2484
2485		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2486
2487		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2488		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2489			readl(hsotg->regs + GNPTXSTS));
2490
2491		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2492
2493		if (usb_status & GOTGCTL_BSESVLD) {
2494			if (time_after(jiffies, hsotg->last_rst +
2495				       msecs_to_jiffies(200))) {
2496
2497				kill_all_requests(hsotg, &hsotg->eps[0],
2498							  -ECONNRESET, true);
2499
2500				s3c_hsotg_core_init(hsotg);
2501				hsotg->last_rst = jiffies;
2502			}
2503		}
2504	}
2505
2506	/* check both FIFOs */
2507
2508	if (gintsts & GINTSTS_NPTXFEMP) {
2509		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2510
2511		/*
2512		 * Disable the interrupt to stop it happening again
2513		 * unless one of these endpoint routines decides that
2514		 * it needs re-enabling
2515		 */
2516
2517		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2518		s3c_hsotg_irq_fifoempty(hsotg, false);
2519	}
2520
2521	if (gintsts & GINTSTS_PTXFEMP) {
2522		dev_dbg(hsotg->dev, "PTxFEmp\n");
2523
2524		/* See note in GINTSTS_NPTxFEmp */
2525
2526		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2527		s3c_hsotg_irq_fifoempty(hsotg, true);
2528	}
2529
2530	if (gintsts & GINTSTS_RXFLVL) {
2531		/*
2532		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2533		 * we need to retry s3c_hsotg_handle_rx if this is still
2534		 * set.
2535		 */
2536
2537		s3c_hsotg_handle_rx(hsotg);
2538	}
2539
2540	if (gintsts & GINTSTS_MODEMIS) {
2541		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2542		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2543	}
2544
2545	if (gintsts & GINTSTS_USBSUSP) {
2546		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2547		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2548
2549		call_gadget(hsotg, suspend);
2550	}
2551
2552	if (gintsts & GINTSTS_WKUPINT) {
2553		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2554		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2555
2556		call_gadget(hsotg, resume);
2557	}
2558
2559	if (gintsts & GINTSTS_ERLYSUSP) {
2560		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2561		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2562	}
2563
2564	/*
2565	 * these next two seem to crop-up occasionally causing the core
2566	 * to shutdown the USB transfer, so try clearing them and logging
2567	 * the occurrence.
2568	 */
2569
2570	if (gintsts & GINTSTS_GOUTNAKEFF) {
2571		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2572
2573		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2574
2575		s3c_hsotg_dump(hsotg);
2576	}
2577
2578	if (gintsts & GINTSTS_GINNAKEFF) {
2579		dev_info(hsotg->dev, "GINNakEff triggered\n");
2580
2581		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2582
2583		s3c_hsotg_dump(hsotg);
2584	}
2585
2586	/*
2587	 * if we've had fifo events, we should try and go around the
2588	 * loop again to see if there's any point in returning yet.
2589	 */
2590
2591	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2592			goto irq_retry;
2593
2594	spin_unlock(&hsotg->lock);
2595
2596	return IRQ_HANDLED;
2597}
2598
2599/**
2600 * s3c_hsotg_ep_enable - enable the given endpoint
2601 * @ep: The USB endpint to configure
2602 * @desc: The USB endpoint descriptor to configure with.
2603 *
2604 * This is called from the USB gadget code's usb_ep_enable().
2605 */
2606static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2607			       const struct usb_endpoint_descriptor *desc)
2608{
2609	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2610	struct s3c_hsotg *hsotg = hs_ep->parent;
2611	unsigned long flags;
2612	int index = hs_ep->index;
2613	u32 epctrl_reg;
2614	u32 epctrl;
2615	u32 mps;
2616	int dir_in;
2617	int ret = 0;
2618
2619	dev_dbg(hsotg->dev,
2620		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2621		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2622		desc->wMaxPacketSize, desc->bInterval);
2623
2624	/* not to be called for EP0 */
2625	WARN_ON(index == 0);
2626
2627	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2628	if (dir_in != hs_ep->dir_in) {
2629		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2630		return -EINVAL;
2631	}
2632
2633	mps = usb_endpoint_maxp(desc);
2634
2635	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2636
2637	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2638	epctrl = readl(hsotg->regs + epctrl_reg);
2639
2640	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2641		__func__, epctrl, epctrl_reg);
2642
2643	spin_lock_irqsave(&hsotg->lock, flags);
2644
2645	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2646	epctrl |= DXEPCTL_MPS(mps);
2647
2648	/*
2649	 * mark the endpoint as active, otherwise the core may ignore
2650	 * transactions entirely for this endpoint
2651	 */
2652	epctrl |= DXEPCTL_USBACTEP;
2653
2654	/*
2655	 * set the NAK status on the endpoint, otherwise we might try and
2656	 * do something with data that we've yet got a request to process
2657	 * since the RXFIFO will take data for an endpoint even if the
2658	 * size register hasn't been set.
2659	 */
2660
2661	epctrl |= DXEPCTL_SNAK;
2662
2663	/* update the endpoint state */
2664	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2665
2666	/* default, set to non-periodic */
2667	hs_ep->isochronous = 0;
2668	hs_ep->periodic = 0;
2669	hs_ep->halted = 0;
2670	hs_ep->interval = desc->bInterval;
2671
2672	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2673		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2674
2675	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2676	case USB_ENDPOINT_XFER_ISOC:
2677		epctrl |= DXEPCTL_EPTYPE_ISO;
2678		epctrl |= DXEPCTL_SETEVENFR;
2679		hs_ep->isochronous = 1;
2680		if (dir_in)
2681			hs_ep->periodic = 1;
2682		break;
2683
2684	case USB_ENDPOINT_XFER_BULK:
2685		epctrl |= DXEPCTL_EPTYPE_BULK;
2686		break;
2687
2688	case USB_ENDPOINT_XFER_INT:
2689		if (dir_in) {
2690			/*
2691			 * Allocate our TxFNum by simply using the index
2692			 * of the endpoint for the moment. We could do
2693			 * something better if the host indicates how
2694			 * many FIFOs we are expecting to use.
2695			 */
2696
2697			hs_ep->periodic = 1;
2698			epctrl |= DXEPCTL_TXFNUM(index);
2699		}
2700
2701		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2702		break;
2703
2704	case USB_ENDPOINT_XFER_CONTROL:
2705		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2706		break;
2707	}
2708
2709	/*
2710	 * if the hardware has dedicated fifos, we must give each IN EP
2711	 * a unique tx-fifo even if it is non-periodic.
2712	 */
2713	if (dir_in && hsotg->dedicated_fifos)
2714		epctrl |= DXEPCTL_TXFNUM(index);
2715
2716	/* for non control endpoints, set PID to D0 */
2717	if (index)
2718		epctrl |= DXEPCTL_SETD0PID;
2719
2720	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2721		__func__, epctrl);
2722
2723	writel(epctrl, hsotg->regs + epctrl_reg);
2724	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2725		__func__, readl(hsotg->regs + epctrl_reg));
2726
2727	/* enable the endpoint interrupt */
2728	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2729
2730	spin_unlock_irqrestore(&hsotg->lock, flags);
2731	return ret;
2732}
2733
2734/**
2735 * s3c_hsotg_ep_disable - disable given endpoint
2736 * @ep: The endpoint to disable.
2737 */
2738static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2739{
2740	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2741	struct s3c_hsotg *hsotg = hs_ep->parent;
2742	int dir_in = hs_ep->dir_in;
2743	int index = hs_ep->index;
2744	unsigned long flags;
2745	u32 epctrl_reg;
2746	u32 ctrl;
2747
2748	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2749
2750	if (ep == &hsotg->eps[0].ep) {
2751		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2752		return -EINVAL;
2753	}
2754
2755	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2756
2757	spin_lock_irqsave(&hsotg->lock, flags);
2758	/* terminate all requests with shutdown */
2759	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2760
2761
2762	ctrl = readl(hsotg->regs + epctrl_reg);
2763	ctrl &= ~DXEPCTL_EPENA;
2764	ctrl &= ~DXEPCTL_USBACTEP;
2765	ctrl |= DXEPCTL_SNAK;
2766
2767	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2768	writel(ctrl, hsotg->regs + epctrl_reg);
2769
2770	/* disable endpoint interrupts */
2771	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2772
2773	spin_unlock_irqrestore(&hsotg->lock, flags);
2774	return 0;
2775}
2776
2777/**
2778 * on_list - check request is on the given endpoint
2779 * @ep: The endpoint to check.
2780 * @test: The request to test if it is on the endpoint.
2781 */
2782static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2783{
2784	struct s3c_hsotg_req *req, *treq;
2785
2786	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2787		if (req == test)
2788			return true;
2789	}
2790
2791	return false;
2792}
2793
2794/**
2795 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2796 * @ep: The endpoint to dequeue.
2797 * @req: The request to be removed from a queue.
2798 */
2799static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2800{
2801	struct s3c_hsotg_req *hs_req = our_req(req);
2802	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2803	struct s3c_hsotg *hs = hs_ep->parent;
2804	unsigned long flags;
2805
2806	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2807
2808	spin_lock_irqsave(&hs->lock, flags);
2809
2810	if (!on_list(hs_ep, hs_req)) {
2811		spin_unlock_irqrestore(&hs->lock, flags);
2812		return -EINVAL;
2813	}
2814
2815	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2816	spin_unlock_irqrestore(&hs->lock, flags);
2817
2818	return 0;
2819}
2820
2821/**
2822 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2823 * @ep: The endpoint to set halt.
2824 * @value: Set or unset the halt.
2825 */
2826static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2827{
2828	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2829	struct s3c_hsotg *hs = hs_ep->parent;
2830	int index = hs_ep->index;
2831	u32 epreg;
2832	u32 epctl;
2833	u32 xfertype;
2834
2835	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2836
2837	if (index == 0) {
2838		if (value)
2839			s3c_hsotg_stall_ep0(hs);
2840		else
2841			dev_warn(hs->dev,
2842				 "%s: can't clear halt on ep0\n", __func__);
2843		return 0;
2844	}
2845
2846	/* write both IN and OUT control registers */
2847
2848	epreg = DIEPCTL(index);
2849	epctl = readl(hs->regs + epreg);
2850
2851	if (value) {
2852		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2853		if (epctl & DXEPCTL_EPENA)
2854			epctl |= DXEPCTL_EPDIS;
2855	} else {
2856		epctl &= ~DXEPCTL_STALL;
2857		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2858		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2859			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2860				epctl |= DXEPCTL_SETD0PID;
2861	}
2862
2863	writel(epctl, hs->regs + epreg);
2864
2865	epreg = DOEPCTL(index);
2866	epctl = readl(hs->regs + epreg);
2867
2868	if (value)
2869		epctl |= DXEPCTL_STALL;
2870	else {
2871		epctl &= ~DXEPCTL_STALL;
2872		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2873		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2874			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2875				epctl |= DXEPCTL_SETD0PID;
2876	}
2877
2878	writel(epctl, hs->regs + epreg);
2879
2880	hs_ep->halted = value;
2881
2882	return 0;
2883}
2884
2885/**
2886 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2887 * @ep: The endpoint to set halt.
2888 * @value: Set or unset the halt.
2889 */
2890static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2891{
2892	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2893	struct s3c_hsotg *hs = hs_ep->parent;
2894	unsigned long flags = 0;
2895	int ret = 0;
2896
2897	spin_lock_irqsave(&hs->lock, flags);
2898	ret = s3c_hsotg_ep_sethalt(ep, value);
2899	spin_unlock_irqrestore(&hs->lock, flags);
2900
2901	return ret;
2902}
2903
2904static struct usb_ep_ops s3c_hsotg_ep_ops = {
2905	.enable		= s3c_hsotg_ep_enable,
2906	.disable	= s3c_hsotg_ep_disable,
2907	.alloc_request	= s3c_hsotg_ep_alloc_request,
2908	.free_request	= s3c_hsotg_ep_free_request,
2909	.queue		= s3c_hsotg_ep_queue_lock,
2910	.dequeue	= s3c_hsotg_ep_dequeue,
2911	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2912	/* note, don't believe we have any call for the fifo routines */
2913};
2914
2915/**
2916 * s3c_hsotg_phy_enable - enable platform phy dev
2917 * @hsotg: The driver state
2918 *
2919 * A wrapper for platform code responsible for controlling
2920 * low-level USB code
2921 */
2922static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2923{
2924	struct platform_device *pdev = to_platform_device(hsotg->dev);
2925
2926	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2927
2928	if (hsotg->phy) {
2929		phy_init(hsotg->phy);
2930		phy_power_on(hsotg->phy);
2931	} else if (hsotg->uphy)
2932		usb_phy_init(hsotg->uphy);
2933	else if (hsotg->plat->phy_init)
2934		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2935}
2936
2937/**
2938 * s3c_hsotg_phy_disable - disable platform phy dev
2939 * @hsotg: The driver state
2940 *
2941 * A wrapper for platform code responsible for controlling
2942 * low-level USB code
2943 */
2944static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2945{
2946	struct platform_device *pdev = to_platform_device(hsotg->dev);
2947
2948	if (hsotg->phy) {
2949		phy_power_off(hsotg->phy);
2950		phy_exit(hsotg->phy);
2951	} else if (hsotg->uphy)
2952		usb_phy_shutdown(hsotg->uphy);
2953	else if (hsotg->plat->phy_exit)
2954		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2955}
2956
2957/**
2958 * s3c_hsotg_init - initalize the usb core
2959 * @hsotg: The driver state
2960 */
2961static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2962{
2963	/* unmask subset of endpoint interrupts */
2964
2965	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2966		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2967		hsotg->regs + DIEPMSK);
2968
2969	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2970		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2971		hsotg->regs + DOEPMSK);
2972
2973	writel(0, hsotg->regs + DAINTMSK);
2974
2975	/* Be in disconnected state until gadget is registered */
2976	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2977
2978	if (0) {
2979		/* post global nak until we're ready */
2980		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2981		       hsotg->regs + DCTL);
2982	}
2983
2984	/* setup fifos */
2985
2986	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2987		readl(hsotg->regs + GRXFSIZ),
2988		readl(hsotg->regs + GNPTXFSIZ));
2989
2990	s3c_hsotg_init_fifo(hsotg);
2991
2992	/* set the PLL on, remove the HNP/SRP and set the PHY */
2993	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2994	       hsotg->regs + GUSBCFG);
2995
2996	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2997	       hsotg->regs + GAHBCFG);
2998}
2999
3000/**
3001 * s3c_hsotg_udc_start - prepare the udc for work
3002 * @gadget: The usb gadget state
3003 * @driver: The usb gadget driver
3004 *
3005 * Perform initialization to prepare udc device and driver
3006 * to work.
3007 */
3008static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
3009			   struct usb_gadget_driver *driver)
3010{
3011	struct s3c_hsotg *hsotg = to_hsotg(gadget);
3012	int ret;
3013
3014	if (!hsotg) {
3015		pr_err("%s: called with no device\n", __func__);
3016		return -ENODEV;
3017	}
3018
3019	if (!driver) {
3020		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3021		return -EINVAL;
3022	}
3023
3024	if (driver->max_speed < USB_SPEED_FULL)
3025		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3026
3027	if (!driver->setup) {
3028		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3029		return -EINVAL;
3030	}
3031
3032	WARN_ON(hsotg->driver);
3033
3034	driver->driver.bus = NULL;
3035	hsotg->driver = driver;
3036	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3037	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3038
3039	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3040				    hsotg->supplies);
3041	if (ret) {
3042		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3043		goto err;
3044	}
3045
3046	hsotg->last_rst = jiffies;
3047	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3048	return 0;
3049
3050err:
3051	hsotg->driver = NULL;
3052	return ret;
3053}
3054
3055/**
3056 * s3c_hsotg_udc_stop - stop the udc
3057 * @gadget: The usb gadget state
3058 * @driver: The usb gadget driver
3059 *
3060 * Stop udc hw block and stay tunned for future transmissions
3061 */
3062static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
3063			  struct usb_gadget_driver *driver)
3064{
3065	struct s3c_hsotg *hsotg = to_hsotg(gadget);
3066	unsigned long flags = 0;
3067	int ep;
3068
3069	if (!hsotg)
3070		return -ENODEV;
3071
3072	/* all endpoints should be shutdown */
3073	for (ep = 0; ep < hsotg->num_of_eps; ep++)
3074		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3075
3076	spin_lock_irqsave(&hsotg->lock, flags);
3077
3078	s3c_hsotg_phy_disable(hsotg);
3079
3080	if (!driver)
3081		hsotg->driver = NULL;
3082
3083	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3084
3085	spin_unlock_irqrestore(&hsotg->lock, flags);
3086
3087	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3088
3089	return 0;
3090}
3091
3092/**
3093 * s3c_hsotg_gadget_getframe - read the frame number
3094 * @gadget: The usb gadget state
3095 *
3096 * Read the {micro} frame number
3097 */
3098static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3099{
3100	return s3c_hsotg_read_frameno(to_hsotg(gadget));
3101}
3102
3103/**
3104 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3105 * @gadget: The usb gadget state
3106 * @is_on: Current state of the USB PHY
3107 *
3108 * Connect/Disconnect the USB PHY pullup
3109 */
3110static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3111{
3112	struct s3c_hsotg *hsotg = to_hsotg(gadget);
3113	unsigned long flags = 0;
3114
3115	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3116
3117	spin_lock_irqsave(&hsotg->lock, flags);
3118	if (is_on) {
3119		s3c_hsotg_phy_enable(hsotg);
3120		s3c_hsotg_core_init(hsotg);
3121	} else {
3122		s3c_hsotg_disconnect(hsotg);
3123		s3c_hsotg_phy_disable(hsotg);
3124	}
3125
3126	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3127	spin_unlock_irqrestore(&hsotg->lock, flags);
3128
3129	return 0;
3130}
3131
3132static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3133	.get_frame	= s3c_hsotg_gadget_getframe,
3134	.udc_start		= s3c_hsotg_udc_start,
3135	.udc_stop		= s3c_hsotg_udc_stop,
3136	.pullup                 = s3c_hsotg_pullup,
3137};
3138
3139/**
3140 * s3c_hsotg_initep - initialise a single endpoint
3141 * @hsotg: The device state.
3142 * @hs_ep: The endpoint to be initialised.
3143 * @epnum: The endpoint number
3144 *
3145 * Initialise the given endpoint (as part of the probe and device state
3146 * creation) to give to the gadget driver. Setup the endpoint name, any
3147 * direction information and other state that may be required.
3148 */
3149static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3150				       struct s3c_hsotg_ep *hs_ep,
3151				       int epnum)
3152{
3153	u32 ptxfifo;
3154	char *dir;
3155
3156	if (epnum == 0)
3157		dir = "";
3158	else if ((epnum % 2) == 0) {
3159		dir = "out";
3160	} else {
3161		dir = "in";
3162		hs_ep->dir_in = 1;
3163	}
3164
3165	hs_ep->index = epnum;
3166
3167	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3168
3169	INIT_LIST_HEAD(&hs_ep->queue);
3170	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3171
3172	/* add to the list of endpoints known by the gadget driver */
3173	if (epnum)
3174		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3175
3176	hs_ep->parent = hsotg;
3177	hs_ep->ep.name = hs_ep->name;
3178	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3179	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3180
3181	/*
3182	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3183	 * an OUT endpoint, we may as well do this if in future the
3184	 * code is changed to make each endpoint's direction changeable.
3185	 */
3186
3187	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
3188	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3189
3190	/*
3191	 * if we're using dma, we need to set the next-endpoint pointer
3192	 * to be something valid.
3193	 */
3194
3195	if (using_dma(hsotg)) {
3196		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3197		writel(next, hsotg->regs + DIEPCTL(epnum));
3198		writel(next, hsotg->regs + DOEPCTL(epnum));
3199	}
3200}
3201
3202/**
3203 * s3c_hsotg_hw_cfg - read HW configuration registers
3204 * @param: The device state
3205 *
3206 * Read the USB core HW configuration registers
3207 */
3208static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3209{
3210	u32 cfg2, cfg4;
3211	/* check hardware configuration */
3212
3213	cfg2 = readl(hsotg->regs + 0x48);
3214	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3215
3216	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3217
3218	cfg4 = readl(hsotg->regs + 0x50);
3219	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3220
3221	dev_info(hsotg->dev, "%s fifos\n",
3222		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3223}
3224
3225/**
3226 * s3c_hsotg_dump - dump state of the udc
3227 * @param: The device state
3228 */
3229static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3230{
3231#ifdef DEBUG
3232	struct device *dev = hsotg->dev;
3233	void __iomem *regs = hsotg->regs;
3234	u32 val;
3235	int idx;
3236
3237	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3238		 readl(regs + DCFG), readl(regs + DCTL),
3239		 readl(regs + DIEPMSK));
3240
3241	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3242		 readl(regs + GAHBCFG), readl(regs + 0x44));
3243
3244	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3245		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3246
3247	/* show periodic fifo settings */
3248
3249	for (idx = 1; idx <= 15; idx++) {
3250		val = readl(regs + DPTXFSIZN(idx));
3251		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3252			 val >> FIFOSIZE_DEPTH_SHIFT,
3253			 val & FIFOSIZE_STARTADDR_MASK);
3254	}
3255
3256	for (idx = 0; idx < 15; idx++) {
3257		dev_info(dev,
3258			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3259			 readl(regs + DIEPCTL(idx)),
3260			 readl(regs + DIEPTSIZ(idx)),
3261			 readl(regs + DIEPDMA(idx)));
3262
3263		val = readl(regs + DOEPCTL(idx));
3264		dev_info(dev,
3265			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3266			 idx, readl(regs + DOEPCTL(idx)),
3267			 readl(regs + DOEPTSIZ(idx)),
3268			 readl(regs + DOEPDMA(idx)));
3269
3270	}
3271
3272	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3273		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3274#endif
3275}
3276
3277/**
3278 * state_show - debugfs: show overall driver and device state.
3279 * @seq: The seq file to write to.
3280 * @v: Unused parameter.
3281 *
3282 * This debugfs entry shows the overall state of the hardware and
3283 * some general information about each of the endpoints available
3284 * to the system.
3285 */
3286static int state_show(struct seq_file *seq, void *v)
3287{
3288	struct s3c_hsotg *hsotg = seq->private;
3289	void __iomem *regs = hsotg->regs;
3290	int idx;
3291
3292	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3293		 readl(regs + DCFG),
3294		 readl(regs + DCTL),
3295		 readl(regs + DSTS));
3296
3297	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3298		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3299
3300	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3301		   readl(regs + GINTMSK),
3302		   readl(regs + GINTSTS));
3303
3304	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3305		   readl(regs + DAINTMSK),
3306		   readl(regs + DAINT));
3307
3308	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3309		   readl(regs + GNPTXSTS),
3310		   readl(regs + GRXSTSR));
3311
3312	seq_puts(seq, "\nEndpoint status:\n");
3313
3314	for (idx = 0; idx < 15; idx++) {
3315		u32 in, out;
3316
3317		in = readl(regs + DIEPCTL(idx));
3318		out = readl(regs + DOEPCTL(idx));
3319
3320		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3321			   idx, in, out);
3322
3323		in = readl(regs + DIEPTSIZ(idx));
3324		out = readl(regs + DOEPTSIZ(idx));
3325
3326		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3327			   in, out);
3328
3329		seq_puts(seq, "\n");
3330	}
3331
3332	return 0;
3333}
3334
3335static int state_open(struct inode *inode, struct file *file)
3336{
3337	return single_open(file, state_show, inode->i_private);
3338}
3339
3340static const struct file_operations state_fops = {
3341	.owner		= THIS_MODULE,
3342	.open		= state_open,
3343	.read		= seq_read,
3344	.llseek		= seq_lseek,
3345	.release	= single_release,
3346};
3347
3348/**
3349 * fifo_show - debugfs: show the fifo information
3350 * @seq: The seq_file to write data to.
3351 * @v: Unused parameter.
3352 *
3353 * Show the FIFO information for the overall fifo and all the
3354 * periodic transmission FIFOs.
3355 */
3356static int fifo_show(struct seq_file *seq, void *v)
3357{
3358	struct s3c_hsotg *hsotg = seq->private;
3359	void __iomem *regs = hsotg->regs;
3360	u32 val;
3361	int idx;
3362
3363	seq_puts(seq, "Non-periodic FIFOs:\n");
3364	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3365
3366	val = readl(regs + GNPTXFSIZ);
3367	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3368		   val >> FIFOSIZE_DEPTH_SHIFT,
3369		   val & FIFOSIZE_DEPTH_MASK);
3370
3371	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3372
3373	for (idx = 1; idx <= 15; idx++) {
3374		val = readl(regs + DPTXFSIZN(idx));
3375
3376		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3377			   val >> FIFOSIZE_DEPTH_SHIFT,
3378			   val & FIFOSIZE_STARTADDR_MASK);
3379	}
3380
3381	return 0;
3382}
3383
3384static int fifo_open(struct inode *inode, struct file *file)
3385{
3386	return single_open(file, fifo_show, inode->i_private);
3387}
3388
3389static const struct file_operations fifo_fops = {
3390	.owner		= THIS_MODULE,
3391	.open		= fifo_open,
3392	.read		= seq_read,
3393	.llseek		= seq_lseek,
3394	.release	= single_release,
3395};
3396
3397
3398static const char *decode_direction(int is_in)
3399{
3400	return is_in ? "in" : "out";
3401}
3402
3403/**
3404 * ep_show - debugfs: show the state of an endpoint.
3405 * @seq: The seq_file to write data to.
3406 * @v: Unused parameter.
3407 *
3408 * This debugfs entry shows the state of the given endpoint (one is
3409 * registered for each available).
3410 */
3411static int ep_show(struct seq_file *seq, void *v)
3412{
3413	struct s3c_hsotg_ep *ep = seq->private;
3414	struct s3c_hsotg *hsotg = ep->parent;
3415	struct s3c_hsotg_req *req;
3416	void __iomem *regs = hsotg->regs;
3417	int index = ep->index;
3418	int show_limit = 15;
3419	unsigned long flags;
3420
3421	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3422		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3423
3424	/* first show the register state */
3425
3426	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3427		   readl(regs + DIEPCTL(index)),
3428		   readl(regs + DOEPCTL(index)));
3429
3430	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3431		   readl(regs + DIEPDMA(index)),
3432		   readl(regs + DOEPDMA(index)));
3433
3434	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3435		   readl(regs + DIEPINT(index)),
3436		   readl(regs + DOEPINT(index)));
3437
3438	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3439		   readl(regs + DIEPTSIZ(index)),
3440		   readl(regs + DOEPTSIZ(index)));
3441
3442	seq_puts(seq, "\n");
3443	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3444	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3445
3446	seq_printf(seq, "request list (%p,%p):\n",
3447		   ep->queue.next, ep->queue.prev);
3448
3449	spin_lock_irqsave(&hsotg->lock, flags);
3450
3451	list_for_each_entry(req, &ep->queue, queue) {
3452		if (--show_limit < 0) {
3453			seq_puts(seq, "not showing more requests...\n");
3454			break;
3455		}
3456
3457		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3458			   req == ep->req ? '*' : ' ',
3459			   req, req->req.length, req->req.buf);
3460		seq_printf(seq, "%d done, res %d\n",
3461			   req->req.actual, req->req.status);
3462	}
3463
3464	spin_unlock_irqrestore(&hsotg->lock, flags);
3465
3466	return 0;
3467}
3468
3469static int ep_open(struct inode *inode, struct file *file)
3470{
3471	return single_open(file, ep_show, inode->i_private);
3472}
3473
3474static const struct file_operations ep_fops = {
3475	.owner		= THIS_MODULE,
3476	.open		= ep_open,
3477	.read		= seq_read,
3478	.llseek		= seq_lseek,
3479	.release	= single_release,
3480};
3481
3482/**
3483 * s3c_hsotg_create_debug - create debugfs directory and files
3484 * @hsotg: The driver state
3485 *
3486 * Create the debugfs files to allow the user to get information
3487 * about the state of the system. The directory name is created
3488 * with the same name as the device itself, in case we end up
3489 * with multiple blocks in future systems.
3490 */
3491static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3492{
3493	struct dentry *root;
3494	unsigned epidx;
3495
3496	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3497	hsotg->debug_root = root;
3498	if (IS_ERR(root)) {
3499		dev_err(hsotg->dev, "cannot create debug root\n");
3500		return;
3501	}
3502
3503	/* create general state file */
3504
3505	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3506						hsotg, &state_fops);
3507
3508	if (IS_ERR(hsotg->debug_file))
3509		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3510
3511	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3512						hsotg, &fifo_fops);
3513
3514	if (IS_ERR(hsotg->debug_fifo))
3515		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3516
3517	/* create one file for each endpoint */
3518
3519	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3520		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3521
3522		ep->debugfs = debugfs_create_file(ep->name, 0444,
3523						  root, ep, &ep_fops);
3524
3525		if (IS_ERR(ep->debugfs))
3526			dev_err(hsotg->dev, "failed to create %s debug file\n",
3527				ep->name);
3528	}
3529}
3530
3531/**
3532 * s3c_hsotg_delete_debug - cleanup debugfs entries
3533 * @hsotg: The driver state
3534 *
3535 * Cleanup (remove) the debugfs files for use on module exit.
3536 */
3537static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3538{
3539	unsigned epidx;
3540
3541	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3542		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3543		debugfs_remove(ep->debugfs);
3544	}
3545
3546	debugfs_remove(hsotg->debug_file);
3547	debugfs_remove(hsotg->debug_fifo);
3548	debugfs_remove(hsotg->debug_root);
3549}
3550
3551/**
3552 * s3c_hsotg_probe - probe function for hsotg driver
3553 * @pdev: The platform information for the driver
3554 */
3555
3556static int s3c_hsotg_probe(struct platform_device *pdev)
3557{
3558	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3559	struct phy *phy;
3560	struct usb_phy *uphy;
3561	struct device *dev = &pdev->dev;
3562	struct s3c_hsotg_ep *eps;
3563	struct s3c_hsotg *hsotg;
3564	struct resource *res;
3565	int epnum;
3566	int ret;
3567	int i;
3568
3569	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3570	if (!hsotg) {
3571		dev_err(dev, "cannot get memory\n");
3572		return -ENOMEM;
3573	}
3574
3575	/*
3576	 * Attempt to find a generic PHY, then look for an old style
3577	 * USB PHY, finally fall back to pdata
3578	 */
3579	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3580	if (IS_ERR(phy)) {
3581		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3582		if (IS_ERR(uphy)) {
3583			/* Fallback for pdata */
3584			plat = dev_get_platdata(&pdev->dev);
3585			if (!plat) {
3586				dev_err(&pdev->dev,
3587				"no platform data or transceiver defined\n");
3588				return -EPROBE_DEFER;
3589			}
3590			hsotg->plat = plat;
3591		} else
3592			hsotg->uphy = uphy;
3593	} else
3594		hsotg->phy = phy;
3595
3596	hsotg->dev = dev;
3597
3598	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3599	if (IS_ERR(hsotg->clk)) {
3600		dev_err(dev, "cannot get otg clock\n");
3601		return PTR_ERR(hsotg->clk);
3602	}
3603
3604	platform_set_drvdata(pdev, hsotg);
3605
3606	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3607
3608	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3609	if (IS_ERR(hsotg->regs)) {
3610		ret = PTR_ERR(hsotg->regs);
3611		goto err_clk;
3612	}
3613
3614	ret = platform_get_irq(pdev, 0);
3615	if (ret < 0) {
3616		dev_err(dev, "cannot find IRQ\n");
3617		goto err_clk;
3618	}
3619
3620	spin_lock_init(&hsotg->lock);
3621
3622	hsotg->irq = ret;
3623
3624	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3625				dev_name(dev), hsotg);
3626	if (ret < 0) {
3627		dev_err(dev, "cannot claim IRQ\n");
3628		goto err_clk;
3629	}
3630
3631	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3632
3633	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3634	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3635	hsotg->gadget.name = dev_name(dev);
3636
3637	/* reset the system */
3638
3639	clk_prepare_enable(hsotg->clk);
3640
3641	/* regulators */
3642
3643	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3644		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3645
3646	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3647				 hsotg->supplies);
3648	if (ret) {
3649		dev_err(dev, "failed to request supplies: %d\n", ret);
3650		goto err_clk;
3651	}
3652
3653	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3654				    hsotg->supplies);
3655
3656	if (ret) {
3657		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3658		goto err_supplies;
3659	}
3660
3661	/* Set default UTMI width */
3662	hsotg->phyif = GUSBCFG_PHYIF16;
3663
3664	/*
3665	 * If using the generic PHY framework, check if the PHY bus
3666	 * width is 8-bit and set the phyif appropriately.
3667	 */
3668	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3669		hsotg->phyif = GUSBCFG_PHYIF8;
3670
3671	if (hsotg->phy)
3672		phy_init(hsotg->phy);
3673
3674	/* usb phy enable */
3675	s3c_hsotg_phy_enable(hsotg);
3676
3677	s3c_hsotg_corereset(hsotg);
3678	s3c_hsotg_init(hsotg);
3679	s3c_hsotg_hw_cfg(hsotg);
3680
3681	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3682
3683	if (hsotg->num_of_eps == 0) {
3684		dev_err(dev, "wrong number of EPs (zero)\n");
3685		ret = -EINVAL;
3686		goto err_supplies;
3687	}
3688
3689	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3690		      GFP_KERNEL);
3691	if (!eps) {
3692		dev_err(dev, "cannot get memory\n");
3693		ret = -ENOMEM;
3694		goto err_supplies;
3695	}
3696
3697	hsotg->eps = eps;
3698
3699	/* setup endpoint information */
3700
3701	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3702	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3703
3704	/* allocate EP0 request */
3705
3706	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3707						     GFP_KERNEL);
3708	if (!hsotg->ctrl_req) {
3709		dev_err(dev, "failed to allocate ctrl req\n");
3710		ret = -ENOMEM;
3711		goto err_ep_mem;
3712	}
3713
3714	/* initialise the endpoints now the core has been initialised */
3715	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3716		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3717
3718	/* disable power and clock */
3719
3720	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3721				    hsotg->supplies);
3722	if (ret) {
3723		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3724		goto err_ep_mem;
3725	}
3726
3727	s3c_hsotg_phy_disable(hsotg);
3728
3729	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3730	if (ret)
3731		goto err_ep_mem;
3732
3733	s3c_hsotg_create_debug(hsotg);
3734
3735	s3c_hsotg_dump(hsotg);
3736
3737	return 0;
3738
3739err_ep_mem:
3740	kfree(eps);
3741err_supplies:
3742	s3c_hsotg_phy_disable(hsotg);
3743err_clk:
3744	clk_disable_unprepare(hsotg->clk);
3745
3746	return ret;
3747}
3748
3749/**
3750 * s3c_hsotg_remove - remove function for hsotg driver
3751 * @pdev: The platform information for the driver
3752 */
3753static int s3c_hsotg_remove(struct platform_device *pdev)
3754{
3755	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3756
3757	usb_del_gadget_udc(&hsotg->gadget);
3758
3759	s3c_hsotg_delete_debug(hsotg);
3760
3761	if (hsotg->driver) {
3762		/* should have been done already by driver model core */
3763		usb_gadget_unregister_driver(hsotg->driver);
3764	}
3765
3766	s3c_hsotg_phy_disable(hsotg);
3767	if (hsotg->phy)
3768		phy_exit(hsotg->phy);
3769	clk_disable_unprepare(hsotg->clk);
3770
3771	return 0;
3772}
3773
3774static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
3775{
3776	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3777	unsigned long flags;
3778	int ret = 0;
3779
3780	if (hsotg->driver)
3781		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3782			 hsotg->driver->driver.name);
3783
3784	spin_lock_irqsave(&hsotg->lock, flags);
3785	s3c_hsotg_disconnect(hsotg);
3786	s3c_hsotg_phy_disable(hsotg);
3787	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3788	spin_unlock_irqrestore(&hsotg->lock, flags);
3789
3790	if (hsotg->driver) {
3791		int ep;
3792		for (ep = 0; ep < hsotg->num_of_eps; ep++)
3793			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3794
3795		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3796					     hsotg->supplies);
3797	}
3798
3799	return ret;
3800}
3801
3802static int s3c_hsotg_resume(struct platform_device *pdev)
3803{
3804	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3805	unsigned long flags;
3806	int ret = 0;
3807
3808	if (hsotg->driver) {
3809		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3810			 hsotg->driver->driver.name);
3811		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3812				      hsotg->supplies);
3813	}
3814
3815	spin_lock_irqsave(&hsotg->lock, flags);
3816	hsotg->last_rst = jiffies;
3817	s3c_hsotg_phy_enable(hsotg);
3818	s3c_hsotg_core_init(hsotg);
3819	spin_unlock_irqrestore(&hsotg->lock, flags);
3820
3821	return ret;
3822}
3823
3824#ifdef CONFIG_OF
3825static const struct of_device_id s3c_hsotg_of_ids[] = {
3826	{ .compatible = "samsung,s3c6400-hsotg", },
3827	{ .compatible = "snps,dwc2", },
3828	{ /* sentinel */ }
3829};
3830MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3831#endif
3832
3833static struct platform_driver s3c_hsotg_driver = {
3834	.driver		= {
3835		.name	= "s3c-hsotg",
3836		.owner	= THIS_MODULE,
3837		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3838	},
3839	.probe		= s3c_hsotg_probe,
3840	.remove		= s3c_hsotg_remove,
3841	.suspend	= s3c_hsotg_suspend,
3842	.resume		= s3c_hsotg_resume,
3843};
3844
3845module_platform_driver(s3c_hsotg_driver);
3846
3847MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3848MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3849MODULE_LICENSE("GPL");
3850MODULE_ALIAS("platform:s3c-hsotg");
3851