1/*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 *	Srikar Dronamraju
21 *	Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h>	/* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/export.h>
31#include <linux/rmap.h>		/* anon_vma_prepare */
32#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33#include <linux/swap.h>		/* try_to_free_swap */
34#include <linux/ptrace.h>	/* user_enable_single_step */
35#include <linux/kdebug.h>	/* notifier mechanism */
36#include "../../mm/internal.h"	/* munlock_vma_page */
37#include <linux/percpu-rwsem.h>
38#include <linux/task_work.h>
39#include <linux/shmem_fs.h>
40
41#include <linux/uprobes.h>
42
43#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45
46static struct rb_root uprobes_tree = RB_ROOT;
47/*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time.  Probably a fine grained per inode count is better?
50 */
51#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52
53static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54
55#define UPROBES_HASH_SZ	13
56/* serialize uprobe->pending_list */
57static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60static struct percpu_rw_semaphore dup_mmap_sem;
61
62/* Have a copy of original instruction */
63#define UPROBE_COPY_INSN	0
64
65struct uprobe {
66	struct rb_node		rb_node;	/* node in the rb tree */
67	atomic_t		ref;
68	struct rw_semaphore	register_rwsem;
69	struct rw_semaphore	consumer_rwsem;
70	struct list_head	pending_list;
71	struct uprobe_consumer	*consumers;
72	struct inode		*inode;		/* Also hold a ref to inode */
73	loff_t			offset;
74	unsigned long		flags;
75
76	/*
77	 * The generic code assumes that it has two members of unknown type
78	 * owned by the arch-specific code:
79	 *
80	 * 	insn -	copy_insn() saves the original instruction here for
81	 *		arch_uprobe_analyze_insn().
82	 *
83	 *	ixol -	potentially modified instruction to execute out of
84	 *		line, copied to xol_area by xol_get_insn_slot().
85	 */
86	struct arch_uprobe	arch;
87};
88
89struct return_instance {
90	struct uprobe		*uprobe;
91	unsigned long		func;
92	unsigned long		orig_ret_vaddr; /* original return address */
93	bool			chained;	/* true, if instance is nested */
94
95	struct return_instance	*next;		/* keep as stack */
96};
97
98/*
99 * Execute out of line area: anonymous executable mapping installed
100 * by the probed task to execute the copy of the original instruction
101 * mangled by set_swbp().
102 *
103 * On a breakpoint hit, thread contests for a slot.  It frees the
104 * slot after singlestep. Currently a fixed number of slots are
105 * allocated.
106 */
107struct xol_area {
108	wait_queue_head_t 	wq;		/* if all slots are busy */
109	atomic_t 		slot_count;	/* number of in-use slots */
110	unsigned long 		*bitmap;	/* 0 = free slot */
111	struct page 		*page;
112
113	/*
114	 * We keep the vma's vm_start rather than a pointer to the vma
115	 * itself.  The probed process or a naughty kernel module could make
116	 * the vma go away, and we must handle that reasonably gracefully.
117	 */
118	unsigned long 		vaddr;		/* Page(s) of instruction slots */
119};
120
121/*
122 * valid_vma: Verify if the specified vma is an executable vma
123 * Relax restrictions while unregistering: vm_flags might have
124 * changed after breakpoint was inserted.
125 *	- is_register: indicates if we are in register context.
126 *	- Return 1 if the specified virtual address is in an
127 *	  executable vma.
128 */
129static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130{
131	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132
133	if (is_register)
134		flags |= VM_WRITE;
135
136	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137}
138
139static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140{
141	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142}
143
144static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145{
146	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147}
148
149/**
150 * __replace_page - replace page in vma by new page.
151 * based on replace_page in mm/ksm.c
152 *
153 * @vma:      vma that holds the pte pointing to page
154 * @addr:     address the old @page is mapped at
155 * @page:     the cowed page we are replacing by kpage
156 * @kpage:    the modified page we replace page by
157 *
158 * Returns 0 on success, -EFAULT on failure.
159 */
160static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161				struct page *page, struct page *kpage)
162{
163	struct mm_struct *mm = vma->vm_mm;
164	spinlock_t *ptl;
165	pte_t *ptep;
166	int err;
167	/* For mmu_notifiers */
168	const unsigned long mmun_start = addr;
169	const unsigned long mmun_end   = addr + PAGE_SIZE;
170	struct mem_cgroup *memcg;
171
172	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
173	if (err)
174		return err;
175
176	/* For try_to_free_swap() and munlock_vma_page() below */
177	lock_page(page);
178
179	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180	err = -EAGAIN;
181	ptep = page_check_address(page, mm, addr, &ptl, 0);
182	if (!ptep)
183		goto unlock;
184
185	get_page(kpage);
186	page_add_new_anon_rmap(kpage, vma, addr);
187	mem_cgroup_commit_charge(kpage, memcg, false);
188	lru_cache_add_active_or_unevictable(kpage, vma);
189
190	if (!PageAnon(page)) {
191		dec_mm_counter(mm, MM_FILEPAGES);
192		inc_mm_counter(mm, MM_ANONPAGES);
193	}
194
195	flush_cache_page(vma, addr, pte_pfn(*ptep));
196	ptep_clear_flush(vma, addr, ptep);
197	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
198
199	page_remove_rmap(page);
200	if (!page_mapped(page))
201		try_to_free_swap(page);
202	pte_unmap_unlock(ptep, ptl);
203
204	if (vma->vm_flags & VM_LOCKED)
205		munlock_vma_page(page);
206	put_page(page);
207
208	err = 0;
209 unlock:
210	mem_cgroup_cancel_charge(kpage, memcg);
211	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
212	unlock_page(page);
213	return err;
214}
215
216/**
217 * is_swbp_insn - check if instruction is breakpoint instruction.
218 * @insn: instruction to be checked.
219 * Default implementation of is_swbp_insn
220 * Returns true if @insn is a breakpoint instruction.
221 */
222bool __weak is_swbp_insn(uprobe_opcode_t *insn)
223{
224	return *insn == UPROBE_SWBP_INSN;
225}
226
227/**
228 * is_trap_insn - check if instruction is breakpoint instruction.
229 * @insn: instruction to be checked.
230 * Default implementation of is_trap_insn
231 * Returns true if @insn is a breakpoint instruction.
232 *
233 * This function is needed for the case where an architecture has multiple
234 * trap instructions (like powerpc).
235 */
236bool __weak is_trap_insn(uprobe_opcode_t *insn)
237{
238	return is_swbp_insn(insn);
239}
240
241static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
242{
243	void *kaddr = kmap_atomic(page);
244	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
245	kunmap_atomic(kaddr);
246}
247
248static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
249{
250	void *kaddr = kmap_atomic(page);
251	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
252	kunmap_atomic(kaddr);
253}
254
255static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
256{
257	uprobe_opcode_t old_opcode;
258	bool is_swbp;
259
260	/*
261	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
262	 * We do not check if it is any other 'trap variant' which could
263	 * be conditional trap instruction such as the one powerpc supports.
264	 *
265	 * The logic is that we do not care if the underlying instruction
266	 * is a trap variant; uprobes always wins over any other (gdb)
267	 * breakpoint.
268	 */
269	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
270	is_swbp = is_swbp_insn(&old_opcode);
271
272	if (is_swbp_insn(new_opcode)) {
273		if (is_swbp)		/* register: already installed? */
274			return 0;
275	} else {
276		if (!is_swbp)		/* unregister: was it changed by us? */
277			return 0;
278	}
279
280	return 1;
281}
282
283/*
284 * NOTE:
285 * Expect the breakpoint instruction to be the smallest size instruction for
286 * the architecture. If an arch has variable length instruction and the
287 * breakpoint instruction is not of the smallest length instruction
288 * supported by that architecture then we need to modify is_trap_at_addr and
289 * uprobe_write_opcode accordingly. This would never be a problem for archs
290 * that have fixed length instructions.
291 *
292 * uprobe_write_opcode - write the opcode at a given virtual address.
293 * @mm: the probed process address space.
294 * @vaddr: the virtual address to store the opcode.
295 * @opcode: opcode to be written at @vaddr.
296 *
297 * Called with mm->mmap_sem held for write.
298 * Return 0 (success) or a negative errno.
299 */
300int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
301			uprobe_opcode_t opcode)
302{
303	struct page *old_page, *new_page;
304	struct vm_area_struct *vma;
305	int ret;
306
307retry:
308	/* Read the page with vaddr into memory */
309	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
310	if (ret <= 0)
311		return ret;
312
313	ret = verify_opcode(old_page, vaddr, &opcode);
314	if (ret <= 0)
315		goto put_old;
316
317	ret = anon_vma_prepare(vma);
318	if (ret)
319		goto put_old;
320
321	ret = -ENOMEM;
322	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
323	if (!new_page)
324		goto put_old;
325
326	__SetPageUptodate(new_page);
327	copy_highpage(new_page, old_page);
328	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
329
330	ret = __replace_page(vma, vaddr, old_page, new_page);
331	page_cache_release(new_page);
332put_old:
333	put_page(old_page);
334
335	if (unlikely(ret == -EAGAIN))
336		goto retry;
337	return ret;
338}
339
340/**
341 * set_swbp - store breakpoint at a given address.
342 * @auprobe: arch specific probepoint information.
343 * @mm: the probed process address space.
344 * @vaddr: the virtual address to insert the opcode.
345 *
346 * For mm @mm, store the breakpoint instruction at @vaddr.
347 * Return 0 (success) or a negative errno.
348 */
349int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
350{
351	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
352}
353
354/**
355 * set_orig_insn - Restore the original instruction.
356 * @mm: the probed process address space.
357 * @auprobe: arch specific probepoint information.
358 * @vaddr: the virtual address to insert the opcode.
359 *
360 * For mm @mm, restore the original opcode (opcode) at @vaddr.
361 * Return 0 (success) or a negative errno.
362 */
363int __weak
364set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
365{
366	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
367}
368
369static int match_uprobe(struct uprobe *l, struct uprobe *r)
370{
371	if (l->inode < r->inode)
372		return -1;
373
374	if (l->inode > r->inode)
375		return 1;
376
377	if (l->offset < r->offset)
378		return -1;
379
380	if (l->offset > r->offset)
381		return 1;
382
383	return 0;
384}
385
386static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387{
388	struct uprobe u = { .inode = inode, .offset = offset };
389	struct rb_node *n = uprobes_tree.rb_node;
390	struct uprobe *uprobe;
391	int match;
392
393	while (n) {
394		uprobe = rb_entry(n, struct uprobe, rb_node);
395		match = match_uprobe(&u, uprobe);
396		if (!match) {
397			atomic_inc(&uprobe->ref);
398			return uprobe;
399		}
400
401		if (match < 0)
402			n = n->rb_left;
403		else
404			n = n->rb_right;
405	}
406	return NULL;
407}
408
409/*
410 * Find a uprobe corresponding to a given inode:offset
411 * Acquires uprobes_treelock
412 */
413static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414{
415	struct uprobe *uprobe;
416
417	spin_lock(&uprobes_treelock);
418	uprobe = __find_uprobe(inode, offset);
419	spin_unlock(&uprobes_treelock);
420
421	return uprobe;
422}
423
424static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
425{
426	struct rb_node **p = &uprobes_tree.rb_node;
427	struct rb_node *parent = NULL;
428	struct uprobe *u;
429	int match;
430
431	while (*p) {
432		parent = *p;
433		u = rb_entry(parent, struct uprobe, rb_node);
434		match = match_uprobe(uprobe, u);
435		if (!match) {
436			atomic_inc(&u->ref);
437			return u;
438		}
439
440		if (match < 0)
441			p = &parent->rb_left;
442		else
443			p = &parent->rb_right;
444
445	}
446
447	u = NULL;
448	rb_link_node(&uprobe->rb_node, parent, p);
449	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450	/* get access + creation ref */
451	atomic_set(&uprobe->ref, 2);
452
453	return u;
454}
455
456/*
457 * Acquire uprobes_treelock.
458 * Matching uprobe already exists in rbtree;
459 *	increment (access refcount) and return the matching uprobe.
460 *
461 * No matching uprobe; insert the uprobe in rb_tree;
462 *	get a double refcount (access + creation) and return NULL.
463 */
464static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465{
466	struct uprobe *u;
467
468	spin_lock(&uprobes_treelock);
469	u = __insert_uprobe(uprobe);
470	spin_unlock(&uprobes_treelock);
471
472	return u;
473}
474
475static void put_uprobe(struct uprobe *uprobe)
476{
477	if (atomic_dec_and_test(&uprobe->ref))
478		kfree(uprobe);
479}
480
481static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
482{
483	struct uprobe *uprobe, *cur_uprobe;
484
485	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
486	if (!uprobe)
487		return NULL;
488
489	uprobe->inode = igrab(inode);
490	uprobe->offset = offset;
491	init_rwsem(&uprobe->register_rwsem);
492	init_rwsem(&uprobe->consumer_rwsem);
493
494	/* add to uprobes_tree, sorted on inode:offset */
495	cur_uprobe = insert_uprobe(uprobe);
496	/* a uprobe exists for this inode:offset combination */
497	if (cur_uprobe) {
498		kfree(uprobe);
499		uprobe = cur_uprobe;
500		iput(inode);
501	}
502
503	return uprobe;
504}
505
506static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
507{
508	down_write(&uprobe->consumer_rwsem);
509	uc->next = uprobe->consumers;
510	uprobe->consumers = uc;
511	up_write(&uprobe->consumer_rwsem);
512}
513
514/*
515 * For uprobe @uprobe, delete the consumer @uc.
516 * Return true if the @uc is deleted successfully
517 * or return false.
518 */
519static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
520{
521	struct uprobe_consumer **con;
522	bool ret = false;
523
524	down_write(&uprobe->consumer_rwsem);
525	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
526		if (*con == uc) {
527			*con = uc->next;
528			ret = true;
529			break;
530		}
531	}
532	up_write(&uprobe->consumer_rwsem);
533
534	return ret;
535}
536
537static int __copy_insn(struct address_space *mapping, struct file *filp,
538			void *insn, int nbytes, loff_t offset)
539{
540	struct page *page;
541	/*
542	 * Ensure that the page that has the original instruction is populated
543	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
544	 * see uprobe_register().
545	 */
546	if (mapping->a_ops->readpage)
547		page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
548	else
549		page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
550	if (IS_ERR(page))
551		return PTR_ERR(page);
552
553	copy_from_page(page, offset, insn, nbytes);
554	page_cache_release(page);
555
556	return 0;
557}
558
559static int copy_insn(struct uprobe *uprobe, struct file *filp)
560{
561	struct address_space *mapping = uprobe->inode->i_mapping;
562	loff_t offs = uprobe->offset;
563	void *insn = &uprobe->arch.insn;
564	int size = sizeof(uprobe->arch.insn);
565	int len, err = -EIO;
566
567	/* Copy only available bytes, -EIO if nothing was read */
568	do {
569		if (offs >= i_size_read(uprobe->inode))
570			break;
571
572		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
573		err = __copy_insn(mapping, filp, insn, len, offs);
574		if (err)
575			break;
576
577		insn += len;
578		offs += len;
579		size -= len;
580	} while (size);
581
582	return err;
583}
584
585static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
586				struct mm_struct *mm, unsigned long vaddr)
587{
588	int ret = 0;
589
590	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
591		return ret;
592
593	/* TODO: move this into _register, until then we abuse this sem. */
594	down_write(&uprobe->consumer_rwsem);
595	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596		goto out;
597
598	ret = copy_insn(uprobe, file);
599	if (ret)
600		goto out;
601
602	ret = -ENOTSUPP;
603	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
604		goto out;
605
606	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
607	if (ret)
608		goto out;
609
610	/* uprobe_write_opcode() assumes we don't cross page boundary */
611	BUG_ON((uprobe->offset & ~PAGE_MASK) +
612			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
613
614	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
615	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
616
617 out:
618	up_write(&uprobe->consumer_rwsem);
619
620	return ret;
621}
622
623static inline bool consumer_filter(struct uprobe_consumer *uc,
624				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625{
626	return !uc->filter || uc->filter(uc, ctx, mm);
627}
628
629static bool filter_chain(struct uprobe *uprobe,
630			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
631{
632	struct uprobe_consumer *uc;
633	bool ret = false;
634
635	down_read(&uprobe->consumer_rwsem);
636	for (uc = uprobe->consumers; uc; uc = uc->next) {
637		ret = consumer_filter(uc, ctx, mm);
638		if (ret)
639			break;
640	}
641	up_read(&uprobe->consumer_rwsem);
642
643	return ret;
644}
645
646static int
647install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
648			struct vm_area_struct *vma, unsigned long vaddr)
649{
650	bool first_uprobe;
651	int ret;
652
653	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
654	if (ret)
655		return ret;
656
657	/*
658	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
659	 * the task can hit this breakpoint right after __replace_page().
660	 */
661	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
662	if (first_uprobe)
663		set_bit(MMF_HAS_UPROBES, &mm->flags);
664
665	ret = set_swbp(&uprobe->arch, mm, vaddr);
666	if (!ret)
667		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
668	else if (first_uprobe)
669		clear_bit(MMF_HAS_UPROBES, &mm->flags);
670
671	return ret;
672}
673
674static int
675remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
676{
677	set_bit(MMF_RECALC_UPROBES, &mm->flags);
678	return set_orig_insn(&uprobe->arch, mm, vaddr);
679}
680
681static inline bool uprobe_is_active(struct uprobe *uprobe)
682{
683	return !RB_EMPTY_NODE(&uprobe->rb_node);
684}
685/*
686 * There could be threads that have already hit the breakpoint. They
687 * will recheck the current insn and restart if find_uprobe() fails.
688 * See find_active_uprobe().
689 */
690static void delete_uprobe(struct uprobe *uprobe)
691{
692	if (WARN_ON(!uprobe_is_active(uprobe)))
693		return;
694
695	spin_lock(&uprobes_treelock);
696	rb_erase(&uprobe->rb_node, &uprobes_tree);
697	spin_unlock(&uprobes_treelock);
698	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
699	iput(uprobe->inode);
700	put_uprobe(uprobe);
701}
702
703struct map_info {
704	struct map_info *next;
705	struct mm_struct *mm;
706	unsigned long vaddr;
707};
708
709static inline struct map_info *free_map_info(struct map_info *info)
710{
711	struct map_info *next = info->next;
712	kfree(info);
713	return next;
714}
715
716static struct map_info *
717build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
718{
719	unsigned long pgoff = offset >> PAGE_SHIFT;
720	struct vm_area_struct *vma;
721	struct map_info *curr = NULL;
722	struct map_info *prev = NULL;
723	struct map_info *info;
724	int more = 0;
725
726 again:
727	mutex_lock(&mapping->i_mmap_mutex);
728	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
729		if (!valid_vma(vma, is_register))
730			continue;
731
732		if (!prev && !more) {
733			/*
734			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
735			 * reclaim. This is optimistic, no harm done if it fails.
736			 */
737			prev = kmalloc(sizeof(struct map_info),
738					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
739			if (prev)
740				prev->next = NULL;
741		}
742		if (!prev) {
743			more++;
744			continue;
745		}
746
747		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
748			continue;
749
750		info = prev;
751		prev = prev->next;
752		info->next = curr;
753		curr = info;
754
755		info->mm = vma->vm_mm;
756		info->vaddr = offset_to_vaddr(vma, offset);
757	}
758	mutex_unlock(&mapping->i_mmap_mutex);
759
760	if (!more)
761		goto out;
762
763	prev = curr;
764	while (curr) {
765		mmput(curr->mm);
766		curr = curr->next;
767	}
768
769	do {
770		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
771		if (!info) {
772			curr = ERR_PTR(-ENOMEM);
773			goto out;
774		}
775		info->next = prev;
776		prev = info;
777	} while (--more);
778
779	goto again;
780 out:
781	while (prev)
782		prev = free_map_info(prev);
783	return curr;
784}
785
786static int
787register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
788{
789	bool is_register = !!new;
790	struct map_info *info;
791	int err = 0;
792
793	percpu_down_write(&dup_mmap_sem);
794	info = build_map_info(uprobe->inode->i_mapping,
795					uprobe->offset, is_register);
796	if (IS_ERR(info)) {
797		err = PTR_ERR(info);
798		goto out;
799	}
800
801	while (info) {
802		struct mm_struct *mm = info->mm;
803		struct vm_area_struct *vma;
804
805		if (err && is_register)
806			goto free;
807
808		down_write(&mm->mmap_sem);
809		vma = find_vma(mm, info->vaddr);
810		if (!vma || !valid_vma(vma, is_register) ||
811		    file_inode(vma->vm_file) != uprobe->inode)
812			goto unlock;
813
814		if (vma->vm_start > info->vaddr ||
815		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
816			goto unlock;
817
818		if (is_register) {
819			/* consult only the "caller", new consumer. */
820			if (consumer_filter(new,
821					UPROBE_FILTER_REGISTER, mm))
822				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
823		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
824			if (!filter_chain(uprobe,
825					UPROBE_FILTER_UNREGISTER, mm))
826				err |= remove_breakpoint(uprobe, mm, info->vaddr);
827		}
828
829 unlock:
830		up_write(&mm->mmap_sem);
831 free:
832		mmput(mm);
833		info = free_map_info(info);
834	}
835 out:
836	percpu_up_write(&dup_mmap_sem);
837	return err;
838}
839
840static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
841{
842	consumer_add(uprobe, uc);
843	return register_for_each_vma(uprobe, uc);
844}
845
846static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
847{
848	int err;
849
850	if (WARN_ON(!consumer_del(uprobe, uc)))
851		return;
852
853	err = register_for_each_vma(uprobe, NULL);
854	/* TODO : cant unregister? schedule a worker thread */
855	if (!uprobe->consumers && !err)
856		delete_uprobe(uprobe);
857}
858
859/*
860 * uprobe_register - register a probe
861 * @inode: the file in which the probe has to be placed.
862 * @offset: offset from the start of the file.
863 * @uc: information on howto handle the probe..
864 *
865 * Apart from the access refcount, uprobe_register() takes a creation
866 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
867 * inserted into the rbtree (i.e first consumer for a @inode:@offset
868 * tuple).  Creation refcount stops uprobe_unregister from freeing the
869 * @uprobe even before the register operation is complete. Creation
870 * refcount is released when the last @uc for the @uprobe
871 * unregisters.
872 *
873 * Return errno if it cannot successully install probes
874 * else return 0 (success)
875 */
876int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877{
878	struct uprobe *uprobe;
879	int ret;
880
881	/* Uprobe must have at least one set consumer */
882	if (!uc->handler && !uc->ret_handler)
883		return -EINVAL;
884
885	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
886	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
887		return -EIO;
888	/* Racy, just to catch the obvious mistakes */
889	if (offset > i_size_read(inode))
890		return -EINVAL;
891
892 retry:
893	uprobe = alloc_uprobe(inode, offset);
894	if (!uprobe)
895		return -ENOMEM;
896	/*
897	 * We can race with uprobe_unregister()->delete_uprobe().
898	 * Check uprobe_is_active() and retry if it is false.
899	 */
900	down_write(&uprobe->register_rwsem);
901	ret = -EAGAIN;
902	if (likely(uprobe_is_active(uprobe))) {
903		ret = __uprobe_register(uprobe, uc);
904		if (ret)
905			__uprobe_unregister(uprobe, uc);
906	}
907	up_write(&uprobe->register_rwsem);
908	put_uprobe(uprobe);
909
910	if (unlikely(ret == -EAGAIN))
911		goto retry;
912	return ret;
913}
914EXPORT_SYMBOL_GPL(uprobe_register);
915
916/*
917 * uprobe_apply - unregister a already registered probe.
918 * @inode: the file in which the probe has to be removed.
919 * @offset: offset from the start of the file.
920 * @uc: consumer which wants to add more or remove some breakpoints
921 * @add: add or remove the breakpoints
922 */
923int uprobe_apply(struct inode *inode, loff_t offset,
924			struct uprobe_consumer *uc, bool add)
925{
926	struct uprobe *uprobe;
927	struct uprobe_consumer *con;
928	int ret = -ENOENT;
929
930	uprobe = find_uprobe(inode, offset);
931	if (WARN_ON(!uprobe))
932		return ret;
933
934	down_write(&uprobe->register_rwsem);
935	for (con = uprobe->consumers; con && con != uc ; con = con->next)
936		;
937	if (con)
938		ret = register_for_each_vma(uprobe, add ? uc : NULL);
939	up_write(&uprobe->register_rwsem);
940	put_uprobe(uprobe);
941
942	return ret;
943}
944
945/*
946 * uprobe_unregister - unregister a already registered probe.
947 * @inode: the file in which the probe has to be removed.
948 * @offset: offset from the start of the file.
949 * @uc: identify which probe if multiple probes are colocated.
950 */
951void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
952{
953	struct uprobe *uprobe;
954
955	uprobe = find_uprobe(inode, offset);
956	if (WARN_ON(!uprobe))
957		return;
958
959	down_write(&uprobe->register_rwsem);
960	__uprobe_unregister(uprobe, uc);
961	up_write(&uprobe->register_rwsem);
962	put_uprobe(uprobe);
963}
964EXPORT_SYMBOL_GPL(uprobe_unregister);
965
966static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
967{
968	struct vm_area_struct *vma;
969	int err = 0;
970
971	down_read(&mm->mmap_sem);
972	for (vma = mm->mmap; vma; vma = vma->vm_next) {
973		unsigned long vaddr;
974		loff_t offset;
975
976		if (!valid_vma(vma, false) ||
977		    file_inode(vma->vm_file) != uprobe->inode)
978			continue;
979
980		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
981		if (uprobe->offset <  offset ||
982		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
983			continue;
984
985		vaddr = offset_to_vaddr(vma, uprobe->offset);
986		err |= remove_breakpoint(uprobe, mm, vaddr);
987	}
988	up_read(&mm->mmap_sem);
989
990	return err;
991}
992
993static struct rb_node *
994find_node_in_range(struct inode *inode, loff_t min, loff_t max)
995{
996	struct rb_node *n = uprobes_tree.rb_node;
997
998	while (n) {
999		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1000
1001		if (inode < u->inode) {
1002			n = n->rb_left;
1003		} else if (inode > u->inode) {
1004			n = n->rb_right;
1005		} else {
1006			if (max < u->offset)
1007				n = n->rb_left;
1008			else if (min > u->offset)
1009				n = n->rb_right;
1010			else
1011				break;
1012		}
1013	}
1014
1015	return n;
1016}
1017
1018/*
1019 * For a given range in vma, build a list of probes that need to be inserted.
1020 */
1021static void build_probe_list(struct inode *inode,
1022				struct vm_area_struct *vma,
1023				unsigned long start, unsigned long end,
1024				struct list_head *head)
1025{
1026	loff_t min, max;
1027	struct rb_node *n, *t;
1028	struct uprobe *u;
1029
1030	INIT_LIST_HEAD(head);
1031	min = vaddr_to_offset(vma, start);
1032	max = min + (end - start) - 1;
1033
1034	spin_lock(&uprobes_treelock);
1035	n = find_node_in_range(inode, min, max);
1036	if (n) {
1037		for (t = n; t; t = rb_prev(t)) {
1038			u = rb_entry(t, struct uprobe, rb_node);
1039			if (u->inode != inode || u->offset < min)
1040				break;
1041			list_add(&u->pending_list, head);
1042			atomic_inc(&u->ref);
1043		}
1044		for (t = n; (t = rb_next(t)); ) {
1045			u = rb_entry(t, struct uprobe, rb_node);
1046			if (u->inode != inode || u->offset > max)
1047				break;
1048			list_add(&u->pending_list, head);
1049			atomic_inc(&u->ref);
1050		}
1051	}
1052	spin_unlock(&uprobes_treelock);
1053}
1054
1055/*
1056 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1057 *
1058 * Currently we ignore all errors and always return 0, the callers
1059 * can't handle the failure anyway.
1060 */
1061int uprobe_mmap(struct vm_area_struct *vma)
1062{
1063	struct list_head tmp_list;
1064	struct uprobe *uprobe, *u;
1065	struct inode *inode;
1066
1067	if (no_uprobe_events() || !valid_vma(vma, true))
1068		return 0;
1069
1070	inode = file_inode(vma->vm_file);
1071	if (!inode)
1072		return 0;
1073
1074	mutex_lock(uprobes_mmap_hash(inode));
1075	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1076	/*
1077	 * We can race with uprobe_unregister(), this uprobe can be already
1078	 * removed. But in this case filter_chain() must return false, all
1079	 * consumers have gone away.
1080	 */
1081	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1082		if (!fatal_signal_pending(current) &&
1083		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1084			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1085			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1086		}
1087		put_uprobe(uprobe);
1088	}
1089	mutex_unlock(uprobes_mmap_hash(inode));
1090
1091	return 0;
1092}
1093
1094static bool
1095vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1096{
1097	loff_t min, max;
1098	struct inode *inode;
1099	struct rb_node *n;
1100
1101	inode = file_inode(vma->vm_file);
1102
1103	min = vaddr_to_offset(vma, start);
1104	max = min + (end - start) - 1;
1105
1106	spin_lock(&uprobes_treelock);
1107	n = find_node_in_range(inode, min, max);
1108	spin_unlock(&uprobes_treelock);
1109
1110	return !!n;
1111}
1112
1113/*
1114 * Called in context of a munmap of a vma.
1115 */
1116void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1117{
1118	if (no_uprobe_events() || !valid_vma(vma, false))
1119		return;
1120
1121	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1122		return;
1123
1124	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1125	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1126		return;
1127
1128	if (vma_has_uprobes(vma, start, end))
1129		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1130}
1131
1132/* Slot allocation for XOL */
1133static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1134{
1135	int ret = -EALREADY;
1136
1137	down_write(&mm->mmap_sem);
1138	if (mm->uprobes_state.xol_area)
1139		goto fail;
1140
1141	if (!area->vaddr) {
1142		/* Try to map as high as possible, this is only a hint. */
1143		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1144						PAGE_SIZE, 0, 0);
1145		if (area->vaddr & ~PAGE_MASK) {
1146			ret = area->vaddr;
1147			goto fail;
1148		}
1149	}
1150
1151	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1152				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1153	if (ret)
1154		goto fail;
1155
1156	smp_wmb();	/* pairs with get_xol_area() */
1157	mm->uprobes_state.xol_area = area;
1158 fail:
1159	up_write(&mm->mmap_sem);
1160
1161	return ret;
1162}
1163
1164static struct xol_area *__create_xol_area(unsigned long vaddr)
1165{
1166	struct mm_struct *mm = current->mm;
1167	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1168	struct xol_area *area;
1169
1170	area = kmalloc(sizeof(*area), GFP_KERNEL);
1171	if (unlikely(!area))
1172		goto out;
1173
1174	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1175	if (!area->bitmap)
1176		goto free_area;
1177
1178	area->page = alloc_page(GFP_HIGHUSER);
1179	if (!area->page)
1180		goto free_bitmap;
1181
1182	area->vaddr = vaddr;
1183	init_waitqueue_head(&area->wq);
1184	/* Reserve the 1st slot for get_trampoline_vaddr() */
1185	set_bit(0, area->bitmap);
1186	atomic_set(&area->slot_count, 1);
1187	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1188
1189	if (!xol_add_vma(mm, area))
1190		return area;
1191
1192	__free_page(area->page);
1193 free_bitmap:
1194	kfree(area->bitmap);
1195 free_area:
1196	kfree(area);
1197 out:
1198	return NULL;
1199}
1200
1201/*
1202 * get_xol_area - Allocate process's xol_area if necessary.
1203 * This area will be used for storing instructions for execution out of line.
1204 *
1205 * Returns the allocated area or NULL.
1206 */
1207static struct xol_area *get_xol_area(void)
1208{
1209	struct mm_struct *mm = current->mm;
1210	struct xol_area *area;
1211
1212	if (!mm->uprobes_state.xol_area)
1213		__create_xol_area(0);
1214
1215	area = mm->uprobes_state.xol_area;
1216	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1217	return area;
1218}
1219
1220/*
1221 * uprobe_clear_state - Free the area allocated for slots.
1222 */
1223void uprobe_clear_state(struct mm_struct *mm)
1224{
1225	struct xol_area *area = mm->uprobes_state.xol_area;
1226
1227	if (!area)
1228		return;
1229
1230	put_page(area->page);
1231	kfree(area->bitmap);
1232	kfree(area);
1233}
1234
1235void uprobe_start_dup_mmap(void)
1236{
1237	percpu_down_read(&dup_mmap_sem);
1238}
1239
1240void uprobe_end_dup_mmap(void)
1241{
1242	percpu_up_read(&dup_mmap_sem);
1243}
1244
1245void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1246{
1247	newmm->uprobes_state.xol_area = NULL;
1248
1249	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1250		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1251		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1252		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1253	}
1254}
1255
1256/*
1257 *  - search for a free slot.
1258 */
1259static unsigned long xol_take_insn_slot(struct xol_area *area)
1260{
1261	unsigned long slot_addr;
1262	int slot_nr;
1263
1264	do {
1265		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1266		if (slot_nr < UINSNS_PER_PAGE) {
1267			if (!test_and_set_bit(slot_nr, area->bitmap))
1268				break;
1269
1270			slot_nr = UINSNS_PER_PAGE;
1271			continue;
1272		}
1273		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1274	} while (slot_nr >= UINSNS_PER_PAGE);
1275
1276	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1277	atomic_inc(&area->slot_count);
1278
1279	return slot_addr;
1280}
1281
1282/*
1283 * xol_get_insn_slot - allocate a slot for xol.
1284 * Returns the allocated slot address or 0.
1285 */
1286static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1287{
1288	struct xol_area *area;
1289	unsigned long xol_vaddr;
1290
1291	area = get_xol_area();
1292	if (!area)
1293		return 0;
1294
1295	xol_vaddr = xol_take_insn_slot(area);
1296	if (unlikely(!xol_vaddr))
1297		return 0;
1298
1299	arch_uprobe_copy_ixol(area->page, xol_vaddr,
1300			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1301
1302	return xol_vaddr;
1303}
1304
1305/*
1306 * xol_free_insn_slot - If slot was earlier allocated by
1307 * @xol_get_insn_slot(), make the slot available for
1308 * subsequent requests.
1309 */
1310static void xol_free_insn_slot(struct task_struct *tsk)
1311{
1312	struct xol_area *area;
1313	unsigned long vma_end;
1314	unsigned long slot_addr;
1315
1316	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1317		return;
1318
1319	slot_addr = tsk->utask->xol_vaddr;
1320	if (unlikely(!slot_addr))
1321		return;
1322
1323	area = tsk->mm->uprobes_state.xol_area;
1324	vma_end = area->vaddr + PAGE_SIZE;
1325	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1326		unsigned long offset;
1327		int slot_nr;
1328
1329		offset = slot_addr - area->vaddr;
1330		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1331		if (slot_nr >= UINSNS_PER_PAGE)
1332			return;
1333
1334		clear_bit(slot_nr, area->bitmap);
1335		atomic_dec(&area->slot_count);
1336		if (waitqueue_active(&area->wq))
1337			wake_up(&area->wq);
1338
1339		tsk->utask->xol_vaddr = 0;
1340	}
1341}
1342
1343void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1344				  void *src, unsigned long len)
1345{
1346	/* Initialize the slot */
1347	copy_to_page(page, vaddr, src, len);
1348
1349	/*
1350	 * We probably need flush_icache_user_range() but it needs vma.
1351	 * This should work on most of architectures by default. If
1352	 * architecture needs to do something different it can define
1353	 * its own version of the function.
1354	 */
1355	flush_dcache_page(page);
1356}
1357
1358/**
1359 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1360 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1361 * instruction.
1362 * Return the address of the breakpoint instruction.
1363 */
1364unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1365{
1366	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1367}
1368
1369unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1370{
1371	struct uprobe_task *utask = current->utask;
1372
1373	if (unlikely(utask && utask->active_uprobe))
1374		return utask->vaddr;
1375
1376	return instruction_pointer(regs);
1377}
1378
1379/*
1380 * Called with no locks held.
1381 * Called in context of a exiting or a exec-ing thread.
1382 */
1383void uprobe_free_utask(struct task_struct *t)
1384{
1385	struct uprobe_task *utask = t->utask;
1386	struct return_instance *ri, *tmp;
1387
1388	if (!utask)
1389		return;
1390
1391	if (utask->active_uprobe)
1392		put_uprobe(utask->active_uprobe);
1393
1394	ri = utask->return_instances;
1395	while (ri) {
1396		tmp = ri;
1397		ri = ri->next;
1398
1399		put_uprobe(tmp->uprobe);
1400		kfree(tmp);
1401	}
1402
1403	xol_free_insn_slot(t);
1404	kfree(utask);
1405	t->utask = NULL;
1406}
1407
1408/*
1409 * Allocate a uprobe_task object for the task if if necessary.
1410 * Called when the thread hits a breakpoint.
1411 *
1412 * Returns:
1413 * - pointer to new uprobe_task on success
1414 * - NULL otherwise
1415 */
1416static struct uprobe_task *get_utask(void)
1417{
1418	if (!current->utask)
1419		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1420	return current->utask;
1421}
1422
1423static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1424{
1425	struct uprobe_task *n_utask;
1426	struct return_instance **p, *o, *n;
1427
1428	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1429	if (!n_utask)
1430		return -ENOMEM;
1431	t->utask = n_utask;
1432
1433	p = &n_utask->return_instances;
1434	for (o = o_utask->return_instances; o; o = o->next) {
1435		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1436		if (!n)
1437			return -ENOMEM;
1438
1439		*n = *o;
1440		atomic_inc(&n->uprobe->ref);
1441		n->next = NULL;
1442
1443		*p = n;
1444		p = &n->next;
1445		n_utask->depth++;
1446	}
1447
1448	return 0;
1449}
1450
1451static void uprobe_warn(struct task_struct *t, const char *msg)
1452{
1453	pr_warn("uprobe: %s:%d failed to %s\n",
1454			current->comm, current->pid, msg);
1455}
1456
1457static void dup_xol_work(struct callback_head *work)
1458{
1459	if (current->flags & PF_EXITING)
1460		return;
1461
1462	if (!__create_xol_area(current->utask->dup_xol_addr))
1463		uprobe_warn(current, "dup xol area");
1464}
1465
1466/*
1467 * Called in context of a new clone/fork from copy_process.
1468 */
1469void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1470{
1471	struct uprobe_task *utask = current->utask;
1472	struct mm_struct *mm = current->mm;
1473	struct xol_area *area;
1474
1475	t->utask = NULL;
1476
1477	if (!utask || !utask->return_instances)
1478		return;
1479
1480	if (mm == t->mm && !(flags & CLONE_VFORK))
1481		return;
1482
1483	if (dup_utask(t, utask))
1484		return uprobe_warn(t, "dup ret instances");
1485
1486	/* The task can fork() after dup_xol_work() fails */
1487	area = mm->uprobes_state.xol_area;
1488	if (!area)
1489		return uprobe_warn(t, "dup xol area");
1490
1491	if (mm == t->mm)
1492		return;
1493
1494	t->utask->dup_xol_addr = area->vaddr;
1495	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1496	task_work_add(t, &t->utask->dup_xol_work, true);
1497}
1498
1499/*
1500 * Current area->vaddr notion assume the trampoline address is always
1501 * equal area->vaddr.
1502 *
1503 * Returns -1 in case the xol_area is not allocated.
1504 */
1505static unsigned long get_trampoline_vaddr(void)
1506{
1507	struct xol_area *area;
1508	unsigned long trampoline_vaddr = -1;
1509
1510	area = current->mm->uprobes_state.xol_area;
1511	smp_read_barrier_depends();
1512	if (area)
1513		trampoline_vaddr = area->vaddr;
1514
1515	return trampoline_vaddr;
1516}
1517
1518static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1519{
1520	struct return_instance *ri;
1521	struct uprobe_task *utask;
1522	unsigned long orig_ret_vaddr, trampoline_vaddr;
1523	bool chained = false;
1524
1525	if (!get_xol_area())
1526		return;
1527
1528	utask = get_utask();
1529	if (!utask)
1530		return;
1531
1532	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1533		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1534				" nestedness limit pid/tgid=%d/%d\n",
1535				current->pid, current->tgid);
1536		return;
1537	}
1538
1539	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1540	if (!ri)
1541		goto fail;
1542
1543	trampoline_vaddr = get_trampoline_vaddr();
1544	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1545	if (orig_ret_vaddr == -1)
1546		goto fail;
1547
1548	/*
1549	 * We don't want to keep trampoline address in stack, rather keep the
1550	 * original return address of first caller thru all the consequent
1551	 * instances. This also makes breakpoint unwrapping easier.
1552	 */
1553	if (orig_ret_vaddr == trampoline_vaddr) {
1554		if (!utask->return_instances) {
1555			/*
1556			 * This situation is not possible. Likely we have an
1557			 * attack from user-space.
1558			 */
1559			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1560						current->pid, current->tgid);
1561			goto fail;
1562		}
1563
1564		chained = true;
1565		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1566	}
1567
1568	atomic_inc(&uprobe->ref);
1569	ri->uprobe = uprobe;
1570	ri->func = instruction_pointer(regs);
1571	ri->orig_ret_vaddr = orig_ret_vaddr;
1572	ri->chained = chained;
1573
1574	utask->depth++;
1575
1576	/* add instance to the stack */
1577	ri->next = utask->return_instances;
1578	utask->return_instances = ri;
1579
1580	return;
1581
1582 fail:
1583	kfree(ri);
1584}
1585
1586/* Prepare to single-step probed instruction out of line. */
1587static int
1588pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1589{
1590	struct uprobe_task *utask;
1591	unsigned long xol_vaddr;
1592	int err;
1593
1594	utask = get_utask();
1595	if (!utask)
1596		return -ENOMEM;
1597
1598	xol_vaddr = xol_get_insn_slot(uprobe);
1599	if (!xol_vaddr)
1600		return -ENOMEM;
1601
1602	utask->xol_vaddr = xol_vaddr;
1603	utask->vaddr = bp_vaddr;
1604
1605	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1606	if (unlikely(err)) {
1607		xol_free_insn_slot(current);
1608		return err;
1609	}
1610
1611	utask->active_uprobe = uprobe;
1612	utask->state = UTASK_SSTEP;
1613	return 0;
1614}
1615
1616/*
1617 * If we are singlestepping, then ensure this thread is not connected to
1618 * non-fatal signals until completion of singlestep.  When xol insn itself
1619 * triggers the signal,  restart the original insn even if the task is
1620 * already SIGKILL'ed (since coredump should report the correct ip).  This
1621 * is even more important if the task has a handler for SIGSEGV/etc, The
1622 * _same_ instruction should be repeated again after return from the signal
1623 * handler, and SSTEP can never finish in this case.
1624 */
1625bool uprobe_deny_signal(void)
1626{
1627	struct task_struct *t = current;
1628	struct uprobe_task *utask = t->utask;
1629
1630	if (likely(!utask || !utask->active_uprobe))
1631		return false;
1632
1633	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1634
1635	if (signal_pending(t)) {
1636		spin_lock_irq(&t->sighand->siglock);
1637		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1638		spin_unlock_irq(&t->sighand->siglock);
1639
1640		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1641			utask->state = UTASK_SSTEP_TRAPPED;
1642			set_tsk_thread_flag(t, TIF_UPROBE);
1643		}
1644	}
1645
1646	return true;
1647}
1648
1649static void mmf_recalc_uprobes(struct mm_struct *mm)
1650{
1651	struct vm_area_struct *vma;
1652
1653	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1654		if (!valid_vma(vma, false))
1655			continue;
1656		/*
1657		 * This is not strictly accurate, we can race with
1658		 * uprobe_unregister() and see the already removed
1659		 * uprobe if delete_uprobe() was not yet called.
1660		 * Or this uprobe can be filtered out.
1661		 */
1662		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1663			return;
1664	}
1665
1666	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1667}
1668
1669static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1670{
1671	struct page *page;
1672	uprobe_opcode_t opcode;
1673	int result;
1674
1675	pagefault_disable();
1676	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1677							sizeof(opcode));
1678	pagefault_enable();
1679
1680	if (likely(result == 0))
1681		goto out;
1682
1683	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1684	if (result < 0)
1685		return result;
1686
1687	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1688	put_page(page);
1689 out:
1690	/* This needs to return true for any variant of the trap insn */
1691	return is_trap_insn(&opcode);
1692}
1693
1694static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1695{
1696	struct mm_struct *mm = current->mm;
1697	struct uprobe *uprobe = NULL;
1698	struct vm_area_struct *vma;
1699
1700	down_read(&mm->mmap_sem);
1701	vma = find_vma(mm, bp_vaddr);
1702	if (vma && vma->vm_start <= bp_vaddr) {
1703		if (valid_vma(vma, false)) {
1704			struct inode *inode = file_inode(vma->vm_file);
1705			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1706
1707			uprobe = find_uprobe(inode, offset);
1708		}
1709
1710		if (!uprobe)
1711			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1712	} else {
1713		*is_swbp = -EFAULT;
1714	}
1715
1716	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1717		mmf_recalc_uprobes(mm);
1718	up_read(&mm->mmap_sem);
1719
1720	return uprobe;
1721}
1722
1723static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1724{
1725	struct uprobe_consumer *uc;
1726	int remove = UPROBE_HANDLER_REMOVE;
1727	bool need_prep = false; /* prepare return uprobe, when needed */
1728
1729	down_read(&uprobe->register_rwsem);
1730	for (uc = uprobe->consumers; uc; uc = uc->next) {
1731		int rc = 0;
1732
1733		if (uc->handler) {
1734			rc = uc->handler(uc, regs);
1735			WARN(rc & ~UPROBE_HANDLER_MASK,
1736				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1737		}
1738
1739		if (uc->ret_handler)
1740			need_prep = true;
1741
1742		remove &= rc;
1743	}
1744
1745	if (need_prep && !remove)
1746		prepare_uretprobe(uprobe, regs); /* put bp at return */
1747
1748	if (remove && uprobe->consumers) {
1749		WARN_ON(!uprobe_is_active(uprobe));
1750		unapply_uprobe(uprobe, current->mm);
1751	}
1752	up_read(&uprobe->register_rwsem);
1753}
1754
1755static void
1756handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1757{
1758	struct uprobe *uprobe = ri->uprobe;
1759	struct uprobe_consumer *uc;
1760
1761	down_read(&uprobe->register_rwsem);
1762	for (uc = uprobe->consumers; uc; uc = uc->next) {
1763		if (uc->ret_handler)
1764			uc->ret_handler(uc, ri->func, regs);
1765	}
1766	up_read(&uprobe->register_rwsem);
1767}
1768
1769static bool handle_trampoline(struct pt_regs *regs)
1770{
1771	struct uprobe_task *utask;
1772	struct return_instance *ri, *tmp;
1773	bool chained;
1774
1775	utask = current->utask;
1776	if (!utask)
1777		return false;
1778
1779	ri = utask->return_instances;
1780	if (!ri)
1781		return false;
1782
1783	/*
1784	 * TODO: we should throw out return_instance's invalidated by
1785	 * longjmp(), currently we assume that the probed function always
1786	 * returns.
1787	 */
1788	instruction_pointer_set(regs, ri->orig_ret_vaddr);
1789
1790	for (;;) {
1791		handle_uretprobe_chain(ri, regs);
1792
1793		chained = ri->chained;
1794		put_uprobe(ri->uprobe);
1795
1796		tmp = ri;
1797		ri = ri->next;
1798		kfree(tmp);
1799		utask->depth--;
1800
1801		if (!chained)
1802			break;
1803		BUG_ON(!ri);
1804	}
1805
1806	utask->return_instances = ri;
1807
1808	return true;
1809}
1810
1811bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1812{
1813	return false;
1814}
1815
1816/*
1817 * Run handler and ask thread to singlestep.
1818 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1819 */
1820static void handle_swbp(struct pt_regs *regs)
1821{
1822	struct uprobe *uprobe;
1823	unsigned long bp_vaddr;
1824	int uninitialized_var(is_swbp);
1825
1826	bp_vaddr = uprobe_get_swbp_addr(regs);
1827	if (bp_vaddr == get_trampoline_vaddr()) {
1828		if (handle_trampoline(regs))
1829			return;
1830
1831		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1832						current->pid, current->tgid);
1833	}
1834
1835	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1836	if (!uprobe) {
1837		if (is_swbp > 0) {
1838			/* No matching uprobe; signal SIGTRAP. */
1839			send_sig(SIGTRAP, current, 0);
1840		} else {
1841			/*
1842			 * Either we raced with uprobe_unregister() or we can't
1843			 * access this memory. The latter is only possible if
1844			 * another thread plays with our ->mm. In both cases
1845			 * we can simply restart. If this vma was unmapped we
1846			 * can pretend this insn was not executed yet and get
1847			 * the (correct) SIGSEGV after restart.
1848			 */
1849			instruction_pointer_set(regs, bp_vaddr);
1850		}
1851		return;
1852	}
1853
1854	/* change it in advance for ->handler() and restart */
1855	instruction_pointer_set(regs, bp_vaddr);
1856
1857	/*
1858	 * TODO: move copy_insn/etc into _register and remove this hack.
1859	 * After we hit the bp, _unregister + _register can install the
1860	 * new and not-yet-analyzed uprobe at the same address, restart.
1861	 */
1862	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1863	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1864		goto out;
1865
1866	/* Tracing handlers use ->utask to communicate with fetch methods */
1867	if (!get_utask())
1868		goto out;
1869
1870	if (arch_uprobe_ignore(&uprobe->arch, regs))
1871		goto out;
1872
1873	handler_chain(uprobe, regs);
1874
1875	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1876		goto out;
1877
1878	if (!pre_ssout(uprobe, regs, bp_vaddr))
1879		return;
1880
1881	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1882out:
1883	put_uprobe(uprobe);
1884}
1885
1886/*
1887 * Perform required fix-ups and disable singlestep.
1888 * Allow pending signals to take effect.
1889 */
1890static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1891{
1892	struct uprobe *uprobe;
1893	int err = 0;
1894
1895	uprobe = utask->active_uprobe;
1896	if (utask->state == UTASK_SSTEP_ACK)
1897		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1898	else if (utask->state == UTASK_SSTEP_TRAPPED)
1899		arch_uprobe_abort_xol(&uprobe->arch, regs);
1900	else
1901		WARN_ON_ONCE(1);
1902
1903	put_uprobe(uprobe);
1904	utask->active_uprobe = NULL;
1905	utask->state = UTASK_RUNNING;
1906	xol_free_insn_slot(current);
1907
1908	spin_lock_irq(&current->sighand->siglock);
1909	recalc_sigpending(); /* see uprobe_deny_signal() */
1910	spin_unlock_irq(&current->sighand->siglock);
1911
1912	if (unlikely(err)) {
1913		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1914		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1915	}
1916}
1917
1918/*
1919 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1920 * allows the thread to return from interrupt. After that handle_swbp()
1921 * sets utask->active_uprobe.
1922 *
1923 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1924 * and allows the thread to return from interrupt.
1925 *
1926 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1927 * uprobe_notify_resume().
1928 */
1929void uprobe_notify_resume(struct pt_regs *regs)
1930{
1931	struct uprobe_task *utask;
1932
1933	clear_thread_flag(TIF_UPROBE);
1934
1935	utask = current->utask;
1936	if (utask && utask->active_uprobe)
1937		handle_singlestep(utask, regs);
1938	else
1939		handle_swbp(regs);
1940}
1941
1942/*
1943 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1944 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1945 */
1946int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1947{
1948	if (!current->mm)
1949		return 0;
1950
1951	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1952	    (!current->utask || !current->utask->return_instances))
1953		return 0;
1954
1955	set_thread_flag(TIF_UPROBE);
1956	return 1;
1957}
1958
1959/*
1960 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1961 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1962 */
1963int uprobe_post_sstep_notifier(struct pt_regs *regs)
1964{
1965	struct uprobe_task *utask = current->utask;
1966
1967	if (!current->mm || !utask || !utask->active_uprobe)
1968		/* task is currently not uprobed */
1969		return 0;
1970
1971	utask->state = UTASK_SSTEP_ACK;
1972	set_thread_flag(TIF_UPROBE);
1973	return 1;
1974}
1975
1976static struct notifier_block uprobe_exception_nb = {
1977	.notifier_call		= arch_uprobe_exception_notify,
1978	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1979};
1980
1981static int __init init_uprobes(void)
1982{
1983	int i;
1984
1985	for (i = 0; i < UPROBES_HASH_SZ; i++)
1986		mutex_init(&uprobes_mmap_mutex[i]);
1987
1988	if (percpu_init_rwsem(&dup_mmap_sem))
1989		return -ENOMEM;
1990
1991	return register_die_notifier(&uprobe_exception_nb);
1992}
1993__initcall(init_uprobes);
1994