1/*
2 *  linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 *  from
10 *
11 *  linux/fs/minix/inode.c
12 *
13 *  Copyright (C) 1991, 1992  Linus Torvalds
14 *
15 *  Goal-directed block allocation by Stephen Tweedie
16 *	(sct@redhat.com), 1993, 1998
17 *  Big-endian to little-endian byte-swapping/bitmaps by
18 *        David S. Miller (davem@caip.rutgers.edu), 1995
19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
20 *	(jj@sunsite.ms.mff.cuni.cz)
21 *
22 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/highuid.h>
26#include <linux/quotaops.h>
27#include <linux/writeback.h>
28#include <linux/mpage.h>
29#include <linux/namei.h>
30#include <linux/aio.h>
31#include "ext3.h"
32#include "xattr.h"
33#include "acl.h"
34
35static int ext3_writepage_trans_blocks(struct inode *inode);
36static int ext3_block_truncate_page(struct inode *inode, loff_t from);
37
38/*
39 * Test whether an inode is a fast symlink.
40 */
41static int ext3_inode_is_fast_symlink(struct inode *inode)
42{
43	int ea_blocks = EXT3_I(inode)->i_file_acl ?
44		(inode->i_sb->s_blocksize >> 9) : 0;
45
46	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
47}
48
49/*
50 * The ext3 forget function must perform a revoke if we are freeing data
51 * which has been journaled.  Metadata (eg. indirect blocks) must be
52 * revoked in all cases.
53 *
54 * "bh" may be NULL: a metadata block may have been freed from memory
55 * but there may still be a record of it in the journal, and that record
56 * still needs to be revoked.
57 */
58int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
59			struct buffer_head *bh, ext3_fsblk_t blocknr)
60{
61	int err;
62
63	might_sleep();
64
65	trace_ext3_forget(inode, is_metadata, blocknr);
66	BUFFER_TRACE(bh, "enter");
67
68	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
69		  "data mode %lx\n",
70		  bh, is_metadata, inode->i_mode,
71		  test_opt(inode->i_sb, DATA_FLAGS));
72
73	/* Never use the revoke function if we are doing full data
74	 * journaling: there is no need to, and a V1 superblock won't
75	 * support it.  Otherwise, only skip the revoke on un-journaled
76	 * data blocks. */
77
78	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
79	    (!is_metadata && !ext3_should_journal_data(inode))) {
80		if (bh) {
81			BUFFER_TRACE(bh, "call journal_forget");
82			return ext3_journal_forget(handle, bh);
83		}
84		return 0;
85	}
86
87	/*
88	 * data!=journal && (is_metadata || should_journal_data(inode))
89	 */
90	BUFFER_TRACE(bh, "call ext3_journal_revoke");
91	err = ext3_journal_revoke(handle, blocknr, bh);
92	if (err)
93		ext3_abort(inode->i_sb, __func__,
94			   "error %d when attempting revoke", err);
95	BUFFER_TRACE(bh, "exit");
96	return err;
97}
98
99/*
100 * Work out how many blocks we need to proceed with the next chunk of a
101 * truncate transaction.
102 */
103static unsigned long blocks_for_truncate(struct inode *inode)
104{
105	unsigned long needed;
106
107	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
108
109	/* Give ourselves just enough room to cope with inodes in which
110	 * i_blocks is corrupt: we've seen disk corruptions in the past
111	 * which resulted in random data in an inode which looked enough
112	 * like a regular file for ext3 to try to delete it.  Things
113	 * will go a bit crazy if that happens, but at least we should
114	 * try not to panic the whole kernel. */
115	if (needed < 2)
116		needed = 2;
117
118	/* But we need to bound the transaction so we don't overflow the
119	 * journal. */
120	if (needed > EXT3_MAX_TRANS_DATA)
121		needed = EXT3_MAX_TRANS_DATA;
122
123	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
124}
125
126/*
127 * Truncate transactions can be complex and absolutely huge.  So we need to
128 * be able to restart the transaction at a conventient checkpoint to make
129 * sure we don't overflow the journal.
130 *
131 * start_transaction gets us a new handle for a truncate transaction,
132 * and extend_transaction tries to extend the existing one a bit.  If
133 * extend fails, we need to propagate the failure up and restart the
134 * transaction in the top-level truncate loop. --sct
135 */
136static handle_t *start_transaction(struct inode *inode)
137{
138	handle_t *result;
139
140	result = ext3_journal_start(inode, blocks_for_truncate(inode));
141	if (!IS_ERR(result))
142		return result;
143
144	ext3_std_error(inode->i_sb, PTR_ERR(result));
145	return result;
146}
147
148/*
149 * Try to extend this transaction for the purposes of truncation.
150 *
151 * Returns 0 if we managed to create more room.  If we can't create more
152 * room, and the transaction must be restarted we return 1.
153 */
154static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
155{
156	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
157		return 0;
158	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
159		return 0;
160	return 1;
161}
162
163/*
164 * Restart the transaction associated with *handle.  This does a commit,
165 * so before we call here everything must be consistently dirtied against
166 * this transaction.
167 */
168static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
169{
170	int ret;
171
172	jbd_debug(2, "restarting handle %p\n", handle);
173	/*
174	 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
175	 * At this moment, get_block can be called only for blocks inside
176	 * i_size since page cache has been already dropped and writes are
177	 * blocked by i_mutex. So we can safely drop the truncate_mutex.
178	 */
179	mutex_unlock(&EXT3_I(inode)->truncate_mutex);
180	ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
181	mutex_lock(&EXT3_I(inode)->truncate_mutex);
182	return ret;
183}
184
185/*
186 * Called at inode eviction from icache
187 */
188void ext3_evict_inode (struct inode *inode)
189{
190	struct ext3_inode_info *ei = EXT3_I(inode);
191	struct ext3_block_alloc_info *rsv;
192	handle_t *handle;
193	int want_delete = 0;
194
195	trace_ext3_evict_inode(inode);
196	if (!inode->i_nlink && !is_bad_inode(inode)) {
197		dquot_initialize(inode);
198		want_delete = 1;
199	}
200
201	/*
202	 * When journalling data dirty buffers are tracked only in the journal.
203	 * So although mm thinks everything is clean and ready for reaping the
204	 * inode might still have some pages to write in the running
205	 * transaction or waiting to be checkpointed. Thus calling
206	 * journal_invalidatepage() (via truncate_inode_pages()) to discard
207	 * these buffers can cause data loss. Also even if we did not discard
208	 * these buffers, we would have no way to find them after the inode
209	 * is reaped and thus user could see stale data if he tries to read
210	 * them before the transaction is checkpointed. So be careful and
211	 * force everything to disk here... We use ei->i_datasync_tid to
212	 * store the newest transaction containing inode's data.
213	 *
214	 * Note that directories do not have this problem because they don't
215	 * use page cache.
216	 *
217	 * The s_journal check handles the case when ext3_get_journal() fails
218	 * and puts the journal inode.
219	 */
220	if (inode->i_nlink && ext3_should_journal_data(inode) &&
221	    EXT3_SB(inode->i_sb)->s_journal &&
222	    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
223	    inode->i_ino != EXT3_JOURNAL_INO) {
224		tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
225		journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
226
227		log_start_commit(journal, commit_tid);
228		log_wait_commit(journal, commit_tid);
229		filemap_write_and_wait(&inode->i_data);
230	}
231	truncate_inode_pages_final(&inode->i_data);
232
233	ext3_discard_reservation(inode);
234	rsv = ei->i_block_alloc_info;
235	ei->i_block_alloc_info = NULL;
236	if (unlikely(rsv))
237		kfree(rsv);
238
239	if (!want_delete)
240		goto no_delete;
241
242	handle = start_transaction(inode);
243	if (IS_ERR(handle)) {
244		/*
245		 * If we're going to skip the normal cleanup, we still need to
246		 * make sure that the in-core orphan linked list is properly
247		 * cleaned up.
248		 */
249		ext3_orphan_del(NULL, inode);
250		goto no_delete;
251	}
252
253	if (IS_SYNC(inode))
254		handle->h_sync = 1;
255	inode->i_size = 0;
256	if (inode->i_blocks)
257		ext3_truncate(inode);
258	/*
259	 * Kill off the orphan record created when the inode lost the last
260	 * link.  Note that ext3_orphan_del() has to be able to cope with the
261	 * deletion of a non-existent orphan - ext3_truncate() could
262	 * have removed the record.
263	 */
264	ext3_orphan_del(handle, inode);
265	ei->i_dtime = get_seconds();
266
267	/*
268	 * One subtle ordering requirement: if anything has gone wrong
269	 * (transaction abort, IO errors, whatever), then we can still
270	 * do these next steps (the fs will already have been marked as
271	 * having errors), but we can't free the inode if the mark_dirty
272	 * fails.
273	 */
274	if (ext3_mark_inode_dirty(handle, inode)) {
275		/* If that failed, just dquot_drop() and be done with that */
276		dquot_drop(inode);
277		clear_inode(inode);
278	} else {
279		ext3_xattr_delete_inode(handle, inode);
280		dquot_free_inode(inode);
281		dquot_drop(inode);
282		clear_inode(inode);
283		ext3_free_inode(handle, inode);
284	}
285	ext3_journal_stop(handle);
286	return;
287no_delete:
288	clear_inode(inode);
289	dquot_drop(inode);
290}
291
292typedef struct {
293	__le32	*p;
294	__le32	key;
295	struct buffer_head *bh;
296} Indirect;
297
298static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
299{
300	p->key = *(p->p = v);
301	p->bh = bh;
302}
303
304static int verify_chain(Indirect *from, Indirect *to)
305{
306	while (from <= to && from->key == *from->p)
307		from++;
308	return (from > to);
309}
310
311/**
312 *	ext3_block_to_path - parse the block number into array of offsets
313 *	@inode: inode in question (we are only interested in its superblock)
314 *	@i_block: block number to be parsed
315 *	@offsets: array to store the offsets in
316 *      @boundary: set this non-zero if the referred-to block is likely to be
317 *             followed (on disk) by an indirect block.
318 *
319 *	To store the locations of file's data ext3 uses a data structure common
320 *	for UNIX filesystems - tree of pointers anchored in the inode, with
321 *	data blocks at leaves and indirect blocks in intermediate nodes.
322 *	This function translates the block number into path in that tree -
323 *	return value is the path length and @offsets[n] is the offset of
324 *	pointer to (n+1)th node in the nth one. If @block is out of range
325 *	(negative or too large) warning is printed and zero returned.
326 *
327 *	Note: function doesn't find node addresses, so no IO is needed. All
328 *	we need to know is the capacity of indirect blocks (taken from the
329 *	inode->i_sb).
330 */
331
332/*
333 * Portability note: the last comparison (check that we fit into triple
334 * indirect block) is spelled differently, because otherwise on an
335 * architecture with 32-bit longs and 8Kb pages we might get into trouble
336 * if our filesystem had 8Kb blocks. We might use long long, but that would
337 * kill us on x86. Oh, well, at least the sign propagation does not matter -
338 * i_block would have to be negative in the very beginning, so we would not
339 * get there at all.
340 */
341
342static int ext3_block_to_path(struct inode *inode,
343			long i_block, int offsets[4], int *boundary)
344{
345	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
346	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
347	const long direct_blocks = EXT3_NDIR_BLOCKS,
348		indirect_blocks = ptrs,
349		double_blocks = (1 << (ptrs_bits * 2));
350	int n = 0;
351	int final = 0;
352
353	if (i_block < 0) {
354		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
355	} else if (i_block < direct_blocks) {
356		offsets[n++] = i_block;
357		final = direct_blocks;
358	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
359		offsets[n++] = EXT3_IND_BLOCK;
360		offsets[n++] = i_block;
361		final = ptrs;
362	} else if ((i_block -= indirect_blocks) < double_blocks) {
363		offsets[n++] = EXT3_DIND_BLOCK;
364		offsets[n++] = i_block >> ptrs_bits;
365		offsets[n++] = i_block & (ptrs - 1);
366		final = ptrs;
367	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
368		offsets[n++] = EXT3_TIND_BLOCK;
369		offsets[n++] = i_block >> (ptrs_bits * 2);
370		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
371		offsets[n++] = i_block & (ptrs - 1);
372		final = ptrs;
373	} else {
374		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
375	}
376	if (boundary)
377		*boundary = final - 1 - (i_block & (ptrs - 1));
378	return n;
379}
380
381/**
382 *	ext3_get_branch - read the chain of indirect blocks leading to data
383 *	@inode: inode in question
384 *	@depth: depth of the chain (1 - direct pointer, etc.)
385 *	@offsets: offsets of pointers in inode/indirect blocks
386 *	@chain: place to store the result
387 *	@err: here we store the error value
388 *
389 *	Function fills the array of triples <key, p, bh> and returns %NULL
390 *	if everything went OK or the pointer to the last filled triple
391 *	(incomplete one) otherwise. Upon the return chain[i].key contains
392 *	the number of (i+1)-th block in the chain (as it is stored in memory,
393 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
394 *	number (it points into struct inode for i==0 and into the bh->b_data
395 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
396 *	block for i>0 and NULL for i==0. In other words, it holds the block
397 *	numbers of the chain, addresses they were taken from (and where we can
398 *	verify that chain did not change) and buffer_heads hosting these
399 *	numbers.
400 *
401 *	Function stops when it stumbles upon zero pointer (absent block)
402 *		(pointer to last triple returned, *@err == 0)
403 *	or when it gets an IO error reading an indirect block
404 *		(ditto, *@err == -EIO)
405 *	or when it notices that chain had been changed while it was reading
406 *		(ditto, *@err == -EAGAIN)
407 *	or when it reads all @depth-1 indirect blocks successfully and finds
408 *	the whole chain, all way to the data (returns %NULL, *err == 0).
409 */
410static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
411				 Indirect chain[4], int *err)
412{
413	struct super_block *sb = inode->i_sb;
414	Indirect *p = chain;
415	struct buffer_head *bh;
416
417	*err = 0;
418	/* i_data is not going away, no lock needed */
419	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
420	if (!p->key)
421		goto no_block;
422	while (--depth) {
423		bh = sb_bread(sb, le32_to_cpu(p->key));
424		if (!bh)
425			goto failure;
426		/* Reader: pointers */
427		if (!verify_chain(chain, p))
428			goto changed;
429		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
430		/* Reader: end */
431		if (!p->key)
432			goto no_block;
433	}
434	return NULL;
435
436changed:
437	brelse(bh);
438	*err = -EAGAIN;
439	goto no_block;
440failure:
441	*err = -EIO;
442no_block:
443	return p;
444}
445
446/**
447 *	ext3_find_near - find a place for allocation with sufficient locality
448 *	@inode: owner
449 *	@ind: descriptor of indirect block.
450 *
451 *	This function returns the preferred place for block allocation.
452 *	It is used when heuristic for sequential allocation fails.
453 *	Rules are:
454 *	  + if there is a block to the left of our position - allocate near it.
455 *	  + if pointer will live in indirect block - allocate near that block.
456 *	  + if pointer will live in inode - allocate in the same
457 *	    cylinder group.
458 *
459 * In the latter case we colour the starting block by the callers PID to
460 * prevent it from clashing with concurrent allocations for a different inode
461 * in the same block group.   The PID is used here so that functionally related
462 * files will be close-by on-disk.
463 *
464 *	Caller must make sure that @ind is valid and will stay that way.
465 */
466static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
467{
468	struct ext3_inode_info *ei = EXT3_I(inode);
469	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
470	__le32 *p;
471	ext3_fsblk_t bg_start;
472	ext3_grpblk_t colour;
473
474	/* Try to find previous block */
475	for (p = ind->p - 1; p >= start; p--) {
476		if (*p)
477			return le32_to_cpu(*p);
478	}
479
480	/* No such thing, so let's try location of indirect block */
481	if (ind->bh)
482		return ind->bh->b_blocknr;
483
484	/*
485	 * It is going to be referred to from the inode itself? OK, just put it
486	 * into the same cylinder group then.
487	 */
488	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
489	colour = (current->pid % 16) *
490			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
491	return bg_start + colour;
492}
493
494/**
495 *	ext3_find_goal - find a preferred place for allocation.
496 *	@inode: owner
497 *	@block:  block we want
498 *	@partial: pointer to the last triple within a chain
499 *
500 *	Normally this function find the preferred place for block allocation,
501 *	returns it.
502 */
503
504static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
505				   Indirect *partial)
506{
507	struct ext3_block_alloc_info *block_i;
508
509	block_i =  EXT3_I(inode)->i_block_alloc_info;
510
511	/*
512	 * try the heuristic for sequential allocation,
513	 * failing that at least try to get decent locality.
514	 */
515	if (block_i && (block == block_i->last_alloc_logical_block + 1)
516		&& (block_i->last_alloc_physical_block != 0)) {
517		return block_i->last_alloc_physical_block + 1;
518	}
519
520	return ext3_find_near(inode, partial);
521}
522
523/**
524 *	ext3_blks_to_allocate - Look up the block map and count the number
525 *	of direct blocks need to be allocated for the given branch.
526 *
527 *	@branch: chain of indirect blocks
528 *	@k: number of blocks need for indirect blocks
529 *	@blks: number of data blocks to be mapped.
530 *	@blocks_to_boundary:  the offset in the indirect block
531 *
532 *	return the total number of blocks to be allocate, including the
533 *	direct and indirect blocks.
534 */
535static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
536		int blocks_to_boundary)
537{
538	unsigned long count = 0;
539
540	/*
541	 * Simple case, [t,d]Indirect block(s) has not allocated yet
542	 * then it's clear blocks on that path have not allocated
543	 */
544	if (k > 0) {
545		/* right now we don't handle cross boundary allocation */
546		if (blks < blocks_to_boundary + 1)
547			count += blks;
548		else
549			count += blocks_to_boundary + 1;
550		return count;
551	}
552
553	count++;
554	while (count < blks && count <= blocks_to_boundary &&
555		le32_to_cpu(*(branch[0].p + count)) == 0) {
556		count++;
557	}
558	return count;
559}
560
561/**
562 *	ext3_alloc_blocks - multiple allocate blocks needed for a branch
563 *	@handle: handle for this transaction
564 *	@inode: owner
565 *	@goal: preferred place for allocation
566 *	@indirect_blks: the number of blocks need to allocate for indirect
567 *			blocks
568 *	@blks:	number of blocks need to allocated for direct blocks
569 *	@new_blocks: on return it will store the new block numbers for
570 *	the indirect blocks(if needed) and the first direct block,
571 *	@err: here we store the error value
572 *
573 *	return the number of direct blocks allocated
574 */
575static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
576			ext3_fsblk_t goal, int indirect_blks, int blks,
577			ext3_fsblk_t new_blocks[4], int *err)
578{
579	int target, i;
580	unsigned long count = 0;
581	int index = 0;
582	ext3_fsblk_t current_block = 0;
583	int ret = 0;
584
585	/*
586	 * Here we try to allocate the requested multiple blocks at once,
587	 * on a best-effort basis.
588	 * To build a branch, we should allocate blocks for
589	 * the indirect blocks(if not allocated yet), and at least
590	 * the first direct block of this branch.  That's the
591	 * minimum number of blocks need to allocate(required)
592	 */
593	target = blks + indirect_blks;
594
595	while (1) {
596		count = target;
597		/* allocating blocks for indirect blocks and direct blocks */
598		current_block = ext3_new_blocks(handle,inode,goal,&count,err);
599		if (*err)
600			goto failed_out;
601
602		target -= count;
603		/* allocate blocks for indirect blocks */
604		while (index < indirect_blks && count) {
605			new_blocks[index++] = current_block++;
606			count--;
607		}
608
609		if (count > 0)
610			break;
611	}
612
613	/* save the new block number for the first direct block */
614	new_blocks[index] = current_block;
615
616	/* total number of blocks allocated for direct blocks */
617	ret = count;
618	*err = 0;
619	return ret;
620failed_out:
621	for (i = 0; i <index; i++)
622		ext3_free_blocks(handle, inode, new_blocks[i], 1);
623	return ret;
624}
625
626/**
627 *	ext3_alloc_branch - allocate and set up a chain of blocks.
628 *	@handle: handle for this transaction
629 *	@inode: owner
630 *	@indirect_blks: number of allocated indirect blocks
631 *	@blks: number of allocated direct blocks
632 *	@goal: preferred place for allocation
633 *	@offsets: offsets (in the blocks) to store the pointers to next.
634 *	@branch: place to store the chain in.
635 *
636 *	This function allocates blocks, zeroes out all but the last one,
637 *	links them into chain and (if we are synchronous) writes them to disk.
638 *	In other words, it prepares a branch that can be spliced onto the
639 *	inode. It stores the information about that chain in the branch[], in
640 *	the same format as ext3_get_branch() would do. We are calling it after
641 *	we had read the existing part of chain and partial points to the last
642 *	triple of that (one with zero ->key). Upon the exit we have the same
643 *	picture as after the successful ext3_get_block(), except that in one
644 *	place chain is disconnected - *branch->p is still zero (we did not
645 *	set the last link), but branch->key contains the number that should
646 *	be placed into *branch->p to fill that gap.
647 *
648 *	If allocation fails we free all blocks we've allocated (and forget
649 *	their buffer_heads) and return the error value the from failed
650 *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
651 *	as described above and return 0.
652 */
653static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
654			int indirect_blks, int *blks, ext3_fsblk_t goal,
655			int *offsets, Indirect *branch)
656{
657	int blocksize = inode->i_sb->s_blocksize;
658	int i, n = 0;
659	int err = 0;
660	struct buffer_head *bh;
661	int num;
662	ext3_fsblk_t new_blocks[4];
663	ext3_fsblk_t current_block;
664
665	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
666				*blks, new_blocks, &err);
667	if (err)
668		return err;
669
670	branch[0].key = cpu_to_le32(new_blocks[0]);
671	/*
672	 * metadata blocks and data blocks are allocated.
673	 */
674	for (n = 1; n <= indirect_blks;  n++) {
675		/*
676		 * Get buffer_head for parent block, zero it out
677		 * and set the pointer to new one, then send
678		 * parent to disk.
679		 */
680		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
681		if (unlikely(!bh)) {
682			err = -ENOMEM;
683			goto failed;
684		}
685		branch[n].bh = bh;
686		lock_buffer(bh);
687		BUFFER_TRACE(bh, "call get_create_access");
688		err = ext3_journal_get_create_access(handle, bh);
689		if (err) {
690			unlock_buffer(bh);
691			brelse(bh);
692			goto failed;
693		}
694
695		memset(bh->b_data, 0, blocksize);
696		branch[n].p = (__le32 *) bh->b_data + offsets[n];
697		branch[n].key = cpu_to_le32(new_blocks[n]);
698		*branch[n].p = branch[n].key;
699		if ( n == indirect_blks) {
700			current_block = new_blocks[n];
701			/*
702			 * End of chain, update the last new metablock of
703			 * the chain to point to the new allocated
704			 * data blocks numbers
705			 */
706			for (i=1; i < num; i++)
707				*(branch[n].p + i) = cpu_to_le32(++current_block);
708		}
709		BUFFER_TRACE(bh, "marking uptodate");
710		set_buffer_uptodate(bh);
711		unlock_buffer(bh);
712
713		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
714		err = ext3_journal_dirty_metadata(handle, bh);
715		if (err)
716			goto failed;
717	}
718	*blks = num;
719	return err;
720failed:
721	/* Allocation failed, free what we already allocated */
722	for (i = 1; i <= n ; i++) {
723		BUFFER_TRACE(branch[i].bh, "call journal_forget");
724		ext3_journal_forget(handle, branch[i].bh);
725	}
726	for (i = 0; i < indirect_blks; i++)
727		ext3_free_blocks(handle, inode, new_blocks[i], 1);
728
729	ext3_free_blocks(handle, inode, new_blocks[i], num);
730
731	return err;
732}
733
734/**
735 * ext3_splice_branch - splice the allocated branch onto inode.
736 * @handle: handle for this transaction
737 * @inode: owner
738 * @block: (logical) number of block we are adding
739 * @where: location of missing link
740 * @num:   number of indirect blocks we are adding
741 * @blks:  number of direct blocks we are adding
742 *
743 * This function fills the missing link and does all housekeeping needed in
744 * inode (->i_blocks, etc.). In case of success we end up with the full
745 * chain to new block and return 0.
746 */
747static int ext3_splice_branch(handle_t *handle, struct inode *inode,
748			long block, Indirect *where, int num, int blks)
749{
750	int i;
751	int err = 0;
752	struct ext3_block_alloc_info *block_i;
753	ext3_fsblk_t current_block;
754	struct ext3_inode_info *ei = EXT3_I(inode);
755	struct timespec now;
756
757	block_i = ei->i_block_alloc_info;
758	/*
759	 * If we're splicing into a [td]indirect block (as opposed to the
760	 * inode) then we need to get write access to the [td]indirect block
761	 * before the splice.
762	 */
763	if (where->bh) {
764		BUFFER_TRACE(where->bh, "get_write_access");
765		err = ext3_journal_get_write_access(handle, where->bh);
766		if (err)
767			goto err_out;
768	}
769	/* That's it */
770
771	*where->p = where->key;
772
773	/*
774	 * Update the host buffer_head or inode to point to more just allocated
775	 * direct blocks blocks
776	 */
777	if (num == 0 && blks > 1) {
778		current_block = le32_to_cpu(where->key) + 1;
779		for (i = 1; i < blks; i++)
780			*(where->p + i ) = cpu_to_le32(current_block++);
781	}
782
783	/*
784	 * update the most recently allocated logical & physical block
785	 * in i_block_alloc_info, to assist find the proper goal block for next
786	 * allocation
787	 */
788	if (block_i) {
789		block_i->last_alloc_logical_block = block + blks - 1;
790		block_i->last_alloc_physical_block =
791				le32_to_cpu(where[num].key) + blks - 1;
792	}
793
794	/* We are done with atomic stuff, now do the rest of housekeeping */
795	now = CURRENT_TIME_SEC;
796	if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
797		inode->i_ctime = now;
798		ext3_mark_inode_dirty(handle, inode);
799	}
800	/* ext3_mark_inode_dirty already updated i_sync_tid */
801	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
802
803	/* had we spliced it onto indirect block? */
804	if (where->bh) {
805		/*
806		 * If we spliced it onto an indirect block, we haven't
807		 * altered the inode.  Note however that if it is being spliced
808		 * onto an indirect block at the very end of the file (the
809		 * file is growing) then we *will* alter the inode to reflect
810		 * the new i_size.  But that is not done here - it is done in
811		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
812		 */
813		jbd_debug(5, "splicing indirect only\n");
814		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
815		err = ext3_journal_dirty_metadata(handle, where->bh);
816		if (err)
817			goto err_out;
818	} else {
819		/*
820		 * OK, we spliced it into the inode itself on a direct block.
821		 * Inode was dirtied above.
822		 */
823		jbd_debug(5, "splicing direct\n");
824	}
825	return err;
826
827err_out:
828	for (i = 1; i <= num; i++) {
829		BUFFER_TRACE(where[i].bh, "call journal_forget");
830		ext3_journal_forget(handle, where[i].bh);
831		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
832	}
833	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
834
835	return err;
836}
837
838/*
839 * Allocation strategy is simple: if we have to allocate something, we will
840 * have to go the whole way to leaf. So let's do it before attaching anything
841 * to tree, set linkage between the newborn blocks, write them if sync is
842 * required, recheck the path, free and repeat if check fails, otherwise
843 * set the last missing link (that will protect us from any truncate-generated
844 * removals - all blocks on the path are immune now) and possibly force the
845 * write on the parent block.
846 * That has a nice additional property: no special recovery from the failed
847 * allocations is needed - we simply release blocks and do not touch anything
848 * reachable from inode.
849 *
850 * `handle' can be NULL if create == 0.
851 *
852 * The BKL may not be held on entry here.  Be sure to take it early.
853 * return > 0, # of blocks mapped or allocated.
854 * return = 0, if plain lookup failed.
855 * return < 0, error case.
856 */
857int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
858		sector_t iblock, unsigned long maxblocks,
859		struct buffer_head *bh_result,
860		int create)
861{
862	int err = -EIO;
863	int offsets[4];
864	Indirect chain[4];
865	Indirect *partial;
866	ext3_fsblk_t goal;
867	int indirect_blks;
868	int blocks_to_boundary = 0;
869	int depth;
870	struct ext3_inode_info *ei = EXT3_I(inode);
871	int count = 0;
872	ext3_fsblk_t first_block = 0;
873
874
875	trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
876	J_ASSERT(handle != NULL || create == 0);
877	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
878
879	if (depth == 0)
880		goto out;
881
882	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
883
884	/* Simplest case - block found, no allocation needed */
885	if (!partial) {
886		first_block = le32_to_cpu(chain[depth - 1].key);
887		clear_buffer_new(bh_result);
888		count++;
889		/*map more blocks*/
890		while (count < maxblocks && count <= blocks_to_boundary) {
891			ext3_fsblk_t blk;
892
893			if (!verify_chain(chain, chain + depth - 1)) {
894				/*
895				 * Indirect block might be removed by
896				 * truncate while we were reading it.
897				 * Handling of that case: forget what we've
898				 * got now. Flag the err as EAGAIN, so it
899				 * will reread.
900				 */
901				err = -EAGAIN;
902				count = 0;
903				break;
904			}
905			blk = le32_to_cpu(*(chain[depth-1].p + count));
906
907			if (blk == first_block + count)
908				count++;
909			else
910				break;
911		}
912		if (err != -EAGAIN)
913			goto got_it;
914	}
915
916	/* Next simple case - plain lookup or failed read of indirect block */
917	if (!create || err == -EIO)
918		goto cleanup;
919
920	/*
921	 * Block out ext3_truncate while we alter the tree
922	 */
923	mutex_lock(&ei->truncate_mutex);
924
925	/*
926	 * If the indirect block is missing while we are reading
927	 * the chain(ext3_get_branch() returns -EAGAIN err), or
928	 * if the chain has been changed after we grab the semaphore,
929	 * (either because another process truncated this branch, or
930	 * another get_block allocated this branch) re-grab the chain to see if
931	 * the request block has been allocated or not.
932	 *
933	 * Since we already block the truncate/other get_block
934	 * at this point, we will have the current copy of the chain when we
935	 * splice the branch into the tree.
936	 */
937	if (err == -EAGAIN || !verify_chain(chain, partial)) {
938		while (partial > chain) {
939			brelse(partial->bh);
940			partial--;
941		}
942		partial = ext3_get_branch(inode, depth, offsets, chain, &err);
943		if (!partial) {
944			count++;
945			mutex_unlock(&ei->truncate_mutex);
946			if (err)
947				goto cleanup;
948			clear_buffer_new(bh_result);
949			goto got_it;
950		}
951	}
952
953	/*
954	 * Okay, we need to do block allocation.  Lazily initialize the block
955	 * allocation info here if necessary
956	*/
957	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
958		ext3_init_block_alloc_info(inode);
959
960	goal = ext3_find_goal(inode, iblock, partial);
961
962	/* the number of blocks need to allocate for [d,t]indirect blocks */
963	indirect_blks = (chain + depth) - partial - 1;
964
965	/*
966	 * Next look up the indirect map to count the totoal number of
967	 * direct blocks to allocate for this branch.
968	 */
969	count = ext3_blks_to_allocate(partial, indirect_blks,
970					maxblocks, blocks_to_boundary);
971	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
972				offsets + (partial - chain), partial);
973
974	/*
975	 * The ext3_splice_branch call will free and forget any buffers
976	 * on the new chain if there is a failure, but that risks using
977	 * up transaction credits, especially for bitmaps where the
978	 * credits cannot be returned.  Can we handle this somehow?  We
979	 * may need to return -EAGAIN upwards in the worst case.  --sct
980	 */
981	if (!err)
982		err = ext3_splice_branch(handle, inode, iblock,
983					partial, indirect_blks, count);
984	mutex_unlock(&ei->truncate_mutex);
985	if (err)
986		goto cleanup;
987
988	set_buffer_new(bh_result);
989got_it:
990	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
991	if (count > blocks_to_boundary)
992		set_buffer_boundary(bh_result);
993	err = count;
994	/* Clean up and exit */
995	partial = chain + depth - 1;	/* the whole chain */
996cleanup:
997	while (partial > chain) {
998		BUFFER_TRACE(partial->bh, "call brelse");
999		brelse(partial->bh);
1000		partial--;
1001	}
1002	BUFFER_TRACE(bh_result, "returned");
1003out:
1004	trace_ext3_get_blocks_exit(inode, iblock,
1005				   depth ? le32_to_cpu(chain[depth-1].key) : 0,
1006				   count, err);
1007	return err;
1008}
1009
1010/* Maximum number of blocks we map for direct IO at once. */
1011#define DIO_MAX_BLOCKS 4096
1012/*
1013 * Number of credits we need for writing DIO_MAX_BLOCKS:
1014 * We need sb + group descriptor + bitmap + inode -> 4
1015 * For B blocks with A block pointers per block we need:
1016 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1017 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1018 */
1019#define DIO_CREDITS 25
1020
1021static int ext3_get_block(struct inode *inode, sector_t iblock,
1022			struct buffer_head *bh_result, int create)
1023{
1024	handle_t *handle = ext3_journal_current_handle();
1025	int ret = 0, started = 0;
1026	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1027
1028	if (create && !handle) {	/* Direct IO write... */
1029		if (max_blocks > DIO_MAX_BLOCKS)
1030			max_blocks = DIO_MAX_BLOCKS;
1031		handle = ext3_journal_start(inode, DIO_CREDITS +
1032				EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1033		if (IS_ERR(handle)) {
1034			ret = PTR_ERR(handle);
1035			goto out;
1036		}
1037		started = 1;
1038	}
1039
1040	ret = ext3_get_blocks_handle(handle, inode, iblock,
1041					max_blocks, bh_result, create);
1042	if (ret > 0) {
1043		bh_result->b_size = (ret << inode->i_blkbits);
1044		ret = 0;
1045	}
1046	if (started)
1047		ext3_journal_stop(handle);
1048out:
1049	return ret;
1050}
1051
1052int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1053		u64 start, u64 len)
1054{
1055	return generic_block_fiemap(inode, fieinfo, start, len,
1056				    ext3_get_block);
1057}
1058
1059/*
1060 * `handle' can be NULL if create is zero
1061 */
1062struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1063				long block, int create, int *errp)
1064{
1065	struct buffer_head dummy;
1066	int fatal = 0, err;
1067
1068	J_ASSERT(handle != NULL || create == 0);
1069
1070	dummy.b_state = 0;
1071	dummy.b_blocknr = -1000;
1072	buffer_trace_init(&dummy.b_history);
1073	err = ext3_get_blocks_handle(handle, inode, block, 1,
1074					&dummy, create);
1075	/*
1076	 * ext3_get_blocks_handle() returns number of blocks
1077	 * mapped. 0 in case of a HOLE.
1078	 */
1079	if (err > 0) {
1080		WARN_ON(err > 1);
1081		err = 0;
1082	}
1083	*errp = err;
1084	if (!err && buffer_mapped(&dummy)) {
1085		struct buffer_head *bh;
1086		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1087		if (unlikely(!bh)) {
1088			*errp = -ENOMEM;
1089			goto err;
1090		}
1091		if (buffer_new(&dummy)) {
1092			J_ASSERT(create != 0);
1093			J_ASSERT(handle != NULL);
1094
1095			/*
1096			 * Now that we do not always journal data, we should
1097			 * keep in mind whether this should always journal the
1098			 * new buffer as metadata.  For now, regular file
1099			 * writes use ext3_get_block instead, so it's not a
1100			 * problem.
1101			 */
1102			lock_buffer(bh);
1103			BUFFER_TRACE(bh, "call get_create_access");
1104			fatal = ext3_journal_get_create_access(handle, bh);
1105			if (!fatal && !buffer_uptodate(bh)) {
1106				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1107				set_buffer_uptodate(bh);
1108			}
1109			unlock_buffer(bh);
1110			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1111			err = ext3_journal_dirty_metadata(handle, bh);
1112			if (!fatal)
1113				fatal = err;
1114		} else {
1115			BUFFER_TRACE(bh, "not a new buffer");
1116		}
1117		if (fatal) {
1118			*errp = fatal;
1119			brelse(bh);
1120			bh = NULL;
1121		}
1122		return bh;
1123	}
1124err:
1125	return NULL;
1126}
1127
1128struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1129			       int block, int create, int *err)
1130{
1131	struct buffer_head * bh;
1132
1133	bh = ext3_getblk(handle, inode, block, create, err);
1134	if (!bh)
1135		return bh;
1136	if (bh_uptodate_or_lock(bh))
1137		return bh;
1138	get_bh(bh);
1139	bh->b_end_io = end_buffer_read_sync;
1140	submit_bh(READ | REQ_META | REQ_PRIO, bh);
1141	wait_on_buffer(bh);
1142	if (buffer_uptodate(bh))
1143		return bh;
1144	put_bh(bh);
1145	*err = -EIO;
1146	return NULL;
1147}
1148
1149static int walk_page_buffers(	handle_t *handle,
1150				struct buffer_head *head,
1151				unsigned from,
1152				unsigned to,
1153				int *partial,
1154				int (*fn)(	handle_t *handle,
1155						struct buffer_head *bh))
1156{
1157	struct buffer_head *bh;
1158	unsigned block_start, block_end;
1159	unsigned blocksize = head->b_size;
1160	int err, ret = 0;
1161	struct buffer_head *next;
1162
1163	for (	bh = head, block_start = 0;
1164		ret == 0 && (bh != head || !block_start);
1165		block_start = block_end, bh = next)
1166	{
1167		next = bh->b_this_page;
1168		block_end = block_start + blocksize;
1169		if (block_end <= from || block_start >= to) {
1170			if (partial && !buffer_uptodate(bh))
1171				*partial = 1;
1172			continue;
1173		}
1174		err = (*fn)(handle, bh);
1175		if (!ret)
1176			ret = err;
1177	}
1178	return ret;
1179}
1180
1181/*
1182 * To preserve ordering, it is essential that the hole instantiation and
1183 * the data write be encapsulated in a single transaction.  We cannot
1184 * close off a transaction and start a new one between the ext3_get_block()
1185 * and the commit_write().  So doing the journal_start at the start of
1186 * prepare_write() is the right place.
1187 *
1188 * Also, this function can nest inside ext3_writepage() ->
1189 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1190 * has generated enough buffer credits to do the whole page.  So we won't
1191 * block on the journal in that case, which is good, because the caller may
1192 * be PF_MEMALLOC.
1193 *
1194 * By accident, ext3 can be reentered when a transaction is open via
1195 * quota file writes.  If we were to commit the transaction while thus
1196 * reentered, there can be a deadlock - we would be holding a quota
1197 * lock, and the commit would never complete if another thread had a
1198 * transaction open and was blocking on the quota lock - a ranking
1199 * violation.
1200 *
1201 * So what we do is to rely on the fact that journal_stop/journal_start
1202 * will _not_ run commit under these circumstances because handle->h_ref
1203 * is elevated.  We'll still have enough credits for the tiny quotafile
1204 * write.
1205 */
1206static int do_journal_get_write_access(handle_t *handle,
1207					struct buffer_head *bh)
1208{
1209	int dirty = buffer_dirty(bh);
1210	int ret;
1211
1212	if (!buffer_mapped(bh) || buffer_freed(bh))
1213		return 0;
1214	/*
1215	 * __block_prepare_write() could have dirtied some buffers. Clean
1216	 * the dirty bit as jbd2_journal_get_write_access() could complain
1217	 * otherwise about fs integrity issues. Setting of the dirty bit
1218	 * by __block_prepare_write() isn't a real problem here as we clear
1219	 * the bit before releasing a page lock and thus writeback cannot
1220	 * ever write the buffer.
1221	 */
1222	if (dirty)
1223		clear_buffer_dirty(bh);
1224	ret = ext3_journal_get_write_access(handle, bh);
1225	if (!ret && dirty)
1226		ret = ext3_journal_dirty_metadata(handle, bh);
1227	return ret;
1228}
1229
1230/*
1231 * Truncate blocks that were not used by write. We have to truncate the
1232 * pagecache as well so that corresponding buffers get properly unmapped.
1233 */
1234static void ext3_truncate_failed_write(struct inode *inode)
1235{
1236	truncate_inode_pages(inode->i_mapping, inode->i_size);
1237	ext3_truncate(inode);
1238}
1239
1240/*
1241 * Truncate blocks that were not used by direct IO write. We have to zero out
1242 * the last file block as well because direct IO might have written to it.
1243 */
1244static void ext3_truncate_failed_direct_write(struct inode *inode)
1245{
1246	ext3_block_truncate_page(inode, inode->i_size);
1247	ext3_truncate(inode);
1248}
1249
1250static int ext3_write_begin(struct file *file, struct address_space *mapping,
1251				loff_t pos, unsigned len, unsigned flags,
1252				struct page **pagep, void **fsdata)
1253{
1254	struct inode *inode = mapping->host;
1255	int ret;
1256	handle_t *handle;
1257	int retries = 0;
1258	struct page *page;
1259	pgoff_t index;
1260	unsigned from, to;
1261	/* Reserve one block more for addition to orphan list in case
1262	 * we allocate blocks but write fails for some reason */
1263	int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1264
1265	trace_ext3_write_begin(inode, pos, len, flags);
1266
1267	index = pos >> PAGE_CACHE_SHIFT;
1268	from = pos & (PAGE_CACHE_SIZE - 1);
1269	to = from + len;
1270
1271retry:
1272	page = grab_cache_page_write_begin(mapping, index, flags);
1273	if (!page)
1274		return -ENOMEM;
1275	*pagep = page;
1276
1277	handle = ext3_journal_start(inode, needed_blocks);
1278	if (IS_ERR(handle)) {
1279		unlock_page(page);
1280		page_cache_release(page);
1281		ret = PTR_ERR(handle);
1282		goto out;
1283	}
1284	ret = __block_write_begin(page, pos, len, ext3_get_block);
1285	if (ret)
1286		goto write_begin_failed;
1287
1288	if (ext3_should_journal_data(inode)) {
1289		ret = walk_page_buffers(handle, page_buffers(page),
1290				from, to, NULL, do_journal_get_write_access);
1291	}
1292write_begin_failed:
1293	if (ret) {
1294		/*
1295		 * block_write_begin may have instantiated a few blocks
1296		 * outside i_size.  Trim these off again. Don't need
1297		 * i_size_read because we hold i_mutex.
1298		 *
1299		 * Add inode to orphan list in case we crash before truncate
1300		 * finishes. Do this only if ext3_can_truncate() agrees so
1301		 * that orphan processing code is happy.
1302		 */
1303		if (pos + len > inode->i_size && ext3_can_truncate(inode))
1304			ext3_orphan_add(handle, inode);
1305		ext3_journal_stop(handle);
1306		unlock_page(page);
1307		page_cache_release(page);
1308		if (pos + len > inode->i_size)
1309			ext3_truncate_failed_write(inode);
1310	}
1311	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1312		goto retry;
1313out:
1314	return ret;
1315}
1316
1317
1318int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1319{
1320	int err = journal_dirty_data(handle, bh);
1321	if (err)
1322		ext3_journal_abort_handle(__func__, __func__,
1323						bh, handle, err);
1324	return err;
1325}
1326
1327/* For ordered writepage and write_end functions */
1328static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1329{
1330	/*
1331	 * Write could have mapped the buffer but it didn't copy the data in
1332	 * yet. So avoid filing such buffer into a transaction.
1333	 */
1334	if (buffer_mapped(bh) && buffer_uptodate(bh))
1335		return ext3_journal_dirty_data(handle, bh);
1336	return 0;
1337}
1338
1339/* For write_end() in data=journal mode */
1340static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1341{
1342	if (!buffer_mapped(bh) || buffer_freed(bh))
1343		return 0;
1344	set_buffer_uptodate(bh);
1345	return ext3_journal_dirty_metadata(handle, bh);
1346}
1347
1348/*
1349 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1350 * for the whole page but later we failed to copy the data in. Update inode
1351 * size according to what we managed to copy. The rest is going to be
1352 * truncated in write_end function.
1353 */
1354static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1355{
1356	/* What matters to us is i_disksize. We don't write i_size anywhere */
1357	if (pos + copied > inode->i_size)
1358		i_size_write(inode, pos + copied);
1359	if (pos + copied > EXT3_I(inode)->i_disksize) {
1360		EXT3_I(inode)->i_disksize = pos + copied;
1361		mark_inode_dirty(inode);
1362	}
1363}
1364
1365/*
1366 * We need to pick up the new inode size which generic_commit_write gave us
1367 * `file' can be NULL - eg, when called from page_symlink().
1368 *
1369 * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1370 * buffers are managed internally.
1371 */
1372static int ext3_ordered_write_end(struct file *file,
1373				struct address_space *mapping,
1374				loff_t pos, unsigned len, unsigned copied,
1375				struct page *page, void *fsdata)
1376{
1377	handle_t *handle = ext3_journal_current_handle();
1378	struct inode *inode = file->f_mapping->host;
1379	unsigned from, to;
1380	int ret = 0, ret2;
1381
1382	trace_ext3_ordered_write_end(inode, pos, len, copied);
1383	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1384
1385	from = pos & (PAGE_CACHE_SIZE - 1);
1386	to = from + copied;
1387	ret = walk_page_buffers(handle, page_buffers(page),
1388		from, to, NULL, journal_dirty_data_fn);
1389
1390	if (ret == 0)
1391		update_file_sizes(inode, pos, copied);
1392	/*
1393	 * There may be allocated blocks outside of i_size because
1394	 * we failed to copy some data. Prepare for truncate.
1395	 */
1396	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1397		ext3_orphan_add(handle, inode);
1398	ret2 = ext3_journal_stop(handle);
1399	if (!ret)
1400		ret = ret2;
1401	unlock_page(page);
1402	page_cache_release(page);
1403
1404	if (pos + len > inode->i_size)
1405		ext3_truncate_failed_write(inode);
1406	return ret ? ret : copied;
1407}
1408
1409static int ext3_writeback_write_end(struct file *file,
1410				struct address_space *mapping,
1411				loff_t pos, unsigned len, unsigned copied,
1412				struct page *page, void *fsdata)
1413{
1414	handle_t *handle = ext3_journal_current_handle();
1415	struct inode *inode = file->f_mapping->host;
1416	int ret;
1417
1418	trace_ext3_writeback_write_end(inode, pos, len, copied);
1419	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1420	update_file_sizes(inode, pos, copied);
1421	/*
1422	 * There may be allocated blocks outside of i_size because
1423	 * we failed to copy some data. Prepare for truncate.
1424	 */
1425	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1426		ext3_orphan_add(handle, inode);
1427	ret = ext3_journal_stop(handle);
1428	unlock_page(page);
1429	page_cache_release(page);
1430
1431	if (pos + len > inode->i_size)
1432		ext3_truncate_failed_write(inode);
1433	return ret ? ret : copied;
1434}
1435
1436static int ext3_journalled_write_end(struct file *file,
1437				struct address_space *mapping,
1438				loff_t pos, unsigned len, unsigned copied,
1439				struct page *page, void *fsdata)
1440{
1441	handle_t *handle = ext3_journal_current_handle();
1442	struct inode *inode = mapping->host;
1443	struct ext3_inode_info *ei = EXT3_I(inode);
1444	int ret = 0, ret2;
1445	int partial = 0;
1446	unsigned from, to;
1447
1448	trace_ext3_journalled_write_end(inode, pos, len, copied);
1449	from = pos & (PAGE_CACHE_SIZE - 1);
1450	to = from + len;
1451
1452	if (copied < len) {
1453		if (!PageUptodate(page))
1454			copied = 0;
1455		page_zero_new_buffers(page, from + copied, to);
1456		to = from + copied;
1457	}
1458
1459	ret = walk_page_buffers(handle, page_buffers(page), from,
1460				to, &partial, write_end_fn);
1461	if (!partial)
1462		SetPageUptodate(page);
1463
1464	if (pos + copied > inode->i_size)
1465		i_size_write(inode, pos + copied);
1466	/*
1467	 * There may be allocated blocks outside of i_size because
1468	 * we failed to copy some data. Prepare for truncate.
1469	 */
1470	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1471		ext3_orphan_add(handle, inode);
1472	ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1473	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1474	if (inode->i_size > ei->i_disksize) {
1475		ei->i_disksize = inode->i_size;
1476		ret2 = ext3_mark_inode_dirty(handle, inode);
1477		if (!ret)
1478			ret = ret2;
1479	}
1480
1481	ret2 = ext3_journal_stop(handle);
1482	if (!ret)
1483		ret = ret2;
1484	unlock_page(page);
1485	page_cache_release(page);
1486
1487	if (pos + len > inode->i_size)
1488		ext3_truncate_failed_write(inode);
1489	return ret ? ret : copied;
1490}
1491
1492/*
1493 * bmap() is special.  It gets used by applications such as lilo and by
1494 * the swapper to find the on-disk block of a specific piece of data.
1495 *
1496 * Naturally, this is dangerous if the block concerned is still in the
1497 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1498 * filesystem and enables swap, then they may get a nasty shock when the
1499 * data getting swapped to that swapfile suddenly gets overwritten by
1500 * the original zero's written out previously to the journal and
1501 * awaiting writeback in the kernel's buffer cache.
1502 *
1503 * So, if we see any bmap calls here on a modified, data-journaled file,
1504 * take extra steps to flush any blocks which might be in the cache.
1505 */
1506static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1507{
1508	struct inode *inode = mapping->host;
1509	journal_t *journal;
1510	int err;
1511
1512	if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1513		/*
1514		 * This is a REALLY heavyweight approach, but the use of
1515		 * bmap on dirty files is expected to be extremely rare:
1516		 * only if we run lilo or swapon on a freshly made file
1517		 * do we expect this to happen.
1518		 *
1519		 * (bmap requires CAP_SYS_RAWIO so this does not
1520		 * represent an unprivileged user DOS attack --- we'd be
1521		 * in trouble if mortal users could trigger this path at
1522		 * will.)
1523		 *
1524		 * NB. EXT3_STATE_JDATA is not set on files other than
1525		 * regular files.  If somebody wants to bmap a directory
1526		 * or symlink and gets confused because the buffer
1527		 * hasn't yet been flushed to disk, they deserve
1528		 * everything they get.
1529		 */
1530
1531		ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1532		journal = EXT3_JOURNAL(inode);
1533		journal_lock_updates(journal);
1534		err = journal_flush(journal);
1535		journal_unlock_updates(journal);
1536
1537		if (err)
1538			return 0;
1539	}
1540
1541	return generic_block_bmap(mapping,block,ext3_get_block);
1542}
1543
1544static int bget_one(handle_t *handle, struct buffer_head *bh)
1545{
1546	get_bh(bh);
1547	return 0;
1548}
1549
1550static int bput_one(handle_t *handle, struct buffer_head *bh)
1551{
1552	put_bh(bh);
1553	return 0;
1554}
1555
1556static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1557{
1558	return !buffer_mapped(bh);
1559}
1560
1561/*
1562 * Note that whenever we need to map blocks we start a transaction even if
1563 * we're not journalling data.  This is to preserve ordering: any hole
1564 * instantiation within __block_write_full_page -> ext3_get_block() should be
1565 * journalled along with the data so we don't crash and then get metadata which
1566 * refers to old data.
1567 *
1568 * In all journalling modes block_write_full_page() will start the I/O.
1569 *
1570 * We don't honour synchronous mounts for writepage().  That would be
1571 * disastrous.  Any write() or metadata operation will sync the fs for
1572 * us.
1573 */
1574static int ext3_ordered_writepage(struct page *page,
1575				struct writeback_control *wbc)
1576{
1577	struct inode *inode = page->mapping->host;
1578	struct buffer_head *page_bufs;
1579	handle_t *handle = NULL;
1580	int ret = 0;
1581	int err;
1582
1583	J_ASSERT(PageLocked(page));
1584	/*
1585	 * We don't want to warn for emergency remount. The condition is
1586	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1587	 * avoid slow-downs.
1588	 */
1589	WARN_ON_ONCE(IS_RDONLY(inode) &&
1590		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1591
1592	/*
1593	 * We give up here if we're reentered, because it might be for a
1594	 * different filesystem.
1595	 */
1596	if (ext3_journal_current_handle())
1597		goto out_fail;
1598
1599	trace_ext3_ordered_writepage(page);
1600	if (!page_has_buffers(page)) {
1601		create_empty_buffers(page, inode->i_sb->s_blocksize,
1602				(1 << BH_Dirty)|(1 << BH_Uptodate));
1603		page_bufs = page_buffers(page);
1604	} else {
1605		page_bufs = page_buffers(page);
1606		if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1607				       NULL, buffer_unmapped)) {
1608			/* Provide NULL get_block() to catch bugs if buffers
1609			 * weren't really mapped */
1610			return block_write_full_page(page, NULL, wbc);
1611		}
1612	}
1613	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1614
1615	if (IS_ERR(handle)) {
1616		ret = PTR_ERR(handle);
1617		goto out_fail;
1618	}
1619
1620	walk_page_buffers(handle, page_bufs, 0,
1621			PAGE_CACHE_SIZE, NULL, bget_one);
1622
1623	ret = block_write_full_page(page, ext3_get_block, wbc);
1624
1625	/*
1626	 * The page can become unlocked at any point now, and
1627	 * truncate can then come in and change things.  So we
1628	 * can't touch *page from now on.  But *page_bufs is
1629	 * safe due to elevated refcount.
1630	 */
1631
1632	/*
1633	 * And attach them to the current transaction.  But only if
1634	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1635	 * and generally junk.
1636	 */
1637	if (ret == 0)
1638		ret = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1639					NULL, journal_dirty_data_fn);
1640	walk_page_buffers(handle, page_bufs, 0,
1641			PAGE_CACHE_SIZE, NULL, bput_one);
1642	err = ext3_journal_stop(handle);
1643	if (!ret)
1644		ret = err;
1645	return ret;
1646
1647out_fail:
1648	redirty_page_for_writepage(wbc, page);
1649	unlock_page(page);
1650	return ret;
1651}
1652
1653static int ext3_writeback_writepage(struct page *page,
1654				struct writeback_control *wbc)
1655{
1656	struct inode *inode = page->mapping->host;
1657	handle_t *handle = NULL;
1658	int ret = 0;
1659	int err;
1660
1661	J_ASSERT(PageLocked(page));
1662	/*
1663	 * We don't want to warn for emergency remount. The condition is
1664	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1665	 * avoid slow-downs.
1666	 */
1667	WARN_ON_ONCE(IS_RDONLY(inode) &&
1668		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1669
1670	if (ext3_journal_current_handle())
1671		goto out_fail;
1672
1673	trace_ext3_writeback_writepage(page);
1674	if (page_has_buffers(page)) {
1675		if (!walk_page_buffers(NULL, page_buffers(page), 0,
1676				      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1677			/* Provide NULL get_block() to catch bugs if buffers
1678			 * weren't really mapped */
1679			return block_write_full_page(page, NULL, wbc);
1680		}
1681	}
1682
1683	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1684	if (IS_ERR(handle)) {
1685		ret = PTR_ERR(handle);
1686		goto out_fail;
1687	}
1688
1689	ret = block_write_full_page(page, ext3_get_block, wbc);
1690
1691	err = ext3_journal_stop(handle);
1692	if (!ret)
1693		ret = err;
1694	return ret;
1695
1696out_fail:
1697	redirty_page_for_writepage(wbc, page);
1698	unlock_page(page);
1699	return ret;
1700}
1701
1702static int ext3_journalled_writepage(struct page *page,
1703				struct writeback_control *wbc)
1704{
1705	struct inode *inode = page->mapping->host;
1706	handle_t *handle = NULL;
1707	int ret = 0;
1708	int err;
1709
1710	J_ASSERT(PageLocked(page));
1711	/*
1712	 * We don't want to warn for emergency remount. The condition is
1713	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1714	 * avoid slow-downs.
1715	 */
1716	WARN_ON_ONCE(IS_RDONLY(inode) &&
1717		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1718
1719	trace_ext3_journalled_writepage(page);
1720	if (!page_has_buffers(page) || PageChecked(page)) {
1721		if (ext3_journal_current_handle())
1722			goto no_write;
1723
1724		handle = ext3_journal_start(inode,
1725					    ext3_writepage_trans_blocks(inode));
1726		if (IS_ERR(handle)) {
1727			ret = PTR_ERR(handle);
1728			goto no_write;
1729		}
1730		/*
1731		 * It's mmapped pagecache.  Add buffers and journal it.  There
1732		 * doesn't seem much point in redirtying the page here.
1733		 */
1734		ClearPageChecked(page);
1735		ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1736					  ext3_get_block);
1737		if (ret != 0) {
1738			ext3_journal_stop(handle);
1739			goto out_unlock;
1740		}
1741		ret = walk_page_buffers(handle, page_buffers(page), 0,
1742			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1743
1744		err = walk_page_buffers(handle, page_buffers(page), 0,
1745				PAGE_CACHE_SIZE, NULL, write_end_fn);
1746		if (ret == 0)
1747			ret = err;
1748		ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1749		atomic_set(&EXT3_I(inode)->i_datasync_tid,
1750			   handle->h_transaction->t_tid);
1751		unlock_page(page);
1752		err = ext3_journal_stop(handle);
1753		if (!ret)
1754			ret = err;
1755	} else {
1756		/*
1757		 * It is a page full of checkpoint-mode buffers. Go and write
1758		 * them. They should have been already mapped when they went
1759		 * to the journal so provide NULL get_block function to catch
1760		 * errors.
1761		 */
1762		ret = block_write_full_page(page, NULL, wbc);
1763	}
1764out:
1765	return ret;
1766
1767no_write:
1768	redirty_page_for_writepage(wbc, page);
1769out_unlock:
1770	unlock_page(page);
1771	goto out;
1772}
1773
1774static int ext3_readpage(struct file *file, struct page *page)
1775{
1776	trace_ext3_readpage(page);
1777	return mpage_readpage(page, ext3_get_block);
1778}
1779
1780static int
1781ext3_readpages(struct file *file, struct address_space *mapping,
1782		struct list_head *pages, unsigned nr_pages)
1783{
1784	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1785}
1786
1787static void ext3_invalidatepage(struct page *page, unsigned int offset,
1788				unsigned int length)
1789{
1790	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1791
1792	trace_ext3_invalidatepage(page, offset, length);
1793
1794	/*
1795	 * If it's a full truncate we just forget about the pending dirtying
1796	 */
1797	if (offset == 0 && length == PAGE_CACHE_SIZE)
1798		ClearPageChecked(page);
1799
1800	journal_invalidatepage(journal, page, offset, length);
1801}
1802
1803static int ext3_releasepage(struct page *page, gfp_t wait)
1804{
1805	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1806
1807	trace_ext3_releasepage(page);
1808	WARN_ON(PageChecked(page));
1809	if (!page_has_buffers(page))
1810		return 0;
1811	return journal_try_to_free_buffers(journal, page, wait);
1812}
1813
1814/*
1815 * If the O_DIRECT write will extend the file then add this inode to the
1816 * orphan list.  So recovery will truncate it back to the original size
1817 * if the machine crashes during the write.
1818 *
1819 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1820 * crashes then stale disk data _may_ be exposed inside the file. But current
1821 * VFS code falls back into buffered path in that case so we are safe.
1822 */
1823static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1824			struct iov_iter *iter, loff_t offset)
1825{
1826	struct file *file = iocb->ki_filp;
1827	struct inode *inode = file->f_mapping->host;
1828	struct ext3_inode_info *ei = EXT3_I(inode);
1829	handle_t *handle;
1830	ssize_t ret;
1831	int orphan = 0;
1832	size_t count = iov_iter_count(iter);
1833	int retries = 0;
1834
1835	trace_ext3_direct_IO_enter(inode, offset, count, rw);
1836
1837	if (rw == WRITE) {
1838		loff_t final_size = offset + count;
1839
1840		if (final_size > inode->i_size) {
1841			/* Credits for sb + inode write */
1842			handle = ext3_journal_start(inode, 2);
1843			if (IS_ERR(handle)) {
1844				ret = PTR_ERR(handle);
1845				goto out;
1846			}
1847			ret = ext3_orphan_add(handle, inode);
1848			if (ret) {
1849				ext3_journal_stop(handle);
1850				goto out;
1851			}
1852			orphan = 1;
1853			ei->i_disksize = inode->i_size;
1854			ext3_journal_stop(handle);
1855		}
1856	}
1857
1858retry:
1859	ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, ext3_get_block);
1860	/*
1861	 * In case of error extending write may have instantiated a few
1862	 * blocks outside i_size. Trim these off again.
1863	 */
1864	if (unlikely((rw & WRITE) && ret < 0)) {
1865		loff_t isize = i_size_read(inode);
1866		loff_t end = offset + count;
1867
1868		if (end > isize)
1869			ext3_truncate_failed_direct_write(inode);
1870	}
1871	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1872		goto retry;
1873
1874	if (orphan) {
1875		int err;
1876
1877		/* Credits for sb + inode write */
1878		handle = ext3_journal_start(inode, 2);
1879		if (IS_ERR(handle)) {
1880			/* This is really bad luck. We've written the data
1881			 * but cannot extend i_size. Truncate allocated blocks
1882			 * and pretend the write failed... */
1883			ext3_truncate_failed_direct_write(inode);
1884			ret = PTR_ERR(handle);
1885			if (inode->i_nlink)
1886				ext3_orphan_del(NULL, inode);
1887			goto out;
1888		}
1889		if (inode->i_nlink)
1890			ext3_orphan_del(handle, inode);
1891		if (ret > 0) {
1892			loff_t end = offset + ret;
1893			if (end > inode->i_size) {
1894				ei->i_disksize = end;
1895				i_size_write(inode, end);
1896				/*
1897				 * We're going to return a positive `ret'
1898				 * here due to non-zero-length I/O, so there's
1899				 * no way of reporting error returns from
1900				 * ext3_mark_inode_dirty() to userspace.  So
1901				 * ignore it.
1902				 */
1903				ext3_mark_inode_dirty(handle, inode);
1904			}
1905		}
1906		err = ext3_journal_stop(handle);
1907		if (ret == 0)
1908			ret = err;
1909	}
1910out:
1911	trace_ext3_direct_IO_exit(inode, offset, count, rw, ret);
1912	return ret;
1913}
1914
1915/*
1916 * Pages can be marked dirty completely asynchronously from ext3's journalling
1917 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1918 * much here because ->set_page_dirty is called under VFS locks.  The page is
1919 * not necessarily locked.
1920 *
1921 * We cannot just dirty the page and leave attached buffers clean, because the
1922 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1923 * or jbddirty because all the journalling code will explode.
1924 *
1925 * So what we do is to mark the page "pending dirty" and next time writepage
1926 * is called, propagate that into the buffers appropriately.
1927 */
1928static int ext3_journalled_set_page_dirty(struct page *page)
1929{
1930	SetPageChecked(page);
1931	return __set_page_dirty_nobuffers(page);
1932}
1933
1934static const struct address_space_operations ext3_ordered_aops = {
1935	.readpage		= ext3_readpage,
1936	.readpages		= ext3_readpages,
1937	.writepage		= ext3_ordered_writepage,
1938	.write_begin		= ext3_write_begin,
1939	.write_end		= ext3_ordered_write_end,
1940	.bmap			= ext3_bmap,
1941	.invalidatepage		= ext3_invalidatepage,
1942	.releasepage		= ext3_releasepage,
1943	.direct_IO		= ext3_direct_IO,
1944	.migratepage		= buffer_migrate_page,
1945	.is_partially_uptodate  = block_is_partially_uptodate,
1946	.is_dirty_writeback	= buffer_check_dirty_writeback,
1947	.error_remove_page	= generic_error_remove_page,
1948};
1949
1950static const struct address_space_operations ext3_writeback_aops = {
1951	.readpage		= ext3_readpage,
1952	.readpages		= ext3_readpages,
1953	.writepage		= ext3_writeback_writepage,
1954	.write_begin		= ext3_write_begin,
1955	.write_end		= ext3_writeback_write_end,
1956	.bmap			= ext3_bmap,
1957	.invalidatepage		= ext3_invalidatepage,
1958	.releasepage		= ext3_releasepage,
1959	.direct_IO		= ext3_direct_IO,
1960	.migratepage		= buffer_migrate_page,
1961	.is_partially_uptodate  = block_is_partially_uptodate,
1962	.error_remove_page	= generic_error_remove_page,
1963};
1964
1965static const struct address_space_operations ext3_journalled_aops = {
1966	.readpage		= ext3_readpage,
1967	.readpages		= ext3_readpages,
1968	.writepage		= ext3_journalled_writepage,
1969	.write_begin		= ext3_write_begin,
1970	.write_end		= ext3_journalled_write_end,
1971	.set_page_dirty		= ext3_journalled_set_page_dirty,
1972	.bmap			= ext3_bmap,
1973	.invalidatepage		= ext3_invalidatepage,
1974	.releasepage		= ext3_releasepage,
1975	.is_partially_uptodate  = block_is_partially_uptodate,
1976	.error_remove_page	= generic_error_remove_page,
1977};
1978
1979void ext3_set_aops(struct inode *inode)
1980{
1981	if (ext3_should_order_data(inode))
1982		inode->i_mapping->a_ops = &ext3_ordered_aops;
1983	else if (ext3_should_writeback_data(inode))
1984		inode->i_mapping->a_ops = &ext3_writeback_aops;
1985	else
1986		inode->i_mapping->a_ops = &ext3_journalled_aops;
1987}
1988
1989/*
1990 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1991 * up to the end of the block which corresponds to `from'.
1992 * This required during truncate. We need to physically zero the tail end
1993 * of that block so it doesn't yield old data if the file is later grown.
1994 */
1995static int ext3_block_truncate_page(struct inode *inode, loff_t from)
1996{
1997	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1998	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
1999	unsigned blocksize, iblock, length, pos;
2000	struct page *page;
2001	handle_t *handle = NULL;
2002	struct buffer_head *bh;
2003	int err = 0;
2004
2005	/* Truncated on block boundary - nothing to do */
2006	blocksize = inode->i_sb->s_blocksize;
2007	if ((from & (blocksize - 1)) == 0)
2008		return 0;
2009
2010	page = grab_cache_page(inode->i_mapping, index);
2011	if (!page)
2012		return -ENOMEM;
2013	length = blocksize - (offset & (blocksize - 1));
2014	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2015
2016	if (!page_has_buffers(page))
2017		create_empty_buffers(page, blocksize, 0);
2018
2019	/* Find the buffer that contains "offset" */
2020	bh = page_buffers(page);
2021	pos = blocksize;
2022	while (offset >= pos) {
2023		bh = bh->b_this_page;
2024		iblock++;
2025		pos += blocksize;
2026	}
2027
2028	err = 0;
2029	if (buffer_freed(bh)) {
2030		BUFFER_TRACE(bh, "freed: skip");
2031		goto unlock;
2032	}
2033
2034	if (!buffer_mapped(bh)) {
2035		BUFFER_TRACE(bh, "unmapped");
2036		ext3_get_block(inode, iblock, bh, 0);
2037		/* unmapped? It's a hole - nothing to do */
2038		if (!buffer_mapped(bh)) {
2039			BUFFER_TRACE(bh, "still unmapped");
2040			goto unlock;
2041		}
2042	}
2043
2044	/* Ok, it's mapped. Make sure it's up-to-date */
2045	if (PageUptodate(page))
2046		set_buffer_uptodate(bh);
2047
2048	if (!bh_uptodate_or_lock(bh)) {
2049		err = bh_submit_read(bh);
2050		/* Uhhuh. Read error. Complain and punt. */
2051		if (err)
2052			goto unlock;
2053	}
2054
2055	/* data=writeback mode doesn't need transaction to zero-out data */
2056	if (!ext3_should_writeback_data(inode)) {
2057		/* We journal at most one block */
2058		handle = ext3_journal_start(inode, 1);
2059		if (IS_ERR(handle)) {
2060			clear_highpage(page);
2061			flush_dcache_page(page);
2062			err = PTR_ERR(handle);
2063			goto unlock;
2064		}
2065	}
2066
2067	if (ext3_should_journal_data(inode)) {
2068		BUFFER_TRACE(bh, "get write access");
2069		err = ext3_journal_get_write_access(handle, bh);
2070		if (err)
2071			goto stop;
2072	}
2073
2074	zero_user(page, offset, length);
2075	BUFFER_TRACE(bh, "zeroed end of block");
2076
2077	err = 0;
2078	if (ext3_should_journal_data(inode)) {
2079		err = ext3_journal_dirty_metadata(handle, bh);
2080	} else {
2081		if (ext3_should_order_data(inode))
2082			err = ext3_journal_dirty_data(handle, bh);
2083		mark_buffer_dirty(bh);
2084	}
2085stop:
2086	if (handle)
2087		ext3_journal_stop(handle);
2088
2089unlock:
2090	unlock_page(page);
2091	page_cache_release(page);
2092	return err;
2093}
2094
2095/*
2096 * Probably it should be a library function... search for first non-zero word
2097 * or memcmp with zero_page, whatever is better for particular architecture.
2098 * Linus?
2099 */
2100static inline int all_zeroes(__le32 *p, __le32 *q)
2101{
2102	while (p < q)
2103		if (*p++)
2104			return 0;
2105	return 1;
2106}
2107
2108/**
2109 *	ext3_find_shared - find the indirect blocks for partial truncation.
2110 *	@inode:	  inode in question
2111 *	@depth:	  depth of the affected branch
2112 *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
2113 *	@chain:	  place to store the pointers to partial indirect blocks
2114 *	@top:	  place to the (detached) top of branch
2115 *
2116 *	This is a helper function used by ext3_truncate().
2117 *
2118 *	When we do truncate() we may have to clean the ends of several
2119 *	indirect blocks but leave the blocks themselves alive. Block is
2120 *	partially truncated if some data below the new i_size is referred
2121 *	from it (and it is on the path to the first completely truncated
2122 *	data block, indeed).  We have to free the top of that path along
2123 *	with everything to the right of the path. Since no allocation
2124 *	past the truncation point is possible until ext3_truncate()
2125 *	finishes, we may safely do the latter, but top of branch may
2126 *	require special attention - pageout below the truncation point
2127 *	might try to populate it.
2128 *
2129 *	We atomically detach the top of branch from the tree, store the
2130 *	block number of its root in *@top, pointers to buffer_heads of
2131 *	partially truncated blocks - in @chain[].bh and pointers to
2132 *	their last elements that should not be removed - in
2133 *	@chain[].p. Return value is the pointer to last filled element
2134 *	of @chain.
2135 *
2136 *	The work left to caller to do the actual freeing of subtrees:
2137 *		a) free the subtree starting from *@top
2138 *		b) free the subtrees whose roots are stored in
2139 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
2140 *		c) free the subtrees growing from the inode past the @chain[0].
2141 *			(no partially truncated stuff there).  */
2142
2143static Indirect *ext3_find_shared(struct inode *inode, int depth,
2144			int offsets[4], Indirect chain[4], __le32 *top)
2145{
2146	Indirect *partial, *p;
2147	int k, err;
2148
2149	*top = 0;
2150	/* Make k index the deepest non-null offset + 1 */
2151	for (k = depth; k > 1 && !offsets[k-1]; k--)
2152		;
2153	partial = ext3_get_branch(inode, k, offsets, chain, &err);
2154	/* Writer: pointers */
2155	if (!partial)
2156		partial = chain + k-1;
2157	/*
2158	 * If the branch acquired continuation since we've looked at it -
2159	 * fine, it should all survive and (new) top doesn't belong to us.
2160	 */
2161	if (!partial->key && *partial->p)
2162		/* Writer: end */
2163		goto no_top;
2164	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2165		;
2166	/*
2167	 * OK, we've found the last block that must survive. The rest of our
2168	 * branch should be detached before unlocking. However, if that rest
2169	 * of branch is all ours and does not grow immediately from the inode
2170	 * it's easier to cheat and just decrement partial->p.
2171	 */
2172	if (p == chain + k - 1 && p > chain) {
2173		p->p--;
2174	} else {
2175		*top = *p->p;
2176		/* Nope, don't do this in ext3.  Must leave the tree intact */
2177#if 0
2178		*p->p = 0;
2179#endif
2180	}
2181	/* Writer: end */
2182
2183	while(partial > p) {
2184		brelse(partial->bh);
2185		partial--;
2186	}
2187no_top:
2188	return partial;
2189}
2190
2191/*
2192 * Zero a number of block pointers in either an inode or an indirect block.
2193 * If we restart the transaction we must again get write access to the
2194 * indirect block for further modification.
2195 *
2196 * We release `count' blocks on disk, but (last - first) may be greater
2197 * than `count' because there can be holes in there.
2198 */
2199static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2200		struct buffer_head *bh, ext3_fsblk_t block_to_free,
2201		unsigned long count, __le32 *first, __le32 *last)
2202{
2203	__le32 *p;
2204	if (try_to_extend_transaction(handle, inode)) {
2205		if (bh) {
2206			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2207			if (ext3_journal_dirty_metadata(handle, bh))
2208				return;
2209		}
2210		ext3_mark_inode_dirty(handle, inode);
2211		truncate_restart_transaction(handle, inode);
2212		if (bh) {
2213			BUFFER_TRACE(bh, "retaking write access");
2214			if (ext3_journal_get_write_access(handle, bh))
2215				return;
2216		}
2217	}
2218
2219	/*
2220	 * Any buffers which are on the journal will be in memory. We find
2221	 * them on the hash table so journal_revoke() will run journal_forget()
2222	 * on them.  We've already detached each block from the file, so
2223	 * bforget() in journal_forget() should be safe.
2224	 *
2225	 * AKPM: turn on bforget in journal_forget()!!!
2226	 */
2227	for (p = first; p < last; p++) {
2228		u32 nr = le32_to_cpu(*p);
2229		if (nr) {
2230			struct buffer_head *bh;
2231
2232			*p = 0;
2233			bh = sb_find_get_block(inode->i_sb, nr);
2234			ext3_forget(handle, 0, inode, bh, nr);
2235		}
2236	}
2237
2238	ext3_free_blocks(handle, inode, block_to_free, count);
2239}
2240
2241/**
2242 * ext3_free_data - free a list of data blocks
2243 * @handle:	handle for this transaction
2244 * @inode:	inode we are dealing with
2245 * @this_bh:	indirect buffer_head which contains *@first and *@last
2246 * @first:	array of block numbers
2247 * @last:	points immediately past the end of array
2248 *
2249 * We are freeing all blocks referred from that array (numbers are stored as
2250 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2251 *
2252 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2253 * blocks are contiguous then releasing them at one time will only affect one
2254 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2255 * actually use a lot of journal space.
2256 *
2257 * @this_bh will be %NULL if @first and @last point into the inode's direct
2258 * block pointers.
2259 */
2260static void ext3_free_data(handle_t *handle, struct inode *inode,
2261			   struct buffer_head *this_bh,
2262			   __le32 *first, __le32 *last)
2263{
2264	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2265	unsigned long count = 0;	    /* Number of blocks in the run */
2266	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2267					       corresponding to
2268					       block_to_free */
2269	ext3_fsblk_t nr;		    /* Current block # */
2270	__le32 *p;			    /* Pointer into inode/ind
2271					       for current block */
2272	int err;
2273
2274	if (this_bh) {				/* For indirect block */
2275		BUFFER_TRACE(this_bh, "get_write_access");
2276		err = ext3_journal_get_write_access(handle, this_bh);
2277		/* Important: if we can't update the indirect pointers
2278		 * to the blocks, we can't free them. */
2279		if (err)
2280			return;
2281	}
2282
2283	for (p = first; p < last; p++) {
2284		nr = le32_to_cpu(*p);
2285		if (nr) {
2286			/* accumulate blocks to free if they're contiguous */
2287			if (count == 0) {
2288				block_to_free = nr;
2289				block_to_free_p = p;
2290				count = 1;
2291			} else if (nr == block_to_free + count) {
2292				count++;
2293			} else {
2294				ext3_clear_blocks(handle, inode, this_bh,
2295						  block_to_free,
2296						  count, block_to_free_p, p);
2297				block_to_free = nr;
2298				block_to_free_p = p;
2299				count = 1;
2300			}
2301		}
2302	}
2303
2304	if (count > 0)
2305		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2306				  count, block_to_free_p, p);
2307
2308	if (this_bh) {
2309		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2310
2311		/*
2312		 * The buffer head should have an attached journal head at this
2313		 * point. However, if the data is corrupted and an indirect
2314		 * block pointed to itself, it would have been detached when
2315		 * the block was cleared. Check for this instead of OOPSing.
2316		 */
2317		if (bh2jh(this_bh))
2318			ext3_journal_dirty_metadata(handle, this_bh);
2319		else
2320			ext3_error(inode->i_sb, "ext3_free_data",
2321				   "circular indirect block detected, "
2322				   "inode=%lu, block=%llu",
2323				   inode->i_ino,
2324				   (unsigned long long)this_bh->b_blocknr);
2325	}
2326}
2327
2328/**
2329 *	ext3_free_branches - free an array of branches
2330 *	@handle: JBD handle for this transaction
2331 *	@inode:	inode we are dealing with
2332 *	@parent_bh: the buffer_head which contains *@first and *@last
2333 *	@first:	array of block numbers
2334 *	@last:	pointer immediately past the end of array
2335 *	@depth:	depth of the branches to free
2336 *
2337 *	We are freeing all blocks referred from these branches (numbers are
2338 *	stored as little-endian 32-bit) and updating @inode->i_blocks
2339 *	appropriately.
2340 */
2341static void ext3_free_branches(handle_t *handle, struct inode *inode,
2342			       struct buffer_head *parent_bh,
2343			       __le32 *first, __le32 *last, int depth)
2344{
2345	ext3_fsblk_t nr;
2346	__le32 *p;
2347
2348	if (is_handle_aborted(handle))
2349		return;
2350
2351	if (depth--) {
2352		struct buffer_head *bh;
2353		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2354		p = last;
2355		while (--p >= first) {
2356			nr = le32_to_cpu(*p);
2357			if (!nr)
2358				continue;		/* A hole */
2359
2360			/* Go read the buffer for the next level down */
2361			bh = sb_bread(inode->i_sb, nr);
2362
2363			/*
2364			 * A read failure? Report error and clear slot
2365			 * (should be rare).
2366			 */
2367			if (!bh) {
2368				ext3_error(inode->i_sb, "ext3_free_branches",
2369					   "Read failure, inode=%lu, block="E3FSBLK,
2370					   inode->i_ino, nr);
2371				continue;
2372			}
2373
2374			/* This zaps the entire block.  Bottom up. */
2375			BUFFER_TRACE(bh, "free child branches");
2376			ext3_free_branches(handle, inode, bh,
2377					   (__le32*)bh->b_data,
2378					   (__le32*)bh->b_data + addr_per_block,
2379					   depth);
2380
2381			/*
2382			 * Everything below this this pointer has been
2383			 * released.  Now let this top-of-subtree go.
2384			 *
2385			 * We want the freeing of this indirect block to be
2386			 * atomic in the journal with the updating of the
2387			 * bitmap block which owns it.  So make some room in
2388			 * the journal.
2389			 *
2390			 * We zero the parent pointer *after* freeing its
2391			 * pointee in the bitmaps, so if extend_transaction()
2392			 * for some reason fails to put the bitmap changes and
2393			 * the release into the same transaction, recovery
2394			 * will merely complain about releasing a free block,
2395			 * rather than leaking blocks.
2396			 */
2397			if (is_handle_aborted(handle))
2398				return;
2399			if (try_to_extend_transaction(handle, inode)) {
2400				ext3_mark_inode_dirty(handle, inode);
2401				truncate_restart_transaction(handle, inode);
2402			}
2403
2404			/*
2405			 * We've probably journalled the indirect block several
2406			 * times during the truncate.  But it's no longer
2407			 * needed and we now drop it from the transaction via
2408			 * journal_revoke().
2409			 *
2410			 * That's easy if it's exclusively part of this
2411			 * transaction.  But if it's part of the committing
2412			 * transaction then journal_forget() will simply
2413			 * brelse() it.  That means that if the underlying
2414			 * block is reallocated in ext3_get_block(),
2415			 * unmap_underlying_metadata() will find this block
2416			 * and will try to get rid of it.  damn, damn. Thus
2417			 * we don't allow a block to be reallocated until
2418			 * a transaction freeing it has fully committed.
2419			 *
2420			 * We also have to make sure journal replay after a
2421			 * crash does not overwrite non-journaled data blocks
2422			 * with old metadata when the block got reallocated for
2423			 * data.  Thus we have to store a revoke record for a
2424			 * block in the same transaction in which we free the
2425			 * block.
2426			 */
2427			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2428
2429			ext3_free_blocks(handle, inode, nr, 1);
2430
2431			if (parent_bh) {
2432				/*
2433				 * The block which we have just freed is
2434				 * pointed to by an indirect block: journal it
2435				 */
2436				BUFFER_TRACE(parent_bh, "get_write_access");
2437				if (!ext3_journal_get_write_access(handle,
2438								   parent_bh)){
2439					*p = 0;
2440					BUFFER_TRACE(parent_bh,
2441					"call ext3_journal_dirty_metadata");
2442					ext3_journal_dirty_metadata(handle,
2443								    parent_bh);
2444				}
2445			}
2446		}
2447	} else {
2448		/* We have reached the bottom of the tree. */
2449		BUFFER_TRACE(parent_bh, "free data blocks");
2450		ext3_free_data(handle, inode, parent_bh, first, last);
2451	}
2452}
2453
2454int ext3_can_truncate(struct inode *inode)
2455{
2456	if (S_ISREG(inode->i_mode))
2457		return 1;
2458	if (S_ISDIR(inode->i_mode))
2459		return 1;
2460	if (S_ISLNK(inode->i_mode))
2461		return !ext3_inode_is_fast_symlink(inode);
2462	return 0;
2463}
2464
2465/*
2466 * ext3_truncate()
2467 *
2468 * We block out ext3_get_block() block instantiations across the entire
2469 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2470 * simultaneously on behalf of the same inode.
2471 *
2472 * As we work through the truncate and commit bits of it to the journal there
2473 * is one core, guiding principle: the file's tree must always be consistent on
2474 * disk.  We must be able to restart the truncate after a crash.
2475 *
2476 * The file's tree may be transiently inconsistent in memory (although it
2477 * probably isn't), but whenever we close off and commit a journal transaction,
2478 * the contents of (the filesystem + the journal) must be consistent and
2479 * restartable.  It's pretty simple, really: bottom up, right to left (although
2480 * left-to-right works OK too).
2481 *
2482 * Note that at recovery time, journal replay occurs *before* the restart of
2483 * truncate against the orphan inode list.
2484 *
2485 * The committed inode has the new, desired i_size (which is the same as
2486 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2487 * that this inode's truncate did not complete and it will again call
2488 * ext3_truncate() to have another go.  So there will be instantiated blocks
2489 * to the right of the truncation point in a crashed ext3 filesystem.  But
2490 * that's fine - as long as they are linked from the inode, the post-crash
2491 * ext3_truncate() run will find them and release them.
2492 */
2493void ext3_truncate(struct inode *inode)
2494{
2495	handle_t *handle;
2496	struct ext3_inode_info *ei = EXT3_I(inode);
2497	__le32 *i_data = ei->i_data;
2498	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2499	int offsets[4];
2500	Indirect chain[4];
2501	Indirect *partial;
2502	__le32 nr = 0;
2503	int n;
2504	long last_block;
2505	unsigned blocksize = inode->i_sb->s_blocksize;
2506
2507	trace_ext3_truncate_enter(inode);
2508
2509	if (!ext3_can_truncate(inode))
2510		goto out_notrans;
2511
2512	if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2513		ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2514
2515	handle = start_transaction(inode);
2516	if (IS_ERR(handle))
2517		goto out_notrans;
2518
2519	last_block = (inode->i_size + blocksize-1)
2520					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2521	n = ext3_block_to_path(inode, last_block, offsets, NULL);
2522	if (n == 0)
2523		goto out_stop;	/* error */
2524
2525	/*
2526	 * OK.  This truncate is going to happen.  We add the inode to the
2527	 * orphan list, so that if this truncate spans multiple transactions,
2528	 * and we crash, we will resume the truncate when the filesystem
2529	 * recovers.  It also marks the inode dirty, to catch the new size.
2530	 *
2531	 * Implication: the file must always be in a sane, consistent
2532	 * truncatable state while each transaction commits.
2533	 */
2534	if (ext3_orphan_add(handle, inode))
2535		goto out_stop;
2536
2537	/*
2538	 * The orphan list entry will now protect us from any crash which
2539	 * occurs before the truncate completes, so it is now safe to propagate
2540	 * the new, shorter inode size (held for now in i_size) into the
2541	 * on-disk inode. We do this via i_disksize, which is the value which
2542	 * ext3 *really* writes onto the disk inode.
2543	 */
2544	ei->i_disksize = inode->i_size;
2545
2546	/*
2547	 * From here we block out all ext3_get_block() callers who want to
2548	 * modify the block allocation tree.
2549	 */
2550	mutex_lock(&ei->truncate_mutex);
2551
2552	if (n == 1) {		/* direct blocks */
2553		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2554			       i_data + EXT3_NDIR_BLOCKS);
2555		goto do_indirects;
2556	}
2557
2558	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2559	/* Kill the top of shared branch (not detached) */
2560	if (nr) {
2561		if (partial == chain) {
2562			/* Shared branch grows from the inode */
2563			ext3_free_branches(handle, inode, NULL,
2564					   &nr, &nr+1, (chain+n-1) - partial);
2565			*partial->p = 0;
2566			/*
2567			 * We mark the inode dirty prior to restart,
2568			 * and prior to stop.  No need for it here.
2569			 */
2570		} else {
2571			/* Shared branch grows from an indirect block */
2572			ext3_free_branches(handle, inode, partial->bh,
2573					partial->p,
2574					partial->p+1, (chain+n-1) - partial);
2575		}
2576	}
2577	/* Clear the ends of indirect blocks on the shared branch */
2578	while (partial > chain) {
2579		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2580				   (__le32*)partial->bh->b_data+addr_per_block,
2581				   (chain+n-1) - partial);
2582		BUFFER_TRACE(partial->bh, "call brelse");
2583		brelse (partial->bh);
2584		partial--;
2585	}
2586do_indirects:
2587	/* Kill the remaining (whole) subtrees */
2588	switch (offsets[0]) {
2589	default:
2590		nr = i_data[EXT3_IND_BLOCK];
2591		if (nr) {
2592			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2593			i_data[EXT3_IND_BLOCK] = 0;
2594		}
2595	case EXT3_IND_BLOCK:
2596		nr = i_data[EXT3_DIND_BLOCK];
2597		if (nr) {
2598			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2599			i_data[EXT3_DIND_BLOCK] = 0;
2600		}
2601	case EXT3_DIND_BLOCK:
2602		nr = i_data[EXT3_TIND_BLOCK];
2603		if (nr) {
2604			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2605			i_data[EXT3_TIND_BLOCK] = 0;
2606		}
2607	case EXT3_TIND_BLOCK:
2608		;
2609	}
2610
2611	ext3_discard_reservation(inode);
2612
2613	mutex_unlock(&ei->truncate_mutex);
2614	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2615	ext3_mark_inode_dirty(handle, inode);
2616
2617	/*
2618	 * In a multi-transaction truncate, we only make the final transaction
2619	 * synchronous
2620	 */
2621	if (IS_SYNC(inode))
2622		handle->h_sync = 1;
2623out_stop:
2624	/*
2625	 * If this was a simple ftruncate(), and the file will remain alive
2626	 * then we need to clear up the orphan record which we created above.
2627	 * However, if this was a real unlink then we were called by
2628	 * ext3_evict_inode(), and we allow that function to clean up the
2629	 * orphan info for us.
2630	 */
2631	if (inode->i_nlink)
2632		ext3_orphan_del(handle, inode);
2633
2634	ext3_journal_stop(handle);
2635	trace_ext3_truncate_exit(inode);
2636	return;
2637out_notrans:
2638	/*
2639	 * Delete the inode from orphan list so that it doesn't stay there
2640	 * forever and trigger assertion on umount.
2641	 */
2642	if (inode->i_nlink)
2643		ext3_orphan_del(NULL, inode);
2644	trace_ext3_truncate_exit(inode);
2645}
2646
2647static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2648		unsigned long ino, struct ext3_iloc *iloc)
2649{
2650	unsigned long block_group;
2651	unsigned long offset;
2652	ext3_fsblk_t block;
2653	struct ext3_group_desc *gdp;
2654
2655	if (!ext3_valid_inum(sb, ino)) {
2656		/*
2657		 * This error is already checked for in namei.c unless we are
2658		 * looking at an NFS filehandle, in which case no error
2659		 * report is needed
2660		 */
2661		return 0;
2662	}
2663
2664	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2665	gdp = ext3_get_group_desc(sb, block_group, NULL);
2666	if (!gdp)
2667		return 0;
2668	/*
2669	 * Figure out the offset within the block group inode table
2670	 */
2671	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2672		EXT3_INODE_SIZE(sb);
2673	block = le32_to_cpu(gdp->bg_inode_table) +
2674		(offset >> EXT3_BLOCK_SIZE_BITS(sb));
2675
2676	iloc->block_group = block_group;
2677	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2678	return block;
2679}
2680
2681/*
2682 * ext3_get_inode_loc returns with an extra refcount against the inode's
2683 * underlying buffer_head on success. If 'in_mem' is true, we have all
2684 * data in memory that is needed to recreate the on-disk version of this
2685 * inode.
2686 */
2687static int __ext3_get_inode_loc(struct inode *inode,
2688				struct ext3_iloc *iloc, int in_mem)
2689{
2690	ext3_fsblk_t block;
2691	struct buffer_head *bh;
2692
2693	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2694	if (!block)
2695		return -EIO;
2696
2697	bh = sb_getblk(inode->i_sb, block);
2698	if (unlikely(!bh)) {
2699		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2700				"unable to read inode block - "
2701				"inode=%lu, block="E3FSBLK,
2702				 inode->i_ino, block);
2703		return -ENOMEM;
2704	}
2705	if (!buffer_uptodate(bh)) {
2706		lock_buffer(bh);
2707
2708		/*
2709		 * If the buffer has the write error flag, we have failed
2710		 * to write out another inode in the same block.  In this
2711		 * case, we don't have to read the block because we may
2712		 * read the old inode data successfully.
2713		 */
2714		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2715			set_buffer_uptodate(bh);
2716
2717		if (buffer_uptodate(bh)) {
2718			/* someone brought it uptodate while we waited */
2719			unlock_buffer(bh);
2720			goto has_buffer;
2721		}
2722
2723		/*
2724		 * If we have all information of the inode in memory and this
2725		 * is the only valid inode in the block, we need not read the
2726		 * block.
2727		 */
2728		if (in_mem) {
2729			struct buffer_head *bitmap_bh;
2730			struct ext3_group_desc *desc;
2731			int inodes_per_buffer;
2732			int inode_offset, i;
2733			int block_group;
2734			int start;
2735
2736			block_group = (inode->i_ino - 1) /
2737					EXT3_INODES_PER_GROUP(inode->i_sb);
2738			inodes_per_buffer = bh->b_size /
2739				EXT3_INODE_SIZE(inode->i_sb);
2740			inode_offset = ((inode->i_ino - 1) %
2741					EXT3_INODES_PER_GROUP(inode->i_sb));
2742			start = inode_offset & ~(inodes_per_buffer - 1);
2743
2744			/* Is the inode bitmap in cache? */
2745			desc = ext3_get_group_desc(inode->i_sb,
2746						block_group, NULL);
2747			if (!desc)
2748				goto make_io;
2749
2750			bitmap_bh = sb_getblk(inode->i_sb,
2751					le32_to_cpu(desc->bg_inode_bitmap));
2752			if (unlikely(!bitmap_bh))
2753				goto make_io;
2754
2755			/*
2756			 * If the inode bitmap isn't in cache then the
2757			 * optimisation may end up performing two reads instead
2758			 * of one, so skip it.
2759			 */
2760			if (!buffer_uptodate(bitmap_bh)) {
2761				brelse(bitmap_bh);
2762				goto make_io;
2763			}
2764			for (i = start; i < start + inodes_per_buffer; i++) {
2765				if (i == inode_offset)
2766					continue;
2767				if (ext3_test_bit(i, bitmap_bh->b_data))
2768					break;
2769			}
2770			brelse(bitmap_bh);
2771			if (i == start + inodes_per_buffer) {
2772				/* all other inodes are free, so skip I/O */
2773				memset(bh->b_data, 0, bh->b_size);
2774				set_buffer_uptodate(bh);
2775				unlock_buffer(bh);
2776				goto has_buffer;
2777			}
2778		}
2779
2780make_io:
2781		/*
2782		 * There are other valid inodes in the buffer, this inode
2783		 * has in-inode xattrs, or we don't have this inode in memory.
2784		 * Read the block from disk.
2785		 */
2786		trace_ext3_load_inode(inode);
2787		get_bh(bh);
2788		bh->b_end_io = end_buffer_read_sync;
2789		submit_bh(READ | REQ_META | REQ_PRIO, bh);
2790		wait_on_buffer(bh);
2791		if (!buffer_uptodate(bh)) {
2792			ext3_error(inode->i_sb, "ext3_get_inode_loc",
2793					"unable to read inode block - "
2794					"inode=%lu, block="E3FSBLK,
2795					inode->i_ino, block);
2796			brelse(bh);
2797			return -EIO;
2798		}
2799	}
2800has_buffer:
2801	iloc->bh = bh;
2802	return 0;
2803}
2804
2805int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2806{
2807	/* We have all inode data except xattrs in memory here. */
2808	return __ext3_get_inode_loc(inode, iloc,
2809		!ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2810}
2811
2812void ext3_set_inode_flags(struct inode *inode)
2813{
2814	unsigned int flags = EXT3_I(inode)->i_flags;
2815
2816	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2817	if (flags & EXT3_SYNC_FL)
2818		inode->i_flags |= S_SYNC;
2819	if (flags & EXT3_APPEND_FL)
2820		inode->i_flags |= S_APPEND;
2821	if (flags & EXT3_IMMUTABLE_FL)
2822		inode->i_flags |= S_IMMUTABLE;
2823	if (flags & EXT3_NOATIME_FL)
2824		inode->i_flags |= S_NOATIME;
2825	if (flags & EXT3_DIRSYNC_FL)
2826		inode->i_flags |= S_DIRSYNC;
2827}
2828
2829/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2830void ext3_get_inode_flags(struct ext3_inode_info *ei)
2831{
2832	unsigned int flags = ei->vfs_inode.i_flags;
2833
2834	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2835			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2836	if (flags & S_SYNC)
2837		ei->i_flags |= EXT3_SYNC_FL;
2838	if (flags & S_APPEND)
2839		ei->i_flags |= EXT3_APPEND_FL;
2840	if (flags & S_IMMUTABLE)
2841		ei->i_flags |= EXT3_IMMUTABLE_FL;
2842	if (flags & S_NOATIME)
2843		ei->i_flags |= EXT3_NOATIME_FL;
2844	if (flags & S_DIRSYNC)
2845		ei->i_flags |= EXT3_DIRSYNC_FL;
2846}
2847
2848struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2849{
2850	struct ext3_iloc iloc;
2851	struct ext3_inode *raw_inode;
2852	struct ext3_inode_info *ei;
2853	struct buffer_head *bh;
2854	struct inode *inode;
2855	journal_t *journal = EXT3_SB(sb)->s_journal;
2856	transaction_t *transaction;
2857	long ret;
2858	int block;
2859	uid_t i_uid;
2860	gid_t i_gid;
2861
2862	inode = iget_locked(sb, ino);
2863	if (!inode)
2864		return ERR_PTR(-ENOMEM);
2865	if (!(inode->i_state & I_NEW))
2866		return inode;
2867
2868	ei = EXT3_I(inode);
2869	ei->i_block_alloc_info = NULL;
2870
2871	ret = __ext3_get_inode_loc(inode, &iloc, 0);
2872	if (ret < 0)
2873		goto bad_inode;
2874	bh = iloc.bh;
2875	raw_inode = ext3_raw_inode(&iloc);
2876	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2877	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2878	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2879	if(!(test_opt (inode->i_sb, NO_UID32))) {
2880		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2881		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2882	}
2883	i_uid_write(inode, i_uid);
2884	i_gid_write(inode, i_gid);
2885	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2886	inode->i_size = le32_to_cpu(raw_inode->i_size);
2887	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2888	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2889	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2890	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2891
2892	ei->i_state_flags = 0;
2893	ei->i_dir_start_lookup = 0;
2894	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2895	/* We now have enough fields to check if the inode was active or not.
2896	 * This is needed because nfsd might try to access dead inodes
2897	 * the test is that same one that e2fsck uses
2898	 * NeilBrown 1999oct15
2899	 */
2900	if (inode->i_nlink == 0) {
2901		if (inode->i_mode == 0 ||
2902		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2903			/* this inode is deleted */
2904			brelse (bh);
2905			ret = -ESTALE;
2906			goto bad_inode;
2907		}
2908		/* The only unlinked inodes we let through here have
2909		 * valid i_mode and are being read by the orphan
2910		 * recovery code: that's fine, we're about to complete
2911		 * the process of deleting those. */
2912	}
2913	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2914	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2915#ifdef EXT3_FRAGMENTS
2916	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2917	ei->i_frag_no = raw_inode->i_frag;
2918	ei->i_frag_size = raw_inode->i_fsize;
2919#endif
2920	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2921	if (!S_ISREG(inode->i_mode)) {
2922		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2923	} else {
2924		inode->i_size |=
2925			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2926	}
2927	ei->i_disksize = inode->i_size;
2928	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2929	ei->i_block_group = iloc.block_group;
2930	/*
2931	 * NOTE! The in-memory inode i_data array is in little-endian order
2932	 * even on big-endian machines: we do NOT byteswap the block numbers!
2933	 */
2934	for (block = 0; block < EXT3_N_BLOCKS; block++)
2935		ei->i_data[block] = raw_inode->i_block[block];
2936	INIT_LIST_HEAD(&ei->i_orphan);
2937
2938	/*
2939	 * Set transaction id's of transactions that have to be committed
2940	 * to finish f[data]sync. We set them to currently running transaction
2941	 * as we cannot be sure that the inode or some of its metadata isn't
2942	 * part of the transaction - the inode could have been reclaimed and
2943	 * now it is reread from disk.
2944	 */
2945	if (journal) {
2946		tid_t tid;
2947
2948		spin_lock(&journal->j_state_lock);
2949		if (journal->j_running_transaction)
2950			transaction = journal->j_running_transaction;
2951		else
2952			transaction = journal->j_committing_transaction;
2953		if (transaction)
2954			tid = transaction->t_tid;
2955		else
2956			tid = journal->j_commit_sequence;
2957		spin_unlock(&journal->j_state_lock);
2958		atomic_set(&ei->i_sync_tid, tid);
2959		atomic_set(&ei->i_datasync_tid, tid);
2960	}
2961
2962	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2963	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2964		/*
2965		 * When mke2fs creates big inodes it does not zero out
2966		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2967		 * so ignore those first few inodes.
2968		 */
2969		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2970		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2971		    EXT3_INODE_SIZE(inode->i_sb)) {
2972			brelse (bh);
2973			ret = -EIO;
2974			goto bad_inode;
2975		}
2976		if (ei->i_extra_isize == 0) {
2977			/* The extra space is currently unused. Use it. */
2978			ei->i_extra_isize = sizeof(struct ext3_inode) -
2979					    EXT3_GOOD_OLD_INODE_SIZE;
2980		} else {
2981			__le32 *magic = (void *)raw_inode +
2982					EXT3_GOOD_OLD_INODE_SIZE +
2983					ei->i_extra_isize;
2984			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2985				 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2986		}
2987	} else
2988		ei->i_extra_isize = 0;
2989
2990	if (S_ISREG(inode->i_mode)) {
2991		inode->i_op = &ext3_file_inode_operations;
2992		inode->i_fop = &ext3_file_operations;
2993		ext3_set_aops(inode);
2994	} else if (S_ISDIR(inode->i_mode)) {
2995		inode->i_op = &ext3_dir_inode_operations;
2996		inode->i_fop = &ext3_dir_operations;
2997	} else if (S_ISLNK(inode->i_mode)) {
2998		if (ext3_inode_is_fast_symlink(inode)) {
2999			inode->i_op = &ext3_fast_symlink_inode_operations;
3000			nd_terminate_link(ei->i_data, inode->i_size,
3001				sizeof(ei->i_data) - 1);
3002		} else {
3003			inode->i_op = &ext3_symlink_inode_operations;
3004			ext3_set_aops(inode);
3005		}
3006	} else {
3007		inode->i_op = &ext3_special_inode_operations;
3008		if (raw_inode->i_block[0])
3009			init_special_inode(inode, inode->i_mode,
3010			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3011		else
3012			init_special_inode(inode, inode->i_mode,
3013			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3014	}
3015	brelse (iloc.bh);
3016	ext3_set_inode_flags(inode);
3017	unlock_new_inode(inode);
3018	return inode;
3019
3020bad_inode:
3021	iget_failed(inode);
3022	return ERR_PTR(ret);
3023}
3024
3025/*
3026 * Post the struct inode info into an on-disk inode location in the
3027 * buffer-cache.  This gobbles the caller's reference to the
3028 * buffer_head in the inode location struct.
3029 *
3030 * The caller must have write access to iloc->bh.
3031 */
3032static int ext3_do_update_inode(handle_t *handle,
3033				struct inode *inode,
3034				struct ext3_iloc *iloc)
3035{
3036	struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3037	struct ext3_inode_info *ei = EXT3_I(inode);
3038	struct buffer_head *bh = iloc->bh;
3039	int err = 0, rc, block;
3040	int need_datasync = 0;
3041	__le32 disksize;
3042	uid_t i_uid;
3043	gid_t i_gid;
3044
3045again:
3046	/* we can't allow multiple procs in here at once, its a bit racey */
3047	lock_buffer(bh);
3048
3049	/* For fields not not tracking in the in-memory inode,
3050	 * initialise them to zero for new inodes. */
3051	if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3052		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3053
3054	ext3_get_inode_flags(ei);
3055	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3056	i_uid = i_uid_read(inode);
3057	i_gid = i_gid_read(inode);
3058	if(!(test_opt(inode->i_sb, NO_UID32))) {
3059		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3060		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3061/*
3062 * Fix up interoperability with old kernels. Otherwise, old inodes get
3063 * re-used with the upper 16 bits of the uid/gid intact
3064 */
3065		if(!ei->i_dtime) {
3066			raw_inode->i_uid_high =
3067				cpu_to_le16(high_16_bits(i_uid));
3068			raw_inode->i_gid_high =
3069				cpu_to_le16(high_16_bits(i_gid));
3070		} else {
3071			raw_inode->i_uid_high = 0;
3072			raw_inode->i_gid_high = 0;
3073		}
3074	} else {
3075		raw_inode->i_uid_low =
3076			cpu_to_le16(fs_high2lowuid(i_uid));
3077		raw_inode->i_gid_low =
3078			cpu_to_le16(fs_high2lowgid(i_gid));
3079		raw_inode->i_uid_high = 0;
3080		raw_inode->i_gid_high = 0;
3081	}
3082	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3083	disksize = cpu_to_le32(ei->i_disksize);
3084	if (disksize != raw_inode->i_size) {
3085		need_datasync = 1;
3086		raw_inode->i_size = disksize;
3087	}
3088	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3089	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3090	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3091	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3092	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3093	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3094#ifdef EXT3_FRAGMENTS
3095	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3096	raw_inode->i_frag = ei->i_frag_no;
3097	raw_inode->i_fsize = ei->i_frag_size;
3098#endif
3099	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3100	if (!S_ISREG(inode->i_mode)) {
3101		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3102	} else {
3103		disksize = cpu_to_le32(ei->i_disksize >> 32);
3104		if (disksize != raw_inode->i_size_high) {
3105			raw_inode->i_size_high = disksize;
3106			need_datasync = 1;
3107		}
3108		if (ei->i_disksize > 0x7fffffffULL) {
3109			struct super_block *sb = inode->i_sb;
3110			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3111					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3112			    EXT3_SB(sb)->s_es->s_rev_level ==
3113					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3114			       /* If this is the first large file
3115				* created, add a flag to the superblock.
3116				*/
3117				unlock_buffer(bh);
3118				err = ext3_journal_get_write_access(handle,
3119						EXT3_SB(sb)->s_sbh);
3120				if (err)
3121					goto out_brelse;
3122
3123				ext3_update_dynamic_rev(sb);
3124				EXT3_SET_RO_COMPAT_FEATURE(sb,
3125					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3126				handle->h_sync = 1;
3127				err = ext3_journal_dirty_metadata(handle,
3128						EXT3_SB(sb)->s_sbh);
3129				/* get our lock and start over */
3130				goto again;
3131			}
3132		}
3133	}
3134	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3135	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3136		if (old_valid_dev(inode->i_rdev)) {
3137			raw_inode->i_block[0] =
3138				cpu_to_le32(old_encode_dev(inode->i_rdev));
3139			raw_inode->i_block[1] = 0;
3140		} else {
3141			raw_inode->i_block[0] = 0;
3142			raw_inode->i_block[1] =
3143				cpu_to_le32(new_encode_dev(inode->i_rdev));
3144			raw_inode->i_block[2] = 0;
3145		}
3146	} else for (block = 0; block < EXT3_N_BLOCKS; block++)
3147		raw_inode->i_block[block] = ei->i_data[block];
3148
3149	if (ei->i_extra_isize)
3150		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3151
3152	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3153	unlock_buffer(bh);
3154	rc = ext3_journal_dirty_metadata(handle, bh);
3155	if (!err)
3156		err = rc;
3157	ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3158
3159	atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3160	if (need_datasync)
3161		atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3162out_brelse:
3163	brelse (bh);
3164	ext3_std_error(inode->i_sb, err);
3165	return err;
3166}
3167
3168/*
3169 * ext3_write_inode()
3170 *
3171 * We are called from a few places:
3172 *
3173 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
3174 *   Here, there will be no transaction running. We wait for any running
3175 *   transaction to commit.
3176 *
3177 * - Within flush work (for sys_sync(), kupdate and such).
3178 *   We wait on commit, if told to.
3179 *
3180 * - Within iput_final() -> write_inode_now()
3181 *   We wait on commit, if told to.
3182 *
3183 * In all cases it is actually safe for us to return without doing anything,
3184 * because the inode has been copied into a raw inode buffer in
3185 * ext3_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
3186 * writeback.
3187 *
3188 * Note that we are absolutely dependent upon all inode dirtiers doing the
3189 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3190 * which we are interested.
3191 *
3192 * It would be a bug for them to not do this.  The code:
3193 *
3194 *	mark_inode_dirty(inode)
3195 *	stuff();
3196 *	inode->i_size = expr;
3197 *
3198 * is in error because write_inode() could occur while `stuff()' is running,
3199 * and the new i_size will be lost.  Plus the inode will no longer be on the
3200 * superblock's dirty inode list.
3201 */
3202int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3203{
3204	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
3205		return 0;
3206
3207	if (ext3_journal_current_handle()) {
3208		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3209		dump_stack();
3210		return -EIO;
3211	}
3212
3213	/*
3214	 * No need to force transaction in WB_SYNC_NONE mode. Also
3215	 * ext3_sync_fs() will force the commit after everything is
3216	 * written.
3217	 */
3218	if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
3219		return 0;
3220
3221	return ext3_force_commit(inode->i_sb);
3222}
3223
3224/*
3225 * ext3_setattr()
3226 *
3227 * Called from notify_change.
3228 *
3229 * We want to trap VFS attempts to truncate the file as soon as
3230 * possible.  In particular, we want to make sure that when the VFS
3231 * shrinks i_size, we put the inode on the orphan list and modify
3232 * i_disksize immediately, so that during the subsequent flushing of
3233 * dirty pages and freeing of disk blocks, we can guarantee that any
3234 * commit will leave the blocks being flushed in an unused state on
3235 * disk.  (On recovery, the inode will get truncated and the blocks will
3236 * be freed, so we have a strong guarantee that no future commit will
3237 * leave these blocks visible to the user.)
3238 *
3239 * Called with inode->sem down.
3240 */
3241int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3242{
3243	struct inode *inode = dentry->d_inode;
3244	int error, rc = 0;
3245	const unsigned int ia_valid = attr->ia_valid;
3246
3247	error = inode_change_ok(inode, attr);
3248	if (error)
3249		return error;
3250
3251	if (is_quota_modification(inode, attr))
3252		dquot_initialize(inode);
3253	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3254	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3255		handle_t *handle;
3256
3257		/* (user+group)*(old+new) structure, inode write (sb,
3258		 * inode block, ? - but truncate inode update has it) */
3259		handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3260					EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3261		if (IS_ERR(handle)) {
3262			error = PTR_ERR(handle);
3263			goto err_out;
3264		}
3265		error = dquot_transfer(inode, attr);
3266		if (error) {
3267			ext3_journal_stop(handle);
3268			return error;
3269		}
3270		/* Update corresponding info in inode so that everything is in
3271		 * one transaction */
3272		if (attr->ia_valid & ATTR_UID)
3273			inode->i_uid = attr->ia_uid;
3274		if (attr->ia_valid & ATTR_GID)
3275			inode->i_gid = attr->ia_gid;
3276		error = ext3_mark_inode_dirty(handle, inode);
3277		ext3_journal_stop(handle);
3278	}
3279
3280	if (attr->ia_valid & ATTR_SIZE)
3281		inode_dio_wait(inode);
3282
3283	if (S_ISREG(inode->i_mode) &&
3284	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3285		handle_t *handle;
3286
3287		handle = ext3_journal_start(inode, 3);
3288		if (IS_ERR(handle)) {
3289			error = PTR_ERR(handle);
3290			goto err_out;
3291		}
3292
3293		error = ext3_orphan_add(handle, inode);
3294		if (error) {
3295			ext3_journal_stop(handle);
3296			goto err_out;
3297		}
3298		EXT3_I(inode)->i_disksize = attr->ia_size;
3299		error = ext3_mark_inode_dirty(handle, inode);
3300		ext3_journal_stop(handle);
3301		if (error) {
3302			/* Some hard fs error must have happened. Bail out. */
3303			ext3_orphan_del(NULL, inode);
3304			goto err_out;
3305		}
3306		rc = ext3_block_truncate_page(inode, attr->ia_size);
3307		if (rc) {
3308			/* Cleanup orphan list and exit */
3309			handle = ext3_journal_start(inode, 3);
3310			if (IS_ERR(handle)) {
3311				ext3_orphan_del(NULL, inode);
3312				goto err_out;
3313			}
3314			ext3_orphan_del(handle, inode);
3315			ext3_journal_stop(handle);
3316			goto err_out;
3317		}
3318	}
3319
3320	if ((attr->ia_valid & ATTR_SIZE) &&
3321	    attr->ia_size != i_size_read(inode)) {
3322		truncate_setsize(inode, attr->ia_size);
3323		ext3_truncate(inode);
3324	}
3325
3326	setattr_copy(inode, attr);
3327	mark_inode_dirty(inode);
3328
3329	if (ia_valid & ATTR_MODE)
3330		rc = posix_acl_chmod(inode, inode->i_mode);
3331
3332err_out:
3333	ext3_std_error(inode->i_sb, error);
3334	if (!error)
3335		error = rc;
3336	return error;
3337}
3338
3339
3340/*
3341 * How many blocks doth make a writepage()?
3342 *
3343 * With N blocks per page, it may be:
3344 * N data blocks
3345 * 2 indirect block
3346 * 2 dindirect
3347 * 1 tindirect
3348 * N+5 bitmap blocks (from the above)
3349 * N+5 group descriptor summary blocks
3350 * 1 inode block
3351 * 1 superblock.
3352 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3353 *
3354 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3355 *
3356 * With ordered or writeback data it's the same, less the N data blocks.
3357 *
3358 * If the inode's direct blocks can hold an integral number of pages then a
3359 * page cannot straddle two indirect blocks, and we can only touch one indirect
3360 * and dindirect block, and the "5" above becomes "3".
3361 *
3362 * This still overestimates under most circumstances.  If we were to pass the
3363 * start and end offsets in here as well we could do block_to_path() on each
3364 * block and work out the exact number of indirects which are touched.  Pah.
3365 */
3366
3367static int ext3_writepage_trans_blocks(struct inode *inode)
3368{
3369	int bpp = ext3_journal_blocks_per_page(inode);
3370	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3371	int ret;
3372
3373	if (ext3_should_journal_data(inode))
3374		ret = 3 * (bpp + indirects) + 2;
3375	else
3376		ret = 2 * (bpp + indirects) + indirects + 2;
3377
3378#ifdef CONFIG_QUOTA
3379	/* We know that structure was already allocated during dquot_initialize so
3380	 * we will be updating only the data blocks + inodes */
3381	ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3382#endif
3383
3384	return ret;
3385}
3386
3387/*
3388 * The caller must have previously called ext3_reserve_inode_write().
3389 * Give this, we know that the caller already has write access to iloc->bh.
3390 */
3391int ext3_mark_iloc_dirty(handle_t *handle,
3392		struct inode *inode, struct ext3_iloc *iloc)
3393{
3394	int err = 0;
3395
3396	/* the do_update_inode consumes one bh->b_count */
3397	get_bh(iloc->bh);
3398
3399	/* ext3_do_update_inode() does journal_dirty_metadata */
3400	err = ext3_do_update_inode(handle, inode, iloc);
3401	put_bh(iloc->bh);
3402	return err;
3403}
3404
3405/*
3406 * On success, We end up with an outstanding reference count against
3407 * iloc->bh.  This _must_ be cleaned up later.
3408 */
3409
3410int
3411ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3412			 struct ext3_iloc *iloc)
3413{
3414	int err = 0;
3415	if (handle) {
3416		err = ext3_get_inode_loc(inode, iloc);
3417		if (!err) {
3418			BUFFER_TRACE(iloc->bh, "get_write_access");
3419			err = ext3_journal_get_write_access(handle, iloc->bh);
3420			if (err) {
3421				brelse(iloc->bh);
3422				iloc->bh = NULL;
3423			}
3424		}
3425	}
3426	ext3_std_error(inode->i_sb, err);
3427	return err;
3428}
3429
3430/*
3431 * What we do here is to mark the in-core inode as clean with respect to inode
3432 * dirtiness (it may still be data-dirty).
3433 * This means that the in-core inode may be reaped by prune_icache
3434 * without having to perform any I/O.  This is a very good thing,
3435 * because *any* task may call prune_icache - even ones which
3436 * have a transaction open against a different journal.
3437 *
3438 * Is this cheating?  Not really.  Sure, we haven't written the
3439 * inode out, but prune_icache isn't a user-visible syncing function.
3440 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3441 * we start and wait on commits.
3442 */
3443int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3444{
3445	struct ext3_iloc iloc;
3446	int err;
3447
3448	might_sleep();
3449	trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3450	err = ext3_reserve_inode_write(handle, inode, &iloc);
3451	if (!err)
3452		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3453	return err;
3454}
3455
3456/*
3457 * ext3_dirty_inode() is called from __mark_inode_dirty()
3458 *
3459 * We're really interested in the case where a file is being extended.
3460 * i_size has been changed by generic_commit_write() and we thus need
3461 * to include the updated inode in the current transaction.
3462 *
3463 * Also, dquot_alloc_space() will always dirty the inode when blocks
3464 * are allocated to the file.
3465 *
3466 * If the inode is marked synchronous, we don't honour that here - doing
3467 * so would cause a commit on atime updates, which we don't bother doing.
3468 * We handle synchronous inodes at the highest possible level.
3469 */
3470void ext3_dirty_inode(struct inode *inode, int flags)
3471{
3472	handle_t *current_handle = ext3_journal_current_handle();
3473	handle_t *handle;
3474
3475	handle = ext3_journal_start(inode, 2);
3476	if (IS_ERR(handle))
3477		goto out;
3478	if (current_handle &&
3479		current_handle->h_transaction != handle->h_transaction) {
3480		/* This task has a transaction open against a different fs */
3481		printk(KERN_EMERG "%s: transactions do not match!\n",
3482		       __func__);
3483	} else {
3484		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3485				current_handle);
3486		ext3_mark_inode_dirty(handle, inode);
3487	}
3488	ext3_journal_stop(handle);
3489out:
3490	return;
3491}
3492
3493#if 0
3494/*
3495 * Bind an inode's backing buffer_head into this transaction, to prevent
3496 * it from being flushed to disk early.  Unlike
3497 * ext3_reserve_inode_write, this leaves behind no bh reference and
3498 * returns no iloc structure, so the caller needs to repeat the iloc
3499 * lookup to mark the inode dirty later.
3500 */
3501static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3502{
3503	struct ext3_iloc iloc;
3504
3505	int err = 0;
3506	if (handle) {
3507		err = ext3_get_inode_loc(inode, &iloc);
3508		if (!err) {
3509			BUFFER_TRACE(iloc.bh, "get_write_access");
3510			err = journal_get_write_access(handle, iloc.bh);
3511			if (!err)
3512				err = ext3_journal_dirty_metadata(handle,
3513								  iloc.bh);
3514			brelse(iloc.bh);
3515		}
3516	}
3517	ext3_std_error(inode->i_sb, err);
3518	return err;
3519}
3520#endif
3521
3522int ext3_change_inode_journal_flag(struct inode *inode, int val)
3523{
3524	journal_t *journal;
3525	handle_t *handle;
3526	int err;
3527
3528	/*
3529	 * We have to be very careful here: changing a data block's
3530	 * journaling status dynamically is dangerous.  If we write a
3531	 * data block to the journal, change the status and then delete
3532	 * that block, we risk forgetting to revoke the old log record
3533	 * from the journal and so a subsequent replay can corrupt data.
3534	 * So, first we make sure that the journal is empty and that
3535	 * nobody is changing anything.
3536	 */
3537
3538	journal = EXT3_JOURNAL(inode);
3539	if (is_journal_aborted(journal))
3540		return -EROFS;
3541
3542	journal_lock_updates(journal);
3543	journal_flush(journal);
3544
3545	/*
3546	 * OK, there are no updates running now, and all cached data is
3547	 * synced to disk.  We are now in a completely consistent state
3548	 * which doesn't have anything in the journal, and we know that
3549	 * no filesystem updates are running, so it is safe to modify
3550	 * the inode's in-core data-journaling state flag now.
3551	 */
3552
3553	if (val)
3554		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3555	else
3556		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3557	ext3_set_aops(inode);
3558
3559	journal_unlock_updates(journal);
3560
3561	/* Finally we can mark the inode as dirty. */
3562
3563	handle = ext3_journal_start(inode, 1);
3564	if (IS_ERR(handle))
3565		return PTR_ERR(handle);
3566
3567	err = ext3_mark_inode_dirty(handle, inode);
3568	handle->h_sync = 1;
3569	ext3_journal_stop(handle);
3570	ext3_std_error(inode->i_sb, err);
3571
3572	return err;
3573}
3574