1/*
2 * super.c
3 *
4 * PURPOSE
5 *  Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 *  OSTA-UDF(tm) = Optical Storage Technology Association
9 *  Universal Disk Format.
10 *
11 *  This code is based on version 2.00 of the UDF specification,
12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 *    http://www.osta.org/
14 *    http://www.ecma.ch/
15 *    http://www.iso.org/
16 *
17 * COPYRIGHT
18 *  This file is distributed under the terms of the GNU General Public
19 *  License (GPL). Copies of the GPL can be obtained from:
20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21 *  Each contributing author retains all rights to their own work.
22 *
23 *  (C) 1998 Dave Boynton
24 *  (C) 1998-2004 Ben Fennema
25 *  (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30 *                added some debugging.
31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32 *  10/16/98      attempting some multi-session support
33 *  10/17/98      added freespace count for "df"
34 *  11/11/98 gr   added novrs option
35 *  11/26/98 dgb  added fileset,anchor mount options
36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37 *                vol descs. rewrote option handling based on isofs
38 *  12/20/98      find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/buffer_head.h>
52#include <linux/vfs.h>
53#include <linux/vmalloc.h>
54#include <linux/errno.h>
55#include <linux/mount.h>
56#include <linux/seq_file.h>
57#include <linux/bitmap.h>
58#include <linux/crc-itu-t.h>
59#include <linux/log2.h>
60#include <asm/byteorder.h>
61
62#include "udf_sb.h"
63#include "udf_i.h"
64
65#include <linux/init.h>
66#include <linux/uaccess.h>
67
68#define VDS_POS_PRIMARY_VOL_DESC	0
69#define VDS_POS_UNALLOC_SPACE_DESC	1
70#define VDS_POS_LOGICAL_VOL_DESC	2
71#define VDS_POS_PARTITION_DESC		3
72#define VDS_POS_IMP_USE_VOL_DESC	4
73#define VDS_POS_VOL_DESC_PTR		5
74#define VDS_POS_TERMINATING_DESC	6
75#define VDS_POS_LENGTH			7
76
77#define UDF_DEFAULT_BLOCKSIZE 2048
78
79#define VSD_FIRST_SECTOR_OFFSET		32768
80#define VSD_MAX_SECTOR_OFFSET		0x800000
81
82enum { UDF_MAX_LINKS = 0xffff };
83
84/* These are the "meat" - everything else is stuffing */
85static int udf_fill_super(struct super_block *, void *, int);
86static void udf_put_super(struct super_block *);
87static int udf_sync_fs(struct super_block *, int);
88static int udf_remount_fs(struct super_block *, int *, char *);
89static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91			    struct kernel_lb_addr *);
92static void udf_load_fileset(struct super_block *, struct buffer_head *,
93			     struct kernel_lb_addr *);
94static void udf_open_lvid(struct super_block *);
95static void udf_close_lvid(struct super_block *);
96static unsigned int udf_count_free(struct super_block *);
97static int udf_statfs(struct dentry *, struct kstatfs *);
98static int udf_show_options(struct seq_file *, struct dentry *);
99
100struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101{
102	struct logicalVolIntegrityDesc *lvid;
103	unsigned int partnum;
104	unsigned int offset;
105
106	if (!UDF_SB(sb)->s_lvid_bh)
107		return NULL;
108	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109	partnum = le32_to_cpu(lvid->numOfPartitions);
110	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
112	     (2 * sizeof(uint32_t)) < partnum) {
113		udf_err(sb, "Logical volume integrity descriptor corrupted "
114			"(numOfPartitions = %u)!\n", partnum);
115		return NULL;
116	}
117	/* The offset is to skip freeSpaceTable and sizeTable arrays */
118	offset = partnum * 2 * sizeof(uint32_t);
119	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120}
121
122/* UDF filesystem type */
123static struct dentry *udf_mount(struct file_system_type *fs_type,
124		      int flags, const char *dev_name, void *data)
125{
126	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127}
128
129static struct file_system_type udf_fstype = {
130	.owner		= THIS_MODULE,
131	.name		= "udf",
132	.mount		= udf_mount,
133	.kill_sb	= kill_block_super,
134	.fs_flags	= FS_REQUIRES_DEV,
135};
136MODULE_ALIAS_FS("udf");
137
138static struct kmem_cache *udf_inode_cachep;
139
140static struct inode *udf_alloc_inode(struct super_block *sb)
141{
142	struct udf_inode_info *ei;
143	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144	if (!ei)
145		return NULL;
146
147	ei->i_unique = 0;
148	ei->i_lenExtents = 0;
149	ei->i_next_alloc_block = 0;
150	ei->i_next_alloc_goal = 0;
151	ei->i_strat4096 = 0;
152	init_rwsem(&ei->i_data_sem);
153	ei->cached_extent.lstart = -1;
154	spin_lock_init(&ei->i_extent_cache_lock);
155
156	return &ei->vfs_inode;
157}
158
159static void udf_i_callback(struct rcu_head *head)
160{
161	struct inode *inode = container_of(head, struct inode, i_rcu);
162	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163}
164
165static void udf_destroy_inode(struct inode *inode)
166{
167	call_rcu(&inode->i_rcu, udf_i_callback);
168}
169
170static void init_once(void *foo)
171{
172	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173
174	ei->i_ext.i_data = NULL;
175	inode_init_once(&ei->vfs_inode);
176}
177
178static int __init init_inodecache(void)
179{
180	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181					     sizeof(struct udf_inode_info),
182					     0, (SLAB_RECLAIM_ACCOUNT |
183						 SLAB_MEM_SPREAD),
184					     init_once);
185	if (!udf_inode_cachep)
186		return -ENOMEM;
187	return 0;
188}
189
190static void destroy_inodecache(void)
191{
192	/*
193	 * Make sure all delayed rcu free inodes are flushed before we
194	 * destroy cache.
195	 */
196	rcu_barrier();
197	kmem_cache_destroy(udf_inode_cachep);
198}
199
200/* Superblock operations */
201static const struct super_operations udf_sb_ops = {
202	.alloc_inode	= udf_alloc_inode,
203	.destroy_inode	= udf_destroy_inode,
204	.write_inode	= udf_write_inode,
205	.evict_inode	= udf_evict_inode,
206	.put_super	= udf_put_super,
207	.sync_fs	= udf_sync_fs,
208	.statfs		= udf_statfs,
209	.remount_fs	= udf_remount_fs,
210	.show_options	= udf_show_options,
211};
212
213struct udf_options {
214	unsigned char novrs;
215	unsigned int blocksize;
216	unsigned int session;
217	unsigned int lastblock;
218	unsigned int anchor;
219	unsigned int volume;
220	unsigned short partition;
221	unsigned int fileset;
222	unsigned int rootdir;
223	unsigned int flags;
224	umode_t umask;
225	kgid_t gid;
226	kuid_t uid;
227	umode_t fmode;
228	umode_t dmode;
229	struct nls_table *nls_map;
230};
231
232static int __init init_udf_fs(void)
233{
234	int err;
235
236	err = init_inodecache();
237	if (err)
238		goto out1;
239	err = register_filesystem(&udf_fstype);
240	if (err)
241		goto out;
242
243	return 0;
244
245out:
246	destroy_inodecache();
247
248out1:
249	return err;
250}
251
252static void __exit exit_udf_fs(void)
253{
254	unregister_filesystem(&udf_fstype);
255	destroy_inodecache();
256}
257
258module_init(init_udf_fs)
259module_exit(exit_udf_fs)
260
261static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262{
263	struct udf_sb_info *sbi = UDF_SB(sb);
264
265	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266				  GFP_KERNEL);
267	if (!sbi->s_partmaps) {
268		udf_err(sb, "Unable to allocate space for %d partition maps\n",
269			count);
270		sbi->s_partitions = 0;
271		return -ENOMEM;
272	}
273
274	sbi->s_partitions = count;
275	return 0;
276}
277
278static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279{
280	int i;
281	int nr_groups = bitmap->s_nr_groups;
282	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283						nr_groups);
284
285	for (i = 0; i < nr_groups; i++)
286		if (bitmap->s_block_bitmap[i])
287			brelse(bitmap->s_block_bitmap[i]);
288
289	if (size <= PAGE_SIZE)
290		kfree(bitmap);
291	else
292		vfree(bitmap);
293}
294
295static void udf_free_partition(struct udf_part_map *map)
296{
297	int i;
298	struct udf_meta_data *mdata;
299
300	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301		iput(map->s_uspace.s_table);
302	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303		iput(map->s_fspace.s_table);
304	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308	if (map->s_partition_type == UDF_SPARABLE_MAP15)
309		for (i = 0; i < 4; i++)
310			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311	else if (map->s_partition_type == UDF_METADATA_MAP25) {
312		mdata = &map->s_type_specific.s_metadata;
313		iput(mdata->s_metadata_fe);
314		mdata->s_metadata_fe = NULL;
315
316		iput(mdata->s_mirror_fe);
317		mdata->s_mirror_fe = NULL;
318
319		iput(mdata->s_bitmap_fe);
320		mdata->s_bitmap_fe = NULL;
321	}
322}
323
324static void udf_sb_free_partitions(struct super_block *sb)
325{
326	struct udf_sb_info *sbi = UDF_SB(sb);
327	int i;
328	if (sbi->s_partmaps == NULL)
329		return;
330	for (i = 0; i < sbi->s_partitions; i++)
331		udf_free_partition(&sbi->s_partmaps[i]);
332	kfree(sbi->s_partmaps);
333	sbi->s_partmaps = NULL;
334}
335
336static int udf_show_options(struct seq_file *seq, struct dentry *root)
337{
338	struct super_block *sb = root->d_sb;
339	struct udf_sb_info *sbi = UDF_SB(sb);
340
341	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342		seq_puts(seq, ",nostrict");
343	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346		seq_puts(seq, ",unhide");
347	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348		seq_puts(seq, ",undelete");
349	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350		seq_puts(seq, ",noadinicb");
351	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352		seq_puts(seq, ",shortad");
353	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354		seq_puts(seq, ",uid=forget");
355	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356		seq_puts(seq, ",uid=ignore");
357	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358		seq_puts(seq, ",gid=forget");
359	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360		seq_puts(seq, ",gid=ignore");
361	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365	if (sbi->s_umask != 0)
366		seq_printf(seq, ",umask=%ho", sbi->s_umask);
367	if (sbi->s_fmode != UDF_INVALID_MODE)
368		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369	if (sbi->s_dmode != UDF_INVALID_MODE)
370		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372		seq_printf(seq, ",session=%u", sbi->s_session);
373	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375	if (sbi->s_anchor != 0)
376		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377	/*
378	 * volume, partition, fileset and rootdir seem to be ignored
379	 * currently
380	 */
381	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382		seq_puts(seq, ",utf8");
383	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386	return 0;
387}
388
389/*
390 * udf_parse_options
391 *
392 * PURPOSE
393 *	Parse mount options.
394 *
395 * DESCRIPTION
396 *	The following mount options are supported:
397 *
398 *	gid=		Set the default group.
399 *	umask=		Set the default umask.
400 *	mode=		Set the default file permissions.
401 *	dmode=		Set the default directory permissions.
402 *	uid=		Set the default user.
403 *	bs=		Set the block size.
404 *	unhide		Show otherwise hidden files.
405 *	undelete	Show deleted files in lists.
406 *	adinicb		Embed data in the inode (default)
407 *	noadinicb	Don't embed data in the inode
408 *	shortad		Use short ad's
409 *	longad		Use long ad's (default)
410 *	nostrict	Unset strict conformance
411 *	iocharset=	Set the NLS character set
412 *
413 *	The remaining are for debugging and disaster recovery:
414 *
415 *	novrs		Skip volume sequence recognition
416 *
417 *	The following expect a offset from 0.
418 *
419 *	session=	Set the CDROM session (default= last session)
420 *	anchor=		Override standard anchor location. (default= 256)
421 *	volume=		Override the VolumeDesc location. (unused)
422 *	partition=	Override the PartitionDesc location. (unused)
423 *	lastblock=	Set the last block of the filesystem/
424 *
425 *	The following expect a offset from the partition root.
426 *
427 *	fileset=	Override the fileset block location. (unused)
428 *	rootdir=	Override the root directory location. (unused)
429 *		WARNING: overriding the rootdir to a non-directory may
430 *		yield highly unpredictable results.
431 *
432 * PRE-CONDITIONS
433 *	options		Pointer to mount options string.
434 *	uopts		Pointer to mount options variable.
435 *
436 * POST-CONDITIONS
437 *	<return>	1	Mount options parsed okay.
438 *	<return>	0	Error parsing mount options.
439 *
440 * HISTORY
441 *	July 1, 1997 - Andrew E. Mileski
442 *	Written, tested, and released.
443 */
444
445enum {
446	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450	Opt_rootdir, Opt_utf8, Opt_iocharset,
451	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452	Opt_fmode, Opt_dmode
453};
454
455static const match_table_t tokens = {
456	{Opt_novrs,	"novrs"},
457	{Opt_nostrict,	"nostrict"},
458	{Opt_bs,	"bs=%u"},
459	{Opt_unhide,	"unhide"},
460	{Opt_undelete,	"undelete"},
461	{Opt_noadinicb,	"noadinicb"},
462	{Opt_adinicb,	"adinicb"},
463	{Opt_shortad,	"shortad"},
464	{Opt_longad,	"longad"},
465	{Opt_uforget,	"uid=forget"},
466	{Opt_uignore,	"uid=ignore"},
467	{Opt_gforget,	"gid=forget"},
468	{Opt_gignore,	"gid=ignore"},
469	{Opt_gid,	"gid=%u"},
470	{Opt_uid,	"uid=%u"},
471	{Opt_umask,	"umask=%o"},
472	{Opt_session,	"session=%u"},
473	{Opt_lastblock,	"lastblock=%u"},
474	{Opt_anchor,	"anchor=%u"},
475	{Opt_volume,	"volume=%u"},
476	{Opt_partition,	"partition=%u"},
477	{Opt_fileset,	"fileset=%u"},
478	{Opt_rootdir,	"rootdir=%u"},
479	{Opt_utf8,	"utf8"},
480	{Opt_iocharset,	"iocharset=%s"},
481	{Opt_fmode,     "mode=%o"},
482	{Opt_dmode,     "dmode=%o"},
483	{Opt_err,	NULL}
484};
485
486static int udf_parse_options(char *options, struct udf_options *uopt,
487			     bool remount)
488{
489	char *p;
490	int option;
491
492	uopt->novrs = 0;
493	uopt->partition = 0xFFFF;
494	uopt->session = 0xFFFFFFFF;
495	uopt->lastblock = 0;
496	uopt->anchor = 0;
497	uopt->volume = 0xFFFFFFFF;
498	uopt->rootdir = 0xFFFFFFFF;
499	uopt->fileset = 0xFFFFFFFF;
500	uopt->nls_map = NULL;
501
502	if (!options)
503		return 1;
504
505	while ((p = strsep(&options, ",")) != NULL) {
506		substring_t args[MAX_OPT_ARGS];
507		int token;
508		unsigned n;
509		if (!*p)
510			continue;
511
512		token = match_token(p, tokens, args);
513		switch (token) {
514		case Opt_novrs:
515			uopt->novrs = 1;
516			break;
517		case Opt_bs:
518			if (match_int(&args[0], &option))
519				return 0;
520			n = option;
521			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522				return 0;
523			uopt->blocksize = n;
524			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525			break;
526		case Opt_unhide:
527			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528			break;
529		case Opt_undelete:
530			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531			break;
532		case Opt_noadinicb:
533			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534			break;
535		case Opt_adinicb:
536			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537			break;
538		case Opt_shortad:
539			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540			break;
541		case Opt_longad:
542			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543			break;
544		case Opt_gid:
545			if (match_int(args, &option))
546				return 0;
547			uopt->gid = make_kgid(current_user_ns(), option);
548			if (!gid_valid(uopt->gid))
549				return 0;
550			uopt->flags |= (1 << UDF_FLAG_GID_SET);
551			break;
552		case Opt_uid:
553			if (match_int(args, &option))
554				return 0;
555			uopt->uid = make_kuid(current_user_ns(), option);
556			if (!uid_valid(uopt->uid))
557				return 0;
558			uopt->flags |= (1 << UDF_FLAG_UID_SET);
559			break;
560		case Opt_umask:
561			if (match_octal(args, &option))
562				return 0;
563			uopt->umask = option;
564			break;
565		case Opt_nostrict:
566			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567			break;
568		case Opt_session:
569			if (match_int(args, &option))
570				return 0;
571			uopt->session = option;
572			if (!remount)
573				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574			break;
575		case Opt_lastblock:
576			if (match_int(args, &option))
577				return 0;
578			uopt->lastblock = option;
579			if (!remount)
580				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581			break;
582		case Opt_anchor:
583			if (match_int(args, &option))
584				return 0;
585			uopt->anchor = option;
586			break;
587		case Opt_volume:
588			if (match_int(args, &option))
589				return 0;
590			uopt->volume = option;
591			break;
592		case Opt_partition:
593			if (match_int(args, &option))
594				return 0;
595			uopt->partition = option;
596			break;
597		case Opt_fileset:
598			if (match_int(args, &option))
599				return 0;
600			uopt->fileset = option;
601			break;
602		case Opt_rootdir:
603			if (match_int(args, &option))
604				return 0;
605			uopt->rootdir = option;
606			break;
607		case Opt_utf8:
608			uopt->flags |= (1 << UDF_FLAG_UTF8);
609			break;
610#ifdef CONFIG_UDF_NLS
611		case Opt_iocharset:
612			uopt->nls_map = load_nls(args[0].from);
613			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614			break;
615#endif
616		case Opt_uignore:
617			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618			break;
619		case Opt_uforget:
620			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621			break;
622		case Opt_gignore:
623			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624			break;
625		case Opt_gforget:
626			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627			break;
628		case Opt_fmode:
629			if (match_octal(args, &option))
630				return 0;
631			uopt->fmode = option & 0777;
632			break;
633		case Opt_dmode:
634			if (match_octal(args, &option))
635				return 0;
636			uopt->dmode = option & 0777;
637			break;
638		default:
639			pr_err("bad mount option \"%s\" or missing value\n", p);
640			return 0;
641		}
642	}
643	return 1;
644}
645
646static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647{
648	struct udf_options uopt;
649	struct udf_sb_info *sbi = UDF_SB(sb);
650	int error = 0;
651	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653	sync_filesystem(sb);
654	if (lvidiu) {
655		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657			return -EACCES;
658	}
659
660	uopt.flags = sbi->s_flags;
661	uopt.uid   = sbi->s_uid;
662	uopt.gid   = sbi->s_gid;
663	uopt.umask = sbi->s_umask;
664	uopt.fmode = sbi->s_fmode;
665	uopt.dmode = sbi->s_dmode;
666
667	if (!udf_parse_options(options, &uopt, true))
668		return -EINVAL;
669
670	write_lock(&sbi->s_cred_lock);
671	sbi->s_flags = uopt.flags;
672	sbi->s_uid   = uopt.uid;
673	sbi->s_gid   = uopt.gid;
674	sbi->s_umask = uopt.umask;
675	sbi->s_fmode = uopt.fmode;
676	sbi->s_dmode = uopt.dmode;
677	write_unlock(&sbi->s_cred_lock);
678
679	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680		goto out_unlock;
681
682	if (*flags & MS_RDONLY)
683		udf_close_lvid(sb);
684	else
685		udf_open_lvid(sb);
686
687out_unlock:
688	return error;
689}
690
691/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693static loff_t udf_check_vsd(struct super_block *sb)
694{
695	struct volStructDesc *vsd = NULL;
696	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697	int sectorsize;
698	struct buffer_head *bh = NULL;
699	int nsr02 = 0;
700	int nsr03 = 0;
701	struct udf_sb_info *sbi;
702
703	sbi = UDF_SB(sb);
704	if (sb->s_blocksize < sizeof(struct volStructDesc))
705		sectorsize = sizeof(struct volStructDesc);
706	else
707		sectorsize = sb->s_blocksize;
708
709	sector += (sbi->s_session << sb->s_blocksize_bits);
710
711	udf_debug("Starting at sector %u (%ld byte sectors)\n",
712		  (unsigned int)(sector >> sb->s_blocksize_bits),
713		  sb->s_blocksize);
714	/* Process the sequence (if applicable). The hard limit on the sector
715	 * offset is arbitrary, hopefully large enough so that all valid UDF
716	 * filesystems will be recognised. There is no mention of an upper
717	 * bound to the size of the volume recognition area in the standard.
718	 *  The limit will prevent the code to read all the sectors of a
719	 * specially crafted image (like a bluray disc full of CD001 sectors),
720	 * potentially causing minutes or even hours of uninterruptible I/O
721	 * activity. This actually happened with uninitialised SSD partitions
722	 * (all 0xFF) before the check for the limit and all valid IDs were
723	 * added */
724	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725	     sector += sectorsize) {
726		/* Read a block */
727		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728		if (!bh)
729			break;
730
731		/* Look for ISO  descriptors */
732		vsd = (struct volStructDesc *)(bh->b_data +
733					      (sector & (sb->s_blocksize - 1)));
734
735		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736				    VSD_STD_ID_LEN)) {
737			switch (vsd->structType) {
738			case 0:
739				udf_debug("ISO9660 Boot Record found\n");
740				break;
741			case 1:
742				udf_debug("ISO9660 Primary Volume Descriptor found\n");
743				break;
744			case 2:
745				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746				break;
747			case 3:
748				udf_debug("ISO9660 Volume Partition Descriptor found\n");
749				break;
750			case 255:
751				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752				break;
753			default:
754				udf_debug("ISO9660 VRS (%u) found\n",
755					  vsd->structType);
756				break;
757			}
758		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759				    VSD_STD_ID_LEN))
760			; /* nothing */
761		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762				    VSD_STD_ID_LEN)) {
763			brelse(bh);
764			break;
765		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766				    VSD_STD_ID_LEN))
767			nsr02 = sector;
768		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769				    VSD_STD_ID_LEN))
770			nsr03 = sector;
771		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772				    VSD_STD_ID_LEN))
773			; /* nothing */
774		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775				    VSD_STD_ID_LEN))
776			; /* nothing */
777		else {
778			/* invalid id : end of volume recognition area */
779			brelse(bh);
780			break;
781		}
782		brelse(bh);
783	}
784
785	if (nsr03)
786		return nsr03;
787	else if (nsr02)
788		return nsr02;
789	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790			VSD_FIRST_SECTOR_OFFSET)
791		return -1;
792	else
793		return 0;
794}
795
796static int udf_find_fileset(struct super_block *sb,
797			    struct kernel_lb_addr *fileset,
798			    struct kernel_lb_addr *root)
799{
800	struct buffer_head *bh = NULL;
801	long lastblock;
802	uint16_t ident;
803	struct udf_sb_info *sbi;
804
805	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806	    fileset->partitionReferenceNum != 0xFFFF) {
807		bh = udf_read_ptagged(sb, fileset, 0, &ident);
808
809		if (!bh) {
810			return 1;
811		} else if (ident != TAG_IDENT_FSD) {
812			brelse(bh);
813			return 1;
814		}
815
816	}
817
818	sbi = UDF_SB(sb);
819	if (!bh) {
820		/* Search backwards through the partitions */
821		struct kernel_lb_addr newfileset;
822
823/* --> cvg: FIXME - is it reasonable? */
824		return 1;
825
826		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827		     (newfileset.partitionReferenceNum != 0xFFFF &&
828		      fileset->logicalBlockNum == 0xFFFFFFFF &&
829		      fileset->partitionReferenceNum == 0xFFFF);
830		     newfileset.partitionReferenceNum--) {
831			lastblock = sbi->s_partmaps
832					[newfileset.partitionReferenceNum]
833						.s_partition_len;
834			newfileset.logicalBlockNum = 0;
835
836			do {
837				bh = udf_read_ptagged(sb, &newfileset, 0,
838						      &ident);
839				if (!bh) {
840					newfileset.logicalBlockNum++;
841					continue;
842				}
843
844				switch (ident) {
845				case TAG_IDENT_SBD:
846				{
847					struct spaceBitmapDesc *sp;
848					sp = (struct spaceBitmapDesc *)
849								bh->b_data;
850					newfileset.logicalBlockNum += 1 +
851						((le32_to_cpu(sp->numOfBytes) +
852						  sizeof(struct spaceBitmapDesc)
853						  - 1) >> sb->s_blocksize_bits);
854					brelse(bh);
855					break;
856				}
857				case TAG_IDENT_FSD:
858					*fileset = newfileset;
859					break;
860				default:
861					newfileset.logicalBlockNum++;
862					brelse(bh);
863					bh = NULL;
864					break;
865				}
866			} while (newfileset.logicalBlockNum < lastblock &&
867				 fileset->logicalBlockNum == 0xFFFFFFFF &&
868				 fileset->partitionReferenceNum == 0xFFFF);
869		}
870	}
871
872	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
874		udf_debug("Fileset at block=%d, partition=%d\n",
875			  fileset->logicalBlockNum,
876			  fileset->partitionReferenceNum);
877
878		sbi->s_partition = fileset->partitionReferenceNum;
879		udf_load_fileset(sb, bh, root);
880		brelse(bh);
881		return 0;
882	}
883	return 1;
884}
885
886/*
887 * Load primary Volume Descriptor Sequence
888 *
889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890 * should be tried.
891 */
892static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893{
894	struct primaryVolDesc *pvoldesc;
895	struct ustr *instr, *outstr;
896	struct buffer_head *bh;
897	uint16_t ident;
898	int ret = -ENOMEM;
899
900	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901	if (!instr)
902		return -ENOMEM;
903
904	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905	if (!outstr)
906		goto out1;
907
908	bh = udf_read_tagged(sb, block, block, &ident);
909	if (!bh) {
910		ret = -EAGAIN;
911		goto out2;
912	}
913
914	if (ident != TAG_IDENT_PVD) {
915		ret = -EIO;
916		goto out_bh;
917	}
918
919	pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922			      pvoldesc->recordingDateAndTime)) {
923#ifdef UDFFS_DEBUG
924		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
928#endif
929	}
930
931	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
932		if (udf_CS0toUTF8(outstr, instr)) {
933			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
934				outstr->u_len > 31 ? 31 : outstr->u_len);
935			udf_debug("volIdent[] = '%s'\n",
936				  UDF_SB(sb)->s_volume_ident);
937		}
938
939	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
940		if (udf_CS0toUTF8(outstr, instr))
941			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942
943	ret = 0;
944out_bh:
945	brelse(bh);
946out2:
947	kfree(outstr);
948out1:
949	kfree(instr);
950	return ret;
951}
952
953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954					u32 meta_file_loc, u32 partition_num)
955{
956	struct kernel_lb_addr addr;
957	struct inode *metadata_fe;
958
959	addr.logicalBlockNum = meta_file_loc;
960	addr.partitionReferenceNum = partition_num;
961
962	metadata_fe = udf_iget_special(sb, &addr);
963
964	if (IS_ERR(metadata_fe)) {
965		udf_warn(sb, "metadata inode efe not found\n");
966		return metadata_fe;
967	}
968	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970		iput(metadata_fe);
971		return ERR_PTR(-EIO);
972	}
973
974	return metadata_fe;
975}
976
977static int udf_load_metadata_files(struct super_block *sb, int partition)
978{
979	struct udf_sb_info *sbi = UDF_SB(sb);
980	struct udf_part_map *map;
981	struct udf_meta_data *mdata;
982	struct kernel_lb_addr addr;
983	struct inode *fe;
984
985	map = &sbi->s_partmaps[partition];
986	mdata = &map->s_type_specific.s_metadata;
987
988	/* metadata address */
989	udf_debug("Metadata file location: block = %d part = %d\n",
990		  mdata->s_meta_file_loc, map->s_partition_num);
991
992	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993					 map->s_partition_num);
994	if (IS_ERR(fe)) {
995		/* mirror file entry */
996		udf_debug("Mirror metadata file location: block = %d part = %d\n",
997			  mdata->s_mirror_file_loc, map->s_partition_num);
998
999		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000						 map->s_partition_num);
1001
1002		if (IS_ERR(fe)) {
1003			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004			return PTR_ERR(fe);
1005		}
1006		mdata->s_mirror_fe = fe;
1007	} else
1008		mdata->s_metadata_fe = fe;
1009
1010
1011	/*
1012	 * bitmap file entry
1013	 * Note:
1014	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015	*/
1016	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018		addr.partitionReferenceNum = map->s_partition_num;
1019
1020		udf_debug("Bitmap file location: block = %d part = %d\n",
1021			  addr.logicalBlockNum, addr.partitionReferenceNum);
1022
1023		fe = udf_iget_special(sb, &addr);
1024		if (IS_ERR(fe)) {
1025			if (sb->s_flags & MS_RDONLY)
1026				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027			else {
1028				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029				return PTR_ERR(fe);
1030			}
1031		} else
1032			mdata->s_bitmap_fe = fe;
1033	}
1034
1035	udf_debug("udf_load_metadata_files Ok\n");
1036	return 0;
1037}
1038
1039static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040			     struct kernel_lb_addr *root)
1041{
1042	struct fileSetDesc *fset;
1043
1044	fset = (struct fileSetDesc *)bh->b_data;
1045
1046	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047
1048	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049
1050	udf_debug("Rootdir at block=%d, partition=%d\n",
1051		  root->logicalBlockNum, root->partitionReferenceNum);
1052}
1053
1054int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055{
1056	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057	return DIV_ROUND_UP(map->s_partition_len +
1058			    (sizeof(struct spaceBitmapDesc) << 3),
1059			    sb->s_blocksize * 8);
1060}
1061
1062static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063{
1064	struct udf_bitmap *bitmap;
1065	int nr_groups;
1066	int size;
1067
1068	nr_groups = udf_compute_nr_groups(sb, index);
1069	size = sizeof(struct udf_bitmap) +
1070		(sizeof(struct buffer_head *) * nr_groups);
1071
1072	if (size <= PAGE_SIZE)
1073		bitmap = kzalloc(size, GFP_KERNEL);
1074	else
1075		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076
1077	if (bitmap == NULL)
1078		return NULL;
1079
1080	bitmap->s_nr_groups = nr_groups;
1081	return bitmap;
1082}
1083
1084static int udf_fill_partdesc_info(struct super_block *sb,
1085		struct partitionDesc *p, int p_index)
1086{
1087	struct udf_part_map *map;
1088	struct udf_sb_info *sbi = UDF_SB(sb);
1089	struct partitionHeaderDesc *phd;
1090
1091	map = &sbi->s_partmaps[p_index];
1092
1093	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095
1096	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104
1105	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106		  p_index, map->s_partition_type,
1107		  map->s_partition_root, map->s_partition_len);
1108
1109	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111		return 0;
1112
1113	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114	if (phd->unallocSpaceTable.extLength) {
1115		struct kernel_lb_addr loc = {
1116			.logicalBlockNum = le32_to_cpu(
1117				phd->unallocSpaceTable.extPosition),
1118			.partitionReferenceNum = p_index,
1119		};
1120		struct inode *inode;
1121
1122		inode = udf_iget_special(sb, &loc);
1123		if (IS_ERR(inode)) {
1124			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125				  p_index);
1126			return PTR_ERR(inode);
1127		}
1128		map->s_uspace.s_table = inode;
1129		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131			  p_index, map->s_uspace.s_table->i_ino);
1132	}
1133
1134	if (phd->unallocSpaceBitmap.extLength) {
1135		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136		if (!bitmap)
1137			return -ENOMEM;
1138		map->s_uspace.s_bitmap = bitmap;
1139		bitmap->s_extPosition = le32_to_cpu(
1140				phd->unallocSpaceBitmap.extPosition);
1141		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143			  p_index, bitmap->s_extPosition);
1144	}
1145
1146	if (phd->partitionIntegrityTable.extLength)
1147		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148
1149	if (phd->freedSpaceTable.extLength) {
1150		struct kernel_lb_addr loc = {
1151			.logicalBlockNum = le32_to_cpu(
1152				phd->freedSpaceTable.extPosition),
1153			.partitionReferenceNum = p_index,
1154		};
1155		struct inode *inode;
1156
1157		inode = udf_iget_special(sb, &loc);
1158		if (IS_ERR(inode)) {
1159			udf_debug("cannot load freedSpaceTable (part %d)\n",
1160				  p_index);
1161			return PTR_ERR(inode);
1162		}
1163		map->s_fspace.s_table = inode;
1164		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166			  p_index, map->s_fspace.s_table->i_ino);
1167	}
1168
1169	if (phd->freedSpaceBitmap.extLength) {
1170		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171		if (!bitmap)
1172			return -ENOMEM;
1173		map->s_fspace.s_bitmap = bitmap;
1174		bitmap->s_extPosition = le32_to_cpu(
1175				phd->freedSpaceBitmap.extPosition);
1176		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178			  p_index, bitmap->s_extPosition);
1179	}
1180	return 0;
1181}
1182
1183static void udf_find_vat_block(struct super_block *sb, int p_index,
1184			       int type1_index, sector_t start_block)
1185{
1186	struct udf_sb_info *sbi = UDF_SB(sb);
1187	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188	sector_t vat_block;
1189	struct kernel_lb_addr ino;
1190	struct inode *inode;
1191
1192	/*
1193	 * VAT file entry is in the last recorded block. Some broken disks have
1194	 * it a few blocks before so try a bit harder...
1195	 */
1196	ino.partitionReferenceNum = type1_index;
1197	for (vat_block = start_block;
1198	     vat_block >= map->s_partition_root &&
1199	     vat_block >= start_block - 3; vat_block--) {
1200		ino.logicalBlockNum = vat_block - map->s_partition_root;
1201		inode = udf_iget_special(sb, &ino);
1202		if (!IS_ERR(inode)) {
1203			sbi->s_vat_inode = inode;
1204			break;
1205		}
1206	}
1207}
1208
1209static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210{
1211	struct udf_sb_info *sbi = UDF_SB(sb);
1212	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213	struct buffer_head *bh = NULL;
1214	struct udf_inode_info *vati;
1215	uint32_t pos;
1216	struct virtualAllocationTable20 *vat20;
1217	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218
1219	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220	if (!sbi->s_vat_inode &&
1221	    sbi->s_last_block != blocks - 1) {
1222		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223			  (unsigned long)sbi->s_last_block,
1224			  (unsigned long)blocks - 1);
1225		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226	}
1227	if (!sbi->s_vat_inode)
1228		return -EIO;
1229
1230	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231		map->s_type_specific.s_virtual.s_start_offset = 0;
1232		map->s_type_specific.s_virtual.s_num_entries =
1233			(sbi->s_vat_inode->i_size - 36) >> 2;
1234	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235		vati = UDF_I(sbi->s_vat_inode);
1236		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237			pos = udf_block_map(sbi->s_vat_inode, 0);
1238			bh = sb_bread(sb, pos);
1239			if (!bh)
1240				return -EIO;
1241			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242		} else {
1243			vat20 = (struct virtualAllocationTable20 *)
1244							vati->i_ext.i_data;
1245		}
1246
1247		map->s_type_specific.s_virtual.s_start_offset =
1248			le16_to_cpu(vat20->lengthHeader);
1249		map->s_type_specific.s_virtual.s_num_entries =
1250			(sbi->s_vat_inode->i_size -
1251				map->s_type_specific.s_virtual.
1252					s_start_offset) >> 2;
1253		brelse(bh);
1254	}
1255	return 0;
1256}
1257
1258/*
1259 * Load partition descriptor block
1260 *
1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262 * sequence.
1263 */
1264static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265{
1266	struct buffer_head *bh;
1267	struct partitionDesc *p;
1268	struct udf_part_map *map;
1269	struct udf_sb_info *sbi = UDF_SB(sb);
1270	int i, type1_idx;
1271	uint16_t partitionNumber;
1272	uint16_t ident;
1273	int ret;
1274
1275	bh = udf_read_tagged(sb, block, block, &ident);
1276	if (!bh)
1277		return -EAGAIN;
1278	if (ident != TAG_IDENT_PD) {
1279		ret = 0;
1280		goto out_bh;
1281	}
1282
1283	p = (struct partitionDesc *)bh->b_data;
1284	partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1287	for (i = 0; i < sbi->s_partitions; i++) {
1288		map = &sbi->s_partmaps[i];
1289		udf_debug("Searching map: (%d == %d)\n",
1290			  map->s_partition_num, partitionNumber);
1291		if (map->s_partition_num == partitionNumber &&
1292		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293		     map->s_partition_type == UDF_SPARABLE_MAP15))
1294			break;
1295	}
1296
1297	if (i >= sbi->s_partitions) {
1298		udf_debug("Partition (%d) not found in partition map\n",
1299			  partitionNumber);
1300		ret = 0;
1301		goto out_bh;
1302	}
1303
1304	ret = udf_fill_partdesc_info(sb, p, i);
1305	if (ret < 0)
1306		goto out_bh;
1307
1308	/*
1309	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310	 * PHYSICAL partitions are already set up
1311	 */
1312	type1_idx = i;
1313#ifdef UDFFS_DEBUG
1314	map = NULL; /* supress 'maybe used uninitialized' warning */
1315#endif
1316	for (i = 0; i < sbi->s_partitions; i++) {
1317		map = &sbi->s_partmaps[i];
1318
1319		if (map->s_partition_num == partitionNumber &&
1320		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322		     map->s_partition_type == UDF_METADATA_MAP25))
1323			break;
1324	}
1325
1326	if (i >= sbi->s_partitions) {
1327		ret = 0;
1328		goto out_bh;
1329	}
1330
1331	ret = udf_fill_partdesc_info(sb, p, i);
1332	if (ret < 0)
1333		goto out_bh;
1334
1335	if (map->s_partition_type == UDF_METADATA_MAP25) {
1336		ret = udf_load_metadata_files(sb, i);
1337		if (ret < 0) {
1338			udf_err(sb, "error loading MetaData partition map %d\n",
1339				i);
1340			goto out_bh;
1341		}
1342	} else {
1343		/*
1344		 * If we have a partition with virtual map, we don't handle
1345		 * writing to it (we overwrite blocks instead of relocating
1346		 * them).
1347		 */
1348		if (!(sb->s_flags & MS_RDONLY)) {
1349			ret = -EACCES;
1350			goto out_bh;
1351		}
1352		ret = udf_load_vat(sb, i, type1_idx);
1353		if (ret < 0)
1354			goto out_bh;
1355	}
1356	ret = 0;
1357out_bh:
1358	/* In case loading failed, we handle cleanup in udf_fill_super */
1359	brelse(bh);
1360	return ret;
1361}
1362
1363static int udf_load_sparable_map(struct super_block *sb,
1364				 struct udf_part_map *map,
1365				 struct sparablePartitionMap *spm)
1366{
1367	uint32_t loc;
1368	uint16_t ident;
1369	struct sparingTable *st;
1370	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371	int i;
1372	struct buffer_head *bh;
1373
1374	map->s_partition_type = UDF_SPARABLE_MAP15;
1375	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376	if (!is_power_of_2(sdata->s_packet_len)) {
1377		udf_err(sb, "error loading logical volume descriptor: "
1378			"Invalid packet length %u\n",
1379			(unsigned)sdata->s_packet_len);
1380		return -EIO;
1381	}
1382	if (spm->numSparingTables > 4) {
1383		udf_err(sb, "error loading logical volume descriptor: "
1384			"Too many sparing tables (%d)\n",
1385			(int)spm->numSparingTables);
1386		return -EIO;
1387	}
1388
1389	for (i = 0; i < spm->numSparingTables; i++) {
1390		loc = le32_to_cpu(spm->locSparingTable[i]);
1391		bh = udf_read_tagged(sb, loc, loc, &ident);
1392		if (!bh)
1393			continue;
1394
1395		st = (struct sparingTable *)bh->b_data;
1396		if (ident != 0 ||
1397		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398			    strlen(UDF_ID_SPARING)) ||
1399		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400							sb->s_blocksize) {
1401			brelse(bh);
1402			continue;
1403		}
1404
1405		sdata->s_spar_map[i] = bh;
1406	}
1407	map->s_partition_func = udf_get_pblock_spar15;
1408	return 0;
1409}
1410
1411static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412			       struct kernel_lb_addr *fileset)
1413{
1414	struct logicalVolDesc *lvd;
1415	int i, offset;
1416	uint8_t type;
1417	struct udf_sb_info *sbi = UDF_SB(sb);
1418	struct genericPartitionMap *gpm;
1419	uint16_t ident;
1420	struct buffer_head *bh;
1421	unsigned int table_len;
1422	int ret;
1423
1424	bh = udf_read_tagged(sb, block, block, &ident);
1425	if (!bh)
1426		return -EAGAIN;
1427	BUG_ON(ident != TAG_IDENT_LVD);
1428	lvd = (struct logicalVolDesc *)bh->b_data;
1429	table_len = le32_to_cpu(lvd->mapTableLength);
1430	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431		udf_err(sb, "error loading logical volume descriptor: "
1432			"Partition table too long (%u > %lu)\n", table_len,
1433			sb->s_blocksize - sizeof(*lvd));
1434		ret = -EIO;
1435		goto out_bh;
1436	}
1437
1438	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439	if (ret)
1440		goto out_bh;
1441
1442	for (i = 0, offset = 0;
1443	     i < sbi->s_partitions && offset < table_len;
1444	     i++, offset += gpm->partitionMapLength) {
1445		struct udf_part_map *map = &sbi->s_partmaps[i];
1446		gpm = (struct genericPartitionMap *)
1447				&(lvd->partitionMaps[offset]);
1448		type = gpm->partitionMapType;
1449		if (type == 1) {
1450			struct genericPartitionMap1 *gpm1 =
1451				(struct genericPartitionMap1 *)gpm;
1452			map->s_partition_type = UDF_TYPE1_MAP15;
1453			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455			map->s_partition_func = NULL;
1456		} else if (type == 2) {
1457			struct udfPartitionMap2 *upm2 =
1458						(struct udfPartitionMap2 *)gpm;
1459			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460						strlen(UDF_ID_VIRTUAL))) {
1461				u16 suf =
1462					le16_to_cpu(((__le16 *)upm2->partIdent.
1463							identSuffix)[0]);
1464				if (suf < 0x0200) {
1465					map->s_partition_type =
1466							UDF_VIRTUAL_MAP15;
1467					map->s_partition_func =
1468							udf_get_pblock_virt15;
1469				} else {
1470					map->s_partition_type =
1471							UDF_VIRTUAL_MAP20;
1472					map->s_partition_func =
1473							udf_get_pblock_virt20;
1474				}
1475			} else if (!strncmp(upm2->partIdent.ident,
1476						UDF_ID_SPARABLE,
1477						strlen(UDF_ID_SPARABLE))) {
1478				ret = udf_load_sparable_map(sb, map,
1479					(struct sparablePartitionMap *)gpm);
1480				if (ret < 0)
1481					goto out_bh;
1482			} else if (!strncmp(upm2->partIdent.ident,
1483						UDF_ID_METADATA,
1484						strlen(UDF_ID_METADATA))) {
1485				struct udf_meta_data *mdata =
1486					&map->s_type_specific.s_metadata;
1487				struct metadataPartitionMap *mdm =
1488						(struct metadataPartitionMap *)
1489						&(lvd->partitionMaps[offset]);
1490				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1491					  i, type, UDF_ID_METADATA);
1492
1493				map->s_partition_type = UDF_METADATA_MAP25;
1494				map->s_partition_func = udf_get_pblock_meta25;
1495
1496				mdata->s_meta_file_loc   =
1497					le32_to_cpu(mdm->metadataFileLoc);
1498				mdata->s_mirror_file_loc =
1499					le32_to_cpu(mdm->metadataMirrorFileLoc);
1500				mdata->s_bitmap_file_loc =
1501					le32_to_cpu(mdm->metadataBitmapFileLoc);
1502				mdata->s_alloc_unit_size =
1503					le32_to_cpu(mdm->allocUnitSize);
1504				mdata->s_align_unit_size =
1505					le16_to_cpu(mdm->alignUnitSize);
1506				if (mdm->flags & 0x01)
1507					mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509				udf_debug("Metadata Ident suffix=0x%x\n",
1510					  le16_to_cpu(*(__le16 *)
1511						      mdm->partIdent.identSuffix));
1512				udf_debug("Metadata part num=%d\n",
1513					  le16_to_cpu(mdm->partitionNum));
1514				udf_debug("Metadata part alloc unit size=%d\n",
1515					  le32_to_cpu(mdm->allocUnitSize));
1516				udf_debug("Metadata file loc=%d\n",
1517					  le32_to_cpu(mdm->metadataFileLoc));
1518				udf_debug("Mirror file loc=%d\n",
1519					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1520				udf_debug("Bitmap file loc=%d\n",
1521					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1522				udf_debug("Flags: %d %d\n",
1523					  mdata->s_flags, mdm->flags);
1524			} else {
1525				udf_debug("Unknown ident: %s\n",
1526					  upm2->partIdent.ident);
1527				continue;
1528			}
1529			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531		}
1532		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533			  i, map->s_partition_num, type, map->s_volumeseqnum);
1534	}
1535
1536	if (fileset) {
1537		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539		*fileset = lelb_to_cpu(la->extLocation);
1540		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541			  fileset->logicalBlockNum,
1542			  fileset->partitionReferenceNum);
1543	}
1544	if (lvd->integritySeqExt.extLength)
1545		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546	ret = 0;
1547out_bh:
1548	brelse(bh);
1549	return ret;
1550}
1551
1552/*
1553 * udf_load_logicalvolint
1554 *
1555 */
1556static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1557{
1558	struct buffer_head *bh = NULL;
1559	uint16_t ident;
1560	struct udf_sb_info *sbi = UDF_SB(sb);
1561	struct logicalVolIntegrityDesc *lvid;
1562
1563	while (loc.extLength > 0 &&
1564	       (bh = udf_read_tagged(sb, loc.extLocation,
1565				     loc.extLocation, &ident)) &&
1566	       ident == TAG_IDENT_LVID) {
1567		sbi->s_lvid_bh = bh;
1568		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1569
1570		if (lvid->nextIntegrityExt.extLength)
1571			udf_load_logicalvolint(sb,
1572				leea_to_cpu(lvid->nextIntegrityExt));
1573
1574		if (sbi->s_lvid_bh != bh)
1575			brelse(bh);
1576		loc.extLength -= sb->s_blocksize;
1577		loc.extLocation++;
1578	}
1579	if (sbi->s_lvid_bh != bh)
1580		brelse(bh);
1581}
1582
1583/*
1584 * Process a main/reserve volume descriptor sequence.
1585 *   @block		First block of first extent of the sequence.
1586 *   @lastblock		Lastblock of first extent of the sequence.
1587 *   @fileset		There we store extent containing root fileset
1588 *
1589 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1590 * sequence
1591 */
1592static noinline int udf_process_sequence(
1593		struct super_block *sb,
1594		sector_t block, sector_t lastblock,
1595		struct kernel_lb_addr *fileset)
1596{
1597	struct buffer_head *bh = NULL;
1598	struct udf_vds_record vds[VDS_POS_LENGTH];
1599	struct udf_vds_record *curr;
1600	struct generic_desc *gd;
1601	struct volDescPtr *vdp;
1602	int done = 0;
1603	uint32_t vdsn;
1604	uint16_t ident;
1605	long next_s = 0, next_e = 0;
1606	int ret;
1607
1608	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1609
1610	/*
1611	 * Read the main descriptor sequence and find which descriptors
1612	 * are in it.
1613	 */
1614	for (; (!done && block <= lastblock); block++) {
1615
1616		bh = udf_read_tagged(sb, block, block, &ident);
1617		if (!bh) {
1618			udf_err(sb,
1619				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1620				(unsigned long long)block);
1621			return -EAGAIN;
1622		}
1623
1624		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1625		gd = (struct generic_desc *)bh->b_data;
1626		vdsn = le32_to_cpu(gd->volDescSeqNum);
1627		switch (ident) {
1628		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1629			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1630			if (vdsn >= curr->volDescSeqNum) {
1631				curr->volDescSeqNum = vdsn;
1632				curr->block = block;
1633			}
1634			break;
1635		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1636			curr = &vds[VDS_POS_VOL_DESC_PTR];
1637			if (vdsn >= curr->volDescSeqNum) {
1638				curr->volDescSeqNum = vdsn;
1639				curr->block = block;
1640
1641				vdp = (struct volDescPtr *)bh->b_data;
1642				next_s = le32_to_cpu(
1643					vdp->nextVolDescSeqExt.extLocation);
1644				next_e = le32_to_cpu(
1645					vdp->nextVolDescSeqExt.extLength);
1646				next_e = next_e >> sb->s_blocksize_bits;
1647				next_e += next_s;
1648			}
1649			break;
1650		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1651			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1652			if (vdsn >= curr->volDescSeqNum) {
1653				curr->volDescSeqNum = vdsn;
1654				curr->block = block;
1655			}
1656			break;
1657		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1658			curr = &vds[VDS_POS_PARTITION_DESC];
1659			if (!curr->block)
1660				curr->block = block;
1661			break;
1662		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1663			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1664			if (vdsn >= curr->volDescSeqNum) {
1665				curr->volDescSeqNum = vdsn;
1666				curr->block = block;
1667			}
1668			break;
1669		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1670			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1671			if (vdsn >= curr->volDescSeqNum) {
1672				curr->volDescSeqNum = vdsn;
1673				curr->block = block;
1674			}
1675			break;
1676		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1677			vds[VDS_POS_TERMINATING_DESC].block = block;
1678			if (next_e) {
1679				block = next_s;
1680				lastblock = next_e;
1681				next_s = next_e = 0;
1682			} else
1683				done = 1;
1684			break;
1685		}
1686		brelse(bh);
1687	}
1688	/*
1689	 * Now read interesting descriptors again and process them
1690	 * in a suitable order
1691	 */
1692	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1693		udf_err(sb, "Primary Volume Descriptor not found!\n");
1694		return -EAGAIN;
1695	}
1696	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1697	if (ret < 0)
1698		return ret;
1699
1700	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1701		ret = udf_load_logicalvol(sb,
1702					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1703					  fileset);
1704		if (ret < 0)
1705			return ret;
1706	}
1707
1708	if (vds[VDS_POS_PARTITION_DESC].block) {
1709		/*
1710		 * We rescan the whole descriptor sequence to find
1711		 * partition descriptor blocks and process them.
1712		 */
1713		for (block = vds[VDS_POS_PARTITION_DESC].block;
1714		     block < vds[VDS_POS_TERMINATING_DESC].block;
1715		     block++) {
1716			ret = udf_load_partdesc(sb, block);
1717			if (ret < 0)
1718				return ret;
1719		}
1720	}
1721
1722	return 0;
1723}
1724
1725/*
1726 * Load Volume Descriptor Sequence described by anchor in bh
1727 *
1728 * Returns <0 on error, 0 on success
1729 */
1730static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1731			     struct kernel_lb_addr *fileset)
1732{
1733	struct anchorVolDescPtr *anchor;
1734	sector_t main_s, main_e, reserve_s, reserve_e;
1735	int ret;
1736
1737	anchor = (struct anchorVolDescPtr *)bh->b_data;
1738
1739	/* Locate the main sequence */
1740	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1741	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1742	main_e = main_e >> sb->s_blocksize_bits;
1743	main_e += main_s;
1744
1745	/* Locate the reserve sequence */
1746	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1747	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1748	reserve_e = reserve_e >> sb->s_blocksize_bits;
1749	reserve_e += reserve_s;
1750
1751	/* Process the main & reserve sequences */
1752	/* responsible for finding the PartitionDesc(s) */
1753	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1754	if (ret != -EAGAIN)
1755		return ret;
1756	udf_sb_free_partitions(sb);
1757	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1758	if (ret < 0) {
1759		udf_sb_free_partitions(sb);
1760		/* No sequence was OK, return -EIO */
1761		if (ret == -EAGAIN)
1762			ret = -EIO;
1763	}
1764	return ret;
1765}
1766
1767/*
1768 * Check whether there is an anchor block in the given block and
1769 * load Volume Descriptor Sequence if so.
1770 *
1771 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1772 * block
1773 */
1774static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1775				  struct kernel_lb_addr *fileset)
1776{
1777	struct buffer_head *bh;
1778	uint16_t ident;
1779	int ret;
1780
1781	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1782	    udf_fixed_to_variable(block) >=
1783	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1784		return -EAGAIN;
1785
1786	bh = udf_read_tagged(sb, block, block, &ident);
1787	if (!bh)
1788		return -EAGAIN;
1789	if (ident != TAG_IDENT_AVDP) {
1790		brelse(bh);
1791		return -EAGAIN;
1792	}
1793	ret = udf_load_sequence(sb, bh, fileset);
1794	brelse(bh);
1795	return ret;
1796}
1797
1798/*
1799 * Search for an anchor volume descriptor pointer.
1800 *
1801 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1802 * of anchors.
1803 */
1804static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1805			    struct kernel_lb_addr *fileset)
1806{
1807	sector_t last[6];
1808	int i;
1809	struct udf_sb_info *sbi = UDF_SB(sb);
1810	int last_count = 0;
1811	int ret;
1812
1813	/* First try user provided anchor */
1814	if (sbi->s_anchor) {
1815		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1816		if (ret != -EAGAIN)
1817			return ret;
1818	}
1819	/*
1820	 * according to spec, anchor is in either:
1821	 *     block 256
1822	 *     lastblock-256
1823	 *     lastblock
1824	 *  however, if the disc isn't closed, it could be 512.
1825	 */
1826	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1827	if (ret != -EAGAIN)
1828		return ret;
1829	/*
1830	 * The trouble is which block is the last one. Drives often misreport
1831	 * this so we try various possibilities.
1832	 */
1833	last[last_count++] = *lastblock;
1834	if (*lastblock >= 1)
1835		last[last_count++] = *lastblock - 1;
1836	last[last_count++] = *lastblock + 1;
1837	if (*lastblock >= 2)
1838		last[last_count++] = *lastblock - 2;
1839	if (*lastblock >= 150)
1840		last[last_count++] = *lastblock - 150;
1841	if (*lastblock >= 152)
1842		last[last_count++] = *lastblock - 152;
1843
1844	for (i = 0; i < last_count; i++) {
1845		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1846				sb->s_blocksize_bits)
1847			continue;
1848		ret = udf_check_anchor_block(sb, last[i], fileset);
1849		if (ret != -EAGAIN) {
1850			if (!ret)
1851				*lastblock = last[i];
1852			return ret;
1853		}
1854		if (last[i] < 256)
1855			continue;
1856		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1857		if (ret != -EAGAIN) {
1858			if (!ret)
1859				*lastblock = last[i];
1860			return ret;
1861		}
1862	}
1863
1864	/* Finally try block 512 in case media is open */
1865	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1866}
1867
1868/*
1869 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1870 * area specified by it. The function expects sbi->s_lastblock to be the last
1871 * block on the media.
1872 *
1873 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1874 * was not found.
1875 */
1876static int udf_find_anchor(struct super_block *sb,
1877			   struct kernel_lb_addr *fileset)
1878{
1879	struct udf_sb_info *sbi = UDF_SB(sb);
1880	sector_t lastblock = sbi->s_last_block;
1881	int ret;
1882
1883	ret = udf_scan_anchors(sb, &lastblock, fileset);
1884	if (ret != -EAGAIN)
1885		goto out;
1886
1887	/* No anchor found? Try VARCONV conversion of block numbers */
1888	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1889	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1890	/* Firstly, we try to not convert number of the last block */
1891	ret = udf_scan_anchors(sb, &lastblock, fileset);
1892	if (ret != -EAGAIN)
1893		goto out;
1894
1895	lastblock = sbi->s_last_block;
1896	/* Secondly, we try with converted number of the last block */
1897	ret = udf_scan_anchors(sb, &lastblock, fileset);
1898	if (ret < 0) {
1899		/* VARCONV didn't help. Clear it. */
1900		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1901	}
1902out:
1903	if (ret == 0)
1904		sbi->s_last_block = lastblock;
1905	return ret;
1906}
1907
1908/*
1909 * Check Volume Structure Descriptor, find Anchor block and load Volume
1910 * Descriptor Sequence.
1911 *
1912 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1913 * block was not found.
1914 */
1915static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1916			int silent, struct kernel_lb_addr *fileset)
1917{
1918	struct udf_sb_info *sbi = UDF_SB(sb);
1919	loff_t nsr_off;
1920	int ret;
1921
1922	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1923		if (!silent)
1924			udf_warn(sb, "Bad block size\n");
1925		return -EINVAL;
1926	}
1927	sbi->s_last_block = uopt->lastblock;
1928	if (!uopt->novrs) {
1929		/* Check that it is NSR02 compliant */
1930		nsr_off = udf_check_vsd(sb);
1931		if (!nsr_off) {
1932			if (!silent)
1933				udf_warn(sb, "No VRS found\n");
1934			return 0;
1935		}
1936		if (nsr_off == -1)
1937			udf_debug("Failed to read sector at offset %d. "
1938				  "Assuming open disc. Skipping validity "
1939				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1940		if (!sbi->s_last_block)
1941			sbi->s_last_block = udf_get_last_block(sb);
1942	} else {
1943		udf_debug("Validity check skipped because of novrs option\n");
1944	}
1945
1946	/* Look for anchor block and load Volume Descriptor Sequence */
1947	sbi->s_anchor = uopt->anchor;
1948	ret = udf_find_anchor(sb, fileset);
1949	if (ret < 0) {
1950		if (!silent && ret == -EAGAIN)
1951			udf_warn(sb, "No anchor found\n");
1952		return ret;
1953	}
1954	return 0;
1955}
1956
1957static void udf_open_lvid(struct super_block *sb)
1958{
1959	struct udf_sb_info *sbi = UDF_SB(sb);
1960	struct buffer_head *bh = sbi->s_lvid_bh;
1961	struct logicalVolIntegrityDesc *lvid;
1962	struct logicalVolIntegrityDescImpUse *lvidiu;
1963
1964	if (!bh)
1965		return;
1966	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1967	lvidiu = udf_sb_lvidiu(sb);
1968	if (!lvidiu)
1969		return;
1970
1971	mutex_lock(&sbi->s_alloc_mutex);
1972	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1973	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1974	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1975				CURRENT_TIME);
1976	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1977
1978	lvid->descTag.descCRC = cpu_to_le16(
1979		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1980			le16_to_cpu(lvid->descTag.descCRCLength)));
1981
1982	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1983	mark_buffer_dirty(bh);
1984	sbi->s_lvid_dirty = 0;
1985	mutex_unlock(&sbi->s_alloc_mutex);
1986	/* Make opening of filesystem visible on the media immediately */
1987	sync_dirty_buffer(bh);
1988}
1989
1990static void udf_close_lvid(struct super_block *sb)
1991{
1992	struct udf_sb_info *sbi = UDF_SB(sb);
1993	struct buffer_head *bh = sbi->s_lvid_bh;
1994	struct logicalVolIntegrityDesc *lvid;
1995	struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997	if (!bh)
1998		return;
1999	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000	lvidiu = udf_sb_lvidiu(sb);
2001	if (!lvidiu)
2002		return;
2003
2004	mutex_lock(&sbi->s_alloc_mutex);
2005	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2008	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2009		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2010	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2011		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2012	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2013		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2014	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2015
2016	lvid->descTag.descCRC = cpu_to_le16(
2017			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2018				le16_to_cpu(lvid->descTag.descCRCLength)));
2019
2020	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2021	/*
2022	 * We set buffer uptodate unconditionally here to avoid spurious
2023	 * warnings from mark_buffer_dirty() when previous EIO has marked
2024	 * the buffer as !uptodate
2025	 */
2026	set_buffer_uptodate(bh);
2027	mark_buffer_dirty(bh);
2028	sbi->s_lvid_dirty = 0;
2029	mutex_unlock(&sbi->s_alloc_mutex);
2030	/* Make closing of filesystem visible on the media immediately */
2031	sync_dirty_buffer(bh);
2032}
2033
2034u64 lvid_get_unique_id(struct super_block *sb)
2035{
2036	struct buffer_head *bh;
2037	struct udf_sb_info *sbi = UDF_SB(sb);
2038	struct logicalVolIntegrityDesc *lvid;
2039	struct logicalVolHeaderDesc *lvhd;
2040	u64 uniqueID;
2041	u64 ret;
2042
2043	bh = sbi->s_lvid_bh;
2044	if (!bh)
2045		return 0;
2046
2047	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2048	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2049
2050	mutex_lock(&sbi->s_alloc_mutex);
2051	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2052	if (!(++uniqueID & 0xFFFFFFFF))
2053		uniqueID += 16;
2054	lvhd->uniqueID = cpu_to_le64(uniqueID);
2055	mutex_unlock(&sbi->s_alloc_mutex);
2056	mark_buffer_dirty(bh);
2057
2058	return ret;
2059}
2060
2061static int udf_fill_super(struct super_block *sb, void *options, int silent)
2062{
2063	int ret = -EINVAL;
2064	struct inode *inode = NULL;
2065	struct udf_options uopt;
2066	struct kernel_lb_addr rootdir, fileset;
2067	struct udf_sb_info *sbi;
2068
2069	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2070	uopt.uid = INVALID_UID;
2071	uopt.gid = INVALID_GID;
2072	uopt.umask = 0;
2073	uopt.fmode = UDF_INVALID_MODE;
2074	uopt.dmode = UDF_INVALID_MODE;
2075
2076	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2077	if (!sbi)
2078		return -ENOMEM;
2079
2080	sb->s_fs_info = sbi;
2081
2082	mutex_init(&sbi->s_alloc_mutex);
2083
2084	if (!udf_parse_options((char *)options, &uopt, false))
2085		goto error_out;
2086
2087	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2088	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2089		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2090		goto error_out;
2091	}
2092#ifdef CONFIG_UDF_NLS
2093	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2094		uopt.nls_map = load_nls_default();
2095		if (!uopt.nls_map)
2096			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2097		else
2098			udf_debug("Using default NLS map\n");
2099	}
2100#endif
2101	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2102		uopt.flags |= (1 << UDF_FLAG_UTF8);
2103
2104	fileset.logicalBlockNum = 0xFFFFFFFF;
2105	fileset.partitionReferenceNum = 0xFFFF;
2106
2107	sbi->s_flags = uopt.flags;
2108	sbi->s_uid = uopt.uid;
2109	sbi->s_gid = uopt.gid;
2110	sbi->s_umask = uopt.umask;
2111	sbi->s_fmode = uopt.fmode;
2112	sbi->s_dmode = uopt.dmode;
2113	sbi->s_nls_map = uopt.nls_map;
2114	rwlock_init(&sbi->s_cred_lock);
2115
2116	if (uopt.session == 0xFFFFFFFF)
2117		sbi->s_session = udf_get_last_session(sb);
2118	else
2119		sbi->s_session = uopt.session;
2120
2121	udf_debug("Multi-session=%d\n", sbi->s_session);
2122
2123	/* Fill in the rest of the superblock */
2124	sb->s_op = &udf_sb_ops;
2125	sb->s_export_op = &udf_export_ops;
2126
2127	sb->s_magic = UDF_SUPER_MAGIC;
2128	sb->s_time_gran = 1000;
2129
2130	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2131		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2132	} else {
2133		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2134		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2135		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2136			if (!silent)
2137				pr_notice("Rescanning with blocksize %d\n",
2138					  UDF_DEFAULT_BLOCKSIZE);
2139			brelse(sbi->s_lvid_bh);
2140			sbi->s_lvid_bh = NULL;
2141			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2142			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2143		}
2144	}
2145	if (ret < 0) {
2146		if (ret == -EAGAIN) {
2147			udf_warn(sb, "No partition found (1)\n");
2148			ret = -EINVAL;
2149		}
2150		goto error_out;
2151	}
2152
2153	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2154
2155	if (sbi->s_lvid_bh) {
2156		struct logicalVolIntegrityDescImpUse *lvidiu =
2157							udf_sb_lvidiu(sb);
2158		uint16_t minUDFReadRev;
2159		uint16_t minUDFWriteRev;
2160
2161		if (!lvidiu) {
2162			ret = -EINVAL;
2163			goto error_out;
2164		}
2165		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2166		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2167		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2168			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2169				minUDFReadRev,
2170				UDF_MAX_READ_VERSION);
2171			ret = -EINVAL;
2172			goto error_out;
2173		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2174			   !(sb->s_flags & MS_RDONLY)) {
2175			ret = -EACCES;
2176			goto error_out;
2177		}
2178
2179		sbi->s_udfrev = minUDFWriteRev;
2180
2181		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2182			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2183		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2184			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2185	}
2186
2187	if (!sbi->s_partitions) {
2188		udf_warn(sb, "No partition found (2)\n");
2189		ret = -EINVAL;
2190		goto error_out;
2191	}
2192
2193	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2194			UDF_PART_FLAG_READ_ONLY &&
2195	    !(sb->s_flags & MS_RDONLY)) {
2196		ret = -EACCES;
2197		goto error_out;
2198	}
2199
2200	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2201		udf_warn(sb, "No fileset found\n");
2202		ret = -EINVAL;
2203		goto error_out;
2204	}
2205
2206	if (!silent) {
2207		struct timestamp ts;
2208		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2209		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2210			 sbi->s_volume_ident,
2211			 le16_to_cpu(ts.year), ts.month, ts.day,
2212			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2213	}
2214	if (!(sb->s_flags & MS_RDONLY))
2215		udf_open_lvid(sb);
2216
2217	/* Assign the root inode */
2218	/* assign inodes by physical block number */
2219	/* perhaps it's not extensible enough, but for now ... */
2220	inode = udf_iget(sb, &rootdir);
2221	if (IS_ERR(inode)) {
2222		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2223		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2224		ret = PTR_ERR(inode);
2225		goto error_out;
2226	}
2227
2228	/* Allocate a dentry for the root inode */
2229	sb->s_root = d_make_root(inode);
2230	if (!sb->s_root) {
2231		udf_err(sb, "Couldn't allocate root dentry\n");
2232		ret = -ENOMEM;
2233		goto error_out;
2234	}
2235	sb->s_maxbytes = MAX_LFS_FILESIZE;
2236	sb->s_max_links = UDF_MAX_LINKS;
2237	return 0;
2238
2239error_out:
2240	if (sbi->s_vat_inode)
2241		iput(sbi->s_vat_inode);
2242#ifdef CONFIG_UDF_NLS
2243	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2244		unload_nls(sbi->s_nls_map);
2245#endif
2246	if (!(sb->s_flags & MS_RDONLY))
2247		udf_close_lvid(sb);
2248	brelse(sbi->s_lvid_bh);
2249	udf_sb_free_partitions(sb);
2250	kfree(sbi);
2251	sb->s_fs_info = NULL;
2252
2253	return ret;
2254}
2255
2256void _udf_err(struct super_block *sb, const char *function,
2257	      const char *fmt, ...)
2258{
2259	struct va_format vaf;
2260	va_list args;
2261
2262	va_start(args, fmt);
2263
2264	vaf.fmt = fmt;
2265	vaf.va = &args;
2266
2267	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2268
2269	va_end(args);
2270}
2271
2272void _udf_warn(struct super_block *sb, const char *function,
2273	       const char *fmt, ...)
2274{
2275	struct va_format vaf;
2276	va_list args;
2277
2278	va_start(args, fmt);
2279
2280	vaf.fmt = fmt;
2281	vaf.va = &args;
2282
2283	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2284
2285	va_end(args);
2286}
2287
2288static void udf_put_super(struct super_block *sb)
2289{
2290	struct udf_sb_info *sbi;
2291
2292	sbi = UDF_SB(sb);
2293
2294	if (sbi->s_vat_inode)
2295		iput(sbi->s_vat_inode);
2296#ifdef CONFIG_UDF_NLS
2297	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2298		unload_nls(sbi->s_nls_map);
2299#endif
2300	if (!(sb->s_flags & MS_RDONLY))
2301		udf_close_lvid(sb);
2302	brelse(sbi->s_lvid_bh);
2303	udf_sb_free_partitions(sb);
2304	kfree(sb->s_fs_info);
2305	sb->s_fs_info = NULL;
2306}
2307
2308static int udf_sync_fs(struct super_block *sb, int wait)
2309{
2310	struct udf_sb_info *sbi = UDF_SB(sb);
2311
2312	mutex_lock(&sbi->s_alloc_mutex);
2313	if (sbi->s_lvid_dirty) {
2314		/*
2315		 * Blockdevice will be synced later so we don't have to submit
2316		 * the buffer for IO
2317		 */
2318		mark_buffer_dirty(sbi->s_lvid_bh);
2319		sbi->s_lvid_dirty = 0;
2320	}
2321	mutex_unlock(&sbi->s_alloc_mutex);
2322
2323	return 0;
2324}
2325
2326static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2327{
2328	struct super_block *sb = dentry->d_sb;
2329	struct udf_sb_info *sbi = UDF_SB(sb);
2330	struct logicalVolIntegrityDescImpUse *lvidiu;
2331	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2332
2333	lvidiu = udf_sb_lvidiu(sb);
2334	buf->f_type = UDF_SUPER_MAGIC;
2335	buf->f_bsize = sb->s_blocksize;
2336	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2337	buf->f_bfree = udf_count_free(sb);
2338	buf->f_bavail = buf->f_bfree;
2339	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2340					  le32_to_cpu(lvidiu->numDirs)) : 0)
2341			+ buf->f_bfree;
2342	buf->f_ffree = buf->f_bfree;
2343	buf->f_namelen = UDF_NAME_LEN - 2;
2344	buf->f_fsid.val[0] = (u32)id;
2345	buf->f_fsid.val[1] = (u32)(id >> 32);
2346
2347	return 0;
2348}
2349
2350static unsigned int udf_count_free_bitmap(struct super_block *sb,
2351					  struct udf_bitmap *bitmap)
2352{
2353	struct buffer_head *bh = NULL;
2354	unsigned int accum = 0;
2355	int index;
2356	int block = 0, newblock;
2357	struct kernel_lb_addr loc;
2358	uint32_t bytes;
2359	uint8_t *ptr;
2360	uint16_t ident;
2361	struct spaceBitmapDesc *bm;
2362
2363	loc.logicalBlockNum = bitmap->s_extPosition;
2364	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2365	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2366
2367	if (!bh) {
2368		udf_err(sb, "udf_count_free failed\n");
2369		goto out;
2370	} else if (ident != TAG_IDENT_SBD) {
2371		brelse(bh);
2372		udf_err(sb, "udf_count_free failed\n");
2373		goto out;
2374	}
2375
2376	bm = (struct spaceBitmapDesc *)bh->b_data;
2377	bytes = le32_to_cpu(bm->numOfBytes);
2378	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2379	ptr = (uint8_t *)bh->b_data;
2380
2381	while (bytes > 0) {
2382		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2383		accum += bitmap_weight((const unsigned long *)(ptr + index),
2384					cur_bytes * 8);
2385		bytes -= cur_bytes;
2386		if (bytes) {
2387			brelse(bh);
2388			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2389			bh = udf_tread(sb, newblock);
2390			if (!bh) {
2391				udf_debug("read failed\n");
2392				goto out;
2393			}
2394			index = 0;
2395			ptr = (uint8_t *)bh->b_data;
2396		}
2397	}
2398	brelse(bh);
2399out:
2400	return accum;
2401}
2402
2403static unsigned int udf_count_free_table(struct super_block *sb,
2404					 struct inode *table)
2405{
2406	unsigned int accum = 0;
2407	uint32_t elen;
2408	struct kernel_lb_addr eloc;
2409	int8_t etype;
2410	struct extent_position epos;
2411
2412	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2413	epos.block = UDF_I(table)->i_location;
2414	epos.offset = sizeof(struct unallocSpaceEntry);
2415	epos.bh = NULL;
2416
2417	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2418		accum += (elen >> table->i_sb->s_blocksize_bits);
2419
2420	brelse(epos.bh);
2421	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2422
2423	return accum;
2424}
2425
2426static unsigned int udf_count_free(struct super_block *sb)
2427{
2428	unsigned int accum = 0;
2429	struct udf_sb_info *sbi;
2430	struct udf_part_map *map;
2431
2432	sbi = UDF_SB(sb);
2433	if (sbi->s_lvid_bh) {
2434		struct logicalVolIntegrityDesc *lvid =
2435			(struct logicalVolIntegrityDesc *)
2436			sbi->s_lvid_bh->b_data;
2437		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2438			accum = le32_to_cpu(
2439					lvid->freeSpaceTable[sbi->s_partition]);
2440			if (accum == 0xFFFFFFFF)
2441				accum = 0;
2442		}
2443	}
2444
2445	if (accum)
2446		return accum;
2447
2448	map = &sbi->s_partmaps[sbi->s_partition];
2449	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2450		accum += udf_count_free_bitmap(sb,
2451					       map->s_uspace.s_bitmap);
2452	}
2453	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2454		accum += udf_count_free_bitmap(sb,
2455					       map->s_fspace.s_bitmap);
2456	}
2457	if (accum)
2458		return accum;
2459
2460	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2461		accum += udf_count_free_table(sb,
2462					      map->s_uspace.s_table);
2463	}
2464	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2465		accum += udf_count_free_table(sb,
2466					      map->s_fspace.s_table);
2467	}
2468
2469	return accum;
2470}
2471