1/* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12#include <linux/slab.h> 13#include <linux/spinlock.h> 14#include <linux/completion.h> 15#include <linux/buffer_head.h> 16#include <linux/fs.h> 17#include <linux/gfs2_ondisk.h> 18#include <linux/prefetch.h> 19#include <linux/blkdev.h> 20#include <linux/rbtree.h> 21#include <linux/random.h> 22 23#include "gfs2.h" 24#include "incore.h" 25#include "glock.h" 26#include "glops.h" 27#include "lops.h" 28#include "meta_io.h" 29#include "quota.h" 30#include "rgrp.h" 31#include "super.h" 32#include "trans.h" 33#include "util.h" 34#include "log.h" 35#include "inode.h" 36#include "trace_gfs2.h" 37 38#define BFITNOENT ((u32)~0) 39#define NO_BLOCK ((u64)~0) 40 41#if BITS_PER_LONG == 32 42#define LBITMASK (0x55555555UL) 43#define LBITSKIP55 (0x55555555UL) 44#define LBITSKIP00 (0x00000000UL) 45#else 46#define LBITMASK (0x5555555555555555UL) 47#define LBITSKIP55 (0x5555555555555555UL) 48#define LBITSKIP00 (0x0000000000000000UL) 49#endif 50 51/* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65}; 66 67static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73}; 74 75static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap, 77 const struct gfs2_alloc_parms *ap); 78 79 80/** 81 * gfs2_setbit - Set a bit in the bitmaps 82 * @rbm: The position of the bit to set 83 * @do_clone: Also set the clone bitmap, if it exists 84 * @new_state: the new state of the block 85 * 86 */ 87 88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 89 unsigned char new_state) 90{ 91 unsigned char *byte1, *byte2, *end, cur_state; 92 struct gfs2_bitmap *bi = rbm_bi(rbm); 93 unsigned int buflen = bi->bi_len; 94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 95 96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 97 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 98 99 BUG_ON(byte1 >= end); 100 101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 102 103 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 105 rbm->offset, cur_state, new_state); 106 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 108 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 109 bi->bi_offset, bi->bi_len); 110 dump_stack(); 111 gfs2_consist_rgrpd(rbm->rgd); 112 return; 113 } 114 *byte1 ^= (cur_state ^ new_state) << bit; 115 116 if (do_clone && bi->bi_clone) { 117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 119 *byte2 ^= (cur_state ^ new_state) << bit; 120 } 121} 122 123/** 124 * gfs2_testbit - test a bit in the bitmaps 125 * @rbm: The bit to test 126 * 127 * Returns: The two bit block state of the requested bit 128 */ 129 130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 131{ 132 struct gfs2_bitmap *bi = rbm_bi(rbm); 133 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 134 const u8 *byte; 135 unsigned int bit; 136 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141} 142 143/** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162{ 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174} 175 176/** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187{ 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195} 196 197/** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220{ 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246} 247 248/** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262{ 263 u64 rblock = block - rbm->rgd->rd_data0; 264 265 if (WARN_ON_ONCE(rblock > UINT_MAX)) 266 return -EINVAL; 267 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 268 return -E2BIG; 269 270 rbm->bii = 0; 271 rbm->offset = (u32)(rblock); 272 /* Check if the block is within the first block */ 273 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 274 return 0; 275 276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 277 rbm->offset += (sizeof(struct gfs2_rgrp) - 278 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 279 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 281 return 0; 282} 283 284/** 285 * gfs2_rbm_incr - increment an rbm structure 286 * @rbm: The rbm with rgd already set correctly 287 * 288 * This function takes an existing rbm structure and increments it to the next 289 * viable block offset. 290 * 291 * Returns: If incrementing the offset would cause the rbm to go past the 292 * end of the rgrp, true is returned, otherwise false. 293 * 294 */ 295 296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 297{ 298 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 299 rbm->offset++; 300 return false; 301 } 302 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 303 return true; 304 305 rbm->offset = 0; 306 rbm->bii++; 307 return false; 308} 309 310/** 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 312 * @rbm: Position to search (value/result) 313 * @n_unaligned: Number of unaligned blocks to check 314 * @len: Decremented for each block found (terminate on zero) 315 * 316 * Returns: true if a non-free block is encountered 317 */ 318 319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 320{ 321 u32 n; 322 u8 res; 323 324 for (n = 0; n < n_unaligned; n++) { 325 res = gfs2_testbit(rbm); 326 if (res != GFS2_BLKST_FREE) 327 return true; 328 (*len)--; 329 if (*len == 0) 330 return true; 331 if (gfs2_rbm_incr(rbm)) 332 return true; 333 } 334 335 return false; 336} 337 338/** 339 * gfs2_free_extlen - Return extent length of free blocks 340 * @rrbm: Starting position 341 * @len: Max length to check 342 * 343 * Starting at the block specified by the rbm, see how many free blocks 344 * there are, not reading more than len blocks ahead. This can be done 345 * using memchr_inv when the blocks are byte aligned, but has to be done 346 * on a block by block basis in case of unaligned blocks. Also this 347 * function can cope with bitmap boundaries (although it must stop on 348 * a resource group boundary) 349 * 350 * Returns: Number of free blocks in the extent 351 */ 352 353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 354{ 355 struct gfs2_rbm rbm = *rrbm; 356 u32 n_unaligned = rbm.offset & 3; 357 u32 size = len; 358 u32 bytes; 359 u32 chunk_size; 360 u8 *ptr, *start, *end; 361 u64 block; 362 struct gfs2_bitmap *bi; 363 364 if (n_unaligned && 365 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 366 goto out; 367 368 n_unaligned = len & 3; 369 /* Start is now byte aligned */ 370 while (len > 3) { 371 bi = rbm_bi(&rbm); 372 start = bi->bi_bh->b_data; 373 if (bi->bi_clone) 374 start = bi->bi_clone; 375 end = start + bi->bi_bh->b_size; 376 start += bi->bi_offset; 377 BUG_ON(rbm.offset & 3); 378 start += (rbm.offset / GFS2_NBBY); 379 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 380 ptr = memchr_inv(start, 0, bytes); 381 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 382 chunk_size *= GFS2_NBBY; 383 BUG_ON(len < chunk_size); 384 len -= chunk_size; 385 block = gfs2_rbm_to_block(&rbm); 386 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 387 n_unaligned = 0; 388 break; 389 } 390 if (ptr) { 391 n_unaligned = 3; 392 break; 393 } 394 n_unaligned = len & 3; 395 } 396 397 /* Deal with any bits left over at the end */ 398 if (n_unaligned) 399 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 400out: 401 return size - len; 402} 403 404/** 405 * gfs2_bitcount - count the number of bits in a certain state 406 * @rgd: the resource group descriptor 407 * @buffer: the buffer that holds the bitmaps 408 * @buflen: the length (in bytes) of the buffer 409 * @state: the state of the block we're looking for 410 * 411 * Returns: The number of bits 412 */ 413 414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 415 unsigned int buflen, u8 state) 416{ 417 const u8 *byte = buffer; 418 const u8 *end = buffer + buflen; 419 const u8 state1 = state << 2; 420 const u8 state2 = state << 4; 421 const u8 state3 = state << 6; 422 u32 count = 0; 423 424 for (; byte < end; byte++) { 425 if (((*byte) & 0x03) == state) 426 count++; 427 if (((*byte) & 0x0C) == state1) 428 count++; 429 if (((*byte) & 0x30) == state2) 430 count++; 431 if (((*byte) & 0xC0) == state3) 432 count++; 433 } 434 435 return count; 436} 437 438/** 439 * gfs2_rgrp_verify - Verify that a resource group is consistent 440 * @rgd: the rgrp 441 * 442 */ 443 444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 445{ 446 struct gfs2_sbd *sdp = rgd->rd_sbd; 447 struct gfs2_bitmap *bi = NULL; 448 u32 length = rgd->rd_length; 449 u32 count[4], tmp; 450 int buf, x; 451 452 memset(count, 0, 4 * sizeof(u32)); 453 454 /* Count # blocks in each of 4 possible allocation states */ 455 for (buf = 0; buf < length; buf++) { 456 bi = rgd->rd_bits + buf; 457 for (x = 0; x < 4; x++) 458 count[x] += gfs2_bitcount(rgd, 459 bi->bi_bh->b_data + 460 bi->bi_offset, 461 bi->bi_len, x); 462 } 463 464 if (count[0] != rgd->rd_free) { 465 if (gfs2_consist_rgrpd(rgd)) 466 fs_err(sdp, "free data mismatch: %u != %u\n", 467 count[0], rgd->rd_free); 468 return; 469 } 470 471 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 472 if (count[1] != tmp) { 473 if (gfs2_consist_rgrpd(rgd)) 474 fs_err(sdp, "used data mismatch: %u != %u\n", 475 count[1], tmp); 476 return; 477 } 478 479 if (count[2] + count[3] != rgd->rd_dinodes) { 480 if (gfs2_consist_rgrpd(rgd)) 481 fs_err(sdp, "used metadata mismatch: %u != %u\n", 482 count[2] + count[3], rgd->rd_dinodes); 483 return; 484 } 485} 486 487static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 488{ 489 u64 first = rgd->rd_data0; 490 u64 last = first + rgd->rd_data; 491 return first <= block && block < last; 492} 493 494/** 495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 496 * @sdp: The GFS2 superblock 497 * @blk: The data block number 498 * @exact: True if this needs to be an exact match 499 * 500 * Returns: The resource group, or NULL if not found 501 */ 502 503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 504{ 505 struct rb_node *n, *next; 506 struct gfs2_rgrpd *cur; 507 508 spin_lock(&sdp->sd_rindex_spin); 509 n = sdp->sd_rindex_tree.rb_node; 510 while (n) { 511 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 512 next = NULL; 513 if (blk < cur->rd_addr) 514 next = n->rb_left; 515 else if (blk >= cur->rd_data0 + cur->rd_data) 516 next = n->rb_right; 517 if (next == NULL) { 518 spin_unlock(&sdp->sd_rindex_spin); 519 if (exact) { 520 if (blk < cur->rd_addr) 521 return NULL; 522 if (blk >= cur->rd_data0 + cur->rd_data) 523 return NULL; 524 } 525 return cur; 526 } 527 n = next; 528 } 529 spin_unlock(&sdp->sd_rindex_spin); 530 531 return NULL; 532} 533 534/** 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 536 * @sdp: The GFS2 superblock 537 * 538 * Returns: The first rgrp in the filesystem 539 */ 540 541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 542{ 543 const struct rb_node *n; 544 struct gfs2_rgrpd *rgd; 545 546 spin_lock(&sdp->sd_rindex_spin); 547 n = rb_first(&sdp->sd_rindex_tree); 548 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 549 spin_unlock(&sdp->sd_rindex_spin); 550 551 return rgd; 552} 553 554/** 555 * gfs2_rgrpd_get_next - get the next RG 556 * @rgd: the resource group descriptor 557 * 558 * Returns: The next rgrp 559 */ 560 561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 562{ 563 struct gfs2_sbd *sdp = rgd->rd_sbd; 564 const struct rb_node *n; 565 566 spin_lock(&sdp->sd_rindex_spin); 567 n = rb_next(&rgd->rd_node); 568 if (n == NULL) 569 n = rb_first(&sdp->sd_rindex_tree); 570 571 if (unlikely(&rgd->rd_node == n)) { 572 spin_unlock(&sdp->sd_rindex_spin); 573 return NULL; 574 } 575 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 576 spin_unlock(&sdp->sd_rindex_spin); 577 return rgd; 578} 579 580void check_and_update_goal(struct gfs2_inode *ip) 581{ 582 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 583 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 584 ip->i_goal = ip->i_no_addr; 585} 586 587void gfs2_free_clones(struct gfs2_rgrpd *rgd) 588{ 589 int x; 590 591 for (x = 0; x < rgd->rd_length; x++) { 592 struct gfs2_bitmap *bi = rgd->rd_bits + x; 593 kfree(bi->bi_clone); 594 bi->bi_clone = NULL; 595 } 596} 597 598/** 599 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 600 * @ip: the inode for this reservation 601 */ 602int gfs2_rs_alloc(struct gfs2_inode *ip) 603{ 604 int error = 0; 605 606 down_write(&ip->i_rw_mutex); 607 if (ip->i_res) 608 goto out; 609 610 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 611 if (!ip->i_res) { 612 error = -ENOMEM; 613 goto out; 614 } 615 616 RB_CLEAR_NODE(&ip->i_res->rs_node); 617out: 618 up_write(&ip->i_rw_mutex); 619 return error; 620} 621 622static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 623{ 624 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 625 (unsigned long long)rs->rs_inum, 626 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 627 rs->rs_rbm.offset, rs->rs_free); 628} 629 630/** 631 * __rs_deltree - remove a multi-block reservation from the rgd tree 632 * @rs: The reservation to remove 633 * 634 */ 635static void __rs_deltree(struct gfs2_blkreserv *rs) 636{ 637 struct gfs2_rgrpd *rgd; 638 639 if (!gfs2_rs_active(rs)) 640 return; 641 642 rgd = rs->rs_rbm.rgd; 643 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 644 rb_erase(&rs->rs_node, &rgd->rd_rstree); 645 RB_CLEAR_NODE(&rs->rs_node); 646 647 if (rs->rs_free) { 648 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 649 650 /* return reserved blocks to the rgrp */ 651 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 652 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 653 /* The rgrp extent failure point is likely not to increase; 654 it will only do so if the freed blocks are somehow 655 contiguous with a span of free blocks that follows. Still, 656 it will force the number to be recalculated later. */ 657 rgd->rd_extfail_pt += rs->rs_free; 658 rs->rs_free = 0; 659 clear_bit(GBF_FULL, &bi->bi_flags); 660 } 661} 662 663/** 664 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 665 * @rs: The reservation to remove 666 * 667 */ 668void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 669{ 670 struct gfs2_rgrpd *rgd; 671 672 rgd = rs->rs_rbm.rgd; 673 if (rgd) { 674 spin_lock(&rgd->rd_rsspin); 675 __rs_deltree(rs); 676 spin_unlock(&rgd->rd_rsspin); 677 } 678} 679 680/** 681 * gfs2_rs_delete - delete a multi-block reservation 682 * @ip: The inode for this reservation 683 * @wcount: The inode's write count, or NULL 684 * 685 */ 686void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 687{ 688 down_write(&ip->i_rw_mutex); 689 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) { 690 gfs2_rs_deltree(ip->i_res); 691 BUG_ON(ip->i_res->rs_free); 692 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 693 ip->i_res = NULL; 694 } 695 up_write(&ip->i_rw_mutex); 696} 697 698/** 699 * return_all_reservations - return all reserved blocks back to the rgrp. 700 * @rgd: the rgrp that needs its space back 701 * 702 * We previously reserved a bunch of blocks for allocation. Now we need to 703 * give them back. This leave the reservation structures in tact, but removes 704 * all of their corresponding "no-fly zones". 705 */ 706static void return_all_reservations(struct gfs2_rgrpd *rgd) 707{ 708 struct rb_node *n; 709 struct gfs2_blkreserv *rs; 710 711 spin_lock(&rgd->rd_rsspin); 712 while ((n = rb_first(&rgd->rd_rstree))) { 713 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 714 __rs_deltree(rs); 715 } 716 spin_unlock(&rgd->rd_rsspin); 717} 718 719void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 720{ 721 struct rb_node *n; 722 struct gfs2_rgrpd *rgd; 723 struct gfs2_glock *gl; 724 725 while ((n = rb_first(&sdp->sd_rindex_tree))) { 726 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 727 gl = rgd->rd_gl; 728 729 rb_erase(n, &sdp->sd_rindex_tree); 730 731 if (gl) { 732 spin_lock(&gl->gl_spin); 733 gl->gl_object = NULL; 734 spin_unlock(&gl->gl_spin); 735 gfs2_glock_add_to_lru(gl); 736 gfs2_glock_put(gl); 737 } 738 739 gfs2_free_clones(rgd); 740 kfree(rgd->rd_bits); 741 return_all_reservations(rgd); 742 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 743 } 744} 745 746static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 747{ 748 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 749 pr_info("ri_length = %u\n", rgd->rd_length); 750 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 751 pr_info("ri_data = %u\n", rgd->rd_data); 752 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 753} 754 755/** 756 * gfs2_compute_bitstructs - Compute the bitmap sizes 757 * @rgd: The resource group descriptor 758 * 759 * Calculates bitmap descriptors, one for each block that contains bitmap data 760 * 761 * Returns: errno 762 */ 763 764static int compute_bitstructs(struct gfs2_rgrpd *rgd) 765{ 766 struct gfs2_sbd *sdp = rgd->rd_sbd; 767 struct gfs2_bitmap *bi; 768 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 769 u32 bytes_left, bytes; 770 int x; 771 772 if (!length) 773 return -EINVAL; 774 775 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 776 if (!rgd->rd_bits) 777 return -ENOMEM; 778 779 bytes_left = rgd->rd_bitbytes; 780 781 for (x = 0; x < length; x++) { 782 bi = rgd->rd_bits + x; 783 784 bi->bi_flags = 0; 785 /* small rgrp; bitmap stored completely in header block */ 786 if (length == 1) { 787 bytes = bytes_left; 788 bi->bi_offset = sizeof(struct gfs2_rgrp); 789 bi->bi_start = 0; 790 bi->bi_len = bytes; 791 bi->bi_blocks = bytes * GFS2_NBBY; 792 /* header block */ 793 } else if (x == 0) { 794 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 795 bi->bi_offset = sizeof(struct gfs2_rgrp); 796 bi->bi_start = 0; 797 bi->bi_len = bytes; 798 bi->bi_blocks = bytes * GFS2_NBBY; 799 /* last block */ 800 } else if (x + 1 == length) { 801 bytes = bytes_left; 802 bi->bi_offset = sizeof(struct gfs2_meta_header); 803 bi->bi_start = rgd->rd_bitbytes - bytes_left; 804 bi->bi_len = bytes; 805 bi->bi_blocks = bytes * GFS2_NBBY; 806 /* other blocks */ 807 } else { 808 bytes = sdp->sd_sb.sb_bsize - 809 sizeof(struct gfs2_meta_header); 810 bi->bi_offset = sizeof(struct gfs2_meta_header); 811 bi->bi_start = rgd->rd_bitbytes - bytes_left; 812 bi->bi_len = bytes; 813 bi->bi_blocks = bytes * GFS2_NBBY; 814 } 815 816 bytes_left -= bytes; 817 } 818 819 if (bytes_left) { 820 gfs2_consist_rgrpd(rgd); 821 return -EIO; 822 } 823 bi = rgd->rd_bits + (length - 1); 824 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 825 if (gfs2_consist_rgrpd(rgd)) { 826 gfs2_rindex_print(rgd); 827 fs_err(sdp, "start=%u len=%u offset=%u\n", 828 bi->bi_start, bi->bi_len, bi->bi_offset); 829 } 830 return -EIO; 831 } 832 833 return 0; 834} 835 836/** 837 * gfs2_ri_total - Total up the file system space, according to the rindex. 838 * @sdp: the filesystem 839 * 840 */ 841u64 gfs2_ri_total(struct gfs2_sbd *sdp) 842{ 843 u64 total_data = 0; 844 struct inode *inode = sdp->sd_rindex; 845 struct gfs2_inode *ip = GFS2_I(inode); 846 char buf[sizeof(struct gfs2_rindex)]; 847 int error, rgrps; 848 849 for (rgrps = 0;; rgrps++) { 850 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 851 852 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 853 break; 854 error = gfs2_internal_read(ip, buf, &pos, 855 sizeof(struct gfs2_rindex)); 856 if (error != sizeof(struct gfs2_rindex)) 857 break; 858 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 859 } 860 return total_data; 861} 862 863static int rgd_insert(struct gfs2_rgrpd *rgd) 864{ 865 struct gfs2_sbd *sdp = rgd->rd_sbd; 866 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 867 868 /* Figure out where to put new node */ 869 while (*newn) { 870 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 871 rd_node); 872 873 parent = *newn; 874 if (rgd->rd_addr < cur->rd_addr) 875 newn = &((*newn)->rb_left); 876 else if (rgd->rd_addr > cur->rd_addr) 877 newn = &((*newn)->rb_right); 878 else 879 return -EEXIST; 880 } 881 882 rb_link_node(&rgd->rd_node, parent, newn); 883 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 884 sdp->sd_rgrps++; 885 return 0; 886} 887 888/** 889 * read_rindex_entry - Pull in a new resource index entry from the disk 890 * @ip: Pointer to the rindex inode 891 * 892 * Returns: 0 on success, > 0 on EOF, error code otherwise 893 */ 894 895static int read_rindex_entry(struct gfs2_inode *ip) 896{ 897 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 898 const unsigned bsize = sdp->sd_sb.sb_bsize; 899 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 900 struct gfs2_rindex buf; 901 int error; 902 struct gfs2_rgrpd *rgd; 903 904 if (pos >= i_size_read(&ip->i_inode)) 905 return 1; 906 907 error = gfs2_internal_read(ip, (char *)&buf, &pos, 908 sizeof(struct gfs2_rindex)); 909 910 if (error != sizeof(struct gfs2_rindex)) 911 return (error == 0) ? 1 : error; 912 913 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 914 error = -ENOMEM; 915 if (!rgd) 916 return error; 917 918 rgd->rd_sbd = sdp; 919 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 920 rgd->rd_length = be32_to_cpu(buf.ri_length); 921 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 922 rgd->rd_data = be32_to_cpu(buf.ri_data); 923 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 924 spin_lock_init(&rgd->rd_rsspin); 925 926 error = compute_bitstructs(rgd); 927 if (error) 928 goto fail; 929 930 error = gfs2_glock_get(sdp, rgd->rd_addr, 931 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 932 if (error) 933 goto fail; 934 935 rgd->rd_gl->gl_object = rgd; 936 rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize; 937 rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1; 938 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 939 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 940 if (rgd->rd_data > sdp->sd_max_rg_data) 941 sdp->sd_max_rg_data = rgd->rd_data; 942 spin_lock(&sdp->sd_rindex_spin); 943 error = rgd_insert(rgd); 944 spin_unlock(&sdp->sd_rindex_spin); 945 if (!error) 946 return 0; 947 948 error = 0; /* someone else read in the rgrp; free it and ignore it */ 949 gfs2_glock_put(rgd->rd_gl); 950 951fail: 952 kfree(rgd->rd_bits); 953 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 954 return error; 955} 956 957/** 958 * gfs2_ri_update - Pull in a new resource index from the disk 959 * @ip: pointer to the rindex inode 960 * 961 * Returns: 0 on successful update, error code otherwise 962 */ 963 964static int gfs2_ri_update(struct gfs2_inode *ip) 965{ 966 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 967 int error; 968 969 do { 970 error = read_rindex_entry(ip); 971 } while (error == 0); 972 973 if (error < 0) 974 return error; 975 976 sdp->sd_rindex_uptodate = 1; 977 return 0; 978} 979 980/** 981 * gfs2_rindex_update - Update the rindex if required 982 * @sdp: The GFS2 superblock 983 * 984 * We grab a lock on the rindex inode to make sure that it doesn't 985 * change whilst we are performing an operation. We keep this lock 986 * for quite long periods of time compared to other locks. This 987 * doesn't matter, since it is shared and it is very, very rarely 988 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 989 * 990 * This makes sure that we're using the latest copy of the resource index 991 * special file, which might have been updated if someone expanded the 992 * filesystem (via gfs2_grow utility), which adds new resource groups. 993 * 994 * Returns: 0 on succeess, error code otherwise 995 */ 996 997int gfs2_rindex_update(struct gfs2_sbd *sdp) 998{ 999 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1000 struct gfs2_glock *gl = ip->i_gl; 1001 struct gfs2_holder ri_gh; 1002 int error = 0; 1003 int unlock_required = 0; 1004 1005 /* Read new copy from disk if we don't have the latest */ 1006 if (!sdp->sd_rindex_uptodate) { 1007 if (!gfs2_glock_is_locked_by_me(gl)) { 1008 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1009 if (error) 1010 return error; 1011 unlock_required = 1; 1012 } 1013 if (!sdp->sd_rindex_uptodate) 1014 error = gfs2_ri_update(ip); 1015 if (unlock_required) 1016 gfs2_glock_dq_uninit(&ri_gh); 1017 } 1018 1019 return error; 1020} 1021 1022static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1023{ 1024 const struct gfs2_rgrp *str = buf; 1025 u32 rg_flags; 1026 1027 rg_flags = be32_to_cpu(str->rg_flags); 1028 rg_flags &= ~GFS2_RDF_MASK; 1029 rgd->rd_flags &= GFS2_RDF_MASK; 1030 rgd->rd_flags |= rg_flags; 1031 rgd->rd_free = be32_to_cpu(str->rg_free); 1032 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1033 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1034} 1035 1036static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1037{ 1038 struct gfs2_rgrp *str = buf; 1039 1040 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1041 str->rg_free = cpu_to_be32(rgd->rd_free); 1042 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1043 str->__pad = cpu_to_be32(0); 1044 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1045 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1046} 1047 1048static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1049{ 1050 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1051 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1052 1053 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1054 rgl->rl_dinodes != str->rg_dinodes || 1055 rgl->rl_igeneration != str->rg_igeneration) 1056 return 0; 1057 return 1; 1058} 1059 1060static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1061{ 1062 const struct gfs2_rgrp *str = buf; 1063 1064 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1065 rgl->rl_flags = str->rg_flags; 1066 rgl->rl_free = str->rg_free; 1067 rgl->rl_dinodes = str->rg_dinodes; 1068 rgl->rl_igeneration = str->rg_igeneration; 1069 rgl->__pad = 0UL; 1070} 1071 1072static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1073{ 1074 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1075 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1076 rgl->rl_unlinked = cpu_to_be32(unlinked); 1077} 1078 1079static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1080{ 1081 struct gfs2_bitmap *bi; 1082 const u32 length = rgd->rd_length; 1083 const u8 *buffer = NULL; 1084 u32 i, goal, count = 0; 1085 1086 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1087 goal = 0; 1088 buffer = bi->bi_bh->b_data + bi->bi_offset; 1089 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1090 while (goal < bi->bi_len * GFS2_NBBY) { 1091 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1092 GFS2_BLKST_UNLINKED); 1093 if (goal == BFITNOENT) 1094 break; 1095 count++; 1096 goal++; 1097 } 1098 } 1099 1100 return count; 1101} 1102 1103 1104/** 1105 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1106 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1107 * 1108 * Read in all of a Resource Group's header and bitmap blocks. 1109 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1110 * 1111 * Returns: errno 1112 */ 1113 1114static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1115{ 1116 struct gfs2_sbd *sdp = rgd->rd_sbd; 1117 struct gfs2_glock *gl = rgd->rd_gl; 1118 unsigned int length = rgd->rd_length; 1119 struct gfs2_bitmap *bi; 1120 unsigned int x, y; 1121 int error; 1122 1123 if (rgd->rd_bits[0].bi_bh != NULL) 1124 return 0; 1125 1126 for (x = 0; x < length; x++) { 1127 bi = rgd->rd_bits + x; 1128 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1129 if (error) 1130 goto fail; 1131 } 1132 1133 for (y = length; y--;) { 1134 bi = rgd->rd_bits + y; 1135 error = gfs2_meta_wait(sdp, bi->bi_bh); 1136 if (error) 1137 goto fail; 1138 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1139 GFS2_METATYPE_RG)) { 1140 error = -EIO; 1141 goto fail; 1142 } 1143 } 1144 1145 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1146 for (x = 0; x < length; x++) 1147 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1148 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1149 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1150 rgd->rd_free_clone = rgd->rd_free; 1151 /* max out the rgrp allocation failure point */ 1152 rgd->rd_extfail_pt = rgd->rd_free; 1153 } 1154 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1155 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1156 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1157 rgd->rd_bits[0].bi_bh->b_data); 1158 } 1159 else if (sdp->sd_args.ar_rgrplvb) { 1160 if (!gfs2_rgrp_lvb_valid(rgd)){ 1161 gfs2_consist_rgrpd(rgd); 1162 error = -EIO; 1163 goto fail; 1164 } 1165 if (rgd->rd_rgl->rl_unlinked == 0) 1166 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1167 } 1168 return 0; 1169 1170fail: 1171 while (x--) { 1172 bi = rgd->rd_bits + x; 1173 brelse(bi->bi_bh); 1174 bi->bi_bh = NULL; 1175 gfs2_assert_warn(sdp, !bi->bi_clone); 1176 } 1177 1178 return error; 1179} 1180 1181static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1182{ 1183 u32 rl_flags; 1184 1185 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1186 return 0; 1187 1188 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1189 return gfs2_rgrp_bh_get(rgd); 1190 1191 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1192 rl_flags &= ~GFS2_RDF_MASK; 1193 rgd->rd_flags &= GFS2_RDF_MASK; 1194 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1195 if (rgd->rd_rgl->rl_unlinked == 0) 1196 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1197 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1198 rgd->rd_free_clone = rgd->rd_free; 1199 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1200 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1201 return 0; 1202} 1203 1204int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1205{ 1206 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1207 struct gfs2_sbd *sdp = rgd->rd_sbd; 1208 1209 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1210 return 0; 1211 return gfs2_rgrp_bh_get(rgd); 1212} 1213 1214/** 1215 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1216 * @gh: The glock holder for the resource group 1217 * 1218 */ 1219 1220void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1221{ 1222 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1223 int x, length = rgd->rd_length; 1224 1225 for (x = 0; x < length; x++) { 1226 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1227 if (bi->bi_bh) { 1228 brelse(bi->bi_bh); 1229 bi->bi_bh = NULL; 1230 } 1231 } 1232 1233} 1234 1235int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1236 struct buffer_head *bh, 1237 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1238{ 1239 struct super_block *sb = sdp->sd_vfs; 1240 u64 blk; 1241 sector_t start = 0; 1242 sector_t nr_blks = 0; 1243 int rv; 1244 unsigned int x; 1245 u32 trimmed = 0; 1246 u8 diff; 1247 1248 for (x = 0; x < bi->bi_len; x++) { 1249 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1250 clone += bi->bi_offset; 1251 clone += x; 1252 if (bh) { 1253 const u8 *orig = bh->b_data + bi->bi_offset + x; 1254 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1255 } else { 1256 diff = ~(*clone | (*clone >> 1)); 1257 } 1258 diff &= 0x55; 1259 if (diff == 0) 1260 continue; 1261 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1262 while(diff) { 1263 if (diff & 1) { 1264 if (nr_blks == 0) 1265 goto start_new_extent; 1266 if ((start + nr_blks) != blk) { 1267 if (nr_blks >= minlen) { 1268 rv = sb_issue_discard(sb, 1269 start, nr_blks, 1270 GFP_NOFS, 0); 1271 if (rv) 1272 goto fail; 1273 trimmed += nr_blks; 1274 } 1275 nr_blks = 0; 1276start_new_extent: 1277 start = blk; 1278 } 1279 nr_blks++; 1280 } 1281 diff >>= 2; 1282 blk++; 1283 } 1284 } 1285 if (nr_blks >= minlen) { 1286 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1287 if (rv) 1288 goto fail; 1289 trimmed += nr_blks; 1290 } 1291 if (ptrimmed) 1292 *ptrimmed = trimmed; 1293 return 0; 1294 1295fail: 1296 if (sdp->sd_args.ar_discard) 1297 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1298 sdp->sd_args.ar_discard = 0; 1299 return -EIO; 1300} 1301 1302/** 1303 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1304 * @filp: Any file on the filesystem 1305 * @argp: Pointer to the arguments (also used to pass result) 1306 * 1307 * Returns: 0 on success, otherwise error code 1308 */ 1309 1310int gfs2_fitrim(struct file *filp, void __user *argp) 1311{ 1312 struct inode *inode = file_inode(filp); 1313 struct gfs2_sbd *sdp = GFS2_SB(inode); 1314 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1315 struct buffer_head *bh; 1316 struct gfs2_rgrpd *rgd; 1317 struct gfs2_rgrpd *rgd_end; 1318 struct gfs2_holder gh; 1319 struct fstrim_range r; 1320 int ret = 0; 1321 u64 amt; 1322 u64 trimmed = 0; 1323 u64 start, end, minlen; 1324 unsigned int x; 1325 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1326 1327 if (!capable(CAP_SYS_ADMIN)) 1328 return -EPERM; 1329 1330 if (!blk_queue_discard(q)) 1331 return -EOPNOTSUPP; 1332 1333 if (copy_from_user(&r, argp, sizeof(r))) 1334 return -EFAULT; 1335 1336 ret = gfs2_rindex_update(sdp); 1337 if (ret) 1338 return ret; 1339 1340 start = r.start >> bs_shift; 1341 end = start + (r.len >> bs_shift); 1342 minlen = max_t(u64, r.minlen, 1343 q->limits.discard_granularity) >> bs_shift; 1344 1345 if (end <= start || minlen > sdp->sd_max_rg_data) 1346 return -EINVAL; 1347 1348 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1349 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1350 1351 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1352 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1353 return -EINVAL; /* start is beyond the end of the fs */ 1354 1355 while (1) { 1356 1357 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1358 if (ret) 1359 goto out; 1360 1361 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1362 /* Trim each bitmap in the rgrp */ 1363 for (x = 0; x < rgd->rd_length; x++) { 1364 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1365 ret = gfs2_rgrp_send_discards(sdp, 1366 rgd->rd_data0, NULL, bi, minlen, 1367 &amt); 1368 if (ret) { 1369 gfs2_glock_dq_uninit(&gh); 1370 goto out; 1371 } 1372 trimmed += amt; 1373 } 1374 1375 /* Mark rgrp as having been trimmed */ 1376 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1377 if (ret == 0) { 1378 bh = rgd->rd_bits[0].bi_bh; 1379 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1380 gfs2_trans_add_meta(rgd->rd_gl, bh); 1381 gfs2_rgrp_out(rgd, bh->b_data); 1382 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1383 gfs2_trans_end(sdp); 1384 } 1385 } 1386 gfs2_glock_dq_uninit(&gh); 1387 1388 if (rgd == rgd_end) 1389 break; 1390 1391 rgd = gfs2_rgrpd_get_next(rgd); 1392 } 1393 1394out: 1395 r.len = trimmed << bs_shift; 1396 if (copy_to_user(argp, &r, sizeof(r))) 1397 return -EFAULT; 1398 1399 return ret; 1400} 1401 1402/** 1403 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1404 * @ip: the inode structure 1405 * 1406 */ 1407static void rs_insert(struct gfs2_inode *ip) 1408{ 1409 struct rb_node **newn, *parent = NULL; 1410 int rc; 1411 struct gfs2_blkreserv *rs = ip->i_res; 1412 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1413 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1414 1415 BUG_ON(gfs2_rs_active(rs)); 1416 1417 spin_lock(&rgd->rd_rsspin); 1418 newn = &rgd->rd_rstree.rb_node; 1419 while (*newn) { 1420 struct gfs2_blkreserv *cur = 1421 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1422 1423 parent = *newn; 1424 rc = rs_cmp(fsblock, rs->rs_free, cur); 1425 if (rc > 0) 1426 newn = &((*newn)->rb_right); 1427 else if (rc < 0) 1428 newn = &((*newn)->rb_left); 1429 else { 1430 spin_unlock(&rgd->rd_rsspin); 1431 WARN_ON(1); 1432 return; 1433 } 1434 } 1435 1436 rb_link_node(&rs->rs_node, parent, newn); 1437 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1438 1439 /* Do our rgrp accounting for the reservation */ 1440 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1441 spin_unlock(&rgd->rd_rsspin); 1442 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1443} 1444 1445/** 1446 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1447 * @rgd: the resource group descriptor 1448 * @ip: pointer to the inode for which we're reserving blocks 1449 * @ap: the allocation parameters 1450 * 1451 */ 1452 1453static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1454 const struct gfs2_alloc_parms *ap) 1455{ 1456 struct gfs2_rbm rbm = { .rgd = rgd, }; 1457 u64 goal; 1458 struct gfs2_blkreserv *rs = ip->i_res; 1459 u32 extlen; 1460 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1461 int ret; 1462 struct inode *inode = &ip->i_inode; 1463 1464 if (S_ISDIR(inode->i_mode)) 1465 extlen = 1; 1466 else { 1467 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1468 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1469 } 1470 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1471 return; 1472 1473 /* Find bitmap block that contains bits for goal block */ 1474 if (rgrp_contains_block(rgd, ip->i_goal)) 1475 goal = ip->i_goal; 1476 else 1477 goal = rgd->rd_last_alloc + rgd->rd_data0; 1478 1479 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1480 return; 1481 1482 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap); 1483 if (ret == 0) { 1484 rs->rs_rbm = rbm; 1485 rs->rs_free = extlen; 1486 rs->rs_inum = ip->i_no_addr; 1487 rs_insert(ip); 1488 } else { 1489 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1490 rgd->rd_last_alloc = 0; 1491 } 1492} 1493 1494/** 1495 * gfs2_next_unreserved_block - Return next block that is not reserved 1496 * @rgd: The resource group 1497 * @block: The starting block 1498 * @length: The required length 1499 * @ip: Ignore any reservations for this inode 1500 * 1501 * If the block does not appear in any reservation, then return the 1502 * block number unchanged. If it does appear in the reservation, then 1503 * keep looking through the tree of reservations in order to find the 1504 * first block number which is not reserved. 1505 */ 1506 1507static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1508 u32 length, 1509 const struct gfs2_inode *ip) 1510{ 1511 struct gfs2_blkreserv *rs; 1512 struct rb_node *n; 1513 int rc; 1514 1515 spin_lock(&rgd->rd_rsspin); 1516 n = rgd->rd_rstree.rb_node; 1517 while (n) { 1518 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1519 rc = rs_cmp(block, length, rs); 1520 if (rc < 0) 1521 n = n->rb_left; 1522 else if (rc > 0) 1523 n = n->rb_right; 1524 else 1525 break; 1526 } 1527 1528 if (n) { 1529 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1530 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1531 n = n->rb_right; 1532 if (n == NULL) 1533 break; 1534 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1535 } 1536 } 1537 1538 spin_unlock(&rgd->rd_rsspin); 1539 return block; 1540} 1541 1542/** 1543 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1544 * @rbm: The current position in the resource group 1545 * @ip: The inode for which we are searching for blocks 1546 * @minext: The minimum extent length 1547 * @maxext: A pointer to the maximum extent structure 1548 * 1549 * This checks the current position in the rgrp to see whether there is 1550 * a reservation covering this block. If not then this function is a 1551 * no-op. If there is, then the position is moved to the end of the 1552 * contiguous reservation(s) so that we are pointing at the first 1553 * non-reserved block. 1554 * 1555 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1556 */ 1557 1558static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1559 const struct gfs2_inode *ip, 1560 u32 minext, 1561 struct gfs2_extent *maxext) 1562{ 1563 u64 block = gfs2_rbm_to_block(rbm); 1564 u32 extlen = 1; 1565 u64 nblock; 1566 int ret; 1567 1568 /* 1569 * If we have a minimum extent length, then skip over any extent 1570 * which is less than the min extent length in size. 1571 */ 1572 if (minext) { 1573 extlen = gfs2_free_extlen(rbm, minext); 1574 if (extlen <= maxext->len) 1575 goto fail; 1576 } 1577 1578 /* 1579 * Check the extent which has been found against the reservations 1580 * and skip if parts of it are already reserved 1581 */ 1582 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1583 if (nblock == block) { 1584 if (!minext || extlen >= minext) 1585 return 0; 1586 1587 if (extlen > maxext->len) { 1588 maxext->len = extlen; 1589 maxext->rbm = *rbm; 1590 } 1591fail: 1592 nblock = block + extlen; 1593 } 1594 ret = gfs2_rbm_from_block(rbm, nblock); 1595 if (ret < 0) 1596 return ret; 1597 return 1; 1598} 1599 1600/** 1601 * gfs2_rbm_find - Look for blocks of a particular state 1602 * @rbm: Value/result starting position and final position 1603 * @state: The state which we want to find 1604 * @minext: Pointer to the requested extent length (NULL for a single block) 1605 * This is updated to be the actual reservation size. 1606 * @ip: If set, check for reservations 1607 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1608 * around until we've reached the starting point. 1609 * @ap: the allocation parameters 1610 * 1611 * Side effects: 1612 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1613 * has no free blocks in it. 1614 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1615 * has come up short on a free block search. 1616 * 1617 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1618 */ 1619 1620static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1621 const struct gfs2_inode *ip, bool nowrap, 1622 const struct gfs2_alloc_parms *ap) 1623{ 1624 struct buffer_head *bh; 1625 int initial_bii; 1626 u32 initial_offset; 1627 int first_bii = rbm->bii; 1628 u32 first_offset = rbm->offset; 1629 u32 offset; 1630 u8 *buffer; 1631 int n = 0; 1632 int iters = rbm->rgd->rd_length; 1633 int ret; 1634 struct gfs2_bitmap *bi; 1635 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1636 1637 /* If we are not starting at the beginning of a bitmap, then we 1638 * need to add one to the bitmap count to ensure that we search 1639 * the starting bitmap twice. 1640 */ 1641 if (rbm->offset != 0) 1642 iters++; 1643 1644 while(1) { 1645 bi = rbm_bi(rbm); 1646 if (test_bit(GBF_FULL, &bi->bi_flags) && 1647 (state == GFS2_BLKST_FREE)) 1648 goto next_bitmap; 1649 1650 bh = bi->bi_bh; 1651 buffer = bh->b_data + bi->bi_offset; 1652 WARN_ON(!buffer_uptodate(bh)); 1653 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1654 buffer = bi->bi_clone + bi->bi_offset; 1655 initial_offset = rbm->offset; 1656 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1657 if (offset == BFITNOENT) 1658 goto bitmap_full; 1659 rbm->offset = offset; 1660 if (ip == NULL) 1661 return 0; 1662 1663 initial_bii = rbm->bii; 1664 ret = gfs2_reservation_check_and_update(rbm, ip, 1665 minext ? *minext : 0, 1666 &maxext); 1667 if (ret == 0) 1668 return 0; 1669 if (ret > 0) { 1670 n += (rbm->bii - initial_bii); 1671 goto next_iter; 1672 } 1673 if (ret == -E2BIG) { 1674 rbm->bii = 0; 1675 rbm->offset = 0; 1676 n += (rbm->bii - initial_bii); 1677 goto res_covered_end_of_rgrp; 1678 } 1679 return ret; 1680 1681bitmap_full: /* Mark bitmap as full and fall through */ 1682 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) { 1683 struct gfs2_bitmap *bi = rbm_bi(rbm); 1684 set_bit(GBF_FULL, &bi->bi_flags); 1685 } 1686 1687next_bitmap: /* Find next bitmap in the rgrp */ 1688 rbm->offset = 0; 1689 rbm->bii++; 1690 if (rbm->bii == rbm->rgd->rd_length) 1691 rbm->bii = 0; 1692res_covered_end_of_rgrp: 1693 if ((rbm->bii == 0) && nowrap) 1694 break; 1695 n++; 1696next_iter: 1697 if (n >= iters) 1698 break; 1699 } 1700 1701 if (minext == NULL || state != GFS2_BLKST_FREE) 1702 return -ENOSPC; 1703 1704 /* If the extent was too small, and it's smaller than the smallest 1705 to have failed before, remember for future reference that it's 1706 useless to search this rgrp again for this amount or more. */ 1707 if ((first_offset == 0) && (first_bii == 0) && 1708 (*minext < rbm->rgd->rd_extfail_pt)) 1709 rbm->rgd->rd_extfail_pt = *minext; 1710 1711 /* If the maximum extent we found is big enough to fulfill the 1712 minimum requirements, use it anyway. */ 1713 if (maxext.len) { 1714 *rbm = maxext.rbm; 1715 *minext = maxext.len; 1716 return 0; 1717 } 1718 1719 return -ENOSPC; 1720} 1721 1722/** 1723 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1724 * @rgd: The rgrp 1725 * @last_unlinked: block address of the last dinode we unlinked 1726 * @skip: block address we should explicitly not unlink 1727 * 1728 * Returns: 0 if no error 1729 * The inode, if one has been found, in inode. 1730 */ 1731 1732static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1733{ 1734 u64 block; 1735 struct gfs2_sbd *sdp = rgd->rd_sbd; 1736 struct gfs2_glock *gl; 1737 struct gfs2_inode *ip; 1738 int error; 1739 int found = 0; 1740 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1741 1742 while (1) { 1743 down_write(&sdp->sd_log_flush_lock); 1744 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1745 true, NULL); 1746 up_write(&sdp->sd_log_flush_lock); 1747 if (error == -ENOSPC) 1748 break; 1749 if (WARN_ON_ONCE(error)) 1750 break; 1751 1752 block = gfs2_rbm_to_block(&rbm); 1753 if (gfs2_rbm_from_block(&rbm, block + 1)) 1754 break; 1755 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1756 continue; 1757 if (block == skip) 1758 continue; 1759 *last_unlinked = block; 1760 1761 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1762 if (error) 1763 continue; 1764 1765 /* If the inode is already in cache, we can ignore it here 1766 * because the existing inode disposal code will deal with 1767 * it when all refs have gone away. Accessing gl_object like 1768 * this is not safe in general. Here it is ok because we do 1769 * not dereference the pointer, and we only need an approx 1770 * answer to whether it is NULL or not. 1771 */ 1772 ip = gl->gl_object; 1773 1774 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1775 gfs2_glock_put(gl); 1776 else 1777 found++; 1778 1779 /* Limit reclaim to sensible number of tasks */ 1780 if (found > NR_CPUS) 1781 return; 1782 } 1783 1784 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1785 return; 1786} 1787 1788/** 1789 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1790 * @rgd: The rgrp in question 1791 * @loops: An indication of how picky we can be (0=very, 1=less so) 1792 * 1793 * This function uses the recently added glock statistics in order to 1794 * figure out whether a parciular resource group is suffering from 1795 * contention from multiple nodes. This is done purely on the basis 1796 * of timings, since this is the only data we have to work with and 1797 * our aim here is to reject a resource group which is highly contended 1798 * but (very important) not to do this too often in order to ensure that 1799 * we do not land up introducing fragmentation by changing resource 1800 * groups when not actually required. 1801 * 1802 * The calculation is fairly simple, we want to know whether the SRTTB 1803 * (i.e. smoothed round trip time for blocking operations) to acquire 1804 * the lock for this rgrp's glock is significantly greater than the 1805 * time taken for resource groups on average. We introduce a margin in 1806 * the form of the variable @var which is computed as the sum of the two 1807 * respective variences, and multiplied by a factor depending on @loops 1808 * and whether we have a lot of data to base the decision on. This is 1809 * then tested against the square difference of the means in order to 1810 * decide whether the result is statistically significant or not. 1811 * 1812 * Returns: A boolean verdict on the congestion status 1813 */ 1814 1815static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1816{ 1817 const struct gfs2_glock *gl = rgd->rd_gl; 1818 const struct gfs2_sbd *sdp = gl->gl_sbd; 1819 struct gfs2_lkstats *st; 1820 s64 r_dcount, l_dcount; 1821 s64 r_srttb, l_srttb; 1822 s64 srttb_diff; 1823 s64 sqr_diff; 1824 s64 var; 1825 1826 preempt_disable(); 1827 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1828 r_srttb = st->stats[GFS2_LKS_SRTTB]; 1829 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1830 var = st->stats[GFS2_LKS_SRTTVARB] + 1831 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1832 preempt_enable(); 1833 1834 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1835 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1836 1837 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) 1838 return false; 1839 1840 srttb_diff = r_srttb - l_srttb; 1841 sqr_diff = srttb_diff * srttb_diff; 1842 1843 var *= 2; 1844 if (l_dcount < 8 || r_dcount < 8) 1845 var *= 2; 1846 if (loops == 1) 1847 var *= 2; 1848 1849 return ((srttb_diff < 0) && (sqr_diff > var)); 1850} 1851 1852/** 1853 * gfs2_rgrp_used_recently 1854 * @rs: The block reservation with the rgrp to test 1855 * @msecs: The time limit in milliseconds 1856 * 1857 * Returns: True if the rgrp glock has been used within the time limit 1858 */ 1859static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1860 u64 msecs) 1861{ 1862 u64 tdiff; 1863 1864 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1865 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1866 1867 return tdiff > (msecs * 1000 * 1000); 1868} 1869 1870static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1871{ 1872 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1873 u32 skip; 1874 1875 get_random_bytes(&skip, sizeof(skip)); 1876 return skip % sdp->sd_rgrps; 1877} 1878 1879static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1880{ 1881 struct gfs2_rgrpd *rgd = *pos; 1882 struct gfs2_sbd *sdp = rgd->rd_sbd; 1883 1884 rgd = gfs2_rgrpd_get_next(rgd); 1885 if (rgd == NULL) 1886 rgd = gfs2_rgrpd_get_first(sdp); 1887 *pos = rgd; 1888 if (rgd != begin) /* If we didn't wrap */ 1889 return true; 1890 return false; 1891} 1892 1893/** 1894 * gfs2_inplace_reserve - Reserve space in the filesystem 1895 * @ip: the inode to reserve space for 1896 * @ap: the allocation parameters 1897 * 1898 * Returns: errno 1899 */ 1900 1901int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap) 1902{ 1903 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1904 struct gfs2_rgrpd *begin = NULL; 1905 struct gfs2_blkreserv *rs = ip->i_res; 1906 int error = 0, rg_locked, flags = 0; 1907 u64 last_unlinked = NO_BLOCK; 1908 int loops = 0; 1909 u32 skip = 0; 1910 1911 if (sdp->sd_args.ar_rgrplvb) 1912 flags |= GL_SKIP; 1913 if (gfs2_assert_warn(sdp, ap->target)) 1914 return -EINVAL; 1915 if (gfs2_rs_active(rs)) { 1916 begin = rs->rs_rbm.rgd; 1917 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1918 rs->rs_rbm.rgd = begin = ip->i_rgd; 1919 } else { 1920 check_and_update_goal(ip); 1921 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1922 } 1923 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1924 skip = gfs2_orlov_skip(ip); 1925 if (rs->rs_rbm.rgd == NULL) 1926 return -EBADSLT; 1927 1928 while (loops < 3) { 1929 rg_locked = 1; 1930 1931 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1932 rg_locked = 0; 1933 if (skip && skip--) 1934 goto next_rgrp; 1935 if (!gfs2_rs_active(rs) && (loops < 2) && 1936 gfs2_rgrp_used_recently(rs, 1000) && 1937 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1938 goto next_rgrp; 1939 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 1940 LM_ST_EXCLUSIVE, flags, 1941 &rs->rs_rgd_gh); 1942 if (unlikely(error)) 1943 return error; 1944 if (!gfs2_rs_active(rs) && (loops < 2) && 1945 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1946 goto skip_rgrp; 1947 if (sdp->sd_args.ar_rgrplvb) { 1948 error = update_rgrp_lvb(rs->rs_rbm.rgd); 1949 if (unlikely(error)) { 1950 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1951 return error; 1952 } 1953 } 1954 } 1955 1956 /* Skip unuseable resource groups */ 1957 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 1958 GFS2_RDF_ERROR)) || 1959 (ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 1960 goto skip_rgrp; 1961 1962 if (sdp->sd_args.ar_rgrplvb) 1963 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 1964 1965 /* Get a reservation if we don't already have one */ 1966 if (!gfs2_rs_active(rs)) 1967 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 1968 1969 /* Skip rgrps when we can't get a reservation on first pass */ 1970 if (!gfs2_rs_active(rs) && (loops < 1)) 1971 goto check_rgrp; 1972 1973 /* If rgrp has enough free space, use it */ 1974 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) { 1975 ip->i_rgd = rs->rs_rbm.rgd; 1976 return 0; 1977 } 1978 1979check_rgrp: 1980 /* Check for unlinked inodes which can be reclaimed */ 1981 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 1982 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 1983 ip->i_no_addr); 1984skip_rgrp: 1985 /* Drop reservation, if we couldn't use reserved rgrp */ 1986 if (gfs2_rs_active(rs)) 1987 gfs2_rs_deltree(rs); 1988 1989 /* Unlock rgrp if required */ 1990 if (!rg_locked) 1991 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1992next_rgrp: 1993 /* Find the next rgrp, and continue looking */ 1994 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 1995 continue; 1996 if (skip) 1997 continue; 1998 1999 /* If we've scanned all the rgrps, but found no free blocks 2000 * then this checks for some less likely conditions before 2001 * trying again. 2002 */ 2003 loops++; 2004 /* Check that fs hasn't grown if writing to rindex */ 2005 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2006 error = gfs2_ri_update(ip); 2007 if (error) 2008 return error; 2009 } 2010 /* Flushing the log may release space */ 2011 if (loops == 2) 2012 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2013 } 2014 2015 return -ENOSPC; 2016} 2017 2018/** 2019 * gfs2_inplace_release - release an inplace reservation 2020 * @ip: the inode the reservation was taken out on 2021 * 2022 * Release a reservation made by gfs2_inplace_reserve(). 2023 */ 2024 2025void gfs2_inplace_release(struct gfs2_inode *ip) 2026{ 2027 struct gfs2_blkreserv *rs = ip->i_res; 2028 2029 if (rs->rs_rgd_gh.gh_gl) 2030 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2031} 2032 2033/** 2034 * gfs2_get_block_type - Check a block in a RG is of given type 2035 * @rgd: the resource group holding the block 2036 * @block: the block number 2037 * 2038 * Returns: The block type (GFS2_BLKST_*) 2039 */ 2040 2041static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2042{ 2043 struct gfs2_rbm rbm = { .rgd = rgd, }; 2044 int ret; 2045 2046 ret = gfs2_rbm_from_block(&rbm, block); 2047 WARN_ON_ONCE(ret != 0); 2048 2049 return gfs2_testbit(&rbm); 2050} 2051 2052 2053/** 2054 * gfs2_alloc_extent - allocate an extent from a given bitmap 2055 * @rbm: the resource group information 2056 * @dinode: TRUE if the first block we allocate is for a dinode 2057 * @n: The extent length (value/result) 2058 * 2059 * Add the bitmap buffer to the transaction. 2060 * Set the found bits to @new_state to change block's allocation state. 2061 */ 2062static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2063 unsigned int *n) 2064{ 2065 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2066 const unsigned int elen = *n; 2067 u64 block; 2068 int ret; 2069 2070 *n = 1; 2071 block = gfs2_rbm_to_block(rbm); 2072 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2073 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2074 block++; 2075 while (*n < elen) { 2076 ret = gfs2_rbm_from_block(&pos, block); 2077 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2078 break; 2079 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2080 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2081 (*n)++; 2082 block++; 2083 } 2084} 2085 2086/** 2087 * rgblk_free - Change alloc state of given block(s) 2088 * @sdp: the filesystem 2089 * @bstart: the start of a run of blocks to free 2090 * @blen: the length of the block run (all must lie within ONE RG!) 2091 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2092 * 2093 * Returns: Resource group containing the block(s) 2094 */ 2095 2096static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2097 u32 blen, unsigned char new_state) 2098{ 2099 struct gfs2_rbm rbm; 2100 struct gfs2_bitmap *bi, *bi_prev = NULL; 2101 2102 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2103 if (!rbm.rgd) { 2104 if (gfs2_consist(sdp)) 2105 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2106 return NULL; 2107 } 2108 2109 gfs2_rbm_from_block(&rbm, bstart); 2110 while (blen--) { 2111 bi = rbm_bi(&rbm); 2112 if (bi != bi_prev) { 2113 if (!bi->bi_clone) { 2114 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2115 GFP_NOFS | __GFP_NOFAIL); 2116 memcpy(bi->bi_clone + bi->bi_offset, 2117 bi->bi_bh->b_data + bi->bi_offset, 2118 bi->bi_len); 2119 } 2120 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2121 bi_prev = bi; 2122 } 2123 gfs2_setbit(&rbm, false, new_state); 2124 gfs2_rbm_incr(&rbm); 2125 } 2126 2127 return rbm.rgd; 2128} 2129 2130/** 2131 * gfs2_rgrp_dump - print out an rgrp 2132 * @seq: The iterator 2133 * @gl: The glock in question 2134 * 2135 */ 2136 2137void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2138{ 2139 struct gfs2_rgrpd *rgd = gl->gl_object; 2140 struct gfs2_blkreserv *trs; 2141 const struct rb_node *n; 2142 2143 if (rgd == NULL) 2144 return; 2145 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2146 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2147 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2148 rgd->rd_reserved, rgd->rd_extfail_pt); 2149 spin_lock(&rgd->rd_rsspin); 2150 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2151 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2152 dump_rs(seq, trs); 2153 } 2154 spin_unlock(&rgd->rd_rsspin); 2155} 2156 2157static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2158{ 2159 struct gfs2_sbd *sdp = rgd->rd_sbd; 2160 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2161 (unsigned long long)rgd->rd_addr); 2162 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2163 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2164 rgd->rd_flags |= GFS2_RDF_ERROR; 2165} 2166 2167/** 2168 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2169 * @ip: The inode we have just allocated blocks for 2170 * @rbm: The start of the allocated blocks 2171 * @len: The extent length 2172 * 2173 * Adjusts a reservation after an allocation has taken place. If the 2174 * reservation does not match the allocation, or if it is now empty 2175 * then it is removed. 2176 */ 2177 2178static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2179 const struct gfs2_rbm *rbm, unsigned len) 2180{ 2181 struct gfs2_blkreserv *rs = ip->i_res; 2182 struct gfs2_rgrpd *rgd = rbm->rgd; 2183 unsigned rlen; 2184 u64 block; 2185 int ret; 2186 2187 spin_lock(&rgd->rd_rsspin); 2188 if (gfs2_rs_active(rs)) { 2189 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2190 block = gfs2_rbm_to_block(rbm); 2191 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2192 rlen = min(rs->rs_free, len); 2193 rs->rs_free -= rlen; 2194 rgd->rd_reserved -= rlen; 2195 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2196 if (rs->rs_free && !ret) 2197 goto out; 2198 } 2199 __rs_deltree(rs); 2200 } 2201out: 2202 spin_unlock(&rgd->rd_rsspin); 2203} 2204 2205/** 2206 * gfs2_set_alloc_start - Set starting point for block allocation 2207 * @rbm: The rbm which will be set to the required location 2208 * @ip: The gfs2 inode 2209 * @dinode: Flag to say if allocation includes a new inode 2210 * 2211 * This sets the starting point from the reservation if one is active 2212 * otherwise it falls back to guessing a start point based on the 2213 * inode's goal block or the last allocation point in the rgrp. 2214 */ 2215 2216static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2217 const struct gfs2_inode *ip, bool dinode) 2218{ 2219 u64 goal; 2220 2221 if (gfs2_rs_active(ip->i_res)) { 2222 *rbm = ip->i_res->rs_rbm; 2223 return; 2224 } 2225 2226 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2227 goal = ip->i_goal; 2228 else 2229 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2230 2231 gfs2_rbm_from_block(rbm, goal); 2232} 2233 2234/** 2235 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2236 * @ip: the inode to allocate the block for 2237 * @bn: Used to return the starting block number 2238 * @nblocks: requested number of blocks/extent length (value/result) 2239 * @dinode: 1 if we're allocating a dinode block, else 0 2240 * @generation: the generation number of the inode 2241 * 2242 * Returns: 0 or error 2243 */ 2244 2245int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2246 bool dinode, u64 *generation) 2247{ 2248 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2249 struct buffer_head *dibh; 2250 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2251 unsigned int ndata; 2252 u64 block; /* block, within the file system scope */ 2253 int error; 2254 2255 gfs2_set_alloc_start(&rbm, ip, dinode); 2256 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL); 2257 2258 if (error == -ENOSPC) { 2259 gfs2_set_alloc_start(&rbm, ip, dinode); 2260 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false, 2261 NULL); 2262 } 2263 2264 /* Since all blocks are reserved in advance, this shouldn't happen */ 2265 if (error) { 2266 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2267 (unsigned long long)ip->i_no_addr, error, *nblocks, 2268 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2269 rbm.rgd->rd_extfail_pt); 2270 goto rgrp_error; 2271 } 2272 2273 gfs2_alloc_extent(&rbm, dinode, nblocks); 2274 block = gfs2_rbm_to_block(&rbm); 2275 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2276 if (gfs2_rs_active(ip->i_res)) 2277 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2278 ndata = *nblocks; 2279 if (dinode) 2280 ndata--; 2281 2282 if (!dinode) { 2283 ip->i_goal = block + ndata - 1; 2284 error = gfs2_meta_inode_buffer(ip, &dibh); 2285 if (error == 0) { 2286 struct gfs2_dinode *di = 2287 (struct gfs2_dinode *)dibh->b_data; 2288 gfs2_trans_add_meta(ip->i_gl, dibh); 2289 di->di_goal_meta = di->di_goal_data = 2290 cpu_to_be64(ip->i_goal); 2291 brelse(dibh); 2292 } 2293 } 2294 if (rbm.rgd->rd_free < *nblocks) { 2295 pr_warn("nblocks=%u\n", *nblocks); 2296 goto rgrp_error; 2297 } 2298 2299 rbm.rgd->rd_free -= *nblocks; 2300 if (dinode) { 2301 rbm.rgd->rd_dinodes++; 2302 *generation = rbm.rgd->rd_igeneration++; 2303 if (*generation == 0) 2304 *generation = rbm.rgd->rd_igeneration++; 2305 } 2306 2307 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2308 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2309 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2310 2311 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2312 if (dinode) 2313 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2314 2315 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2316 2317 rbm.rgd->rd_free_clone -= *nblocks; 2318 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2319 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2320 *bn = block; 2321 return 0; 2322 2323rgrp_error: 2324 gfs2_rgrp_error(rbm.rgd); 2325 return -EIO; 2326} 2327 2328/** 2329 * __gfs2_free_blocks - free a contiguous run of block(s) 2330 * @ip: the inode these blocks are being freed from 2331 * @bstart: first block of a run of contiguous blocks 2332 * @blen: the length of the block run 2333 * @meta: 1 if the blocks represent metadata 2334 * 2335 */ 2336 2337void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2338{ 2339 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2340 struct gfs2_rgrpd *rgd; 2341 2342 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2343 if (!rgd) 2344 return; 2345 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2346 rgd->rd_free += blen; 2347 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2348 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2349 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2350 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2351 2352 /* Directories keep their data in the metadata address space */ 2353 if (meta || ip->i_depth) 2354 gfs2_meta_wipe(ip, bstart, blen); 2355} 2356 2357/** 2358 * gfs2_free_meta - free a contiguous run of data block(s) 2359 * @ip: the inode these blocks are being freed from 2360 * @bstart: first block of a run of contiguous blocks 2361 * @blen: the length of the block run 2362 * 2363 */ 2364 2365void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2366{ 2367 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2368 2369 __gfs2_free_blocks(ip, bstart, blen, 1); 2370 gfs2_statfs_change(sdp, 0, +blen, 0); 2371 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2372} 2373 2374void gfs2_unlink_di(struct inode *inode) 2375{ 2376 struct gfs2_inode *ip = GFS2_I(inode); 2377 struct gfs2_sbd *sdp = GFS2_SB(inode); 2378 struct gfs2_rgrpd *rgd; 2379 u64 blkno = ip->i_no_addr; 2380 2381 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2382 if (!rgd) 2383 return; 2384 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2385 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2386 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2387 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2388 update_rgrp_lvb_unlinked(rgd, 1); 2389} 2390 2391static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2392{ 2393 struct gfs2_sbd *sdp = rgd->rd_sbd; 2394 struct gfs2_rgrpd *tmp_rgd; 2395 2396 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2397 if (!tmp_rgd) 2398 return; 2399 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2400 2401 if (!rgd->rd_dinodes) 2402 gfs2_consist_rgrpd(rgd); 2403 rgd->rd_dinodes--; 2404 rgd->rd_free++; 2405 2406 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2407 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2408 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2409 update_rgrp_lvb_unlinked(rgd, -1); 2410 2411 gfs2_statfs_change(sdp, 0, +1, -1); 2412} 2413 2414 2415void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2416{ 2417 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2418 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2419 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2420 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2421} 2422 2423/** 2424 * gfs2_check_blk_type - Check the type of a block 2425 * @sdp: The superblock 2426 * @no_addr: The block number to check 2427 * @type: The block type we are looking for 2428 * 2429 * Returns: 0 if the block type matches the expected type 2430 * -ESTALE if it doesn't match 2431 * or -ve errno if something went wrong while checking 2432 */ 2433 2434int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2435{ 2436 struct gfs2_rgrpd *rgd; 2437 struct gfs2_holder rgd_gh; 2438 int error = -EINVAL; 2439 2440 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2441 if (!rgd) 2442 goto fail; 2443 2444 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2445 if (error) 2446 goto fail; 2447 2448 if (gfs2_get_block_type(rgd, no_addr) != type) 2449 error = -ESTALE; 2450 2451 gfs2_glock_dq_uninit(&rgd_gh); 2452fail: 2453 return error; 2454} 2455 2456/** 2457 * gfs2_rlist_add - add a RG to a list of RGs 2458 * @ip: the inode 2459 * @rlist: the list of resource groups 2460 * @block: the block 2461 * 2462 * Figure out what RG a block belongs to and add that RG to the list 2463 * 2464 * FIXME: Don't use NOFAIL 2465 * 2466 */ 2467 2468void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2469 u64 block) 2470{ 2471 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2472 struct gfs2_rgrpd *rgd; 2473 struct gfs2_rgrpd **tmp; 2474 unsigned int new_space; 2475 unsigned int x; 2476 2477 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2478 return; 2479 2480 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2481 rgd = ip->i_rgd; 2482 else 2483 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2484 if (!rgd) { 2485 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2486 return; 2487 } 2488 ip->i_rgd = rgd; 2489 2490 for (x = 0; x < rlist->rl_rgrps; x++) 2491 if (rlist->rl_rgd[x] == rgd) 2492 return; 2493 2494 if (rlist->rl_rgrps == rlist->rl_space) { 2495 new_space = rlist->rl_space + 10; 2496 2497 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2498 GFP_NOFS | __GFP_NOFAIL); 2499 2500 if (rlist->rl_rgd) { 2501 memcpy(tmp, rlist->rl_rgd, 2502 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2503 kfree(rlist->rl_rgd); 2504 } 2505 2506 rlist->rl_space = new_space; 2507 rlist->rl_rgd = tmp; 2508 } 2509 2510 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2511} 2512 2513/** 2514 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2515 * and initialize an array of glock holders for them 2516 * @rlist: the list of resource groups 2517 * @state: the lock state to acquire the RG lock in 2518 * 2519 * FIXME: Don't use NOFAIL 2520 * 2521 */ 2522 2523void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2524{ 2525 unsigned int x; 2526 2527 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2528 GFP_NOFS | __GFP_NOFAIL); 2529 for (x = 0; x < rlist->rl_rgrps; x++) 2530 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2531 state, 0, 2532 &rlist->rl_ghs[x]); 2533} 2534 2535/** 2536 * gfs2_rlist_free - free a resource group list 2537 * @rlist: the list of resource groups 2538 * 2539 */ 2540 2541void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2542{ 2543 unsigned int x; 2544 2545 kfree(rlist->rl_rgd); 2546 2547 if (rlist->rl_ghs) { 2548 for (x = 0; x < rlist->rl_rgrps; x++) 2549 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2550 kfree(rlist->rl_ghs); 2551 rlist->rl_ghs = NULL; 2552 } 2553} 2554 2555