1/* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18#include "xfs.h" 19#include "xfs_fs.h" 20#include "xfs_shared.h" 21#include "xfs_format.h" 22#include "xfs_log_format.h" 23#include "xfs_trans_resv.h" 24#include "xfs_bit.h" 25#include "xfs_inum.h" 26#include "xfs_sb.h" 27#include "xfs_ag.h" 28#include "xfs_mount.h" 29#include "xfs_da_format.h" 30#include "xfs_inode.h" 31#include "xfs_dir2.h" 32#include "xfs_ialloc.h" 33#include "xfs_alloc.h" 34#include "xfs_rtalloc.h" 35#include "xfs_bmap.h" 36#include "xfs_trans.h" 37#include "xfs_trans_priv.h" 38#include "xfs_log.h" 39#include "xfs_error.h" 40#include "xfs_quota.h" 41#include "xfs_fsops.h" 42#include "xfs_trace.h" 43#include "xfs_icache.h" 44#include "xfs_dinode.h" 45#include "xfs_sysfs.h" 46 47 48#ifdef HAVE_PERCPU_SB 49STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 50 int); 51STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 52 int); 53STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 54#else 55 56#define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 57#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 58#endif 59 60static DEFINE_MUTEX(xfs_uuid_table_mutex); 61static int xfs_uuid_table_size; 62static uuid_t *xfs_uuid_table; 63 64/* 65 * See if the UUID is unique among mounted XFS filesystems. 66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 67 */ 68STATIC int 69xfs_uuid_mount( 70 struct xfs_mount *mp) 71{ 72 uuid_t *uuid = &mp->m_sb.sb_uuid; 73 int hole, i; 74 75 if (mp->m_flags & XFS_MOUNT_NOUUID) 76 return 0; 77 78 if (uuid_is_nil(uuid)) { 79 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 80 return -EINVAL; 81 } 82 83 mutex_lock(&xfs_uuid_table_mutex); 84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 85 if (uuid_is_nil(&xfs_uuid_table[i])) { 86 hole = i; 87 continue; 88 } 89 if (uuid_equal(uuid, &xfs_uuid_table[i])) 90 goto out_duplicate; 91 } 92 93 if (hole < 0) { 94 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 96 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 97 KM_SLEEP); 98 hole = xfs_uuid_table_size++; 99 } 100 xfs_uuid_table[hole] = *uuid; 101 mutex_unlock(&xfs_uuid_table_mutex); 102 103 return 0; 104 105 out_duplicate: 106 mutex_unlock(&xfs_uuid_table_mutex); 107 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 108 return -EINVAL; 109} 110 111STATIC void 112xfs_uuid_unmount( 113 struct xfs_mount *mp) 114{ 115 uuid_t *uuid = &mp->m_sb.sb_uuid; 116 int i; 117 118 if (mp->m_flags & XFS_MOUNT_NOUUID) 119 return; 120 121 mutex_lock(&xfs_uuid_table_mutex); 122 for (i = 0; i < xfs_uuid_table_size; i++) { 123 if (uuid_is_nil(&xfs_uuid_table[i])) 124 continue; 125 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 126 continue; 127 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 128 break; 129 } 130 ASSERT(i < xfs_uuid_table_size); 131 mutex_unlock(&xfs_uuid_table_mutex); 132} 133 134 135STATIC void 136__xfs_free_perag( 137 struct rcu_head *head) 138{ 139 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 140 141 ASSERT(atomic_read(&pag->pag_ref) == 0); 142 kmem_free(pag); 143} 144 145/* 146 * Free up the per-ag resources associated with the mount structure. 147 */ 148STATIC void 149xfs_free_perag( 150 xfs_mount_t *mp) 151{ 152 xfs_agnumber_t agno; 153 struct xfs_perag *pag; 154 155 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 156 spin_lock(&mp->m_perag_lock); 157 pag = radix_tree_delete(&mp->m_perag_tree, agno); 158 spin_unlock(&mp->m_perag_lock); 159 ASSERT(pag); 160 ASSERT(atomic_read(&pag->pag_ref) == 0); 161 call_rcu(&pag->rcu_head, __xfs_free_perag); 162 } 163} 164 165/* 166 * Check size of device based on the (data/realtime) block count. 167 * Note: this check is used by the growfs code as well as mount. 168 */ 169int 170xfs_sb_validate_fsb_count( 171 xfs_sb_t *sbp, 172 __uint64_t nblocks) 173{ 174 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 175 ASSERT(sbp->sb_blocklog >= BBSHIFT); 176 177 /* Limited by ULONG_MAX of page cache index */ 178 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 179 return -EFBIG; 180 return 0; 181} 182 183int 184xfs_initialize_perag( 185 xfs_mount_t *mp, 186 xfs_agnumber_t agcount, 187 xfs_agnumber_t *maxagi) 188{ 189 xfs_agnumber_t index; 190 xfs_agnumber_t first_initialised = 0; 191 xfs_perag_t *pag; 192 xfs_agino_t agino; 193 xfs_ino_t ino; 194 xfs_sb_t *sbp = &mp->m_sb; 195 int error = -ENOMEM; 196 197 /* 198 * Walk the current per-ag tree so we don't try to initialise AGs 199 * that already exist (growfs case). Allocate and insert all the 200 * AGs we don't find ready for initialisation. 201 */ 202 for (index = 0; index < agcount; index++) { 203 pag = xfs_perag_get(mp, index); 204 if (pag) { 205 xfs_perag_put(pag); 206 continue; 207 } 208 if (!first_initialised) 209 first_initialised = index; 210 211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 212 if (!pag) 213 goto out_unwind; 214 pag->pag_agno = index; 215 pag->pag_mount = mp; 216 spin_lock_init(&pag->pag_ici_lock); 217 mutex_init(&pag->pag_ici_reclaim_lock); 218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 219 spin_lock_init(&pag->pag_buf_lock); 220 pag->pag_buf_tree = RB_ROOT; 221 222 if (radix_tree_preload(GFP_NOFS)) 223 goto out_unwind; 224 225 spin_lock(&mp->m_perag_lock); 226 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 227 BUG(); 228 spin_unlock(&mp->m_perag_lock); 229 radix_tree_preload_end(); 230 error = -EEXIST; 231 goto out_unwind; 232 } 233 spin_unlock(&mp->m_perag_lock); 234 radix_tree_preload_end(); 235 } 236 237 /* 238 * If we mount with the inode64 option, or no inode overflows 239 * the legacy 32-bit address space clear the inode32 option. 240 */ 241 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 242 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 243 244 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 245 mp->m_flags |= XFS_MOUNT_32BITINODES; 246 else 247 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 248 249 if (mp->m_flags & XFS_MOUNT_32BITINODES) 250 index = xfs_set_inode32(mp, agcount); 251 else 252 index = xfs_set_inode64(mp, agcount); 253 254 if (maxagi) 255 *maxagi = index; 256 return 0; 257 258out_unwind: 259 kmem_free(pag); 260 for (; index > first_initialised; index--) { 261 pag = radix_tree_delete(&mp->m_perag_tree, index); 262 kmem_free(pag); 263 } 264 return error; 265} 266 267/* 268 * xfs_readsb 269 * 270 * Does the initial read of the superblock. 271 */ 272int 273xfs_readsb( 274 struct xfs_mount *mp, 275 int flags) 276{ 277 unsigned int sector_size; 278 struct xfs_buf *bp; 279 struct xfs_sb *sbp = &mp->m_sb; 280 int error; 281 int loud = !(flags & XFS_MFSI_QUIET); 282 const struct xfs_buf_ops *buf_ops; 283 284 ASSERT(mp->m_sb_bp == NULL); 285 ASSERT(mp->m_ddev_targp != NULL); 286 287 /* 288 * For the initial read, we must guess at the sector 289 * size based on the block device. It's enough to 290 * get the sb_sectsize out of the superblock and 291 * then reread with the proper length. 292 * We don't verify it yet, because it may not be complete. 293 */ 294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 295 buf_ops = NULL; 296 297 /* 298 * Allocate a (locked) buffer to hold the superblock. 299 * This will be kept around at all times to optimize 300 * access to the superblock. 301 */ 302reread: 303 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 304 BTOBB(sector_size), 0, &bp, buf_ops); 305 if (error) { 306 if (loud) 307 xfs_warn(mp, "SB validate failed with error %d.", error); 308 /* bad CRC means corrupted metadata */ 309 if (error == -EFSBADCRC) 310 error = -EFSCORRUPTED; 311 return error; 312 } 313 314 /* 315 * Initialize the mount structure from the superblock. 316 */ 317 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 318 319 /* 320 * If we haven't validated the superblock, do so now before we try 321 * to check the sector size and reread the superblock appropriately. 322 */ 323 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 324 if (loud) 325 xfs_warn(mp, "Invalid superblock magic number"); 326 error = -EINVAL; 327 goto release_buf; 328 } 329 330 /* 331 * We must be able to do sector-sized and sector-aligned IO. 332 */ 333 if (sector_size > sbp->sb_sectsize) { 334 if (loud) 335 xfs_warn(mp, "device supports %u byte sectors (not %u)", 336 sector_size, sbp->sb_sectsize); 337 error = -ENOSYS; 338 goto release_buf; 339 } 340 341 if (buf_ops == NULL) { 342 /* 343 * Re-read the superblock so the buffer is correctly sized, 344 * and properly verified. 345 */ 346 xfs_buf_relse(bp); 347 sector_size = sbp->sb_sectsize; 348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 349 goto reread; 350 } 351 352 /* Initialize per-cpu counters */ 353 xfs_icsb_reinit_counters(mp); 354 355 /* no need to be quiet anymore, so reset the buf ops */ 356 bp->b_ops = &xfs_sb_buf_ops; 357 358 mp->m_sb_bp = bp; 359 xfs_buf_unlock(bp); 360 return 0; 361 362release_buf: 363 xfs_buf_relse(bp); 364 return error; 365} 366 367/* 368 * Update alignment values based on mount options and sb values 369 */ 370STATIC int 371xfs_update_alignment(xfs_mount_t *mp) 372{ 373 xfs_sb_t *sbp = &(mp->m_sb); 374 375 if (mp->m_dalign) { 376 /* 377 * If stripe unit and stripe width are not multiples 378 * of the fs blocksize turn off alignment. 379 */ 380 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 381 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 382 xfs_warn(mp, 383 "alignment check failed: sunit/swidth vs. blocksize(%d)", 384 sbp->sb_blocksize); 385 return -EINVAL; 386 } else { 387 /* 388 * Convert the stripe unit and width to FSBs. 389 */ 390 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 391 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 392 xfs_warn(mp, 393 "alignment check failed: sunit/swidth vs. agsize(%d)", 394 sbp->sb_agblocks); 395 return -EINVAL; 396 } else if (mp->m_dalign) { 397 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 398 } else { 399 xfs_warn(mp, 400 "alignment check failed: sunit(%d) less than bsize(%d)", 401 mp->m_dalign, sbp->sb_blocksize); 402 return -EINVAL; 403 } 404 } 405 406 /* 407 * Update superblock with new values 408 * and log changes 409 */ 410 if (xfs_sb_version_hasdalign(sbp)) { 411 if (sbp->sb_unit != mp->m_dalign) { 412 sbp->sb_unit = mp->m_dalign; 413 mp->m_update_flags |= XFS_SB_UNIT; 414 } 415 if (sbp->sb_width != mp->m_swidth) { 416 sbp->sb_width = mp->m_swidth; 417 mp->m_update_flags |= XFS_SB_WIDTH; 418 } 419 } else { 420 xfs_warn(mp, 421 "cannot change alignment: superblock does not support data alignment"); 422 return -EINVAL; 423 } 424 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 425 xfs_sb_version_hasdalign(&mp->m_sb)) { 426 mp->m_dalign = sbp->sb_unit; 427 mp->m_swidth = sbp->sb_width; 428 } 429 430 return 0; 431} 432 433/* 434 * Set the maximum inode count for this filesystem 435 */ 436STATIC void 437xfs_set_maxicount(xfs_mount_t *mp) 438{ 439 xfs_sb_t *sbp = &(mp->m_sb); 440 __uint64_t icount; 441 442 if (sbp->sb_imax_pct) { 443 /* 444 * Make sure the maximum inode count is a multiple 445 * of the units we allocate inodes in. 446 */ 447 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 448 do_div(icount, 100); 449 do_div(icount, mp->m_ialloc_blks); 450 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 451 sbp->sb_inopblog; 452 } else { 453 mp->m_maxicount = 0; 454 } 455} 456 457/* 458 * Set the default minimum read and write sizes unless 459 * already specified in a mount option. 460 * We use smaller I/O sizes when the file system 461 * is being used for NFS service (wsync mount option). 462 */ 463STATIC void 464xfs_set_rw_sizes(xfs_mount_t *mp) 465{ 466 xfs_sb_t *sbp = &(mp->m_sb); 467 int readio_log, writeio_log; 468 469 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 470 if (mp->m_flags & XFS_MOUNT_WSYNC) { 471 readio_log = XFS_WSYNC_READIO_LOG; 472 writeio_log = XFS_WSYNC_WRITEIO_LOG; 473 } else { 474 readio_log = XFS_READIO_LOG_LARGE; 475 writeio_log = XFS_WRITEIO_LOG_LARGE; 476 } 477 } else { 478 readio_log = mp->m_readio_log; 479 writeio_log = mp->m_writeio_log; 480 } 481 482 if (sbp->sb_blocklog > readio_log) { 483 mp->m_readio_log = sbp->sb_blocklog; 484 } else { 485 mp->m_readio_log = readio_log; 486 } 487 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 488 if (sbp->sb_blocklog > writeio_log) { 489 mp->m_writeio_log = sbp->sb_blocklog; 490 } else { 491 mp->m_writeio_log = writeio_log; 492 } 493 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 494} 495 496/* 497 * precalculate the low space thresholds for dynamic speculative preallocation. 498 */ 499void 500xfs_set_low_space_thresholds( 501 struct xfs_mount *mp) 502{ 503 int i; 504 505 for (i = 0; i < XFS_LOWSP_MAX; i++) { 506 __uint64_t space = mp->m_sb.sb_dblocks; 507 508 do_div(space, 100); 509 mp->m_low_space[i] = space * (i + 1); 510 } 511} 512 513 514/* 515 * Set whether we're using inode alignment. 516 */ 517STATIC void 518xfs_set_inoalignment(xfs_mount_t *mp) 519{ 520 if (xfs_sb_version_hasalign(&mp->m_sb) && 521 mp->m_sb.sb_inoalignmt >= 522 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 524 else 525 mp->m_inoalign_mask = 0; 526 /* 527 * If we are using stripe alignment, check whether 528 * the stripe unit is a multiple of the inode alignment 529 */ 530 if (mp->m_dalign && mp->m_inoalign_mask && 531 !(mp->m_dalign & mp->m_inoalign_mask)) 532 mp->m_sinoalign = mp->m_dalign; 533 else 534 mp->m_sinoalign = 0; 535} 536 537/* 538 * Check that the data (and log if separate) is an ok size. 539 */ 540STATIC int 541xfs_check_sizes( 542 struct xfs_mount *mp) 543{ 544 struct xfs_buf *bp; 545 xfs_daddr_t d; 546 int error; 547 548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 550 xfs_warn(mp, "filesystem size mismatch detected"); 551 return -EFBIG; 552 } 553 error = xfs_buf_read_uncached(mp->m_ddev_targp, 554 d - XFS_FSS_TO_BB(mp, 1), 555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 556 if (error) { 557 xfs_warn(mp, "last sector read failed"); 558 return error; 559 } 560 xfs_buf_relse(bp); 561 562 if (mp->m_logdev_targp == mp->m_ddev_targp) 563 return 0; 564 565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 567 xfs_warn(mp, "log size mismatch detected"); 568 return -EFBIG; 569 } 570 error = xfs_buf_read_uncached(mp->m_logdev_targp, 571 d - XFS_FSB_TO_BB(mp, 1), 572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 573 if (error) { 574 xfs_warn(mp, "log device read failed"); 575 return error; 576 } 577 xfs_buf_relse(bp); 578 return 0; 579} 580 581/* 582 * Clear the quotaflags in memory and in the superblock. 583 */ 584int 585xfs_mount_reset_sbqflags( 586 struct xfs_mount *mp) 587{ 588 int error; 589 struct xfs_trans *tp; 590 591 mp->m_qflags = 0; 592 593 /* 594 * It is OK to look at sb_qflags here in mount path, 595 * without m_sb_lock. 596 */ 597 if (mp->m_sb.sb_qflags == 0) 598 return 0; 599 spin_lock(&mp->m_sb_lock); 600 mp->m_sb.sb_qflags = 0; 601 spin_unlock(&mp->m_sb_lock); 602 603 /* 604 * If the fs is readonly, let the incore superblock run 605 * with quotas off but don't flush the update out to disk 606 */ 607 if (mp->m_flags & XFS_MOUNT_RDONLY) 608 return 0; 609 610 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 611 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0); 612 if (error) { 613 xfs_trans_cancel(tp, 0); 614 xfs_alert(mp, "%s: Superblock update failed!", __func__); 615 return error; 616 } 617 618 xfs_mod_sb(tp, XFS_SB_QFLAGS); 619 return xfs_trans_commit(tp, 0); 620} 621 622__uint64_t 623xfs_default_resblks(xfs_mount_t *mp) 624{ 625 __uint64_t resblks; 626 627 /* 628 * We default to 5% or 8192 fsbs of space reserved, whichever is 629 * smaller. This is intended to cover concurrent allocation 630 * transactions when we initially hit enospc. These each require a 4 631 * block reservation. Hence by default we cover roughly 2000 concurrent 632 * allocation reservations. 633 */ 634 resblks = mp->m_sb.sb_dblocks; 635 do_div(resblks, 20); 636 resblks = min_t(__uint64_t, resblks, 8192); 637 return resblks; 638} 639 640/* 641 * This function does the following on an initial mount of a file system: 642 * - reads the superblock from disk and init the mount struct 643 * - if we're a 32-bit kernel, do a size check on the superblock 644 * so we don't mount terabyte filesystems 645 * - init mount struct realtime fields 646 * - allocate inode hash table for fs 647 * - init directory manager 648 * - perform recovery and init the log manager 649 */ 650int 651xfs_mountfs( 652 xfs_mount_t *mp) 653{ 654 xfs_sb_t *sbp = &(mp->m_sb); 655 xfs_inode_t *rip; 656 __uint64_t resblks; 657 uint quotamount = 0; 658 uint quotaflags = 0; 659 int error = 0; 660 661 xfs_sb_mount_common(mp, sbp); 662 663 /* 664 * Check for a mismatched features2 values. Older kernels 665 * read & wrote into the wrong sb offset for sb_features2 666 * on some platforms due to xfs_sb_t not being 64bit size aligned 667 * when sb_features2 was added, which made older superblock 668 * reading/writing routines swap it as a 64-bit value. 669 * 670 * For backwards compatibility, we make both slots equal. 671 * 672 * If we detect a mismatched field, we OR the set bits into the 673 * existing features2 field in case it has already been modified; we 674 * don't want to lose any features. We then update the bad location 675 * with the ORed value so that older kernels will see any features2 676 * flags, and mark the two fields as needing updates once the 677 * transaction subsystem is online. 678 */ 679 if (xfs_sb_has_mismatched_features2(sbp)) { 680 xfs_warn(mp, "correcting sb_features alignment problem"); 681 sbp->sb_features2 |= sbp->sb_bad_features2; 682 sbp->sb_bad_features2 = sbp->sb_features2; 683 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 684 685 /* 686 * Re-check for ATTR2 in case it was found in bad_features2 687 * slot. 688 */ 689 if (xfs_sb_version_hasattr2(&mp->m_sb) && 690 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 691 mp->m_flags |= XFS_MOUNT_ATTR2; 692 } 693 694 if (xfs_sb_version_hasattr2(&mp->m_sb) && 695 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 696 xfs_sb_version_removeattr2(&mp->m_sb); 697 mp->m_update_flags |= XFS_SB_FEATURES2; 698 699 /* update sb_versionnum for the clearing of the morebits */ 700 if (!sbp->sb_features2) 701 mp->m_update_flags |= XFS_SB_VERSIONNUM; 702 } 703 704 /* always use v2 inodes by default now */ 705 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 706 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 707 mp->m_update_flags |= XFS_SB_VERSIONNUM; 708 } 709 710 /* 711 * Check if sb_agblocks is aligned at stripe boundary 712 * If sb_agblocks is NOT aligned turn off m_dalign since 713 * allocator alignment is within an ag, therefore ag has 714 * to be aligned at stripe boundary. 715 */ 716 error = xfs_update_alignment(mp); 717 if (error) 718 goto out; 719 720 xfs_alloc_compute_maxlevels(mp); 721 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 722 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 723 xfs_ialloc_compute_maxlevels(mp); 724 725 xfs_set_maxicount(mp); 726 727 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 728 if (error) 729 goto out; 730 731 error = xfs_uuid_mount(mp); 732 if (error) 733 goto out_remove_sysfs; 734 735 /* 736 * Set the minimum read and write sizes 737 */ 738 xfs_set_rw_sizes(mp); 739 740 /* set the low space thresholds for dynamic preallocation */ 741 xfs_set_low_space_thresholds(mp); 742 743 /* 744 * Set the inode cluster size. 745 * This may still be overridden by the file system 746 * block size if it is larger than the chosen cluster size. 747 * 748 * For v5 filesystems, scale the cluster size with the inode size to 749 * keep a constant ratio of inode per cluster buffer, but only if mkfs 750 * has set the inode alignment value appropriately for larger cluster 751 * sizes. 752 */ 753 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 754 if (xfs_sb_version_hascrc(&mp->m_sb)) { 755 int new_size = mp->m_inode_cluster_size; 756 757 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 758 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 759 mp->m_inode_cluster_size = new_size; 760 } 761 762 /* 763 * Set inode alignment fields 764 */ 765 xfs_set_inoalignment(mp); 766 767 /* 768 * Check that the data (and log if separate) is an ok size. 769 */ 770 error = xfs_check_sizes(mp); 771 if (error) 772 goto out_remove_uuid; 773 774 /* 775 * Initialize realtime fields in the mount structure 776 */ 777 error = xfs_rtmount_init(mp); 778 if (error) { 779 xfs_warn(mp, "RT mount failed"); 780 goto out_remove_uuid; 781 } 782 783 /* 784 * Copies the low order bits of the timestamp and the randomly 785 * set "sequence" number out of a UUID. 786 */ 787 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 788 789 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 790 791 error = xfs_da_mount(mp); 792 if (error) { 793 xfs_warn(mp, "Failed dir/attr init: %d", error); 794 goto out_remove_uuid; 795 } 796 797 /* 798 * Initialize the precomputed transaction reservations values. 799 */ 800 xfs_trans_init(mp); 801 802 /* 803 * Allocate and initialize the per-ag data. 804 */ 805 spin_lock_init(&mp->m_perag_lock); 806 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 807 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 808 if (error) { 809 xfs_warn(mp, "Failed per-ag init: %d", error); 810 goto out_free_dir; 811 } 812 813 if (!sbp->sb_logblocks) { 814 xfs_warn(mp, "no log defined"); 815 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 816 error = -EFSCORRUPTED; 817 goto out_free_perag; 818 } 819 820 /* 821 * log's mount-time initialization. Perform 1st part recovery if needed 822 */ 823 error = xfs_log_mount(mp, mp->m_logdev_targp, 824 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 825 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 826 if (error) { 827 xfs_warn(mp, "log mount failed"); 828 goto out_fail_wait; 829 } 830 831 /* 832 * Now the log is mounted, we know if it was an unclean shutdown or 833 * not. If it was, with the first phase of recovery has completed, we 834 * have consistent AG blocks on disk. We have not recovered EFIs yet, 835 * but they are recovered transactionally in the second recovery phase 836 * later. 837 * 838 * Hence we can safely re-initialise incore superblock counters from 839 * the per-ag data. These may not be correct if the filesystem was not 840 * cleanly unmounted, so we need to wait for recovery to finish before 841 * doing this. 842 * 843 * If the filesystem was cleanly unmounted, then we can trust the 844 * values in the superblock to be correct and we don't need to do 845 * anything here. 846 * 847 * If we are currently making the filesystem, the initialisation will 848 * fail as the perag data is in an undefined state. 849 */ 850 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 851 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 852 !mp->m_sb.sb_inprogress) { 853 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 854 if (error) 855 goto out_log_dealloc; 856 } 857 858 /* 859 * Get and sanity-check the root inode. 860 * Save the pointer to it in the mount structure. 861 */ 862 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 863 if (error) { 864 xfs_warn(mp, "failed to read root inode"); 865 goto out_log_dealloc; 866 } 867 868 ASSERT(rip != NULL); 869 870 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 871 xfs_warn(mp, "corrupted root inode %llu: not a directory", 872 (unsigned long long)rip->i_ino); 873 xfs_iunlock(rip, XFS_ILOCK_EXCL); 874 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 875 mp); 876 error = -EFSCORRUPTED; 877 goto out_rele_rip; 878 } 879 mp->m_rootip = rip; /* save it */ 880 881 xfs_iunlock(rip, XFS_ILOCK_EXCL); 882 883 /* 884 * Initialize realtime inode pointers in the mount structure 885 */ 886 error = xfs_rtmount_inodes(mp); 887 if (error) { 888 /* 889 * Free up the root inode. 890 */ 891 xfs_warn(mp, "failed to read RT inodes"); 892 goto out_rele_rip; 893 } 894 895 /* 896 * If this is a read-only mount defer the superblock updates until 897 * the next remount into writeable mode. Otherwise we would never 898 * perform the update e.g. for the root filesystem. 899 */ 900 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 901 error = xfs_mount_log_sb(mp, mp->m_update_flags); 902 if (error) { 903 xfs_warn(mp, "failed to write sb changes"); 904 goto out_rtunmount; 905 } 906 } 907 908 /* 909 * Initialise the XFS quota management subsystem for this mount 910 */ 911 if (XFS_IS_QUOTA_RUNNING(mp)) { 912 error = xfs_qm_newmount(mp, "amount, "aflags); 913 if (error) 914 goto out_rtunmount; 915 } else { 916 ASSERT(!XFS_IS_QUOTA_ON(mp)); 917 918 /* 919 * If a file system had quotas running earlier, but decided to 920 * mount without -o uquota/pquota/gquota options, revoke the 921 * quotachecked license. 922 */ 923 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 924 xfs_notice(mp, "resetting quota flags"); 925 error = xfs_mount_reset_sbqflags(mp); 926 if (error) 927 goto out_rtunmount; 928 } 929 } 930 931 /* 932 * Finish recovering the file system. This part needed to be 933 * delayed until after the root and real-time bitmap inodes 934 * were consistently read in. 935 */ 936 error = xfs_log_mount_finish(mp); 937 if (error) { 938 xfs_warn(mp, "log mount finish failed"); 939 goto out_rtunmount; 940 } 941 942 /* 943 * Complete the quota initialisation, post-log-replay component. 944 */ 945 if (quotamount) { 946 ASSERT(mp->m_qflags == 0); 947 mp->m_qflags = quotaflags; 948 949 xfs_qm_mount_quotas(mp); 950 } 951 952 /* 953 * Now we are mounted, reserve a small amount of unused space for 954 * privileged transactions. This is needed so that transaction 955 * space required for critical operations can dip into this pool 956 * when at ENOSPC. This is needed for operations like create with 957 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 958 * are not allowed to use this reserved space. 959 * 960 * This may drive us straight to ENOSPC on mount, but that implies 961 * we were already there on the last unmount. Warn if this occurs. 962 */ 963 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 964 resblks = xfs_default_resblks(mp); 965 error = xfs_reserve_blocks(mp, &resblks, NULL); 966 if (error) 967 xfs_warn(mp, 968 "Unable to allocate reserve blocks. Continuing without reserve pool."); 969 } 970 971 return 0; 972 973 out_rtunmount: 974 xfs_rtunmount_inodes(mp); 975 out_rele_rip: 976 IRELE(rip); 977 out_log_dealloc: 978 xfs_log_unmount(mp); 979 out_fail_wait: 980 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 981 xfs_wait_buftarg(mp->m_logdev_targp); 982 xfs_wait_buftarg(mp->m_ddev_targp); 983 out_free_perag: 984 xfs_free_perag(mp); 985 out_free_dir: 986 xfs_da_unmount(mp); 987 out_remove_uuid: 988 xfs_uuid_unmount(mp); 989 out_remove_sysfs: 990 xfs_sysfs_del(&mp->m_kobj); 991 out: 992 return error; 993} 994 995/* 996 * This flushes out the inodes,dquots and the superblock, unmounts the 997 * log and makes sure that incore structures are freed. 998 */ 999void 1000xfs_unmountfs( 1001 struct xfs_mount *mp) 1002{ 1003 __uint64_t resblks; 1004 int error; 1005 1006 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1007 1008 xfs_qm_unmount_quotas(mp); 1009 xfs_rtunmount_inodes(mp); 1010 IRELE(mp->m_rootip); 1011 1012 /* 1013 * We can potentially deadlock here if we have an inode cluster 1014 * that has been freed has its buffer still pinned in memory because 1015 * the transaction is still sitting in a iclog. The stale inodes 1016 * on that buffer will have their flush locks held until the 1017 * transaction hits the disk and the callbacks run. the inode 1018 * flush takes the flush lock unconditionally and with nothing to 1019 * push out the iclog we will never get that unlocked. hence we 1020 * need to force the log first. 1021 */ 1022 xfs_log_force(mp, XFS_LOG_SYNC); 1023 1024 /* 1025 * Flush all pending changes from the AIL. 1026 */ 1027 xfs_ail_push_all_sync(mp->m_ail); 1028 1029 /* 1030 * And reclaim all inodes. At this point there should be no dirty 1031 * inodes and none should be pinned or locked, but use synchronous 1032 * reclaim just to be sure. We can stop background inode reclaim 1033 * here as well if it is still running. 1034 */ 1035 cancel_delayed_work_sync(&mp->m_reclaim_work); 1036 xfs_reclaim_inodes(mp, SYNC_WAIT); 1037 1038 xfs_qm_unmount(mp); 1039 1040 /* 1041 * Unreserve any blocks we have so that when we unmount we don't account 1042 * the reserved free space as used. This is really only necessary for 1043 * lazy superblock counting because it trusts the incore superblock 1044 * counters to be absolutely correct on clean unmount. 1045 * 1046 * We don't bother correcting this elsewhere for lazy superblock 1047 * counting because on mount of an unclean filesystem we reconstruct the 1048 * correct counter value and this is irrelevant. 1049 * 1050 * For non-lazy counter filesystems, this doesn't matter at all because 1051 * we only every apply deltas to the superblock and hence the incore 1052 * value does not matter.... 1053 */ 1054 resblks = 0; 1055 error = xfs_reserve_blocks(mp, &resblks, NULL); 1056 if (error) 1057 xfs_warn(mp, "Unable to free reserved block pool. " 1058 "Freespace may not be correct on next mount."); 1059 1060 error = xfs_log_sbcount(mp); 1061 if (error) 1062 xfs_warn(mp, "Unable to update superblock counters. " 1063 "Freespace may not be correct on next mount."); 1064 1065 xfs_log_unmount(mp); 1066 xfs_da_unmount(mp); 1067 xfs_uuid_unmount(mp); 1068 1069#if defined(DEBUG) 1070 xfs_errortag_clearall(mp, 0); 1071#endif 1072 xfs_free_perag(mp); 1073 1074 xfs_sysfs_del(&mp->m_kobj); 1075} 1076 1077int 1078xfs_fs_writable(xfs_mount_t *mp) 1079{ 1080 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1081 (mp->m_flags & XFS_MOUNT_RDONLY)); 1082} 1083 1084/* 1085 * xfs_log_sbcount 1086 * 1087 * Sync the superblock counters to disk. 1088 * 1089 * Note this code can be called during the process of freezing, so 1090 * we may need to use the transaction allocator which does not 1091 * block when the transaction subsystem is in its frozen state. 1092 */ 1093int 1094xfs_log_sbcount(xfs_mount_t *mp) 1095{ 1096 xfs_trans_t *tp; 1097 int error; 1098 1099 if (!xfs_fs_writable(mp)) 1100 return 0; 1101 1102 xfs_icsb_sync_counters(mp, 0); 1103 1104 /* 1105 * we don't need to do this if we are updating the superblock 1106 * counters on every modification. 1107 */ 1108 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1109 return 0; 1110 1111 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1112 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1113 if (error) { 1114 xfs_trans_cancel(tp, 0); 1115 return error; 1116 } 1117 1118 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1119 xfs_trans_set_sync(tp); 1120 error = xfs_trans_commit(tp, 0); 1121 return error; 1122} 1123 1124/* 1125 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply 1126 * a delta to a specified field in the in-core superblock. Simply 1127 * switch on the field indicated and apply the delta to that field. 1128 * Fields are not allowed to dip below zero, so if the delta would 1129 * do this do not apply it and return EINVAL. 1130 * 1131 * The m_sb_lock must be held when this routine is called. 1132 */ 1133STATIC int 1134xfs_mod_incore_sb_unlocked( 1135 xfs_mount_t *mp, 1136 xfs_sb_field_t field, 1137 int64_t delta, 1138 int rsvd) 1139{ 1140 int scounter; /* short counter for 32 bit fields */ 1141 long long lcounter; /* long counter for 64 bit fields */ 1142 long long res_used, rem; 1143 1144 /* 1145 * With the in-core superblock spin lock held, switch 1146 * on the indicated field. Apply the delta to the 1147 * proper field. If the fields value would dip below 1148 * 0, then do not apply the delta and return EINVAL. 1149 */ 1150 switch (field) { 1151 case XFS_SBS_ICOUNT: 1152 lcounter = (long long)mp->m_sb.sb_icount; 1153 lcounter += delta; 1154 if (lcounter < 0) { 1155 ASSERT(0); 1156 return -EINVAL; 1157 } 1158 mp->m_sb.sb_icount = lcounter; 1159 return 0; 1160 case XFS_SBS_IFREE: 1161 lcounter = (long long)mp->m_sb.sb_ifree; 1162 lcounter += delta; 1163 if (lcounter < 0) { 1164 ASSERT(0); 1165 return -EINVAL; 1166 } 1167 mp->m_sb.sb_ifree = lcounter; 1168 return 0; 1169 case XFS_SBS_FDBLOCKS: 1170 lcounter = (long long) 1171 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1172 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1173 1174 if (delta > 0) { /* Putting blocks back */ 1175 if (res_used > delta) { 1176 mp->m_resblks_avail += delta; 1177 } else { 1178 rem = delta - res_used; 1179 mp->m_resblks_avail = mp->m_resblks; 1180 lcounter += rem; 1181 } 1182 } else { /* Taking blocks away */ 1183 lcounter += delta; 1184 if (lcounter >= 0) { 1185 mp->m_sb.sb_fdblocks = lcounter + 1186 XFS_ALLOC_SET_ASIDE(mp); 1187 return 0; 1188 } 1189 1190 /* 1191 * We are out of blocks, use any available reserved 1192 * blocks if were allowed to. 1193 */ 1194 if (!rsvd) 1195 return -ENOSPC; 1196 1197 lcounter = (long long)mp->m_resblks_avail + delta; 1198 if (lcounter >= 0) { 1199 mp->m_resblks_avail = lcounter; 1200 return 0; 1201 } 1202 printk_once(KERN_WARNING 1203 "Filesystem \"%s\": reserve blocks depleted! " 1204 "Consider increasing reserve pool size.", 1205 mp->m_fsname); 1206 return -ENOSPC; 1207 } 1208 1209 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1210 return 0; 1211 case XFS_SBS_FREXTENTS: 1212 lcounter = (long long)mp->m_sb.sb_frextents; 1213 lcounter += delta; 1214 if (lcounter < 0) { 1215 return -ENOSPC; 1216 } 1217 mp->m_sb.sb_frextents = lcounter; 1218 return 0; 1219 case XFS_SBS_DBLOCKS: 1220 lcounter = (long long)mp->m_sb.sb_dblocks; 1221 lcounter += delta; 1222 if (lcounter < 0) { 1223 ASSERT(0); 1224 return -EINVAL; 1225 } 1226 mp->m_sb.sb_dblocks = lcounter; 1227 return 0; 1228 case XFS_SBS_AGCOUNT: 1229 scounter = mp->m_sb.sb_agcount; 1230 scounter += delta; 1231 if (scounter < 0) { 1232 ASSERT(0); 1233 return -EINVAL; 1234 } 1235 mp->m_sb.sb_agcount = scounter; 1236 return 0; 1237 case XFS_SBS_IMAX_PCT: 1238 scounter = mp->m_sb.sb_imax_pct; 1239 scounter += delta; 1240 if (scounter < 0) { 1241 ASSERT(0); 1242 return -EINVAL; 1243 } 1244 mp->m_sb.sb_imax_pct = scounter; 1245 return 0; 1246 case XFS_SBS_REXTSIZE: 1247 scounter = mp->m_sb.sb_rextsize; 1248 scounter += delta; 1249 if (scounter < 0) { 1250 ASSERT(0); 1251 return -EINVAL; 1252 } 1253 mp->m_sb.sb_rextsize = scounter; 1254 return 0; 1255 case XFS_SBS_RBMBLOCKS: 1256 scounter = mp->m_sb.sb_rbmblocks; 1257 scounter += delta; 1258 if (scounter < 0) { 1259 ASSERT(0); 1260 return -EINVAL; 1261 } 1262 mp->m_sb.sb_rbmblocks = scounter; 1263 return 0; 1264 case XFS_SBS_RBLOCKS: 1265 lcounter = (long long)mp->m_sb.sb_rblocks; 1266 lcounter += delta; 1267 if (lcounter < 0) { 1268 ASSERT(0); 1269 return -EINVAL; 1270 } 1271 mp->m_sb.sb_rblocks = lcounter; 1272 return 0; 1273 case XFS_SBS_REXTENTS: 1274 lcounter = (long long)mp->m_sb.sb_rextents; 1275 lcounter += delta; 1276 if (lcounter < 0) { 1277 ASSERT(0); 1278 return -EINVAL; 1279 } 1280 mp->m_sb.sb_rextents = lcounter; 1281 return 0; 1282 case XFS_SBS_REXTSLOG: 1283 scounter = mp->m_sb.sb_rextslog; 1284 scounter += delta; 1285 if (scounter < 0) { 1286 ASSERT(0); 1287 return -EINVAL; 1288 } 1289 mp->m_sb.sb_rextslog = scounter; 1290 return 0; 1291 default: 1292 ASSERT(0); 1293 return -EINVAL; 1294 } 1295} 1296 1297/* 1298 * xfs_mod_incore_sb() is used to change a field in the in-core 1299 * superblock structure by the specified delta. This modification 1300 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1301 * routine to do the work. 1302 */ 1303int 1304xfs_mod_incore_sb( 1305 struct xfs_mount *mp, 1306 xfs_sb_field_t field, 1307 int64_t delta, 1308 int rsvd) 1309{ 1310 int status; 1311 1312#ifdef HAVE_PERCPU_SB 1313 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1314#endif 1315 spin_lock(&mp->m_sb_lock); 1316 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1317 spin_unlock(&mp->m_sb_lock); 1318 1319 return status; 1320} 1321 1322/* 1323 * Change more than one field in the in-core superblock structure at a time. 1324 * 1325 * The fields and changes to those fields are specified in the array of 1326 * xfs_mod_sb structures passed in. Either all of the specified deltas 1327 * will be applied or none of them will. If any modified field dips below 0, 1328 * then all modifications will be backed out and EINVAL will be returned. 1329 * 1330 * Note that this function may not be used for the superblock values that 1331 * are tracked with the in-memory per-cpu counters - a direct call to 1332 * xfs_icsb_modify_counters is required for these. 1333 */ 1334int 1335xfs_mod_incore_sb_batch( 1336 struct xfs_mount *mp, 1337 xfs_mod_sb_t *msb, 1338 uint nmsb, 1339 int rsvd) 1340{ 1341 xfs_mod_sb_t *msbp; 1342 int error = 0; 1343 1344 /* 1345 * Loop through the array of mod structures and apply each individually. 1346 * If any fail, then back out all those which have already been applied. 1347 * Do all of this within the scope of the m_sb_lock so that all of the 1348 * changes will be atomic. 1349 */ 1350 spin_lock(&mp->m_sb_lock); 1351 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1352 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1353 msbp->msb_field > XFS_SBS_FDBLOCKS); 1354 1355 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1356 msbp->msb_delta, rsvd); 1357 if (error) 1358 goto unwind; 1359 } 1360 spin_unlock(&mp->m_sb_lock); 1361 return 0; 1362 1363unwind: 1364 while (--msbp >= msb) { 1365 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1366 -msbp->msb_delta, rsvd); 1367 ASSERT(error == 0); 1368 } 1369 spin_unlock(&mp->m_sb_lock); 1370 return error; 1371} 1372 1373/* 1374 * xfs_getsb() is called to obtain the buffer for the superblock. 1375 * The buffer is returned locked and read in from disk. 1376 * The buffer should be released with a call to xfs_brelse(). 1377 * 1378 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1379 * the superblock buffer if it can be locked without sleeping. 1380 * If it can't then we'll return NULL. 1381 */ 1382struct xfs_buf * 1383xfs_getsb( 1384 struct xfs_mount *mp, 1385 int flags) 1386{ 1387 struct xfs_buf *bp = mp->m_sb_bp; 1388 1389 if (!xfs_buf_trylock(bp)) { 1390 if (flags & XBF_TRYLOCK) 1391 return NULL; 1392 xfs_buf_lock(bp); 1393 } 1394 1395 xfs_buf_hold(bp); 1396 ASSERT(XFS_BUF_ISDONE(bp)); 1397 return bp; 1398} 1399 1400/* 1401 * Used to free the superblock along various error paths. 1402 */ 1403void 1404xfs_freesb( 1405 struct xfs_mount *mp) 1406{ 1407 struct xfs_buf *bp = mp->m_sb_bp; 1408 1409 xfs_buf_lock(bp); 1410 mp->m_sb_bp = NULL; 1411 xfs_buf_relse(bp); 1412} 1413 1414/* 1415 * Used to log changes to the superblock unit and width fields which could 1416 * be altered by the mount options, as well as any potential sb_features2 1417 * fixup. Only the first superblock is updated. 1418 */ 1419int 1420xfs_mount_log_sb( 1421 xfs_mount_t *mp, 1422 __int64_t fields) 1423{ 1424 xfs_trans_t *tp; 1425 int error; 1426 1427 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1428 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1429 XFS_SB_VERSIONNUM)); 1430 1431 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1432 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1433 if (error) { 1434 xfs_trans_cancel(tp, 0); 1435 return error; 1436 } 1437 xfs_mod_sb(tp, fields); 1438 error = xfs_trans_commit(tp, 0); 1439 return error; 1440} 1441 1442/* 1443 * If the underlying (data/log/rt) device is readonly, there are some 1444 * operations that cannot proceed. 1445 */ 1446int 1447xfs_dev_is_read_only( 1448 struct xfs_mount *mp, 1449 char *message) 1450{ 1451 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1452 xfs_readonly_buftarg(mp->m_logdev_targp) || 1453 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1454 xfs_notice(mp, "%s required on read-only device.", message); 1455 xfs_notice(mp, "write access unavailable, cannot proceed."); 1456 return -EROFS; 1457 } 1458 return 0; 1459} 1460 1461#ifdef HAVE_PERCPU_SB 1462/* 1463 * Per-cpu incore superblock counters 1464 * 1465 * Simple concept, difficult implementation 1466 * 1467 * Basically, replace the incore superblock counters with a distributed per cpu 1468 * counter for contended fields (e.g. free block count). 1469 * 1470 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1471 * hence needs to be accurately read when we are running low on space. Hence 1472 * there is a method to enable and disable the per-cpu counters based on how 1473 * much "stuff" is available in them. 1474 * 1475 * Basically, a counter is enabled if there is enough free resource to justify 1476 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1477 * ENOSPC), then we disable the counters to synchronise all callers and 1478 * re-distribute the available resources. 1479 * 1480 * If, once we redistributed the available resources, we still get a failure, 1481 * we disable the per-cpu counter and go through the slow path. 1482 * 1483 * The slow path is the current xfs_mod_incore_sb() function. This means that 1484 * when we disable a per-cpu counter, we need to drain its resources back to 1485 * the global superblock. We do this after disabling the counter to prevent 1486 * more threads from queueing up on the counter. 1487 * 1488 * Essentially, this means that we still need a lock in the fast path to enable 1489 * synchronisation between the global counters and the per-cpu counters. This 1490 * is not a problem because the lock will be local to a CPU almost all the time 1491 * and have little contention except when we get to ENOSPC conditions. 1492 * 1493 * Basically, this lock becomes a barrier that enables us to lock out the fast 1494 * path while we do things like enabling and disabling counters and 1495 * synchronising the counters. 1496 * 1497 * Locking rules: 1498 * 1499 * 1. m_sb_lock before picking up per-cpu locks 1500 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1501 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1502 * 4. modifying per-cpu counters requires holding per-cpu lock 1503 * 5. modifying global counters requires holding m_sb_lock 1504 * 6. enabling or disabling a counter requires holding the m_sb_lock 1505 * and _none_ of the per-cpu locks. 1506 * 1507 * Disabled counters are only ever re-enabled by a balance operation 1508 * that results in more free resources per CPU than a given threshold. 1509 * To ensure counters don't remain disabled, they are rebalanced when 1510 * the global resource goes above a higher threshold (i.e. some hysteresis 1511 * is present to prevent thrashing). 1512 */ 1513 1514#ifdef CONFIG_HOTPLUG_CPU 1515/* 1516 * hot-plug CPU notifier support. 1517 * 1518 * We need a notifier per filesystem as we need to be able to identify 1519 * the filesystem to balance the counters out. This is achieved by 1520 * having a notifier block embedded in the xfs_mount_t and doing pointer 1521 * magic to get the mount pointer from the notifier block address. 1522 */ 1523STATIC int 1524xfs_icsb_cpu_notify( 1525 struct notifier_block *nfb, 1526 unsigned long action, 1527 void *hcpu) 1528{ 1529 xfs_icsb_cnts_t *cntp; 1530 xfs_mount_t *mp; 1531 1532 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1533 cntp = (xfs_icsb_cnts_t *) 1534 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1535 switch (action) { 1536 case CPU_UP_PREPARE: 1537 case CPU_UP_PREPARE_FROZEN: 1538 /* Easy Case - initialize the area and locks, and 1539 * then rebalance when online does everything else for us. */ 1540 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1541 break; 1542 case CPU_ONLINE: 1543 case CPU_ONLINE_FROZEN: 1544 xfs_icsb_lock(mp); 1545 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1546 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1547 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1548 xfs_icsb_unlock(mp); 1549 break; 1550 case CPU_DEAD: 1551 case CPU_DEAD_FROZEN: 1552 /* Disable all the counters, then fold the dead cpu's 1553 * count into the total on the global superblock and 1554 * re-enable the counters. */ 1555 xfs_icsb_lock(mp); 1556 spin_lock(&mp->m_sb_lock); 1557 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1558 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1559 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1560 1561 mp->m_sb.sb_icount += cntp->icsb_icount; 1562 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1563 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1564 1565 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1566 1567 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1568 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1569 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1570 spin_unlock(&mp->m_sb_lock); 1571 xfs_icsb_unlock(mp); 1572 break; 1573 } 1574 1575 return NOTIFY_OK; 1576} 1577#endif /* CONFIG_HOTPLUG_CPU */ 1578 1579int 1580xfs_icsb_init_counters( 1581 xfs_mount_t *mp) 1582{ 1583 xfs_icsb_cnts_t *cntp; 1584 int i; 1585 1586 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1587 if (mp->m_sb_cnts == NULL) 1588 return -ENOMEM; 1589 1590 for_each_online_cpu(i) { 1591 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1592 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1593 } 1594 1595 mutex_init(&mp->m_icsb_mutex); 1596 1597 /* 1598 * start with all counters disabled so that the 1599 * initial balance kicks us off correctly 1600 */ 1601 mp->m_icsb_counters = -1; 1602 1603#ifdef CONFIG_HOTPLUG_CPU 1604 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1605 mp->m_icsb_notifier.priority = 0; 1606 register_hotcpu_notifier(&mp->m_icsb_notifier); 1607#endif /* CONFIG_HOTPLUG_CPU */ 1608 1609 return 0; 1610} 1611 1612void 1613xfs_icsb_reinit_counters( 1614 xfs_mount_t *mp) 1615{ 1616 xfs_icsb_lock(mp); 1617 /* 1618 * start with all counters disabled so that the 1619 * initial balance kicks us off correctly 1620 */ 1621 mp->m_icsb_counters = -1; 1622 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1623 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1624 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1625 xfs_icsb_unlock(mp); 1626} 1627 1628void 1629xfs_icsb_destroy_counters( 1630 xfs_mount_t *mp) 1631{ 1632 if (mp->m_sb_cnts) { 1633 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 1634 free_percpu(mp->m_sb_cnts); 1635 } 1636 mutex_destroy(&mp->m_icsb_mutex); 1637} 1638 1639STATIC void 1640xfs_icsb_lock_cntr( 1641 xfs_icsb_cnts_t *icsbp) 1642{ 1643 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 1644 ndelay(1000); 1645 } 1646} 1647 1648STATIC void 1649xfs_icsb_unlock_cntr( 1650 xfs_icsb_cnts_t *icsbp) 1651{ 1652 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 1653} 1654 1655 1656STATIC void 1657xfs_icsb_lock_all_counters( 1658 xfs_mount_t *mp) 1659{ 1660 xfs_icsb_cnts_t *cntp; 1661 int i; 1662 1663 for_each_online_cpu(i) { 1664 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1665 xfs_icsb_lock_cntr(cntp); 1666 } 1667} 1668 1669STATIC void 1670xfs_icsb_unlock_all_counters( 1671 xfs_mount_t *mp) 1672{ 1673 xfs_icsb_cnts_t *cntp; 1674 int i; 1675 1676 for_each_online_cpu(i) { 1677 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1678 xfs_icsb_unlock_cntr(cntp); 1679 } 1680} 1681 1682STATIC void 1683xfs_icsb_count( 1684 xfs_mount_t *mp, 1685 xfs_icsb_cnts_t *cnt, 1686 int flags) 1687{ 1688 xfs_icsb_cnts_t *cntp; 1689 int i; 1690 1691 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 1692 1693 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1694 xfs_icsb_lock_all_counters(mp); 1695 1696 for_each_online_cpu(i) { 1697 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1698 cnt->icsb_icount += cntp->icsb_icount; 1699 cnt->icsb_ifree += cntp->icsb_ifree; 1700 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 1701 } 1702 1703 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1704 xfs_icsb_unlock_all_counters(mp); 1705} 1706 1707STATIC int 1708xfs_icsb_counter_disabled( 1709 xfs_mount_t *mp, 1710 xfs_sb_field_t field) 1711{ 1712 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1713 return test_bit(field, &mp->m_icsb_counters); 1714} 1715 1716STATIC void 1717xfs_icsb_disable_counter( 1718 xfs_mount_t *mp, 1719 xfs_sb_field_t field) 1720{ 1721 xfs_icsb_cnts_t cnt; 1722 1723 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1724 1725 /* 1726 * If we are already disabled, then there is nothing to do 1727 * here. We check before locking all the counters to avoid 1728 * the expensive lock operation when being called in the 1729 * slow path and the counter is already disabled. This is 1730 * safe because the only time we set or clear this state is under 1731 * the m_icsb_mutex. 1732 */ 1733 if (xfs_icsb_counter_disabled(mp, field)) 1734 return; 1735 1736 xfs_icsb_lock_all_counters(mp); 1737 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 1738 /* drain back to superblock */ 1739 1740 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 1741 switch(field) { 1742 case XFS_SBS_ICOUNT: 1743 mp->m_sb.sb_icount = cnt.icsb_icount; 1744 break; 1745 case XFS_SBS_IFREE: 1746 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1747 break; 1748 case XFS_SBS_FDBLOCKS: 1749 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1750 break; 1751 default: 1752 BUG(); 1753 } 1754 } 1755 1756 xfs_icsb_unlock_all_counters(mp); 1757} 1758 1759STATIC void 1760xfs_icsb_enable_counter( 1761 xfs_mount_t *mp, 1762 xfs_sb_field_t field, 1763 uint64_t count, 1764 uint64_t resid) 1765{ 1766 xfs_icsb_cnts_t *cntp; 1767 int i; 1768 1769 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1770 1771 xfs_icsb_lock_all_counters(mp); 1772 for_each_online_cpu(i) { 1773 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 1774 switch (field) { 1775 case XFS_SBS_ICOUNT: 1776 cntp->icsb_icount = count + resid; 1777 break; 1778 case XFS_SBS_IFREE: 1779 cntp->icsb_ifree = count + resid; 1780 break; 1781 case XFS_SBS_FDBLOCKS: 1782 cntp->icsb_fdblocks = count + resid; 1783 break; 1784 default: 1785 BUG(); 1786 break; 1787 } 1788 resid = 0; 1789 } 1790 clear_bit(field, &mp->m_icsb_counters); 1791 xfs_icsb_unlock_all_counters(mp); 1792} 1793 1794void 1795xfs_icsb_sync_counters_locked( 1796 xfs_mount_t *mp, 1797 int flags) 1798{ 1799 xfs_icsb_cnts_t cnt; 1800 1801 xfs_icsb_count(mp, &cnt, flags); 1802 1803 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 1804 mp->m_sb.sb_icount = cnt.icsb_icount; 1805 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 1806 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1807 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 1808 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1809} 1810 1811/* 1812 * Accurate update of per-cpu counters to incore superblock 1813 */ 1814void 1815xfs_icsb_sync_counters( 1816 xfs_mount_t *mp, 1817 int flags) 1818{ 1819 spin_lock(&mp->m_sb_lock); 1820 xfs_icsb_sync_counters_locked(mp, flags); 1821 spin_unlock(&mp->m_sb_lock); 1822} 1823 1824/* 1825 * Balance and enable/disable counters as necessary. 1826 * 1827 * Thresholds for re-enabling counters are somewhat magic. inode counts are 1828 * chosen to be the same number as single on disk allocation chunk per CPU, and 1829 * free blocks is something far enough zero that we aren't going thrash when we 1830 * get near ENOSPC. We also need to supply a minimum we require per cpu to 1831 * prevent looping endlessly when xfs_alloc_space asks for more than will 1832 * be distributed to a single CPU but each CPU has enough blocks to be 1833 * reenabled. 1834 * 1835 * Note that we can be called when counters are already disabled. 1836 * xfs_icsb_disable_counter() optimises the counter locking in this case to 1837 * prevent locking every per-cpu counter needlessly. 1838 */ 1839 1840#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 1841#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 1842 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 1843STATIC void 1844xfs_icsb_balance_counter_locked( 1845 xfs_mount_t *mp, 1846 xfs_sb_field_t field, 1847 int min_per_cpu) 1848{ 1849 uint64_t count, resid; 1850 int weight = num_online_cpus(); 1851 uint64_t min = (uint64_t)min_per_cpu; 1852 1853 /* disable counter and sync counter */ 1854 xfs_icsb_disable_counter(mp, field); 1855 1856 /* update counters - first CPU gets residual*/ 1857 switch (field) { 1858 case XFS_SBS_ICOUNT: 1859 count = mp->m_sb.sb_icount; 1860 resid = do_div(count, weight); 1861 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1862 return; 1863 break; 1864 case XFS_SBS_IFREE: 1865 count = mp->m_sb.sb_ifree; 1866 resid = do_div(count, weight); 1867 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1868 return; 1869 break; 1870 case XFS_SBS_FDBLOCKS: 1871 count = mp->m_sb.sb_fdblocks; 1872 resid = do_div(count, weight); 1873 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 1874 return; 1875 break; 1876 default: 1877 BUG(); 1878 count = resid = 0; /* quiet, gcc */ 1879 break; 1880 } 1881 1882 xfs_icsb_enable_counter(mp, field, count, resid); 1883} 1884 1885STATIC void 1886xfs_icsb_balance_counter( 1887 xfs_mount_t *mp, 1888 xfs_sb_field_t fields, 1889 int min_per_cpu) 1890{ 1891 spin_lock(&mp->m_sb_lock); 1892 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 1893 spin_unlock(&mp->m_sb_lock); 1894} 1895 1896int 1897xfs_icsb_modify_counters( 1898 xfs_mount_t *mp, 1899 xfs_sb_field_t field, 1900 int64_t delta, 1901 int rsvd) 1902{ 1903 xfs_icsb_cnts_t *icsbp; 1904 long long lcounter; /* long counter for 64 bit fields */ 1905 int ret = 0; 1906 1907 might_sleep(); 1908again: 1909 preempt_disable(); 1910 icsbp = this_cpu_ptr(mp->m_sb_cnts); 1911 1912 /* 1913 * if the counter is disabled, go to slow path 1914 */ 1915 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 1916 goto slow_path; 1917 xfs_icsb_lock_cntr(icsbp); 1918 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 1919 xfs_icsb_unlock_cntr(icsbp); 1920 goto slow_path; 1921 } 1922 1923 switch (field) { 1924 case XFS_SBS_ICOUNT: 1925 lcounter = icsbp->icsb_icount; 1926 lcounter += delta; 1927 if (unlikely(lcounter < 0)) 1928 goto balance_counter; 1929 icsbp->icsb_icount = lcounter; 1930 break; 1931 1932 case XFS_SBS_IFREE: 1933 lcounter = icsbp->icsb_ifree; 1934 lcounter += delta; 1935 if (unlikely(lcounter < 0)) 1936 goto balance_counter; 1937 icsbp->icsb_ifree = lcounter; 1938 break; 1939 1940 case XFS_SBS_FDBLOCKS: 1941 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 1942 1943 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1944 lcounter += delta; 1945 if (unlikely(lcounter < 0)) 1946 goto balance_counter; 1947 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1948 break; 1949 default: 1950 BUG(); 1951 break; 1952 } 1953 xfs_icsb_unlock_cntr(icsbp); 1954 preempt_enable(); 1955 return 0; 1956 1957slow_path: 1958 preempt_enable(); 1959 1960 /* 1961 * serialise with a mutex so we don't burn lots of cpu on 1962 * the superblock lock. We still need to hold the superblock 1963 * lock, however, when we modify the global structures. 1964 */ 1965 xfs_icsb_lock(mp); 1966 1967 /* 1968 * Now running atomically. 1969 * 1970 * If the counter is enabled, someone has beaten us to rebalancing. 1971 * Drop the lock and try again in the fast path.... 1972 */ 1973 if (!(xfs_icsb_counter_disabled(mp, field))) { 1974 xfs_icsb_unlock(mp); 1975 goto again; 1976 } 1977 1978 /* 1979 * The counter is currently disabled. Because we are 1980 * running atomically here, we know a rebalance cannot 1981 * be in progress. Hence we can go straight to operating 1982 * on the global superblock. We do not call xfs_mod_incore_sb() 1983 * here even though we need to get the m_sb_lock. Doing so 1984 * will cause us to re-enter this function and deadlock. 1985 * Hence we get the m_sb_lock ourselves and then call 1986 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 1987 * directly on the global counters. 1988 */ 1989 spin_lock(&mp->m_sb_lock); 1990 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1991 spin_unlock(&mp->m_sb_lock); 1992 1993 /* 1994 * Now that we've modified the global superblock, we 1995 * may be able to re-enable the distributed counters 1996 * (e.g. lots of space just got freed). After that 1997 * we are done. 1998 */ 1999 if (ret != -ENOSPC) 2000 xfs_icsb_balance_counter(mp, field, 0); 2001 xfs_icsb_unlock(mp); 2002 return ret; 2003 2004balance_counter: 2005 xfs_icsb_unlock_cntr(icsbp); 2006 preempt_enable(); 2007 2008 /* 2009 * We may have multiple threads here if multiple per-cpu 2010 * counters run dry at the same time. This will mean we can 2011 * do more balances than strictly necessary but it is not 2012 * the common slowpath case. 2013 */ 2014 xfs_icsb_lock(mp); 2015 2016 /* 2017 * running atomically. 2018 * 2019 * This will leave the counter in the correct state for future 2020 * accesses. After the rebalance, we simply try again and our retry 2021 * will either succeed through the fast path or slow path without 2022 * another balance operation being required. 2023 */ 2024 xfs_icsb_balance_counter(mp, field, delta); 2025 xfs_icsb_unlock(mp); 2026 goto again; 2027} 2028 2029#endif 2030