1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_sb.h"
25#include "xfs_ag.h"
26#include "xfs_mount.h"
27#include "xfs_error.h"
28#include "xfs_trans.h"
29#include "xfs_trans_priv.h"
30#include "xfs_log.h"
31#include "xfs_log_priv.h"
32#include "xfs_log_recover.h"
33#include "xfs_inode.h"
34#include "xfs_trace.h"
35#include "xfs_fsops.h"
36#include "xfs_cksum.h"
37#include "xfs_sysfs.h"
38
39kmem_zone_t	*xfs_log_ticket_zone;
40
41/* Local miscellaneous function prototypes */
42STATIC int
43xlog_commit_record(
44	struct xlog		*log,
45	struct xlog_ticket	*ticket,
46	struct xlog_in_core	**iclog,
47	xfs_lsn_t		*commitlsnp);
48
49STATIC struct xlog *
50xlog_alloc_log(
51	struct xfs_mount	*mp,
52	struct xfs_buftarg	*log_target,
53	xfs_daddr_t		blk_offset,
54	int			num_bblks);
55STATIC int
56xlog_space_left(
57	struct xlog		*log,
58	atomic64_t		*head);
59STATIC int
60xlog_sync(
61	struct xlog		*log,
62	struct xlog_in_core	*iclog);
63STATIC void
64xlog_dealloc_log(
65	struct xlog		*log);
66
67/* local state machine functions */
68STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69STATIC void
70xlog_state_do_callback(
71	struct xlog		*log,
72	int			aborted,
73	struct xlog_in_core	*iclog);
74STATIC int
75xlog_state_get_iclog_space(
76	struct xlog		*log,
77	int			len,
78	struct xlog_in_core	**iclog,
79	struct xlog_ticket	*ticket,
80	int			*continued_write,
81	int			*logoffsetp);
82STATIC int
83xlog_state_release_iclog(
84	struct xlog		*log,
85	struct xlog_in_core	*iclog);
86STATIC void
87xlog_state_switch_iclogs(
88	struct xlog		*log,
89	struct xlog_in_core	*iclog,
90	int			eventual_size);
91STATIC void
92xlog_state_want_sync(
93	struct xlog		*log,
94	struct xlog_in_core	*iclog);
95
96STATIC void
97xlog_grant_push_ail(
98	struct xlog		*log,
99	int			need_bytes);
100STATIC void
101xlog_regrant_reserve_log_space(
102	struct xlog		*log,
103	struct xlog_ticket	*ticket);
104STATIC void
105xlog_ungrant_log_space(
106	struct xlog		*log,
107	struct xlog_ticket	*ticket);
108
109#if defined(DEBUG)
110STATIC void
111xlog_verify_dest_ptr(
112	struct xlog		*log,
113	char			*ptr);
114STATIC void
115xlog_verify_grant_tail(
116	struct xlog *log);
117STATIC void
118xlog_verify_iclog(
119	struct xlog		*log,
120	struct xlog_in_core	*iclog,
121	int			count,
122	bool                    syncing);
123STATIC void
124xlog_verify_tail_lsn(
125	struct xlog		*log,
126	struct xlog_in_core	*iclog,
127	xfs_lsn_t		tail_lsn);
128#else
129#define xlog_verify_dest_ptr(a,b)
130#define xlog_verify_grant_tail(a)
131#define xlog_verify_iclog(a,b,c,d)
132#define xlog_verify_tail_lsn(a,b,c)
133#endif
134
135STATIC int
136xlog_iclogs_empty(
137	struct xlog		*log);
138
139static void
140xlog_grant_sub_space(
141	struct xlog		*log,
142	atomic64_t		*head,
143	int			bytes)
144{
145	int64_t	head_val = atomic64_read(head);
146	int64_t new, old;
147
148	do {
149		int	cycle, space;
150
151		xlog_crack_grant_head_val(head_val, &cycle, &space);
152
153		space -= bytes;
154		if (space < 0) {
155			space += log->l_logsize;
156			cycle--;
157		}
158
159		old = head_val;
160		new = xlog_assign_grant_head_val(cycle, space);
161		head_val = atomic64_cmpxchg(head, old, new);
162	} while (head_val != old);
163}
164
165static void
166xlog_grant_add_space(
167	struct xlog		*log,
168	atomic64_t		*head,
169	int			bytes)
170{
171	int64_t	head_val = atomic64_read(head);
172	int64_t new, old;
173
174	do {
175		int		tmp;
176		int		cycle, space;
177
178		xlog_crack_grant_head_val(head_val, &cycle, &space);
179
180		tmp = log->l_logsize - space;
181		if (tmp > bytes)
182			space += bytes;
183		else {
184			space = bytes - tmp;
185			cycle++;
186		}
187
188		old = head_val;
189		new = xlog_assign_grant_head_val(cycle, space);
190		head_val = atomic64_cmpxchg(head, old, new);
191	} while (head_val != old);
192}
193
194STATIC void
195xlog_grant_head_init(
196	struct xlog_grant_head	*head)
197{
198	xlog_assign_grant_head(&head->grant, 1, 0);
199	INIT_LIST_HEAD(&head->waiters);
200	spin_lock_init(&head->lock);
201}
202
203STATIC void
204xlog_grant_head_wake_all(
205	struct xlog_grant_head	*head)
206{
207	struct xlog_ticket	*tic;
208
209	spin_lock(&head->lock);
210	list_for_each_entry(tic, &head->waiters, t_queue)
211		wake_up_process(tic->t_task);
212	spin_unlock(&head->lock);
213}
214
215static inline int
216xlog_ticket_reservation(
217	struct xlog		*log,
218	struct xlog_grant_head	*head,
219	struct xlog_ticket	*tic)
220{
221	if (head == &log->l_write_head) {
222		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223		return tic->t_unit_res;
224	} else {
225		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226			return tic->t_unit_res * tic->t_cnt;
227		else
228			return tic->t_unit_res;
229	}
230}
231
232STATIC bool
233xlog_grant_head_wake(
234	struct xlog		*log,
235	struct xlog_grant_head	*head,
236	int			*free_bytes)
237{
238	struct xlog_ticket	*tic;
239	int			need_bytes;
240
241	list_for_each_entry(tic, &head->waiters, t_queue) {
242		need_bytes = xlog_ticket_reservation(log, head, tic);
243		if (*free_bytes < need_bytes)
244			return false;
245
246		*free_bytes -= need_bytes;
247		trace_xfs_log_grant_wake_up(log, tic);
248		wake_up_process(tic->t_task);
249	}
250
251	return true;
252}
253
254STATIC int
255xlog_grant_head_wait(
256	struct xlog		*log,
257	struct xlog_grant_head	*head,
258	struct xlog_ticket	*tic,
259	int			need_bytes) __releases(&head->lock)
260					    __acquires(&head->lock)
261{
262	list_add_tail(&tic->t_queue, &head->waiters);
263
264	do {
265		if (XLOG_FORCED_SHUTDOWN(log))
266			goto shutdown;
267		xlog_grant_push_ail(log, need_bytes);
268
269		__set_current_state(TASK_UNINTERRUPTIBLE);
270		spin_unlock(&head->lock);
271
272		XFS_STATS_INC(xs_sleep_logspace);
273
274		trace_xfs_log_grant_sleep(log, tic);
275		schedule();
276		trace_xfs_log_grant_wake(log, tic);
277
278		spin_lock(&head->lock);
279		if (XLOG_FORCED_SHUTDOWN(log))
280			goto shutdown;
281	} while (xlog_space_left(log, &head->grant) < need_bytes);
282
283	list_del_init(&tic->t_queue);
284	return 0;
285shutdown:
286	list_del_init(&tic->t_queue);
287	return -EIO;
288}
289
290/*
291 * Atomically get the log space required for a log ticket.
292 *
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
295 *
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
299 * every pass.
300 *
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
306 */
307STATIC int
308xlog_grant_head_check(
309	struct xlog		*log,
310	struct xlog_grant_head	*head,
311	struct xlog_ticket	*tic,
312	int			*need_bytes)
313{
314	int			free_bytes;
315	int			error = 0;
316
317	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318
319	/*
320	 * If there are other waiters on the queue then give them a chance at
321	 * logspace before us.  Wake up the first waiters, if we do not wake
322	 * up all the waiters then go to sleep waiting for more free space,
323	 * otherwise try to get some space for this transaction.
324	 */
325	*need_bytes = xlog_ticket_reservation(log, head, tic);
326	free_bytes = xlog_space_left(log, &head->grant);
327	if (!list_empty_careful(&head->waiters)) {
328		spin_lock(&head->lock);
329		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330		    free_bytes < *need_bytes) {
331			error = xlog_grant_head_wait(log, head, tic,
332						     *need_bytes);
333		}
334		spin_unlock(&head->lock);
335	} else if (free_bytes < *need_bytes) {
336		spin_lock(&head->lock);
337		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338		spin_unlock(&head->lock);
339	}
340
341	return error;
342}
343
344static void
345xlog_tic_reset_res(xlog_ticket_t *tic)
346{
347	tic->t_res_num = 0;
348	tic->t_res_arr_sum = 0;
349	tic->t_res_num_ophdrs = 0;
350}
351
352static void
353xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354{
355	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356		/* add to overflow and start again */
357		tic->t_res_o_flow += tic->t_res_arr_sum;
358		tic->t_res_num = 0;
359		tic->t_res_arr_sum = 0;
360	}
361
362	tic->t_res_arr[tic->t_res_num].r_len = len;
363	tic->t_res_arr[tic->t_res_num].r_type = type;
364	tic->t_res_arr_sum += len;
365	tic->t_res_num++;
366}
367
368/*
369 * Replenish the byte reservation required by moving the grant write head.
370 */
371int
372xfs_log_regrant(
373	struct xfs_mount	*mp,
374	struct xlog_ticket	*tic)
375{
376	struct xlog		*log = mp->m_log;
377	int			need_bytes;
378	int			error = 0;
379
380	if (XLOG_FORCED_SHUTDOWN(log))
381		return -EIO;
382
383	XFS_STATS_INC(xs_try_logspace);
384
385	/*
386	 * This is a new transaction on the ticket, so we need to change the
387	 * transaction ID so that the next transaction has a different TID in
388	 * the log. Just add one to the existing tid so that we can see chains
389	 * of rolling transactions in the log easily.
390	 */
391	tic->t_tid++;
392
393	xlog_grant_push_ail(log, tic->t_unit_res);
394
395	tic->t_curr_res = tic->t_unit_res;
396	xlog_tic_reset_res(tic);
397
398	if (tic->t_cnt > 0)
399		return 0;
400
401	trace_xfs_log_regrant(log, tic);
402
403	error = xlog_grant_head_check(log, &log->l_write_head, tic,
404				      &need_bytes);
405	if (error)
406		goto out_error;
407
408	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409	trace_xfs_log_regrant_exit(log, tic);
410	xlog_verify_grant_tail(log);
411	return 0;
412
413out_error:
414	/*
415	 * If we are failing, make sure the ticket doesn't have any current
416	 * reservations.  We don't want to add this back when the ticket/
417	 * transaction gets cancelled.
418	 */
419	tic->t_curr_res = 0;
420	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
421	return error;
422}
423
424/*
425 * Reserve log space and return a ticket corresponding the reservation.
426 *
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation.  By wasting space in each
430 * reservation, we prevent over allocation problems.
431 */
432int
433xfs_log_reserve(
434	struct xfs_mount	*mp,
435	int		 	unit_bytes,
436	int		 	cnt,
437	struct xlog_ticket	**ticp,
438	__uint8_t	 	client,
439	bool			permanent,
440	uint		 	t_type)
441{
442	struct xlog		*log = mp->m_log;
443	struct xlog_ticket	*tic;
444	int			need_bytes;
445	int			error = 0;
446
447	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448
449	if (XLOG_FORCED_SHUTDOWN(log))
450		return -EIO;
451
452	XFS_STATS_INC(xs_try_logspace);
453
454	ASSERT(*ticp == NULL);
455	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
456				KM_SLEEP | KM_MAYFAIL);
457	if (!tic)
458		return -ENOMEM;
459
460	tic->t_trans_type = t_type;
461	*ticp = tic;
462
463	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464					    : tic->t_unit_res);
465
466	trace_xfs_log_reserve(log, tic);
467
468	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469				      &need_bytes);
470	if (error)
471		goto out_error;
472
473	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475	trace_xfs_log_reserve_exit(log, tic);
476	xlog_verify_grant_tail(log);
477	return 0;
478
479out_error:
480	/*
481	 * If we are failing, make sure the ticket doesn't have any current
482	 * reservations.  We don't want to add this back when the ticket/
483	 * transaction gets cancelled.
484	 */
485	tic->t_curr_res = 0;
486	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
487	return error;
488}
489
490
491/*
492 * NOTES:
493 *
494 *	1. currblock field gets updated at startup and after in-core logs
495 *		marked as with WANT_SYNC.
496 */
497
498/*
499 * This routine is called when a user of a log manager ticket is done with
500 * the reservation.  If the ticket was ever used, then a commit record for
501 * the associated transaction is written out as a log operation header with
502 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
503 * a given ticket.  If the ticket was one with a permanent reservation, then
504 * a few operations are done differently.  Permanent reservation tickets by
505 * default don't release the reservation.  They just commit the current
506 * transaction with the belief that the reservation is still needed.  A flag
507 * must be passed in before permanent reservations are actually released.
508 * When these type of tickets are not released, they need to be set into
509 * the inited state again.  By doing this, a start record will be written
510 * out when the next write occurs.
511 */
512xfs_lsn_t
513xfs_log_done(
514	struct xfs_mount	*mp,
515	struct xlog_ticket	*ticket,
516	struct xlog_in_core	**iclog,
517	uint			flags)
518{
519	struct xlog		*log = mp->m_log;
520	xfs_lsn_t		lsn = 0;
521
522	if (XLOG_FORCED_SHUTDOWN(log) ||
523	    /*
524	     * If nothing was ever written, don't write out commit record.
525	     * If we get an error, just continue and give back the log ticket.
526	     */
527	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
528	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
529		lsn = (xfs_lsn_t) -1;
530		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
531			flags |= XFS_LOG_REL_PERM_RESERV;
532		}
533	}
534
535
536	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
537	    (flags & XFS_LOG_REL_PERM_RESERV)) {
538		trace_xfs_log_done_nonperm(log, ticket);
539
540		/*
541		 * Release ticket if not permanent reservation or a specific
542		 * request has been made to release a permanent reservation.
543		 */
544		xlog_ungrant_log_space(log, ticket);
545		xfs_log_ticket_put(ticket);
546	} else {
547		trace_xfs_log_done_perm(log, ticket);
548
549		xlog_regrant_reserve_log_space(log, ticket);
550		/* If this ticket was a permanent reservation and we aren't
551		 * trying to release it, reset the inited flags; so next time
552		 * we write, a start record will be written out.
553		 */
554		ticket->t_flags |= XLOG_TIC_INITED;
555	}
556
557	return lsn;
558}
559
560/*
561 * Attaches a new iclog I/O completion callback routine during
562 * transaction commit.  If the log is in error state, a non-zero
563 * return code is handed back and the caller is responsible for
564 * executing the callback at an appropriate time.
565 */
566int
567xfs_log_notify(
568	struct xfs_mount	*mp,
569	struct xlog_in_core	*iclog,
570	xfs_log_callback_t	*cb)
571{
572	int	abortflg;
573
574	spin_lock(&iclog->ic_callback_lock);
575	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
576	if (!abortflg) {
577		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
578			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
579		cb->cb_next = NULL;
580		*(iclog->ic_callback_tail) = cb;
581		iclog->ic_callback_tail = &(cb->cb_next);
582	}
583	spin_unlock(&iclog->ic_callback_lock);
584	return abortflg;
585}
586
587int
588xfs_log_release_iclog(
589	struct xfs_mount	*mp,
590	struct xlog_in_core	*iclog)
591{
592	if (xlog_state_release_iclog(mp->m_log, iclog)) {
593		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
594		return -EIO;
595	}
596
597	return 0;
598}
599
600/*
601 * Mount a log filesystem
602 *
603 * mp		- ubiquitous xfs mount point structure
604 * log_target	- buftarg of on-disk log device
605 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
606 * num_bblocks	- Number of BBSIZE blocks in on-disk log
607 *
608 * Return error or zero.
609 */
610int
611xfs_log_mount(
612	xfs_mount_t	*mp,
613	xfs_buftarg_t	*log_target,
614	xfs_daddr_t	blk_offset,
615	int		num_bblks)
616{
617	int		error = 0;
618	int		min_logfsbs;
619
620	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
621		xfs_notice(mp, "Mounting V%d Filesystem",
622			   XFS_SB_VERSION_NUM(&mp->m_sb));
623	} else {
624		xfs_notice(mp,
625"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
626			   XFS_SB_VERSION_NUM(&mp->m_sb));
627		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
628	}
629
630	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
631	if (IS_ERR(mp->m_log)) {
632		error = PTR_ERR(mp->m_log);
633		goto out;
634	}
635
636	/*
637	 * Validate the given log space and drop a critical message via syslog
638	 * if the log size is too small that would lead to some unexpected
639	 * situations in transaction log space reservation stage.
640	 *
641	 * Note: we can't just reject the mount if the validation fails.  This
642	 * would mean that people would have to downgrade their kernel just to
643	 * remedy the situation as there is no way to grow the log (short of
644	 * black magic surgery with xfs_db).
645	 *
646	 * We can, however, reject mounts for CRC format filesystems, as the
647	 * mkfs binary being used to make the filesystem should never create a
648	 * filesystem with a log that is too small.
649	 */
650	min_logfsbs = xfs_log_calc_minimum_size(mp);
651
652	if (mp->m_sb.sb_logblocks < min_logfsbs) {
653		xfs_warn(mp,
654		"Log size %d blocks too small, minimum size is %d blocks",
655			 mp->m_sb.sb_logblocks, min_logfsbs);
656		error = -EINVAL;
657	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
658		xfs_warn(mp,
659		"Log size %d blocks too large, maximum size is %lld blocks",
660			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
661		error = -EINVAL;
662	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
663		xfs_warn(mp,
664		"log size %lld bytes too large, maximum size is %lld bytes",
665			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
666			 XFS_MAX_LOG_BYTES);
667		error = -EINVAL;
668	}
669	if (error) {
670		if (xfs_sb_version_hascrc(&mp->m_sb)) {
671			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
672			ASSERT(0);
673			goto out_free_log;
674		}
675		xfs_crit(mp,
676"Log size out of supported range. Continuing onwards, but if log hangs are\n"
677"experienced then please report this message in the bug report.");
678	}
679
680	/*
681	 * Initialize the AIL now we have a log.
682	 */
683	error = xfs_trans_ail_init(mp);
684	if (error) {
685		xfs_warn(mp, "AIL initialisation failed: error %d", error);
686		goto out_free_log;
687	}
688	mp->m_log->l_ailp = mp->m_ail;
689
690	/*
691	 * skip log recovery on a norecovery mount.  pretend it all
692	 * just worked.
693	 */
694	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
695		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
696
697		if (readonly)
698			mp->m_flags &= ~XFS_MOUNT_RDONLY;
699
700		error = xlog_recover(mp->m_log);
701
702		if (readonly)
703			mp->m_flags |= XFS_MOUNT_RDONLY;
704		if (error) {
705			xfs_warn(mp, "log mount/recovery failed: error %d",
706				error);
707			goto out_destroy_ail;
708		}
709	}
710
711	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
712			       "log");
713	if (error)
714		goto out_destroy_ail;
715
716	/* Normal transactions can now occur */
717	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
718
719	/*
720	 * Now the log has been fully initialised and we know were our
721	 * space grant counters are, we can initialise the permanent ticket
722	 * needed for delayed logging to work.
723	 */
724	xlog_cil_init_post_recovery(mp->m_log);
725
726	return 0;
727
728out_destroy_ail:
729	xfs_trans_ail_destroy(mp);
730out_free_log:
731	xlog_dealloc_log(mp->m_log);
732out:
733	return error;
734}
735
736/*
737 * Finish the recovery of the file system.  This is separate from the
738 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
739 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
740 * here.
741 *
742 * If we finish recovery successfully, start the background log work. If we are
743 * not doing recovery, then we have a RO filesystem and we don't need to start
744 * it.
745 */
746int
747xfs_log_mount_finish(xfs_mount_t *mp)
748{
749	int	error = 0;
750
751	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
752		error = xlog_recover_finish(mp->m_log);
753		if (!error)
754			xfs_log_work_queue(mp);
755	} else {
756		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
757	}
758
759
760	return error;
761}
762
763/*
764 * Final log writes as part of unmount.
765 *
766 * Mark the filesystem clean as unmount happens.  Note that during relocation
767 * this routine needs to be executed as part of source-bag while the
768 * deallocation must not be done until source-end.
769 */
770
771/*
772 * Unmount record used to have a string "Unmount filesystem--" in the
773 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
774 * We just write the magic number now since that particular field isn't
775 * currently architecture converted and "Unmount" is a bit foo.
776 * As far as I know, there weren't any dependencies on the old behaviour.
777 */
778
779int
780xfs_log_unmount_write(xfs_mount_t *mp)
781{
782	struct xlog	 *log = mp->m_log;
783	xlog_in_core_t	 *iclog;
784#ifdef DEBUG
785	xlog_in_core_t	 *first_iclog;
786#endif
787	xlog_ticket_t	*tic = NULL;
788	xfs_lsn_t	 lsn;
789	int		 error;
790
791	/*
792	 * Don't write out unmount record on read-only mounts.
793	 * Or, if we are doing a forced umount (typically because of IO errors).
794	 */
795	if (mp->m_flags & XFS_MOUNT_RDONLY)
796		return 0;
797
798	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
799	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
800
801#ifdef DEBUG
802	first_iclog = iclog = log->l_iclog;
803	do {
804		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
805			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
806			ASSERT(iclog->ic_offset == 0);
807		}
808		iclog = iclog->ic_next;
809	} while (iclog != first_iclog);
810#endif
811	if (! (XLOG_FORCED_SHUTDOWN(log))) {
812		error = xfs_log_reserve(mp, 600, 1, &tic,
813					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
814		if (!error) {
815			/* the data section must be 32 bit size aligned */
816			struct {
817			    __uint16_t magic;
818			    __uint16_t pad1;
819			    __uint32_t pad2; /* may as well make it 64 bits */
820			} magic = {
821				.magic = XLOG_UNMOUNT_TYPE,
822			};
823			struct xfs_log_iovec reg = {
824				.i_addr = &magic,
825				.i_len = sizeof(magic),
826				.i_type = XLOG_REG_TYPE_UNMOUNT,
827			};
828			struct xfs_log_vec vec = {
829				.lv_niovecs = 1,
830				.lv_iovecp = &reg,
831			};
832
833			/* remove inited flag, and account for space used */
834			tic->t_flags = 0;
835			tic->t_curr_res -= sizeof(magic);
836			error = xlog_write(log, &vec, tic, &lsn,
837					   NULL, XLOG_UNMOUNT_TRANS);
838			/*
839			 * At this point, we're umounting anyway,
840			 * so there's no point in transitioning log state
841			 * to IOERROR. Just continue...
842			 */
843		}
844
845		if (error)
846			xfs_alert(mp, "%s: unmount record failed", __func__);
847
848
849		spin_lock(&log->l_icloglock);
850		iclog = log->l_iclog;
851		atomic_inc(&iclog->ic_refcnt);
852		xlog_state_want_sync(log, iclog);
853		spin_unlock(&log->l_icloglock);
854		error = xlog_state_release_iclog(log, iclog);
855
856		spin_lock(&log->l_icloglock);
857		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
858		      iclog->ic_state == XLOG_STATE_DIRTY)) {
859			if (!XLOG_FORCED_SHUTDOWN(log)) {
860				xlog_wait(&iclog->ic_force_wait,
861							&log->l_icloglock);
862			} else {
863				spin_unlock(&log->l_icloglock);
864			}
865		} else {
866			spin_unlock(&log->l_icloglock);
867		}
868		if (tic) {
869			trace_xfs_log_umount_write(log, tic);
870			xlog_ungrant_log_space(log, tic);
871			xfs_log_ticket_put(tic);
872		}
873	} else {
874		/*
875		 * We're already in forced_shutdown mode, couldn't
876		 * even attempt to write out the unmount transaction.
877		 *
878		 * Go through the motions of sync'ing and releasing
879		 * the iclog, even though no I/O will actually happen,
880		 * we need to wait for other log I/Os that may already
881		 * be in progress.  Do this as a separate section of
882		 * code so we'll know if we ever get stuck here that
883		 * we're in this odd situation of trying to unmount
884		 * a file system that went into forced_shutdown as
885		 * the result of an unmount..
886		 */
887		spin_lock(&log->l_icloglock);
888		iclog = log->l_iclog;
889		atomic_inc(&iclog->ic_refcnt);
890
891		xlog_state_want_sync(log, iclog);
892		spin_unlock(&log->l_icloglock);
893		error =  xlog_state_release_iclog(log, iclog);
894
895		spin_lock(&log->l_icloglock);
896
897		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
898			|| iclog->ic_state == XLOG_STATE_DIRTY
899			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
900
901				xlog_wait(&iclog->ic_force_wait,
902							&log->l_icloglock);
903		} else {
904			spin_unlock(&log->l_icloglock);
905		}
906	}
907
908	return error;
909}	/* xfs_log_unmount_write */
910
911/*
912 * Empty the log for unmount/freeze.
913 *
914 * To do this, we first need to shut down the background log work so it is not
915 * trying to cover the log as we clean up. We then need to unpin all objects in
916 * the log so we can then flush them out. Once they have completed their IO and
917 * run the callbacks removing themselves from the AIL, we can write the unmount
918 * record.
919 */
920void
921xfs_log_quiesce(
922	struct xfs_mount	*mp)
923{
924	cancel_delayed_work_sync(&mp->m_log->l_work);
925	xfs_log_force(mp, XFS_LOG_SYNC);
926
927	/*
928	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
929	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
930	 * xfs_buf_iowait() cannot be used because it was pushed with the
931	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
932	 * the IO to complete.
933	 */
934	xfs_ail_push_all_sync(mp->m_ail);
935	xfs_wait_buftarg(mp->m_ddev_targp);
936	xfs_buf_lock(mp->m_sb_bp);
937	xfs_buf_unlock(mp->m_sb_bp);
938
939	xfs_log_unmount_write(mp);
940}
941
942/*
943 * Shut down and release the AIL and Log.
944 *
945 * During unmount, we need to ensure we flush all the dirty metadata objects
946 * from the AIL so that the log is empty before we write the unmount record to
947 * the log. Once this is done, we can tear down the AIL and the log.
948 */
949void
950xfs_log_unmount(
951	struct xfs_mount	*mp)
952{
953	xfs_log_quiesce(mp);
954
955	xfs_trans_ail_destroy(mp);
956
957	xfs_sysfs_del(&mp->m_log->l_kobj);
958
959	xlog_dealloc_log(mp->m_log);
960}
961
962void
963xfs_log_item_init(
964	struct xfs_mount	*mp,
965	struct xfs_log_item	*item,
966	int			type,
967	const struct xfs_item_ops *ops)
968{
969	item->li_mountp = mp;
970	item->li_ailp = mp->m_ail;
971	item->li_type = type;
972	item->li_ops = ops;
973	item->li_lv = NULL;
974
975	INIT_LIST_HEAD(&item->li_ail);
976	INIT_LIST_HEAD(&item->li_cil);
977}
978
979/*
980 * Wake up processes waiting for log space after we have moved the log tail.
981 */
982void
983xfs_log_space_wake(
984	struct xfs_mount	*mp)
985{
986	struct xlog		*log = mp->m_log;
987	int			free_bytes;
988
989	if (XLOG_FORCED_SHUTDOWN(log))
990		return;
991
992	if (!list_empty_careful(&log->l_write_head.waiters)) {
993		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994
995		spin_lock(&log->l_write_head.lock);
996		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
997		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
998		spin_unlock(&log->l_write_head.lock);
999	}
1000
1001	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1002		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1003
1004		spin_lock(&log->l_reserve_head.lock);
1005		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1006		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1007		spin_unlock(&log->l_reserve_head.lock);
1008	}
1009}
1010
1011/*
1012 * Determine if we have a transaction that has gone to disk that needs to be
1013 * covered. To begin the transition to the idle state firstly the log needs to
1014 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1015 * we start attempting to cover the log.
1016 *
1017 * Only if we are then in a state where covering is needed, the caller is
1018 * informed that dummy transactions are required to move the log into the idle
1019 * state.
1020 *
1021 * If there are any items in the AIl or CIL, then we do not want to attempt to
1022 * cover the log as we may be in a situation where there isn't log space
1023 * available to run a dummy transaction and this can lead to deadlocks when the
1024 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1025 * there's no point in running a dummy transaction at this point because we
1026 * can't start trying to idle the log until both the CIL and AIL are empty.
1027 */
1028int
1029xfs_log_need_covered(xfs_mount_t *mp)
1030{
1031	struct xlog	*log = mp->m_log;
1032	int		needed = 0;
1033
1034	if (!xfs_fs_writable(mp))
1035		return 0;
1036
1037	if (!xlog_cil_empty(log))
1038		return 0;
1039
1040	spin_lock(&log->l_icloglock);
1041	switch (log->l_covered_state) {
1042	case XLOG_STATE_COVER_DONE:
1043	case XLOG_STATE_COVER_DONE2:
1044	case XLOG_STATE_COVER_IDLE:
1045		break;
1046	case XLOG_STATE_COVER_NEED:
1047	case XLOG_STATE_COVER_NEED2:
1048		if (xfs_ail_min_lsn(log->l_ailp))
1049			break;
1050		if (!xlog_iclogs_empty(log))
1051			break;
1052
1053		needed = 1;
1054		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1055			log->l_covered_state = XLOG_STATE_COVER_DONE;
1056		else
1057			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1058		break;
1059	default:
1060		needed = 1;
1061		break;
1062	}
1063	spin_unlock(&log->l_icloglock);
1064	return needed;
1065}
1066
1067/*
1068 * We may be holding the log iclog lock upon entering this routine.
1069 */
1070xfs_lsn_t
1071xlog_assign_tail_lsn_locked(
1072	struct xfs_mount	*mp)
1073{
1074	struct xlog		*log = mp->m_log;
1075	struct xfs_log_item	*lip;
1076	xfs_lsn_t		tail_lsn;
1077
1078	assert_spin_locked(&mp->m_ail->xa_lock);
1079
1080	/*
1081	 * To make sure we always have a valid LSN for the log tail we keep
1082	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1083	 * and use that when the AIL was empty.
1084	 */
1085	lip = xfs_ail_min(mp->m_ail);
1086	if (lip)
1087		tail_lsn = lip->li_lsn;
1088	else
1089		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1090	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1091	atomic64_set(&log->l_tail_lsn, tail_lsn);
1092	return tail_lsn;
1093}
1094
1095xfs_lsn_t
1096xlog_assign_tail_lsn(
1097	struct xfs_mount	*mp)
1098{
1099	xfs_lsn_t		tail_lsn;
1100
1101	spin_lock(&mp->m_ail->xa_lock);
1102	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1103	spin_unlock(&mp->m_ail->xa_lock);
1104
1105	return tail_lsn;
1106}
1107
1108/*
1109 * Return the space in the log between the tail and the head.  The head
1110 * is passed in the cycle/bytes formal parms.  In the special case where
1111 * the reserve head has wrapped passed the tail, this calculation is no
1112 * longer valid.  In this case, just return 0 which means there is no space
1113 * in the log.  This works for all places where this function is called
1114 * with the reserve head.  Of course, if the write head were to ever
1115 * wrap the tail, we should blow up.  Rather than catch this case here,
1116 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1117 *
1118 * This code also handles the case where the reservation head is behind
1119 * the tail.  The details of this case are described below, but the end
1120 * result is that we return the size of the log as the amount of space left.
1121 */
1122STATIC int
1123xlog_space_left(
1124	struct xlog	*log,
1125	atomic64_t	*head)
1126{
1127	int		free_bytes;
1128	int		tail_bytes;
1129	int		tail_cycle;
1130	int		head_cycle;
1131	int		head_bytes;
1132
1133	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1134	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1135	tail_bytes = BBTOB(tail_bytes);
1136	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1137		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1138	else if (tail_cycle + 1 < head_cycle)
1139		return 0;
1140	else if (tail_cycle < head_cycle) {
1141		ASSERT(tail_cycle == (head_cycle - 1));
1142		free_bytes = tail_bytes - head_bytes;
1143	} else {
1144		/*
1145		 * The reservation head is behind the tail.
1146		 * In this case we just want to return the size of the
1147		 * log as the amount of space left.
1148		 */
1149		xfs_alert(log->l_mp,
1150			"xlog_space_left: head behind tail\n"
1151			"  tail_cycle = %d, tail_bytes = %d\n"
1152			"  GH   cycle = %d, GH   bytes = %d",
1153			tail_cycle, tail_bytes, head_cycle, head_bytes);
1154		ASSERT(0);
1155		free_bytes = log->l_logsize;
1156	}
1157	return free_bytes;
1158}
1159
1160
1161/*
1162 * Log function which is called when an io completes.
1163 *
1164 * The log manager needs its own routine, in order to control what
1165 * happens with the buffer after the write completes.
1166 */
1167void
1168xlog_iodone(xfs_buf_t *bp)
1169{
1170	struct xlog_in_core	*iclog = bp->b_fspriv;
1171	struct xlog		*l = iclog->ic_log;
1172	int			aborted = 0;
1173
1174	/*
1175	 * Race to shutdown the filesystem if we see an error.
1176	 */
1177	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1178			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1179		xfs_buf_ioerror_alert(bp, __func__);
1180		xfs_buf_stale(bp);
1181		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1182		/*
1183		 * This flag will be propagated to the trans-committed
1184		 * callback routines to let them know that the log-commit
1185		 * didn't succeed.
1186		 */
1187		aborted = XFS_LI_ABORTED;
1188	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1189		aborted = XFS_LI_ABORTED;
1190	}
1191
1192	/* log I/O is always issued ASYNC */
1193	ASSERT(XFS_BUF_ISASYNC(bp));
1194	xlog_state_done_syncing(iclog, aborted);
1195
1196	/*
1197	 * drop the buffer lock now that we are done. Nothing references
1198	 * the buffer after this, so an unmount waiting on this lock can now
1199	 * tear it down safely. As such, it is unsafe to reference the buffer
1200	 * (bp) after the unlock as we could race with it being freed.
1201	 */
1202	xfs_buf_unlock(bp);
1203}
1204
1205/*
1206 * Return size of each in-core log record buffer.
1207 *
1208 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1209 *
1210 * If the filesystem blocksize is too large, we may need to choose a
1211 * larger size since the directory code currently logs entire blocks.
1212 */
1213
1214STATIC void
1215xlog_get_iclog_buffer_size(
1216	struct xfs_mount	*mp,
1217	struct xlog		*log)
1218{
1219	int size;
1220	int xhdrs;
1221
1222	if (mp->m_logbufs <= 0)
1223		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1224	else
1225		log->l_iclog_bufs = mp->m_logbufs;
1226
1227	/*
1228	 * Buffer size passed in from mount system call.
1229	 */
1230	if (mp->m_logbsize > 0) {
1231		size = log->l_iclog_size = mp->m_logbsize;
1232		log->l_iclog_size_log = 0;
1233		while (size != 1) {
1234			log->l_iclog_size_log++;
1235			size >>= 1;
1236		}
1237
1238		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1239			/* # headers = size / 32k
1240			 * one header holds cycles from 32k of data
1241			 */
1242
1243			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1244			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1245				xhdrs++;
1246			log->l_iclog_hsize = xhdrs << BBSHIFT;
1247			log->l_iclog_heads = xhdrs;
1248		} else {
1249			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1250			log->l_iclog_hsize = BBSIZE;
1251			log->l_iclog_heads = 1;
1252		}
1253		goto done;
1254	}
1255
1256	/* All machines use 32kB buffers by default. */
1257	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1258	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1259
1260	/* the default log size is 16k or 32k which is one header sector */
1261	log->l_iclog_hsize = BBSIZE;
1262	log->l_iclog_heads = 1;
1263
1264done:
1265	/* are we being asked to make the sizes selected above visible? */
1266	if (mp->m_logbufs == 0)
1267		mp->m_logbufs = log->l_iclog_bufs;
1268	if (mp->m_logbsize == 0)
1269		mp->m_logbsize = log->l_iclog_size;
1270}	/* xlog_get_iclog_buffer_size */
1271
1272
1273void
1274xfs_log_work_queue(
1275	struct xfs_mount        *mp)
1276{
1277	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1278				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1279}
1280
1281/*
1282 * Every sync period we need to unpin all items in the AIL and push them to
1283 * disk. If there is nothing dirty, then we might need to cover the log to
1284 * indicate that the filesystem is idle.
1285 */
1286void
1287xfs_log_worker(
1288	struct work_struct	*work)
1289{
1290	struct xlog		*log = container_of(to_delayed_work(work),
1291						struct xlog, l_work);
1292	struct xfs_mount	*mp = log->l_mp;
1293
1294	/* dgc: errors ignored - not fatal and nowhere to report them */
1295	if (xfs_log_need_covered(mp))
1296		xfs_fs_log_dummy(mp);
1297	else
1298		xfs_log_force(mp, 0);
1299
1300	/* start pushing all the metadata that is currently dirty */
1301	xfs_ail_push_all(mp->m_ail);
1302
1303	/* queue us up again */
1304	xfs_log_work_queue(mp);
1305}
1306
1307/*
1308 * This routine initializes some of the log structure for a given mount point.
1309 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1310 * some other stuff may be filled in too.
1311 */
1312STATIC struct xlog *
1313xlog_alloc_log(
1314	struct xfs_mount	*mp,
1315	struct xfs_buftarg	*log_target,
1316	xfs_daddr_t		blk_offset,
1317	int			num_bblks)
1318{
1319	struct xlog		*log;
1320	xlog_rec_header_t	*head;
1321	xlog_in_core_t		**iclogp;
1322	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1323	xfs_buf_t		*bp;
1324	int			i;
1325	int			error = -ENOMEM;
1326	uint			log2_size = 0;
1327
1328	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1329	if (!log) {
1330		xfs_warn(mp, "Log allocation failed: No memory!");
1331		goto out;
1332	}
1333
1334	log->l_mp	   = mp;
1335	log->l_targ	   = log_target;
1336	log->l_logsize     = BBTOB(num_bblks);
1337	log->l_logBBstart  = blk_offset;
1338	log->l_logBBsize   = num_bblks;
1339	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1340	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1341	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1342
1343	log->l_prev_block  = -1;
1344	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1345	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1346	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1347	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1348
1349	xlog_grant_head_init(&log->l_reserve_head);
1350	xlog_grant_head_init(&log->l_write_head);
1351
1352	error = -EFSCORRUPTED;
1353	if (xfs_sb_version_hassector(&mp->m_sb)) {
1354	        log2_size = mp->m_sb.sb_logsectlog;
1355		if (log2_size < BBSHIFT) {
1356			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1357				log2_size, BBSHIFT);
1358			goto out_free_log;
1359		}
1360
1361	        log2_size -= BBSHIFT;
1362		if (log2_size > mp->m_sectbb_log) {
1363			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1364				log2_size, mp->m_sectbb_log);
1365			goto out_free_log;
1366		}
1367
1368		/* for larger sector sizes, must have v2 or external log */
1369		if (log2_size && log->l_logBBstart > 0 &&
1370			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1371			xfs_warn(mp,
1372		"log sector size (0x%x) invalid for configuration.",
1373				log2_size);
1374			goto out_free_log;
1375		}
1376	}
1377	log->l_sectBBsize = 1 << log2_size;
1378
1379	xlog_get_iclog_buffer_size(mp, log);
1380
1381	/*
1382	 * Use a NULL block for the extra log buffer used during splits so that
1383	 * it will trigger errors if we ever try to do IO on it without first
1384	 * having set it up properly.
1385	 */
1386	error = -ENOMEM;
1387	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1388			   BTOBB(log->l_iclog_size), 0);
1389	if (!bp)
1390		goto out_free_log;
1391
1392	/*
1393	 * The iclogbuf buffer locks are held over IO but we are not going to do
1394	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1395	 * when appropriately.
1396	 */
1397	ASSERT(xfs_buf_islocked(bp));
1398	xfs_buf_unlock(bp);
1399
1400	bp->b_iodone = xlog_iodone;
1401	log->l_xbuf = bp;
1402
1403	spin_lock_init(&log->l_icloglock);
1404	init_waitqueue_head(&log->l_flush_wait);
1405
1406	iclogp = &log->l_iclog;
1407	/*
1408	 * The amount of memory to allocate for the iclog structure is
1409	 * rather funky due to the way the structure is defined.  It is
1410	 * done this way so that we can use different sizes for machines
1411	 * with different amounts of memory.  See the definition of
1412	 * xlog_in_core_t in xfs_log_priv.h for details.
1413	 */
1414	ASSERT(log->l_iclog_size >= 4096);
1415	for (i=0; i < log->l_iclog_bufs; i++) {
1416		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1417		if (!*iclogp)
1418			goto out_free_iclog;
1419
1420		iclog = *iclogp;
1421		iclog->ic_prev = prev_iclog;
1422		prev_iclog = iclog;
1423
1424		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1425						BTOBB(log->l_iclog_size), 0);
1426		if (!bp)
1427			goto out_free_iclog;
1428
1429		ASSERT(xfs_buf_islocked(bp));
1430		xfs_buf_unlock(bp);
1431
1432		bp->b_iodone = xlog_iodone;
1433		iclog->ic_bp = bp;
1434		iclog->ic_data = bp->b_addr;
1435#ifdef DEBUG
1436		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1437#endif
1438		head = &iclog->ic_header;
1439		memset(head, 0, sizeof(xlog_rec_header_t));
1440		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1441		head->h_version = cpu_to_be32(
1442			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1443		head->h_size = cpu_to_be32(log->l_iclog_size);
1444		/* new fields */
1445		head->h_fmt = cpu_to_be32(XLOG_FMT);
1446		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1447
1448		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1449		iclog->ic_state = XLOG_STATE_ACTIVE;
1450		iclog->ic_log = log;
1451		atomic_set(&iclog->ic_refcnt, 0);
1452		spin_lock_init(&iclog->ic_callback_lock);
1453		iclog->ic_callback_tail = &(iclog->ic_callback);
1454		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1455
1456		init_waitqueue_head(&iclog->ic_force_wait);
1457		init_waitqueue_head(&iclog->ic_write_wait);
1458
1459		iclogp = &iclog->ic_next;
1460	}
1461	*iclogp = log->l_iclog;			/* complete ring */
1462	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1463
1464	error = xlog_cil_init(log);
1465	if (error)
1466		goto out_free_iclog;
1467	return log;
1468
1469out_free_iclog:
1470	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1471		prev_iclog = iclog->ic_next;
1472		if (iclog->ic_bp)
1473			xfs_buf_free(iclog->ic_bp);
1474		kmem_free(iclog);
1475	}
1476	spinlock_destroy(&log->l_icloglock);
1477	xfs_buf_free(log->l_xbuf);
1478out_free_log:
1479	kmem_free(log);
1480out:
1481	return ERR_PTR(error);
1482}	/* xlog_alloc_log */
1483
1484
1485/*
1486 * Write out the commit record of a transaction associated with the given
1487 * ticket.  Return the lsn of the commit record.
1488 */
1489STATIC int
1490xlog_commit_record(
1491	struct xlog		*log,
1492	struct xlog_ticket	*ticket,
1493	struct xlog_in_core	**iclog,
1494	xfs_lsn_t		*commitlsnp)
1495{
1496	struct xfs_mount *mp = log->l_mp;
1497	int	error;
1498	struct xfs_log_iovec reg = {
1499		.i_addr = NULL,
1500		.i_len = 0,
1501		.i_type = XLOG_REG_TYPE_COMMIT,
1502	};
1503	struct xfs_log_vec vec = {
1504		.lv_niovecs = 1,
1505		.lv_iovecp = &reg,
1506	};
1507
1508	ASSERT_ALWAYS(iclog);
1509	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1510					XLOG_COMMIT_TRANS);
1511	if (error)
1512		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1513	return error;
1514}
1515
1516/*
1517 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1518 * log space.  This code pushes on the lsn which would supposedly free up
1519 * the 25% which we want to leave free.  We may need to adopt a policy which
1520 * pushes on an lsn which is further along in the log once we reach the high
1521 * water mark.  In this manner, we would be creating a low water mark.
1522 */
1523STATIC void
1524xlog_grant_push_ail(
1525	struct xlog	*log,
1526	int		need_bytes)
1527{
1528	xfs_lsn_t	threshold_lsn = 0;
1529	xfs_lsn_t	last_sync_lsn;
1530	int		free_blocks;
1531	int		free_bytes;
1532	int		threshold_block;
1533	int		threshold_cycle;
1534	int		free_threshold;
1535
1536	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1537
1538	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1539	free_blocks = BTOBBT(free_bytes);
1540
1541	/*
1542	 * Set the threshold for the minimum number of free blocks in the
1543	 * log to the maximum of what the caller needs, one quarter of the
1544	 * log, and 256 blocks.
1545	 */
1546	free_threshold = BTOBB(need_bytes);
1547	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1548	free_threshold = MAX(free_threshold, 256);
1549	if (free_blocks >= free_threshold)
1550		return;
1551
1552	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1553						&threshold_block);
1554	threshold_block += free_threshold;
1555	if (threshold_block >= log->l_logBBsize) {
1556		threshold_block -= log->l_logBBsize;
1557		threshold_cycle += 1;
1558	}
1559	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1560					threshold_block);
1561	/*
1562	 * Don't pass in an lsn greater than the lsn of the last
1563	 * log record known to be on disk. Use a snapshot of the last sync lsn
1564	 * so that it doesn't change between the compare and the set.
1565	 */
1566	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1567	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1568		threshold_lsn = last_sync_lsn;
1569
1570	/*
1571	 * Get the transaction layer to kick the dirty buffers out to
1572	 * disk asynchronously. No point in trying to do this if
1573	 * the filesystem is shutting down.
1574	 */
1575	if (!XLOG_FORCED_SHUTDOWN(log))
1576		xfs_ail_push(log->l_ailp, threshold_lsn);
1577}
1578
1579/*
1580 * Stamp cycle number in every block
1581 */
1582STATIC void
1583xlog_pack_data(
1584	struct xlog		*log,
1585	struct xlog_in_core	*iclog,
1586	int			roundoff)
1587{
1588	int			i, j, k;
1589	int			size = iclog->ic_offset + roundoff;
1590	__be32			cycle_lsn;
1591	xfs_caddr_t		dp;
1592
1593	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1594
1595	dp = iclog->ic_datap;
1596	for (i = 0; i < BTOBB(size); i++) {
1597		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1598			break;
1599		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1600		*(__be32 *)dp = cycle_lsn;
1601		dp += BBSIZE;
1602	}
1603
1604	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1605		xlog_in_core_2_t *xhdr = iclog->ic_data;
1606
1607		for ( ; i < BTOBB(size); i++) {
1608			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1609			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1610			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1611			*(__be32 *)dp = cycle_lsn;
1612			dp += BBSIZE;
1613		}
1614
1615		for (i = 1; i < log->l_iclog_heads; i++)
1616			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1617	}
1618}
1619
1620/*
1621 * Calculate the checksum for a log buffer.
1622 *
1623 * This is a little more complicated than it should be because the various
1624 * headers and the actual data are non-contiguous.
1625 */
1626__le32
1627xlog_cksum(
1628	struct xlog		*log,
1629	struct xlog_rec_header	*rhead,
1630	char			*dp,
1631	int			size)
1632{
1633	__uint32_t		crc;
1634
1635	/* first generate the crc for the record header ... */
1636	crc = xfs_start_cksum((char *)rhead,
1637			      sizeof(struct xlog_rec_header),
1638			      offsetof(struct xlog_rec_header, h_crc));
1639
1640	/* ... then for additional cycle data for v2 logs ... */
1641	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1643		int		i;
1644
1645		for (i = 1; i < log->l_iclog_heads; i++) {
1646			crc = crc32c(crc, &xhdr[i].hic_xheader,
1647				     sizeof(struct xlog_rec_ext_header));
1648		}
1649	}
1650
1651	/* ... and finally for the payload */
1652	crc = crc32c(crc, dp, size);
1653
1654	return xfs_end_cksum(crc);
1655}
1656
1657/*
1658 * The bdstrat callback function for log bufs. This gives us a central
1659 * place to trap bufs in case we get hit by a log I/O error and need to
1660 * shutdown. Actually, in practice, even when we didn't get a log error,
1661 * we transition the iclogs to IOERROR state *after* flushing all existing
1662 * iclogs to disk. This is because we don't want anymore new transactions to be
1663 * started or completed afterwards.
1664 *
1665 * We lock the iclogbufs here so that we can serialise against IO completion
1666 * during unmount. We might be processing a shutdown triggered during unmount,
1667 * and that can occur asynchronously to the unmount thread, and hence we need to
1668 * ensure that completes before tearing down the iclogbufs. Hence we need to
1669 * hold the buffer lock across the log IO to acheive that.
1670 */
1671STATIC int
1672xlog_bdstrat(
1673	struct xfs_buf		*bp)
1674{
1675	struct xlog_in_core	*iclog = bp->b_fspriv;
1676
1677	xfs_buf_lock(bp);
1678	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1679		xfs_buf_ioerror(bp, -EIO);
1680		xfs_buf_stale(bp);
1681		xfs_buf_ioend(bp);
1682		/*
1683		 * It would seem logical to return EIO here, but we rely on
1684		 * the log state machine to propagate I/O errors instead of
1685		 * doing it here. Similarly, IO completion will unlock the
1686		 * buffer, so we don't do it here.
1687		 */
1688		return 0;
1689	}
1690
1691	xfs_buf_submit(bp);
1692	return 0;
1693}
1694
1695/*
1696 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1697 * fashion.  Previously, we should have moved the current iclog
1698 * ptr in the log to point to the next available iclog.  This allows further
1699 * write to continue while this code syncs out an iclog ready to go.
1700 * Before an in-core log can be written out, the data section must be scanned
1701 * to save away the 1st word of each BBSIZE block into the header.  We replace
1702 * it with the current cycle count.  Each BBSIZE block is tagged with the
1703 * cycle count because there in an implicit assumption that drives will
1704 * guarantee that entire 512 byte blocks get written at once.  In other words,
1705 * we can't have part of a 512 byte block written and part not written.  By
1706 * tagging each block, we will know which blocks are valid when recovering
1707 * after an unclean shutdown.
1708 *
1709 * This routine is single threaded on the iclog.  No other thread can be in
1710 * this routine with the same iclog.  Changing contents of iclog can there-
1711 * fore be done without grabbing the state machine lock.  Updating the global
1712 * log will require grabbing the lock though.
1713 *
1714 * The entire log manager uses a logical block numbering scheme.  Only
1715 * log_sync (and then only bwrite()) know about the fact that the log may
1716 * not start with block zero on a given device.  The log block start offset
1717 * is added immediately before calling bwrite().
1718 */
1719
1720STATIC int
1721xlog_sync(
1722	struct xlog		*log,
1723	struct xlog_in_core	*iclog)
1724{
1725	xfs_buf_t	*bp;
1726	int		i;
1727	uint		count;		/* byte count of bwrite */
1728	uint		count_init;	/* initial count before roundup */
1729	int		roundoff;       /* roundoff to BB or stripe */
1730	int		split = 0;	/* split write into two regions */
1731	int		error;
1732	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1733	int		size;
1734
1735	XFS_STATS_INC(xs_log_writes);
1736	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1737
1738	/* Add for LR header */
1739	count_init = log->l_iclog_hsize + iclog->ic_offset;
1740
1741	/* Round out the log write size */
1742	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1743		/* we have a v2 stripe unit to use */
1744		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1745	} else {
1746		count = BBTOB(BTOBB(count_init));
1747	}
1748	roundoff = count - count_init;
1749	ASSERT(roundoff >= 0);
1750	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1751                roundoff < log->l_mp->m_sb.sb_logsunit)
1752		||
1753		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1754		 roundoff < BBTOB(1)));
1755
1756	/* move grant heads by roundoff in sync */
1757	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1758	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1759
1760	/* put cycle number in every block */
1761	xlog_pack_data(log, iclog, roundoff);
1762
1763	/* real byte length */
1764	size = iclog->ic_offset;
1765	if (v2)
1766		size += roundoff;
1767	iclog->ic_header.h_len = cpu_to_be32(size);
1768
1769	bp = iclog->ic_bp;
1770	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1771
1772	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1773
1774	/* Do we need to split this write into 2 parts? */
1775	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1776		char		*dptr;
1777
1778		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1779		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1780		iclog->ic_bwritecnt = 2;
1781
1782		/*
1783		 * Bump the cycle numbers at the start of each block in the
1784		 * part of the iclog that ends up in the buffer that gets
1785		 * written to the start of the log.
1786		 *
1787		 * Watch out for the header magic number case, though.
1788		 */
1789		dptr = (char *)&iclog->ic_header + count;
1790		for (i = 0; i < split; i += BBSIZE) {
1791			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1792			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1793				cycle++;
1794			*(__be32 *)dptr = cpu_to_be32(cycle);
1795
1796			dptr += BBSIZE;
1797		}
1798	} else {
1799		iclog->ic_bwritecnt = 1;
1800	}
1801
1802	/* calculcate the checksum */
1803	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1804					    iclog->ic_datap, size);
1805
1806	bp->b_io_length = BTOBB(count);
1807	bp->b_fspriv = iclog;
1808	XFS_BUF_ZEROFLAGS(bp);
1809	XFS_BUF_ASYNC(bp);
1810	bp->b_flags |= XBF_SYNCIO;
1811
1812	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1813		bp->b_flags |= XBF_FUA;
1814
1815		/*
1816		 * Flush the data device before flushing the log to make
1817		 * sure all meta data written back from the AIL actually made
1818		 * it to disk before stamping the new log tail LSN into the
1819		 * log buffer.  For an external log we need to issue the
1820		 * flush explicitly, and unfortunately synchronously here;
1821		 * for an internal log we can simply use the block layer
1822		 * state machine for preflushes.
1823		 */
1824		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1825			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1826		else
1827			bp->b_flags |= XBF_FLUSH;
1828	}
1829
1830	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1831	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1832
1833	xlog_verify_iclog(log, iclog, count, true);
1834
1835	/* account for log which doesn't start at block #0 */
1836	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1837	/*
1838	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1839	 * is shutting down.
1840	 */
1841	XFS_BUF_WRITE(bp);
1842
1843	error = xlog_bdstrat(bp);
1844	if (error) {
1845		xfs_buf_ioerror_alert(bp, "xlog_sync");
1846		return error;
1847	}
1848	if (split) {
1849		bp = iclog->ic_log->l_xbuf;
1850		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1851		xfs_buf_associate_memory(bp,
1852				(char *)&iclog->ic_header + count, split);
1853		bp->b_fspriv = iclog;
1854		XFS_BUF_ZEROFLAGS(bp);
1855		XFS_BUF_ASYNC(bp);
1856		bp->b_flags |= XBF_SYNCIO;
1857		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1858			bp->b_flags |= XBF_FUA;
1859
1860		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1861		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1862
1863		/* account for internal log which doesn't start at block #0 */
1864		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1865		XFS_BUF_WRITE(bp);
1866		error = xlog_bdstrat(bp);
1867		if (error) {
1868			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1869			return error;
1870		}
1871	}
1872	return 0;
1873}	/* xlog_sync */
1874
1875/*
1876 * Deallocate a log structure
1877 */
1878STATIC void
1879xlog_dealloc_log(
1880	struct xlog	*log)
1881{
1882	xlog_in_core_t	*iclog, *next_iclog;
1883	int		i;
1884
1885	xlog_cil_destroy(log);
1886
1887	/*
1888	 * Cycle all the iclogbuf locks to make sure all log IO completion
1889	 * is done before we tear down these buffers.
1890	 */
1891	iclog = log->l_iclog;
1892	for (i = 0; i < log->l_iclog_bufs; i++) {
1893		xfs_buf_lock(iclog->ic_bp);
1894		xfs_buf_unlock(iclog->ic_bp);
1895		iclog = iclog->ic_next;
1896	}
1897
1898	/*
1899	 * Always need to ensure that the extra buffer does not point to memory
1900	 * owned by another log buffer before we free it. Also, cycle the lock
1901	 * first to ensure we've completed IO on it.
1902	 */
1903	xfs_buf_lock(log->l_xbuf);
1904	xfs_buf_unlock(log->l_xbuf);
1905	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1906	xfs_buf_free(log->l_xbuf);
1907
1908	iclog = log->l_iclog;
1909	for (i = 0; i < log->l_iclog_bufs; i++) {
1910		xfs_buf_free(iclog->ic_bp);
1911		next_iclog = iclog->ic_next;
1912		kmem_free(iclog);
1913		iclog = next_iclog;
1914	}
1915	spinlock_destroy(&log->l_icloglock);
1916
1917	log->l_mp->m_log = NULL;
1918	kmem_free(log);
1919}	/* xlog_dealloc_log */
1920
1921/*
1922 * Update counters atomically now that memcpy is done.
1923 */
1924/* ARGSUSED */
1925static inline void
1926xlog_state_finish_copy(
1927	struct xlog		*log,
1928	struct xlog_in_core	*iclog,
1929	int			record_cnt,
1930	int			copy_bytes)
1931{
1932	spin_lock(&log->l_icloglock);
1933
1934	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1935	iclog->ic_offset += copy_bytes;
1936
1937	spin_unlock(&log->l_icloglock);
1938}	/* xlog_state_finish_copy */
1939
1940
1941
1942
1943/*
1944 * print out info relating to regions written which consume
1945 * the reservation
1946 */
1947void
1948xlog_print_tic_res(
1949	struct xfs_mount	*mp,
1950	struct xlog_ticket	*ticket)
1951{
1952	uint i;
1953	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1954
1955	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1956	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1957	    "bformat",
1958	    "bchunk",
1959	    "efi_format",
1960	    "efd_format",
1961	    "iformat",
1962	    "icore",
1963	    "iext",
1964	    "ibroot",
1965	    "ilocal",
1966	    "iattr_ext",
1967	    "iattr_broot",
1968	    "iattr_local",
1969	    "qformat",
1970	    "dquot",
1971	    "quotaoff",
1972	    "LR header",
1973	    "unmount",
1974	    "commit",
1975	    "trans header"
1976	};
1977	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1978	    "SETATTR_NOT_SIZE",
1979	    "SETATTR_SIZE",
1980	    "INACTIVE",
1981	    "CREATE",
1982	    "CREATE_TRUNC",
1983	    "TRUNCATE_FILE",
1984	    "REMOVE",
1985	    "LINK",
1986	    "RENAME",
1987	    "MKDIR",
1988	    "RMDIR",
1989	    "SYMLINK",
1990	    "SET_DMATTRS",
1991	    "GROWFS",
1992	    "STRAT_WRITE",
1993	    "DIOSTRAT",
1994	    "WRITE_SYNC",
1995	    "WRITEID",
1996	    "ADDAFORK",
1997	    "ATTRINVAL",
1998	    "ATRUNCATE",
1999	    "ATTR_SET",
2000	    "ATTR_RM",
2001	    "ATTR_FLAG",
2002	    "CLEAR_AGI_BUCKET",
2003	    "QM_SBCHANGE",
2004	    "DUMMY1",
2005	    "DUMMY2",
2006	    "QM_QUOTAOFF",
2007	    "QM_DQALLOC",
2008	    "QM_SETQLIM",
2009	    "QM_DQCLUSTER",
2010	    "QM_QINOCREATE",
2011	    "QM_QUOTAOFF_END",
2012	    "SB_UNIT",
2013	    "FSYNC_TS",
2014	    "GROWFSRT_ALLOC",
2015	    "GROWFSRT_ZERO",
2016	    "GROWFSRT_FREE",
2017	    "SWAPEXT"
2018	};
2019
2020	xfs_warn(mp,
2021		"xlog_write: reservation summary:\n"
2022		"  trans type  = %s (%u)\n"
2023		"  unit res    = %d bytes\n"
2024		"  current res = %d bytes\n"
2025		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2026		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2027		"  ophdr + reg = %u bytes\n"
2028		"  num regions = %u\n",
2029		((ticket->t_trans_type <= 0 ||
2030		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2031		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2032		ticket->t_trans_type,
2033		ticket->t_unit_res,
2034		ticket->t_curr_res,
2035		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2036		ticket->t_res_num_ophdrs, ophdr_spc,
2037		ticket->t_res_arr_sum +
2038		ticket->t_res_o_flow + ophdr_spc,
2039		ticket->t_res_num);
2040
2041	for (i = 0; i < ticket->t_res_num; i++) {
2042		uint r_type = ticket->t_res_arr[i].r_type;
2043		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2044			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2045			    "bad-rtype" : res_type_str[r_type-1]),
2046			    ticket->t_res_arr[i].r_len);
2047	}
2048
2049	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2050		"xlog_write: reservation ran out. Need to up reservation");
2051	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2052}
2053
2054/*
2055 * Calculate the potential space needed by the log vector.  Each region gets
2056 * its own xlog_op_header_t and may need to be double word aligned.
2057 */
2058static int
2059xlog_write_calc_vec_length(
2060	struct xlog_ticket	*ticket,
2061	struct xfs_log_vec	*log_vector)
2062{
2063	struct xfs_log_vec	*lv;
2064	int			headers = 0;
2065	int			len = 0;
2066	int			i;
2067
2068	/* acct for start rec of xact */
2069	if (ticket->t_flags & XLOG_TIC_INITED)
2070		headers++;
2071
2072	for (lv = log_vector; lv; lv = lv->lv_next) {
2073		/* we don't write ordered log vectors */
2074		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2075			continue;
2076
2077		headers += lv->lv_niovecs;
2078
2079		for (i = 0; i < lv->lv_niovecs; i++) {
2080			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2081
2082			len += vecp->i_len;
2083			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2084		}
2085	}
2086
2087	ticket->t_res_num_ophdrs += headers;
2088	len += headers * sizeof(struct xlog_op_header);
2089
2090	return len;
2091}
2092
2093/*
2094 * If first write for transaction, insert start record  We can't be trying to
2095 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2096 */
2097static int
2098xlog_write_start_rec(
2099	struct xlog_op_header	*ophdr,
2100	struct xlog_ticket	*ticket)
2101{
2102	if (!(ticket->t_flags & XLOG_TIC_INITED))
2103		return 0;
2104
2105	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2106	ophdr->oh_clientid = ticket->t_clientid;
2107	ophdr->oh_len = 0;
2108	ophdr->oh_flags = XLOG_START_TRANS;
2109	ophdr->oh_res2 = 0;
2110
2111	ticket->t_flags &= ~XLOG_TIC_INITED;
2112
2113	return sizeof(struct xlog_op_header);
2114}
2115
2116static xlog_op_header_t *
2117xlog_write_setup_ophdr(
2118	struct xlog		*log,
2119	struct xlog_op_header	*ophdr,
2120	struct xlog_ticket	*ticket,
2121	uint			flags)
2122{
2123	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2124	ophdr->oh_clientid = ticket->t_clientid;
2125	ophdr->oh_res2 = 0;
2126
2127	/* are we copying a commit or unmount record? */
2128	ophdr->oh_flags = flags;
2129
2130	/*
2131	 * We've seen logs corrupted with bad transaction client ids.  This
2132	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2133	 * and shut down the filesystem.
2134	 */
2135	switch (ophdr->oh_clientid)  {
2136	case XFS_TRANSACTION:
2137	case XFS_VOLUME:
2138	case XFS_LOG:
2139		break;
2140	default:
2141		xfs_warn(log->l_mp,
2142			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2143			ophdr->oh_clientid, ticket);
2144		return NULL;
2145	}
2146
2147	return ophdr;
2148}
2149
2150/*
2151 * Set up the parameters of the region copy into the log. This has
2152 * to handle region write split across multiple log buffers - this
2153 * state is kept external to this function so that this code can
2154 * be written in an obvious, self documenting manner.
2155 */
2156static int
2157xlog_write_setup_copy(
2158	struct xlog_ticket	*ticket,
2159	struct xlog_op_header	*ophdr,
2160	int			space_available,
2161	int			space_required,
2162	int			*copy_off,
2163	int			*copy_len,
2164	int			*last_was_partial_copy,
2165	int			*bytes_consumed)
2166{
2167	int			still_to_copy;
2168
2169	still_to_copy = space_required - *bytes_consumed;
2170	*copy_off = *bytes_consumed;
2171
2172	if (still_to_copy <= space_available) {
2173		/* write of region completes here */
2174		*copy_len = still_to_copy;
2175		ophdr->oh_len = cpu_to_be32(*copy_len);
2176		if (*last_was_partial_copy)
2177			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2178		*last_was_partial_copy = 0;
2179		*bytes_consumed = 0;
2180		return 0;
2181	}
2182
2183	/* partial write of region, needs extra log op header reservation */
2184	*copy_len = space_available;
2185	ophdr->oh_len = cpu_to_be32(*copy_len);
2186	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2187	if (*last_was_partial_copy)
2188		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2189	*bytes_consumed += *copy_len;
2190	(*last_was_partial_copy)++;
2191
2192	/* account for new log op header */
2193	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2194	ticket->t_res_num_ophdrs++;
2195
2196	return sizeof(struct xlog_op_header);
2197}
2198
2199static int
2200xlog_write_copy_finish(
2201	struct xlog		*log,
2202	struct xlog_in_core	*iclog,
2203	uint			flags,
2204	int			*record_cnt,
2205	int			*data_cnt,
2206	int			*partial_copy,
2207	int			*partial_copy_len,
2208	int			log_offset,
2209	struct xlog_in_core	**commit_iclog)
2210{
2211	if (*partial_copy) {
2212		/*
2213		 * This iclog has already been marked WANT_SYNC by
2214		 * xlog_state_get_iclog_space.
2215		 */
2216		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2217		*record_cnt = 0;
2218		*data_cnt = 0;
2219		return xlog_state_release_iclog(log, iclog);
2220	}
2221
2222	*partial_copy = 0;
2223	*partial_copy_len = 0;
2224
2225	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2226		/* no more space in this iclog - push it. */
2227		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2228		*record_cnt = 0;
2229		*data_cnt = 0;
2230
2231		spin_lock(&log->l_icloglock);
2232		xlog_state_want_sync(log, iclog);
2233		spin_unlock(&log->l_icloglock);
2234
2235		if (!commit_iclog)
2236			return xlog_state_release_iclog(log, iclog);
2237		ASSERT(flags & XLOG_COMMIT_TRANS);
2238		*commit_iclog = iclog;
2239	}
2240
2241	return 0;
2242}
2243
2244/*
2245 * Write some region out to in-core log
2246 *
2247 * This will be called when writing externally provided regions or when
2248 * writing out a commit record for a given transaction.
2249 *
2250 * General algorithm:
2251 *	1. Find total length of this write.  This may include adding to the
2252 *		lengths passed in.
2253 *	2. Check whether we violate the tickets reservation.
2254 *	3. While writing to this iclog
2255 *	    A. Reserve as much space in this iclog as can get
2256 *	    B. If this is first write, save away start lsn
2257 *	    C. While writing this region:
2258 *		1. If first write of transaction, write start record
2259 *		2. Write log operation header (header per region)
2260 *		3. Find out if we can fit entire region into this iclog
2261 *		4. Potentially, verify destination memcpy ptr
2262 *		5. Memcpy (partial) region
2263 *		6. If partial copy, release iclog; otherwise, continue
2264 *			copying more regions into current iclog
2265 *	4. Mark want sync bit (in simulation mode)
2266 *	5. Release iclog for potential flush to on-disk log.
2267 *
2268 * ERRORS:
2269 * 1.	Panic if reservation is overrun.  This should never happen since
2270 *	reservation amounts are generated internal to the filesystem.
2271 * NOTES:
2272 * 1. Tickets are single threaded data structures.
2273 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2274 *	syncing routine.  When a single log_write region needs to span
2275 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2276 *	on all log operation writes which don't contain the end of the
2277 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2278 *	operation which contains the end of the continued log_write region.
2279 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2280 *	we don't really know exactly how much space will be used.  As a result,
2281 *	we don't update ic_offset until the end when we know exactly how many
2282 *	bytes have been written out.
2283 */
2284int
2285xlog_write(
2286	struct xlog		*log,
2287	struct xfs_log_vec	*log_vector,
2288	struct xlog_ticket	*ticket,
2289	xfs_lsn_t		*start_lsn,
2290	struct xlog_in_core	**commit_iclog,
2291	uint			flags)
2292{
2293	struct xlog_in_core	*iclog = NULL;
2294	struct xfs_log_iovec	*vecp;
2295	struct xfs_log_vec	*lv;
2296	int			len;
2297	int			index;
2298	int			partial_copy = 0;
2299	int			partial_copy_len = 0;
2300	int			contwr = 0;
2301	int			record_cnt = 0;
2302	int			data_cnt = 0;
2303	int			error;
2304
2305	*start_lsn = 0;
2306
2307	len = xlog_write_calc_vec_length(ticket, log_vector);
2308
2309	/*
2310	 * Region headers and bytes are already accounted for.
2311	 * We only need to take into account start records and
2312	 * split regions in this function.
2313	 */
2314	if (ticket->t_flags & XLOG_TIC_INITED)
2315		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2316
2317	/*
2318	 * Commit record headers need to be accounted for. These
2319	 * come in as separate writes so are easy to detect.
2320	 */
2321	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2322		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2323
2324	if (ticket->t_curr_res < 0)
2325		xlog_print_tic_res(log->l_mp, ticket);
2326
2327	index = 0;
2328	lv = log_vector;
2329	vecp = lv->lv_iovecp;
2330	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2331		void		*ptr;
2332		int		log_offset;
2333
2334		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2335						   &contwr, &log_offset);
2336		if (error)
2337			return error;
2338
2339		ASSERT(log_offset <= iclog->ic_size - 1);
2340		ptr = iclog->ic_datap + log_offset;
2341
2342		/* start_lsn is the first lsn written to. That's all we need. */
2343		if (!*start_lsn)
2344			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2345
2346		/*
2347		 * This loop writes out as many regions as can fit in the amount
2348		 * of space which was allocated by xlog_state_get_iclog_space().
2349		 */
2350		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2351			struct xfs_log_iovec	*reg;
2352			struct xlog_op_header	*ophdr;
2353			int			start_rec_copy;
2354			int			copy_len;
2355			int			copy_off;
2356			bool			ordered = false;
2357
2358			/* ordered log vectors have no regions to write */
2359			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2360				ASSERT(lv->lv_niovecs == 0);
2361				ordered = true;
2362				goto next_lv;
2363			}
2364
2365			reg = &vecp[index];
2366			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2367			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2368
2369			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2370			if (start_rec_copy) {
2371				record_cnt++;
2372				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2373						   start_rec_copy);
2374			}
2375
2376			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2377			if (!ophdr)
2378				return -EIO;
2379
2380			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2381					   sizeof(struct xlog_op_header));
2382
2383			len += xlog_write_setup_copy(ticket, ophdr,
2384						     iclog->ic_size-log_offset,
2385						     reg->i_len,
2386						     &copy_off, &copy_len,
2387						     &partial_copy,
2388						     &partial_copy_len);
2389			xlog_verify_dest_ptr(log, ptr);
2390
2391			/* copy region */
2392			ASSERT(copy_len >= 0);
2393			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2394			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2395
2396			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2397			record_cnt++;
2398			data_cnt += contwr ? copy_len : 0;
2399
2400			error = xlog_write_copy_finish(log, iclog, flags,
2401						       &record_cnt, &data_cnt,
2402						       &partial_copy,
2403						       &partial_copy_len,
2404						       log_offset,
2405						       commit_iclog);
2406			if (error)
2407				return error;
2408
2409			/*
2410			 * if we had a partial copy, we need to get more iclog
2411			 * space but we don't want to increment the region
2412			 * index because there is still more is this region to
2413			 * write.
2414			 *
2415			 * If we completed writing this region, and we flushed
2416			 * the iclog (indicated by resetting of the record
2417			 * count), then we also need to get more log space. If
2418			 * this was the last record, though, we are done and
2419			 * can just return.
2420			 */
2421			if (partial_copy)
2422				break;
2423
2424			if (++index == lv->lv_niovecs) {
2425next_lv:
2426				lv = lv->lv_next;
2427				index = 0;
2428				if (lv)
2429					vecp = lv->lv_iovecp;
2430			}
2431			if (record_cnt == 0 && ordered == false) {
2432				if (!lv)
2433					return 0;
2434				break;
2435			}
2436		}
2437	}
2438
2439	ASSERT(len == 0);
2440
2441	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2442	if (!commit_iclog)
2443		return xlog_state_release_iclog(log, iclog);
2444
2445	ASSERT(flags & XLOG_COMMIT_TRANS);
2446	*commit_iclog = iclog;
2447	return 0;
2448}
2449
2450
2451/*****************************************************************************
2452 *
2453 *		State Machine functions
2454 *
2455 *****************************************************************************
2456 */
2457
2458/* Clean iclogs starting from the head.  This ordering must be
2459 * maintained, so an iclog doesn't become ACTIVE beyond one that
2460 * is SYNCING.  This is also required to maintain the notion that we use
2461 * a ordered wait queue to hold off would be writers to the log when every
2462 * iclog is trying to sync to disk.
2463 *
2464 * State Change: DIRTY -> ACTIVE
2465 */
2466STATIC void
2467xlog_state_clean_log(
2468	struct xlog *log)
2469{
2470	xlog_in_core_t	*iclog;
2471	int changed = 0;
2472
2473	iclog = log->l_iclog;
2474	do {
2475		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2476			iclog->ic_state	= XLOG_STATE_ACTIVE;
2477			iclog->ic_offset       = 0;
2478			ASSERT(iclog->ic_callback == NULL);
2479			/*
2480			 * If the number of ops in this iclog indicate it just
2481			 * contains the dummy transaction, we can
2482			 * change state into IDLE (the second time around).
2483			 * Otherwise we should change the state into
2484			 * NEED a dummy.
2485			 * We don't need to cover the dummy.
2486			 */
2487			if (!changed &&
2488			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2489			   		XLOG_COVER_OPS)) {
2490				changed = 1;
2491			} else {
2492				/*
2493				 * We have two dirty iclogs so start over
2494				 * This could also be num of ops indicates
2495				 * this is not the dummy going out.
2496				 */
2497				changed = 2;
2498			}
2499			iclog->ic_header.h_num_logops = 0;
2500			memset(iclog->ic_header.h_cycle_data, 0,
2501			      sizeof(iclog->ic_header.h_cycle_data));
2502			iclog->ic_header.h_lsn = 0;
2503		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2504			/* do nothing */;
2505		else
2506			break;	/* stop cleaning */
2507		iclog = iclog->ic_next;
2508	} while (iclog != log->l_iclog);
2509
2510	/* log is locked when we are called */
2511	/*
2512	 * Change state for the dummy log recording.
2513	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2514	 * we are done writing the dummy record.
2515	 * If we are done with the second dummy recored (DONE2), then
2516	 * we go to IDLE.
2517	 */
2518	if (changed) {
2519		switch (log->l_covered_state) {
2520		case XLOG_STATE_COVER_IDLE:
2521		case XLOG_STATE_COVER_NEED:
2522		case XLOG_STATE_COVER_NEED2:
2523			log->l_covered_state = XLOG_STATE_COVER_NEED;
2524			break;
2525
2526		case XLOG_STATE_COVER_DONE:
2527			if (changed == 1)
2528				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2529			else
2530				log->l_covered_state = XLOG_STATE_COVER_NEED;
2531			break;
2532
2533		case XLOG_STATE_COVER_DONE2:
2534			if (changed == 1)
2535				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2536			else
2537				log->l_covered_state = XLOG_STATE_COVER_NEED;
2538			break;
2539
2540		default:
2541			ASSERT(0);
2542		}
2543	}
2544}	/* xlog_state_clean_log */
2545
2546STATIC xfs_lsn_t
2547xlog_get_lowest_lsn(
2548	struct xlog	*log)
2549{
2550	xlog_in_core_t  *lsn_log;
2551	xfs_lsn_t	lowest_lsn, lsn;
2552
2553	lsn_log = log->l_iclog;
2554	lowest_lsn = 0;
2555	do {
2556	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2557		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2558		if ((lsn && !lowest_lsn) ||
2559		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2560			lowest_lsn = lsn;
2561		}
2562	    }
2563	    lsn_log = lsn_log->ic_next;
2564	} while (lsn_log != log->l_iclog);
2565	return lowest_lsn;
2566}
2567
2568
2569STATIC void
2570xlog_state_do_callback(
2571	struct xlog		*log,
2572	int			aborted,
2573	struct xlog_in_core	*ciclog)
2574{
2575	xlog_in_core_t	   *iclog;
2576	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2577						 * processed all iclogs once */
2578	xfs_log_callback_t *cb, *cb_next;
2579	int		   flushcnt = 0;
2580	xfs_lsn_t	   lowest_lsn;
2581	int		   ioerrors;	/* counter: iclogs with errors */
2582	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2583	int		   funcdidcallbacks; /* flag: function did callbacks */
2584	int		   repeats;	/* for issuing console warnings if
2585					 * looping too many times */
2586	int		   wake = 0;
2587
2588	spin_lock(&log->l_icloglock);
2589	first_iclog = iclog = log->l_iclog;
2590	ioerrors = 0;
2591	funcdidcallbacks = 0;
2592	repeats = 0;
2593
2594	do {
2595		/*
2596		 * Scan all iclogs starting with the one pointed to by the
2597		 * log.  Reset this starting point each time the log is
2598		 * unlocked (during callbacks).
2599		 *
2600		 * Keep looping through iclogs until one full pass is made
2601		 * without running any callbacks.
2602		 */
2603		first_iclog = log->l_iclog;
2604		iclog = log->l_iclog;
2605		loopdidcallbacks = 0;
2606		repeats++;
2607
2608		do {
2609
2610			/* skip all iclogs in the ACTIVE & DIRTY states */
2611			if (iclog->ic_state &
2612			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2613				iclog = iclog->ic_next;
2614				continue;
2615			}
2616
2617			/*
2618			 * Between marking a filesystem SHUTDOWN and stopping
2619			 * the log, we do flush all iclogs to disk (if there
2620			 * wasn't a log I/O error). So, we do want things to
2621			 * go smoothly in case of just a SHUTDOWN  w/o a
2622			 * LOG_IO_ERROR.
2623			 */
2624			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2625				/*
2626				 * Can only perform callbacks in order.  Since
2627				 * this iclog is not in the DONE_SYNC/
2628				 * DO_CALLBACK state, we skip the rest and
2629				 * just try to clean up.  If we set our iclog
2630				 * to DO_CALLBACK, we will not process it when
2631				 * we retry since a previous iclog is in the
2632				 * CALLBACK and the state cannot change since
2633				 * we are holding the l_icloglock.
2634				 */
2635				if (!(iclog->ic_state &
2636					(XLOG_STATE_DONE_SYNC |
2637						 XLOG_STATE_DO_CALLBACK))) {
2638					if (ciclog && (ciclog->ic_state ==
2639							XLOG_STATE_DONE_SYNC)) {
2640						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2641					}
2642					break;
2643				}
2644				/*
2645				 * We now have an iclog that is in either the
2646				 * DO_CALLBACK or DONE_SYNC states. The other
2647				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2648				 * caught by the above if and are going to
2649				 * clean (i.e. we aren't doing their callbacks)
2650				 * see the above if.
2651				 */
2652
2653				/*
2654				 * We will do one more check here to see if we
2655				 * have chased our tail around.
2656				 */
2657
2658				lowest_lsn = xlog_get_lowest_lsn(log);
2659				if (lowest_lsn &&
2660				    XFS_LSN_CMP(lowest_lsn,
2661						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2662					iclog = iclog->ic_next;
2663					continue; /* Leave this iclog for
2664						   * another thread */
2665				}
2666
2667				iclog->ic_state = XLOG_STATE_CALLBACK;
2668
2669
2670				/*
2671				 * Completion of a iclog IO does not imply that
2672				 * a transaction has completed, as transactions
2673				 * can be large enough to span many iclogs. We
2674				 * cannot change the tail of the log half way
2675				 * through a transaction as this may be the only
2676				 * transaction in the log and moving th etail to
2677				 * point to the middle of it will prevent
2678				 * recovery from finding the start of the
2679				 * transaction. Hence we should only update the
2680				 * last_sync_lsn if this iclog contains
2681				 * transaction completion callbacks on it.
2682				 *
2683				 * We have to do this before we drop the
2684				 * icloglock to ensure we are the only one that
2685				 * can update it.
2686				 */
2687				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2688					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2689				if (iclog->ic_callback)
2690					atomic64_set(&log->l_last_sync_lsn,
2691						be64_to_cpu(iclog->ic_header.h_lsn));
2692
2693			} else
2694				ioerrors++;
2695
2696			spin_unlock(&log->l_icloglock);
2697
2698			/*
2699			 * Keep processing entries in the callback list until
2700			 * we come around and it is empty.  We need to
2701			 * atomically see that the list is empty and change the
2702			 * state to DIRTY so that we don't miss any more
2703			 * callbacks being added.
2704			 */
2705			spin_lock(&iclog->ic_callback_lock);
2706			cb = iclog->ic_callback;
2707			while (cb) {
2708				iclog->ic_callback_tail = &(iclog->ic_callback);
2709				iclog->ic_callback = NULL;
2710				spin_unlock(&iclog->ic_callback_lock);
2711
2712				/* perform callbacks in the order given */
2713				for (; cb; cb = cb_next) {
2714					cb_next = cb->cb_next;
2715					cb->cb_func(cb->cb_arg, aborted);
2716				}
2717				spin_lock(&iclog->ic_callback_lock);
2718				cb = iclog->ic_callback;
2719			}
2720
2721			loopdidcallbacks++;
2722			funcdidcallbacks++;
2723
2724			spin_lock(&log->l_icloglock);
2725			ASSERT(iclog->ic_callback == NULL);
2726			spin_unlock(&iclog->ic_callback_lock);
2727			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2728				iclog->ic_state = XLOG_STATE_DIRTY;
2729
2730			/*
2731			 * Transition from DIRTY to ACTIVE if applicable.
2732			 * NOP if STATE_IOERROR.
2733			 */
2734			xlog_state_clean_log(log);
2735
2736			/* wake up threads waiting in xfs_log_force() */
2737			wake_up_all(&iclog->ic_force_wait);
2738
2739			iclog = iclog->ic_next;
2740		} while (first_iclog != iclog);
2741
2742		if (repeats > 5000) {
2743			flushcnt += repeats;
2744			repeats = 0;
2745			xfs_warn(log->l_mp,
2746				"%s: possible infinite loop (%d iterations)",
2747				__func__, flushcnt);
2748		}
2749	} while (!ioerrors && loopdidcallbacks);
2750
2751	/*
2752	 * make one last gasp attempt to see if iclogs are being left in
2753	 * limbo..
2754	 */
2755#ifdef DEBUG
2756	if (funcdidcallbacks) {
2757		first_iclog = iclog = log->l_iclog;
2758		do {
2759			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2760			/*
2761			 * Terminate the loop if iclogs are found in states
2762			 * which will cause other threads to clean up iclogs.
2763			 *
2764			 * SYNCING - i/o completion will go through logs
2765			 * DONE_SYNC - interrupt thread should be waiting for
2766			 *              l_icloglock
2767			 * IOERROR - give up hope all ye who enter here
2768			 */
2769			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2770			    iclog->ic_state == XLOG_STATE_SYNCING ||
2771			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2772			    iclog->ic_state == XLOG_STATE_IOERROR )
2773				break;
2774			iclog = iclog->ic_next;
2775		} while (first_iclog != iclog);
2776	}
2777#endif
2778
2779	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2780		wake = 1;
2781	spin_unlock(&log->l_icloglock);
2782
2783	if (wake)
2784		wake_up_all(&log->l_flush_wait);
2785}
2786
2787
2788/*
2789 * Finish transitioning this iclog to the dirty state.
2790 *
2791 * Make sure that we completely execute this routine only when this is
2792 * the last call to the iclog.  There is a good chance that iclog flushes,
2793 * when we reach the end of the physical log, get turned into 2 separate
2794 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2795 * routine.  By using the reference count bwritecnt, we guarantee that only
2796 * the second completion goes through.
2797 *
2798 * Callbacks could take time, so they are done outside the scope of the
2799 * global state machine log lock.
2800 */
2801STATIC void
2802xlog_state_done_syncing(
2803	xlog_in_core_t	*iclog,
2804	int		aborted)
2805{
2806	struct xlog	   *log = iclog->ic_log;
2807
2808	spin_lock(&log->l_icloglock);
2809
2810	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2811	       iclog->ic_state == XLOG_STATE_IOERROR);
2812	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2813	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2814
2815
2816	/*
2817	 * If we got an error, either on the first buffer, or in the case of
2818	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2819	 * and none should ever be attempted to be written to disk
2820	 * again.
2821	 */
2822	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2823		if (--iclog->ic_bwritecnt == 1) {
2824			spin_unlock(&log->l_icloglock);
2825			return;
2826		}
2827		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2828	}
2829
2830	/*
2831	 * Someone could be sleeping prior to writing out the next
2832	 * iclog buffer, we wake them all, one will get to do the
2833	 * I/O, the others get to wait for the result.
2834	 */
2835	wake_up_all(&iclog->ic_write_wait);
2836	spin_unlock(&log->l_icloglock);
2837	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2838}	/* xlog_state_done_syncing */
2839
2840
2841/*
2842 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2843 * sleep.  We wait on the flush queue on the head iclog as that should be
2844 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2845 * we will wait here and all new writes will sleep until a sync completes.
2846 *
2847 * The in-core logs are used in a circular fashion. They are not used
2848 * out-of-order even when an iclog past the head is free.
2849 *
2850 * return:
2851 *	* log_offset where xlog_write() can start writing into the in-core
2852 *		log's data space.
2853 *	* in-core log pointer to which xlog_write() should write.
2854 *	* boolean indicating this is a continued write to an in-core log.
2855 *		If this is the last write, then the in-core log's offset field
2856 *		needs to be incremented, depending on the amount of data which
2857 *		is copied.
2858 */
2859STATIC int
2860xlog_state_get_iclog_space(
2861	struct xlog		*log,
2862	int			len,
2863	struct xlog_in_core	**iclogp,
2864	struct xlog_ticket	*ticket,
2865	int			*continued_write,
2866	int			*logoffsetp)
2867{
2868	int		  log_offset;
2869	xlog_rec_header_t *head;
2870	xlog_in_core_t	  *iclog;
2871	int		  error;
2872
2873restart:
2874	spin_lock(&log->l_icloglock);
2875	if (XLOG_FORCED_SHUTDOWN(log)) {
2876		spin_unlock(&log->l_icloglock);
2877		return -EIO;
2878	}
2879
2880	iclog = log->l_iclog;
2881	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2882		XFS_STATS_INC(xs_log_noiclogs);
2883
2884		/* Wait for log writes to have flushed */
2885		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2886		goto restart;
2887	}
2888
2889	head = &iclog->ic_header;
2890
2891	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2892	log_offset = iclog->ic_offset;
2893
2894	/* On the 1st write to an iclog, figure out lsn.  This works
2895	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2896	 * committing to.  If the offset is set, that's how many blocks
2897	 * must be written.
2898	 */
2899	if (log_offset == 0) {
2900		ticket->t_curr_res -= log->l_iclog_hsize;
2901		xlog_tic_add_region(ticket,
2902				    log->l_iclog_hsize,
2903				    XLOG_REG_TYPE_LRHEADER);
2904		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2905		head->h_lsn = cpu_to_be64(
2906			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2907		ASSERT(log->l_curr_block >= 0);
2908	}
2909
2910	/* If there is enough room to write everything, then do it.  Otherwise,
2911	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2912	 * bit is on, so this will get flushed out.  Don't update ic_offset
2913	 * until you know exactly how many bytes get copied.  Therefore, wait
2914	 * until later to update ic_offset.
2915	 *
2916	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2917	 * can fit into remaining data section.
2918	 */
2919	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2920		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2921
2922		/*
2923		 * If I'm the only one writing to this iclog, sync it to disk.
2924		 * We need to do an atomic compare and decrement here to avoid
2925		 * racing with concurrent atomic_dec_and_lock() calls in
2926		 * xlog_state_release_iclog() when there is more than one
2927		 * reference to the iclog.
2928		 */
2929		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2930			/* we are the only one */
2931			spin_unlock(&log->l_icloglock);
2932			error = xlog_state_release_iclog(log, iclog);
2933			if (error)
2934				return error;
2935		} else {
2936			spin_unlock(&log->l_icloglock);
2937		}
2938		goto restart;
2939	}
2940
2941	/* Do we have enough room to write the full amount in the remainder
2942	 * of this iclog?  Or must we continue a write on the next iclog and
2943	 * mark this iclog as completely taken?  In the case where we switch
2944	 * iclogs (to mark it taken), this particular iclog will release/sync
2945	 * to disk in xlog_write().
2946	 */
2947	if (len <= iclog->ic_size - iclog->ic_offset) {
2948		*continued_write = 0;
2949		iclog->ic_offset += len;
2950	} else {
2951		*continued_write = 1;
2952		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2953	}
2954	*iclogp = iclog;
2955
2956	ASSERT(iclog->ic_offset <= iclog->ic_size);
2957	spin_unlock(&log->l_icloglock);
2958
2959	*logoffsetp = log_offset;
2960	return 0;
2961}	/* xlog_state_get_iclog_space */
2962
2963/* The first cnt-1 times through here we don't need to
2964 * move the grant write head because the permanent
2965 * reservation has reserved cnt times the unit amount.
2966 * Release part of current permanent unit reservation and
2967 * reset current reservation to be one units worth.  Also
2968 * move grant reservation head forward.
2969 */
2970STATIC void
2971xlog_regrant_reserve_log_space(
2972	struct xlog		*log,
2973	struct xlog_ticket	*ticket)
2974{
2975	trace_xfs_log_regrant_reserve_enter(log, ticket);
2976
2977	if (ticket->t_cnt > 0)
2978		ticket->t_cnt--;
2979
2980	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2981					ticket->t_curr_res);
2982	xlog_grant_sub_space(log, &log->l_write_head.grant,
2983					ticket->t_curr_res);
2984	ticket->t_curr_res = ticket->t_unit_res;
2985	xlog_tic_reset_res(ticket);
2986
2987	trace_xfs_log_regrant_reserve_sub(log, ticket);
2988
2989	/* just return if we still have some of the pre-reserved space */
2990	if (ticket->t_cnt > 0)
2991		return;
2992
2993	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2994					ticket->t_unit_res);
2995
2996	trace_xfs_log_regrant_reserve_exit(log, ticket);
2997
2998	ticket->t_curr_res = ticket->t_unit_res;
2999	xlog_tic_reset_res(ticket);
3000}	/* xlog_regrant_reserve_log_space */
3001
3002
3003/*
3004 * Give back the space left from a reservation.
3005 *
3006 * All the information we need to make a correct determination of space left
3007 * is present.  For non-permanent reservations, things are quite easy.  The
3008 * count should have been decremented to zero.  We only need to deal with the
3009 * space remaining in the current reservation part of the ticket.  If the
3010 * ticket contains a permanent reservation, there may be left over space which
3011 * needs to be released.  A count of N means that N-1 refills of the current
3012 * reservation can be done before we need to ask for more space.  The first
3013 * one goes to fill up the first current reservation.  Once we run out of
3014 * space, the count will stay at zero and the only space remaining will be
3015 * in the current reservation field.
3016 */
3017STATIC void
3018xlog_ungrant_log_space(
3019	struct xlog		*log,
3020	struct xlog_ticket	*ticket)
3021{
3022	int	bytes;
3023
3024	if (ticket->t_cnt > 0)
3025		ticket->t_cnt--;
3026
3027	trace_xfs_log_ungrant_enter(log, ticket);
3028	trace_xfs_log_ungrant_sub(log, ticket);
3029
3030	/*
3031	 * If this is a permanent reservation ticket, we may be able to free
3032	 * up more space based on the remaining count.
3033	 */
3034	bytes = ticket->t_curr_res;
3035	if (ticket->t_cnt > 0) {
3036		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3037		bytes += ticket->t_unit_res*ticket->t_cnt;
3038	}
3039
3040	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3041	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3042
3043	trace_xfs_log_ungrant_exit(log, ticket);
3044
3045	xfs_log_space_wake(log->l_mp);
3046}
3047
3048/*
3049 * Flush iclog to disk if this is the last reference to the given iclog and
3050 * the WANT_SYNC bit is set.
3051 *
3052 * When this function is entered, the iclog is not necessarily in the
3053 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3054 *
3055 *
3056 */
3057STATIC int
3058xlog_state_release_iclog(
3059	struct xlog		*log,
3060	struct xlog_in_core	*iclog)
3061{
3062	int		sync = 0;	/* do we sync? */
3063
3064	if (iclog->ic_state & XLOG_STATE_IOERROR)
3065		return -EIO;
3066
3067	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3068	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3069		return 0;
3070
3071	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3072		spin_unlock(&log->l_icloglock);
3073		return -EIO;
3074	}
3075	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3076	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3077
3078	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3079		/* update tail before writing to iclog */
3080		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3081		sync++;
3082		iclog->ic_state = XLOG_STATE_SYNCING;
3083		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3084		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3085		/* cycle incremented when incrementing curr_block */
3086	}
3087	spin_unlock(&log->l_icloglock);
3088
3089	/*
3090	 * We let the log lock go, so it's possible that we hit a log I/O
3091	 * error or some other SHUTDOWN condition that marks the iclog
3092	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3093	 * this iclog has consistent data, so we ignore IOERROR
3094	 * flags after this point.
3095	 */
3096	if (sync)
3097		return xlog_sync(log, iclog);
3098	return 0;
3099}	/* xlog_state_release_iclog */
3100
3101
3102/*
3103 * This routine will mark the current iclog in the ring as WANT_SYNC
3104 * and move the current iclog pointer to the next iclog in the ring.
3105 * When this routine is called from xlog_state_get_iclog_space(), the
3106 * exact size of the iclog has not yet been determined.  All we know is
3107 * that every data block.  We have run out of space in this log record.
3108 */
3109STATIC void
3110xlog_state_switch_iclogs(
3111	struct xlog		*log,
3112	struct xlog_in_core	*iclog,
3113	int			eventual_size)
3114{
3115	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3116	if (!eventual_size)
3117		eventual_size = iclog->ic_offset;
3118	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3119	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3120	log->l_prev_block = log->l_curr_block;
3121	log->l_prev_cycle = log->l_curr_cycle;
3122
3123	/* roll log?: ic_offset changed later */
3124	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3125
3126	/* Round up to next log-sunit */
3127	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3128	    log->l_mp->m_sb.sb_logsunit > 1) {
3129		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3130		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3131	}
3132
3133	if (log->l_curr_block >= log->l_logBBsize) {
3134		log->l_curr_cycle++;
3135		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3136			log->l_curr_cycle++;
3137		log->l_curr_block -= log->l_logBBsize;
3138		ASSERT(log->l_curr_block >= 0);
3139	}
3140	ASSERT(iclog == log->l_iclog);
3141	log->l_iclog = iclog->ic_next;
3142}	/* xlog_state_switch_iclogs */
3143
3144/*
3145 * Write out all data in the in-core log as of this exact moment in time.
3146 *
3147 * Data may be written to the in-core log during this call.  However,
3148 * we don't guarantee this data will be written out.  A change from past
3149 * implementation means this routine will *not* write out zero length LRs.
3150 *
3151 * Basically, we try and perform an intelligent scan of the in-core logs.
3152 * If we determine there is no flushable data, we just return.  There is no
3153 * flushable data if:
3154 *
3155 *	1. the current iclog is active and has no data; the previous iclog
3156 *		is in the active or dirty state.
3157 *	2. the current iclog is drity, and the previous iclog is in the
3158 *		active or dirty state.
3159 *
3160 * We may sleep if:
3161 *
3162 *	1. the current iclog is not in the active nor dirty state.
3163 *	2. the current iclog dirty, and the previous iclog is not in the
3164 *		active nor dirty state.
3165 *	3. the current iclog is active, and there is another thread writing
3166 *		to this particular iclog.
3167 *	4. a) the current iclog is active and has no other writers
3168 *	   b) when we return from flushing out this iclog, it is still
3169 *		not in the active nor dirty state.
3170 */
3171int
3172_xfs_log_force(
3173	struct xfs_mount	*mp,
3174	uint			flags,
3175	int			*log_flushed)
3176{
3177	struct xlog		*log = mp->m_log;
3178	struct xlog_in_core	*iclog;
3179	xfs_lsn_t		lsn;
3180
3181	XFS_STATS_INC(xs_log_force);
3182
3183	xlog_cil_force(log);
3184
3185	spin_lock(&log->l_icloglock);
3186
3187	iclog = log->l_iclog;
3188	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3189		spin_unlock(&log->l_icloglock);
3190		return -EIO;
3191	}
3192
3193	/* If the head iclog is not active nor dirty, we just attach
3194	 * ourselves to the head and go to sleep.
3195	 */
3196	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3197	    iclog->ic_state == XLOG_STATE_DIRTY) {
3198		/*
3199		 * If the head is dirty or (active and empty), then
3200		 * we need to look at the previous iclog.  If the previous
3201		 * iclog is active or dirty we are done.  There is nothing
3202		 * to sync out.  Otherwise, we attach ourselves to the
3203		 * previous iclog and go to sleep.
3204		 */
3205		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3206		    (atomic_read(&iclog->ic_refcnt) == 0
3207		     && iclog->ic_offset == 0)) {
3208			iclog = iclog->ic_prev;
3209			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3210			    iclog->ic_state == XLOG_STATE_DIRTY)
3211				goto no_sleep;
3212			else
3213				goto maybe_sleep;
3214		} else {
3215			if (atomic_read(&iclog->ic_refcnt) == 0) {
3216				/* We are the only one with access to this
3217				 * iclog.  Flush it out now.  There should
3218				 * be a roundoff of zero to show that someone
3219				 * has already taken care of the roundoff from
3220				 * the previous sync.
3221				 */
3222				atomic_inc(&iclog->ic_refcnt);
3223				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3224				xlog_state_switch_iclogs(log, iclog, 0);
3225				spin_unlock(&log->l_icloglock);
3226
3227				if (xlog_state_release_iclog(log, iclog))
3228					return -EIO;
3229
3230				if (log_flushed)
3231					*log_flushed = 1;
3232				spin_lock(&log->l_icloglock);
3233				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3234				    iclog->ic_state != XLOG_STATE_DIRTY)
3235					goto maybe_sleep;
3236				else
3237					goto no_sleep;
3238			} else {
3239				/* Someone else is writing to this iclog.
3240				 * Use its call to flush out the data.  However,
3241				 * the other thread may not force out this LR,
3242				 * so we mark it WANT_SYNC.
3243				 */
3244				xlog_state_switch_iclogs(log, iclog, 0);
3245				goto maybe_sleep;
3246			}
3247		}
3248	}
3249
3250	/* By the time we come around again, the iclog could've been filled
3251	 * which would give it another lsn.  If we have a new lsn, just
3252	 * return because the relevant data has been flushed.
3253	 */
3254maybe_sleep:
3255	if (flags & XFS_LOG_SYNC) {
3256		/*
3257		 * We must check if we're shutting down here, before
3258		 * we wait, while we're holding the l_icloglock.
3259		 * Then we check again after waking up, in case our
3260		 * sleep was disturbed by a bad news.
3261		 */
3262		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3263			spin_unlock(&log->l_icloglock);
3264			return -EIO;
3265		}
3266		XFS_STATS_INC(xs_log_force_sleep);
3267		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3268		/*
3269		 * No need to grab the log lock here since we're
3270		 * only deciding whether or not to return EIO
3271		 * and the memory read should be atomic.
3272		 */
3273		if (iclog->ic_state & XLOG_STATE_IOERROR)
3274			return -EIO;
3275		if (log_flushed)
3276			*log_flushed = 1;
3277	} else {
3278
3279no_sleep:
3280		spin_unlock(&log->l_icloglock);
3281	}
3282	return 0;
3283}
3284
3285/*
3286 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3287 * about errors or whether the log was flushed or not. This is the normal
3288 * interface to use when trying to unpin items or move the log forward.
3289 */
3290void
3291xfs_log_force(
3292	xfs_mount_t	*mp,
3293	uint		flags)
3294{
3295	int	error;
3296
3297	trace_xfs_log_force(mp, 0);
3298	error = _xfs_log_force(mp, flags, NULL);
3299	if (error)
3300		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3301}
3302
3303/*
3304 * Force the in-core log to disk for a specific LSN.
3305 *
3306 * Find in-core log with lsn.
3307 *	If it is in the DIRTY state, just return.
3308 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3309 *		state and go to sleep or return.
3310 *	If it is in any other state, go to sleep or return.
3311 *
3312 * Synchronous forces are implemented with a signal variable. All callers
3313 * to force a given lsn to disk will wait on a the sv attached to the
3314 * specific in-core log.  When given in-core log finally completes its
3315 * write to disk, that thread will wake up all threads waiting on the
3316 * sv.
3317 */
3318int
3319_xfs_log_force_lsn(
3320	struct xfs_mount	*mp,
3321	xfs_lsn_t		lsn,
3322	uint			flags,
3323	int			*log_flushed)
3324{
3325	struct xlog		*log = mp->m_log;
3326	struct xlog_in_core	*iclog;
3327	int			already_slept = 0;
3328
3329	ASSERT(lsn != 0);
3330
3331	XFS_STATS_INC(xs_log_force);
3332
3333	lsn = xlog_cil_force_lsn(log, lsn);
3334	if (lsn == NULLCOMMITLSN)
3335		return 0;
3336
3337try_again:
3338	spin_lock(&log->l_icloglock);
3339	iclog = log->l_iclog;
3340	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3341		spin_unlock(&log->l_icloglock);
3342		return -EIO;
3343	}
3344
3345	do {
3346		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3347			iclog = iclog->ic_next;
3348			continue;
3349		}
3350
3351		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3352			spin_unlock(&log->l_icloglock);
3353			return 0;
3354		}
3355
3356		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3357			/*
3358			 * We sleep here if we haven't already slept (e.g.
3359			 * this is the first time we've looked at the correct
3360			 * iclog buf) and the buffer before us is going to
3361			 * be sync'ed. The reason for this is that if we
3362			 * are doing sync transactions here, by waiting for
3363			 * the previous I/O to complete, we can allow a few
3364			 * more transactions into this iclog before we close
3365			 * it down.
3366			 *
3367			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3368			 * up the refcnt so we can release the log (which
3369			 * drops the ref count).  The state switch keeps new
3370			 * transaction commits from using this buffer.  When
3371			 * the current commits finish writing into the buffer,
3372			 * the refcount will drop to zero and the buffer will
3373			 * go out then.
3374			 */
3375			if (!already_slept &&
3376			    (iclog->ic_prev->ic_state &
3377			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3378				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3379
3380				XFS_STATS_INC(xs_log_force_sleep);
3381
3382				xlog_wait(&iclog->ic_prev->ic_write_wait,
3383							&log->l_icloglock);
3384				if (log_flushed)
3385					*log_flushed = 1;
3386				already_slept = 1;
3387				goto try_again;
3388			}
3389			atomic_inc(&iclog->ic_refcnt);
3390			xlog_state_switch_iclogs(log, iclog, 0);
3391			spin_unlock(&log->l_icloglock);
3392			if (xlog_state_release_iclog(log, iclog))
3393				return -EIO;
3394			if (log_flushed)
3395				*log_flushed = 1;
3396			spin_lock(&log->l_icloglock);
3397		}
3398
3399		if ((flags & XFS_LOG_SYNC) && /* sleep */
3400		    !(iclog->ic_state &
3401		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3402			/*
3403			 * Don't wait on completion if we know that we've
3404			 * gotten a log write error.
3405			 */
3406			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3407				spin_unlock(&log->l_icloglock);
3408				return -EIO;
3409			}
3410			XFS_STATS_INC(xs_log_force_sleep);
3411			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3412			/*
3413			 * No need to grab the log lock here since we're
3414			 * only deciding whether or not to return EIO
3415			 * and the memory read should be atomic.
3416			 */
3417			if (iclog->ic_state & XLOG_STATE_IOERROR)
3418				return -EIO;
3419
3420			if (log_flushed)
3421				*log_flushed = 1;
3422		} else {		/* just return */
3423			spin_unlock(&log->l_icloglock);
3424		}
3425
3426		return 0;
3427	} while (iclog != log->l_iclog);
3428
3429	spin_unlock(&log->l_icloglock);
3430	return 0;
3431}
3432
3433/*
3434 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3435 * about errors or whether the log was flushed or not. This is the normal
3436 * interface to use when trying to unpin items or move the log forward.
3437 */
3438void
3439xfs_log_force_lsn(
3440	xfs_mount_t	*mp,
3441	xfs_lsn_t	lsn,
3442	uint		flags)
3443{
3444	int	error;
3445
3446	trace_xfs_log_force(mp, lsn);
3447	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3448	if (error)
3449		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3450}
3451
3452/*
3453 * Called when we want to mark the current iclog as being ready to sync to
3454 * disk.
3455 */
3456STATIC void
3457xlog_state_want_sync(
3458	struct xlog		*log,
3459	struct xlog_in_core	*iclog)
3460{
3461	assert_spin_locked(&log->l_icloglock);
3462
3463	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3464		xlog_state_switch_iclogs(log, iclog, 0);
3465	} else {
3466		ASSERT(iclog->ic_state &
3467			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3468	}
3469}
3470
3471
3472/*****************************************************************************
3473 *
3474 *		TICKET functions
3475 *
3476 *****************************************************************************
3477 */
3478
3479/*
3480 * Free a used ticket when its refcount falls to zero.
3481 */
3482void
3483xfs_log_ticket_put(
3484	xlog_ticket_t	*ticket)
3485{
3486	ASSERT(atomic_read(&ticket->t_ref) > 0);
3487	if (atomic_dec_and_test(&ticket->t_ref))
3488		kmem_zone_free(xfs_log_ticket_zone, ticket);
3489}
3490
3491xlog_ticket_t *
3492xfs_log_ticket_get(
3493	xlog_ticket_t	*ticket)
3494{
3495	ASSERT(atomic_read(&ticket->t_ref) > 0);
3496	atomic_inc(&ticket->t_ref);
3497	return ticket;
3498}
3499
3500/*
3501 * Figure out the total log space unit (in bytes) that would be
3502 * required for a log ticket.
3503 */
3504int
3505xfs_log_calc_unit_res(
3506	struct xfs_mount	*mp,
3507	int			unit_bytes)
3508{
3509	struct xlog		*log = mp->m_log;
3510	int			iclog_space;
3511	uint			num_headers;
3512
3513	/*
3514	 * Permanent reservations have up to 'cnt'-1 active log operations
3515	 * in the log.  A unit in this case is the amount of space for one
3516	 * of these log operations.  Normal reservations have a cnt of 1
3517	 * and their unit amount is the total amount of space required.
3518	 *
3519	 * The following lines of code account for non-transaction data
3520	 * which occupy space in the on-disk log.
3521	 *
3522	 * Normal form of a transaction is:
3523	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3524	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3525	 *
3526	 * We need to account for all the leadup data and trailer data
3527	 * around the transaction data.
3528	 * And then we need to account for the worst case in terms of using
3529	 * more space.
3530	 * The worst case will happen if:
3531	 * - the placement of the transaction happens to be such that the
3532	 *   roundoff is at its maximum
3533	 * - the transaction data is synced before the commit record is synced
3534	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3535	 *   Therefore the commit record is in its own Log Record.
3536	 *   This can happen as the commit record is called with its
3537	 *   own region to xlog_write().
3538	 *   This then means that in the worst case, roundoff can happen for
3539	 *   the commit-rec as well.
3540	 *   The commit-rec is smaller than padding in this scenario and so it is
3541	 *   not added separately.
3542	 */
3543
3544	/* for trans header */
3545	unit_bytes += sizeof(xlog_op_header_t);
3546	unit_bytes += sizeof(xfs_trans_header_t);
3547
3548	/* for start-rec */
3549	unit_bytes += sizeof(xlog_op_header_t);
3550
3551	/*
3552	 * for LR headers - the space for data in an iclog is the size minus
3553	 * the space used for the headers. If we use the iclog size, then we
3554	 * undercalculate the number of headers required.
3555	 *
3556	 * Furthermore - the addition of op headers for split-recs might
3557	 * increase the space required enough to require more log and op
3558	 * headers, so take that into account too.
3559	 *
3560	 * IMPORTANT: This reservation makes the assumption that if this
3561	 * transaction is the first in an iclog and hence has the LR headers
3562	 * accounted to it, then the remaining space in the iclog is
3563	 * exclusively for this transaction.  i.e. if the transaction is larger
3564	 * than the iclog, it will be the only thing in that iclog.
3565	 * Fundamentally, this means we must pass the entire log vector to
3566	 * xlog_write to guarantee this.
3567	 */
3568	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3569	num_headers = howmany(unit_bytes, iclog_space);
3570
3571	/* for split-recs - ophdrs added when data split over LRs */
3572	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3573
3574	/* add extra header reservations if we overrun */
3575	while (!num_headers ||
3576	       howmany(unit_bytes, iclog_space) > num_headers) {
3577		unit_bytes += sizeof(xlog_op_header_t);
3578		num_headers++;
3579	}
3580	unit_bytes += log->l_iclog_hsize * num_headers;
3581
3582	/* for commit-rec LR header - note: padding will subsume the ophdr */
3583	unit_bytes += log->l_iclog_hsize;
3584
3585	/* for roundoff padding for transaction data and one for commit record */
3586	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3587		/* log su roundoff */
3588		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3589	} else {
3590		/* BB roundoff */
3591		unit_bytes += 2 * BBSIZE;
3592        }
3593
3594	return unit_bytes;
3595}
3596
3597/*
3598 * Allocate and initialise a new log ticket.
3599 */
3600struct xlog_ticket *
3601xlog_ticket_alloc(
3602	struct xlog		*log,
3603	int			unit_bytes,
3604	int			cnt,
3605	char			client,
3606	bool			permanent,
3607	xfs_km_flags_t		alloc_flags)
3608{
3609	struct xlog_ticket	*tic;
3610	int			unit_res;
3611
3612	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3613	if (!tic)
3614		return NULL;
3615
3616	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3617
3618	atomic_set(&tic->t_ref, 1);
3619	tic->t_task		= current;
3620	INIT_LIST_HEAD(&tic->t_queue);
3621	tic->t_unit_res		= unit_res;
3622	tic->t_curr_res		= unit_res;
3623	tic->t_cnt		= cnt;
3624	tic->t_ocnt		= cnt;
3625	tic->t_tid		= prandom_u32();
3626	tic->t_clientid		= client;
3627	tic->t_flags		= XLOG_TIC_INITED;
3628	tic->t_trans_type	= 0;
3629	if (permanent)
3630		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3631
3632	xlog_tic_reset_res(tic);
3633
3634	return tic;
3635}
3636
3637
3638/******************************************************************************
3639 *
3640 *		Log debug routines
3641 *
3642 ******************************************************************************
3643 */
3644#if defined(DEBUG)
3645/*
3646 * Make sure that the destination ptr is within the valid data region of
3647 * one of the iclogs.  This uses backup pointers stored in a different
3648 * part of the log in case we trash the log structure.
3649 */
3650void
3651xlog_verify_dest_ptr(
3652	struct xlog	*log,
3653	char		*ptr)
3654{
3655	int i;
3656	int good_ptr = 0;
3657
3658	for (i = 0; i < log->l_iclog_bufs; i++) {
3659		if (ptr >= log->l_iclog_bak[i] &&
3660		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3661			good_ptr++;
3662	}
3663
3664	if (!good_ptr)
3665		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3666}
3667
3668/*
3669 * Check to make sure the grant write head didn't just over lap the tail.  If
3670 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3671 * the cycles differ by exactly one and check the byte count.
3672 *
3673 * This check is run unlocked, so can give false positives. Rather than assert
3674 * on failures, use a warn-once flag and a panic tag to allow the admin to
3675 * determine if they want to panic the machine when such an error occurs. For
3676 * debug kernels this will have the same effect as using an assert but, unlinke
3677 * an assert, it can be turned off at runtime.
3678 */
3679STATIC void
3680xlog_verify_grant_tail(
3681	struct xlog	*log)
3682{
3683	int		tail_cycle, tail_blocks;
3684	int		cycle, space;
3685
3686	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3687	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3688	if (tail_cycle != cycle) {
3689		if (cycle - 1 != tail_cycle &&
3690		    !(log->l_flags & XLOG_TAIL_WARN)) {
3691			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3692				"%s: cycle - 1 != tail_cycle", __func__);
3693			log->l_flags |= XLOG_TAIL_WARN;
3694		}
3695
3696		if (space > BBTOB(tail_blocks) &&
3697		    !(log->l_flags & XLOG_TAIL_WARN)) {
3698			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3699				"%s: space > BBTOB(tail_blocks)", __func__);
3700			log->l_flags |= XLOG_TAIL_WARN;
3701		}
3702	}
3703}
3704
3705/* check if it will fit */
3706STATIC void
3707xlog_verify_tail_lsn(
3708	struct xlog		*log,
3709	struct xlog_in_core	*iclog,
3710	xfs_lsn_t		tail_lsn)
3711{
3712    int blocks;
3713
3714    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3715	blocks =
3716	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3717	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3718		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3719    } else {
3720	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3721
3722	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3723		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3724
3725	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3726	if (blocks < BTOBB(iclog->ic_offset) + 1)
3727		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3728    }
3729}	/* xlog_verify_tail_lsn */
3730
3731/*
3732 * Perform a number of checks on the iclog before writing to disk.
3733 *
3734 * 1. Make sure the iclogs are still circular
3735 * 2. Make sure we have a good magic number
3736 * 3. Make sure we don't have magic numbers in the data
3737 * 4. Check fields of each log operation header for:
3738 *	A. Valid client identifier
3739 *	B. tid ptr value falls in valid ptr space (user space code)
3740 *	C. Length in log record header is correct according to the
3741 *		individual operation headers within record.
3742 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3743 *	log, check the preceding blocks of the physical log to make sure all
3744 *	the cycle numbers agree with the current cycle number.
3745 */
3746STATIC void
3747xlog_verify_iclog(
3748	struct xlog		*log,
3749	struct xlog_in_core	*iclog,
3750	int			count,
3751	bool                    syncing)
3752{
3753	xlog_op_header_t	*ophead;
3754	xlog_in_core_t		*icptr;
3755	xlog_in_core_2_t	*xhdr;
3756	xfs_caddr_t		ptr;
3757	xfs_caddr_t		base_ptr;
3758	__psint_t		field_offset;
3759	__uint8_t		clientid;
3760	int			len, i, j, k, op_len;
3761	int			idx;
3762
3763	/* check validity of iclog pointers */
3764	spin_lock(&log->l_icloglock);
3765	icptr = log->l_iclog;
3766	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3767		ASSERT(icptr);
3768
3769	if (icptr != log->l_iclog)
3770		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3771	spin_unlock(&log->l_icloglock);
3772
3773	/* check log magic numbers */
3774	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3775		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3776
3777	ptr = (xfs_caddr_t) &iclog->ic_header;
3778	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3779	     ptr += BBSIZE) {
3780		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3781			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3782				__func__);
3783	}
3784
3785	/* check fields */
3786	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3787	ptr = iclog->ic_datap;
3788	base_ptr = ptr;
3789	ophead = (xlog_op_header_t *)ptr;
3790	xhdr = iclog->ic_data;
3791	for (i = 0; i < len; i++) {
3792		ophead = (xlog_op_header_t *)ptr;
3793
3794		/* clientid is only 1 byte */
3795		field_offset = (__psint_t)
3796			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3797		if (!syncing || (field_offset & 0x1ff)) {
3798			clientid = ophead->oh_clientid;
3799		} else {
3800			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3801			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3802				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3803				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3804				clientid = xlog_get_client_id(
3805					xhdr[j].hic_xheader.xh_cycle_data[k]);
3806			} else {
3807				clientid = xlog_get_client_id(
3808					iclog->ic_header.h_cycle_data[idx]);
3809			}
3810		}
3811		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3812			xfs_warn(log->l_mp,
3813				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3814				__func__, clientid, ophead,
3815				(unsigned long)field_offset);
3816
3817		/* check length */
3818		field_offset = (__psint_t)
3819			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3820		if (!syncing || (field_offset & 0x1ff)) {
3821			op_len = be32_to_cpu(ophead->oh_len);
3822		} else {
3823			idx = BTOBBT((__psint_t)&ophead->oh_len -
3824				    (__psint_t)iclog->ic_datap);
3825			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3826				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3827				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3828				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3829			} else {
3830				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3831			}
3832		}
3833		ptr += sizeof(xlog_op_header_t) + op_len;
3834	}
3835}	/* xlog_verify_iclog */
3836#endif
3837
3838/*
3839 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3840 */
3841STATIC int
3842xlog_state_ioerror(
3843	struct xlog	*log)
3844{
3845	xlog_in_core_t	*iclog, *ic;
3846
3847	iclog = log->l_iclog;
3848	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3849		/*
3850		 * Mark all the incore logs IOERROR.
3851		 * From now on, no log flushes will result.
3852		 */
3853		ic = iclog;
3854		do {
3855			ic->ic_state = XLOG_STATE_IOERROR;
3856			ic = ic->ic_next;
3857		} while (ic != iclog);
3858		return 0;
3859	}
3860	/*
3861	 * Return non-zero, if state transition has already happened.
3862	 */
3863	return 1;
3864}
3865
3866/*
3867 * This is called from xfs_force_shutdown, when we're forcibly
3868 * shutting down the filesystem, typically because of an IO error.
3869 * Our main objectives here are to make sure that:
3870 *	a. if !logerror, flush the logs to disk. Anything modified
3871 *	   after this is ignored.
3872 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3873 *	   parties to find out, 'atomically'.
3874 *	c. those who're sleeping on log reservations, pinned objects and
3875 *	    other resources get woken up, and be told the bad news.
3876 *	d. nothing new gets queued up after (b) and (c) are done.
3877 *
3878 * Note: for the !logerror case we need to flush the regions held in memory out
3879 * to disk first. This needs to be done before the log is marked as shutdown,
3880 * otherwise the iclog writes will fail.
3881 */
3882int
3883xfs_log_force_umount(
3884	struct xfs_mount	*mp,
3885	int			logerror)
3886{
3887	struct xlog	*log;
3888	int		retval;
3889
3890	log = mp->m_log;
3891
3892	/*
3893	 * If this happens during log recovery, don't worry about
3894	 * locking; the log isn't open for business yet.
3895	 */
3896	if (!log ||
3897	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3898		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3899		if (mp->m_sb_bp)
3900			XFS_BUF_DONE(mp->m_sb_bp);
3901		return 0;
3902	}
3903
3904	/*
3905	 * Somebody could've already done the hard work for us.
3906	 * No need to get locks for this.
3907	 */
3908	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3909		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3910		return 1;
3911	}
3912
3913	/*
3914	 * Flush all the completed transactions to disk before marking the log
3915	 * being shut down. We need to do it in this order to ensure that
3916	 * completed operations are safely on disk before we shut down, and that
3917	 * we don't have to issue any buffer IO after the shutdown flags are set
3918	 * to guarantee this.
3919	 */
3920	if (!logerror)
3921		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3922
3923	/*
3924	 * mark the filesystem and the as in a shutdown state and wake
3925	 * everybody up to tell them the bad news.
3926	 */
3927	spin_lock(&log->l_icloglock);
3928	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3929	if (mp->m_sb_bp)
3930		XFS_BUF_DONE(mp->m_sb_bp);
3931
3932	/*
3933	 * Mark the log and the iclogs with IO error flags to prevent any
3934	 * further log IO from being issued or completed.
3935	 */
3936	log->l_flags |= XLOG_IO_ERROR;
3937	retval = xlog_state_ioerror(log);
3938	spin_unlock(&log->l_icloglock);
3939
3940	/*
3941	 * We don't want anybody waiting for log reservations after this. That
3942	 * means we have to wake up everybody queued up on reserveq as well as
3943	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3944	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3945	 * action is protected by the grant locks.
3946	 */
3947	xlog_grant_head_wake_all(&log->l_reserve_head);
3948	xlog_grant_head_wake_all(&log->l_write_head);
3949
3950	/*
3951	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3952	 * as if the log writes were completed. The abort handling in the log
3953	 * item committed callback functions will do this again under lock to
3954	 * avoid races.
3955	 */
3956	wake_up_all(&log->l_cilp->xc_commit_wait);
3957	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3958
3959#ifdef XFSERRORDEBUG
3960	{
3961		xlog_in_core_t	*iclog;
3962
3963		spin_lock(&log->l_icloglock);
3964		iclog = log->l_iclog;
3965		do {
3966			ASSERT(iclog->ic_callback == 0);
3967			iclog = iclog->ic_next;
3968		} while (iclog != log->l_iclog);
3969		spin_unlock(&log->l_icloglock);
3970	}
3971#endif
3972	/* return non-zero if log IOERROR transition had already happened */
3973	return retval;
3974}
3975
3976STATIC int
3977xlog_iclogs_empty(
3978	struct xlog	*log)
3979{
3980	xlog_in_core_t	*iclog;
3981
3982	iclog = log->l_iclog;
3983	do {
3984		/* endianness does not matter here, zero is zero in
3985		 * any language.
3986		 */
3987		if (iclog->ic_header.h_num_logops)
3988			return 0;
3989		iclog = iclog->ic_next;
3990	} while (iclog != log->l_iclog);
3991	return 1;
3992}
3993
3994