1/*
2 * Copyright (C) 2008 Red Hat.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/pagemap.h>
20#include <linux/sched.h>
21#include <linux/slab.h>
22#include <linux/math64.h>
23#include <linux/ratelimit.h>
24#include "ctree.h"
25#include "free-space-cache.h"
26#include "transaction.h"
27#include "disk-io.h"
28#include "extent_io.h"
29#include "inode-map.h"
30
31#define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32#define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33
34static int link_free_space(struct btrfs_free_space_ctl *ctl,
35			   struct btrfs_free_space *info);
36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37			      struct btrfs_free_space *info);
38
39static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40					       struct btrfs_path *path,
41					       u64 offset)
42{
43	struct btrfs_key key;
44	struct btrfs_key location;
45	struct btrfs_disk_key disk_key;
46	struct btrfs_free_space_header *header;
47	struct extent_buffer *leaf;
48	struct inode *inode = NULL;
49	int ret;
50
51	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52	key.offset = offset;
53	key.type = 0;
54
55	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56	if (ret < 0)
57		return ERR_PTR(ret);
58	if (ret > 0) {
59		btrfs_release_path(path);
60		return ERR_PTR(-ENOENT);
61	}
62
63	leaf = path->nodes[0];
64	header = btrfs_item_ptr(leaf, path->slots[0],
65				struct btrfs_free_space_header);
66	btrfs_free_space_key(leaf, header, &disk_key);
67	btrfs_disk_key_to_cpu(&location, &disk_key);
68	btrfs_release_path(path);
69
70	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71	if (!inode)
72		return ERR_PTR(-ENOENT);
73	if (IS_ERR(inode))
74		return inode;
75	if (is_bad_inode(inode)) {
76		iput(inode);
77		return ERR_PTR(-ENOENT);
78	}
79
80	mapping_set_gfp_mask(inode->i_mapping,
81			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82
83	return inode;
84}
85
86struct inode *lookup_free_space_inode(struct btrfs_root *root,
87				      struct btrfs_block_group_cache
88				      *block_group, struct btrfs_path *path)
89{
90	struct inode *inode = NULL;
91	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92
93	spin_lock(&block_group->lock);
94	if (block_group->inode)
95		inode = igrab(block_group->inode);
96	spin_unlock(&block_group->lock);
97	if (inode)
98		return inode;
99
100	inode = __lookup_free_space_inode(root, path,
101					  block_group->key.objectid);
102	if (IS_ERR(inode))
103		return inode;
104
105	spin_lock(&block_group->lock);
106	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107		btrfs_info(root->fs_info,
108			"Old style space inode found, converting.");
109		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
110			BTRFS_INODE_NODATACOW;
111		block_group->disk_cache_state = BTRFS_DC_CLEAR;
112	}
113
114	if (!block_group->iref) {
115		block_group->inode = igrab(inode);
116		block_group->iref = 1;
117	}
118	spin_unlock(&block_group->lock);
119
120	return inode;
121}
122
123static int __create_free_space_inode(struct btrfs_root *root,
124				     struct btrfs_trans_handle *trans,
125				     struct btrfs_path *path,
126				     u64 ino, u64 offset)
127{
128	struct btrfs_key key;
129	struct btrfs_disk_key disk_key;
130	struct btrfs_free_space_header *header;
131	struct btrfs_inode_item *inode_item;
132	struct extent_buffer *leaf;
133	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
134	int ret;
135
136	ret = btrfs_insert_empty_inode(trans, root, path, ino);
137	if (ret)
138		return ret;
139
140	/* We inline crc's for the free disk space cache */
141	if (ino != BTRFS_FREE_INO_OBJECTID)
142		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
143
144	leaf = path->nodes[0];
145	inode_item = btrfs_item_ptr(leaf, path->slots[0],
146				    struct btrfs_inode_item);
147	btrfs_item_key(leaf, &disk_key, path->slots[0]);
148	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
149			     sizeof(*inode_item));
150	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
151	btrfs_set_inode_size(leaf, inode_item, 0);
152	btrfs_set_inode_nbytes(leaf, inode_item, 0);
153	btrfs_set_inode_uid(leaf, inode_item, 0);
154	btrfs_set_inode_gid(leaf, inode_item, 0);
155	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
156	btrfs_set_inode_flags(leaf, inode_item, flags);
157	btrfs_set_inode_nlink(leaf, inode_item, 1);
158	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
159	btrfs_set_inode_block_group(leaf, inode_item, offset);
160	btrfs_mark_buffer_dirty(leaf);
161	btrfs_release_path(path);
162
163	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
164	key.offset = offset;
165	key.type = 0;
166
167	ret = btrfs_insert_empty_item(trans, root, path, &key,
168				      sizeof(struct btrfs_free_space_header));
169	if (ret < 0) {
170		btrfs_release_path(path);
171		return ret;
172	}
173	leaf = path->nodes[0];
174	header = btrfs_item_ptr(leaf, path->slots[0],
175				struct btrfs_free_space_header);
176	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
177	btrfs_set_free_space_key(leaf, header, &disk_key);
178	btrfs_mark_buffer_dirty(leaf);
179	btrfs_release_path(path);
180
181	return 0;
182}
183
184int create_free_space_inode(struct btrfs_root *root,
185			    struct btrfs_trans_handle *trans,
186			    struct btrfs_block_group_cache *block_group,
187			    struct btrfs_path *path)
188{
189	int ret;
190	u64 ino;
191
192	ret = btrfs_find_free_objectid(root, &ino);
193	if (ret < 0)
194		return ret;
195
196	return __create_free_space_inode(root, trans, path, ino,
197					 block_group->key.objectid);
198}
199
200int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
201				       struct btrfs_block_rsv *rsv)
202{
203	u64 needed_bytes;
204	int ret;
205
206	/* 1 for slack space, 1 for updating the inode */
207	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
208		btrfs_calc_trans_metadata_size(root, 1);
209
210	spin_lock(&rsv->lock);
211	if (rsv->reserved < needed_bytes)
212		ret = -ENOSPC;
213	else
214		ret = 0;
215	spin_unlock(&rsv->lock);
216	return ret;
217}
218
219int btrfs_truncate_free_space_cache(struct btrfs_root *root,
220				    struct btrfs_trans_handle *trans,
221				    struct inode *inode)
222{
223	int ret = 0;
224
225	btrfs_i_size_write(inode, 0);
226	truncate_pagecache(inode, 0);
227
228	/*
229	 * We don't need an orphan item because truncating the free space cache
230	 * will never be split across transactions.
231	 */
232	ret = btrfs_truncate_inode_items(trans, root, inode,
233					 0, BTRFS_EXTENT_DATA_KEY);
234	if (ret) {
235		btrfs_abort_transaction(trans, root, ret);
236		return ret;
237	}
238
239	ret = btrfs_update_inode(trans, root, inode);
240	if (ret)
241		btrfs_abort_transaction(trans, root, ret);
242
243	return ret;
244}
245
246static int readahead_cache(struct inode *inode)
247{
248	struct file_ra_state *ra;
249	unsigned long last_index;
250
251	ra = kzalloc(sizeof(*ra), GFP_NOFS);
252	if (!ra)
253		return -ENOMEM;
254
255	file_ra_state_init(ra, inode->i_mapping);
256	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
257
258	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
259
260	kfree(ra);
261
262	return 0;
263}
264
265struct io_ctl {
266	void *cur, *orig;
267	struct page *page;
268	struct page **pages;
269	struct btrfs_root *root;
270	unsigned long size;
271	int index;
272	int num_pages;
273	unsigned check_crcs:1;
274};
275
276static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
277		       struct btrfs_root *root, int write)
278{
279	int num_pages;
280	int check_crcs = 0;
281
282	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
283
284	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
285		check_crcs = 1;
286
287	/* Make sure we can fit our crcs into the first page */
288	if (write && check_crcs &&
289	    (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
290		return -ENOSPC;
291
292	memset(io_ctl, 0, sizeof(struct io_ctl));
293
294	io_ctl->pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
295	if (!io_ctl->pages)
296		return -ENOMEM;
297
298	io_ctl->num_pages = num_pages;
299	io_ctl->root = root;
300	io_ctl->check_crcs = check_crcs;
301
302	return 0;
303}
304
305static void io_ctl_free(struct io_ctl *io_ctl)
306{
307	kfree(io_ctl->pages);
308}
309
310static void io_ctl_unmap_page(struct io_ctl *io_ctl)
311{
312	if (io_ctl->cur) {
313		kunmap(io_ctl->page);
314		io_ctl->cur = NULL;
315		io_ctl->orig = NULL;
316	}
317}
318
319static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
320{
321	ASSERT(io_ctl->index < io_ctl->num_pages);
322	io_ctl->page = io_ctl->pages[io_ctl->index++];
323	io_ctl->cur = kmap(io_ctl->page);
324	io_ctl->orig = io_ctl->cur;
325	io_ctl->size = PAGE_CACHE_SIZE;
326	if (clear)
327		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
328}
329
330static void io_ctl_drop_pages(struct io_ctl *io_ctl)
331{
332	int i;
333
334	io_ctl_unmap_page(io_ctl);
335
336	for (i = 0; i < io_ctl->num_pages; i++) {
337		if (io_ctl->pages[i]) {
338			ClearPageChecked(io_ctl->pages[i]);
339			unlock_page(io_ctl->pages[i]);
340			page_cache_release(io_ctl->pages[i]);
341		}
342	}
343}
344
345static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
346				int uptodate)
347{
348	struct page *page;
349	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
350	int i;
351
352	for (i = 0; i < io_ctl->num_pages; i++) {
353		page = find_or_create_page(inode->i_mapping, i, mask);
354		if (!page) {
355			io_ctl_drop_pages(io_ctl);
356			return -ENOMEM;
357		}
358		io_ctl->pages[i] = page;
359		if (uptodate && !PageUptodate(page)) {
360			btrfs_readpage(NULL, page);
361			lock_page(page);
362			if (!PageUptodate(page)) {
363				btrfs_err(BTRFS_I(inode)->root->fs_info,
364					   "error reading free space cache");
365				io_ctl_drop_pages(io_ctl);
366				return -EIO;
367			}
368		}
369	}
370
371	for (i = 0; i < io_ctl->num_pages; i++) {
372		clear_page_dirty_for_io(io_ctl->pages[i]);
373		set_page_extent_mapped(io_ctl->pages[i]);
374	}
375
376	return 0;
377}
378
379static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
380{
381	__le64 *val;
382
383	io_ctl_map_page(io_ctl, 1);
384
385	/*
386	 * Skip the csum areas.  If we don't check crcs then we just have a
387	 * 64bit chunk at the front of the first page.
388	 */
389	if (io_ctl->check_crcs) {
390		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
391		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
392	} else {
393		io_ctl->cur += sizeof(u64);
394		io_ctl->size -= sizeof(u64) * 2;
395	}
396
397	val = io_ctl->cur;
398	*val = cpu_to_le64(generation);
399	io_ctl->cur += sizeof(u64);
400}
401
402static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
403{
404	__le64 *gen;
405
406	/*
407	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
408	 * chunk at the front of the first page.
409	 */
410	if (io_ctl->check_crcs) {
411		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
412		io_ctl->size -= sizeof(u64) +
413			(sizeof(u32) * io_ctl->num_pages);
414	} else {
415		io_ctl->cur += sizeof(u64);
416		io_ctl->size -= sizeof(u64) * 2;
417	}
418
419	gen = io_ctl->cur;
420	if (le64_to_cpu(*gen) != generation) {
421		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
422				   "(%Lu) does not match inode (%Lu)\n", *gen,
423				   generation);
424		io_ctl_unmap_page(io_ctl);
425		return -EIO;
426	}
427	io_ctl->cur += sizeof(u64);
428	return 0;
429}
430
431static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
432{
433	u32 *tmp;
434	u32 crc = ~(u32)0;
435	unsigned offset = 0;
436
437	if (!io_ctl->check_crcs) {
438		io_ctl_unmap_page(io_ctl);
439		return;
440	}
441
442	if (index == 0)
443		offset = sizeof(u32) * io_ctl->num_pages;
444
445	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
446			      PAGE_CACHE_SIZE - offset);
447	btrfs_csum_final(crc, (char *)&crc);
448	io_ctl_unmap_page(io_ctl);
449	tmp = kmap(io_ctl->pages[0]);
450	tmp += index;
451	*tmp = crc;
452	kunmap(io_ctl->pages[0]);
453}
454
455static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
456{
457	u32 *tmp, val;
458	u32 crc = ~(u32)0;
459	unsigned offset = 0;
460
461	if (!io_ctl->check_crcs) {
462		io_ctl_map_page(io_ctl, 0);
463		return 0;
464	}
465
466	if (index == 0)
467		offset = sizeof(u32) * io_ctl->num_pages;
468
469	tmp = kmap(io_ctl->pages[0]);
470	tmp += index;
471	val = *tmp;
472	kunmap(io_ctl->pages[0]);
473
474	io_ctl_map_page(io_ctl, 0);
475	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
476			      PAGE_CACHE_SIZE - offset);
477	btrfs_csum_final(crc, (char *)&crc);
478	if (val != crc) {
479		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
480				   "space cache\n");
481		io_ctl_unmap_page(io_ctl);
482		return -EIO;
483	}
484
485	return 0;
486}
487
488static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
489			    void *bitmap)
490{
491	struct btrfs_free_space_entry *entry;
492
493	if (!io_ctl->cur)
494		return -ENOSPC;
495
496	entry = io_ctl->cur;
497	entry->offset = cpu_to_le64(offset);
498	entry->bytes = cpu_to_le64(bytes);
499	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
500		BTRFS_FREE_SPACE_EXTENT;
501	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
502	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
503
504	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
505		return 0;
506
507	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
508
509	/* No more pages to map */
510	if (io_ctl->index >= io_ctl->num_pages)
511		return 0;
512
513	/* map the next page */
514	io_ctl_map_page(io_ctl, 1);
515	return 0;
516}
517
518static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
519{
520	if (!io_ctl->cur)
521		return -ENOSPC;
522
523	/*
524	 * If we aren't at the start of the current page, unmap this one and
525	 * map the next one if there is any left.
526	 */
527	if (io_ctl->cur != io_ctl->orig) {
528		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
529		if (io_ctl->index >= io_ctl->num_pages)
530			return -ENOSPC;
531		io_ctl_map_page(io_ctl, 0);
532	}
533
534	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
535	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536	if (io_ctl->index < io_ctl->num_pages)
537		io_ctl_map_page(io_ctl, 0);
538	return 0;
539}
540
541static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
542{
543	/*
544	 * If we're not on the boundary we know we've modified the page and we
545	 * need to crc the page.
546	 */
547	if (io_ctl->cur != io_ctl->orig)
548		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
549	else
550		io_ctl_unmap_page(io_ctl);
551
552	while (io_ctl->index < io_ctl->num_pages) {
553		io_ctl_map_page(io_ctl, 1);
554		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
555	}
556}
557
558static int io_ctl_read_entry(struct io_ctl *io_ctl,
559			    struct btrfs_free_space *entry, u8 *type)
560{
561	struct btrfs_free_space_entry *e;
562	int ret;
563
564	if (!io_ctl->cur) {
565		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
566		if (ret)
567			return ret;
568	}
569
570	e = io_ctl->cur;
571	entry->offset = le64_to_cpu(e->offset);
572	entry->bytes = le64_to_cpu(e->bytes);
573	*type = e->type;
574	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
575	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
576
577	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
578		return 0;
579
580	io_ctl_unmap_page(io_ctl);
581
582	return 0;
583}
584
585static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
586			      struct btrfs_free_space *entry)
587{
588	int ret;
589
590	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
591	if (ret)
592		return ret;
593
594	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
595	io_ctl_unmap_page(io_ctl);
596
597	return 0;
598}
599
600/*
601 * Since we attach pinned extents after the fact we can have contiguous sections
602 * of free space that are split up in entries.  This poses a problem with the
603 * tree logging stuff since it could have allocated across what appears to be 2
604 * entries since we would have merged the entries when adding the pinned extents
605 * back to the free space cache.  So run through the space cache that we just
606 * loaded and merge contiguous entries.  This will make the log replay stuff not
607 * blow up and it will make for nicer allocator behavior.
608 */
609static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
610{
611	struct btrfs_free_space *e, *prev = NULL;
612	struct rb_node *n;
613
614again:
615	spin_lock(&ctl->tree_lock);
616	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
617		e = rb_entry(n, struct btrfs_free_space, offset_index);
618		if (!prev)
619			goto next;
620		if (e->bitmap || prev->bitmap)
621			goto next;
622		if (prev->offset + prev->bytes == e->offset) {
623			unlink_free_space(ctl, prev);
624			unlink_free_space(ctl, e);
625			prev->bytes += e->bytes;
626			kmem_cache_free(btrfs_free_space_cachep, e);
627			link_free_space(ctl, prev);
628			prev = NULL;
629			spin_unlock(&ctl->tree_lock);
630			goto again;
631		}
632next:
633		prev = e;
634	}
635	spin_unlock(&ctl->tree_lock);
636}
637
638static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
639				   struct btrfs_free_space_ctl *ctl,
640				   struct btrfs_path *path, u64 offset)
641{
642	struct btrfs_free_space_header *header;
643	struct extent_buffer *leaf;
644	struct io_ctl io_ctl;
645	struct btrfs_key key;
646	struct btrfs_free_space *e, *n;
647	struct list_head bitmaps;
648	u64 num_entries;
649	u64 num_bitmaps;
650	u64 generation;
651	u8 type;
652	int ret = 0;
653
654	INIT_LIST_HEAD(&bitmaps);
655
656	/* Nothing in the space cache, goodbye */
657	if (!i_size_read(inode))
658		return 0;
659
660	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
661	key.offset = offset;
662	key.type = 0;
663
664	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
665	if (ret < 0)
666		return 0;
667	else if (ret > 0) {
668		btrfs_release_path(path);
669		return 0;
670	}
671
672	ret = -1;
673
674	leaf = path->nodes[0];
675	header = btrfs_item_ptr(leaf, path->slots[0],
676				struct btrfs_free_space_header);
677	num_entries = btrfs_free_space_entries(leaf, header);
678	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
679	generation = btrfs_free_space_generation(leaf, header);
680	btrfs_release_path(path);
681
682	if (!BTRFS_I(inode)->generation) {
683		btrfs_info(root->fs_info,
684			   "The free space cache file (%llu) is invalid. skip it\n",
685			   offset);
686		return 0;
687	}
688
689	if (BTRFS_I(inode)->generation != generation) {
690		btrfs_err(root->fs_info,
691			"free space inode generation (%llu) "
692			"did not match free space cache generation (%llu)",
693			BTRFS_I(inode)->generation, generation);
694		return 0;
695	}
696
697	if (!num_entries)
698		return 0;
699
700	ret = io_ctl_init(&io_ctl, inode, root, 0);
701	if (ret)
702		return ret;
703
704	ret = readahead_cache(inode);
705	if (ret)
706		goto out;
707
708	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
709	if (ret)
710		goto out;
711
712	ret = io_ctl_check_crc(&io_ctl, 0);
713	if (ret)
714		goto free_cache;
715
716	ret = io_ctl_check_generation(&io_ctl, generation);
717	if (ret)
718		goto free_cache;
719
720	while (num_entries) {
721		e = kmem_cache_zalloc(btrfs_free_space_cachep,
722				      GFP_NOFS);
723		if (!e)
724			goto free_cache;
725
726		ret = io_ctl_read_entry(&io_ctl, e, &type);
727		if (ret) {
728			kmem_cache_free(btrfs_free_space_cachep, e);
729			goto free_cache;
730		}
731
732		if (!e->bytes) {
733			kmem_cache_free(btrfs_free_space_cachep, e);
734			goto free_cache;
735		}
736
737		if (type == BTRFS_FREE_SPACE_EXTENT) {
738			spin_lock(&ctl->tree_lock);
739			ret = link_free_space(ctl, e);
740			spin_unlock(&ctl->tree_lock);
741			if (ret) {
742				btrfs_err(root->fs_info,
743					"Duplicate entries in free space cache, dumping");
744				kmem_cache_free(btrfs_free_space_cachep, e);
745				goto free_cache;
746			}
747		} else {
748			ASSERT(num_bitmaps);
749			num_bitmaps--;
750			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
751			if (!e->bitmap) {
752				kmem_cache_free(
753					btrfs_free_space_cachep, e);
754				goto free_cache;
755			}
756			spin_lock(&ctl->tree_lock);
757			ret = link_free_space(ctl, e);
758			ctl->total_bitmaps++;
759			ctl->op->recalc_thresholds(ctl);
760			spin_unlock(&ctl->tree_lock);
761			if (ret) {
762				btrfs_err(root->fs_info,
763					"Duplicate entries in free space cache, dumping");
764				kmem_cache_free(btrfs_free_space_cachep, e);
765				goto free_cache;
766			}
767			list_add_tail(&e->list, &bitmaps);
768		}
769
770		num_entries--;
771	}
772
773	io_ctl_unmap_page(&io_ctl);
774
775	/*
776	 * We add the bitmaps at the end of the entries in order that
777	 * the bitmap entries are added to the cache.
778	 */
779	list_for_each_entry_safe(e, n, &bitmaps, list) {
780		list_del_init(&e->list);
781		ret = io_ctl_read_bitmap(&io_ctl, e);
782		if (ret)
783			goto free_cache;
784	}
785
786	io_ctl_drop_pages(&io_ctl);
787	merge_space_tree(ctl);
788	ret = 1;
789out:
790	io_ctl_free(&io_ctl);
791	return ret;
792free_cache:
793	io_ctl_drop_pages(&io_ctl);
794	__btrfs_remove_free_space_cache(ctl);
795	goto out;
796}
797
798int load_free_space_cache(struct btrfs_fs_info *fs_info,
799			  struct btrfs_block_group_cache *block_group)
800{
801	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
802	struct btrfs_root *root = fs_info->tree_root;
803	struct inode *inode;
804	struct btrfs_path *path;
805	int ret = 0;
806	bool matched;
807	u64 used = btrfs_block_group_used(&block_group->item);
808
809	/*
810	 * If this block group has been marked to be cleared for one reason or
811	 * another then we can't trust the on disk cache, so just return.
812	 */
813	spin_lock(&block_group->lock);
814	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
815		spin_unlock(&block_group->lock);
816		return 0;
817	}
818	spin_unlock(&block_group->lock);
819
820	path = btrfs_alloc_path();
821	if (!path)
822		return 0;
823	path->search_commit_root = 1;
824	path->skip_locking = 1;
825
826	inode = lookup_free_space_inode(root, block_group, path);
827	if (IS_ERR(inode)) {
828		btrfs_free_path(path);
829		return 0;
830	}
831
832	/* We may have converted the inode and made the cache invalid. */
833	spin_lock(&block_group->lock);
834	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
835		spin_unlock(&block_group->lock);
836		btrfs_free_path(path);
837		goto out;
838	}
839	spin_unlock(&block_group->lock);
840
841	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
842				      path, block_group->key.objectid);
843	btrfs_free_path(path);
844	if (ret <= 0)
845		goto out;
846
847	spin_lock(&ctl->tree_lock);
848	matched = (ctl->free_space == (block_group->key.offset - used -
849				       block_group->bytes_super));
850	spin_unlock(&ctl->tree_lock);
851
852	if (!matched) {
853		__btrfs_remove_free_space_cache(ctl);
854		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
855			block_group->key.objectid);
856		ret = -1;
857	}
858out:
859	if (ret < 0) {
860		/* This cache is bogus, make sure it gets cleared */
861		spin_lock(&block_group->lock);
862		block_group->disk_cache_state = BTRFS_DC_CLEAR;
863		spin_unlock(&block_group->lock);
864		ret = 0;
865
866		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
867			block_group->key.objectid);
868	}
869
870	iput(inode);
871	return ret;
872}
873
874static noinline_for_stack
875int write_cache_extent_entries(struct io_ctl *io_ctl,
876			      struct btrfs_free_space_ctl *ctl,
877			      struct btrfs_block_group_cache *block_group,
878			      int *entries, int *bitmaps,
879			      struct list_head *bitmap_list)
880{
881	int ret;
882	struct btrfs_free_cluster *cluster = NULL;
883	struct rb_node *node = rb_first(&ctl->free_space_offset);
884
885	/* Get the cluster for this block_group if it exists */
886	if (block_group && !list_empty(&block_group->cluster_list)) {
887		cluster = list_entry(block_group->cluster_list.next,
888				     struct btrfs_free_cluster,
889				     block_group_list);
890	}
891
892	if (!node && cluster) {
893		node = rb_first(&cluster->root);
894		cluster = NULL;
895	}
896
897	/* Write out the extent entries */
898	while (node) {
899		struct btrfs_free_space *e;
900
901		e = rb_entry(node, struct btrfs_free_space, offset_index);
902		*entries += 1;
903
904		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
905				       e->bitmap);
906		if (ret)
907			goto fail;
908
909		if (e->bitmap) {
910			list_add_tail(&e->list, bitmap_list);
911			*bitmaps += 1;
912		}
913		node = rb_next(node);
914		if (!node && cluster) {
915			node = rb_first(&cluster->root);
916			cluster = NULL;
917		}
918	}
919	return 0;
920fail:
921	return -ENOSPC;
922}
923
924static noinline_for_stack int
925update_cache_item(struct btrfs_trans_handle *trans,
926		  struct btrfs_root *root,
927		  struct inode *inode,
928		  struct btrfs_path *path, u64 offset,
929		  int entries, int bitmaps)
930{
931	struct btrfs_key key;
932	struct btrfs_free_space_header *header;
933	struct extent_buffer *leaf;
934	int ret;
935
936	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
937	key.offset = offset;
938	key.type = 0;
939
940	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
941	if (ret < 0) {
942		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
943				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
944				 GFP_NOFS);
945		goto fail;
946	}
947	leaf = path->nodes[0];
948	if (ret > 0) {
949		struct btrfs_key found_key;
950		ASSERT(path->slots[0]);
951		path->slots[0]--;
952		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
953		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
954		    found_key.offset != offset) {
955			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
956					 inode->i_size - 1,
957					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
958					 NULL, GFP_NOFS);
959			btrfs_release_path(path);
960			goto fail;
961		}
962	}
963
964	BTRFS_I(inode)->generation = trans->transid;
965	header = btrfs_item_ptr(leaf, path->slots[0],
966				struct btrfs_free_space_header);
967	btrfs_set_free_space_entries(leaf, header, entries);
968	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
969	btrfs_set_free_space_generation(leaf, header, trans->transid);
970	btrfs_mark_buffer_dirty(leaf);
971	btrfs_release_path(path);
972
973	return 0;
974
975fail:
976	return -1;
977}
978
979static noinline_for_stack int
980write_pinned_extent_entries(struct btrfs_root *root,
981			    struct btrfs_block_group_cache *block_group,
982			    struct io_ctl *io_ctl,
983			    int *entries)
984{
985	u64 start, extent_start, extent_end, len;
986	struct extent_io_tree *unpin = NULL;
987	int ret;
988
989	if (!block_group)
990		return 0;
991
992	/*
993	 * We want to add any pinned extents to our free space cache
994	 * so we don't leak the space
995	 *
996	 * We shouldn't have switched the pinned extents yet so this is the
997	 * right one
998	 */
999	unpin = root->fs_info->pinned_extents;
1000
1001	start = block_group->key.objectid;
1002
1003	while (start < block_group->key.objectid + block_group->key.offset) {
1004		ret = find_first_extent_bit(unpin, start,
1005					    &extent_start, &extent_end,
1006					    EXTENT_DIRTY, NULL);
1007		if (ret)
1008			return 0;
1009
1010		/* This pinned extent is out of our range */
1011		if (extent_start >= block_group->key.objectid +
1012		    block_group->key.offset)
1013			return 0;
1014
1015		extent_start = max(extent_start, start);
1016		extent_end = min(block_group->key.objectid +
1017				 block_group->key.offset, extent_end + 1);
1018		len = extent_end - extent_start;
1019
1020		*entries += 1;
1021		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1022		if (ret)
1023			return -ENOSPC;
1024
1025		start = extent_end;
1026	}
1027
1028	return 0;
1029}
1030
1031static noinline_for_stack int
1032write_bitmap_entries(struct io_ctl *io_ctl, struct list_head *bitmap_list)
1033{
1034	struct list_head *pos, *n;
1035	int ret;
1036
1037	/* Write out the bitmaps */
1038	list_for_each_safe(pos, n, bitmap_list) {
1039		struct btrfs_free_space *entry =
1040			list_entry(pos, struct btrfs_free_space, list);
1041
1042		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1043		if (ret)
1044			return -ENOSPC;
1045		list_del_init(&entry->list);
1046	}
1047
1048	return 0;
1049}
1050
1051static int flush_dirty_cache(struct inode *inode)
1052{
1053	int ret;
1054
1055	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1056	if (ret)
1057		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1058				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1059				 GFP_NOFS);
1060
1061	return ret;
1062}
1063
1064static void noinline_for_stack
1065cleanup_write_cache_enospc(struct inode *inode,
1066			   struct io_ctl *io_ctl,
1067			   struct extent_state **cached_state,
1068			   struct list_head *bitmap_list)
1069{
1070	struct list_head *pos, *n;
1071
1072	list_for_each_safe(pos, n, bitmap_list) {
1073		struct btrfs_free_space *entry =
1074			list_entry(pos, struct btrfs_free_space, list);
1075		list_del_init(&entry->list);
1076	}
1077	io_ctl_drop_pages(io_ctl);
1078	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1079			     i_size_read(inode) - 1, cached_state,
1080			     GFP_NOFS);
1081}
1082
1083/**
1084 * __btrfs_write_out_cache - write out cached info to an inode
1085 * @root - the root the inode belongs to
1086 * @ctl - the free space cache we are going to write out
1087 * @block_group - the block_group for this cache if it belongs to a block_group
1088 * @trans - the trans handle
1089 * @path - the path to use
1090 * @offset - the offset for the key we'll insert
1091 *
1092 * This function writes out a free space cache struct to disk for quick recovery
1093 * on mount.  This will return 0 if it was successfull in writing the cache out,
1094 * and -1 if it was not.
1095 */
1096static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1097				   struct btrfs_free_space_ctl *ctl,
1098				   struct btrfs_block_group_cache *block_group,
1099				   struct btrfs_trans_handle *trans,
1100				   struct btrfs_path *path, u64 offset)
1101{
1102	struct extent_state *cached_state = NULL;
1103	struct io_ctl io_ctl;
1104	LIST_HEAD(bitmap_list);
1105	int entries = 0;
1106	int bitmaps = 0;
1107	int ret;
1108
1109	if (!i_size_read(inode))
1110		return -1;
1111
1112	ret = io_ctl_init(&io_ctl, inode, root, 1);
1113	if (ret)
1114		return -1;
1115
1116	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1117		down_write(&block_group->data_rwsem);
1118		spin_lock(&block_group->lock);
1119		if (block_group->delalloc_bytes) {
1120			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1121			spin_unlock(&block_group->lock);
1122			up_write(&block_group->data_rwsem);
1123			BTRFS_I(inode)->generation = 0;
1124			ret = 0;
1125			goto out;
1126		}
1127		spin_unlock(&block_group->lock);
1128	}
1129
1130	/* Lock all pages first so we can lock the extent safely. */
1131	io_ctl_prepare_pages(&io_ctl, inode, 0);
1132
1133	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1134			 0, &cached_state);
1135
1136	io_ctl_set_generation(&io_ctl, trans->transid);
1137
1138	/* Write out the extent entries in the free space cache */
1139	ret = write_cache_extent_entries(&io_ctl, ctl,
1140					 block_group, &entries, &bitmaps,
1141					 &bitmap_list);
1142	if (ret)
1143		goto out_nospc;
1144
1145	/*
1146	 * Some spaces that are freed in the current transaction are pinned,
1147	 * they will be added into free space cache after the transaction is
1148	 * committed, we shouldn't lose them.
1149	 */
1150	ret = write_pinned_extent_entries(root, block_group, &io_ctl, &entries);
1151	if (ret)
1152		goto out_nospc;
1153
1154	/* At last, we write out all the bitmaps. */
1155	ret = write_bitmap_entries(&io_ctl, &bitmap_list);
1156	if (ret)
1157		goto out_nospc;
1158
1159	/* Zero out the rest of the pages just to make sure */
1160	io_ctl_zero_remaining_pages(&io_ctl);
1161
1162	/* Everything is written out, now we dirty the pages in the file. */
1163	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1164				0, i_size_read(inode), &cached_state);
1165	if (ret)
1166		goto out_nospc;
1167
1168	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1169		up_write(&block_group->data_rwsem);
1170	/*
1171	 * Release the pages and unlock the extent, we will flush
1172	 * them out later
1173	 */
1174	io_ctl_drop_pages(&io_ctl);
1175
1176	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1177			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1178
1179	/* Flush the dirty pages in the cache file. */
1180	ret = flush_dirty_cache(inode);
1181	if (ret)
1182		goto out;
1183
1184	/* Update the cache item to tell everyone this cache file is valid. */
1185	ret = update_cache_item(trans, root, inode, path, offset,
1186				entries, bitmaps);
1187out:
1188	io_ctl_free(&io_ctl);
1189	if (ret) {
1190		invalidate_inode_pages2(inode->i_mapping);
1191		BTRFS_I(inode)->generation = 0;
1192	}
1193	btrfs_update_inode(trans, root, inode);
1194	return ret;
1195
1196out_nospc:
1197	cleanup_write_cache_enospc(inode, &io_ctl, &cached_state, &bitmap_list);
1198
1199	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1200		up_write(&block_group->data_rwsem);
1201
1202	goto out;
1203}
1204
1205int btrfs_write_out_cache(struct btrfs_root *root,
1206			  struct btrfs_trans_handle *trans,
1207			  struct btrfs_block_group_cache *block_group,
1208			  struct btrfs_path *path)
1209{
1210	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1211	struct inode *inode;
1212	int ret = 0;
1213
1214	root = root->fs_info->tree_root;
1215
1216	spin_lock(&block_group->lock);
1217	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1218		spin_unlock(&block_group->lock);
1219		return 0;
1220	}
1221
1222	if (block_group->delalloc_bytes) {
1223		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1224		spin_unlock(&block_group->lock);
1225		return 0;
1226	}
1227	spin_unlock(&block_group->lock);
1228
1229	inode = lookup_free_space_inode(root, block_group, path);
1230	if (IS_ERR(inode))
1231		return 0;
1232
1233	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1234				      path, block_group->key.objectid);
1235	if (ret) {
1236		spin_lock(&block_group->lock);
1237		block_group->disk_cache_state = BTRFS_DC_ERROR;
1238		spin_unlock(&block_group->lock);
1239		ret = 0;
1240#ifdef DEBUG
1241		btrfs_err(root->fs_info,
1242			"failed to write free space cache for block group %llu",
1243			block_group->key.objectid);
1244#endif
1245	}
1246
1247	iput(inode);
1248	return ret;
1249}
1250
1251static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1252					  u64 offset)
1253{
1254	ASSERT(offset >= bitmap_start);
1255	offset -= bitmap_start;
1256	return (unsigned long)(div_u64(offset, unit));
1257}
1258
1259static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1260{
1261	return (unsigned long)(div_u64(bytes, unit));
1262}
1263
1264static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1265				   u64 offset)
1266{
1267	u64 bitmap_start;
1268	u64 bytes_per_bitmap;
1269
1270	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1271	bitmap_start = offset - ctl->start;
1272	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1273	bitmap_start *= bytes_per_bitmap;
1274	bitmap_start += ctl->start;
1275
1276	return bitmap_start;
1277}
1278
1279static int tree_insert_offset(struct rb_root *root, u64 offset,
1280			      struct rb_node *node, int bitmap)
1281{
1282	struct rb_node **p = &root->rb_node;
1283	struct rb_node *parent = NULL;
1284	struct btrfs_free_space *info;
1285
1286	while (*p) {
1287		parent = *p;
1288		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1289
1290		if (offset < info->offset) {
1291			p = &(*p)->rb_left;
1292		} else if (offset > info->offset) {
1293			p = &(*p)->rb_right;
1294		} else {
1295			/*
1296			 * we could have a bitmap entry and an extent entry
1297			 * share the same offset.  If this is the case, we want
1298			 * the extent entry to always be found first if we do a
1299			 * linear search through the tree, since we want to have
1300			 * the quickest allocation time, and allocating from an
1301			 * extent is faster than allocating from a bitmap.  So
1302			 * if we're inserting a bitmap and we find an entry at
1303			 * this offset, we want to go right, or after this entry
1304			 * logically.  If we are inserting an extent and we've
1305			 * found a bitmap, we want to go left, or before
1306			 * logically.
1307			 */
1308			if (bitmap) {
1309				if (info->bitmap) {
1310					WARN_ON_ONCE(1);
1311					return -EEXIST;
1312				}
1313				p = &(*p)->rb_right;
1314			} else {
1315				if (!info->bitmap) {
1316					WARN_ON_ONCE(1);
1317					return -EEXIST;
1318				}
1319				p = &(*p)->rb_left;
1320			}
1321		}
1322	}
1323
1324	rb_link_node(node, parent, p);
1325	rb_insert_color(node, root);
1326
1327	return 0;
1328}
1329
1330/*
1331 * searches the tree for the given offset.
1332 *
1333 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1334 * want a section that has at least bytes size and comes at or after the given
1335 * offset.
1336 */
1337static struct btrfs_free_space *
1338tree_search_offset(struct btrfs_free_space_ctl *ctl,
1339		   u64 offset, int bitmap_only, int fuzzy)
1340{
1341	struct rb_node *n = ctl->free_space_offset.rb_node;
1342	struct btrfs_free_space *entry, *prev = NULL;
1343
1344	/* find entry that is closest to the 'offset' */
1345	while (1) {
1346		if (!n) {
1347			entry = NULL;
1348			break;
1349		}
1350
1351		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1352		prev = entry;
1353
1354		if (offset < entry->offset)
1355			n = n->rb_left;
1356		else if (offset > entry->offset)
1357			n = n->rb_right;
1358		else
1359			break;
1360	}
1361
1362	if (bitmap_only) {
1363		if (!entry)
1364			return NULL;
1365		if (entry->bitmap)
1366			return entry;
1367
1368		/*
1369		 * bitmap entry and extent entry may share same offset,
1370		 * in that case, bitmap entry comes after extent entry.
1371		 */
1372		n = rb_next(n);
1373		if (!n)
1374			return NULL;
1375		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1376		if (entry->offset != offset)
1377			return NULL;
1378
1379		WARN_ON(!entry->bitmap);
1380		return entry;
1381	} else if (entry) {
1382		if (entry->bitmap) {
1383			/*
1384			 * if previous extent entry covers the offset,
1385			 * we should return it instead of the bitmap entry
1386			 */
1387			n = rb_prev(&entry->offset_index);
1388			if (n) {
1389				prev = rb_entry(n, struct btrfs_free_space,
1390						offset_index);
1391				if (!prev->bitmap &&
1392				    prev->offset + prev->bytes > offset)
1393					entry = prev;
1394			}
1395		}
1396		return entry;
1397	}
1398
1399	if (!prev)
1400		return NULL;
1401
1402	/* find last entry before the 'offset' */
1403	entry = prev;
1404	if (entry->offset > offset) {
1405		n = rb_prev(&entry->offset_index);
1406		if (n) {
1407			entry = rb_entry(n, struct btrfs_free_space,
1408					offset_index);
1409			ASSERT(entry->offset <= offset);
1410		} else {
1411			if (fuzzy)
1412				return entry;
1413			else
1414				return NULL;
1415		}
1416	}
1417
1418	if (entry->bitmap) {
1419		n = rb_prev(&entry->offset_index);
1420		if (n) {
1421			prev = rb_entry(n, struct btrfs_free_space,
1422					offset_index);
1423			if (!prev->bitmap &&
1424			    prev->offset + prev->bytes > offset)
1425				return prev;
1426		}
1427		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1428			return entry;
1429	} else if (entry->offset + entry->bytes > offset)
1430		return entry;
1431
1432	if (!fuzzy)
1433		return NULL;
1434
1435	while (1) {
1436		if (entry->bitmap) {
1437			if (entry->offset + BITS_PER_BITMAP *
1438			    ctl->unit > offset)
1439				break;
1440		} else {
1441			if (entry->offset + entry->bytes > offset)
1442				break;
1443		}
1444
1445		n = rb_next(&entry->offset_index);
1446		if (!n)
1447			return NULL;
1448		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1449	}
1450	return entry;
1451}
1452
1453static inline void
1454__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1455		    struct btrfs_free_space *info)
1456{
1457	rb_erase(&info->offset_index, &ctl->free_space_offset);
1458	ctl->free_extents--;
1459}
1460
1461static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1462			      struct btrfs_free_space *info)
1463{
1464	__unlink_free_space(ctl, info);
1465	ctl->free_space -= info->bytes;
1466}
1467
1468static int link_free_space(struct btrfs_free_space_ctl *ctl,
1469			   struct btrfs_free_space *info)
1470{
1471	int ret = 0;
1472
1473	ASSERT(info->bytes || info->bitmap);
1474	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1475				 &info->offset_index, (info->bitmap != NULL));
1476	if (ret)
1477		return ret;
1478
1479	ctl->free_space += info->bytes;
1480	ctl->free_extents++;
1481	return ret;
1482}
1483
1484static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1485{
1486	struct btrfs_block_group_cache *block_group = ctl->private;
1487	u64 max_bytes;
1488	u64 bitmap_bytes;
1489	u64 extent_bytes;
1490	u64 size = block_group->key.offset;
1491	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1492	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1493
1494	max_bitmaps = max(max_bitmaps, 1);
1495
1496	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1497
1498	/*
1499	 * The goal is to keep the total amount of memory used per 1gb of space
1500	 * at or below 32k, so we need to adjust how much memory we allow to be
1501	 * used by extent based free space tracking
1502	 */
1503	if (size < 1024 * 1024 * 1024)
1504		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1505	else
1506		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1507			div64_u64(size, 1024 * 1024 * 1024);
1508
1509	/*
1510	 * we want to account for 1 more bitmap than what we have so we can make
1511	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1512	 * we add more bitmaps.
1513	 */
1514	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1515
1516	if (bitmap_bytes >= max_bytes) {
1517		ctl->extents_thresh = 0;
1518		return;
1519	}
1520
1521	/*
1522	 * we want the extent entry threshold to always be at most 1/2 the maxw
1523	 * bytes we can have, or whatever is less than that.
1524	 */
1525	extent_bytes = max_bytes - bitmap_bytes;
1526	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1527
1528	ctl->extents_thresh =
1529		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1530}
1531
1532static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1533				       struct btrfs_free_space *info,
1534				       u64 offset, u64 bytes)
1535{
1536	unsigned long start, count;
1537
1538	start = offset_to_bit(info->offset, ctl->unit, offset);
1539	count = bytes_to_bits(bytes, ctl->unit);
1540	ASSERT(start + count <= BITS_PER_BITMAP);
1541
1542	bitmap_clear(info->bitmap, start, count);
1543
1544	info->bytes -= bytes;
1545}
1546
1547static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1548			      struct btrfs_free_space *info, u64 offset,
1549			      u64 bytes)
1550{
1551	__bitmap_clear_bits(ctl, info, offset, bytes);
1552	ctl->free_space -= bytes;
1553}
1554
1555static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1556			    struct btrfs_free_space *info, u64 offset,
1557			    u64 bytes)
1558{
1559	unsigned long start, count;
1560
1561	start = offset_to_bit(info->offset, ctl->unit, offset);
1562	count = bytes_to_bits(bytes, ctl->unit);
1563	ASSERT(start + count <= BITS_PER_BITMAP);
1564
1565	bitmap_set(info->bitmap, start, count);
1566
1567	info->bytes += bytes;
1568	ctl->free_space += bytes;
1569}
1570
1571/*
1572 * If we can not find suitable extent, we will use bytes to record
1573 * the size of the max extent.
1574 */
1575static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1576			 struct btrfs_free_space *bitmap_info, u64 *offset,
1577			 u64 *bytes)
1578{
1579	unsigned long found_bits = 0;
1580	unsigned long max_bits = 0;
1581	unsigned long bits, i;
1582	unsigned long next_zero;
1583	unsigned long extent_bits;
1584
1585	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1586			  max_t(u64, *offset, bitmap_info->offset));
1587	bits = bytes_to_bits(*bytes, ctl->unit);
1588
1589	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1590		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1591					       BITS_PER_BITMAP, i);
1592		extent_bits = next_zero - i;
1593		if (extent_bits >= bits) {
1594			found_bits = extent_bits;
1595			break;
1596		} else if (extent_bits > max_bits) {
1597			max_bits = extent_bits;
1598		}
1599		i = next_zero;
1600	}
1601
1602	if (found_bits) {
1603		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1604		*bytes = (u64)(found_bits) * ctl->unit;
1605		return 0;
1606	}
1607
1608	*bytes = (u64)(max_bits) * ctl->unit;
1609	return -1;
1610}
1611
1612/* Cache the size of the max extent in bytes */
1613static struct btrfs_free_space *
1614find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1615		unsigned long align, u64 *max_extent_size)
1616{
1617	struct btrfs_free_space *entry;
1618	struct rb_node *node;
1619	u64 tmp;
1620	u64 align_off;
1621	int ret;
1622
1623	if (!ctl->free_space_offset.rb_node)
1624		goto out;
1625
1626	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1627	if (!entry)
1628		goto out;
1629
1630	for (node = &entry->offset_index; node; node = rb_next(node)) {
1631		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1632		if (entry->bytes < *bytes) {
1633			if (entry->bytes > *max_extent_size)
1634				*max_extent_size = entry->bytes;
1635			continue;
1636		}
1637
1638		/* make sure the space returned is big enough
1639		 * to match our requested alignment
1640		 */
1641		if (*bytes >= align) {
1642			tmp = entry->offset - ctl->start + align - 1;
1643			do_div(tmp, align);
1644			tmp = tmp * align + ctl->start;
1645			align_off = tmp - entry->offset;
1646		} else {
1647			align_off = 0;
1648			tmp = entry->offset;
1649		}
1650
1651		if (entry->bytes < *bytes + align_off) {
1652			if (entry->bytes > *max_extent_size)
1653				*max_extent_size = entry->bytes;
1654			continue;
1655		}
1656
1657		if (entry->bitmap) {
1658			u64 size = *bytes;
1659
1660			ret = search_bitmap(ctl, entry, &tmp, &size);
1661			if (!ret) {
1662				*offset = tmp;
1663				*bytes = size;
1664				return entry;
1665			} else if (size > *max_extent_size) {
1666				*max_extent_size = size;
1667			}
1668			continue;
1669		}
1670
1671		*offset = tmp;
1672		*bytes = entry->bytes - align_off;
1673		return entry;
1674	}
1675out:
1676	return NULL;
1677}
1678
1679static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1680			   struct btrfs_free_space *info, u64 offset)
1681{
1682	info->offset = offset_to_bitmap(ctl, offset);
1683	info->bytes = 0;
1684	INIT_LIST_HEAD(&info->list);
1685	link_free_space(ctl, info);
1686	ctl->total_bitmaps++;
1687
1688	ctl->op->recalc_thresholds(ctl);
1689}
1690
1691static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1692			struct btrfs_free_space *bitmap_info)
1693{
1694	unlink_free_space(ctl, bitmap_info);
1695	kfree(bitmap_info->bitmap);
1696	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1697	ctl->total_bitmaps--;
1698	ctl->op->recalc_thresholds(ctl);
1699}
1700
1701static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1702			      struct btrfs_free_space *bitmap_info,
1703			      u64 *offset, u64 *bytes)
1704{
1705	u64 end;
1706	u64 search_start, search_bytes;
1707	int ret;
1708
1709again:
1710	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1711
1712	/*
1713	 * We need to search for bits in this bitmap.  We could only cover some
1714	 * of the extent in this bitmap thanks to how we add space, so we need
1715	 * to search for as much as it as we can and clear that amount, and then
1716	 * go searching for the next bit.
1717	 */
1718	search_start = *offset;
1719	search_bytes = ctl->unit;
1720	search_bytes = min(search_bytes, end - search_start + 1);
1721	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1722	if (ret < 0 || search_start != *offset)
1723		return -EINVAL;
1724
1725	/* We may have found more bits than what we need */
1726	search_bytes = min(search_bytes, *bytes);
1727
1728	/* Cannot clear past the end of the bitmap */
1729	search_bytes = min(search_bytes, end - search_start + 1);
1730
1731	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1732	*offset += search_bytes;
1733	*bytes -= search_bytes;
1734
1735	if (*bytes) {
1736		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1737		if (!bitmap_info->bytes)
1738			free_bitmap(ctl, bitmap_info);
1739
1740		/*
1741		 * no entry after this bitmap, but we still have bytes to
1742		 * remove, so something has gone wrong.
1743		 */
1744		if (!next)
1745			return -EINVAL;
1746
1747		bitmap_info = rb_entry(next, struct btrfs_free_space,
1748				       offset_index);
1749
1750		/*
1751		 * if the next entry isn't a bitmap we need to return to let the
1752		 * extent stuff do its work.
1753		 */
1754		if (!bitmap_info->bitmap)
1755			return -EAGAIN;
1756
1757		/*
1758		 * Ok the next item is a bitmap, but it may not actually hold
1759		 * the information for the rest of this free space stuff, so
1760		 * look for it, and if we don't find it return so we can try
1761		 * everything over again.
1762		 */
1763		search_start = *offset;
1764		search_bytes = ctl->unit;
1765		ret = search_bitmap(ctl, bitmap_info, &search_start,
1766				    &search_bytes);
1767		if (ret < 0 || search_start != *offset)
1768			return -EAGAIN;
1769
1770		goto again;
1771	} else if (!bitmap_info->bytes)
1772		free_bitmap(ctl, bitmap_info);
1773
1774	return 0;
1775}
1776
1777static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1778			       struct btrfs_free_space *info, u64 offset,
1779			       u64 bytes)
1780{
1781	u64 bytes_to_set = 0;
1782	u64 end;
1783
1784	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1785
1786	bytes_to_set = min(end - offset, bytes);
1787
1788	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1789
1790	return bytes_to_set;
1791
1792}
1793
1794static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1795		      struct btrfs_free_space *info)
1796{
1797	struct btrfs_block_group_cache *block_group = ctl->private;
1798
1799	/*
1800	 * If we are below the extents threshold then we can add this as an
1801	 * extent, and don't have to deal with the bitmap
1802	 */
1803	if (ctl->free_extents < ctl->extents_thresh) {
1804		/*
1805		 * If this block group has some small extents we don't want to
1806		 * use up all of our free slots in the cache with them, we want
1807		 * to reserve them to larger extents, however if we have plent
1808		 * of cache left then go ahead an dadd them, no sense in adding
1809		 * the overhead of a bitmap if we don't have to.
1810		 */
1811		if (info->bytes <= block_group->sectorsize * 4) {
1812			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1813				return false;
1814		} else {
1815			return false;
1816		}
1817	}
1818
1819	/*
1820	 * The original block groups from mkfs can be really small, like 8
1821	 * megabytes, so don't bother with a bitmap for those entries.  However
1822	 * some block groups can be smaller than what a bitmap would cover but
1823	 * are still large enough that they could overflow the 32k memory limit,
1824	 * so allow those block groups to still be allowed to have a bitmap
1825	 * entry.
1826	 */
1827	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1828		return false;
1829
1830	return true;
1831}
1832
1833static struct btrfs_free_space_op free_space_op = {
1834	.recalc_thresholds	= recalculate_thresholds,
1835	.use_bitmap		= use_bitmap,
1836};
1837
1838static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1839			      struct btrfs_free_space *info)
1840{
1841	struct btrfs_free_space *bitmap_info;
1842	struct btrfs_block_group_cache *block_group = NULL;
1843	int added = 0;
1844	u64 bytes, offset, bytes_added;
1845	int ret;
1846
1847	bytes = info->bytes;
1848	offset = info->offset;
1849
1850	if (!ctl->op->use_bitmap(ctl, info))
1851		return 0;
1852
1853	if (ctl->op == &free_space_op)
1854		block_group = ctl->private;
1855again:
1856	/*
1857	 * Since we link bitmaps right into the cluster we need to see if we
1858	 * have a cluster here, and if so and it has our bitmap we need to add
1859	 * the free space to that bitmap.
1860	 */
1861	if (block_group && !list_empty(&block_group->cluster_list)) {
1862		struct btrfs_free_cluster *cluster;
1863		struct rb_node *node;
1864		struct btrfs_free_space *entry;
1865
1866		cluster = list_entry(block_group->cluster_list.next,
1867				     struct btrfs_free_cluster,
1868				     block_group_list);
1869		spin_lock(&cluster->lock);
1870		node = rb_first(&cluster->root);
1871		if (!node) {
1872			spin_unlock(&cluster->lock);
1873			goto no_cluster_bitmap;
1874		}
1875
1876		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1877		if (!entry->bitmap) {
1878			spin_unlock(&cluster->lock);
1879			goto no_cluster_bitmap;
1880		}
1881
1882		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1883			bytes_added = add_bytes_to_bitmap(ctl, entry,
1884							  offset, bytes);
1885			bytes -= bytes_added;
1886			offset += bytes_added;
1887		}
1888		spin_unlock(&cluster->lock);
1889		if (!bytes) {
1890			ret = 1;
1891			goto out;
1892		}
1893	}
1894
1895no_cluster_bitmap:
1896	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1897					 1, 0);
1898	if (!bitmap_info) {
1899		ASSERT(added == 0);
1900		goto new_bitmap;
1901	}
1902
1903	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1904	bytes -= bytes_added;
1905	offset += bytes_added;
1906	added = 0;
1907
1908	if (!bytes) {
1909		ret = 1;
1910		goto out;
1911	} else
1912		goto again;
1913
1914new_bitmap:
1915	if (info && info->bitmap) {
1916		add_new_bitmap(ctl, info, offset);
1917		added = 1;
1918		info = NULL;
1919		goto again;
1920	} else {
1921		spin_unlock(&ctl->tree_lock);
1922
1923		/* no pre-allocated info, allocate a new one */
1924		if (!info) {
1925			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1926						 GFP_NOFS);
1927			if (!info) {
1928				spin_lock(&ctl->tree_lock);
1929				ret = -ENOMEM;
1930				goto out;
1931			}
1932		}
1933
1934		/* allocate the bitmap */
1935		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1936		spin_lock(&ctl->tree_lock);
1937		if (!info->bitmap) {
1938			ret = -ENOMEM;
1939			goto out;
1940		}
1941		goto again;
1942	}
1943
1944out:
1945	if (info) {
1946		if (info->bitmap)
1947			kfree(info->bitmap);
1948		kmem_cache_free(btrfs_free_space_cachep, info);
1949	}
1950
1951	return ret;
1952}
1953
1954static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1955			  struct btrfs_free_space *info, bool update_stat)
1956{
1957	struct btrfs_free_space *left_info;
1958	struct btrfs_free_space *right_info;
1959	bool merged = false;
1960	u64 offset = info->offset;
1961	u64 bytes = info->bytes;
1962
1963	/*
1964	 * first we want to see if there is free space adjacent to the range we
1965	 * are adding, if there is remove that struct and add a new one to
1966	 * cover the entire range
1967	 */
1968	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1969	if (right_info && rb_prev(&right_info->offset_index))
1970		left_info = rb_entry(rb_prev(&right_info->offset_index),
1971				     struct btrfs_free_space, offset_index);
1972	else
1973		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1974
1975	if (right_info && !right_info->bitmap) {
1976		if (update_stat)
1977			unlink_free_space(ctl, right_info);
1978		else
1979			__unlink_free_space(ctl, right_info);
1980		info->bytes += right_info->bytes;
1981		kmem_cache_free(btrfs_free_space_cachep, right_info);
1982		merged = true;
1983	}
1984
1985	if (left_info && !left_info->bitmap &&
1986	    left_info->offset + left_info->bytes == offset) {
1987		if (update_stat)
1988			unlink_free_space(ctl, left_info);
1989		else
1990			__unlink_free_space(ctl, left_info);
1991		info->offset = left_info->offset;
1992		info->bytes += left_info->bytes;
1993		kmem_cache_free(btrfs_free_space_cachep, left_info);
1994		merged = true;
1995	}
1996
1997	return merged;
1998}
1999
2000static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2001				     struct btrfs_free_space *info,
2002				     bool update_stat)
2003{
2004	struct btrfs_free_space *bitmap;
2005	unsigned long i;
2006	unsigned long j;
2007	const u64 end = info->offset + info->bytes;
2008	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2009	u64 bytes;
2010
2011	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2012	if (!bitmap)
2013		return false;
2014
2015	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2016	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2017	if (j == i)
2018		return false;
2019	bytes = (j - i) * ctl->unit;
2020	info->bytes += bytes;
2021
2022	if (update_stat)
2023		bitmap_clear_bits(ctl, bitmap, end, bytes);
2024	else
2025		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2026
2027	if (!bitmap->bytes)
2028		free_bitmap(ctl, bitmap);
2029
2030	return true;
2031}
2032
2033static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2034				       struct btrfs_free_space *info,
2035				       bool update_stat)
2036{
2037	struct btrfs_free_space *bitmap;
2038	u64 bitmap_offset;
2039	unsigned long i;
2040	unsigned long j;
2041	unsigned long prev_j;
2042	u64 bytes;
2043
2044	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2045	/* If we're on a boundary, try the previous logical bitmap. */
2046	if (bitmap_offset == info->offset) {
2047		if (info->offset == 0)
2048			return false;
2049		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2050	}
2051
2052	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2053	if (!bitmap)
2054		return false;
2055
2056	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2057	j = 0;
2058	prev_j = (unsigned long)-1;
2059	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2060		if (j > i)
2061			break;
2062		prev_j = j;
2063	}
2064	if (prev_j == i)
2065		return false;
2066
2067	if (prev_j == (unsigned long)-1)
2068		bytes = (i + 1) * ctl->unit;
2069	else
2070		bytes = (i - prev_j) * ctl->unit;
2071
2072	info->offset -= bytes;
2073	info->bytes += bytes;
2074
2075	if (update_stat)
2076		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2077	else
2078		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2079
2080	if (!bitmap->bytes)
2081		free_bitmap(ctl, bitmap);
2082
2083	return true;
2084}
2085
2086/*
2087 * We prefer always to allocate from extent entries, both for clustered and
2088 * non-clustered allocation requests. So when attempting to add a new extent
2089 * entry, try to see if there's adjacent free space in bitmap entries, and if
2090 * there is, migrate that space from the bitmaps to the extent.
2091 * Like this we get better chances of satisfying space allocation requests
2092 * because we attempt to satisfy them based on a single cache entry, and never
2093 * on 2 or more entries - even if the entries represent a contiguous free space
2094 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2095 * ends).
2096 */
2097static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2098			      struct btrfs_free_space *info,
2099			      bool update_stat)
2100{
2101	/*
2102	 * Only work with disconnected entries, as we can change their offset,
2103	 * and must be extent entries.
2104	 */
2105	ASSERT(!info->bitmap);
2106	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2107
2108	if (ctl->total_bitmaps > 0) {
2109		bool stole_end;
2110		bool stole_front = false;
2111
2112		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2113		if (ctl->total_bitmaps > 0)
2114			stole_front = steal_from_bitmap_to_front(ctl, info,
2115								 update_stat);
2116
2117		if (stole_end || stole_front)
2118			try_merge_free_space(ctl, info, update_stat);
2119	}
2120}
2121
2122int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2123			   u64 offset, u64 bytes)
2124{
2125	struct btrfs_free_space *info;
2126	int ret = 0;
2127
2128	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2129	if (!info)
2130		return -ENOMEM;
2131
2132	info->offset = offset;
2133	info->bytes = bytes;
2134	RB_CLEAR_NODE(&info->offset_index);
2135
2136	spin_lock(&ctl->tree_lock);
2137
2138	if (try_merge_free_space(ctl, info, true))
2139		goto link;
2140
2141	/*
2142	 * There was no extent directly to the left or right of this new
2143	 * extent then we know we're going to have to allocate a new extent, so
2144	 * before we do that see if we need to drop this into a bitmap
2145	 */
2146	ret = insert_into_bitmap(ctl, info);
2147	if (ret < 0) {
2148		goto out;
2149	} else if (ret) {
2150		ret = 0;
2151		goto out;
2152	}
2153link:
2154	/*
2155	 * Only steal free space from adjacent bitmaps if we're sure we're not
2156	 * going to add the new free space to existing bitmap entries - because
2157	 * that would mean unnecessary work that would be reverted. Therefore
2158	 * attempt to steal space from bitmaps if we're adding an extent entry.
2159	 */
2160	steal_from_bitmap(ctl, info, true);
2161
2162	ret = link_free_space(ctl, info);
2163	if (ret)
2164		kmem_cache_free(btrfs_free_space_cachep, info);
2165out:
2166	spin_unlock(&ctl->tree_lock);
2167
2168	if (ret) {
2169		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2170		ASSERT(ret != -EEXIST);
2171	}
2172
2173	return ret;
2174}
2175
2176int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2177			    u64 offset, u64 bytes)
2178{
2179	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2180	struct btrfs_free_space *info;
2181	int ret;
2182	bool re_search = false;
2183
2184	spin_lock(&ctl->tree_lock);
2185
2186again:
2187	ret = 0;
2188	if (!bytes)
2189		goto out_lock;
2190
2191	info = tree_search_offset(ctl, offset, 0, 0);
2192	if (!info) {
2193		/*
2194		 * oops didn't find an extent that matched the space we wanted
2195		 * to remove, look for a bitmap instead
2196		 */
2197		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2198					  1, 0);
2199		if (!info) {
2200			/*
2201			 * If we found a partial bit of our free space in a
2202			 * bitmap but then couldn't find the other part this may
2203			 * be a problem, so WARN about it.
2204			 */
2205			WARN_ON(re_search);
2206			goto out_lock;
2207		}
2208	}
2209
2210	re_search = false;
2211	if (!info->bitmap) {
2212		unlink_free_space(ctl, info);
2213		if (offset == info->offset) {
2214			u64 to_free = min(bytes, info->bytes);
2215
2216			info->bytes -= to_free;
2217			info->offset += to_free;
2218			if (info->bytes) {
2219				ret = link_free_space(ctl, info);
2220				WARN_ON(ret);
2221			} else {
2222				kmem_cache_free(btrfs_free_space_cachep, info);
2223			}
2224
2225			offset += to_free;
2226			bytes -= to_free;
2227			goto again;
2228		} else {
2229			u64 old_end = info->bytes + info->offset;
2230
2231			info->bytes = offset - info->offset;
2232			ret = link_free_space(ctl, info);
2233			WARN_ON(ret);
2234			if (ret)
2235				goto out_lock;
2236
2237			/* Not enough bytes in this entry to satisfy us */
2238			if (old_end < offset + bytes) {
2239				bytes -= old_end - offset;
2240				offset = old_end;
2241				goto again;
2242			} else if (old_end == offset + bytes) {
2243				/* all done */
2244				goto out_lock;
2245			}
2246			spin_unlock(&ctl->tree_lock);
2247
2248			ret = btrfs_add_free_space(block_group, offset + bytes,
2249						   old_end - (offset + bytes));
2250			WARN_ON(ret);
2251			goto out;
2252		}
2253	}
2254
2255	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2256	if (ret == -EAGAIN) {
2257		re_search = true;
2258		goto again;
2259	}
2260out_lock:
2261	spin_unlock(&ctl->tree_lock);
2262out:
2263	return ret;
2264}
2265
2266void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2267			   u64 bytes)
2268{
2269	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2270	struct btrfs_free_space *info;
2271	struct rb_node *n;
2272	int count = 0;
2273
2274	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2275		info = rb_entry(n, struct btrfs_free_space, offset_index);
2276		if (info->bytes >= bytes && !block_group->ro)
2277			count++;
2278		btrfs_crit(block_group->fs_info,
2279			   "entry offset %llu, bytes %llu, bitmap %s",
2280			   info->offset, info->bytes,
2281		       (info->bitmap) ? "yes" : "no");
2282	}
2283	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2284	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2285	btrfs_info(block_group->fs_info,
2286		   "%d blocks of free space at or bigger than bytes is", count);
2287}
2288
2289void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2290{
2291	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2292
2293	spin_lock_init(&ctl->tree_lock);
2294	ctl->unit = block_group->sectorsize;
2295	ctl->start = block_group->key.objectid;
2296	ctl->private = block_group;
2297	ctl->op = &free_space_op;
2298
2299	/*
2300	 * we only want to have 32k of ram per block group for keeping
2301	 * track of free space, and if we pass 1/2 of that we want to
2302	 * start converting things over to using bitmaps
2303	 */
2304	ctl->extents_thresh = ((1024 * 32) / 2) /
2305				sizeof(struct btrfs_free_space);
2306}
2307
2308/*
2309 * for a given cluster, put all of its extents back into the free
2310 * space cache.  If the block group passed doesn't match the block group
2311 * pointed to by the cluster, someone else raced in and freed the
2312 * cluster already.  In that case, we just return without changing anything
2313 */
2314static int
2315__btrfs_return_cluster_to_free_space(
2316			     struct btrfs_block_group_cache *block_group,
2317			     struct btrfs_free_cluster *cluster)
2318{
2319	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2320	struct btrfs_free_space *entry;
2321	struct rb_node *node;
2322
2323	spin_lock(&cluster->lock);
2324	if (cluster->block_group != block_group)
2325		goto out;
2326
2327	cluster->block_group = NULL;
2328	cluster->window_start = 0;
2329	list_del_init(&cluster->block_group_list);
2330
2331	node = rb_first(&cluster->root);
2332	while (node) {
2333		bool bitmap;
2334
2335		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2336		node = rb_next(&entry->offset_index);
2337		rb_erase(&entry->offset_index, &cluster->root);
2338		RB_CLEAR_NODE(&entry->offset_index);
2339
2340		bitmap = (entry->bitmap != NULL);
2341		if (!bitmap) {
2342			try_merge_free_space(ctl, entry, false);
2343			steal_from_bitmap(ctl, entry, false);
2344		}
2345		tree_insert_offset(&ctl->free_space_offset,
2346				   entry->offset, &entry->offset_index, bitmap);
2347	}
2348	cluster->root = RB_ROOT;
2349
2350out:
2351	spin_unlock(&cluster->lock);
2352	btrfs_put_block_group(block_group);
2353	return 0;
2354}
2355
2356static void __btrfs_remove_free_space_cache_locked(
2357				struct btrfs_free_space_ctl *ctl)
2358{
2359	struct btrfs_free_space *info;
2360	struct rb_node *node;
2361
2362	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2363		info = rb_entry(node, struct btrfs_free_space, offset_index);
2364		if (!info->bitmap) {
2365			unlink_free_space(ctl, info);
2366			kmem_cache_free(btrfs_free_space_cachep, info);
2367		} else {
2368			free_bitmap(ctl, info);
2369		}
2370		if (need_resched()) {
2371			spin_unlock(&ctl->tree_lock);
2372			cond_resched();
2373			spin_lock(&ctl->tree_lock);
2374		}
2375	}
2376}
2377
2378void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2379{
2380	spin_lock(&ctl->tree_lock);
2381	__btrfs_remove_free_space_cache_locked(ctl);
2382	spin_unlock(&ctl->tree_lock);
2383}
2384
2385void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2386{
2387	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2388	struct btrfs_free_cluster *cluster;
2389	struct list_head *head;
2390
2391	spin_lock(&ctl->tree_lock);
2392	while ((head = block_group->cluster_list.next) !=
2393	       &block_group->cluster_list) {
2394		cluster = list_entry(head, struct btrfs_free_cluster,
2395				     block_group_list);
2396
2397		WARN_ON(cluster->block_group != block_group);
2398		__btrfs_return_cluster_to_free_space(block_group, cluster);
2399		if (need_resched()) {
2400			spin_unlock(&ctl->tree_lock);
2401			cond_resched();
2402			spin_lock(&ctl->tree_lock);
2403		}
2404	}
2405	__btrfs_remove_free_space_cache_locked(ctl);
2406	spin_unlock(&ctl->tree_lock);
2407
2408}
2409
2410u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2411			       u64 offset, u64 bytes, u64 empty_size,
2412			       u64 *max_extent_size)
2413{
2414	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2415	struct btrfs_free_space *entry = NULL;
2416	u64 bytes_search = bytes + empty_size;
2417	u64 ret = 0;
2418	u64 align_gap = 0;
2419	u64 align_gap_len = 0;
2420
2421	spin_lock(&ctl->tree_lock);
2422	entry = find_free_space(ctl, &offset, &bytes_search,
2423				block_group->full_stripe_len, max_extent_size);
2424	if (!entry)
2425		goto out;
2426
2427	ret = offset;
2428	if (entry->bitmap) {
2429		bitmap_clear_bits(ctl, entry, offset, bytes);
2430		if (!entry->bytes)
2431			free_bitmap(ctl, entry);
2432	} else {
2433		unlink_free_space(ctl, entry);
2434		align_gap_len = offset - entry->offset;
2435		align_gap = entry->offset;
2436
2437		entry->offset = offset + bytes;
2438		WARN_ON(entry->bytes < bytes + align_gap_len);
2439
2440		entry->bytes -= bytes + align_gap_len;
2441		if (!entry->bytes)
2442			kmem_cache_free(btrfs_free_space_cachep, entry);
2443		else
2444			link_free_space(ctl, entry);
2445	}
2446out:
2447	spin_unlock(&ctl->tree_lock);
2448
2449	if (align_gap_len)
2450		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2451	return ret;
2452}
2453
2454/*
2455 * given a cluster, put all of its extents back into the free space
2456 * cache.  If a block group is passed, this function will only free
2457 * a cluster that belongs to the passed block group.
2458 *
2459 * Otherwise, it'll get a reference on the block group pointed to by the
2460 * cluster and remove the cluster from it.
2461 */
2462int btrfs_return_cluster_to_free_space(
2463			       struct btrfs_block_group_cache *block_group,
2464			       struct btrfs_free_cluster *cluster)
2465{
2466	struct btrfs_free_space_ctl *ctl;
2467	int ret;
2468
2469	/* first, get a safe pointer to the block group */
2470	spin_lock(&cluster->lock);
2471	if (!block_group) {
2472		block_group = cluster->block_group;
2473		if (!block_group) {
2474			spin_unlock(&cluster->lock);
2475			return 0;
2476		}
2477	} else if (cluster->block_group != block_group) {
2478		/* someone else has already freed it don't redo their work */
2479		spin_unlock(&cluster->lock);
2480		return 0;
2481	}
2482	atomic_inc(&block_group->count);
2483	spin_unlock(&cluster->lock);
2484
2485	ctl = block_group->free_space_ctl;
2486
2487	/* now return any extents the cluster had on it */
2488	spin_lock(&ctl->tree_lock);
2489	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2490	spin_unlock(&ctl->tree_lock);
2491
2492	/* finally drop our ref */
2493	btrfs_put_block_group(block_group);
2494	return ret;
2495}
2496
2497static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2498				   struct btrfs_free_cluster *cluster,
2499				   struct btrfs_free_space *entry,
2500				   u64 bytes, u64 min_start,
2501				   u64 *max_extent_size)
2502{
2503	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2504	int err;
2505	u64 search_start = cluster->window_start;
2506	u64 search_bytes = bytes;
2507	u64 ret = 0;
2508
2509	search_start = min_start;
2510	search_bytes = bytes;
2511
2512	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2513	if (err) {
2514		if (search_bytes > *max_extent_size)
2515			*max_extent_size = search_bytes;
2516		return 0;
2517	}
2518
2519	ret = search_start;
2520	__bitmap_clear_bits(ctl, entry, ret, bytes);
2521
2522	return ret;
2523}
2524
2525/*
2526 * given a cluster, try to allocate 'bytes' from it, returns 0
2527 * if it couldn't find anything suitably large, or a logical disk offset
2528 * if things worked out
2529 */
2530u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2531			     struct btrfs_free_cluster *cluster, u64 bytes,
2532			     u64 min_start, u64 *max_extent_size)
2533{
2534	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2535	struct btrfs_free_space *entry = NULL;
2536	struct rb_node *node;
2537	u64 ret = 0;
2538
2539	spin_lock(&cluster->lock);
2540	if (bytes > cluster->max_size)
2541		goto out;
2542
2543	if (cluster->block_group != block_group)
2544		goto out;
2545
2546	node = rb_first(&cluster->root);
2547	if (!node)
2548		goto out;
2549
2550	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2551	while (1) {
2552		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2553			*max_extent_size = entry->bytes;
2554
2555		if (entry->bytes < bytes ||
2556		    (!entry->bitmap && entry->offset < min_start)) {
2557			node = rb_next(&entry->offset_index);
2558			if (!node)
2559				break;
2560			entry = rb_entry(node, struct btrfs_free_space,
2561					 offset_index);
2562			continue;
2563		}
2564
2565		if (entry->bitmap) {
2566			ret = btrfs_alloc_from_bitmap(block_group,
2567						      cluster, entry, bytes,
2568						      cluster->window_start,
2569						      max_extent_size);
2570			if (ret == 0) {
2571				node = rb_next(&entry->offset_index);
2572				if (!node)
2573					break;
2574				entry = rb_entry(node, struct btrfs_free_space,
2575						 offset_index);
2576				continue;
2577			}
2578			cluster->window_start += bytes;
2579		} else {
2580			ret = entry->offset;
2581
2582			entry->offset += bytes;
2583			entry->bytes -= bytes;
2584		}
2585
2586		if (entry->bytes == 0)
2587			rb_erase(&entry->offset_index, &cluster->root);
2588		break;
2589	}
2590out:
2591	spin_unlock(&cluster->lock);
2592
2593	if (!ret)
2594		return 0;
2595
2596	spin_lock(&ctl->tree_lock);
2597
2598	ctl->free_space -= bytes;
2599	if (entry->bytes == 0) {
2600		ctl->free_extents--;
2601		if (entry->bitmap) {
2602			kfree(entry->bitmap);
2603			ctl->total_bitmaps--;
2604			ctl->op->recalc_thresholds(ctl);
2605		}
2606		kmem_cache_free(btrfs_free_space_cachep, entry);
2607	}
2608
2609	spin_unlock(&ctl->tree_lock);
2610
2611	return ret;
2612}
2613
2614static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2615				struct btrfs_free_space *entry,
2616				struct btrfs_free_cluster *cluster,
2617				u64 offset, u64 bytes,
2618				u64 cont1_bytes, u64 min_bytes)
2619{
2620	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2621	unsigned long next_zero;
2622	unsigned long i;
2623	unsigned long want_bits;
2624	unsigned long min_bits;
2625	unsigned long found_bits;
2626	unsigned long start = 0;
2627	unsigned long total_found = 0;
2628	int ret;
2629
2630	i = offset_to_bit(entry->offset, ctl->unit,
2631			  max_t(u64, offset, entry->offset));
2632	want_bits = bytes_to_bits(bytes, ctl->unit);
2633	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2634
2635again:
2636	found_bits = 0;
2637	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2638		next_zero = find_next_zero_bit(entry->bitmap,
2639					       BITS_PER_BITMAP, i);
2640		if (next_zero - i >= min_bits) {
2641			found_bits = next_zero - i;
2642			break;
2643		}
2644		i = next_zero;
2645	}
2646
2647	if (!found_bits)
2648		return -ENOSPC;
2649
2650	if (!total_found) {
2651		start = i;
2652		cluster->max_size = 0;
2653	}
2654
2655	total_found += found_bits;
2656
2657	if (cluster->max_size < found_bits * ctl->unit)
2658		cluster->max_size = found_bits * ctl->unit;
2659
2660	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2661		i = next_zero + 1;
2662		goto again;
2663	}
2664
2665	cluster->window_start = start * ctl->unit + entry->offset;
2666	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2667	ret = tree_insert_offset(&cluster->root, entry->offset,
2668				 &entry->offset_index, 1);
2669	ASSERT(!ret); /* -EEXIST; Logic error */
2670
2671	trace_btrfs_setup_cluster(block_group, cluster,
2672				  total_found * ctl->unit, 1);
2673	return 0;
2674}
2675
2676/*
2677 * This searches the block group for just extents to fill the cluster with.
2678 * Try to find a cluster with at least bytes total bytes, at least one
2679 * extent of cont1_bytes, and other clusters of at least min_bytes.
2680 */
2681static noinline int
2682setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2683			struct btrfs_free_cluster *cluster,
2684			struct list_head *bitmaps, u64 offset, u64 bytes,
2685			u64 cont1_bytes, u64 min_bytes)
2686{
2687	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2688	struct btrfs_free_space *first = NULL;
2689	struct btrfs_free_space *entry = NULL;
2690	struct btrfs_free_space *last;
2691	struct rb_node *node;
2692	u64 window_free;
2693	u64 max_extent;
2694	u64 total_size = 0;
2695
2696	entry = tree_search_offset(ctl, offset, 0, 1);
2697	if (!entry)
2698		return -ENOSPC;
2699
2700	/*
2701	 * We don't want bitmaps, so just move along until we find a normal
2702	 * extent entry.
2703	 */
2704	while (entry->bitmap || entry->bytes < min_bytes) {
2705		if (entry->bitmap && list_empty(&entry->list))
2706			list_add_tail(&entry->list, bitmaps);
2707		node = rb_next(&entry->offset_index);
2708		if (!node)
2709			return -ENOSPC;
2710		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2711	}
2712
2713	window_free = entry->bytes;
2714	max_extent = entry->bytes;
2715	first = entry;
2716	last = entry;
2717
2718	for (node = rb_next(&entry->offset_index); node;
2719	     node = rb_next(&entry->offset_index)) {
2720		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2721
2722		if (entry->bitmap) {
2723			if (list_empty(&entry->list))
2724				list_add_tail(&entry->list, bitmaps);
2725			continue;
2726		}
2727
2728		if (entry->bytes < min_bytes)
2729			continue;
2730
2731		last = entry;
2732		window_free += entry->bytes;
2733		if (entry->bytes > max_extent)
2734			max_extent = entry->bytes;
2735	}
2736
2737	if (window_free < bytes || max_extent < cont1_bytes)
2738		return -ENOSPC;
2739
2740	cluster->window_start = first->offset;
2741
2742	node = &first->offset_index;
2743
2744	/*
2745	 * now we've found our entries, pull them out of the free space
2746	 * cache and put them into the cluster rbtree
2747	 */
2748	do {
2749		int ret;
2750
2751		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2752		node = rb_next(&entry->offset_index);
2753		if (entry->bitmap || entry->bytes < min_bytes)
2754			continue;
2755
2756		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2757		ret = tree_insert_offset(&cluster->root, entry->offset,
2758					 &entry->offset_index, 0);
2759		total_size += entry->bytes;
2760		ASSERT(!ret); /* -EEXIST; Logic error */
2761	} while (node && entry != last);
2762
2763	cluster->max_size = max_extent;
2764	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2765	return 0;
2766}
2767
2768/*
2769 * This specifically looks for bitmaps that may work in the cluster, we assume
2770 * that we have already failed to find extents that will work.
2771 */
2772static noinline int
2773setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2774		     struct btrfs_free_cluster *cluster,
2775		     struct list_head *bitmaps, u64 offset, u64 bytes,
2776		     u64 cont1_bytes, u64 min_bytes)
2777{
2778	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2779	struct btrfs_free_space *entry;
2780	int ret = -ENOSPC;
2781	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2782
2783	if (ctl->total_bitmaps == 0)
2784		return -ENOSPC;
2785
2786	/*
2787	 * The bitmap that covers offset won't be in the list unless offset
2788	 * is just its start offset.
2789	 */
2790	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2791	if (entry->offset != bitmap_offset) {
2792		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2793		if (entry && list_empty(&entry->list))
2794			list_add(&entry->list, bitmaps);
2795	}
2796
2797	list_for_each_entry(entry, bitmaps, list) {
2798		if (entry->bytes < bytes)
2799			continue;
2800		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2801					   bytes, cont1_bytes, min_bytes);
2802		if (!ret)
2803			return 0;
2804	}
2805
2806	/*
2807	 * The bitmaps list has all the bitmaps that record free space
2808	 * starting after offset, so no more search is required.
2809	 */
2810	return -ENOSPC;
2811}
2812
2813/*
2814 * here we try to find a cluster of blocks in a block group.  The goal
2815 * is to find at least bytes+empty_size.
2816 * We might not find them all in one contiguous area.
2817 *
2818 * returns zero and sets up cluster if things worked out, otherwise
2819 * it returns -enospc
2820 */
2821int btrfs_find_space_cluster(struct btrfs_root *root,
2822			     struct btrfs_block_group_cache *block_group,
2823			     struct btrfs_free_cluster *cluster,
2824			     u64 offset, u64 bytes, u64 empty_size)
2825{
2826	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2827	struct btrfs_free_space *entry, *tmp;
2828	LIST_HEAD(bitmaps);
2829	u64 min_bytes;
2830	u64 cont1_bytes;
2831	int ret;
2832
2833	/*
2834	 * Choose the minimum extent size we'll require for this
2835	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2836	 * For metadata, allow allocates with smaller extents.  For
2837	 * data, keep it dense.
2838	 */
2839	if (btrfs_test_opt(root, SSD_SPREAD)) {
2840		cont1_bytes = min_bytes = bytes + empty_size;
2841	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2842		cont1_bytes = bytes;
2843		min_bytes = block_group->sectorsize;
2844	} else {
2845		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2846		min_bytes = block_group->sectorsize;
2847	}
2848
2849	spin_lock(&ctl->tree_lock);
2850
2851	/*
2852	 * If we know we don't have enough space to make a cluster don't even
2853	 * bother doing all the work to try and find one.
2854	 */
2855	if (ctl->free_space < bytes) {
2856		spin_unlock(&ctl->tree_lock);
2857		return -ENOSPC;
2858	}
2859
2860	spin_lock(&cluster->lock);
2861
2862	/* someone already found a cluster, hooray */
2863	if (cluster->block_group) {
2864		ret = 0;
2865		goto out;
2866	}
2867
2868	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2869				 min_bytes);
2870
2871	INIT_LIST_HEAD(&bitmaps);
2872	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2873				      bytes + empty_size,
2874				      cont1_bytes, min_bytes);
2875	if (ret)
2876		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2877					   offset, bytes + empty_size,
2878					   cont1_bytes, min_bytes);
2879
2880	/* Clear our temporary list */
2881	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2882		list_del_init(&entry->list);
2883
2884	if (!ret) {
2885		atomic_inc(&block_group->count);
2886		list_add_tail(&cluster->block_group_list,
2887			      &block_group->cluster_list);
2888		cluster->block_group = block_group;
2889	} else {
2890		trace_btrfs_failed_cluster_setup(block_group);
2891	}
2892out:
2893	spin_unlock(&cluster->lock);
2894	spin_unlock(&ctl->tree_lock);
2895
2896	return ret;
2897}
2898
2899/*
2900 * simple code to zero out a cluster
2901 */
2902void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2903{
2904	spin_lock_init(&cluster->lock);
2905	spin_lock_init(&cluster->refill_lock);
2906	cluster->root = RB_ROOT;
2907	cluster->max_size = 0;
2908	INIT_LIST_HEAD(&cluster->block_group_list);
2909	cluster->block_group = NULL;
2910}
2911
2912static int do_trimming(struct btrfs_block_group_cache *block_group,
2913		       u64 *total_trimmed, u64 start, u64 bytes,
2914		       u64 reserved_start, u64 reserved_bytes)
2915{
2916	struct btrfs_space_info *space_info = block_group->space_info;
2917	struct btrfs_fs_info *fs_info = block_group->fs_info;
2918	int ret;
2919	int update = 0;
2920	u64 trimmed = 0;
2921
2922	spin_lock(&space_info->lock);
2923	spin_lock(&block_group->lock);
2924	if (!block_group->ro) {
2925		block_group->reserved += reserved_bytes;
2926		space_info->bytes_reserved += reserved_bytes;
2927		update = 1;
2928	}
2929	spin_unlock(&block_group->lock);
2930	spin_unlock(&space_info->lock);
2931
2932	ret = btrfs_error_discard_extent(fs_info->extent_root,
2933					 start, bytes, &trimmed);
2934	if (!ret)
2935		*total_trimmed += trimmed;
2936
2937	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2938
2939	if (update) {
2940		spin_lock(&space_info->lock);
2941		spin_lock(&block_group->lock);
2942		if (block_group->ro)
2943			space_info->bytes_readonly += reserved_bytes;
2944		block_group->reserved -= reserved_bytes;
2945		space_info->bytes_reserved -= reserved_bytes;
2946		spin_unlock(&space_info->lock);
2947		spin_unlock(&block_group->lock);
2948	}
2949
2950	return ret;
2951}
2952
2953static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2954			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2955{
2956	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2957	struct btrfs_free_space *entry;
2958	struct rb_node *node;
2959	int ret = 0;
2960	u64 extent_start;
2961	u64 extent_bytes;
2962	u64 bytes;
2963
2964	while (start < end) {
2965		spin_lock(&ctl->tree_lock);
2966
2967		if (ctl->free_space < minlen) {
2968			spin_unlock(&ctl->tree_lock);
2969			break;
2970		}
2971
2972		entry = tree_search_offset(ctl, start, 0, 1);
2973		if (!entry) {
2974			spin_unlock(&ctl->tree_lock);
2975			break;
2976		}
2977
2978		/* skip bitmaps */
2979		while (entry->bitmap) {
2980			node = rb_next(&entry->offset_index);
2981			if (!node) {
2982				spin_unlock(&ctl->tree_lock);
2983				goto out;
2984			}
2985			entry = rb_entry(node, struct btrfs_free_space,
2986					 offset_index);
2987		}
2988
2989		if (entry->offset >= end) {
2990			spin_unlock(&ctl->tree_lock);
2991			break;
2992		}
2993
2994		extent_start = entry->offset;
2995		extent_bytes = entry->bytes;
2996		start = max(start, extent_start);
2997		bytes = min(extent_start + extent_bytes, end) - start;
2998		if (bytes < minlen) {
2999			spin_unlock(&ctl->tree_lock);
3000			goto next;
3001		}
3002
3003		unlink_free_space(ctl, entry);
3004		kmem_cache_free(btrfs_free_space_cachep, entry);
3005
3006		spin_unlock(&ctl->tree_lock);
3007
3008		ret = do_trimming(block_group, total_trimmed, start, bytes,
3009				  extent_start, extent_bytes);
3010		if (ret)
3011			break;
3012next:
3013		start += bytes;
3014
3015		if (fatal_signal_pending(current)) {
3016			ret = -ERESTARTSYS;
3017			break;
3018		}
3019
3020		cond_resched();
3021	}
3022out:
3023	return ret;
3024}
3025
3026static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3027			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3028{
3029	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3030	struct btrfs_free_space *entry;
3031	int ret = 0;
3032	int ret2;
3033	u64 bytes;
3034	u64 offset = offset_to_bitmap(ctl, start);
3035
3036	while (offset < end) {
3037		bool next_bitmap = false;
3038
3039		spin_lock(&ctl->tree_lock);
3040
3041		if (ctl->free_space < minlen) {
3042			spin_unlock(&ctl->tree_lock);
3043			break;
3044		}
3045
3046		entry = tree_search_offset(ctl, offset, 1, 0);
3047		if (!entry) {
3048			spin_unlock(&ctl->tree_lock);
3049			next_bitmap = true;
3050			goto next;
3051		}
3052
3053		bytes = minlen;
3054		ret2 = search_bitmap(ctl, entry, &start, &bytes);
3055		if (ret2 || start >= end) {
3056			spin_unlock(&ctl->tree_lock);
3057			next_bitmap = true;
3058			goto next;
3059		}
3060
3061		bytes = min(bytes, end - start);
3062		if (bytes < minlen) {
3063			spin_unlock(&ctl->tree_lock);
3064			goto next;
3065		}
3066
3067		bitmap_clear_bits(ctl, entry, start, bytes);
3068		if (entry->bytes == 0)
3069			free_bitmap(ctl, entry);
3070
3071		spin_unlock(&ctl->tree_lock);
3072
3073		ret = do_trimming(block_group, total_trimmed, start, bytes,
3074				  start, bytes);
3075		if (ret)
3076			break;
3077next:
3078		if (next_bitmap) {
3079			offset += BITS_PER_BITMAP * ctl->unit;
3080		} else {
3081			start += bytes;
3082			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3083				offset += BITS_PER_BITMAP * ctl->unit;
3084		}
3085
3086		if (fatal_signal_pending(current)) {
3087			ret = -ERESTARTSYS;
3088			break;
3089		}
3090
3091		cond_resched();
3092	}
3093
3094	return ret;
3095}
3096
3097int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3098			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3099{
3100	int ret;
3101
3102	*trimmed = 0;
3103
3104	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3105	if (ret)
3106		return ret;
3107
3108	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3109
3110	return ret;
3111}
3112
3113/*
3114 * Find the left-most item in the cache tree, and then return the
3115 * smallest inode number in the item.
3116 *
3117 * Note: the returned inode number may not be the smallest one in
3118 * the tree, if the left-most item is a bitmap.
3119 */
3120u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3121{
3122	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3123	struct btrfs_free_space *entry = NULL;
3124	u64 ino = 0;
3125
3126	spin_lock(&ctl->tree_lock);
3127
3128	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3129		goto out;
3130
3131	entry = rb_entry(rb_first(&ctl->free_space_offset),
3132			 struct btrfs_free_space, offset_index);
3133
3134	if (!entry->bitmap) {
3135		ino = entry->offset;
3136
3137		unlink_free_space(ctl, entry);
3138		entry->offset++;
3139		entry->bytes--;
3140		if (!entry->bytes)
3141			kmem_cache_free(btrfs_free_space_cachep, entry);
3142		else
3143			link_free_space(ctl, entry);
3144	} else {
3145		u64 offset = 0;
3146		u64 count = 1;
3147		int ret;
3148
3149		ret = search_bitmap(ctl, entry, &offset, &count);
3150		/* Logic error; Should be empty if it can't find anything */
3151		ASSERT(!ret);
3152
3153		ino = offset;
3154		bitmap_clear_bits(ctl, entry, offset, 1);
3155		if (entry->bytes == 0)
3156			free_bitmap(ctl, entry);
3157	}
3158out:
3159	spin_unlock(&ctl->tree_lock);
3160
3161	return ino;
3162}
3163
3164struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3165				    struct btrfs_path *path)
3166{
3167	struct inode *inode = NULL;
3168
3169	spin_lock(&root->ino_cache_lock);
3170	if (root->ino_cache_inode)
3171		inode = igrab(root->ino_cache_inode);
3172	spin_unlock(&root->ino_cache_lock);
3173	if (inode)
3174		return inode;
3175
3176	inode = __lookup_free_space_inode(root, path, 0);
3177	if (IS_ERR(inode))
3178		return inode;
3179
3180	spin_lock(&root->ino_cache_lock);
3181	if (!btrfs_fs_closing(root->fs_info))
3182		root->ino_cache_inode = igrab(inode);
3183	spin_unlock(&root->ino_cache_lock);
3184
3185	return inode;
3186}
3187
3188int create_free_ino_inode(struct btrfs_root *root,
3189			  struct btrfs_trans_handle *trans,
3190			  struct btrfs_path *path)
3191{
3192	return __create_free_space_inode(root, trans, path,
3193					 BTRFS_FREE_INO_OBJECTID, 0);
3194}
3195
3196int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3197{
3198	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3199	struct btrfs_path *path;
3200	struct inode *inode;
3201	int ret = 0;
3202	u64 root_gen = btrfs_root_generation(&root->root_item);
3203
3204	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3205		return 0;
3206
3207	/*
3208	 * If we're unmounting then just return, since this does a search on the
3209	 * normal root and not the commit root and we could deadlock.
3210	 */
3211	if (btrfs_fs_closing(fs_info))
3212		return 0;
3213
3214	path = btrfs_alloc_path();
3215	if (!path)
3216		return 0;
3217
3218	inode = lookup_free_ino_inode(root, path);
3219	if (IS_ERR(inode))
3220		goto out;
3221
3222	if (root_gen != BTRFS_I(inode)->generation)
3223		goto out_put;
3224
3225	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3226
3227	if (ret < 0)
3228		btrfs_err(fs_info,
3229			"failed to load free ino cache for root %llu",
3230			root->root_key.objectid);
3231out_put:
3232	iput(inode);
3233out:
3234	btrfs_free_path(path);
3235	return ret;
3236}
3237
3238int btrfs_write_out_ino_cache(struct btrfs_root *root,
3239			      struct btrfs_trans_handle *trans,
3240			      struct btrfs_path *path,
3241			      struct inode *inode)
3242{
3243	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3244	int ret;
3245
3246	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3247		return 0;
3248
3249	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
3250	if (ret) {
3251		btrfs_delalloc_release_metadata(inode, inode->i_size);
3252#ifdef DEBUG
3253		btrfs_err(root->fs_info,
3254			"failed to write free ino cache for root %llu",
3255			root->root_key.objectid);
3256#endif
3257	}
3258
3259	return ret;
3260}
3261
3262#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3263/*
3264 * Use this if you need to make a bitmap or extent entry specifically, it
3265 * doesn't do any of the merging that add_free_space does, this acts a lot like
3266 * how the free space cache loading stuff works, so you can get really weird
3267 * configurations.
3268 */
3269int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3270			      u64 offset, u64 bytes, bool bitmap)
3271{
3272	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3273	struct btrfs_free_space *info = NULL, *bitmap_info;
3274	void *map = NULL;
3275	u64 bytes_added;
3276	int ret;
3277
3278again:
3279	if (!info) {
3280		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3281		if (!info)
3282			return -ENOMEM;
3283	}
3284
3285	if (!bitmap) {
3286		spin_lock(&ctl->tree_lock);
3287		info->offset = offset;
3288		info->bytes = bytes;
3289		ret = link_free_space(ctl, info);
3290		spin_unlock(&ctl->tree_lock);
3291		if (ret)
3292			kmem_cache_free(btrfs_free_space_cachep, info);
3293		return ret;
3294	}
3295
3296	if (!map) {
3297		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3298		if (!map) {
3299			kmem_cache_free(btrfs_free_space_cachep, info);
3300			return -ENOMEM;
3301		}
3302	}
3303
3304	spin_lock(&ctl->tree_lock);
3305	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3306					 1, 0);
3307	if (!bitmap_info) {
3308		info->bitmap = map;
3309		map = NULL;
3310		add_new_bitmap(ctl, info, offset);
3311		bitmap_info = info;
3312		info = NULL;
3313	}
3314
3315	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3316	bytes -= bytes_added;
3317	offset += bytes_added;
3318	spin_unlock(&ctl->tree_lock);
3319
3320	if (bytes)
3321		goto again;
3322
3323	if (info)
3324		kmem_cache_free(btrfs_free_space_cachep, info);
3325	if (map)
3326		kfree(map);
3327	return 0;
3328}
3329
3330/*
3331 * Checks to see if the given range is in the free space cache.  This is really
3332 * just used to check the absence of space, so if there is free space in the
3333 * range at all we will return 1.
3334 */
3335int test_check_exists(struct btrfs_block_group_cache *cache,
3336		      u64 offset, u64 bytes)
3337{
3338	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3339	struct btrfs_free_space *info;
3340	int ret = 0;
3341
3342	spin_lock(&ctl->tree_lock);
3343	info = tree_search_offset(ctl, offset, 0, 0);
3344	if (!info) {
3345		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3346					  1, 0);
3347		if (!info)
3348			goto out;
3349	}
3350
3351have_info:
3352	if (info->bitmap) {
3353		u64 bit_off, bit_bytes;
3354		struct rb_node *n;
3355		struct btrfs_free_space *tmp;
3356
3357		bit_off = offset;
3358		bit_bytes = ctl->unit;
3359		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3360		if (!ret) {
3361			if (bit_off == offset) {
3362				ret = 1;
3363				goto out;
3364			} else if (bit_off > offset &&
3365				   offset + bytes > bit_off) {
3366				ret = 1;
3367				goto out;
3368			}
3369		}
3370
3371		n = rb_prev(&info->offset_index);
3372		while (n) {
3373			tmp = rb_entry(n, struct btrfs_free_space,
3374				       offset_index);
3375			if (tmp->offset + tmp->bytes < offset)
3376				break;
3377			if (offset + bytes < tmp->offset) {
3378				n = rb_prev(&info->offset_index);
3379				continue;
3380			}
3381			info = tmp;
3382			goto have_info;
3383		}
3384
3385		n = rb_next(&info->offset_index);
3386		while (n) {
3387			tmp = rb_entry(n, struct btrfs_free_space,
3388				       offset_index);
3389			if (offset + bytes < tmp->offset)
3390				break;
3391			if (tmp->offset + tmp->bytes < offset) {
3392				n = rb_next(&info->offset_index);
3393				continue;
3394			}
3395			info = tmp;
3396			goto have_info;
3397		}
3398
3399		ret = 0;
3400		goto out;
3401	}
3402
3403	if (info->offset == offset) {
3404		ret = 1;
3405		goto out;
3406	}
3407
3408	if (offset > info->offset && offset < info->offset + info->bytes)
3409		ret = 1;
3410out:
3411	spin_unlock(&ctl->tree_lock);
3412	return ret;
3413}
3414#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3415