1/* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19#include <linux/module.h> 20#include <linux/string.h> 21#include <linux/fs.h> 22#include <linux/time.h> 23#include <linux/vmalloc.h> 24#include <linux/jbd2.h> 25#include <linux/slab.h> 26#include <linux/init.h> 27#include <linux/blkdev.h> 28#include <linux/parser.h> 29#include <linux/buffer_head.h> 30#include <linux/exportfs.h> 31#include <linux/vfs.h> 32#include <linux/random.h> 33#include <linux/mount.h> 34#include <linux/namei.h> 35#include <linux/quotaops.h> 36#include <linux/seq_file.h> 37#include <linux/proc_fs.h> 38#include <linux/ctype.h> 39#include <linux/log2.h> 40#include <linux/crc16.h> 41#include <linux/cleancache.h> 42#include <asm/uaccess.h> 43 44#include <linux/kthread.h> 45#include <linux/freezer.h> 46 47#include "ext4.h" 48#include "ext4_extents.h" /* Needed for trace points definition */ 49#include "ext4_jbd2.h" 50#include "xattr.h" 51#include "acl.h" 52#include "mballoc.h" 53 54#define CREATE_TRACE_POINTS 55#include <trace/events/ext4.h> 56 57static struct proc_dir_entry *ext4_proc_root; 58static struct kset *ext4_kset; 59static struct ext4_lazy_init *ext4_li_info; 60static struct mutex ext4_li_mtx; 61static struct ext4_features *ext4_feat; 62static int ext4_mballoc_ready; 63 64static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67static int ext4_commit_super(struct super_block *sb, int sync); 68static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72static int ext4_sync_fs(struct super_block *sb, int wait); 73static int ext4_remount(struct super_block *sb, int *flags, char *data); 74static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75static int ext4_unfreeze(struct super_block *sb); 76static int ext4_freeze(struct super_block *sb); 77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79static inline int ext2_feature_set_ok(struct super_block *sb); 80static inline int ext3_feature_set_ok(struct super_block *sb); 81static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82static void ext4_destroy_lazyinit_thread(void); 83static void ext4_unregister_li_request(struct super_block *sb); 84static void ext4_clear_request_list(void); 85static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94}; 95MODULE_ALIAS_FS("ext2"); 96MODULE_ALIAS("ext2"); 97#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98#else 99#define IS_EXT2_SB(sb) (0) 100#endif 101 102 103#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110}; 111MODULE_ALIAS_FS("ext3"); 112MODULE_ALIAS("ext3"); 113#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114#else 115#define IS_EXT3_SB(sb) (0) 116#endif 117 118static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120{ 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126} 127 128static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130{ 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138} 139 140static int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142{ 143 if (!ext4_has_metadata_csum(sb)) 144 return 1; 145 146 return es->s_checksum == ext4_superblock_csum(sb, es); 147} 148 149void ext4_superblock_csum_set(struct super_block *sb) 150{ 151 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 152 153 if (!ext4_has_metadata_csum(sb)) 154 return; 155 156 es->s_checksum = ext4_superblock_csum(sb, es); 157} 158 159void *ext4_kvmalloc(size_t size, gfp_t flags) 160{ 161 void *ret; 162 163 ret = kmalloc(size, flags | __GFP_NOWARN); 164 if (!ret) 165 ret = __vmalloc(size, flags, PAGE_KERNEL); 166 return ret; 167} 168 169void *ext4_kvzalloc(size_t size, gfp_t flags) 170{ 171 void *ret; 172 173 ret = kzalloc(size, flags | __GFP_NOWARN); 174 if (!ret) 175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 176 return ret; 177} 178 179void ext4_kvfree(void *ptr) 180{ 181 if (is_vmalloc_addr(ptr)) 182 vfree(ptr); 183 else 184 kfree(ptr); 185 186} 187 188ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 189 struct ext4_group_desc *bg) 190{ 191 return le32_to_cpu(bg->bg_block_bitmap_lo) | 192 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 193 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 194} 195 196ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 197 struct ext4_group_desc *bg) 198{ 199 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 200 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 201 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 202} 203 204ext4_fsblk_t ext4_inode_table(struct super_block *sb, 205 struct ext4_group_desc *bg) 206{ 207 return le32_to_cpu(bg->bg_inode_table_lo) | 208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 209 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 210} 211 212__u32 ext4_free_group_clusters(struct super_block *sb, 213 struct ext4_group_desc *bg) 214{ 215 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 217 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 218} 219 220__u32 ext4_free_inodes_count(struct super_block *sb, 221 struct ext4_group_desc *bg) 222{ 223 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 225 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 226} 227 228__u32 ext4_used_dirs_count(struct super_block *sb, 229 struct ext4_group_desc *bg) 230{ 231 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 233 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 234} 235 236__u32 ext4_itable_unused_count(struct super_block *sb, 237 struct ext4_group_desc *bg) 238{ 239 return le16_to_cpu(bg->bg_itable_unused_lo) | 240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 241 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 242} 243 244void ext4_block_bitmap_set(struct super_block *sb, 245 struct ext4_group_desc *bg, ext4_fsblk_t blk) 246{ 247 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 248 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 249 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 250} 251 252void ext4_inode_bitmap_set(struct super_block *sb, 253 struct ext4_group_desc *bg, ext4_fsblk_t blk) 254{ 255 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 256 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 257 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 258} 259 260void ext4_inode_table_set(struct super_block *sb, 261 struct ext4_group_desc *bg, ext4_fsblk_t blk) 262{ 263 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 265 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 266} 267 268void ext4_free_group_clusters_set(struct super_block *sb, 269 struct ext4_group_desc *bg, __u32 count) 270{ 271 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 273 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 274} 275 276void ext4_free_inodes_set(struct super_block *sb, 277 struct ext4_group_desc *bg, __u32 count) 278{ 279 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 281 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 282} 283 284void ext4_used_dirs_set(struct super_block *sb, 285 struct ext4_group_desc *bg, __u32 count) 286{ 287 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 289 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 290} 291 292void ext4_itable_unused_set(struct super_block *sb, 293 struct ext4_group_desc *bg, __u32 count) 294{ 295 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 297 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 298} 299 300 301static void __save_error_info(struct super_block *sb, const char *func, 302 unsigned int line) 303{ 304 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 305 306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 307 if (bdev_read_only(sb->s_bdev)) 308 return; 309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 310 es->s_last_error_time = cpu_to_le32(get_seconds()); 311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 312 es->s_last_error_line = cpu_to_le32(line); 313 if (!es->s_first_error_time) { 314 es->s_first_error_time = es->s_last_error_time; 315 strncpy(es->s_first_error_func, func, 316 sizeof(es->s_first_error_func)); 317 es->s_first_error_line = cpu_to_le32(line); 318 es->s_first_error_ino = es->s_last_error_ino; 319 es->s_first_error_block = es->s_last_error_block; 320 } 321 /* 322 * Start the daily error reporting function if it hasn't been 323 * started already 324 */ 325 if (!es->s_error_count) 326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 327 le32_add_cpu(&es->s_error_count, 1); 328} 329 330static void save_error_info(struct super_block *sb, const char *func, 331 unsigned int line) 332{ 333 __save_error_info(sb, func, line); 334 ext4_commit_super(sb, 1); 335} 336 337/* 338 * The del_gendisk() function uninitializes the disk-specific data 339 * structures, including the bdi structure, without telling anyone 340 * else. Once this happens, any attempt to call mark_buffer_dirty() 341 * (for example, by ext4_commit_super), will cause a kernel OOPS. 342 * This is a kludge to prevent these oops until we can put in a proper 343 * hook in del_gendisk() to inform the VFS and file system layers. 344 */ 345static int block_device_ejected(struct super_block *sb) 346{ 347 struct inode *bd_inode = sb->s_bdev->bd_inode; 348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 349 350 return bdi->dev == NULL; 351} 352 353static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 354{ 355 struct super_block *sb = journal->j_private; 356 struct ext4_sb_info *sbi = EXT4_SB(sb); 357 int error = is_journal_aborted(journal); 358 struct ext4_journal_cb_entry *jce; 359 360 BUG_ON(txn->t_state == T_FINISHED); 361 spin_lock(&sbi->s_md_lock); 362 while (!list_empty(&txn->t_private_list)) { 363 jce = list_entry(txn->t_private_list.next, 364 struct ext4_journal_cb_entry, jce_list); 365 list_del_init(&jce->jce_list); 366 spin_unlock(&sbi->s_md_lock); 367 jce->jce_func(sb, jce, error); 368 spin_lock(&sbi->s_md_lock); 369 } 370 spin_unlock(&sbi->s_md_lock); 371} 372 373/* Deal with the reporting of failure conditions on a filesystem such as 374 * inconsistencies detected or read IO failures. 375 * 376 * On ext2, we can store the error state of the filesystem in the 377 * superblock. That is not possible on ext4, because we may have other 378 * write ordering constraints on the superblock which prevent us from 379 * writing it out straight away; and given that the journal is about to 380 * be aborted, we can't rely on the current, or future, transactions to 381 * write out the superblock safely. 382 * 383 * We'll just use the jbd2_journal_abort() error code to record an error in 384 * the journal instead. On recovery, the journal will complain about 385 * that error until we've noted it down and cleared it. 386 */ 387 388static void ext4_handle_error(struct super_block *sb) 389{ 390 if (sb->s_flags & MS_RDONLY) 391 return; 392 393 if (!test_opt(sb, ERRORS_CONT)) { 394 journal_t *journal = EXT4_SB(sb)->s_journal; 395 396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 397 if (journal) 398 jbd2_journal_abort(journal, -EIO); 399 } 400 if (test_opt(sb, ERRORS_RO)) { 401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 402 /* 403 * Make sure updated value of ->s_mount_flags will be visible 404 * before ->s_flags update 405 */ 406 smp_wmb(); 407 sb->s_flags |= MS_RDONLY; 408 } 409 if (test_opt(sb, ERRORS_PANIC)) 410 panic("EXT4-fs (device %s): panic forced after error\n", 411 sb->s_id); 412} 413 414#define ext4_error_ratelimit(sb) \ 415 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 416 "EXT4-fs error") 417 418void __ext4_error(struct super_block *sb, const char *function, 419 unsigned int line, const char *fmt, ...) 420{ 421 struct va_format vaf; 422 va_list args; 423 424 if (ext4_error_ratelimit(sb)) { 425 va_start(args, fmt); 426 vaf.fmt = fmt; 427 vaf.va = &args; 428 printk(KERN_CRIT 429 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 430 sb->s_id, function, line, current->comm, &vaf); 431 va_end(args); 432 } 433 save_error_info(sb, function, line); 434 ext4_handle_error(sb); 435} 436 437void __ext4_error_inode(struct inode *inode, const char *function, 438 unsigned int line, ext4_fsblk_t block, 439 const char *fmt, ...) 440{ 441 va_list args; 442 struct va_format vaf; 443 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 444 445 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 446 es->s_last_error_block = cpu_to_le64(block); 447 if (ext4_error_ratelimit(inode->i_sb)) { 448 va_start(args, fmt); 449 vaf.fmt = fmt; 450 vaf.va = &args; 451 if (block) 452 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 453 "inode #%lu: block %llu: comm %s: %pV\n", 454 inode->i_sb->s_id, function, line, inode->i_ino, 455 block, current->comm, &vaf); 456 else 457 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 458 "inode #%lu: comm %s: %pV\n", 459 inode->i_sb->s_id, function, line, inode->i_ino, 460 current->comm, &vaf); 461 va_end(args); 462 } 463 save_error_info(inode->i_sb, function, line); 464 ext4_handle_error(inode->i_sb); 465} 466 467void __ext4_error_file(struct file *file, const char *function, 468 unsigned int line, ext4_fsblk_t block, 469 const char *fmt, ...) 470{ 471 va_list args; 472 struct va_format vaf; 473 struct ext4_super_block *es; 474 struct inode *inode = file_inode(file); 475 char pathname[80], *path; 476 477 es = EXT4_SB(inode->i_sb)->s_es; 478 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 479 if (ext4_error_ratelimit(inode->i_sb)) { 480 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 481 if (IS_ERR(path)) 482 path = "(unknown)"; 483 va_start(args, fmt); 484 vaf.fmt = fmt; 485 vaf.va = &args; 486 if (block) 487 printk(KERN_CRIT 488 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 489 "block %llu: comm %s: path %s: %pV\n", 490 inode->i_sb->s_id, function, line, inode->i_ino, 491 block, current->comm, path, &vaf); 492 else 493 printk(KERN_CRIT 494 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 495 "comm %s: path %s: %pV\n", 496 inode->i_sb->s_id, function, line, inode->i_ino, 497 current->comm, path, &vaf); 498 va_end(args); 499 } 500 save_error_info(inode->i_sb, function, line); 501 ext4_handle_error(inode->i_sb); 502} 503 504const char *ext4_decode_error(struct super_block *sb, int errno, 505 char nbuf[16]) 506{ 507 char *errstr = NULL; 508 509 switch (errno) { 510 case -EIO: 511 errstr = "IO failure"; 512 break; 513 case -ENOMEM: 514 errstr = "Out of memory"; 515 break; 516 case -EROFS: 517 if (!sb || (EXT4_SB(sb)->s_journal && 518 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 519 errstr = "Journal has aborted"; 520 else 521 errstr = "Readonly filesystem"; 522 break; 523 default: 524 /* If the caller passed in an extra buffer for unknown 525 * errors, textualise them now. Else we just return 526 * NULL. */ 527 if (nbuf) { 528 /* Check for truncated error codes... */ 529 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 530 errstr = nbuf; 531 } 532 break; 533 } 534 535 return errstr; 536} 537 538/* __ext4_std_error decodes expected errors from journaling functions 539 * automatically and invokes the appropriate error response. */ 540 541void __ext4_std_error(struct super_block *sb, const char *function, 542 unsigned int line, int errno) 543{ 544 char nbuf[16]; 545 const char *errstr; 546 547 /* Special case: if the error is EROFS, and we're not already 548 * inside a transaction, then there's really no point in logging 549 * an error. */ 550 if (errno == -EROFS && journal_current_handle() == NULL && 551 (sb->s_flags & MS_RDONLY)) 552 return; 553 554 if (ext4_error_ratelimit(sb)) { 555 errstr = ext4_decode_error(sb, errno, nbuf); 556 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 557 sb->s_id, function, line, errstr); 558 } 559 560 save_error_info(sb, function, line); 561 ext4_handle_error(sb); 562} 563 564/* 565 * ext4_abort is a much stronger failure handler than ext4_error. The 566 * abort function may be used to deal with unrecoverable failures such 567 * as journal IO errors or ENOMEM at a critical moment in log management. 568 * 569 * We unconditionally force the filesystem into an ABORT|READONLY state, 570 * unless the error response on the fs has been set to panic in which 571 * case we take the easy way out and panic immediately. 572 */ 573 574void __ext4_abort(struct super_block *sb, const char *function, 575 unsigned int line, const char *fmt, ...) 576{ 577 va_list args; 578 579 save_error_info(sb, function, line); 580 va_start(args, fmt); 581 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 582 function, line); 583 vprintk(fmt, args); 584 printk("\n"); 585 va_end(args); 586 587 if ((sb->s_flags & MS_RDONLY) == 0) { 588 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 589 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 590 /* 591 * Make sure updated value of ->s_mount_flags will be visible 592 * before ->s_flags update 593 */ 594 smp_wmb(); 595 sb->s_flags |= MS_RDONLY; 596 if (EXT4_SB(sb)->s_journal) 597 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 598 save_error_info(sb, function, line); 599 } 600 if (test_opt(sb, ERRORS_PANIC)) 601 panic("EXT4-fs panic from previous error\n"); 602} 603 604void __ext4_msg(struct super_block *sb, 605 const char *prefix, const char *fmt, ...) 606{ 607 struct va_format vaf; 608 va_list args; 609 610 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 611 return; 612 613 va_start(args, fmt); 614 vaf.fmt = fmt; 615 vaf.va = &args; 616 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 617 va_end(args); 618} 619 620void __ext4_warning(struct super_block *sb, const char *function, 621 unsigned int line, const char *fmt, ...) 622{ 623 struct va_format vaf; 624 va_list args; 625 626 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 627 "EXT4-fs warning")) 628 return; 629 630 va_start(args, fmt); 631 vaf.fmt = fmt; 632 vaf.va = &args; 633 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 634 sb->s_id, function, line, &vaf); 635 va_end(args); 636} 637 638void __ext4_grp_locked_error(const char *function, unsigned int line, 639 struct super_block *sb, ext4_group_t grp, 640 unsigned long ino, ext4_fsblk_t block, 641 const char *fmt, ...) 642__releases(bitlock) 643__acquires(bitlock) 644{ 645 struct va_format vaf; 646 va_list args; 647 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 648 649 es->s_last_error_ino = cpu_to_le32(ino); 650 es->s_last_error_block = cpu_to_le64(block); 651 __save_error_info(sb, function, line); 652 653 if (ext4_error_ratelimit(sb)) { 654 va_start(args, fmt); 655 vaf.fmt = fmt; 656 vaf.va = &args; 657 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 658 sb->s_id, function, line, grp); 659 if (ino) 660 printk(KERN_CONT "inode %lu: ", ino); 661 if (block) 662 printk(KERN_CONT "block %llu:", 663 (unsigned long long) block); 664 printk(KERN_CONT "%pV\n", &vaf); 665 va_end(args); 666 } 667 668 if (test_opt(sb, ERRORS_CONT)) { 669 ext4_commit_super(sb, 0); 670 return; 671 } 672 673 ext4_unlock_group(sb, grp); 674 ext4_handle_error(sb); 675 /* 676 * We only get here in the ERRORS_RO case; relocking the group 677 * may be dangerous, but nothing bad will happen since the 678 * filesystem will have already been marked read/only and the 679 * journal has been aborted. We return 1 as a hint to callers 680 * who might what to use the return value from 681 * ext4_grp_locked_error() to distinguish between the 682 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 683 * aggressively from the ext4 function in question, with a 684 * more appropriate error code. 685 */ 686 ext4_lock_group(sb, grp); 687 return; 688} 689 690void ext4_update_dynamic_rev(struct super_block *sb) 691{ 692 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 693 694 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 695 return; 696 697 ext4_warning(sb, 698 "updating to rev %d because of new feature flag, " 699 "running e2fsck is recommended", 700 EXT4_DYNAMIC_REV); 701 702 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 703 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 704 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 705 /* leave es->s_feature_*compat flags alone */ 706 /* es->s_uuid will be set by e2fsck if empty */ 707 708 /* 709 * The rest of the superblock fields should be zero, and if not it 710 * means they are likely already in use, so leave them alone. We 711 * can leave it up to e2fsck to clean up any inconsistencies there. 712 */ 713} 714 715/* 716 * Open the external journal device 717 */ 718static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 719{ 720 struct block_device *bdev; 721 char b[BDEVNAME_SIZE]; 722 723 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 724 if (IS_ERR(bdev)) 725 goto fail; 726 return bdev; 727 728fail: 729 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 730 __bdevname(dev, b), PTR_ERR(bdev)); 731 return NULL; 732} 733 734/* 735 * Release the journal device 736 */ 737static void ext4_blkdev_put(struct block_device *bdev) 738{ 739 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 740} 741 742static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 743{ 744 struct block_device *bdev; 745 bdev = sbi->journal_bdev; 746 if (bdev) { 747 ext4_blkdev_put(bdev); 748 sbi->journal_bdev = NULL; 749 } 750} 751 752static inline struct inode *orphan_list_entry(struct list_head *l) 753{ 754 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 755} 756 757static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 758{ 759 struct list_head *l; 760 761 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 762 le32_to_cpu(sbi->s_es->s_last_orphan)); 763 764 printk(KERN_ERR "sb_info orphan list:\n"); 765 list_for_each(l, &sbi->s_orphan) { 766 struct inode *inode = orphan_list_entry(l); 767 printk(KERN_ERR " " 768 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 769 inode->i_sb->s_id, inode->i_ino, inode, 770 inode->i_mode, inode->i_nlink, 771 NEXT_ORPHAN(inode)); 772 } 773} 774 775static void ext4_put_super(struct super_block *sb) 776{ 777 struct ext4_sb_info *sbi = EXT4_SB(sb); 778 struct ext4_super_block *es = sbi->s_es; 779 int i, err; 780 781 ext4_unregister_li_request(sb); 782 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 783 784 flush_workqueue(sbi->rsv_conversion_wq); 785 destroy_workqueue(sbi->rsv_conversion_wq); 786 787 if (sbi->s_journal) { 788 err = jbd2_journal_destroy(sbi->s_journal); 789 sbi->s_journal = NULL; 790 if (err < 0) 791 ext4_abort(sb, "Couldn't clean up the journal"); 792 } 793 794 ext4_es_unregister_shrinker(sbi); 795 del_timer_sync(&sbi->s_err_report); 796 ext4_release_system_zone(sb); 797 ext4_mb_release(sb); 798 ext4_ext_release(sb); 799 ext4_xattr_put_super(sb); 800 801 if (!(sb->s_flags & MS_RDONLY)) { 802 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 803 es->s_state = cpu_to_le16(sbi->s_mount_state); 804 } 805 if (!(sb->s_flags & MS_RDONLY)) 806 ext4_commit_super(sb, 1); 807 808 if (sbi->s_proc) { 809 remove_proc_entry("options", sbi->s_proc); 810 remove_proc_entry(sb->s_id, ext4_proc_root); 811 } 812 kobject_del(&sbi->s_kobj); 813 814 for (i = 0; i < sbi->s_gdb_count; i++) 815 brelse(sbi->s_group_desc[i]); 816 ext4_kvfree(sbi->s_group_desc); 817 ext4_kvfree(sbi->s_flex_groups); 818 percpu_counter_destroy(&sbi->s_freeclusters_counter); 819 percpu_counter_destroy(&sbi->s_freeinodes_counter); 820 percpu_counter_destroy(&sbi->s_dirs_counter); 821 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 822 brelse(sbi->s_sbh); 823#ifdef CONFIG_QUOTA 824 for (i = 0; i < EXT4_MAXQUOTAS; i++) 825 kfree(sbi->s_qf_names[i]); 826#endif 827 828 /* Debugging code just in case the in-memory inode orphan list 829 * isn't empty. The on-disk one can be non-empty if we've 830 * detected an error and taken the fs readonly, but the 831 * in-memory list had better be clean by this point. */ 832 if (!list_empty(&sbi->s_orphan)) 833 dump_orphan_list(sb, sbi); 834 J_ASSERT(list_empty(&sbi->s_orphan)); 835 836 invalidate_bdev(sb->s_bdev); 837 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 838 /* 839 * Invalidate the journal device's buffers. We don't want them 840 * floating about in memory - the physical journal device may 841 * hotswapped, and it breaks the `ro-after' testing code. 842 */ 843 sync_blockdev(sbi->journal_bdev); 844 invalidate_bdev(sbi->journal_bdev); 845 ext4_blkdev_remove(sbi); 846 } 847 if (sbi->s_mb_cache) { 848 ext4_xattr_destroy_cache(sbi->s_mb_cache); 849 sbi->s_mb_cache = NULL; 850 } 851 if (sbi->s_mmp_tsk) 852 kthread_stop(sbi->s_mmp_tsk); 853 sb->s_fs_info = NULL; 854 /* 855 * Now that we are completely done shutting down the 856 * superblock, we need to actually destroy the kobject. 857 */ 858 kobject_put(&sbi->s_kobj); 859 wait_for_completion(&sbi->s_kobj_unregister); 860 if (sbi->s_chksum_driver) 861 crypto_free_shash(sbi->s_chksum_driver); 862 kfree(sbi->s_blockgroup_lock); 863 kfree(sbi); 864} 865 866static struct kmem_cache *ext4_inode_cachep; 867 868/* 869 * Called inside transaction, so use GFP_NOFS 870 */ 871static struct inode *ext4_alloc_inode(struct super_block *sb) 872{ 873 struct ext4_inode_info *ei; 874 875 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 876 if (!ei) 877 return NULL; 878 879 ei->vfs_inode.i_version = 1; 880 spin_lock_init(&ei->i_raw_lock); 881 INIT_LIST_HEAD(&ei->i_prealloc_list); 882 spin_lock_init(&ei->i_prealloc_lock); 883 ext4_es_init_tree(&ei->i_es_tree); 884 rwlock_init(&ei->i_es_lock); 885 INIT_LIST_HEAD(&ei->i_es_lru); 886 ei->i_es_all_nr = 0; 887 ei->i_es_lru_nr = 0; 888 ei->i_touch_when = 0; 889 ei->i_reserved_data_blocks = 0; 890 ei->i_reserved_meta_blocks = 0; 891 ei->i_allocated_meta_blocks = 0; 892 ei->i_da_metadata_calc_len = 0; 893 ei->i_da_metadata_calc_last_lblock = 0; 894 spin_lock_init(&(ei->i_block_reservation_lock)); 895#ifdef CONFIG_QUOTA 896 ei->i_reserved_quota = 0; 897#endif 898 ei->jinode = NULL; 899 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 900 spin_lock_init(&ei->i_completed_io_lock); 901 ei->i_sync_tid = 0; 902 ei->i_datasync_tid = 0; 903 atomic_set(&ei->i_ioend_count, 0); 904 atomic_set(&ei->i_unwritten, 0); 905 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 906 907 return &ei->vfs_inode; 908} 909 910static int ext4_drop_inode(struct inode *inode) 911{ 912 int drop = generic_drop_inode(inode); 913 914 trace_ext4_drop_inode(inode, drop); 915 return drop; 916} 917 918static void ext4_i_callback(struct rcu_head *head) 919{ 920 struct inode *inode = container_of(head, struct inode, i_rcu); 921 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 922} 923 924static void ext4_destroy_inode(struct inode *inode) 925{ 926 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 927 ext4_msg(inode->i_sb, KERN_ERR, 928 "Inode %lu (%p): orphan list check failed!", 929 inode->i_ino, EXT4_I(inode)); 930 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 931 EXT4_I(inode), sizeof(struct ext4_inode_info), 932 true); 933 dump_stack(); 934 } 935 call_rcu(&inode->i_rcu, ext4_i_callback); 936} 937 938static void init_once(void *foo) 939{ 940 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 941 942 INIT_LIST_HEAD(&ei->i_orphan); 943 init_rwsem(&ei->xattr_sem); 944 init_rwsem(&ei->i_data_sem); 945 inode_init_once(&ei->vfs_inode); 946} 947 948static int __init init_inodecache(void) 949{ 950 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 951 sizeof(struct ext4_inode_info), 952 0, (SLAB_RECLAIM_ACCOUNT| 953 SLAB_MEM_SPREAD), 954 init_once); 955 if (ext4_inode_cachep == NULL) 956 return -ENOMEM; 957 return 0; 958} 959 960static void destroy_inodecache(void) 961{ 962 /* 963 * Make sure all delayed rcu free inodes are flushed before we 964 * destroy cache. 965 */ 966 rcu_barrier(); 967 kmem_cache_destroy(ext4_inode_cachep); 968} 969 970void ext4_clear_inode(struct inode *inode) 971{ 972 invalidate_inode_buffers(inode); 973 clear_inode(inode); 974 dquot_drop(inode); 975 ext4_discard_preallocations(inode); 976 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 977 ext4_es_lru_del(inode); 978 if (EXT4_I(inode)->jinode) { 979 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 980 EXT4_I(inode)->jinode); 981 jbd2_free_inode(EXT4_I(inode)->jinode); 982 EXT4_I(inode)->jinode = NULL; 983 } 984} 985 986static struct inode *ext4_nfs_get_inode(struct super_block *sb, 987 u64 ino, u32 generation) 988{ 989 struct inode *inode; 990 991 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 992 return ERR_PTR(-ESTALE); 993 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 994 return ERR_PTR(-ESTALE); 995 996 /* iget isn't really right if the inode is currently unallocated!! 997 * 998 * ext4_read_inode will return a bad_inode if the inode had been 999 * deleted, so we should be safe. 1000 * 1001 * Currently we don't know the generation for parent directory, so 1002 * a generation of 0 means "accept any" 1003 */ 1004 inode = ext4_iget_normal(sb, ino); 1005 if (IS_ERR(inode)) 1006 return ERR_CAST(inode); 1007 if (generation && inode->i_generation != generation) { 1008 iput(inode); 1009 return ERR_PTR(-ESTALE); 1010 } 1011 1012 return inode; 1013} 1014 1015static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1016 int fh_len, int fh_type) 1017{ 1018 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1019 ext4_nfs_get_inode); 1020} 1021 1022static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1023 int fh_len, int fh_type) 1024{ 1025 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1026 ext4_nfs_get_inode); 1027} 1028 1029/* 1030 * Try to release metadata pages (indirect blocks, directories) which are 1031 * mapped via the block device. Since these pages could have journal heads 1032 * which would prevent try_to_free_buffers() from freeing them, we must use 1033 * jbd2 layer's try_to_free_buffers() function to release them. 1034 */ 1035static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1036 gfp_t wait) 1037{ 1038 journal_t *journal = EXT4_SB(sb)->s_journal; 1039 1040 WARN_ON(PageChecked(page)); 1041 if (!page_has_buffers(page)) 1042 return 0; 1043 if (journal) 1044 return jbd2_journal_try_to_free_buffers(journal, page, 1045 wait & ~__GFP_WAIT); 1046 return try_to_free_buffers(page); 1047} 1048 1049#ifdef CONFIG_QUOTA 1050#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1051#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1052 1053static int ext4_write_dquot(struct dquot *dquot); 1054static int ext4_acquire_dquot(struct dquot *dquot); 1055static int ext4_release_dquot(struct dquot *dquot); 1056static int ext4_mark_dquot_dirty(struct dquot *dquot); 1057static int ext4_write_info(struct super_block *sb, int type); 1058static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1059 struct path *path); 1060static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1061 int format_id); 1062static int ext4_quota_off(struct super_block *sb, int type); 1063static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1064static int ext4_quota_on_mount(struct super_block *sb, int type); 1065static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1066 size_t len, loff_t off); 1067static ssize_t ext4_quota_write(struct super_block *sb, int type, 1068 const char *data, size_t len, loff_t off); 1069static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1070 unsigned int flags); 1071static int ext4_enable_quotas(struct super_block *sb); 1072 1073static const struct dquot_operations ext4_quota_operations = { 1074 .get_reserved_space = ext4_get_reserved_space, 1075 .write_dquot = ext4_write_dquot, 1076 .acquire_dquot = ext4_acquire_dquot, 1077 .release_dquot = ext4_release_dquot, 1078 .mark_dirty = ext4_mark_dquot_dirty, 1079 .write_info = ext4_write_info, 1080 .alloc_dquot = dquot_alloc, 1081 .destroy_dquot = dquot_destroy, 1082}; 1083 1084static const struct quotactl_ops ext4_qctl_operations = { 1085 .quota_on = ext4_quota_on, 1086 .quota_off = ext4_quota_off, 1087 .quota_sync = dquot_quota_sync, 1088 .get_info = dquot_get_dqinfo, 1089 .set_info = dquot_set_dqinfo, 1090 .get_dqblk = dquot_get_dqblk, 1091 .set_dqblk = dquot_set_dqblk 1092}; 1093 1094static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1095 .quota_on_meta = ext4_quota_on_sysfile, 1096 .quota_off = ext4_quota_off_sysfile, 1097 .quota_sync = dquot_quota_sync, 1098 .get_info = dquot_get_dqinfo, 1099 .set_info = dquot_set_dqinfo, 1100 .get_dqblk = dquot_get_dqblk, 1101 .set_dqblk = dquot_set_dqblk 1102}; 1103#endif 1104 1105static const struct super_operations ext4_sops = { 1106 .alloc_inode = ext4_alloc_inode, 1107 .destroy_inode = ext4_destroy_inode, 1108 .write_inode = ext4_write_inode, 1109 .dirty_inode = ext4_dirty_inode, 1110 .drop_inode = ext4_drop_inode, 1111 .evict_inode = ext4_evict_inode, 1112 .put_super = ext4_put_super, 1113 .sync_fs = ext4_sync_fs, 1114 .freeze_fs = ext4_freeze, 1115 .unfreeze_fs = ext4_unfreeze, 1116 .statfs = ext4_statfs, 1117 .remount_fs = ext4_remount, 1118 .show_options = ext4_show_options, 1119#ifdef CONFIG_QUOTA 1120 .quota_read = ext4_quota_read, 1121 .quota_write = ext4_quota_write, 1122#endif 1123 .bdev_try_to_free_page = bdev_try_to_free_page, 1124}; 1125 1126static const struct export_operations ext4_export_ops = { 1127 .fh_to_dentry = ext4_fh_to_dentry, 1128 .fh_to_parent = ext4_fh_to_parent, 1129 .get_parent = ext4_get_parent, 1130}; 1131 1132enum { 1133 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1134 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1135 Opt_nouid32, Opt_debug, Opt_removed, 1136 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1137 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1138 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1139 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1140 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1141 Opt_data_err_abort, Opt_data_err_ignore, 1142 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1143 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1144 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1145 Opt_usrquota, Opt_grpquota, Opt_i_version, 1146 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1147 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1148 Opt_inode_readahead_blks, Opt_journal_ioprio, 1149 Opt_dioread_nolock, Opt_dioread_lock, 1150 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1151 Opt_max_dir_size_kb, 1152}; 1153 1154static const match_table_t tokens = { 1155 {Opt_bsd_df, "bsddf"}, 1156 {Opt_minix_df, "minixdf"}, 1157 {Opt_grpid, "grpid"}, 1158 {Opt_grpid, "bsdgroups"}, 1159 {Opt_nogrpid, "nogrpid"}, 1160 {Opt_nogrpid, "sysvgroups"}, 1161 {Opt_resgid, "resgid=%u"}, 1162 {Opt_resuid, "resuid=%u"}, 1163 {Opt_sb, "sb=%u"}, 1164 {Opt_err_cont, "errors=continue"}, 1165 {Opt_err_panic, "errors=panic"}, 1166 {Opt_err_ro, "errors=remount-ro"}, 1167 {Opt_nouid32, "nouid32"}, 1168 {Opt_debug, "debug"}, 1169 {Opt_removed, "oldalloc"}, 1170 {Opt_removed, "orlov"}, 1171 {Opt_user_xattr, "user_xattr"}, 1172 {Opt_nouser_xattr, "nouser_xattr"}, 1173 {Opt_acl, "acl"}, 1174 {Opt_noacl, "noacl"}, 1175 {Opt_noload, "norecovery"}, 1176 {Opt_noload, "noload"}, 1177 {Opt_removed, "nobh"}, 1178 {Opt_removed, "bh"}, 1179 {Opt_commit, "commit=%u"}, 1180 {Opt_min_batch_time, "min_batch_time=%u"}, 1181 {Opt_max_batch_time, "max_batch_time=%u"}, 1182 {Opt_journal_dev, "journal_dev=%u"}, 1183 {Opt_journal_path, "journal_path=%s"}, 1184 {Opt_journal_checksum, "journal_checksum"}, 1185 {Opt_journal_async_commit, "journal_async_commit"}, 1186 {Opt_abort, "abort"}, 1187 {Opt_data_journal, "data=journal"}, 1188 {Opt_data_ordered, "data=ordered"}, 1189 {Opt_data_writeback, "data=writeback"}, 1190 {Opt_data_err_abort, "data_err=abort"}, 1191 {Opt_data_err_ignore, "data_err=ignore"}, 1192 {Opt_offusrjquota, "usrjquota="}, 1193 {Opt_usrjquota, "usrjquota=%s"}, 1194 {Opt_offgrpjquota, "grpjquota="}, 1195 {Opt_grpjquota, "grpjquota=%s"}, 1196 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1197 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1198 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1199 {Opt_grpquota, "grpquota"}, 1200 {Opt_noquota, "noquota"}, 1201 {Opt_quota, "quota"}, 1202 {Opt_usrquota, "usrquota"}, 1203 {Opt_barrier, "barrier=%u"}, 1204 {Opt_barrier, "barrier"}, 1205 {Opt_nobarrier, "nobarrier"}, 1206 {Opt_i_version, "i_version"}, 1207 {Opt_stripe, "stripe=%u"}, 1208 {Opt_delalloc, "delalloc"}, 1209 {Opt_nodelalloc, "nodelalloc"}, 1210 {Opt_removed, "mblk_io_submit"}, 1211 {Opt_removed, "nomblk_io_submit"}, 1212 {Opt_block_validity, "block_validity"}, 1213 {Opt_noblock_validity, "noblock_validity"}, 1214 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1215 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1216 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1217 {Opt_auto_da_alloc, "auto_da_alloc"}, 1218 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1219 {Opt_dioread_nolock, "dioread_nolock"}, 1220 {Opt_dioread_lock, "dioread_lock"}, 1221 {Opt_discard, "discard"}, 1222 {Opt_nodiscard, "nodiscard"}, 1223 {Opt_init_itable, "init_itable=%u"}, 1224 {Opt_init_itable, "init_itable"}, 1225 {Opt_noinit_itable, "noinit_itable"}, 1226 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1227 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1228 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1229 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1230 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1231 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1232 {Opt_err, NULL}, 1233}; 1234 1235static ext4_fsblk_t get_sb_block(void **data) 1236{ 1237 ext4_fsblk_t sb_block; 1238 char *options = (char *) *data; 1239 1240 if (!options || strncmp(options, "sb=", 3) != 0) 1241 return 1; /* Default location */ 1242 1243 options += 3; 1244 /* TODO: use simple_strtoll with >32bit ext4 */ 1245 sb_block = simple_strtoul(options, &options, 0); 1246 if (*options && *options != ',') { 1247 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1248 (char *) *data); 1249 return 1; 1250 } 1251 if (*options == ',') 1252 options++; 1253 *data = (void *) options; 1254 1255 return sb_block; 1256} 1257 1258#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1259static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1260 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1261 1262#ifdef CONFIG_QUOTA 1263static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1264{ 1265 struct ext4_sb_info *sbi = EXT4_SB(sb); 1266 char *qname; 1267 int ret = -1; 1268 1269 if (sb_any_quota_loaded(sb) && 1270 !sbi->s_qf_names[qtype]) { 1271 ext4_msg(sb, KERN_ERR, 1272 "Cannot change journaled " 1273 "quota options when quota turned on"); 1274 return -1; 1275 } 1276 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1277 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1278 "when QUOTA feature is enabled"); 1279 return -1; 1280 } 1281 qname = match_strdup(args); 1282 if (!qname) { 1283 ext4_msg(sb, KERN_ERR, 1284 "Not enough memory for storing quotafile name"); 1285 return -1; 1286 } 1287 if (sbi->s_qf_names[qtype]) { 1288 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1289 ret = 1; 1290 else 1291 ext4_msg(sb, KERN_ERR, 1292 "%s quota file already specified", 1293 QTYPE2NAME(qtype)); 1294 goto errout; 1295 } 1296 if (strchr(qname, '/')) { 1297 ext4_msg(sb, KERN_ERR, 1298 "quotafile must be on filesystem root"); 1299 goto errout; 1300 } 1301 sbi->s_qf_names[qtype] = qname; 1302 set_opt(sb, QUOTA); 1303 return 1; 1304errout: 1305 kfree(qname); 1306 return ret; 1307} 1308 1309static int clear_qf_name(struct super_block *sb, int qtype) 1310{ 1311 1312 struct ext4_sb_info *sbi = EXT4_SB(sb); 1313 1314 if (sb_any_quota_loaded(sb) && 1315 sbi->s_qf_names[qtype]) { 1316 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1317 " when quota turned on"); 1318 return -1; 1319 } 1320 kfree(sbi->s_qf_names[qtype]); 1321 sbi->s_qf_names[qtype] = NULL; 1322 return 1; 1323} 1324#endif 1325 1326#define MOPT_SET 0x0001 1327#define MOPT_CLEAR 0x0002 1328#define MOPT_NOSUPPORT 0x0004 1329#define MOPT_EXPLICIT 0x0008 1330#define MOPT_CLEAR_ERR 0x0010 1331#define MOPT_GTE0 0x0020 1332#ifdef CONFIG_QUOTA 1333#define MOPT_Q 0 1334#define MOPT_QFMT 0x0040 1335#else 1336#define MOPT_Q MOPT_NOSUPPORT 1337#define MOPT_QFMT MOPT_NOSUPPORT 1338#endif 1339#define MOPT_DATAJ 0x0080 1340#define MOPT_NO_EXT2 0x0100 1341#define MOPT_NO_EXT3 0x0200 1342#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1343#define MOPT_STRING 0x0400 1344 1345static const struct mount_opts { 1346 int token; 1347 int mount_opt; 1348 int flags; 1349} ext4_mount_opts[] = { 1350 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1351 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1352 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1353 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1354 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1355 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1356 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1357 MOPT_EXT4_ONLY | MOPT_SET}, 1358 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1359 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1360 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1361 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1362 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1363 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1364 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1365 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1366 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1367 MOPT_EXT4_ONLY | MOPT_SET}, 1368 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1369 EXT4_MOUNT_JOURNAL_CHECKSUM), 1370 MOPT_EXT4_ONLY | MOPT_SET}, 1371 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1372 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1373 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1374 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1375 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1376 MOPT_NO_EXT2 | MOPT_SET}, 1377 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1378 MOPT_NO_EXT2 | MOPT_CLEAR}, 1379 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1380 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1381 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1382 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1383 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1384 {Opt_commit, 0, MOPT_GTE0}, 1385 {Opt_max_batch_time, 0, MOPT_GTE0}, 1386 {Opt_min_batch_time, 0, MOPT_GTE0}, 1387 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1388 {Opt_init_itable, 0, MOPT_GTE0}, 1389 {Opt_stripe, 0, MOPT_GTE0}, 1390 {Opt_resuid, 0, MOPT_GTE0}, 1391 {Opt_resgid, 0, MOPT_GTE0}, 1392 {Opt_journal_dev, 0, MOPT_GTE0}, 1393 {Opt_journal_path, 0, MOPT_STRING}, 1394 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1395 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1396 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1397 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1398 MOPT_NO_EXT2 | MOPT_DATAJ}, 1399 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1400 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1401#ifdef CONFIG_EXT4_FS_POSIX_ACL 1402 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1403 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1404#else 1405 {Opt_acl, 0, MOPT_NOSUPPORT}, 1406 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1407#endif 1408 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1409 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1410 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1411 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1412 MOPT_SET | MOPT_Q}, 1413 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1414 MOPT_SET | MOPT_Q}, 1415 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1416 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1417 {Opt_usrjquota, 0, MOPT_Q}, 1418 {Opt_grpjquota, 0, MOPT_Q}, 1419 {Opt_offusrjquota, 0, MOPT_Q}, 1420 {Opt_offgrpjquota, 0, MOPT_Q}, 1421 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1422 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1423 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1424 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1425 {Opt_err, 0, 0} 1426}; 1427 1428static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1429 substring_t *args, unsigned long *journal_devnum, 1430 unsigned int *journal_ioprio, int is_remount) 1431{ 1432 struct ext4_sb_info *sbi = EXT4_SB(sb); 1433 const struct mount_opts *m; 1434 kuid_t uid; 1435 kgid_t gid; 1436 int arg = 0; 1437 1438#ifdef CONFIG_QUOTA 1439 if (token == Opt_usrjquota) 1440 return set_qf_name(sb, USRQUOTA, &args[0]); 1441 else if (token == Opt_grpjquota) 1442 return set_qf_name(sb, GRPQUOTA, &args[0]); 1443 else if (token == Opt_offusrjquota) 1444 return clear_qf_name(sb, USRQUOTA); 1445 else if (token == Opt_offgrpjquota) 1446 return clear_qf_name(sb, GRPQUOTA); 1447#endif 1448 switch (token) { 1449 case Opt_noacl: 1450 case Opt_nouser_xattr: 1451 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1452 break; 1453 case Opt_sb: 1454 return 1; /* handled by get_sb_block() */ 1455 case Opt_removed: 1456 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1457 return 1; 1458 case Opt_abort: 1459 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1460 return 1; 1461 case Opt_i_version: 1462 sb->s_flags |= MS_I_VERSION; 1463 return 1; 1464 } 1465 1466 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1467 if (token == m->token) 1468 break; 1469 1470 if (m->token == Opt_err) { 1471 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1472 "or missing value", opt); 1473 return -1; 1474 } 1475 1476 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1477 ext4_msg(sb, KERN_ERR, 1478 "Mount option \"%s\" incompatible with ext2", opt); 1479 return -1; 1480 } 1481 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1482 ext4_msg(sb, KERN_ERR, 1483 "Mount option \"%s\" incompatible with ext3", opt); 1484 return -1; 1485 } 1486 1487 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1488 return -1; 1489 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1490 return -1; 1491 if (m->flags & MOPT_EXPLICIT) 1492 set_opt2(sb, EXPLICIT_DELALLOC); 1493 if (m->flags & MOPT_CLEAR_ERR) 1494 clear_opt(sb, ERRORS_MASK); 1495 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1496 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1497 "options when quota turned on"); 1498 return -1; 1499 } 1500 1501 if (m->flags & MOPT_NOSUPPORT) { 1502 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1503 } else if (token == Opt_commit) { 1504 if (arg == 0) 1505 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1506 sbi->s_commit_interval = HZ * arg; 1507 } else if (token == Opt_max_batch_time) { 1508 sbi->s_max_batch_time = arg; 1509 } else if (token == Opt_min_batch_time) { 1510 sbi->s_min_batch_time = arg; 1511 } else if (token == Opt_inode_readahead_blks) { 1512 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1513 ext4_msg(sb, KERN_ERR, 1514 "EXT4-fs: inode_readahead_blks must be " 1515 "0 or a power of 2 smaller than 2^31"); 1516 return -1; 1517 } 1518 sbi->s_inode_readahead_blks = arg; 1519 } else if (token == Opt_init_itable) { 1520 set_opt(sb, INIT_INODE_TABLE); 1521 if (!args->from) 1522 arg = EXT4_DEF_LI_WAIT_MULT; 1523 sbi->s_li_wait_mult = arg; 1524 } else if (token == Opt_max_dir_size_kb) { 1525 sbi->s_max_dir_size_kb = arg; 1526 } else if (token == Opt_stripe) { 1527 sbi->s_stripe = arg; 1528 } else if (token == Opt_resuid) { 1529 uid = make_kuid(current_user_ns(), arg); 1530 if (!uid_valid(uid)) { 1531 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1532 return -1; 1533 } 1534 sbi->s_resuid = uid; 1535 } else if (token == Opt_resgid) { 1536 gid = make_kgid(current_user_ns(), arg); 1537 if (!gid_valid(gid)) { 1538 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1539 return -1; 1540 } 1541 sbi->s_resgid = gid; 1542 } else if (token == Opt_journal_dev) { 1543 if (is_remount) { 1544 ext4_msg(sb, KERN_ERR, 1545 "Cannot specify journal on remount"); 1546 return -1; 1547 } 1548 *journal_devnum = arg; 1549 } else if (token == Opt_journal_path) { 1550 char *journal_path; 1551 struct inode *journal_inode; 1552 struct path path; 1553 int error; 1554 1555 if (is_remount) { 1556 ext4_msg(sb, KERN_ERR, 1557 "Cannot specify journal on remount"); 1558 return -1; 1559 } 1560 journal_path = match_strdup(&args[0]); 1561 if (!journal_path) { 1562 ext4_msg(sb, KERN_ERR, "error: could not dup " 1563 "journal device string"); 1564 return -1; 1565 } 1566 1567 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1568 if (error) { 1569 ext4_msg(sb, KERN_ERR, "error: could not find " 1570 "journal device path: error %d", error); 1571 kfree(journal_path); 1572 return -1; 1573 } 1574 1575 journal_inode = path.dentry->d_inode; 1576 if (!S_ISBLK(journal_inode->i_mode)) { 1577 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1578 "is not a block device", journal_path); 1579 path_put(&path); 1580 kfree(journal_path); 1581 return -1; 1582 } 1583 1584 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1585 path_put(&path); 1586 kfree(journal_path); 1587 } else if (token == Opt_journal_ioprio) { 1588 if (arg > 7) { 1589 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1590 " (must be 0-7)"); 1591 return -1; 1592 } 1593 *journal_ioprio = 1594 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1595 } else if (m->flags & MOPT_DATAJ) { 1596 if (is_remount) { 1597 if (!sbi->s_journal) 1598 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1599 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1600 ext4_msg(sb, KERN_ERR, 1601 "Cannot change data mode on remount"); 1602 return -1; 1603 } 1604 } else { 1605 clear_opt(sb, DATA_FLAGS); 1606 sbi->s_mount_opt |= m->mount_opt; 1607 } 1608#ifdef CONFIG_QUOTA 1609 } else if (m->flags & MOPT_QFMT) { 1610 if (sb_any_quota_loaded(sb) && 1611 sbi->s_jquota_fmt != m->mount_opt) { 1612 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1613 "quota options when quota turned on"); 1614 return -1; 1615 } 1616 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1617 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1618 ext4_msg(sb, KERN_ERR, 1619 "Cannot set journaled quota options " 1620 "when QUOTA feature is enabled"); 1621 return -1; 1622 } 1623 sbi->s_jquota_fmt = m->mount_opt; 1624#endif 1625 } else { 1626 if (!args->from) 1627 arg = 1; 1628 if (m->flags & MOPT_CLEAR) 1629 arg = !arg; 1630 else if (unlikely(!(m->flags & MOPT_SET))) { 1631 ext4_msg(sb, KERN_WARNING, 1632 "buggy handling of option %s", opt); 1633 WARN_ON(1); 1634 return -1; 1635 } 1636 if (arg != 0) 1637 sbi->s_mount_opt |= m->mount_opt; 1638 else 1639 sbi->s_mount_opt &= ~m->mount_opt; 1640 } 1641 return 1; 1642} 1643 1644static int parse_options(char *options, struct super_block *sb, 1645 unsigned long *journal_devnum, 1646 unsigned int *journal_ioprio, 1647 int is_remount) 1648{ 1649 struct ext4_sb_info *sbi = EXT4_SB(sb); 1650 char *p; 1651 substring_t args[MAX_OPT_ARGS]; 1652 int token; 1653 1654 if (!options) 1655 return 1; 1656 1657 while ((p = strsep(&options, ",")) != NULL) { 1658 if (!*p) 1659 continue; 1660 /* 1661 * Initialize args struct so we know whether arg was 1662 * found; some options take optional arguments. 1663 */ 1664 args[0].to = args[0].from = NULL; 1665 token = match_token(p, tokens, args); 1666 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1667 journal_ioprio, is_remount) < 0) 1668 return 0; 1669 } 1670#ifdef CONFIG_QUOTA 1671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1672 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1673 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1674 "feature is enabled"); 1675 return 0; 1676 } 1677 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1678 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1679 clear_opt(sb, USRQUOTA); 1680 1681 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1682 clear_opt(sb, GRPQUOTA); 1683 1684 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1685 ext4_msg(sb, KERN_ERR, "old and new quota " 1686 "format mixing"); 1687 return 0; 1688 } 1689 1690 if (!sbi->s_jquota_fmt) { 1691 ext4_msg(sb, KERN_ERR, "journaled quota format " 1692 "not specified"); 1693 return 0; 1694 } 1695 } 1696#endif 1697 if (test_opt(sb, DIOREAD_NOLOCK)) { 1698 int blocksize = 1699 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1700 1701 if (blocksize < PAGE_CACHE_SIZE) { 1702 ext4_msg(sb, KERN_ERR, "can't mount with " 1703 "dioread_nolock if block size != PAGE_SIZE"); 1704 return 0; 1705 } 1706 } 1707 return 1; 1708} 1709 1710static inline void ext4_show_quota_options(struct seq_file *seq, 1711 struct super_block *sb) 1712{ 1713#if defined(CONFIG_QUOTA) 1714 struct ext4_sb_info *sbi = EXT4_SB(sb); 1715 1716 if (sbi->s_jquota_fmt) { 1717 char *fmtname = ""; 1718 1719 switch (sbi->s_jquota_fmt) { 1720 case QFMT_VFS_OLD: 1721 fmtname = "vfsold"; 1722 break; 1723 case QFMT_VFS_V0: 1724 fmtname = "vfsv0"; 1725 break; 1726 case QFMT_VFS_V1: 1727 fmtname = "vfsv1"; 1728 break; 1729 } 1730 seq_printf(seq, ",jqfmt=%s", fmtname); 1731 } 1732 1733 if (sbi->s_qf_names[USRQUOTA]) 1734 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1735 1736 if (sbi->s_qf_names[GRPQUOTA]) 1737 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1738#endif 1739} 1740 1741static const char *token2str(int token) 1742{ 1743 const struct match_token *t; 1744 1745 for (t = tokens; t->token != Opt_err; t++) 1746 if (t->token == token && !strchr(t->pattern, '=')) 1747 break; 1748 return t->pattern; 1749} 1750 1751/* 1752 * Show an option if 1753 * - it's set to a non-default value OR 1754 * - if the per-sb default is different from the global default 1755 */ 1756static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1757 int nodefs) 1758{ 1759 struct ext4_sb_info *sbi = EXT4_SB(sb); 1760 struct ext4_super_block *es = sbi->s_es; 1761 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1762 const struct mount_opts *m; 1763 char sep = nodefs ? '\n' : ','; 1764 1765#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1766#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1767 1768 if (sbi->s_sb_block != 1) 1769 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1770 1771 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1772 int want_set = m->flags & MOPT_SET; 1773 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1774 (m->flags & MOPT_CLEAR_ERR)) 1775 continue; 1776 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1777 continue; /* skip if same as the default */ 1778 if ((want_set && 1779 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1780 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1781 continue; /* select Opt_noFoo vs Opt_Foo */ 1782 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1783 } 1784 1785 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1786 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1787 SEQ_OPTS_PRINT("resuid=%u", 1788 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1789 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1790 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1791 SEQ_OPTS_PRINT("resgid=%u", 1792 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1793 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1794 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1795 SEQ_OPTS_PUTS("errors=remount-ro"); 1796 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1797 SEQ_OPTS_PUTS("errors=continue"); 1798 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1799 SEQ_OPTS_PUTS("errors=panic"); 1800 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1801 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1802 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1803 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1804 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1805 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1806 if (sb->s_flags & MS_I_VERSION) 1807 SEQ_OPTS_PUTS("i_version"); 1808 if (nodefs || sbi->s_stripe) 1809 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1810 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1811 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1812 SEQ_OPTS_PUTS("data=journal"); 1813 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1814 SEQ_OPTS_PUTS("data=ordered"); 1815 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1816 SEQ_OPTS_PUTS("data=writeback"); 1817 } 1818 if (nodefs || 1819 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1820 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1821 sbi->s_inode_readahead_blks); 1822 1823 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1824 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1825 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1826 if (nodefs || sbi->s_max_dir_size_kb) 1827 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1828 1829 ext4_show_quota_options(seq, sb); 1830 return 0; 1831} 1832 1833static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1834{ 1835 return _ext4_show_options(seq, root->d_sb, 0); 1836} 1837 1838static int options_seq_show(struct seq_file *seq, void *offset) 1839{ 1840 struct super_block *sb = seq->private; 1841 int rc; 1842 1843 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1844 rc = _ext4_show_options(seq, sb, 1); 1845 seq_puts(seq, "\n"); 1846 return rc; 1847} 1848 1849static int options_open_fs(struct inode *inode, struct file *file) 1850{ 1851 return single_open(file, options_seq_show, PDE_DATA(inode)); 1852} 1853 1854static const struct file_operations ext4_seq_options_fops = { 1855 .owner = THIS_MODULE, 1856 .open = options_open_fs, 1857 .read = seq_read, 1858 .llseek = seq_lseek, 1859 .release = single_release, 1860}; 1861 1862static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1863 int read_only) 1864{ 1865 struct ext4_sb_info *sbi = EXT4_SB(sb); 1866 int res = 0; 1867 1868 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1869 ext4_msg(sb, KERN_ERR, "revision level too high, " 1870 "forcing read-only mode"); 1871 res = MS_RDONLY; 1872 } 1873 if (read_only) 1874 goto done; 1875 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1876 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1877 "running e2fsck is recommended"); 1878 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1879 ext4_msg(sb, KERN_WARNING, 1880 "warning: mounting fs with errors, " 1881 "running e2fsck is recommended"); 1882 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1883 le16_to_cpu(es->s_mnt_count) >= 1884 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1885 ext4_msg(sb, KERN_WARNING, 1886 "warning: maximal mount count reached, " 1887 "running e2fsck is recommended"); 1888 else if (le32_to_cpu(es->s_checkinterval) && 1889 (le32_to_cpu(es->s_lastcheck) + 1890 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1891 ext4_msg(sb, KERN_WARNING, 1892 "warning: checktime reached, " 1893 "running e2fsck is recommended"); 1894 if (!sbi->s_journal) 1895 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1896 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1897 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1898 le16_add_cpu(&es->s_mnt_count, 1); 1899 es->s_mtime = cpu_to_le32(get_seconds()); 1900 ext4_update_dynamic_rev(sb); 1901 if (sbi->s_journal) 1902 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1903 1904 ext4_commit_super(sb, 1); 1905done: 1906 if (test_opt(sb, DEBUG)) 1907 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1908 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1909 sb->s_blocksize, 1910 sbi->s_groups_count, 1911 EXT4_BLOCKS_PER_GROUP(sb), 1912 EXT4_INODES_PER_GROUP(sb), 1913 sbi->s_mount_opt, sbi->s_mount_opt2); 1914 1915 cleancache_init_fs(sb); 1916 return res; 1917} 1918 1919int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1920{ 1921 struct ext4_sb_info *sbi = EXT4_SB(sb); 1922 struct flex_groups *new_groups; 1923 int size; 1924 1925 if (!sbi->s_log_groups_per_flex) 1926 return 0; 1927 1928 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1929 if (size <= sbi->s_flex_groups_allocated) 1930 return 0; 1931 1932 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1933 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1934 if (!new_groups) { 1935 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1936 size / (int) sizeof(struct flex_groups)); 1937 return -ENOMEM; 1938 } 1939 1940 if (sbi->s_flex_groups) { 1941 memcpy(new_groups, sbi->s_flex_groups, 1942 (sbi->s_flex_groups_allocated * 1943 sizeof(struct flex_groups))); 1944 ext4_kvfree(sbi->s_flex_groups); 1945 } 1946 sbi->s_flex_groups = new_groups; 1947 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1948 return 0; 1949} 1950 1951static int ext4_fill_flex_info(struct super_block *sb) 1952{ 1953 struct ext4_sb_info *sbi = EXT4_SB(sb); 1954 struct ext4_group_desc *gdp = NULL; 1955 ext4_group_t flex_group; 1956 int i, err; 1957 1958 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1959 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1960 sbi->s_log_groups_per_flex = 0; 1961 return 1; 1962 } 1963 1964 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1965 if (err) 1966 goto failed; 1967 1968 for (i = 0; i < sbi->s_groups_count; i++) { 1969 gdp = ext4_get_group_desc(sb, i, NULL); 1970 1971 flex_group = ext4_flex_group(sbi, i); 1972 atomic_add(ext4_free_inodes_count(sb, gdp), 1973 &sbi->s_flex_groups[flex_group].free_inodes); 1974 atomic64_add(ext4_free_group_clusters(sb, gdp), 1975 &sbi->s_flex_groups[flex_group].free_clusters); 1976 atomic_add(ext4_used_dirs_count(sb, gdp), 1977 &sbi->s_flex_groups[flex_group].used_dirs); 1978 } 1979 1980 return 1; 1981failed: 1982 return 0; 1983} 1984 1985static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1986 struct ext4_group_desc *gdp) 1987{ 1988 int offset; 1989 __u16 crc = 0; 1990 __le32 le_group = cpu_to_le32(block_group); 1991 1992 if (ext4_has_metadata_csum(sbi->s_sb)) { 1993 /* Use new metadata_csum algorithm */ 1994 __le16 save_csum; 1995 __u32 csum32; 1996 1997 save_csum = gdp->bg_checksum; 1998 gdp->bg_checksum = 0; 1999 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2000 sizeof(le_group)); 2001 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2002 sbi->s_desc_size); 2003 gdp->bg_checksum = save_csum; 2004 2005 crc = csum32 & 0xFFFF; 2006 goto out; 2007 } 2008 2009 /* old crc16 code */ 2010 if (!(sbi->s_es->s_feature_ro_compat & 2011 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2012 return 0; 2013 2014 offset = offsetof(struct ext4_group_desc, bg_checksum); 2015 2016 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2017 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2018 crc = crc16(crc, (__u8 *)gdp, offset); 2019 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2020 /* for checksum of struct ext4_group_desc do the rest...*/ 2021 if ((sbi->s_es->s_feature_incompat & 2022 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2023 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2024 crc = crc16(crc, (__u8 *)gdp + offset, 2025 le16_to_cpu(sbi->s_es->s_desc_size) - 2026 offset); 2027 2028out: 2029 return cpu_to_le16(crc); 2030} 2031 2032int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2033 struct ext4_group_desc *gdp) 2034{ 2035 if (ext4_has_group_desc_csum(sb) && 2036 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2037 block_group, gdp))) 2038 return 0; 2039 2040 return 1; 2041} 2042 2043void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2044 struct ext4_group_desc *gdp) 2045{ 2046 if (!ext4_has_group_desc_csum(sb)) 2047 return; 2048 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2049} 2050 2051/* Called at mount-time, super-block is locked */ 2052static int ext4_check_descriptors(struct super_block *sb, 2053 ext4_group_t *first_not_zeroed) 2054{ 2055 struct ext4_sb_info *sbi = EXT4_SB(sb); 2056 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2057 ext4_fsblk_t last_block; 2058 ext4_fsblk_t block_bitmap; 2059 ext4_fsblk_t inode_bitmap; 2060 ext4_fsblk_t inode_table; 2061 int flexbg_flag = 0; 2062 ext4_group_t i, grp = sbi->s_groups_count; 2063 2064 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2065 flexbg_flag = 1; 2066 2067 ext4_debug("Checking group descriptors"); 2068 2069 for (i = 0; i < sbi->s_groups_count; i++) { 2070 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2071 2072 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2073 last_block = ext4_blocks_count(sbi->s_es) - 1; 2074 else 2075 last_block = first_block + 2076 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2077 2078 if ((grp == sbi->s_groups_count) && 2079 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2080 grp = i; 2081 2082 block_bitmap = ext4_block_bitmap(sb, gdp); 2083 if (block_bitmap < first_block || block_bitmap > last_block) { 2084 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2085 "Block bitmap for group %u not in group " 2086 "(block %llu)!", i, block_bitmap); 2087 return 0; 2088 } 2089 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2090 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2091 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2092 "Inode bitmap for group %u not in group " 2093 "(block %llu)!", i, inode_bitmap); 2094 return 0; 2095 } 2096 inode_table = ext4_inode_table(sb, gdp); 2097 if (inode_table < first_block || 2098 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2099 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2100 "Inode table for group %u not in group " 2101 "(block %llu)!", i, inode_table); 2102 return 0; 2103 } 2104 ext4_lock_group(sb, i); 2105 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2106 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2107 "Checksum for group %u failed (%u!=%u)", 2108 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2109 gdp)), le16_to_cpu(gdp->bg_checksum)); 2110 if (!(sb->s_flags & MS_RDONLY)) { 2111 ext4_unlock_group(sb, i); 2112 return 0; 2113 } 2114 } 2115 ext4_unlock_group(sb, i); 2116 if (!flexbg_flag) 2117 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2118 } 2119 if (NULL != first_not_zeroed) 2120 *first_not_zeroed = grp; 2121 return 1; 2122} 2123 2124/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2125 * the superblock) which were deleted from all directories, but held open by 2126 * a process at the time of a crash. We walk the list and try to delete these 2127 * inodes at recovery time (only with a read-write filesystem). 2128 * 2129 * In order to keep the orphan inode chain consistent during traversal (in 2130 * case of crash during recovery), we link each inode into the superblock 2131 * orphan list_head and handle it the same way as an inode deletion during 2132 * normal operation (which journals the operations for us). 2133 * 2134 * We only do an iget() and an iput() on each inode, which is very safe if we 2135 * accidentally point at an in-use or already deleted inode. The worst that 2136 * can happen in this case is that we get a "bit already cleared" message from 2137 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2138 * e2fsck was run on this filesystem, and it must have already done the orphan 2139 * inode cleanup for us, so we can safely abort without any further action. 2140 */ 2141static void ext4_orphan_cleanup(struct super_block *sb, 2142 struct ext4_super_block *es) 2143{ 2144 unsigned int s_flags = sb->s_flags; 2145 int nr_orphans = 0, nr_truncates = 0; 2146#ifdef CONFIG_QUOTA 2147 int i; 2148#endif 2149 if (!es->s_last_orphan) { 2150 jbd_debug(4, "no orphan inodes to clean up\n"); 2151 return; 2152 } 2153 2154 if (bdev_read_only(sb->s_bdev)) { 2155 ext4_msg(sb, KERN_ERR, "write access " 2156 "unavailable, skipping orphan cleanup"); 2157 return; 2158 } 2159 2160 /* Check if feature set would not allow a r/w mount */ 2161 if (!ext4_feature_set_ok(sb, 0)) { 2162 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2163 "unknown ROCOMPAT features"); 2164 return; 2165 } 2166 2167 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2168 /* don't clear list on RO mount w/ errors */ 2169 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2170 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2171 "clearing orphan list.\n"); 2172 es->s_last_orphan = 0; 2173 } 2174 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2175 return; 2176 } 2177 2178 if (s_flags & MS_RDONLY) { 2179 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2180 sb->s_flags &= ~MS_RDONLY; 2181 } 2182#ifdef CONFIG_QUOTA 2183 /* Needed for iput() to work correctly and not trash data */ 2184 sb->s_flags |= MS_ACTIVE; 2185 /* Turn on quotas so that they are updated correctly */ 2186 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2187 if (EXT4_SB(sb)->s_qf_names[i]) { 2188 int ret = ext4_quota_on_mount(sb, i); 2189 if (ret < 0) 2190 ext4_msg(sb, KERN_ERR, 2191 "Cannot turn on journaled " 2192 "quota: error %d", ret); 2193 } 2194 } 2195#endif 2196 2197 while (es->s_last_orphan) { 2198 struct inode *inode; 2199 2200 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2201 if (IS_ERR(inode)) { 2202 es->s_last_orphan = 0; 2203 break; 2204 } 2205 2206 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2207 dquot_initialize(inode); 2208 if (inode->i_nlink) { 2209 if (test_opt(sb, DEBUG)) 2210 ext4_msg(sb, KERN_DEBUG, 2211 "%s: truncating inode %lu to %lld bytes", 2212 __func__, inode->i_ino, inode->i_size); 2213 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2214 inode->i_ino, inode->i_size); 2215 mutex_lock(&inode->i_mutex); 2216 truncate_inode_pages(inode->i_mapping, inode->i_size); 2217 ext4_truncate(inode); 2218 mutex_unlock(&inode->i_mutex); 2219 nr_truncates++; 2220 } else { 2221 if (test_opt(sb, DEBUG)) 2222 ext4_msg(sb, KERN_DEBUG, 2223 "%s: deleting unreferenced inode %lu", 2224 __func__, inode->i_ino); 2225 jbd_debug(2, "deleting unreferenced inode %lu\n", 2226 inode->i_ino); 2227 nr_orphans++; 2228 } 2229 iput(inode); /* The delete magic happens here! */ 2230 } 2231 2232#define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2233 2234 if (nr_orphans) 2235 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2236 PLURAL(nr_orphans)); 2237 if (nr_truncates) 2238 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2239 PLURAL(nr_truncates)); 2240#ifdef CONFIG_QUOTA 2241 /* Turn quotas off */ 2242 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2243 if (sb_dqopt(sb)->files[i]) 2244 dquot_quota_off(sb, i); 2245 } 2246#endif 2247 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2248} 2249 2250/* 2251 * Maximal extent format file size. 2252 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2253 * extent format containers, within a sector_t, and within i_blocks 2254 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2255 * so that won't be a limiting factor. 2256 * 2257 * However there is other limiting factor. We do store extents in the form 2258 * of starting block and length, hence the resulting length of the extent 2259 * covering maximum file size must fit into on-disk format containers as 2260 * well. Given that length is always by 1 unit bigger than max unit (because 2261 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2262 * 2263 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2264 */ 2265static loff_t ext4_max_size(int blkbits, int has_huge_files) 2266{ 2267 loff_t res; 2268 loff_t upper_limit = MAX_LFS_FILESIZE; 2269 2270 /* small i_blocks in vfs inode? */ 2271 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2272 /* 2273 * CONFIG_LBDAF is not enabled implies the inode 2274 * i_block represent total blocks in 512 bytes 2275 * 32 == size of vfs inode i_blocks * 8 2276 */ 2277 upper_limit = (1LL << 32) - 1; 2278 2279 /* total blocks in file system block size */ 2280 upper_limit >>= (blkbits - 9); 2281 upper_limit <<= blkbits; 2282 } 2283 2284 /* 2285 * 32-bit extent-start container, ee_block. We lower the maxbytes 2286 * by one fs block, so ee_len can cover the extent of maximum file 2287 * size 2288 */ 2289 res = (1LL << 32) - 1; 2290 res <<= blkbits; 2291 2292 /* Sanity check against vm- & vfs- imposed limits */ 2293 if (res > upper_limit) 2294 res = upper_limit; 2295 2296 return res; 2297} 2298 2299/* 2300 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2301 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2302 * We need to be 1 filesystem block less than the 2^48 sector limit. 2303 */ 2304static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2305{ 2306 loff_t res = EXT4_NDIR_BLOCKS; 2307 int meta_blocks; 2308 loff_t upper_limit; 2309 /* This is calculated to be the largest file size for a dense, block 2310 * mapped file such that the file's total number of 512-byte sectors, 2311 * including data and all indirect blocks, does not exceed (2^48 - 1). 2312 * 2313 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2314 * number of 512-byte sectors of the file. 2315 */ 2316 2317 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2318 /* 2319 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2320 * the inode i_block field represents total file blocks in 2321 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2322 */ 2323 upper_limit = (1LL << 32) - 1; 2324 2325 /* total blocks in file system block size */ 2326 upper_limit >>= (bits - 9); 2327 2328 } else { 2329 /* 2330 * We use 48 bit ext4_inode i_blocks 2331 * With EXT4_HUGE_FILE_FL set the i_blocks 2332 * represent total number of blocks in 2333 * file system block size 2334 */ 2335 upper_limit = (1LL << 48) - 1; 2336 2337 } 2338 2339 /* indirect blocks */ 2340 meta_blocks = 1; 2341 /* double indirect blocks */ 2342 meta_blocks += 1 + (1LL << (bits-2)); 2343 /* tripple indirect blocks */ 2344 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2345 2346 upper_limit -= meta_blocks; 2347 upper_limit <<= bits; 2348 2349 res += 1LL << (bits-2); 2350 res += 1LL << (2*(bits-2)); 2351 res += 1LL << (3*(bits-2)); 2352 res <<= bits; 2353 if (res > upper_limit) 2354 res = upper_limit; 2355 2356 if (res > MAX_LFS_FILESIZE) 2357 res = MAX_LFS_FILESIZE; 2358 2359 return res; 2360} 2361 2362static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2363 ext4_fsblk_t logical_sb_block, int nr) 2364{ 2365 struct ext4_sb_info *sbi = EXT4_SB(sb); 2366 ext4_group_t bg, first_meta_bg; 2367 int has_super = 0; 2368 2369 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2370 2371 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2372 nr < first_meta_bg) 2373 return logical_sb_block + nr + 1; 2374 bg = sbi->s_desc_per_block * nr; 2375 if (ext4_bg_has_super(sb, bg)) 2376 has_super = 1; 2377 2378 /* 2379 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2380 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2381 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2382 * compensate. 2383 */ 2384 if (sb->s_blocksize == 1024 && nr == 0 && 2385 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2386 has_super++; 2387 2388 return (has_super + ext4_group_first_block_no(sb, bg)); 2389} 2390 2391/** 2392 * ext4_get_stripe_size: Get the stripe size. 2393 * @sbi: In memory super block info 2394 * 2395 * If we have specified it via mount option, then 2396 * use the mount option value. If the value specified at mount time is 2397 * greater than the blocks per group use the super block value. 2398 * If the super block value is greater than blocks per group return 0. 2399 * Allocator needs it be less than blocks per group. 2400 * 2401 */ 2402static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2403{ 2404 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2405 unsigned long stripe_width = 2406 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2407 int ret; 2408 2409 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2410 ret = sbi->s_stripe; 2411 else if (stripe_width <= sbi->s_blocks_per_group) 2412 ret = stripe_width; 2413 else if (stride <= sbi->s_blocks_per_group) 2414 ret = stride; 2415 else 2416 ret = 0; 2417 2418 /* 2419 * If the stripe width is 1, this makes no sense and 2420 * we set it to 0 to turn off stripe handling code. 2421 */ 2422 if (ret <= 1) 2423 ret = 0; 2424 2425 return ret; 2426} 2427 2428/* sysfs supprt */ 2429 2430struct ext4_attr { 2431 struct attribute attr; 2432 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2433 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2434 const char *, size_t); 2435 union { 2436 int offset; 2437 int deprecated_val; 2438 } u; 2439}; 2440 2441static int parse_strtoull(const char *buf, 2442 unsigned long long max, unsigned long long *value) 2443{ 2444 int ret; 2445 2446 ret = kstrtoull(skip_spaces(buf), 0, value); 2447 if (!ret && *value > max) 2448 ret = -EINVAL; 2449 return ret; 2450} 2451 2452static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2453 struct ext4_sb_info *sbi, 2454 char *buf) 2455{ 2456 return snprintf(buf, PAGE_SIZE, "%llu\n", 2457 (s64) EXT4_C2B(sbi, 2458 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2459} 2460 2461static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2462 struct ext4_sb_info *sbi, char *buf) 2463{ 2464 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2465 2466 if (!sb->s_bdev->bd_part) 2467 return snprintf(buf, PAGE_SIZE, "0\n"); 2468 return snprintf(buf, PAGE_SIZE, "%lu\n", 2469 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2470 sbi->s_sectors_written_start) >> 1); 2471} 2472 2473static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2474 struct ext4_sb_info *sbi, char *buf) 2475{ 2476 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2477 2478 if (!sb->s_bdev->bd_part) 2479 return snprintf(buf, PAGE_SIZE, "0\n"); 2480 return snprintf(buf, PAGE_SIZE, "%llu\n", 2481 (unsigned long long)(sbi->s_kbytes_written + 2482 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2483 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2484} 2485 2486static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2487 struct ext4_sb_info *sbi, 2488 const char *buf, size_t count) 2489{ 2490 unsigned long t; 2491 int ret; 2492 2493 ret = kstrtoul(skip_spaces(buf), 0, &t); 2494 if (ret) 2495 return ret; 2496 2497 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2498 return -EINVAL; 2499 2500 sbi->s_inode_readahead_blks = t; 2501 return count; 2502} 2503 2504static ssize_t sbi_ui_show(struct ext4_attr *a, 2505 struct ext4_sb_info *sbi, char *buf) 2506{ 2507 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2508 2509 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2510} 2511 2512static ssize_t sbi_ui_store(struct ext4_attr *a, 2513 struct ext4_sb_info *sbi, 2514 const char *buf, size_t count) 2515{ 2516 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2517 unsigned long t; 2518 int ret; 2519 2520 ret = kstrtoul(skip_spaces(buf), 0, &t); 2521 if (ret) 2522 return ret; 2523 *ui = t; 2524 return count; 2525} 2526 2527static ssize_t es_ui_show(struct ext4_attr *a, 2528 struct ext4_sb_info *sbi, char *buf) 2529{ 2530 2531 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2532 a->u.offset); 2533 2534 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2535} 2536 2537static ssize_t reserved_clusters_show(struct ext4_attr *a, 2538 struct ext4_sb_info *sbi, char *buf) 2539{ 2540 return snprintf(buf, PAGE_SIZE, "%llu\n", 2541 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2542} 2543 2544static ssize_t reserved_clusters_store(struct ext4_attr *a, 2545 struct ext4_sb_info *sbi, 2546 const char *buf, size_t count) 2547{ 2548 unsigned long long val; 2549 int ret; 2550 2551 if (parse_strtoull(buf, -1ULL, &val)) 2552 return -EINVAL; 2553 ret = ext4_reserve_clusters(sbi, val); 2554 2555 return ret ? ret : count; 2556} 2557 2558static ssize_t trigger_test_error(struct ext4_attr *a, 2559 struct ext4_sb_info *sbi, 2560 const char *buf, size_t count) 2561{ 2562 int len = count; 2563 2564 if (!capable(CAP_SYS_ADMIN)) 2565 return -EPERM; 2566 2567 if (len && buf[len-1] == '\n') 2568 len--; 2569 2570 if (len) 2571 ext4_error(sbi->s_sb, "%.*s", len, buf); 2572 return count; 2573} 2574 2575static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2576 struct ext4_sb_info *sbi, char *buf) 2577{ 2578 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2579} 2580 2581#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2582static struct ext4_attr ext4_attr_##_name = { \ 2583 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2584 .show = _show, \ 2585 .store = _store, \ 2586 .u = { \ 2587 .offset = offsetof(struct ext4_sb_info, _elname),\ 2588 }, \ 2589} 2590 2591#define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2592static struct ext4_attr ext4_attr_##_name = { \ 2593 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2594 .show = _show, \ 2595 .store = _store, \ 2596 .u = { \ 2597 .offset = offsetof(struct ext4_super_block, _elname), \ 2598 }, \ 2599} 2600 2601#define EXT4_ATTR(name, mode, show, store) \ 2602static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2603 2604#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2605#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2606#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2607 2608#define EXT4_RO_ATTR_ES_UI(name, elname) \ 2609 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2610#define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2611 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2612 2613#define ATTR_LIST(name) &ext4_attr_##name.attr 2614#define EXT4_DEPRECATED_ATTR(_name, _val) \ 2615static struct ext4_attr ext4_attr_##_name = { \ 2616 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2617 .show = sbi_deprecated_show, \ 2618 .u = { \ 2619 .deprecated_val = _val, \ 2620 }, \ 2621} 2622 2623EXT4_RO_ATTR(delayed_allocation_blocks); 2624EXT4_RO_ATTR(session_write_kbytes); 2625EXT4_RO_ATTR(lifetime_write_kbytes); 2626EXT4_RW_ATTR(reserved_clusters); 2627EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2628 inode_readahead_blks_store, s_inode_readahead_blks); 2629EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2630EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2631EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2632EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2633EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2634EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2635EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2636EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2637EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2638EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2639EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2640EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2641EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2642EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2643EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2644EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2645EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2646EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2647EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2648 2649static struct attribute *ext4_attrs[] = { 2650 ATTR_LIST(delayed_allocation_blocks), 2651 ATTR_LIST(session_write_kbytes), 2652 ATTR_LIST(lifetime_write_kbytes), 2653 ATTR_LIST(reserved_clusters), 2654 ATTR_LIST(inode_readahead_blks), 2655 ATTR_LIST(inode_goal), 2656 ATTR_LIST(mb_stats), 2657 ATTR_LIST(mb_max_to_scan), 2658 ATTR_LIST(mb_min_to_scan), 2659 ATTR_LIST(mb_order2_req), 2660 ATTR_LIST(mb_stream_req), 2661 ATTR_LIST(mb_group_prealloc), 2662 ATTR_LIST(max_writeback_mb_bump), 2663 ATTR_LIST(extent_max_zeroout_kb), 2664 ATTR_LIST(trigger_fs_error), 2665 ATTR_LIST(err_ratelimit_interval_ms), 2666 ATTR_LIST(err_ratelimit_burst), 2667 ATTR_LIST(warning_ratelimit_interval_ms), 2668 ATTR_LIST(warning_ratelimit_burst), 2669 ATTR_LIST(msg_ratelimit_interval_ms), 2670 ATTR_LIST(msg_ratelimit_burst), 2671 ATTR_LIST(errors_count), 2672 ATTR_LIST(first_error_time), 2673 ATTR_LIST(last_error_time), 2674 NULL, 2675}; 2676 2677/* Features this copy of ext4 supports */ 2678EXT4_INFO_ATTR(lazy_itable_init); 2679EXT4_INFO_ATTR(batched_discard); 2680EXT4_INFO_ATTR(meta_bg_resize); 2681 2682static struct attribute *ext4_feat_attrs[] = { 2683 ATTR_LIST(lazy_itable_init), 2684 ATTR_LIST(batched_discard), 2685 ATTR_LIST(meta_bg_resize), 2686 NULL, 2687}; 2688 2689static ssize_t ext4_attr_show(struct kobject *kobj, 2690 struct attribute *attr, char *buf) 2691{ 2692 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2693 s_kobj); 2694 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2695 2696 return a->show ? a->show(a, sbi, buf) : 0; 2697} 2698 2699static ssize_t ext4_attr_store(struct kobject *kobj, 2700 struct attribute *attr, 2701 const char *buf, size_t len) 2702{ 2703 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2704 s_kobj); 2705 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2706 2707 return a->store ? a->store(a, sbi, buf, len) : 0; 2708} 2709 2710static void ext4_sb_release(struct kobject *kobj) 2711{ 2712 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2713 s_kobj); 2714 complete(&sbi->s_kobj_unregister); 2715} 2716 2717static const struct sysfs_ops ext4_attr_ops = { 2718 .show = ext4_attr_show, 2719 .store = ext4_attr_store, 2720}; 2721 2722static struct kobj_type ext4_ktype = { 2723 .default_attrs = ext4_attrs, 2724 .sysfs_ops = &ext4_attr_ops, 2725 .release = ext4_sb_release, 2726}; 2727 2728static void ext4_feat_release(struct kobject *kobj) 2729{ 2730 complete(&ext4_feat->f_kobj_unregister); 2731} 2732 2733static ssize_t ext4_feat_show(struct kobject *kobj, 2734 struct attribute *attr, char *buf) 2735{ 2736 return snprintf(buf, PAGE_SIZE, "supported\n"); 2737} 2738 2739/* 2740 * We can not use ext4_attr_show/store because it relies on the kobject 2741 * being embedded in the ext4_sb_info structure which is definitely not 2742 * true in this case. 2743 */ 2744static const struct sysfs_ops ext4_feat_ops = { 2745 .show = ext4_feat_show, 2746 .store = NULL, 2747}; 2748 2749static struct kobj_type ext4_feat_ktype = { 2750 .default_attrs = ext4_feat_attrs, 2751 .sysfs_ops = &ext4_feat_ops, 2752 .release = ext4_feat_release, 2753}; 2754 2755/* 2756 * Check whether this filesystem can be mounted based on 2757 * the features present and the RDONLY/RDWR mount requested. 2758 * Returns 1 if this filesystem can be mounted as requested, 2759 * 0 if it cannot be. 2760 */ 2761static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2762{ 2763 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2764 ext4_msg(sb, KERN_ERR, 2765 "Couldn't mount because of " 2766 "unsupported optional features (%x)", 2767 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2768 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2769 return 0; 2770 } 2771 2772 if (readonly) 2773 return 1; 2774 2775 /* Check that feature set is OK for a read-write mount */ 2776 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2777 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2778 "unsupported optional features (%x)", 2779 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2780 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2781 return 0; 2782 } 2783 /* 2784 * Large file size enabled file system can only be mounted 2785 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2786 */ 2787 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2788 if (sizeof(blkcnt_t) < sizeof(u64)) { 2789 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2790 "cannot be mounted RDWR without " 2791 "CONFIG_LBDAF"); 2792 return 0; 2793 } 2794 } 2795 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2796 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2797 ext4_msg(sb, KERN_ERR, 2798 "Can't support bigalloc feature without " 2799 "extents feature\n"); 2800 return 0; 2801 } 2802 2803#ifndef CONFIG_QUOTA 2804 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2805 !readonly) { 2806 ext4_msg(sb, KERN_ERR, 2807 "Filesystem with quota feature cannot be mounted RDWR " 2808 "without CONFIG_QUOTA"); 2809 return 0; 2810 } 2811#endif /* CONFIG_QUOTA */ 2812 return 1; 2813} 2814 2815/* 2816 * This function is called once a day if we have errors logged 2817 * on the file system 2818 */ 2819static void print_daily_error_info(unsigned long arg) 2820{ 2821 struct super_block *sb = (struct super_block *) arg; 2822 struct ext4_sb_info *sbi; 2823 struct ext4_super_block *es; 2824 2825 sbi = EXT4_SB(sb); 2826 es = sbi->s_es; 2827 2828 if (es->s_error_count) 2829 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2830 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2831 le32_to_cpu(es->s_error_count)); 2832 if (es->s_first_error_time) { 2833 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2834 sb->s_id, le32_to_cpu(es->s_first_error_time), 2835 (int) sizeof(es->s_first_error_func), 2836 es->s_first_error_func, 2837 le32_to_cpu(es->s_first_error_line)); 2838 if (es->s_first_error_ino) 2839 printk(": inode %u", 2840 le32_to_cpu(es->s_first_error_ino)); 2841 if (es->s_first_error_block) 2842 printk(": block %llu", (unsigned long long) 2843 le64_to_cpu(es->s_first_error_block)); 2844 printk("\n"); 2845 } 2846 if (es->s_last_error_time) { 2847 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2848 sb->s_id, le32_to_cpu(es->s_last_error_time), 2849 (int) sizeof(es->s_last_error_func), 2850 es->s_last_error_func, 2851 le32_to_cpu(es->s_last_error_line)); 2852 if (es->s_last_error_ino) 2853 printk(": inode %u", 2854 le32_to_cpu(es->s_last_error_ino)); 2855 if (es->s_last_error_block) 2856 printk(": block %llu", (unsigned long long) 2857 le64_to_cpu(es->s_last_error_block)); 2858 printk("\n"); 2859 } 2860 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2861} 2862 2863/* Find next suitable group and run ext4_init_inode_table */ 2864static int ext4_run_li_request(struct ext4_li_request *elr) 2865{ 2866 struct ext4_group_desc *gdp = NULL; 2867 ext4_group_t group, ngroups; 2868 struct super_block *sb; 2869 unsigned long timeout = 0; 2870 int ret = 0; 2871 2872 sb = elr->lr_super; 2873 ngroups = EXT4_SB(sb)->s_groups_count; 2874 2875 sb_start_write(sb); 2876 for (group = elr->lr_next_group; group < ngroups; group++) { 2877 gdp = ext4_get_group_desc(sb, group, NULL); 2878 if (!gdp) { 2879 ret = 1; 2880 break; 2881 } 2882 2883 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2884 break; 2885 } 2886 2887 if (group >= ngroups) 2888 ret = 1; 2889 2890 if (!ret) { 2891 timeout = jiffies; 2892 ret = ext4_init_inode_table(sb, group, 2893 elr->lr_timeout ? 0 : 1); 2894 if (elr->lr_timeout == 0) { 2895 timeout = (jiffies - timeout) * 2896 elr->lr_sbi->s_li_wait_mult; 2897 elr->lr_timeout = timeout; 2898 } 2899 elr->lr_next_sched = jiffies + elr->lr_timeout; 2900 elr->lr_next_group = group + 1; 2901 } 2902 sb_end_write(sb); 2903 2904 return ret; 2905} 2906 2907/* 2908 * Remove lr_request from the list_request and free the 2909 * request structure. Should be called with li_list_mtx held 2910 */ 2911static void ext4_remove_li_request(struct ext4_li_request *elr) 2912{ 2913 struct ext4_sb_info *sbi; 2914 2915 if (!elr) 2916 return; 2917 2918 sbi = elr->lr_sbi; 2919 2920 list_del(&elr->lr_request); 2921 sbi->s_li_request = NULL; 2922 kfree(elr); 2923} 2924 2925static void ext4_unregister_li_request(struct super_block *sb) 2926{ 2927 mutex_lock(&ext4_li_mtx); 2928 if (!ext4_li_info) { 2929 mutex_unlock(&ext4_li_mtx); 2930 return; 2931 } 2932 2933 mutex_lock(&ext4_li_info->li_list_mtx); 2934 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2935 mutex_unlock(&ext4_li_info->li_list_mtx); 2936 mutex_unlock(&ext4_li_mtx); 2937} 2938 2939static struct task_struct *ext4_lazyinit_task; 2940 2941/* 2942 * This is the function where ext4lazyinit thread lives. It walks 2943 * through the request list searching for next scheduled filesystem. 2944 * When such a fs is found, run the lazy initialization request 2945 * (ext4_rn_li_request) and keep track of the time spend in this 2946 * function. Based on that time we compute next schedule time of 2947 * the request. When walking through the list is complete, compute 2948 * next waking time and put itself into sleep. 2949 */ 2950static int ext4_lazyinit_thread(void *arg) 2951{ 2952 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2953 struct list_head *pos, *n; 2954 struct ext4_li_request *elr; 2955 unsigned long next_wakeup, cur; 2956 2957 BUG_ON(NULL == eli); 2958 2959cont_thread: 2960 while (true) { 2961 next_wakeup = MAX_JIFFY_OFFSET; 2962 2963 mutex_lock(&eli->li_list_mtx); 2964 if (list_empty(&eli->li_request_list)) { 2965 mutex_unlock(&eli->li_list_mtx); 2966 goto exit_thread; 2967 } 2968 2969 list_for_each_safe(pos, n, &eli->li_request_list) { 2970 elr = list_entry(pos, struct ext4_li_request, 2971 lr_request); 2972 2973 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2974 if (ext4_run_li_request(elr) != 0) { 2975 /* error, remove the lazy_init job */ 2976 ext4_remove_li_request(elr); 2977 continue; 2978 } 2979 } 2980 2981 if (time_before(elr->lr_next_sched, next_wakeup)) 2982 next_wakeup = elr->lr_next_sched; 2983 } 2984 mutex_unlock(&eli->li_list_mtx); 2985 2986 try_to_freeze(); 2987 2988 cur = jiffies; 2989 if ((time_after_eq(cur, next_wakeup)) || 2990 (MAX_JIFFY_OFFSET == next_wakeup)) { 2991 cond_resched(); 2992 continue; 2993 } 2994 2995 schedule_timeout_interruptible(next_wakeup - cur); 2996 2997 if (kthread_should_stop()) { 2998 ext4_clear_request_list(); 2999 goto exit_thread; 3000 } 3001 } 3002 3003exit_thread: 3004 /* 3005 * It looks like the request list is empty, but we need 3006 * to check it under the li_list_mtx lock, to prevent any 3007 * additions into it, and of course we should lock ext4_li_mtx 3008 * to atomically free the list and ext4_li_info, because at 3009 * this point another ext4 filesystem could be registering 3010 * new one. 3011 */ 3012 mutex_lock(&ext4_li_mtx); 3013 mutex_lock(&eli->li_list_mtx); 3014 if (!list_empty(&eli->li_request_list)) { 3015 mutex_unlock(&eli->li_list_mtx); 3016 mutex_unlock(&ext4_li_mtx); 3017 goto cont_thread; 3018 } 3019 mutex_unlock(&eli->li_list_mtx); 3020 kfree(ext4_li_info); 3021 ext4_li_info = NULL; 3022 mutex_unlock(&ext4_li_mtx); 3023 3024 return 0; 3025} 3026 3027static void ext4_clear_request_list(void) 3028{ 3029 struct list_head *pos, *n; 3030 struct ext4_li_request *elr; 3031 3032 mutex_lock(&ext4_li_info->li_list_mtx); 3033 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3034 elr = list_entry(pos, struct ext4_li_request, 3035 lr_request); 3036 ext4_remove_li_request(elr); 3037 } 3038 mutex_unlock(&ext4_li_info->li_list_mtx); 3039} 3040 3041static int ext4_run_lazyinit_thread(void) 3042{ 3043 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3044 ext4_li_info, "ext4lazyinit"); 3045 if (IS_ERR(ext4_lazyinit_task)) { 3046 int err = PTR_ERR(ext4_lazyinit_task); 3047 ext4_clear_request_list(); 3048 kfree(ext4_li_info); 3049 ext4_li_info = NULL; 3050 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3051 "initialization thread\n", 3052 err); 3053 return err; 3054 } 3055 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3056 return 0; 3057} 3058 3059/* 3060 * Check whether it make sense to run itable init. thread or not. 3061 * If there is at least one uninitialized inode table, return 3062 * corresponding group number, else the loop goes through all 3063 * groups and return total number of groups. 3064 */ 3065static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3066{ 3067 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3068 struct ext4_group_desc *gdp = NULL; 3069 3070 for (group = 0; group < ngroups; group++) { 3071 gdp = ext4_get_group_desc(sb, group, NULL); 3072 if (!gdp) 3073 continue; 3074 3075 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3076 break; 3077 } 3078 3079 return group; 3080} 3081 3082static int ext4_li_info_new(void) 3083{ 3084 struct ext4_lazy_init *eli = NULL; 3085 3086 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3087 if (!eli) 3088 return -ENOMEM; 3089 3090 INIT_LIST_HEAD(&eli->li_request_list); 3091 mutex_init(&eli->li_list_mtx); 3092 3093 eli->li_state |= EXT4_LAZYINIT_QUIT; 3094 3095 ext4_li_info = eli; 3096 3097 return 0; 3098} 3099 3100static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3101 ext4_group_t start) 3102{ 3103 struct ext4_sb_info *sbi = EXT4_SB(sb); 3104 struct ext4_li_request *elr; 3105 3106 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3107 if (!elr) 3108 return NULL; 3109 3110 elr->lr_super = sb; 3111 elr->lr_sbi = sbi; 3112 elr->lr_next_group = start; 3113 3114 /* 3115 * Randomize first schedule time of the request to 3116 * spread the inode table initialization requests 3117 * better. 3118 */ 3119 elr->lr_next_sched = jiffies + (prandom_u32() % 3120 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3121 return elr; 3122} 3123 3124int ext4_register_li_request(struct super_block *sb, 3125 ext4_group_t first_not_zeroed) 3126{ 3127 struct ext4_sb_info *sbi = EXT4_SB(sb); 3128 struct ext4_li_request *elr = NULL; 3129 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3130 int ret = 0; 3131 3132 mutex_lock(&ext4_li_mtx); 3133 if (sbi->s_li_request != NULL) { 3134 /* 3135 * Reset timeout so it can be computed again, because 3136 * s_li_wait_mult might have changed. 3137 */ 3138 sbi->s_li_request->lr_timeout = 0; 3139 goto out; 3140 } 3141 3142 if (first_not_zeroed == ngroups || 3143 (sb->s_flags & MS_RDONLY) || 3144 !test_opt(sb, INIT_INODE_TABLE)) 3145 goto out; 3146 3147 elr = ext4_li_request_new(sb, first_not_zeroed); 3148 if (!elr) { 3149 ret = -ENOMEM; 3150 goto out; 3151 } 3152 3153 if (NULL == ext4_li_info) { 3154 ret = ext4_li_info_new(); 3155 if (ret) 3156 goto out; 3157 } 3158 3159 mutex_lock(&ext4_li_info->li_list_mtx); 3160 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3161 mutex_unlock(&ext4_li_info->li_list_mtx); 3162 3163 sbi->s_li_request = elr; 3164 /* 3165 * set elr to NULL here since it has been inserted to 3166 * the request_list and the removal and free of it is 3167 * handled by ext4_clear_request_list from now on. 3168 */ 3169 elr = NULL; 3170 3171 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3172 ret = ext4_run_lazyinit_thread(); 3173 if (ret) 3174 goto out; 3175 } 3176out: 3177 mutex_unlock(&ext4_li_mtx); 3178 if (ret) 3179 kfree(elr); 3180 return ret; 3181} 3182 3183/* 3184 * We do not need to lock anything since this is called on 3185 * module unload. 3186 */ 3187static void ext4_destroy_lazyinit_thread(void) 3188{ 3189 /* 3190 * If thread exited earlier 3191 * there's nothing to be done. 3192 */ 3193 if (!ext4_li_info || !ext4_lazyinit_task) 3194 return; 3195 3196 kthread_stop(ext4_lazyinit_task); 3197} 3198 3199static int set_journal_csum_feature_set(struct super_block *sb) 3200{ 3201 int ret = 1; 3202 int compat, incompat; 3203 struct ext4_sb_info *sbi = EXT4_SB(sb); 3204 3205 if (ext4_has_metadata_csum(sb)) { 3206 /* journal checksum v3 */ 3207 compat = 0; 3208 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3209 } else { 3210 /* journal checksum v1 */ 3211 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3212 incompat = 0; 3213 } 3214 3215 jbd2_journal_clear_features(sbi->s_journal, 3216 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3217 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3218 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3219 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3220 ret = jbd2_journal_set_features(sbi->s_journal, 3221 compat, 0, 3222 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3223 incompat); 3224 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3225 ret = jbd2_journal_set_features(sbi->s_journal, 3226 compat, 0, 3227 incompat); 3228 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3229 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3230 } else { 3231 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3232 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3233 } 3234 3235 return ret; 3236} 3237 3238/* 3239 * Note: calculating the overhead so we can be compatible with 3240 * historical BSD practice is quite difficult in the face of 3241 * clusters/bigalloc. This is because multiple metadata blocks from 3242 * different block group can end up in the same allocation cluster. 3243 * Calculating the exact overhead in the face of clustered allocation 3244 * requires either O(all block bitmaps) in memory or O(number of block 3245 * groups**2) in time. We will still calculate the superblock for 3246 * older file systems --- and if we come across with a bigalloc file 3247 * system with zero in s_overhead_clusters the estimate will be close to 3248 * correct especially for very large cluster sizes --- but for newer 3249 * file systems, it's better to calculate this figure once at mkfs 3250 * time, and store it in the superblock. If the superblock value is 3251 * present (even for non-bigalloc file systems), we will use it. 3252 */ 3253static int count_overhead(struct super_block *sb, ext4_group_t grp, 3254 char *buf) 3255{ 3256 struct ext4_sb_info *sbi = EXT4_SB(sb); 3257 struct ext4_group_desc *gdp; 3258 ext4_fsblk_t first_block, last_block, b; 3259 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3260 int s, j, count = 0; 3261 3262 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3263 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3264 sbi->s_itb_per_group + 2); 3265 3266 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3267 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3268 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3269 for (i = 0; i < ngroups; i++) { 3270 gdp = ext4_get_group_desc(sb, i, NULL); 3271 b = ext4_block_bitmap(sb, gdp); 3272 if (b >= first_block && b <= last_block) { 3273 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3274 count++; 3275 } 3276 b = ext4_inode_bitmap(sb, gdp); 3277 if (b >= first_block && b <= last_block) { 3278 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3279 count++; 3280 } 3281 b = ext4_inode_table(sb, gdp); 3282 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3283 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3284 int c = EXT4_B2C(sbi, b - first_block); 3285 ext4_set_bit(c, buf); 3286 count++; 3287 } 3288 if (i != grp) 3289 continue; 3290 s = 0; 3291 if (ext4_bg_has_super(sb, grp)) { 3292 ext4_set_bit(s++, buf); 3293 count++; 3294 } 3295 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3296 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3297 count++; 3298 } 3299 } 3300 if (!count) 3301 return 0; 3302 return EXT4_CLUSTERS_PER_GROUP(sb) - 3303 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3304} 3305 3306/* 3307 * Compute the overhead and stash it in sbi->s_overhead 3308 */ 3309int ext4_calculate_overhead(struct super_block *sb) 3310{ 3311 struct ext4_sb_info *sbi = EXT4_SB(sb); 3312 struct ext4_super_block *es = sbi->s_es; 3313 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3314 ext4_fsblk_t overhead = 0; 3315 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3316 3317 if (!buf) 3318 return -ENOMEM; 3319 3320 /* 3321 * Compute the overhead (FS structures). This is constant 3322 * for a given filesystem unless the number of block groups 3323 * changes so we cache the previous value until it does. 3324 */ 3325 3326 /* 3327 * All of the blocks before first_data_block are overhead 3328 */ 3329 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3330 3331 /* 3332 * Add the overhead found in each block group 3333 */ 3334 for (i = 0; i < ngroups; i++) { 3335 int blks; 3336 3337 blks = count_overhead(sb, i, buf); 3338 overhead += blks; 3339 if (blks) 3340 memset(buf, 0, PAGE_SIZE); 3341 cond_resched(); 3342 } 3343 /* Add the journal blocks as well */ 3344 if (sbi->s_journal) 3345 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3346 3347 sbi->s_overhead = overhead; 3348 smp_wmb(); 3349 free_page((unsigned long) buf); 3350 return 0; 3351} 3352 3353 3354static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3355{ 3356 ext4_fsblk_t resv_clusters; 3357 3358 /* 3359 * There's no need to reserve anything when we aren't using extents. 3360 * The space estimates are exact, there are no unwritten extents, 3361 * hole punching doesn't need new metadata... This is needed especially 3362 * to keep ext2/3 backward compatibility. 3363 */ 3364 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3365 return 0; 3366 /* 3367 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3368 * This should cover the situations where we can not afford to run 3369 * out of space like for example punch hole, or converting 3370 * unwritten extents in delalloc path. In most cases such 3371 * allocation would require 1, or 2 blocks, higher numbers are 3372 * very rare. 3373 */ 3374 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3375 EXT4_SB(sb)->s_cluster_bits; 3376 3377 do_div(resv_clusters, 50); 3378 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3379 3380 return resv_clusters; 3381} 3382 3383 3384static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3385{ 3386 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3387 sbi->s_cluster_bits; 3388 3389 if (count >= clusters) 3390 return -EINVAL; 3391 3392 atomic64_set(&sbi->s_resv_clusters, count); 3393 return 0; 3394} 3395 3396static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3397{ 3398 char *orig_data = kstrdup(data, GFP_KERNEL); 3399 struct buffer_head *bh; 3400 struct ext4_super_block *es = NULL; 3401 struct ext4_sb_info *sbi; 3402 ext4_fsblk_t block; 3403 ext4_fsblk_t sb_block = get_sb_block(&data); 3404 ext4_fsblk_t logical_sb_block; 3405 unsigned long offset = 0; 3406 unsigned long journal_devnum = 0; 3407 unsigned long def_mount_opts; 3408 struct inode *root; 3409 char *cp; 3410 const char *descr; 3411 int ret = -ENOMEM; 3412 int blocksize, clustersize; 3413 unsigned int db_count; 3414 unsigned int i; 3415 int needs_recovery, has_huge_files, has_bigalloc; 3416 __u64 blocks_count; 3417 int err = 0; 3418 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3419 ext4_group_t first_not_zeroed; 3420 3421 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3422 if (!sbi) 3423 goto out_free_orig; 3424 3425 sbi->s_blockgroup_lock = 3426 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3427 if (!sbi->s_blockgroup_lock) { 3428 kfree(sbi); 3429 goto out_free_orig; 3430 } 3431 sb->s_fs_info = sbi; 3432 sbi->s_sb = sb; 3433 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3434 sbi->s_sb_block = sb_block; 3435 if (sb->s_bdev->bd_part) 3436 sbi->s_sectors_written_start = 3437 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3438 3439 /* Cleanup superblock name */ 3440 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3441 *cp = '!'; 3442 3443 /* -EINVAL is default */ 3444 ret = -EINVAL; 3445 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3446 if (!blocksize) { 3447 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3448 goto out_fail; 3449 } 3450 3451 /* 3452 * The ext4 superblock will not be buffer aligned for other than 1kB 3453 * block sizes. We need to calculate the offset from buffer start. 3454 */ 3455 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3456 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3457 offset = do_div(logical_sb_block, blocksize); 3458 } else { 3459 logical_sb_block = sb_block; 3460 } 3461 3462 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3463 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3464 goto out_fail; 3465 } 3466 /* 3467 * Note: s_es must be initialized as soon as possible because 3468 * some ext4 macro-instructions depend on its value 3469 */ 3470 es = (struct ext4_super_block *) (bh->b_data + offset); 3471 sbi->s_es = es; 3472 sb->s_magic = le16_to_cpu(es->s_magic); 3473 if (sb->s_magic != EXT4_SUPER_MAGIC) 3474 goto cantfind_ext4; 3475 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3476 3477 /* Warn if metadata_csum and gdt_csum are both set. */ 3478 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3479 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3480 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3481 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3482 "redundant flags; please run fsck."); 3483 3484 /* Check for a known checksum algorithm */ 3485 if (!ext4_verify_csum_type(sb, es)) { 3486 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3487 "unknown checksum algorithm."); 3488 silent = 1; 3489 goto cantfind_ext4; 3490 } 3491 3492 /* Load the checksum driver */ 3493 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3494 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3495 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3496 if (IS_ERR(sbi->s_chksum_driver)) { 3497 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3498 ret = PTR_ERR(sbi->s_chksum_driver); 3499 sbi->s_chksum_driver = NULL; 3500 goto failed_mount; 3501 } 3502 } 3503 3504 /* Check superblock checksum */ 3505 if (!ext4_superblock_csum_verify(sb, es)) { 3506 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3507 "invalid superblock checksum. Run e2fsck?"); 3508 silent = 1; 3509 goto cantfind_ext4; 3510 } 3511 3512 /* Precompute checksum seed for all metadata */ 3513 if (ext4_has_metadata_csum(sb)) 3514 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3515 sizeof(es->s_uuid)); 3516 3517 /* Set defaults before we parse the mount options */ 3518 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3519 set_opt(sb, INIT_INODE_TABLE); 3520 if (def_mount_opts & EXT4_DEFM_DEBUG) 3521 set_opt(sb, DEBUG); 3522 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3523 set_opt(sb, GRPID); 3524 if (def_mount_opts & EXT4_DEFM_UID16) 3525 set_opt(sb, NO_UID32); 3526 /* xattr user namespace & acls are now defaulted on */ 3527 set_opt(sb, XATTR_USER); 3528#ifdef CONFIG_EXT4_FS_POSIX_ACL 3529 set_opt(sb, POSIX_ACL); 3530#endif 3531 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3532 if (ext4_has_metadata_csum(sb)) 3533 set_opt(sb, JOURNAL_CHECKSUM); 3534 3535 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3536 set_opt(sb, JOURNAL_DATA); 3537 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3538 set_opt(sb, ORDERED_DATA); 3539 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3540 set_opt(sb, WRITEBACK_DATA); 3541 3542 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3543 set_opt(sb, ERRORS_PANIC); 3544 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3545 set_opt(sb, ERRORS_CONT); 3546 else 3547 set_opt(sb, ERRORS_RO); 3548 /* block_validity enabled by default; disable with noblock_validity */ 3549 set_opt(sb, BLOCK_VALIDITY); 3550 if (def_mount_opts & EXT4_DEFM_DISCARD) 3551 set_opt(sb, DISCARD); 3552 3553 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3554 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3555 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3556 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3557 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3558 3559 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3560 set_opt(sb, BARRIER); 3561 3562 /* 3563 * enable delayed allocation by default 3564 * Use -o nodelalloc to turn it off 3565 */ 3566 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3567 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3568 set_opt(sb, DELALLOC); 3569 3570 /* 3571 * set default s_li_wait_mult for lazyinit, for the case there is 3572 * no mount option specified. 3573 */ 3574 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3575 3576 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3577 &journal_devnum, &journal_ioprio, 0)) { 3578 ext4_msg(sb, KERN_WARNING, 3579 "failed to parse options in superblock: %s", 3580 sbi->s_es->s_mount_opts); 3581 } 3582 sbi->s_def_mount_opt = sbi->s_mount_opt; 3583 if (!parse_options((char *) data, sb, &journal_devnum, 3584 &journal_ioprio, 0)) 3585 goto failed_mount; 3586 3587 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3588 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3589 "with data=journal disables delayed " 3590 "allocation and O_DIRECT support!\n"); 3591 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3592 ext4_msg(sb, KERN_ERR, "can't mount with " 3593 "both data=journal and delalloc"); 3594 goto failed_mount; 3595 } 3596 if (test_opt(sb, DIOREAD_NOLOCK)) { 3597 ext4_msg(sb, KERN_ERR, "can't mount with " 3598 "both data=journal and dioread_nolock"); 3599 goto failed_mount; 3600 } 3601 if (test_opt(sb, DELALLOC)) 3602 clear_opt(sb, DELALLOC); 3603 } 3604 3605 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3606 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3607 3608 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3609 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3610 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3611 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3612 ext4_msg(sb, KERN_WARNING, 3613 "feature flags set on rev 0 fs, " 3614 "running e2fsck is recommended"); 3615 3616 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3617 set_opt2(sb, HURD_COMPAT); 3618 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3619 EXT4_FEATURE_INCOMPAT_64BIT)) { 3620 ext4_msg(sb, KERN_ERR, 3621 "The Hurd can't support 64-bit file systems"); 3622 goto failed_mount; 3623 } 3624 } 3625 3626 if (IS_EXT2_SB(sb)) { 3627 if (ext2_feature_set_ok(sb)) 3628 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3629 "using the ext4 subsystem"); 3630 else { 3631 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3632 "to feature incompatibilities"); 3633 goto failed_mount; 3634 } 3635 } 3636 3637 if (IS_EXT3_SB(sb)) { 3638 if (ext3_feature_set_ok(sb)) 3639 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3640 "using the ext4 subsystem"); 3641 else { 3642 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3643 "to feature incompatibilities"); 3644 goto failed_mount; 3645 } 3646 } 3647 3648 /* 3649 * Check feature flags regardless of the revision level, since we 3650 * previously didn't change the revision level when setting the flags, 3651 * so there is a chance incompat flags are set on a rev 0 filesystem. 3652 */ 3653 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3654 goto failed_mount; 3655 3656 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3657 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3658 blocksize > EXT4_MAX_BLOCK_SIZE) { 3659 ext4_msg(sb, KERN_ERR, 3660 "Unsupported filesystem blocksize %d", blocksize); 3661 goto failed_mount; 3662 } 3663 3664 if (sb->s_blocksize != blocksize) { 3665 /* Validate the filesystem blocksize */ 3666 if (!sb_set_blocksize(sb, blocksize)) { 3667 ext4_msg(sb, KERN_ERR, "bad block size %d", 3668 blocksize); 3669 goto failed_mount; 3670 } 3671 3672 brelse(bh); 3673 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3674 offset = do_div(logical_sb_block, blocksize); 3675 bh = sb_bread_unmovable(sb, logical_sb_block); 3676 if (!bh) { 3677 ext4_msg(sb, KERN_ERR, 3678 "Can't read superblock on 2nd try"); 3679 goto failed_mount; 3680 } 3681 es = (struct ext4_super_block *)(bh->b_data + offset); 3682 sbi->s_es = es; 3683 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3684 ext4_msg(sb, KERN_ERR, 3685 "Magic mismatch, very weird!"); 3686 goto failed_mount; 3687 } 3688 } 3689 3690 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3691 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3692 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3693 has_huge_files); 3694 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3695 3696 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3697 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3698 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3699 } else { 3700 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3701 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3702 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3703 (!is_power_of_2(sbi->s_inode_size)) || 3704 (sbi->s_inode_size > blocksize)) { 3705 ext4_msg(sb, KERN_ERR, 3706 "unsupported inode size: %d", 3707 sbi->s_inode_size); 3708 goto failed_mount; 3709 } 3710 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3711 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3712 } 3713 3714 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3715 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3716 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3717 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3718 !is_power_of_2(sbi->s_desc_size)) { 3719 ext4_msg(sb, KERN_ERR, 3720 "unsupported descriptor size %lu", 3721 sbi->s_desc_size); 3722 goto failed_mount; 3723 } 3724 } else 3725 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3726 3727 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3728 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3729 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3730 goto cantfind_ext4; 3731 3732 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3733 if (sbi->s_inodes_per_block == 0) 3734 goto cantfind_ext4; 3735 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3736 sbi->s_inodes_per_block; 3737 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3738 sbi->s_sbh = bh; 3739 sbi->s_mount_state = le16_to_cpu(es->s_state); 3740 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3741 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3742 3743 for (i = 0; i < 4; i++) 3744 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3745 sbi->s_def_hash_version = es->s_def_hash_version; 3746 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3747 i = le32_to_cpu(es->s_flags); 3748 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3749 sbi->s_hash_unsigned = 3; 3750 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3751#ifdef __CHAR_UNSIGNED__ 3752 if (!(sb->s_flags & MS_RDONLY)) 3753 es->s_flags |= 3754 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3755 sbi->s_hash_unsigned = 3; 3756#else 3757 if (!(sb->s_flags & MS_RDONLY)) 3758 es->s_flags |= 3759 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3760#endif 3761 } 3762 } 3763 3764 /* Handle clustersize */ 3765 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3766 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3767 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3768 if (has_bigalloc) { 3769 if (clustersize < blocksize) { 3770 ext4_msg(sb, KERN_ERR, 3771 "cluster size (%d) smaller than " 3772 "block size (%d)", clustersize, blocksize); 3773 goto failed_mount; 3774 } 3775 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3776 le32_to_cpu(es->s_log_block_size); 3777 sbi->s_clusters_per_group = 3778 le32_to_cpu(es->s_clusters_per_group); 3779 if (sbi->s_clusters_per_group > blocksize * 8) { 3780 ext4_msg(sb, KERN_ERR, 3781 "#clusters per group too big: %lu", 3782 sbi->s_clusters_per_group); 3783 goto failed_mount; 3784 } 3785 if (sbi->s_blocks_per_group != 3786 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3787 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3788 "clusters per group (%lu) inconsistent", 3789 sbi->s_blocks_per_group, 3790 sbi->s_clusters_per_group); 3791 goto failed_mount; 3792 } 3793 } else { 3794 if (clustersize != blocksize) { 3795 ext4_warning(sb, "fragment/cluster size (%d) != " 3796 "block size (%d)", clustersize, 3797 blocksize); 3798 clustersize = blocksize; 3799 } 3800 if (sbi->s_blocks_per_group > blocksize * 8) { 3801 ext4_msg(sb, KERN_ERR, 3802 "#blocks per group too big: %lu", 3803 sbi->s_blocks_per_group); 3804 goto failed_mount; 3805 } 3806 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3807 sbi->s_cluster_bits = 0; 3808 } 3809 sbi->s_cluster_ratio = clustersize / blocksize; 3810 3811 if (sbi->s_inodes_per_group > blocksize * 8) { 3812 ext4_msg(sb, KERN_ERR, 3813 "#inodes per group too big: %lu", 3814 sbi->s_inodes_per_group); 3815 goto failed_mount; 3816 } 3817 3818 /* Do we have standard group size of clustersize * 8 blocks ? */ 3819 if (sbi->s_blocks_per_group == clustersize << 3) 3820 set_opt2(sb, STD_GROUP_SIZE); 3821 3822 /* 3823 * Test whether we have more sectors than will fit in sector_t, 3824 * and whether the max offset is addressable by the page cache. 3825 */ 3826 err = generic_check_addressable(sb->s_blocksize_bits, 3827 ext4_blocks_count(es)); 3828 if (err) { 3829 ext4_msg(sb, KERN_ERR, "filesystem" 3830 " too large to mount safely on this system"); 3831 if (sizeof(sector_t) < 8) 3832 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3833 goto failed_mount; 3834 } 3835 3836 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3837 goto cantfind_ext4; 3838 3839 /* check blocks count against device size */ 3840 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3841 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3842 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3843 "exceeds size of device (%llu blocks)", 3844 ext4_blocks_count(es), blocks_count); 3845 goto failed_mount; 3846 } 3847 3848 /* 3849 * It makes no sense for the first data block to be beyond the end 3850 * of the filesystem. 3851 */ 3852 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3853 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3854 "block %u is beyond end of filesystem (%llu)", 3855 le32_to_cpu(es->s_first_data_block), 3856 ext4_blocks_count(es)); 3857 goto failed_mount; 3858 } 3859 blocks_count = (ext4_blocks_count(es) - 3860 le32_to_cpu(es->s_first_data_block) + 3861 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3862 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3863 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3864 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3865 "(block count %llu, first data block %u, " 3866 "blocks per group %lu)", sbi->s_groups_count, 3867 ext4_blocks_count(es), 3868 le32_to_cpu(es->s_first_data_block), 3869 EXT4_BLOCKS_PER_GROUP(sb)); 3870 goto failed_mount; 3871 } 3872 sbi->s_groups_count = blocks_count; 3873 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3874 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3875 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3876 EXT4_DESC_PER_BLOCK(sb); 3877 sbi->s_group_desc = ext4_kvmalloc(db_count * 3878 sizeof(struct buffer_head *), 3879 GFP_KERNEL); 3880 if (sbi->s_group_desc == NULL) { 3881 ext4_msg(sb, KERN_ERR, "not enough memory"); 3882 ret = -ENOMEM; 3883 goto failed_mount; 3884 } 3885 3886 if (ext4_proc_root) 3887 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3888 3889 if (sbi->s_proc) 3890 proc_create_data("options", S_IRUGO, sbi->s_proc, 3891 &ext4_seq_options_fops, sb); 3892 3893 bgl_lock_init(sbi->s_blockgroup_lock); 3894 3895 for (i = 0; i < db_count; i++) { 3896 block = descriptor_loc(sb, logical_sb_block, i); 3897 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3898 if (!sbi->s_group_desc[i]) { 3899 ext4_msg(sb, KERN_ERR, 3900 "can't read group descriptor %d", i); 3901 db_count = i; 3902 goto failed_mount2; 3903 } 3904 } 3905 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3906 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3907 goto failed_mount2; 3908 } 3909 3910 sbi->s_gdb_count = db_count; 3911 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3912 spin_lock_init(&sbi->s_next_gen_lock); 3913 3914 init_timer(&sbi->s_err_report); 3915 sbi->s_err_report.function = print_daily_error_info; 3916 sbi->s_err_report.data = (unsigned long) sb; 3917 3918 /* Register extent status tree shrinker */ 3919 if (ext4_es_register_shrinker(sbi)) 3920 goto failed_mount3; 3921 3922 sbi->s_stripe = ext4_get_stripe_size(sbi); 3923 sbi->s_extent_max_zeroout_kb = 32; 3924 3925 /* 3926 * set up enough so that it can read an inode 3927 */ 3928 sb->s_op = &ext4_sops; 3929 sb->s_export_op = &ext4_export_ops; 3930 sb->s_xattr = ext4_xattr_handlers; 3931#ifdef CONFIG_QUOTA 3932 sb->dq_op = &ext4_quota_operations; 3933 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3934 sb->s_qcop = &ext4_qctl_sysfile_operations; 3935 else 3936 sb->s_qcop = &ext4_qctl_operations; 3937#endif 3938 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3939 3940 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3941 mutex_init(&sbi->s_orphan_lock); 3942 3943 sb->s_root = NULL; 3944 3945 needs_recovery = (es->s_last_orphan != 0 || 3946 EXT4_HAS_INCOMPAT_FEATURE(sb, 3947 EXT4_FEATURE_INCOMPAT_RECOVER)); 3948 3949 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3950 !(sb->s_flags & MS_RDONLY)) 3951 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3952 goto failed_mount3a; 3953 3954 /* 3955 * The first inode we look at is the journal inode. Don't try 3956 * root first: it may be modified in the journal! 3957 */ 3958 if (!test_opt(sb, NOLOAD) && 3959 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3960 if (ext4_load_journal(sb, es, journal_devnum)) 3961 goto failed_mount3a; 3962 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3963 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3964 ext4_msg(sb, KERN_ERR, "required journal recovery " 3965 "suppressed and not mounted read-only"); 3966 goto failed_mount_wq; 3967 } else { 3968 clear_opt(sb, DATA_FLAGS); 3969 sbi->s_journal = NULL; 3970 needs_recovery = 0; 3971 goto no_journal; 3972 } 3973 3974 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3975 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3976 JBD2_FEATURE_INCOMPAT_64BIT)) { 3977 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3978 goto failed_mount_wq; 3979 } 3980 3981 if (!set_journal_csum_feature_set(sb)) { 3982 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3983 "feature set"); 3984 goto failed_mount_wq; 3985 } 3986 3987 /* We have now updated the journal if required, so we can 3988 * validate the data journaling mode. */ 3989 switch (test_opt(sb, DATA_FLAGS)) { 3990 case 0: 3991 /* No mode set, assume a default based on the journal 3992 * capabilities: ORDERED_DATA if the journal can 3993 * cope, else JOURNAL_DATA 3994 */ 3995 if (jbd2_journal_check_available_features 3996 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3997 set_opt(sb, ORDERED_DATA); 3998 else 3999 set_opt(sb, JOURNAL_DATA); 4000 break; 4001 4002 case EXT4_MOUNT_ORDERED_DATA: 4003 case EXT4_MOUNT_WRITEBACK_DATA: 4004 if (!jbd2_journal_check_available_features 4005 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4006 ext4_msg(sb, KERN_ERR, "Journal does not support " 4007 "requested data journaling mode"); 4008 goto failed_mount_wq; 4009 } 4010 default: 4011 break; 4012 } 4013 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4014 4015 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4016 4017no_journal: 4018 if (ext4_mballoc_ready) { 4019 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4020 if (!sbi->s_mb_cache) { 4021 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4022 goto failed_mount_wq; 4023 } 4024 } 4025 4026 /* 4027 * Get the # of file system overhead blocks from the 4028 * superblock if present. 4029 */ 4030 if (es->s_overhead_clusters) 4031 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4032 else { 4033 err = ext4_calculate_overhead(sb); 4034 if (err) 4035 goto failed_mount_wq; 4036 } 4037 4038 /* 4039 * The maximum number of concurrent works can be high and 4040 * concurrency isn't really necessary. Limit it to 1. 4041 */ 4042 EXT4_SB(sb)->rsv_conversion_wq = 4043 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4044 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4045 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4046 ret = -ENOMEM; 4047 goto failed_mount4; 4048 } 4049 4050 /* 4051 * The jbd2_journal_load will have done any necessary log recovery, 4052 * so we can safely mount the rest of the filesystem now. 4053 */ 4054 4055 root = ext4_iget(sb, EXT4_ROOT_INO); 4056 if (IS_ERR(root)) { 4057 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4058 ret = PTR_ERR(root); 4059 root = NULL; 4060 goto failed_mount4; 4061 } 4062 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4063 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4064 iput(root); 4065 goto failed_mount4; 4066 } 4067 sb->s_root = d_make_root(root); 4068 if (!sb->s_root) { 4069 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4070 ret = -ENOMEM; 4071 goto failed_mount4; 4072 } 4073 4074 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4075 sb->s_flags |= MS_RDONLY; 4076 4077 /* determine the minimum size of new large inodes, if present */ 4078 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4079 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4080 EXT4_GOOD_OLD_INODE_SIZE; 4081 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4082 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4083 if (sbi->s_want_extra_isize < 4084 le16_to_cpu(es->s_want_extra_isize)) 4085 sbi->s_want_extra_isize = 4086 le16_to_cpu(es->s_want_extra_isize); 4087 if (sbi->s_want_extra_isize < 4088 le16_to_cpu(es->s_min_extra_isize)) 4089 sbi->s_want_extra_isize = 4090 le16_to_cpu(es->s_min_extra_isize); 4091 } 4092 } 4093 /* Check if enough inode space is available */ 4094 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4095 sbi->s_inode_size) { 4096 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4097 EXT4_GOOD_OLD_INODE_SIZE; 4098 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4099 "available"); 4100 } 4101 4102 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4103 if (err) { 4104 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4105 "reserved pool", ext4_calculate_resv_clusters(sb)); 4106 goto failed_mount4a; 4107 } 4108 4109 err = ext4_setup_system_zone(sb); 4110 if (err) { 4111 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4112 "zone (%d)", err); 4113 goto failed_mount4a; 4114 } 4115 4116 ext4_ext_init(sb); 4117 err = ext4_mb_init(sb); 4118 if (err) { 4119 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4120 err); 4121 goto failed_mount5; 4122 } 4123 4124 block = ext4_count_free_clusters(sb); 4125 ext4_free_blocks_count_set(sbi->s_es, 4126 EXT4_C2B(sbi, block)); 4127 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4128 GFP_KERNEL); 4129 if (!err) { 4130 unsigned long freei = ext4_count_free_inodes(sb); 4131 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4132 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4133 GFP_KERNEL); 4134 } 4135 if (!err) 4136 err = percpu_counter_init(&sbi->s_dirs_counter, 4137 ext4_count_dirs(sb), GFP_KERNEL); 4138 if (!err) 4139 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4140 GFP_KERNEL); 4141 if (err) { 4142 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4143 goto failed_mount6; 4144 } 4145 4146 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4147 if (!ext4_fill_flex_info(sb)) { 4148 ext4_msg(sb, KERN_ERR, 4149 "unable to initialize " 4150 "flex_bg meta info!"); 4151 goto failed_mount6; 4152 } 4153 4154 err = ext4_register_li_request(sb, first_not_zeroed); 4155 if (err) 4156 goto failed_mount6; 4157 4158 sbi->s_kobj.kset = ext4_kset; 4159 init_completion(&sbi->s_kobj_unregister); 4160 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4161 "%s", sb->s_id); 4162 if (err) 4163 goto failed_mount7; 4164 4165#ifdef CONFIG_QUOTA 4166 /* Enable quota usage during mount. */ 4167 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4168 !(sb->s_flags & MS_RDONLY)) { 4169 err = ext4_enable_quotas(sb); 4170 if (err) 4171 goto failed_mount8; 4172 } 4173#endif /* CONFIG_QUOTA */ 4174 4175 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4176 ext4_orphan_cleanup(sb, es); 4177 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4178 if (needs_recovery) { 4179 ext4_msg(sb, KERN_INFO, "recovery complete"); 4180 ext4_mark_recovery_complete(sb, es); 4181 } 4182 if (EXT4_SB(sb)->s_journal) { 4183 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4184 descr = " journalled data mode"; 4185 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4186 descr = " ordered data mode"; 4187 else 4188 descr = " writeback data mode"; 4189 } else 4190 descr = "out journal"; 4191 4192 if (test_opt(sb, DISCARD)) { 4193 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4194 if (!blk_queue_discard(q)) 4195 ext4_msg(sb, KERN_WARNING, 4196 "mounting with \"discard\" option, but " 4197 "the device does not support discard"); 4198 } 4199 4200 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4201 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4202 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4203 4204 if (es->s_error_count) 4205 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4206 4207 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4208 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4209 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4210 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4211 4212 kfree(orig_data); 4213 return 0; 4214 4215cantfind_ext4: 4216 if (!silent) 4217 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4218 goto failed_mount; 4219 4220#ifdef CONFIG_QUOTA 4221failed_mount8: 4222 kobject_del(&sbi->s_kobj); 4223#endif 4224failed_mount7: 4225 ext4_unregister_li_request(sb); 4226failed_mount6: 4227 ext4_mb_release(sb); 4228 if (sbi->s_flex_groups) 4229 ext4_kvfree(sbi->s_flex_groups); 4230 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4231 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4232 percpu_counter_destroy(&sbi->s_dirs_counter); 4233 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4234failed_mount5: 4235 ext4_ext_release(sb); 4236 ext4_release_system_zone(sb); 4237failed_mount4a: 4238 dput(sb->s_root); 4239 sb->s_root = NULL; 4240failed_mount4: 4241 ext4_msg(sb, KERN_ERR, "mount failed"); 4242 if (EXT4_SB(sb)->rsv_conversion_wq) 4243 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4244failed_mount_wq: 4245 if (sbi->s_journal) { 4246 jbd2_journal_destroy(sbi->s_journal); 4247 sbi->s_journal = NULL; 4248 } 4249failed_mount3a: 4250 ext4_es_unregister_shrinker(sbi); 4251failed_mount3: 4252 del_timer_sync(&sbi->s_err_report); 4253 if (sbi->s_mmp_tsk) 4254 kthread_stop(sbi->s_mmp_tsk); 4255failed_mount2: 4256 for (i = 0; i < db_count; i++) 4257 brelse(sbi->s_group_desc[i]); 4258 ext4_kvfree(sbi->s_group_desc); 4259failed_mount: 4260 if (sbi->s_chksum_driver) 4261 crypto_free_shash(sbi->s_chksum_driver); 4262 if (sbi->s_proc) { 4263 remove_proc_entry("options", sbi->s_proc); 4264 remove_proc_entry(sb->s_id, ext4_proc_root); 4265 } 4266#ifdef CONFIG_QUOTA 4267 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4268 kfree(sbi->s_qf_names[i]); 4269#endif 4270 ext4_blkdev_remove(sbi); 4271 brelse(bh); 4272out_fail: 4273 sb->s_fs_info = NULL; 4274 kfree(sbi->s_blockgroup_lock); 4275 kfree(sbi); 4276out_free_orig: 4277 kfree(orig_data); 4278 return err ? err : ret; 4279} 4280 4281/* 4282 * Setup any per-fs journal parameters now. We'll do this both on 4283 * initial mount, once the journal has been initialised but before we've 4284 * done any recovery; and again on any subsequent remount. 4285 */ 4286static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4287{ 4288 struct ext4_sb_info *sbi = EXT4_SB(sb); 4289 4290 journal->j_commit_interval = sbi->s_commit_interval; 4291 journal->j_min_batch_time = sbi->s_min_batch_time; 4292 journal->j_max_batch_time = sbi->s_max_batch_time; 4293 4294 write_lock(&journal->j_state_lock); 4295 if (test_opt(sb, BARRIER)) 4296 journal->j_flags |= JBD2_BARRIER; 4297 else 4298 journal->j_flags &= ~JBD2_BARRIER; 4299 if (test_opt(sb, DATA_ERR_ABORT)) 4300 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4301 else 4302 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4303 write_unlock(&journal->j_state_lock); 4304} 4305 4306static journal_t *ext4_get_journal(struct super_block *sb, 4307 unsigned int journal_inum) 4308{ 4309 struct inode *journal_inode; 4310 journal_t *journal; 4311 4312 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4313 4314 /* First, test for the existence of a valid inode on disk. Bad 4315 * things happen if we iget() an unused inode, as the subsequent 4316 * iput() will try to delete it. */ 4317 4318 journal_inode = ext4_iget(sb, journal_inum); 4319 if (IS_ERR(journal_inode)) { 4320 ext4_msg(sb, KERN_ERR, "no journal found"); 4321 return NULL; 4322 } 4323 if (!journal_inode->i_nlink) { 4324 make_bad_inode(journal_inode); 4325 iput(journal_inode); 4326 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4327 return NULL; 4328 } 4329 4330 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4331 journal_inode, journal_inode->i_size); 4332 if (!S_ISREG(journal_inode->i_mode)) { 4333 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4334 iput(journal_inode); 4335 return NULL; 4336 } 4337 4338 journal = jbd2_journal_init_inode(journal_inode); 4339 if (!journal) { 4340 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4341 iput(journal_inode); 4342 return NULL; 4343 } 4344 journal->j_private = sb; 4345 ext4_init_journal_params(sb, journal); 4346 return journal; 4347} 4348 4349static journal_t *ext4_get_dev_journal(struct super_block *sb, 4350 dev_t j_dev) 4351{ 4352 struct buffer_head *bh; 4353 journal_t *journal; 4354 ext4_fsblk_t start; 4355 ext4_fsblk_t len; 4356 int hblock, blocksize; 4357 ext4_fsblk_t sb_block; 4358 unsigned long offset; 4359 struct ext4_super_block *es; 4360 struct block_device *bdev; 4361 4362 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4363 4364 bdev = ext4_blkdev_get(j_dev, sb); 4365 if (bdev == NULL) 4366 return NULL; 4367 4368 blocksize = sb->s_blocksize; 4369 hblock = bdev_logical_block_size(bdev); 4370 if (blocksize < hblock) { 4371 ext4_msg(sb, KERN_ERR, 4372 "blocksize too small for journal device"); 4373 goto out_bdev; 4374 } 4375 4376 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4377 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4378 set_blocksize(bdev, blocksize); 4379 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4380 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4381 "external journal"); 4382 goto out_bdev; 4383 } 4384 4385 es = (struct ext4_super_block *) (bh->b_data + offset); 4386 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4387 !(le32_to_cpu(es->s_feature_incompat) & 4388 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4389 ext4_msg(sb, KERN_ERR, "external journal has " 4390 "bad superblock"); 4391 brelse(bh); 4392 goto out_bdev; 4393 } 4394 4395 if ((le32_to_cpu(es->s_feature_ro_compat) & 4396 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4397 es->s_checksum != ext4_superblock_csum(sb, es)) { 4398 ext4_msg(sb, KERN_ERR, "external journal has " 4399 "corrupt superblock"); 4400 brelse(bh); 4401 goto out_bdev; 4402 } 4403 4404 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4405 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4406 brelse(bh); 4407 goto out_bdev; 4408 } 4409 4410 len = ext4_blocks_count(es); 4411 start = sb_block + 1; 4412 brelse(bh); /* we're done with the superblock */ 4413 4414 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4415 start, len, blocksize); 4416 if (!journal) { 4417 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4418 goto out_bdev; 4419 } 4420 journal->j_private = sb; 4421 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4422 wait_on_buffer(journal->j_sb_buffer); 4423 if (!buffer_uptodate(journal->j_sb_buffer)) { 4424 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4425 goto out_journal; 4426 } 4427 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4428 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4429 "user (unsupported) - %d", 4430 be32_to_cpu(journal->j_superblock->s_nr_users)); 4431 goto out_journal; 4432 } 4433 EXT4_SB(sb)->journal_bdev = bdev; 4434 ext4_init_journal_params(sb, journal); 4435 return journal; 4436 4437out_journal: 4438 jbd2_journal_destroy(journal); 4439out_bdev: 4440 ext4_blkdev_put(bdev); 4441 return NULL; 4442} 4443 4444static int ext4_load_journal(struct super_block *sb, 4445 struct ext4_super_block *es, 4446 unsigned long journal_devnum) 4447{ 4448 journal_t *journal; 4449 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4450 dev_t journal_dev; 4451 int err = 0; 4452 int really_read_only; 4453 4454 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4455 4456 if (journal_devnum && 4457 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4458 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4459 "numbers have changed"); 4460 journal_dev = new_decode_dev(journal_devnum); 4461 } else 4462 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4463 4464 really_read_only = bdev_read_only(sb->s_bdev); 4465 4466 /* 4467 * Are we loading a blank journal or performing recovery after a 4468 * crash? For recovery, we need to check in advance whether we 4469 * can get read-write access to the device. 4470 */ 4471 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4472 if (sb->s_flags & MS_RDONLY) { 4473 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4474 "required on readonly filesystem"); 4475 if (really_read_only) { 4476 ext4_msg(sb, KERN_ERR, "write access " 4477 "unavailable, cannot proceed"); 4478 return -EROFS; 4479 } 4480 ext4_msg(sb, KERN_INFO, "write access will " 4481 "be enabled during recovery"); 4482 } 4483 } 4484 4485 if (journal_inum && journal_dev) { 4486 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4487 "and inode journals!"); 4488 return -EINVAL; 4489 } 4490 4491 if (journal_inum) { 4492 if (!(journal = ext4_get_journal(sb, journal_inum))) 4493 return -EINVAL; 4494 } else { 4495 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4496 return -EINVAL; 4497 } 4498 4499 if (!(journal->j_flags & JBD2_BARRIER)) 4500 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4501 4502 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4503 err = jbd2_journal_wipe(journal, !really_read_only); 4504 if (!err) { 4505 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4506 if (save) 4507 memcpy(save, ((char *) es) + 4508 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4509 err = jbd2_journal_load(journal); 4510 if (save) 4511 memcpy(((char *) es) + EXT4_S_ERR_START, 4512 save, EXT4_S_ERR_LEN); 4513 kfree(save); 4514 } 4515 4516 if (err) { 4517 ext4_msg(sb, KERN_ERR, "error loading journal"); 4518 jbd2_journal_destroy(journal); 4519 return err; 4520 } 4521 4522 EXT4_SB(sb)->s_journal = journal; 4523 ext4_clear_journal_err(sb, es); 4524 4525 if (!really_read_only && journal_devnum && 4526 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4527 es->s_journal_dev = cpu_to_le32(journal_devnum); 4528 4529 /* Make sure we flush the recovery flag to disk. */ 4530 ext4_commit_super(sb, 1); 4531 } 4532 4533 return 0; 4534} 4535 4536static int ext4_commit_super(struct super_block *sb, int sync) 4537{ 4538 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4539 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4540 int error = 0; 4541 4542 if (!sbh || block_device_ejected(sb)) 4543 return error; 4544 if (buffer_write_io_error(sbh)) { 4545 /* 4546 * Oh, dear. A previous attempt to write the 4547 * superblock failed. This could happen because the 4548 * USB device was yanked out. Or it could happen to 4549 * be a transient write error and maybe the block will 4550 * be remapped. Nothing we can do but to retry the 4551 * write and hope for the best. 4552 */ 4553 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4554 "superblock detected"); 4555 clear_buffer_write_io_error(sbh); 4556 set_buffer_uptodate(sbh); 4557 } 4558 /* 4559 * If the file system is mounted read-only, don't update the 4560 * superblock write time. This avoids updating the superblock 4561 * write time when we are mounting the root file system 4562 * read/only but we need to replay the journal; at that point, 4563 * for people who are east of GMT and who make their clock 4564 * tick in localtime for Windows bug-for-bug compatibility, 4565 * the clock is set in the future, and this will cause e2fsck 4566 * to complain and force a full file system check. 4567 */ 4568 if (!(sb->s_flags & MS_RDONLY)) 4569 es->s_wtime = cpu_to_le32(get_seconds()); 4570 if (sb->s_bdev->bd_part) 4571 es->s_kbytes_written = 4572 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4573 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4574 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4575 else 4576 es->s_kbytes_written = 4577 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4578 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4579 ext4_free_blocks_count_set(es, 4580 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4581 &EXT4_SB(sb)->s_freeclusters_counter))); 4582 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4583 es->s_free_inodes_count = 4584 cpu_to_le32(percpu_counter_sum_positive( 4585 &EXT4_SB(sb)->s_freeinodes_counter)); 4586 BUFFER_TRACE(sbh, "marking dirty"); 4587 ext4_superblock_csum_set(sb); 4588 mark_buffer_dirty(sbh); 4589 if (sync) { 4590 error = sync_dirty_buffer(sbh); 4591 if (error) 4592 return error; 4593 4594 error = buffer_write_io_error(sbh); 4595 if (error) { 4596 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4597 "superblock"); 4598 clear_buffer_write_io_error(sbh); 4599 set_buffer_uptodate(sbh); 4600 } 4601 } 4602 return error; 4603} 4604 4605/* 4606 * Have we just finished recovery? If so, and if we are mounting (or 4607 * remounting) the filesystem readonly, then we will end up with a 4608 * consistent fs on disk. Record that fact. 4609 */ 4610static void ext4_mark_recovery_complete(struct super_block *sb, 4611 struct ext4_super_block *es) 4612{ 4613 journal_t *journal = EXT4_SB(sb)->s_journal; 4614 4615 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4616 BUG_ON(journal != NULL); 4617 return; 4618 } 4619 jbd2_journal_lock_updates(journal); 4620 if (jbd2_journal_flush(journal) < 0) 4621 goto out; 4622 4623 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4624 sb->s_flags & MS_RDONLY) { 4625 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4626 ext4_commit_super(sb, 1); 4627 } 4628 4629out: 4630 jbd2_journal_unlock_updates(journal); 4631} 4632 4633/* 4634 * If we are mounting (or read-write remounting) a filesystem whose journal 4635 * has recorded an error from a previous lifetime, move that error to the 4636 * main filesystem now. 4637 */ 4638static void ext4_clear_journal_err(struct super_block *sb, 4639 struct ext4_super_block *es) 4640{ 4641 journal_t *journal; 4642 int j_errno; 4643 const char *errstr; 4644 4645 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4646 4647 journal = EXT4_SB(sb)->s_journal; 4648 4649 /* 4650 * Now check for any error status which may have been recorded in the 4651 * journal by a prior ext4_error() or ext4_abort() 4652 */ 4653 4654 j_errno = jbd2_journal_errno(journal); 4655 if (j_errno) { 4656 char nbuf[16]; 4657 4658 errstr = ext4_decode_error(sb, j_errno, nbuf); 4659 ext4_warning(sb, "Filesystem error recorded " 4660 "from previous mount: %s", errstr); 4661 ext4_warning(sb, "Marking fs in need of filesystem check."); 4662 4663 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4664 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4665 ext4_commit_super(sb, 1); 4666 4667 jbd2_journal_clear_err(journal); 4668 jbd2_journal_update_sb_errno(journal); 4669 } 4670} 4671 4672/* 4673 * Force the running and committing transactions to commit, 4674 * and wait on the commit. 4675 */ 4676int ext4_force_commit(struct super_block *sb) 4677{ 4678 journal_t *journal; 4679 4680 if (sb->s_flags & MS_RDONLY) 4681 return 0; 4682 4683 journal = EXT4_SB(sb)->s_journal; 4684 return ext4_journal_force_commit(journal); 4685} 4686 4687static int ext4_sync_fs(struct super_block *sb, int wait) 4688{ 4689 int ret = 0; 4690 tid_t target; 4691 bool needs_barrier = false; 4692 struct ext4_sb_info *sbi = EXT4_SB(sb); 4693 4694 trace_ext4_sync_fs(sb, wait); 4695 flush_workqueue(sbi->rsv_conversion_wq); 4696 /* 4697 * Writeback quota in non-journalled quota case - journalled quota has 4698 * no dirty dquots 4699 */ 4700 dquot_writeback_dquots(sb, -1); 4701 /* 4702 * Data writeback is possible w/o journal transaction, so barrier must 4703 * being sent at the end of the function. But we can skip it if 4704 * transaction_commit will do it for us. 4705 */ 4706 if (sbi->s_journal) { 4707 target = jbd2_get_latest_transaction(sbi->s_journal); 4708 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4709 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4710 needs_barrier = true; 4711 4712 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4713 if (wait) 4714 ret = jbd2_log_wait_commit(sbi->s_journal, 4715 target); 4716 } 4717 } else if (wait && test_opt(sb, BARRIER)) 4718 needs_barrier = true; 4719 if (needs_barrier) { 4720 int err; 4721 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4722 if (!ret) 4723 ret = err; 4724 } 4725 4726 return ret; 4727} 4728 4729/* 4730 * LVM calls this function before a (read-only) snapshot is created. This 4731 * gives us a chance to flush the journal completely and mark the fs clean. 4732 * 4733 * Note that only this function cannot bring a filesystem to be in a clean 4734 * state independently. It relies on upper layer to stop all data & metadata 4735 * modifications. 4736 */ 4737static int ext4_freeze(struct super_block *sb) 4738{ 4739 int error = 0; 4740 journal_t *journal; 4741 4742 if (sb->s_flags & MS_RDONLY) 4743 return 0; 4744 4745 journal = EXT4_SB(sb)->s_journal; 4746 4747 if (journal) { 4748 /* Now we set up the journal barrier. */ 4749 jbd2_journal_lock_updates(journal); 4750 4751 /* 4752 * Don't clear the needs_recovery flag if we failed to 4753 * flush the journal. 4754 */ 4755 error = jbd2_journal_flush(journal); 4756 if (error < 0) 4757 goto out; 4758 } 4759 4760 /* Journal blocked and flushed, clear needs_recovery flag. */ 4761 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4762 error = ext4_commit_super(sb, 1); 4763out: 4764 if (journal) 4765 /* we rely on upper layer to stop further updates */ 4766 jbd2_journal_unlock_updates(journal); 4767 return error; 4768} 4769 4770/* 4771 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4772 * flag here, even though the filesystem is not technically dirty yet. 4773 */ 4774static int ext4_unfreeze(struct super_block *sb) 4775{ 4776 if (sb->s_flags & MS_RDONLY) 4777 return 0; 4778 4779 /* Reset the needs_recovery flag before the fs is unlocked. */ 4780 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4781 ext4_commit_super(sb, 1); 4782 return 0; 4783} 4784 4785/* 4786 * Structure to save mount options for ext4_remount's benefit 4787 */ 4788struct ext4_mount_options { 4789 unsigned long s_mount_opt; 4790 unsigned long s_mount_opt2; 4791 kuid_t s_resuid; 4792 kgid_t s_resgid; 4793 unsigned long s_commit_interval; 4794 u32 s_min_batch_time, s_max_batch_time; 4795#ifdef CONFIG_QUOTA 4796 int s_jquota_fmt; 4797 char *s_qf_names[EXT4_MAXQUOTAS]; 4798#endif 4799}; 4800 4801static int ext4_remount(struct super_block *sb, int *flags, char *data) 4802{ 4803 struct ext4_super_block *es; 4804 struct ext4_sb_info *sbi = EXT4_SB(sb); 4805 unsigned long old_sb_flags; 4806 struct ext4_mount_options old_opts; 4807 int enable_quota = 0; 4808 ext4_group_t g; 4809 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4810 int err = 0; 4811#ifdef CONFIG_QUOTA 4812 int i, j; 4813#endif 4814 char *orig_data = kstrdup(data, GFP_KERNEL); 4815 4816 /* Store the original options */ 4817 old_sb_flags = sb->s_flags; 4818 old_opts.s_mount_opt = sbi->s_mount_opt; 4819 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4820 old_opts.s_resuid = sbi->s_resuid; 4821 old_opts.s_resgid = sbi->s_resgid; 4822 old_opts.s_commit_interval = sbi->s_commit_interval; 4823 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4824 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4825#ifdef CONFIG_QUOTA 4826 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4827 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4828 if (sbi->s_qf_names[i]) { 4829 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4830 GFP_KERNEL); 4831 if (!old_opts.s_qf_names[i]) { 4832 for (j = 0; j < i; j++) 4833 kfree(old_opts.s_qf_names[j]); 4834 kfree(orig_data); 4835 return -ENOMEM; 4836 } 4837 } else 4838 old_opts.s_qf_names[i] = NULL; 4839#endif 4840 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4841 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4842 4843 /* 4844 * Allow the "check" option to be passed as a remount option. 4845 */ 4846 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4847 err = -EINVAL; 4848 goto restore_opts; 4849 } 4850 4851 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4852 test_opt(sb, JOURNAL_CHECKSUM)) { 4853 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4854 "during remount not supported"); 4855 err = -EINVAL; 4856 goto restore_opts; 4857 } 4858 4859 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4860 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4861 ext4_msg(sb, KERN_ERR, "can't mount with " 4862 "both data=journal and delalloc"); 4863 err = -EINVAL; 4864 goto restore_opts; 4865 } 4866 if (test_opt(sb, DIOREAD_NOLOCK)) { 4867 ext4_msg(sb, KERN_ERR, "can't mount with " 4868 "both data=journal and dioread_nolock"); 4869 err = -EINVAL; 4870 goto restore_opts; 4871 } 4872 } 4873 4874 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4875 ext4_abort(sb, "Abort forced by user"); 4876 4877 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4878 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4879 4880 es = sbi->s_es; 4881 4882 if (sbi->s_journal) { 4883 ext4_init_journal_params(sb, sbi->s_journal); 4884 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4885 } 4886 4887 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4888 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4889 err = -EROFS; 4890 goto restore_opts; 4891 } 4892 4893 if (*flags & MS_RDONLY) { 4894 err = sync_filesystem(sb); 4895 if (err < 0) 4896 goto restore_opts; 4897 err = dquot_suspend(sb, -1); 4898 if (err < 0) 4899 goto restore_opts; 4900 4901 /* 4902 * First of all, the unconditional stuff we have to do 4903 * to disable replay of the journal when we next remount 4904 */ 4905 sb->s_flags |= MS_RDONLY; 4906 4907 /* 4908 * OK, test if we are remounting a valid rw partition 4909 * readonly, and if so set the rdonly flag and then 4910 * mark the partition as valid again. 4911 */ 4912 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4913 (sbi->s_mount_state & EXT4_VALID_FS)) 4914 es->s_state = cpu_to_le16(sbi->s_mount_state); 4915 4916 if (sbi->s_journal) 4917 ext4_mark_recovery_complete(sb, es); 4918 } else { 4919 /* Make sure we can mount this feature set readwrite */ 4920 if (!ext4_feature_set_ok(sb, 0)) { 4921 err = -EROFS; 4922 goto restore_opts; 4923 } 4924 /* 4925 * Make sure the group descriptor checksums 4926 * are sane. If they aren't, refuse to remount r/w. 4927 */ 4928 for (g = 0; g < sbi->s_groups_count; g++) { 4929 struct ext4_group_desc *gdp = 4930 ext4_get_group_desc(sb, g, NULL); 4931 4932 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4933 ext4_msg(sb, KERN_ERR, 4934 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4935 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4936 le16_to_cpu(gdp->bg_checksum)); 4937 err = -EINVAL; 4938 goto restore_opts; 4939 } 4940 } 4941 4942 /* 4943 * If we have an unprocessed orphan list hanging 4944 * around from a previously readonly bdev mount, 4945 * require a full umount/remount for now. 4946 */ 4947 if (es->s_last_orphan) { 4948 ext4_msg(sb, KERN_WARNING, "Couldn't " 4949 "remount RDWR because of unprocessed " 4950 "orphan inode list. Please " 4951 "umount/remount instead"); 4952 err = -EINVAL; 4953 goto restore_opts; 4954 } 4955 4956 /* 4957 * Mounting a RDONLY partition read-write, so reread 4958 * and store the current valid flag. (It may have 4959 * been changed by e2fsck since we originally mounted 4960 * the partition.) 4961 */ 4962 if (sbi->s_journal) 4963 ext4_clear_journal_err(sb, es); 4964 sbi->s_mount_state = le16_to_cpu(es->s_state); 4965 if (!ext4_setup_super(sb, es, 0)) 4966 sb->s_flags &= ~MS_RDONLY; 4967 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4968 EXT4_FEATURE_INCOMPAT_MMP)) 4969 if (ext4_multi_mount_protect(sb, 4970 le64_to_cpu(es->s_mmp_block))) { 4971 err = -EROFS; 4972 goto restore_opts; 4973 } 4974 enable_quota = 1; 4975 } 4976 } 4977 4978 /* 4979 * Reinitialize lazy itable initialization thread based on 4980 * current settings 4981 */ 4982 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4983 ext4_unregister_li_request(sb); 4984 else { 4985 ext4_group_t first_not_zeroed; 4986 first_not_zeroed = ext4_has_uninit_itable(sb); 4987 ext4_register_li_request(sb, first_not_zeroed); 4988 } 4989 4990 ext4_setup_system_zone(sb); 4991 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4992 ext4_commit_super(sb, 1); 4993 4994#ifdef CONFIG_QUOTA 4995 /* Release old quota file names */ 4996 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4997 kfree(old_opts.s_qf_names[i]); 4998 if (enable_quota) { 4999 if (sb_any_quota_suspended(sb)) 5000 dquot_resume(sb, -1); 5001 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5002 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5003 err = ext4_enable_quotas(sb); 5004 if (err) 5005 goto restore_opts; 5006 } 5007 } 5008#endif 5009 5010 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5011 kfree(orig_data); 5012 return 0; 5013 5014restore_opts: 5015 sb->s_flags = old_sb_flags; 5016 sbi->s_mount_opt = old_opts.s_mount_opt; 5017 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5018 sbi->s_resuid = old_opts.s_resuid; 5019 sbi->s_resgid = old_opts.s_resgid; 5020 sbi->s_commit_interval = old_opts.s_commit_interval; 5021 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5022 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5023#ifdef CONFIG_QUOTA 5024 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5025 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5026 kfree(sbi->s_qf_names[i]); 5027 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5028 } 5029#endif 5030 kfree(orig_data); 5031 return err; 5032} 5033 5034static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5035{ 5036 struct super_block *sb = dentry->d_sb; 5037 struct ext4_sb_info *sbi = EXT4_SB(sb); 5038 struct ext4_super_block *es = sbi->s_es; 5039 ext4_fsblk_t overhead = 0, resv_blocks; 5040 u64 fsid; 5041 s64 bfree; 5042 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5043 5044 if (!test_opt(sb, MINIX_DF)) 5045 overhead = sbi->s_overhead; 5046 5047 buf->f_type = EXT4_SUPER_MAGIC; 5048 buf->f_bsize = sb->s_blocksize; 5049 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5050 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5051 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5052 /* prevent underflow in case that few free space is available */ 5053 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5054 buf->f_bavail = buf->f_bfree - 5055 (ext4_r_blocks_count(es) + resv_blocks); 5056 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5057 buf->f_bavail = 0; 5058 buf->f_files = le32_to_cpu(es->s_inodes_count); 5059 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5060 buf->f_namelen = EXT4_NAME_LEN; 5061 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5062 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5063 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5064 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5065 5066 return 0; 5067} 5068 5069/* Helper function for writing quotas on sync - we need to start transaction 5070 * before quota file is locked for write. Otherwise the are possible deadlocks: 5071 * Process 1 Process 2 5072 * ext4_create() quota_sync() 5073 * jbd2_journal_start() write_dquot() 5074 * dquot_initialize() down(dqio_mutex) 5075 * down(dqio_mutex) jbd2_journal_start() 5076 * 5077 */ 5078 5079#ifdef CONFIG_QUOTA 5080 5081static inline struct inode *dquot_to_inode(struct dquot *dquot) 5082{ 5083 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5084} 5085 5086static int ext4_write_dquot(struct dquot *dquot) 5087{ 5088 int ret, err; 5089 handle_t *handle; 5090 struct inode *inode; 5091 5092 inode = dquot_to_inode(dquot); 5093 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5094 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5095 if (IS_ERR(handle)) 5096 return PTR_ERR(handle); 5097 ret = dquot_commit(dquot); 5098 err = ext4_journal_stop(handle); 5099 if (!ret) 5100 ret = err; 5101 return ret; 5102} 5103 5104static int ext4_acquire_dquot(struct dquot *dquot) 5105{ 5106 int ret, err; 5107 handle_t *handle; 5108 5109 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5110 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5111 if (IS_ERR(handle)) 5112 return PTR_ERR(handle); 5113 ret = dquot_acquire(dquot); 5114 err = ext4_journal_stop(handle); 5115 if (!ret) 5116 ret = err; 5117 return ret; 5118} 5119 5120static int ext4_release_dquot(struct dquot *dquot) 5121{ 5122 int ret, err; 5123 handle_t *handle; 5124 5125 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5126 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5127 if (IS_ERR(handle)) { 5128 /* Release dquot anyway to avoid endless cycle in dqput() */ 5129 dquot_release(dquot); 5130 return PTR_ERR(handle); 5131 } 5132 ret = dquot_release(dquot); 5133 err = ext4_journal_stop(handle); 5134 if (!ret) 5135 ret = err; 5136 return ret; 5137} 5138 5139static int ext4_mark_dquot_dirty(struct dquot *dquot) 5140{ 5141 struct super_block *sb = dquot->dq_sb; 5142 struct ext4_sb_info *sbi = EXT4_SB(sb); 5143 5144 /* Are we journaling quotas? */ 5145 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5146 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5147 dquot_mark_dquot_dirty(dquot); 5148 return ext4_write_dquot(dquot); 5149 } else { 5150 return dquot_mark_dquot_dirty(dquot); 5151 } 5152} 5153 5154static int ext4_write_info(struct super_block *sb, int type) 5155{ 5156 int ret, err; 5157 handle_t *handle; 5158 5159 /* Data block + inode block */ 5160 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5161 if (IS_ERR(handle)) 5162 return PTR_ERR(handle); 5163 ret = dquot_commit_info(sb, type); 5164 err = ext4_journal_stop(handle); 5165 if (!ret) 5166 ret = err; 5167 return ret; 5168} 5169 5170/* 5171 * Turn on quotas during mount time - we need to find 5172 * the quota file and such... 5173 */ 5174static int ext4_quota_on_mount(struct super_block *sb, int type) 5175{ 5176 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5177 EXT4_SB(sb)->s_jquota_fmt, type); 5178} 5179 5180/* 5181 * Standard function to be called on quota_on 5182 */ 5183static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5184 struct path *path) 5185{ 5186 int err; 5187 5188 if (!test_opt(sb, QUOTA)) 5189 return -EINVAL; 5190 5191 /* Quotafile not on the same filesystem? */ 5192 if (path->dentry->d_sb != sb) 5193 return -EXDEV; 5194 /* Journaling quota? */ 5195 if (EXT4_SB(sb)->s_qf_names[type]) { 5196 /* Quotafile not in fs root? */ 5197 if (path->dentry->d_parent != sb->s_root) 5198 ext4_msg(sb, KERN_WARNING, 5199 "Quota file not on filesystem root. " 5200 "Journaled quota will not work"); 5201 } 5202 5203 /* 5204 * When we journal data on quota file, we have to flush journal to see 5205 * all updates to the file when we bypass pagecache... 5206 */ 5207 if (EXT4_SB(sb)->s_journal && 5208 ext4_should_journal_data(path->dentry->d_inode)) { 5209 /* 5210 * We don't need to lock updates but journal_flush() could 5211 * otherwise be livelocked... 5212 */ 5213 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5214 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5215 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5216 if (err) 5217 return err; 5218 } 5219 5220 return dquot_quota_on(sb, type, format_id, path); 5221} 5222 5223static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5224 unsigned int flags) 5225{ 5226 int err; 5227 struct inode *qf_inode; 5228 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5229 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5230 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5231 }; 5232 5233 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5234 5235 if (!qf_inums[type]) 5236 return -EPERM; 5237 5238 qf_inode = ext4_iget(sb, qf_inums[type]); 5239 if (IS_ERR(qf_inode)) { 5240 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5241 return PTR_ERR(qf_inode); 5242 } 5243 5244 /* Don't account quota for quota files to avoid recursion */ 5245 qf_inode->i_flags |= S_NOQUOTA; 5246 err = dquot_enable(qf_inode, type, format_id, flags); 5247 iput(qf_inode); 5248 5249 return err; 5250} 5251 5252/* Enable usage tracking for all quota types. */ 5253static int ext4_enable_quotas(struct super_block *sb) 5254{ 5255 int type, err = 0; 5256 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5257 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5258 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5259 }; 5260 5261 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5262 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5263 if (qf_inums[type]) { 5264 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5265 DQUOT_USAGE_ENABLED); 5266 if (err) { 5267 ext4_warning(sb, 5268 "Failed to enable quota tracking " 5269 "(type=%d, err=%d). Please run " 5270 "e2fsck to fix.", type, err); 5271 return err; 5272 } 5273 } 5274 } 5275 return 0; 5276} 5277 5278/* 5279 * quota_on function that is used when QUOTA feature is set. 5280 */ 5281static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5282 int format_id) 5283{ 5284 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5285 return -EINVAL; 5286 5287 /* 5288 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5289 */ 5290 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5291} 5292 5293static int ext4_quota_off(struct super_block *sb, int type) 5294{ 5295 struct inode *inode = sb_dqopt(sb)->files[type]; 5296 handle_t *handle; 5297 5298 /* Force all delayed allocation blocks to be allocated. 5299 * Caller already holds s_umount sem */ 5300 if (test_opt(sb, DELALLOC)) 5301 sync_filesystem(sb); 5302 5303 if (!inode) 5304 goto out; 5305 5306 /* Update modification times of quota files when userspace can 5307 * start looking at them */ 5308 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5309 if (IS_ERR(handle)) 5310 goto out; 5311 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5312 ext4_mark_inode_dirty(handle, inode); 5313 ext4_journal_stop(handle); 5314 5315out: 5316 return dquot_quota_off(sb, type); 5317} 5318 5319/* 5320 * quota_off function that is used when QUOTA feature is set. 5321 */ 5322static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5323{ 5324 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5325 return -EINVAL; 5326 5327 /* Disable only the limits. */ 5328 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5329} 5330 5331/* Read data from quotafile - avoid pagecache and such because we cannot afford 5332 * acquiring the locks... As quota files are never truncated and quota code 5333 * itself serializes the operations (and no one else should touch the files) 5334 * we don't have to be afraid of races */ 5335static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5336 size_t len, loff_t off) 5337{ 5338 struct inode *inode = sb_dqopt(sb)->files[type]; 5339 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5340 int offset = off & (sb->s_blocksize - 1); 5341 int tocopy; 5342 size_t toread; 5343 struct buffer_head *bh; 5344 loff_t i_size = i_size_read(inode); 5345 5346 if (off > i_size) 5347 return 0; 5348 if (off+len > i_size) 5349 len = i_size-off; 5350 toread = len; 5351 while (toread > 0) { 5352 tocopy = sb->s_blocksize - offset < toread ? 5353 sb->s_blocksize - offset : toread; 5354 bh = ext4_bread(NULL, inode, blk, 0); 5355 if (IS_ERR(bh)) 5356 return PTR_ERR(bh); 5357 if (!bh) /* A hole? */ 5358 memset(data, 0, tocopy); 5359 else 5360 memcpy(data, bh->b_data+offset, tocopy); 5361 brelse(bh); 5362 offset = 0; 5363 toread -= tocopy; 5364 data += tocopy; 5365 blk++; 5366 } 5367 return len; 5368} 5369 5370/* Write to quotafile (we know the transaction is already started and has 5371 * enough credits) */ 5372static ssize_t ext4_quota_write(struct super_block *sb, int type, 5373 const char *data, size_t len, loff_t off) 5374{ 5375 struct inode *inode = sb_dqopt(sb)->files[type]; 5376 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5377 int err, offset = off & (sb->s_blocksize - 1); 5378 struct buffer_head *bh; 5379 handle_t *handle = journal_current_handle(); 5380 5381 if (EXT4_SB(sb)->s_journal && !handle) { 5382 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5383 " cancelled because transaction is not started", 5384 (unsigned long long)off, (unsigned long long)len); 5385 return -EIO; 5386 } 5387 /* 5388 * Since we account only one data block in transaction credits, 5389 * then it is impossible to cross a block boundary. 5390 */ 5391 if (sb->s_blocksize - offset < len) { 5392 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5393 " cancelled because not block aligned", 5394 (unsigned long long)off, (unsigned long long)len); 5395 return -EIO; 5396 } 5397 5398 bh = ext4_bread(handle, inode, blk, 1); 5399 if (IS_ERR(bh)) 5400 return PTR_ERR(bh); 5401 if (!bh) 5402 goto out; 5403 BUFFER_TRACE(bh, "get write access"); 5404 err = ext4_journal_get_write_access(handle, bh); 5405 if (err) { 5406 brelse(bh); 5407 return err; 5408 } 5409 lock_buffer(bh); 5410 memcpy(bh->b_data+offset, data, len); 5411 flush_dcache_page(bh->b_page); 5412 unlock_buffer(bh); 5413 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5414 brelse(bh); 5415out: 5416 if (inode->i_size < off + len) { 5417 i_size_write(inode, off + len); 5418 EXT4_I(inode)->i_disksize = inode->i_size; 5419 ext4_mark_inode_dirty(handle, inode); 5420 } 5421 return len; 5422} 5423 5424#endif 5425 5426static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5427 const char *dev_name, void *data) 5428{ 5429 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5430} 5431 5432#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5433static inline void register_as_ext2(void) 5434{ 5435 int err = register_filesystem(&ext2_fs_type); 5436 if (err) 5437 printk(KERN_WARNING 5438 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5439} 5440 5441static inline void unregister_as_ext2(void) 5442{ 5443 unregister_filesystem(&ext2_fs_type); 5444} 5445 5446static inline int ext2_feature_set_ok(struct super_block *sb) 5447{ 5448 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5449 return 0; 5450 if (sb->s_flags & MS_RDONLY) 5451 return 1; 5452 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5453 return 0; 5454 return 1; 5455} 5456#else 5457static inline void register_as_ext2(void) { } 5458static inline void unregister_as_ext2(void) { } 5459static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5460#endif 5461 5462#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5463static inline void register_as_ext3(void) 5464{ 5465 int err = register_filesystem(&ext3_fs_type); 5466 if (err) 5467 printk(KERN_WARNING 5468 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5469} 5470 5471static inline void unregister_as_ext3(void) 5472{ 5473 unregister_filesystem(&ext3_fs_type); 5474} 5475 5476static inline int ext3_feature_set_ok(struct super_block *sb) 5477{ 5478 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5479 return 0; 5480 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5481 return 0; 5482 if (sb->s_flags & MS_RDONLY) 5483 return 1; 5484 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5485 return 0; 5486 return 1; 5487} 5488#else 5489static inline void register_as_ext3(void) { } 5490static inline void unregister_as_ext3(void) { } 5491static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5492#endif 5493 5494static struct file_system_type ext4_fs_type = { 5495 .owner = THIS_MODULE, 5496 .name = "ext4", 5497 .mount = ext4_mount, 5498 .kill_sb = kill_block_super, 5499 .fs_flags = FS_REQUIRES_DEV, 5500}; 5501MODULE_ALIAS_FS("ext4"); 5502 5503static int __init ext4_init_feat_adverts(void) 5504{ 5505 struct ext4_features *ef; 5506 int ret = -ENOMEM; 5507 5508 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5509 if (!ef) 5510 goto out; 5511 5512 ef->f_kobj.kset = ext4_kset; 5513 init_completion(&ef->f_kobj_unregister); 5514 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5515 "features"); 5516 if (ret) { 5517 kfree(ef); 5518 goto out; 5519 } 5520 5521 ext4_feat = ef; 5522 ret = 0; 5523out: 5524 return ret; 5525} 5526 5527static void ext4_exit_feat_adverts(void) 5528{ 5529 kobject_put(&ext4_feat->f_kobj); 5530 wait_for_completion(&ext4_feat->f_kobj_unregister); 5531 kfree(ext4_feat); 5532} 5533 5534/* Shared across all ext4 file systems */ 5535wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5536struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5537 5538static int __init ext4_init_fs(void) 5539{ 5540 int i, err; 5541 5542 ext4_li_info = NULL; 5543 mutex_init(&ext4_li_mtx); 5544 5545 /* Build-time check for flags consistency */ 5546 ext4_check_flag_values(); 5547 5548 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5549 mutex_init(&ext4__aio_mutex[i]); 5550 init_waitqueue_head(&ext4__ioend_wq[i]); 5551 } 5552 5553 err = ext4_init_es(); 5554 if (err) 5555 return err; 5556 5557 err = ext4_init_pageio(); 5558 if (err) 5559 goto out7; 5560 5561 err = ext4_init_system_zone(); 5562 if (err) 5563 goto out6; 5564 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5565 if (!ext4_kset) { 5566 err = -ENOMEM; 5567 goto out5; 5568 } 5569 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5570 5571 err = ext4_init_feat_adverts(); 5572 if (err) 5573 goto out4; 5574 5575 err = ext4_init_mballoc(); 5576 if (err) 5577 goto out2; 5578 else 5579 ext4_mballoc_ready = 1; 5580 err = init_inodecache(); 5581 if (err) 5582 goto out1; 5583 register_as_ext3(); 5584 register_as_ext2(); 5585 err = register_filesystem(&ext4_fs_type); 5586 if (err) 5587 goto out; 5588 5589 return 0; 5590out: 5591 unregister_as_ext2(); 5592 unregister_as_ext3(); 5593 destroy_inodecache(); 5594out1: 5595 ext4_mballoc_ready = 0; 5596 ext4_exit_mballoc(); 5597out2: 5598 ext4_exit_feat_adverts(); 5599out4: 5600 if (ext4_proc_root) 5601 remove_proc_entry("fs/ext4", NULL); 5602 kset_unregister(ext4_kset); 5603out5: 5604 ext4_exit_system_zone(); 5605out6: 5606 ext4_exit_pageio(); 5607out7: 5608 ext4_exit_es(); 5609 5610 return err; 5611} 5612 5613static void __exit ext4_exit_fs(void) 5614{ 5615 ext4_destroy_lazyinit_thread(); 5616 unregister_as_ext2(); 5617 unregister_as_ext3(); 5618 unregister_filesystem(&ext4_fs_type); 5619 destroy_inodecache(); 5620 ext4_exit_mballoc(); 5621 ext4_exit_feat_adverts(); 5622 remove_proc_entry("fs/ext4", NULL); 5623 kset_unregister(ext4_kset); 5624 ext4_exit_system_zone(); 5625 ext4_exit_pageio(); 5626 ext4_exit_es(); 5627} 5628 5629MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5630MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5631MODULE_LICENSE("GPL"); 5632module_init(ext4_init_fs) 5633module_exit(ext4_exit_fs) 5634