1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_inum.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_mount.h"
29#include "xfs_da_format.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_dinode.h"
45#include "xfs_sysfs.h"
46
47
48#ifdef HAVE_PERCPU_SB
49STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
50						int);
51STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52						int);
53STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
54#else
55
56#define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
57#define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
58#endif
59
60static DEFINE_MUTEX(xfs_uuid_table_mutex);
61static int xfs_uuid_table_size;
62static uuid_t *xfs_uuid_table;
63
64/*
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67 */
68STATIC int
69xfs_uuid_mount(
70	struct xfs_mount	*mp)
71{
72	uuid_t			*uuid = &mp->m_sb.sb_uuid;
73	int			hole, i;
74
75	if (mp->m_flags & XFS_MOUNT_NOUUID)
76		return 0;
77
78	if (uuid_is_nil(uuid)) {
79		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80		return -EINVAL;
81	}
82
83	mutex_lock(&xfs_uuid_table_mutex);
84	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85		if (uuid_is_nil(&xfs_uuid_table[i])) {
86			hole = i;
87			continue;
88		}
89		if (uuid_equal(uuid, &xfs_uuid_table[i]))
90			goto out_duplicate;
91	}
92
93	if (hole < 0) {
94		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
97			KM_SLEEP);
98		hole = xfs_uuid_table_size++;
99	}
100	xfs_uuid_table[hole] = *uuid;
101	mutex_unlock(&xfs_uuid_table_mutex);
102
103	return 0;
104
105 out_duplicate:
106	mutex_unlock(&xfs_uuid_table_mutex);
107	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
108	return -EINVAL;
109}
110
111STATIC void
112xfs_uuid_unmount(
113	struct xfs_mount	*mp)
114{
115	uuid_t			*uuid = &mp->m_sb.sb_uuid;
116	int			i;
117
118	if (mp->m_flags & XFS_MOUNT_NOUUID)
119		return;
120
121	mutex_lock(&xfs_uuid_table_mutex);
122	for (i = 0; i < xfs_uuid_table_size; i++) {
123		if (uuid_is_nil(&xfs_uuid_table[i]))
124			continue;
125		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126			continue;
127		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128		break;
129	}
130	ASSERT(i < xfs_uuid_table_size);
131	mutex_unlock(&xfs_uuid_table_mutex);
132}
133
134
135STATIC void
136__xfs_free_perag(
137	struct rcu_head	*head)
138{
139	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140
141	ASSERT(atomic_read(&pag->pag_ref) == 0);
142	kmem_free(pag);
143}
144
145/*
146 * Free up the per-ag resources associated with the mount structure.
147 */
148STATIC void
149xfs_free_perag(
150	xfs_mount_t	*mp)
151{
152	xfs_agnumber_t	agno;
153	struct xfs_perag *pag;
154
155	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156		spin_lock(&mp->m_perag_lock);
157		pag = radix_tree_delete(&mp->m_perag_tree, agno);
158		spin_unlock(&mp->m_perag_lock);
159		ASSERT(pag);
160		ASSERT(atomic_read(&pag->pag_ref) == 0);
161		call_rcu(&pag->rcu_head, __xfs_free_perag);
162	}
163}
164
165/*
166 * Check size of device based on the (data/realtime) block count.
167 * Note: this check is used by the growfs code as well as mount.
168 */
169int
170xfs_sb_validate_fsb_count(
171	xfs_sb_t	*sbp,
172	__uint64_t	nblocks)
173{
174	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
175	ASSERT(sbp->sb_blocklog >= BBSHIFT);
176
177	/* Limited by ULONG_MAX of page cache index */
178	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
179		return -EFBIG;
180	return 0;
181}
182
183int
184xfs_initialize_perag(
185	xfs_mount_t	*mp,
186	xfs_agnumber_t	agcount,
187	xfs_agnumber_t	*maxagi)
188{
189	xfs_agnumber_t	index;
190	xfs_agnumber_t	first_initialised = 0;
191	xfs_perag_t	*pag;
192	xfs_agino_t	agino;
193	xfs_ino_t	ino;
194	xfs_sb_t	*sbp = &mp->m_sb;
195	int		error = -ENOMEM;
196
197	/*
198	 * Walk the current per-ag tree so we don't try to initialise AGs
199	 * that already exist (growfs case). Allocate and insert all the
200	 * AGs we don't find ready for initialisation.
201	 */
202	for (index = 0; index < agcount; index++) {
203		pag = xfs_perag_get(mp, index);
204		if (pag) {
205			xfs_perag_put(pag);
206			continue;
207		}
208		if (!first_initialised)
209			first_initialised = index;
210
211		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212		if (!pag)
213			goto out_unwind;
214		pag->pag_agno = index;
215		pag->pag_mount = mp;
216		spin_lock_init(&pag->pag_ici_lock);
217		mutex_init(&pag->pag_ici_reclaim_lock);
218		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219		spin_lock_init(&pag->pag_buf_lock);
220		pag->pag_buf_tree = RB_ROOT;
221
222		if (radix_tree_preload(GFP_NOFS))
223			goto out_unwind;
224
225		spin_lock(&mp->m_perag_lock);
226		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
227			BUG();
228			spin_unlock(&mp->m_perag_lock);
229			radix_tree_preload_end();
230			error = -EEXIST;
231			goto out_unwind;
232		}
233		spin_unlock(&mp->m_perag_lock);
234		radix_tree_preload_end();
235	}
236
237	/*
238	 * If we mount with the inode64 option, or no inode overflows
239	 * the legacy 32-bit address space clear the inode32 option.
240	 */
241	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
242	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
243
244	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
245		mp->m_flags |= XFS_MOUNT_32BITINODES;
246	else
247		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
248
249	if (mp->m_flags & XFS_MOUNT_32BITINODES)
250		index = xfs_set_inode32(mp, agcount);
251	else
252		index = xfs_set_inode64(mp, agcount);
253
254	if (maxagi)
255		*maxagi = index;
256	return 0;
257
258out_unwind:
259	kmem_free(pag);
260	for (; index > first_initialised; index--) {
261		pag = radix_tree_delete(&mp->m_perag_tree, index);
262		kmem_free(pag);
263	}
264	return error;
265}
266
267/*
268 * xfs_readsb
269 *
270 * Does the initial read of the superblock.
271 */
272int
273xfs_readsb(
274	struct xfs_mount *mp,
275	int		flags)
276{
277	unsigned int	sector_size;
278	struct xfs_buf	*bp;
279	struct xfs_sb	*sbp = &mp->m_sb;
280	int		error;
281	int		loud = !(flags & XFS_MFSI_QUIET);
282	const struct xfs_buf_ops *buf_ops;
283
284	ASSERT(mp->m_sb_bp == NULL);
285	ASSERT(mp->m_ddev_targp != NULL);
286
287	/*
288	 * For the initial read, we must guess at the sector
289	 * size based on the block device.  It's enough to
290	 * get the sb_sectsize out of the superblock and
291	 * then reread with the proper length.
292	 * We don't verify it yet, because it may not be complete.
293	 */
294	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295	buf_ops = NULL;
296
297	/*
298	 * Allocate a (locked) buffer to hold the superblock.
299	 * This will be kept around at all times to optimize
300	 * access to the superblock.
301	 */
302reread:
303	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304				   BTOBB(sector_size), 0, &bp, buf_ops);
305	if (error) {
306		if (loud)
307			xfs_warn(mp, "SB validate failed with error %d.", error);
308		/* bad CRC means corrupted metadata */
309		if (error == -EFSBADCRC)
310			error = -EFSCORRUPTED;
311		return error;
312	}
313
314	/*
315	 * Initialize the mount structure from the superblock.
316	 */
317	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
318
319	/*
320	 * If we haven't validated the superblock, do so now before we try
321	 * to check the sector size and reread the superblock appropriately.
322	 */
323	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
324		if (loud)
325			xfs_warn(mp, "Invalid superblock magic number");
326		error = -EINVAL;
327		goto release_buf;
328	}
329
330	/*
331	 * We must be able to do sector-sized and sector-aligned IO.
332	 */
333	if (sector_size > sbp->sb_sectsize) {
334		if (loud)
335			xfs_warn(mp, "device supports %u byte sectors (not %u)",
336				sector_size, sbp->sb_sectsize);
337		error = -ENOSYS;
338		goto release_buf;
339	}
340
341	if (buf_ops == NULL) {
342		/*
343		 * Re-read the superblock so the buffer is correctly sized,
344		 * and properly verified.
345		 */
346		xfs_buf_relse(bp);
347		sector_size = sbp->sb_sectsize;
348		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
349		goto reread;
350	}
351
352	/* Initialize per-cpu counters */
353	xfs_icsb_reinit_counters(mp);
354
355	/* no need to be quiet anymore, so reset the buf ops */
356	bp->b_ops = &xfs_sb_buf_ops;
357
358	mp->m_sb_bp = bp;
359	xfs_buf_unlock(bp);
360	return 0;
361
362release_buf:
363	xfs_buf_relse(bp);
364	return error;
365}
366
367/*
368 * Update alignment values based on mount options and sb values
369 */
370STATIC int
371xfs_update_alignment(xfs_mount_t *mp)
372{
373	xfs_sb_t	*sbp = &(mp->m_sb);
374
375	if (mp->m_dalign) {
376		/*
377		 * If stripe unit and stripe width are not multiples
378		 * of the fs blocksize turn off alignment.
379		 */
380		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
381		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
382			xfs_warn(mp,
383		"alignment check failed: sunit/swidth vs. blocksize(%d)",
384				sbp->sb_blocksize);
385			return -EINVAL;
386		} else {
387			/*
388			 * Convert the stripe unit and width to FSBs.
389			 */
390			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
391			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
392				xfs_warn(mp,
393			"alignment check failed: sunit/swidth vs. agsize(%d)",
394					 sbp->sb_agblocks);
395				return -EINVAL;
396			} else if (mp->m_dalign) {
397				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
398			} else {
399				xfs_warn(mp,
400			"alignment check failed: sunit(%d) less than bsize(%d)",
401					 mp->m_dalign, sbp->sb_blocksize);
402				return -EINVAL;
403			}
404		}
405
406		/*
407		 * Update superblock with new values
408		 * and log changes
409		 */
410		if (xfs_sb_version_hasdalign(sbp)) {
411			if (sbp->sb_unit != mp->m_dalign) {
412				sbp->sb_unit = mp->m_dalign;
413				mp->m_update_flags |= XFS_SB_UNIT;
414			}
415			if (sbp->sb_width != mp->m_swidth) {
416				sbp->sb_width = mp->m_swidth;
417				mp->m_update_flags |= XFS_SB_WIDTH;
418			}
419		} else {
420			xfs_warn(mp,
421	"cannot change alignment: superblock does not support data alignment");
422			return -EINVAL;
423		}
424	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
425		    xfs_sb_version_hasdalign(&mp->m_sb)) {
426			mp->m_dalign = sbp->sb_unit;
427			mp->m_swidth = sbp->sb_width;
428	}
429
430	return 0;
431}
432
433/*
434 * Set the maximum inode count for this filesystem
435 */
436STATIC void
437xfs_set_maxicount(xfs_mount_t *mp)
438{
439	xfs_sb_t	*sbp = &(mp->m_sb);
440	__uint64_t	icount;
441
442	if (sbp->sb_imax_pct) {
443		/*
444		 * Make sure the maximum inode count is a multiple
445		 * of the units we allocate inodes in.
446		 */
447		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
448		do_div(icount, 100);
449		do_div(icount, mp->m_ialloc_blks);
450		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
451				   sbp->sb_inopblog;
452	} else {
453		mp->m_maxicount = 0;
454	}
455}
456
457/*
458 * Set the default minimum read and write sizes unless
459 * already specified in a mount option.
460 * We use smaller I/O sizes when the file system
461 * is being used for NFS service (wsync mount option).
462 */
463STATIC void
464xfs_set_rw_sizes(xfs_mount_t *mp)
465{
466	xfs_sb_t	*sbp = &(mp->m_sb);
467	int		readio_log, writeio_log;
468
469	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
470		if (mp->m_flags & XFS_MOUNT_WSYNC) {
471			readio_log = XFS_WSYNC_READIO_LOG;
472			writeio_log = XFS_WSYNC_WRITEIO_LOG;
473		} else {
474			readio_log = XFS_READIO_LOG_LARGE;
475			writeio_log = XFS_WRITEIO_LOG_LARGE;
476		}
477	} else {
478		readio_log = mp->m_readio_log;
479		writeio_log = mp->m_writeio_log;
480	}
481
482	if (sbp->sb_blocklog > readio_log) {
483		mp->m_readio_log = sbp->sb_blocklog;
484	} else {
485		mp->m_readio_log = readio_log;
486	}
487	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
488	if (sbp->sb_blocklog > writeio_log) {
489		mp->m_writeio_log = sbp->sb_blocklog;
490	} else {
491		mp->m_writeio_log = writeio_log;
492	}
493	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
494}
495
496/*
497 * precalculate the low space thresholds for dynamic speculative preallocation.
498 */
499void
500xfs_set_low_space_thresholds(
501	struct xfs_mount	*mp)
502{
503	int i;
504
505	for (i = 0; i < XFS_LOWSP_MAX; i++) {
506		__uint64_t space = mp->m_sb.sb_dblocks;
507
508		do_div(space, 100);
509		mp->m_low_space[i] = space * (i + 1);
510	}
511}
512
513
514/*
515 * Set whether we're using inode alignment.
516 */
517STATIC void
518xfs_set_inoalignment(xfs_mount_t *mp)
519{
520	if (xfs_sb_version_hasalign(&mp->m_sb) &&
521	    mp->m_sb.sb_inoalignmt >=
522	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
523		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524	else
525		mp->m_inoalign_mask = 0;
526	/*
527	 * If we are using stripe alignment, check whether
528	 * the stripe unit is a multiple of the inode alignment
529	 */
530	if (mp->m_dalign && mp->m_inoalign_mask &&
531	    !(mp->m_dalign & mp->m_inoalign_mask))
532		mp->m_sinoalign = mp->m_dalign;
533	else
534		mp->m_sinoalign = 0;
535}
536
537/*
538 * Check that the data (and log if separate) is an ok size.
539 */
540STATIC int
541xfs_check_sizes(
542	struct xfs_mount *mp)
543{
544	struct xfs_buf	*bp;
545	xfs_daddr_t	d;
546	int		error;
547
548	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550		xfs_warn(mp, "filesystem size mismatch detected");
551		return -EFBIG;
552	}
553	error = xfs_buf_read_uncached(mp->m_ddev_targp,
554					d - XFS_FSS_TO_BB(mp, 1),
555					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556	if (error) {
557		xfs_warn(mp, "last sector read failed");
558		return error;
559	}
560	xfs_buf_relse(bp);
561
562	if (mp->m_logdev_targp == mp->m_ddev_targp)
563		return 0;
564
565	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567		xfs_warn(mp, "log size mismatch detected");
568		return -EFBIG;
569	}
570	error = xfs_buf_read_uncached(mp->m_logdev_targp,
571					d - XFS_FSB_TO_BB(mp, 1),
572					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573	if (error) {
574		xfs_warn(mp, "log device read failed");
575		return error;
576	}
577	xfs_buf_relse(bp);
578	return 0;
579}
580
581/*
582 * Clear the quotaflags in memory and in the superblock.
583 */
584int
585xfs_mount_reset_sbqflags(
586	struct xfs_mount	*mp)
587{
588	int			error;
589	struct xfs_trans	*tp;
590
591	mp->m_qflags = 0;
592
593	/*
594	 * It is OK to look at sb_qflags here in mount path,
595	 * without m_sb_lock.
596	 */
597	if (mp->m_sb.sb_qflags == 0)
598		return 0;
599	spin_lock(&mp->m_sb_lock);
600	mp->m_sb.sb_qflags = 0;
601	spin_unlock(&mp->m_sb_lock);
602
603	/*
604	 * If the fs is readonly, let the incore superblock run
605	 * with quotas off but don't flush the update out to disk
606	 */
607	if (mp->m_flags & XFS_MOUNT_RDONLY)
608		return 0;
609
610	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
611	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
612	if (error) {
613		xfs_trans_cancel(tp, 0);
614		xfs_alert(mp, "%s: Superblock update failed!", __func__);
615		return error;
616	}
617
618	xfs_mod_sb(tp, XFS_SB_QFLAGS);
619	return xfs_trans_commit(tp, 0);
620}
621
622__uint64_t
623xfs_default_resblks(xfs_mount_t *mp)
624{
625	__uint64_t resblks;
626
627	/*
628	 * We default to 5% or 8192 fsbs of space reserved, whichever is
629	 * smaller.  This is intended to cover concurrent allocation
630	 * transactions when we initially hit enospc. These each require a 4
631	 * block reservation. Hence by default we cover roughly 2000 concurrent
632	 * allocation reservations.
633	 */
634	resblks = mp->m_sb.sb_dblocks;
635	do_div(resblks, 20);
636	resblks = min_t(__uint64_t, resblks, 8192);
637	return resblks;
638}
639
640/*
641 * This function does the following on an initial mount of a file system:
642 *	- reads the superblock from disk and init the mount struct
643 *	- if we're a 32-bit kernel, do a size check on the superblock
644 *		so we don't mount terabyte filesystems
645 *	- init mount struct realtime fields
646 *	- allocate inode hash table for fs
647 *	- init directory manager
648 *	- perform recovery and init the log manager
649 */
650int
651xfs_mountfs(
652	xfs_mount_t	*mp)
653{
654	xfs_sb_t	*sbp = &(mp->m_sb);
655	xfs_inode_t	*rip;
656	__uint64_t	resblks;
657	uint		quotamount = 0;
658	uint		quotaflags = 0;
659	int		error = 0;
660
661	xfs_sb_mount_common(mp, sbp);
662
663	/*
664	 * Check for a mismatched features2 values.  Older kernels
665	 * read & wrote into the wrong sb offset for sb_features2
666	 * on some platforms due to xfs_sb_t not being 64bit size aligned
667	 * when sb_features2 was added, which made older superblock
668	 * reading/writing routines swap it as a 64-bit value.
669	 *
670	 * For backwards compatibility, we make both slots equal.
671	 *
672	 * If we detect a mismatched field, we OR the set bits into the
673	 * existing features2 field in case it has already been modified; we
674	 * don't want to lose any features.  We then update the bad location
675	 * with the ORed value so that older kernels will see any features2
676	 * flags, and mark the two fields as needing updates once the
677	 * transaction subsystem is online.
678	 */
679	if (xfs_sb_has_mismatched_features2(sbp)) {
680		xfs_warn(mp, "correcting sb_features alignment problem");
681		sbp->sb_features2 |= sbp->sb_bad_features2;
682		sbp->sb_bad_features2 = sbp->sb_features2;
683		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
684
685		/*
686		 * Re-check for ATTR2 in case it was found in bad_features2
687		 * slot.
688		 */
689		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
690		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
691			mp->m_flags |= XFS_MOUNT_ATTR2;
692	}
693
694	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
695	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
696		xfs_sb_version_removeattr2(&mp->m_sb);
697		mp->m_update_flags |= XFS_SB_FEATURES2;
698
699		/* update sb_versionnum for the clearing of the morebits */
700		if (!sbp->sb_features2)
701			mp->m_update_flags |= XFS_SB_VERSIONNUM;
702	}
703
704	/* always use v2 inodes by default now */
705	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
706		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
707		mp->m_update_flags |= XFS_SB_VERSIONNUM;
708	}
709
710	/*
711	 * Check if sb_agblocks is aligned at stripe boundary
712	 * If sb_agblocks is NOT aligned turn off m_dalign since
713	 * allocator alignment is within an ag, therefore ag has
714	 * to be aligned at stripe boundary.
715	 */
716	error = xfs_update_alignment(mp);
717	if (error)
718		goto out;
719
720	xfs_alloc_compute_maxlevels(mp);
721	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
722	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
723	xfs_ialloc_compute_maxlevels(mp);
724
725	xfs_set_maxicount(mp);
726
727	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
728	if (error)
729		goto out;
730
731	error = xfs_uuid_mount(mp);
732	if (error)
733		goto out_remove_sysfs;
734
735	/*
736	 * Set the minimum read and write sizes
737	 */
738	xfs_set_rw_sizes(mp);
739
740	/* set the low space thresholds for dynamic preallocation */
741	xfs_set_low_space_thresholds(mp);
742
743	/*
744	 * Set the inode cluster size.
745	 * This may still be overridden by the file system
746	 * block size if it is larger than the chosen cluster size.
747	 *
748	 * For v5 filesystems, scale the cluster size with the inode size to
749	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
750	 * has set the inode alignment value appropriately for larger cluster
751	 * sizes.
752	 */
753	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
754	if (xfs_sb_version_hascrc(&mp->m_sb)) {
755		int	new_size = mp->m_inode_cluster_size;
756
757		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
758		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
759			mp->m_inode_cluster_size = new_size;
760	}
761
762	/*
763	 * Set inode alignment fields
764	 */
765	xfs_set_inoalignment(mp);
766
767	/*
768	 * Check that the data (and log if separate) is an ok size.
769	 */
770	error = xfs_check_sizes(mp);
771	if (error)
772		goto out_remove_uuid;
773
774	/*
775	 * Initialize realtime fields in the mount structure
776	 */
777	error = xfs_rtmount_init(mp);
778	if (error) {
779		xfs_warn(mp, "RT mount failed");
780		goto out_remove_uuid;
781	}
782
783	/*
784	 *  Copies the low order bits of the timestamp and the randomly
785	 *  set "sequence" number out of a UUID.
786	 */
787	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
788
789	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
790
791	error = xfs_da_mount(mp);
792	if (error) {
793		xfs_warn(mp, "Failed dir/attr init: %d", error);
794		goto out_remove_uuid;
795	}
796
797	/*
798	 * Initialize the precomputed transaction reservations values.
799	 */
800	xfs_trans_init(mp);
801
802	/*
803	 * Allocate and initialize the per-ag data.
804	 */
805	spin_lock_init(&mp->m_perag_lock);
806	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
807	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
808	if (error) {
809		xfs_warn(mp, "Failed per-ag init: %d", error);
810		goto out_free_dir;
811	}
812
813	if (!sbp->sb_logblocks) {
814		xfs_warn(mp, "no log defined");
815		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
816		error = -EFSCORRUPTED;
817		goto out_free_perag;
818	}
819
820	/*
821	 * log's mount-time initialization. Perform 1st part recovery if needed
822	 */
823	error = xfs_log_mount(mp, mp->m_logdev_targp,
824			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
825			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
826	if (error) {
827		xfs_warn(mp, "log mount failed");
828		goto out_fail_wait;
829	}
830
831	/*
832	 * Now the log is mounted, we know if it was an unclean shutdown or
833	 * not. If it was, with the first phase of recovery has completed, we
834	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
835	 * but they are recovered transactionally in the second recovery phase
836	 * later.
837	 *
838	 * Hence we can safely re-initialise incore superblock counters from
839	 * the per-ag data. These may not be correct if the filesystem was not
840	 * cleanly unmounted, so we need to wait for recovery to finish before
841	 * doing this.
842	 *
843	 * If the filesystem was cleanly unmounted, then we can trust the
844	 * values in the superblock to be correct and we don't need to do
845	 * anything here.
846	 *
847	 * If we are currently making the filesystem, the initialisation will
848	 * fail as the perag data is in an undefined state.
849	 */
850	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
851	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
852	     !mp->m_sb.sb_inprogress) {
853		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
854		if (error)
855			goto out_log_dealloc;
856	}
857
858	/*
859	 * Get and sanity-check the root inode.
860	 * Save the pointer to it in the mount structure.
861	 */
862	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
863	if (error) {
864		xfs_warn(mp, "failed to read root inode");
865		goto out_log_dealloc;
866	}
867
868	ASSERT(rip != NULL);
869
870	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
871		xfs_warn(mp, "corrupted root inode %llu: not a directory",
872			(unsigned long long)rip->i_ino);
873		xfs_iunlock(rip, XFS_ILOCK_EXCL);
874		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
875				 mp);
876		error = -EFSCORRUPTED;
877		goto out_rele_rip;
878	}
879	mp->m_rootip = rip;	/* save it */
880
881	xfs_iunlock(rip, XFS_ILOCK_EXCL);
882
883	/*
884	 * Initialize realtime inode pointers in the mount structure
885	 */
886	error = xfs_rtmount_inodes(mp);
887	if (error) {
888		/*
889		 * Free up the root inode.
890		 */
891		xfs_warn(mp, "failed to read RT inodes");
892		goto out_rele_rip;
893	}
894
895	/*
896	 * If this is a read-only mount defer the superblock updates until
897	 * the next remount into writeable mode.  Otherwise we would never
898	 * perform the update e.g. for the root filesystem.
899	 */
900	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
901		error = xfs_mount_log_sb(mp, mp->m_update_flags);
902		if (error) {
903			xfs_warn(mp, "failed to write sb changes");
904			goto out_rtunmount;
905		}
906	}
907
908	/*
909	 * Initialise the XFS quota management subsystem for this mount
910	 */
911	if (XFS_IS_QUOTA_RUNNING(mp)) {
912		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
913		if (error)
914			goto out_rtunmount;
915	} else {
916		ASSERT(!XFS_IS_QUOTA_ON(mp));
917
918		/*
919		 * If a file system had quotas running earlier, but decided to
920		 * mount without -o uquota/pquota/gquota options, revoke the
921		 * quotachecked license.
922		 */
923		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
924			xfs_notice(mp, "resetting quota flags");
925			error = xfs_mount_reset_sbqflags(mp);
926			if (error)
927				goto out_rtunmount;
928		}
929	}
930
931	/*
932	 * Finish recovering the file system.  This part needed to be
933	 * delayed until after the root and real-time bitmap inodes
934	 * were consistently read in.
935	 */
936	error = xfs_log_mount_finish(mp);
937	if (error) {
938		xfs_warn(mp, "log mount finish failed");
939		goto out_rtunmount;
940	}
941
942	/*
943	 * Complete the quota initialisation, post-log-replay component.
944	 */
945	if (quotamount) {
946		ASSERT(mp->m_qflags == 0);
947		mp->m_qflags = quotaflags;
948
949		xfs_qm_mount_quotas(mp);
950	}
951
952	/*
953	 * Now we are mounted, reserve a small amount of unused space for
954	 * privileged transactions. This is needed so that transaction
955	 * space required for critical operations can dip into this pool
956	 * when at ENOSPC. This is needed for operations like create with
957	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
958	 * are not allowed to use this reserved space.
959	 *
960	 * This may drive us straight to ENOSPC on mount, but that implies
961	 * we were already there on the last unmount. Warn if this occurs.
962	 */
963	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
964		resblks = xfs_default_resblks(mp);
965		error = xfs_reserve_blocks(mp, &resblks, NULL);
966		if (error)
967			xfs_warn(mp,
968	"Unable to allocate reserve blocks. Continuing without reserve pool.");
969	}
970
971	return 0;
972
973 out_rtunmount:
974	xfs_rtunmount_inodes(mp);
975 out_rele_rip:
976	IRELE(rip);
977 out_log_dealloc:
978	xfs_log_unmount(mp);
979 out_fail_wait:
980	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
981		xfs_wait_buftarg(mp->m_logdev_targp);
982	xfs_wait_buftarg(mp->m_ddev_targp);
983 out_free_perag:
984	xfs_free_perag(mp);
985 out_free_dir:
986	xfs_da_unmount(mp);
987 out_remove_uuid:
988	xfs_uuid_unmount(mp);
989 out_remove_sysfs:
990	xfs_sysfs_del(&mp->m_kobj);
991 out:
992	return error;
993}
994
995/*
996 * This flushes out the inodes,dquots and the superblock, unmounts the
997 * log and makes sure that incore structures are freed.
998 */
999void
1000xfs_unmountfs(
1001	struct xfs_mount	*mp)
1002{
1003	__uint64_t		resblks;
1004	int			error;
1005
1006	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1007
1008	xfs_qm_unmount_quotas(mp);
1009	xfs_rtunmount_inodes(mp);
1010	IRELE(mp->m_rootip);
1011
1012	/*
1013	 * We can potentially deadlock here if we have an inode cluster
1014	 * that has been freed has its buffer still pinned in memory because
1015	 * the transaction is still sitting in a iclog. The stale inodes
1016	 * on that buffer will have their flush locks held until the
1017	 * transaction hits the disk and the callbacks run. the inode
1018	 * flush takes the flush lock unconditionally and with nothing to
1019	 * push out the iclog we will never get that unlocked. hence we
1020	 * need to force the log first.
1021	 */
1022	xfs_log_force(mp, XFS_LOG_SYNC);
1023
1024	/*
1025	 * Flush all pending changes from the AIL.
1026	 */
1027	xfs_ail_push_all_sync(mp->m_ail);
1028
1029	/*
1030	 * And reclaim all inodes.  At this point there should be no dirty
1031	 * inodes and none should be pinned or locked, but use synchronous
1032	 * reclaim just to be sure. We can stop background inode reclaim
1033	 * here as well if it is still running.
1034	 */
1035	cancel_delayed_work_sync(&mp->m_reclaim_work);
1036	xfs_reclaim_inodes(mp, SYNC_WAIT);
1037
1038	xfs_qm_unmount(mp);
1039
1040	/*
1041	 * Unreserve any blocks we have so that when we unmount we don't account
1042	 * the reserved free space as used. This is really only necessary for
1043	 * lazy superblock counting because it trusts the incore superblock
1044	 * counters to be absolutely correct on clean unmount.
1045	 *
1046	 * We don't bother correcting this elsewhere for lazy superblock
1047	 * counting because on mount of an unclean filesystem we reconstruct the
1048	 * correct counter value and this is irrelevant.
1049	 *
1050	 * For non-lazy counter filesystems, this doesn't matter at all because
1051	 * we only every apply deltas to the superblock and hence the incore
1052	 * value does not matter....
1053	 */
1054	resblks = 0;
1055	error = xfs_reserve_blocks(mp, &resblks, NULL);
1056	if (error)
1057		xfs_warn(mp, "Unable to free reserved block pool. "
1058				"Freespace may not be correct on next mount.");
1059
1060	error = xfs_log_sbcount(mp);
1061	if (error)
1062		xfs_warn(mp, "Unable to update superblock counters. "
1063				"Freespace may not be correct on next mount.");
1064
1065	xfs_log_unmount(mp);
1066	xfs_da_unmount(mp);
1067	xfs_uuid_unmount(mp);
1068
1069#if defined(DEBUG)
1070	xfs_errortag_clearall(mp, 0);
1071#endif
1072	xfs_free_perag(mp);
1073
1074	xfs_sysfs_del(&mp->m_kobj);
1075}
1076
1077int
1078xfs_fs_writable(xfs_mount_t *mp)
1079{
1080	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1081		(mp->m_flags & XFS_MOUNT_RDONLY));
1082}
1083
1084/*
1085 * xfs_log_sbcount
1086 *
1087 * Sync the superblock counters to disk.
1088 *
1089 * Note this code can be called during the process of freezing, so
1090 * we may need to use the transaction allocator which does not
1091 * block when the transaction subsystem is in its frozen state.
1092 */
1093int
1094xfs_log_sbcount(xfs_mount_t *mp)
1095{
1096	xfs_trans_t	*tp;
1097	int		error;
1098
1099	if (!xfs_fs_writable(mp))
1100		return 0;
1101
1102	xfs_icsb_sync_counters(mp, 0);
1103
1104	/*
1105	 * we don't need to do this if we are updating the superblock
1106	 * counters on every modification.
1107	 */
1108	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1109		return 0;
1110
1111	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1112	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1113	if (error) {
1114		xfs_trans_cancel(tp, 0);
1115		return error;
1116	}
1117
1118	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1119	xfs_trans_set_sync(tp);
1120	error = xfs_trans_commit(tp, 0);
1121	return error;
1122}
1123
1124/*
1125 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1126 * a delta to a specified field in the in-core superblock.  Simply
1127 * switch on the field indicated and apply the delta to that field.
1128 * Fields are not allowed to dip below zero, so if the delta would
1129 * do this do not apply it and return EINVAL.
1130 *
1131 * The m_sb_lock must be held when this routine is called.
1132 */
1133STATIC int
1134xfs_mod_incore_sb_unlocked(
1135	xfs_mount_t	*mp,
1136	xfs_sb_field_t	field,
1137	int64_t		delta,
1138	int		rsvd)
1139{
1140	int		scounter;	/* short counter for 32 bit fields */
1141	long long	lcounter;	/* long counter for 64 bit fields */
1142	long long	res_used, rem;
1143
1144	/*
1145	 * With the in-core superblock spin lock held, switch
1146	 * on the indicated field.  Apply the delta to the
1147	 * proper field.  If the fields value would dip below
1148	 * 0, then do not apply the delta and return EINVAL.
1149	 */
1150	switch (field) {
1151	case XFS_SBS_ICOUNT:
1152		lcounter = (long long)mp->m_sb.sb_icount;
1153		lcounter += delta;
1154		if (lcounter < 0) {
1155			ASSERT(0);
1156			return -EINVAL;
1157		}
1158		mp->m_sb.sb_icount = lcounter;
1159		return 0;
1160	case XFS_SBS_IFREE:
1161		lcounter = (long long)mp->m_sb.sb_ifree;
1162		lcounter += delta;
1163		if (lcounter < 0) {
1164			ASSERT(0);
1165			return -EINVAL;
1166		}
1167		mp->m_sb.sb_ifree = lcounter;
1168		return 0;
1169	case XFS_SBS_FDBLOCKS:
1170		lcounter = (long long)
1171			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1172		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1173
1174		if (delta > 0) {		/* Putting blocks back */
1175			if (res_used > delta) {
1176				mp->m_resblks_avail += delta;
1177			} else {
1178				rem = delta - res_used;
1179				mp->m_resblks_avail = mp->m_resblks;
1180				lcounter += rem;
1181			}
1182		} else {				/* Taking blocks away */
1183			lcounter += delta;
1184			if (lcounter >= 0) {
1185				mp->m_sb.sb_fdblocks = lcounter +
1186							XFS_ALLOC_SET_ASIDE(mp);
1187				return 0;
1188			}
1189
1190			/*
1191			 * We are out of blocks, use any available reserved
1192			 * blocks if were allowed to.
1193			 */
1194			if (!rsvd)
1195				return -ENOSPC;
1196
1197			lcounter = (long long)mp->m_resblks_avail + delta;
1198			if (lcounter >= 0) {
1199				mp->m_resblks_avail = lcounter;
1200				return 0;
1201			}
1202			printk_once(KERN_WARNING
1203				"Filesystem \"%s\": reserve blocks depleted! "
1204				"Consider increasing reserve pool size.",
1205				mp->m_fsname);
1206			return -ENOSPC;
1207		}
1208
1209		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1210		return 0;
1211	case XFS_SBS_FREXTENTS:
1212		lcounter = (long long)mp->m_sb.sb_frextents;
1213		lcounter += delta;
1214		if (lcounter < 0) {
1215			return -ENOSPC;
1216		}
1217		mp->m_sb.sb_frextents = lcounter;
1218		return 0;
1219	case XFS_SBS_DBLOCKS:
1220		lcounter = (long long)mp->m_sb.sb_dblocks;
1221		lcounter += delta;
1222		if (lcounter < 0) {
1223			ASSERT(0);
1224			return -EINVAL;
1225		}
1226		mp->m_sb.sb_dblocks = lcounter;
1227		return 0;
1228	case XFS_SBS_AGCOUNT:
1229		scounter = mp->m_sb.sb_agcount;
1230		scounter += delta;
1231		if (scounter < 0) {
1232			ASSERT(0);
1233			return -EINVAL;
1234		}
1235		mp->m_sb.sb_agcount = scounter;
1236		return 0;
1237	case XFS_SBS_IMAX_PCT:
1238		scounter = mp->m_sb.sb_imax_pct;
1239		scounter += delta;
1240		if (scounter < 0) {
1241			ASSERT(0);
1242			return -EINVAL;
1243		}
1244		mp->m_sb.sb_imax_pct = scounter;
1245		return 0;
1246	case XFS_SBS_REXTSIZE:
1247		scounter = mp->m_sb.sb_rextsize;
1248		scounter += delta;
1249		if (scounter < 0) {
1250			ASSERT(0);
1251			return -EINVAL;
1252		}
1253		mp->m_sb.sb_rextsize = scounter;
1254		return 0;
1255	case XFS_SBS_RBMBLOCKS:
1256		scounter = mp->m_sb.sb_rbmblocks;
1257		scounter += delta;
1258		if (scounter < 0) {
1259			ASSERT(0);
1260			return -EINVAL;
1261		}
1262		mp->m_sb.sb_rbmblocks = scounter;
1263		return 0;
1264	case XFS_SBS_RBLOCKS:
1265		lcounter = (long long)mp->m_sb.sb_rblocks;
1266		lcounter += delta;
1267		if (lcounter < 0) {
1268			ASSERT(0);
1269			return -EINVAL;
1270		}
1271		mp->m_sb.sb_rblocks = lcounter;
1272		return 0;
1273	case XFS_SBS_REXTENTS:
1274		lcounter = (long long)mp->m_sb.sb_rextents;
1275		lcounter += delta;
1276		if (lcounter < 0) {
1277			ASSERT(0);
1278			return -EINVAL;
1279		}
1280		mp->m_sb.sb_rextents = lcounter;
1281		return 0;
1282	case XFS_SBS_REXTSLOG:
1283		scounter = mp->m_sb.sb_rextslog;
1284		scounter += delta;
1285		if (scounter < 0) {
1286			ASSERT(0);
1287			return -EINVAL;
1288		}
1289		mp->m_sb.sb_rextslog = scounter;
1290		return 0;
1291	default:
1292		ASSERT(0);
1293		return -EINVAL;
1294	}
1295}
1296
1297/*
1298 * xfs_mod_incore_sb() is used to change a field in the in-core
1299 * superblock structure by the specified delta.  This modification
1300 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1301 * routine to do the work.
1302 */
1303int
1304xfs_mod_incore_sb(
1305	struct xfs_mount	*mp,
1306	xfs_sb_field_t		field,
1307	int64_t			delta,
1308	int			rsvd)
1309{
1310	int			status;
1311
1312#ifdef HAVE_PERCPU_SB
1313	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1314#endif
1315	spin_lock(&mp->m_sb_lock);
1316	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1317	spin_unlock(&mp->m_sb_lock);
1318
1319	return status;
1320}
1321
1322/*
1323 * Change more than one field in the in-core superblock structure at a time.
1324 *
1325 * The fields and changes to those fields are specified in the array of
1326 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1327 * will be applied or none of them will.  If any modified field dips below 0,
1328 * then all modifications will be backed out and EINVAL will be returned.
1329 *
1330 * Note that this function may not be used for the superblock values that
1331 * are tracked with the in-memory per-cpu counters - a direct call to
1332 * xfs_icsb_modify_counters is required for these.
1333 */
1334int
1335xfs_mod_incore_sb_batch(
1336	struct xfs_mount	*mp,
1337	xfs_mod_sb_t		*msb,
1338	uint			nmsb,
1339	int			rsvd)
1340{
1341	xfs_mod_sb_t		*msbp;
1342	int			error = 0;
1343
1344	/*
1345	 * Loop through the array of mod structures and apply each individually.
1346	 * If any fail, then back out all those which have already been applied.
1347	 * Do all of this within the scope of the m_sb_lock so that all of the
1348	 * changes will be atomic.
1349	 */
1350	spin_lock(&mp->m_sb_lock);
1351	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1352		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1353		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1354
1355		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1356						   msbp->msb_delta, rsvd);
1357		if (error)
1358			goto unwind;
1359	}
1360	spin_unlock(&mp->m_sb_lock);
1361	return 0;
1362
1363unwind:
1364	while (--msbp >= msb) {
1365		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1366						   -msbp->msb_delta, rsvd);
1367		ASSERT(error == 0);
1368	}
1369	spin_unlock(&mp->m_sb_lock);
1370	return error;
1371}
1372
1373/*
1374 * xfs_getsb() is called to obtain the buffer for the superblock.
1375 * The buffer is returned locked and read in from disk.
1376 * The buffer should be released with a call to xfs_brelse().
1377 *
1378 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1379 * the superblock buffer if it can be locked without sleeping.
1380 * If it can't then we'll return NULL.
1381 */
1382struct xfs_buf *
1383xfs_getsb(
1384	struct xfs_mount	*mp,
1385	int			flags)
1386{
1387	struct xfs_buf		*bp = mp->m_sb_bp;
1388
1389	if (!xfs_buf_trylock(bp)) {
1390		if (flags & XBF_TRYLOCK)
1391			return NULL;
1392		xfs_buf_lock(bp);
1393	}
1394
1395	xfs_buf_hold(bp);
1396	ASSERT(XFS_BUF_ISDONE(bp));
1397	return bp;
1398}
1399
1400/*
1401 * Used to free the superblock along various error paths.
1402 */
1403void
1404xfs_freesb(
1405	struct xfs_mount	*mp)
1406{
1407	struct xfs_buf		*bp = mp->m_sb_bp;
1408
1409	xfs_buf_lock(bp);
1410	mp->m_sb_bp = NULL;
1411	xfs_buf_relse(bp);
1412}
1413
1414/*
1415 * Used to log changes to the superblock unit and width fields which could
1416 * be altered by the mount options, as well as any potential sb_features2
1417 * fixup. Only the first superblock is updated.
1418 */
1419int
1420xfs_mount_log_sb(
1421	xfs_mount_t	*mp,
1422	__int64_t	fields)
1423{
1424	xfs_trans_t	*tp;
1425	int		error;
1426
1427	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1428			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1429			 XFS_SB_VERSIONNUM));
1430
1431	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1432	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1433	if (error) {
1434		xfs_trans_cancel(tp, 0);
1435		return error;
1436	}
1437	xfs_mod_sb(tp, fields);
1438	error = xfs_trans_commit(tp, 0);
1439	return error;
1440}
1441
1442/*
1443 * If the underlying (data/log/rt) device is readonly, there are some
1444 * operations that cannot proceed.
1445 */
1446int
1447xfs_dev_is_read_only(
1448	struct xfs_mount	*mp,
1449	char			*message)
1450{
1451	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1452	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1453	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1454		xfs_notice(mp, "%s required on read-only device.", message);
1455		xfs_notice(mp, "write access unavailable, cannot proceed.");
1456		return -EROFS;
1457	}
1458	return 0;
1459}
1460
1461#ifdef HAVE_PERCPU_SB
1462/*
1463 * Per-cpu incore superblock counters
1464 *
1465 * Simple concept, difficult implementation
1466 *
1467 * Basically, replace the incore superblock counters with a distributed per cpu
1468 * counter for contended fields (e.g.  free block count).
1469 *
1470 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1471 * hence needs to be accurately read when we are running low on space. Hence
1472 * there is a method to enable and disable the per-cpu counters based on how
1473 * much "stuff" is available in them.
1474 *
1475 * Basically, a counter is enabled if there is enough free resource to justify
1476 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1477 * ENOSPC), then we disable the counters to synchronise all callers and
1478 * re-distribute the available resources.
1479 *
1480 * If, once we redistributed the available resources, we still get a failure,
1481 * we disable the per-cpu counter and go through the slow path.
1482 *
1483 * The slow path is the current xfs_mod_incore_sb() function.  This means that
1484 * when we disable a per-cpu counter, we need to drain its resources back to
1485 * the global superblock. We do this after disabling the counter to prevent
1486 * more threads from queueing up on the counter.
1487 *
1488 * Essentially, this means that we still need a lock in the fast path to enable
1489 * synchronisation between the global counters and the per-cpu counters. This
1490 * is not a problem because the lock will be local to a CPU almost all the time
1491 * and have little contention except when we get to ENOSPC conditions.
1492 *
1493 * Basically, this lock becomes a barrier that enables us to lock out the fast
1494 * path while we do things like enabling and disabling counters and
1495 * synchronising the counters.
1496 *
1497 * Locking rules:
1498 *
1499 * 	1. m_sb_lock before picking up per-cpu locks
1500 * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1501 * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1502 * 	4. modifying per-cpu counters requires holding per-cpu lock
1503 * 	5. modifying global counters requires holding m_sb_lock
1504 *	6. enabling or disabling a counter requires holding the m_sb_lock
1505 *	   and _none_ of the per-cpu locks.
1506 *
1507 * Disabled counters are only ever re-enabled by a balance operation
1508 * that results in more free resources per CPU than a given threshold.
1509 * To ensure counters don't remain disabled, they are rebalanced when
1510 * the global resource goes above a higher threshold (i.e. some hysteresis
1511 * is present to prevent thrashing).
1512 */
1513
1514#ifdef CONFIG_HOTPLUG_CPU
1515/*
1516 * hot-plug CPU notifier support.
1517 *
1518 * We need a notifier per filesystem as we need to be able to identify
1519 * the filesystem to balance the counters out. This is achieved by
1520 * having a notifier block embedded in the xfs_mount_t and doing pointer
1521 * magic to get the mount pointer from the notifier block address.
1522 */
1523STATIC int
1524xfs_icsb_cpu_notify(
1525	struct notifier_block *nfb,
1526	unsigned long action,
1527	void *hcpu)
1528{
1529	xfs_icsb_cnts_t *cntp;
1530	xfs_mount_t	*mp;
1531
1532	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1533	cntp = (xfs_icsb_cnts_t *)
1534			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1535	switch (action) {
1536	case CPU_UP_PREPARE:
1537	case CPU_UP_PREPARE_FROZEN:
1538		/* Easy Case - initialize the area and locks, and
1539		 * then rebalance when online does everything else for us. */
1540		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1541		break;
1542	case CPU_ONLINE:
1543	case CPU_ONLINE_FROZEN:
1544		xfs_icsb_lock(mp);
1545		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1546		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1547		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1548		xfs_icsb_unlock(mp);
1549		break;
1550	case CPU_DEAD:
1551	case CPU_DEAD_FROZEN:
1552		/* Disable all the counters, then fold the dead cpu's
1553		 * count into the total on the global superblock and
1554		 * re-enable the counters. */
1555		xfs_icsb_lock(mp);
1556		spin_lock(&mp->m_sb_lock);
1557		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1558		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1559		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1560
1561		mp->m_sb.sb_icount += cntp->icsb_icount;
1562		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1563		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1564
1565		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1566
1567		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1568		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1569		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1570		spin_unlock(&mp->m_sb_lock);
1571		xfs_icsb_unlock(mp);
1572		break;
1573	}
1574
1575	return NOTIFY_OK;
1576}
1577#endif /* CONFIG_HOTPLUG_CPU */
1578
1579int
1580xfs_icsb_init_counters(
1581	xfs_mount_t	*mp)
1582{
1583	xfs_icsb_cnts_t *cntp;
1584	int		i;
1585
1586	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1587	if (mp->m_sb_cnts == NULL)
1588		return -ENOMEM;
1589
1590	for_each_online_cpu(i) {
1591		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1592		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1593	}
1594
1595	mutex_init(&mp->m_icsb_mutex);
1596
1597	/*
1598	 * start with all counters disabled so that the
1599	 * initial balance kicks us off correctly
1600	 */
1601	mp->m_icsb_counters = -1;
1602
1603#ifdef CONFIG_HOTPLUG_CPU
1604	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1605	mp->m_icsb_notifier.priority = 0;
1606	register_hotcpu_notifier(&mp->m_icsb_notifier);
1607#endif /* CONFIG_HOTPLUG_CPU */
1608
1609	return 0;
1610}
1611
1612void
1613xfs_icsb_reinit_counters(
1614	xfs_mount_t	*mp)
1615{
1616	xfs_icsb_lock(mp);
1617	/*
1618	 * start with all counters disabled so that the
1619	 * initial balance kicks us off correctly
1620	 */
1621	mp->m_icsb_counters = -1;
1622	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1623	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1624	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1625	xfs_icsb_unlock(mp);
1626}
1627
1628void
1629xfs_icsb_destroy_counters(
1630	xfs_mount_t	*mp)
1631{
1632	if (mp->m_sb_cnts) {
1633		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1634		free_percpu(mp->m_sb_cnts);
1635	}
1636	mutex_destroy(&mp->m_icsb_mutex);
1637}
1638
1639STATIC void
1640xfs_icsb_lock_cntr(
1641	xfs_icsb_cnts_t	*icsbp)
1642{
1643	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1644		ndelay(1000);
1645	}
1646}
1647
1648STATIC void
1649xfs_icsb_unlock_cntr(
1650	xfs_icsb_cnts_t	*icsbp)
1651{
1652	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1653}
1654
1655
1656STATIC void
1657xfs_icsb_lock_all_counters(
1658	xfs_mount_t	*mp)
1659{
1660	xfs_icsb_cnts_t *cntp;
1661	int		i;
1662
1663	for_each_online_cpu(i) {
1664		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1665		xfs_icsb_lock_cntr(cntp);
1666	}
1667}
1668
1669STATIC void
1670xfs_icsb_unlock_all_counters(
1671	xfs_mount_t	*mp)
1672{
1673	xfs_icsb_cnts_t *cntp;
1674	int		i;
1675
1676	for_each_online_cpu(i) {
1677		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1678		xfs_icsb_unlock_cntr(cntp);
1679	}
1680}
1681
1682STATIC void
1683xfs_icsb_count(
1684	xfs_mount_t	*mp,
1685	xfs_icsb_cnts_t	*cnt,
1686	int		flags)
1687{
1688	xfs_icsb_cnts_t *cntp;
1689	int		i;
1690
1691	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1692
1693	if (!(flags & XFS_ICSB_LAZY_COUNT))
1694		xfs_icsb_lock_all_counters(mp);
1695
1696	for_each_online_cpu(i) {
1697		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1698		cnt->icsb_icount += cntp->icsb_icount;
1699		cnt->icsb_ifree += cntp->icsb_ifree;
1700		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1701	}
1702
1703	if (!(flags & XFS_ICSB_LAZY_COUNT))
1704		xfs_icsb_unlock_all_counters(mp);
1705}
1706
1707STATIC int
1708xfs_icsb_counter_disabled(
1709	xfs_mount_t	*mp,
1710	xfs_sb_field_t	field)
1711{
1712	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1713	return test_bit(field, &mp->m_icsb_counters);
1714}
1715
1716STATIC void
1717xfs_icsb_disable_counter(
1718	xfs_mount_t	*mp,
1719	xfs_sb_field_t	field)
1720{
1721	xfs_icsb_cnts_t	cnt;
1722
1723	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1724
1725	/*
1726	 * If we are already disabled, then there is nothing to do
1727	 * here. We check before locking all the counters to avoid
1728	 * the expensive lock operation when being called in the
1729	 * slow path and the counter is already disabled. This is
1730	 * safe because the only time we set or clear this state is under
1731	 * the m_icsb_mutex.
1732	 */
1733	if (xfs_icsb_counter_disabled(mp, field))
1734		return;
1735
1736	xfs_icsb_lock_all_counters(mp);
1737	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1738		/* drain back to superblock */
1739
1740		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1741		switch(field) {
1742		case XFS_SBS_ICOUNT:
1743			mp->m_sb.sb_icount = cnt.icsb_icount;
1744			break;
1745		case XFS_SBS_IFREE:
1746			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1747			break;
1748		case XFS_SBS_FDBLOCKS:
1749			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1750			break;
1751		default:
1752			BUG();
1753		}
1754	}
1755
1756	xfs_icsb_unlock_all_counters(mp);
1757}
1758
1759STATIC void
1760xfs_icsb_enable_counter(
1761	xfs_mount_t	*mp,
1762	xfs_sb_field_t	field,
1763	uint64_t	count,
1764	uint64_t	resid)
1765{
1766	xfs_icsb_cnts_t	*cntp;
1767	int		i;
1768
1769	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1770
1771	xfs_icsb_lock_all_counters(mp);
1772	for_each_online_cpu(i) {
1773		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1774		switch (field) {
1775		case XFS_SBS_ICOUNT:
1776			cntp->icsb_icount = count + resid;
1777			break;
1778		case XFS_SBS_IFREE:
1779			cntp->icsb_ifree = count + resid;
1780			break;
1781		case XFS_SBS_FDBLOCKS:
1782			cntp->icsb_fdblocks = count + resid;
1783			break;
1784		default:
1785			BUG();
1786			break;
1787		}
1788		resid = 0;
1789	}
1790	clear_bit(field, &mp->m_icsb_counters);
1791	xfs_icsb_unlock_all_counters(mp);
1792}
1793
1794void
1795xfs_icsb_sync_counters_locked(
1796	xfs_mount_t	*mp,
1797	int		flags)
1798{
1799	xfs_icsb_cnts_t	cnt;
1800
1801	xfs_icsb_count(mp, &cnt, flags);
1802
1803	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1804		mp->m_sb.sb_icount = cnt.icsb_icount;
1805	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1806		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1807	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1808		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1809}
1810
1811/*
1812 * Accurate update of per-cpu counters to incore superblock
1813 */
1814void
1815xfs_icsb_sync_counters(
1816	xfs_mount_t	*mp,
1817	int		flags)
1818{
1819	spin_lock(&mp->m_sb_lock);
1820	xfs_icsb_sync_counters_locked(mp, flags);
1821	spin_unlock(&mp->m_sb_lock);
1822}
1823
1824/*
1825 * Balance and enable/disable counters as necessary.
1826 *
1827 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1828 * chosen to be the same number as single on disk allocation chunk per CPU, and
1829 * free blocks is something far enough zero that we aren't going thrash when we
1830 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1831 * prevent looping endlessly when xfs_alloc_space asks for more than will
1832 * be distributed to a single CPU but each CPU has enough blocks to be
1833 * reenabled.
1834 *
1835 * Note that we can be called when counters are already disabled.
1836 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1837 * prevent locking every per-cpu counter needlessly.
1838 */
1839
1840#define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1841#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1842		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1843STATIC void
1844xfs_icsb_balance_counter_locked(
1845	xfs_mount_t	*mp,
1846	xfs_sb_field_t  field,
1847	int		min_per_cpu)
1848{
1849	uint64_t	count, resid;
1850	int		weight = num_online_cpus();
1851	uint64_t	min = (uint64_t)min_per_cpu;
1852
1853	/* disable counter and sync counter */
1854	xfs_icsb_disable_counter(mp, field);
1855
1856	/* update counters  - first CPU gets residual*/
1857	switch (field) {
1858	case XFS_SBS_ICOUNT:
1859		count = mp->m_sb.sb_icount;
1860		resid = do_div(count, weight);
1861		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1862			return;
1863		break;
1864	case XFS_SBS_IFREE:
1865		count = mp->m_sb.sb_ifree;
1866		resid = do_div(count, weight);
1867		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1868			return;
1869		break;
1870	case XFS_SBS_FDBLOCKS:
1871		count = mp->m_sb.sb_fdblocks;
1872		resid = do_div(count, weight);
1873		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1874			return;
1875		break;
1876	default:
1877		BUG();
1878		count = resid = 0;	/* quiet, gcc */
1879		break;
1880	}
1881
1882	xfs_icsb_enable_counter(mp, field, count, resid);
1883}
1884
1885STATIC void
1886xfs_icsb_balance_counter(
1887	xfs_mount_t	*mp,
1888	xfs_sb_field_t  fields,
1889	int		min_per_cpu)
1890{
1891	spin_lock(&mp->m_sb_lock);
1892	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1893	spin_unlock(&mp->m_sb_lock);
1894}
1895
1896int
1897xfs_icsb_modify_counters(
1898	xfs_mount_t	*mp,
1899	xfs_sb_field_t	field,
1900	int64_t		delta,
1901	int		rsvd)
1902{
1903	xfs_icsb_cnts_t	*icsbp;
1904	long long	lcounter;	/* long counter for 64 bit fields */
1905	int		ret = 0;
1906
1907	might_sleep();
1908again:
1909	preempt_disable();
1910	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1911
1912	/*
1913	 * if the counter is disabled, go to slow path
1914	 */
1915	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1916		goto slow_path;
1917	xfs_icsb_lock_cntr(icsbp);
1918	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1919		xfs_icsb_unlock_cntr(icsbp);
1920		goto slow_path;
1921	}
1922
1923	switch (field) {
1924	case XFS_SBS_ICOUNT:
1925		lcounter = icsbp->icsb_icount;
1926		lcounter += delta;
1927		if (unlikely(lcounter < 0))
1928			goto balance_counter;
1929		icsbp->icsb_icount = lcounter;
1930		break;
1931
1932	case XFS_SBS_IFREE:
1933		lcounter = icsbp->icsb_ifree;
1934		lcounter += delta;
1935		if (unlikely(lcounter < 0))
1936			goto balance_counter;
1937		icsbp->icsb_ifree = lcounter;
1938		break;
1939
1940	case XFS_SBS_FDBLOCKS:
1941		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1942
1943		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1944		lcounter += delta;
1945		if (unlikely(lcounter < 0))
1946			goto balance_counter;
1947		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1948		break;
1949	default:
1950		BUG();
1951		break;
1952	}
1953	xfs_icsb_unlock_cntr(icsbp);
1954	preempt_enable();
1955	return 0;
1956
1957slow_path:
1958	preempt_enable();
1959
1960	/*
1961	 * serialise with a mutex so we don't burn lots of cpu on
1962	 * the superblock lock. We still need to hold the superblock
1963	 * lock, however, when we modify the global structures.
1964	 */
1965	xfs_icsb_lock(mp);
1966
1967	/*
1968	 * Now running atomically.
1969	 *
1970	 * If the counter is enabled, someone has beaten us to rebalancing.
1971	 * Drop the lock and try again in the fast path....
1972	 */
1973	if (!(xfs_icsb_counter_disabled(mp, field))) {
1974		xfs_icsb_unlock(mp);
1975		goto again;
1976	}
1977
1978	/*
1979	 * The counter is currently disabled. Because we are
1980	 * running atomically here, we know a rebalance cannot
1981	 * be in progress. Hence we can go straight to operating
1982	 * on the global superblock. We do not call xfs_mod_incore_sb()
1983	 * here even though we need to get the m_sb_lock. Doing so
1984	 * will cause us to re-enter this function and deadlock.
1985	 * Hence we get the m_sb_lock ourselves and then call
1986	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1987	 * directly on the global counters.
1988	 */
1989	spin_lock(&mp->m_sb_lock);
1990	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1991	spin_unlock(&mp->m_sb_lock);
1992
1993	/*
1994	 * Now that we've modified the global superblock, we
1995	 * may be able to re-enable the distributed counters
1996	 * (e.g. lots of space just got freed). After that
1997	 * we are done.
1998	 */
1999	if (ret != -ENOSPC)
2000		xfs_icsb_balance_counter(mp, field, 0);
2001	xfs_icsb_unlock(mp);
2002	return ret;
2003
2004balance_counter:
2005	xfs_icsb_unlock_cntr(icsbp);
2006	preempt_enable();
2007
2008	/*
2009	 * We may have multiple threads here if multiple per-cpu
2010	 * counters run dry at the same time. This will mean we can
2011	 * do more balances than strictly necessary but it is not
2012	 * the common slowpath case.
2013	 */
2014	xfs_icsb_lock(mp);
2015
2016	/*
2017	 * running atomically.
2018	 *
2019	 * This will leave the counter in the correct state for future
2020	 * accesses. After the rebalance, we simply try again and our retry
2021	 * will either succeed through the fast path or slow path without
2022	 * another balance operation being required.
2023	 */
2024	xfs_icsb_balance_counter(mp, field, delta);
2025	xfs_icsb_unlock(mp);
2026	goto again;
2027}
2028
2029#endif
2030